Science.gov

Sample records for 18ffdg-labeled natural killer

  1. Natural Killer Cell Memory.

    PubMed

    O'Sullivan, Timothy E; Sun, Joseph C; Lanier, Lewis L

    2015-10-20

    Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity and can acquire immunological memory in a manner similar to that of T and B cells. In this review, we discuss evidence of NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes.

  2. Immunobiology of natural killer cells

    SciTech Connect

    Lotzova, E.; Herberman, R.B.

    1986-01-01

    This book combines research from many disciplines into a review of natural killer (NK) cell-mediated immunity in humans and experimental animal system. Topics for the volumes include: Volume I: Assays for NK Cell Cytotoxicity; Their Values and Pitfalls. Separation and Characterization of Phenotypically Distinct Subsets of NK Cells. Ultrastructure and Cytochemistry of the Human Large Granular Lymphocytes. Phylogeny and Ontogeny of NK Cells. Tissue and Organ distribution of NK Cells. Genetic Control of NK Cell Activity in Rodents. Phenotype, Functional Heterogeneity, and Lineage of Natural Killer Cells. Target Cell Structures, Recognition Sites, and the Mechanism of NK Cytotoxicity. Natural Killer Cytotoxic Factors (NKCF) Role in Cell-Mediated Cytotoxicity. Characteristics of Cultured NK Cells. Lectin-Dependent Killer Cells. MLC-Induced Cytotoxicity as a Model for the Development and Regulation of NK Cytotoxicity. LGL Lymphoproliferative Diseases in Man and Experimental Animals: The Characteristics of These Cells and Their Potential Experimental Uses. Index.

  3. Deficient natural killer cell function in preeclampsia

    SciTech Connect

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  4. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  5. Natural killer cells in hepatitis B virus infection.

    PubMed

    Wu, Shao-fei; Wang, Wen-jing; Gao, Yue-qiu

    2015-01-01

    Natural killer cells are a unique type of lymphocytes with cytotoxic capacity, and play important roles against tumors and infections. Recently, natural killer cells have been increasingly valued in their effects in hepatitis B virus infection. Since hepatitis B virus is not cytopathic, the subsequent antiviral immune responses of the host are responsible for sustaining the liver injury, which may result in cirrhosis and even hepatocellular carcinoma. Many studies have confirmed that natural killer cells participate in anti-hepatitis B virus responses both in the early phase after infection and in the chronic phase via cytolysis, degranulation, and cytokine secretion. However, natural killer cells play dichotomic roles: they exert antiviral and immunoregulatory functions whilst contribute to the pathogenesis of liver injury. Here, we review the roles of natural killer cells in hepatitis B virus infection, introducing novel therapeutic strategies for controlling hepatitis B virus infection via the modulation of natural killer cells.

  6. Natural Killer Cell Reduction and Uteroplacental Vasculopathy.

    PubMed

    Golic, Michaela; Haase, Nadine; Herse, Florian; Wehner, Anika; Vercruysse, Lisbeth; Pijnenborg, Robert; Balogh, Andras; Saether, Per Christian; Dissen, Erik; Luft, Friedrich C; Przybyl, Lukasz; Park, Joon-Keun; Alnaes-Katjavivi, Patji; Staff, Anne Cathrine; Verlohren, Stefan; Henrich, Wolfgang; Muller, Dominik N; Dechend, Ralf

    2016-10-01

    Uterine natural killer cells are important for uteroplacental development and pregnancy maintenance. Their role in pregnancy disorders, such as preeclampsia, is unknown. We reduced the number of natural killer cells by administering rabbit anti-asialo GM1 antiserum in an established rat preeclamptic model (female human angiotensinogen×male human renin) and evaluated the effects at the end of pregnancy (day 21), compared with preeclamptic control rats receiving normal rabbit serum. In 100% of the antiserum-treated, preeclamptic rats (7/7), we observed highly degenerated vessel cross sections in the mesometrial triangle at the end of pregnancy. This maternal uterine vasculopathy was characterized by a total absence of nucleated/living cells in the vessel wall and perivascularly and prominent presence of fibrosis. Furthermore, there were no endovascular trophoblast cells within the vessel lumen. In the control, normal rabbit serum-treated, preeclamptic rats, only 20% (1/5) of the animals displayed such vasculopathy. We confirmed the results in healthy pregnant wild-type rats: after anti-asialo GM1 treatment, 67% of maternal rats displayed vasculopathy at the end of pregnancy compared with 0% in rabbit serum-treated control rats. This vasculopathy was associated with a significantly lower fetal weight in wild-type rats and deterioration of fetal brain/liver weight ratio in preeclamptic rats. Anti-asialo GM1 application had no influence on maternal hypertension and albuminuria during pregnancy. Our results show a new role of natural killer cells during hypertensive pregnancy in maintaining vascular integrity. In normotensive pregnancy, this integrity seems important for fetal growth.

  7. Natural Killer Cell Reduction and Uteroplacental Vasculopathy.

    PubMed

    Golic, Michaela; Haase, Nadine; Herse, Florian; Wehner, Anika; Vercruysse, Lisbeth; Pijnenborg, Robert; Balogh, Andras; Saether, Per Christian; Dissen, Erik; Luft, Friedrich C; Przybyl, Lukasz; Park, Joon-Keun; Alnaes-Katjavivi, Patji; Staff, Anne Cathrine; Verlohren, Stefan; Henrich, Wolfgang; Muller, Dominik N; Dechend, Ralf

    2016-10-01

    Uterine natural killer cells are important for uteroplacental development and pregnancy maintenance. Their role in pregnancy disorders, such as preeclampsia, is unknown. We reduced the number of natural killer cells by administering rabbit anti-asialo GM1 antiserum in an established rat preeclamptic model (female human angiotensinogen×male human renin) and evaluated the effects at the end of pregnancy (day 21), compared with preeclamptic control rats receiving normal rabbit serum. In 100% of the antiserum-treated, preeclamptic rats (7/7), we observed highly degenerated vessel cross sections in the mesometrial triangle at the end of pregnancy. This maternal uterine vasculopathy was characterized by a total absence of nucleated/living cells in the vessel wall and perivascularly and prominent presence of fibrosis. Furthermore, there were no endovascular trophoblast cells within the vessel lumen. In the control, normal rabbit serum-treated, preeclamptic rats, only 20% (1/5) of the animals displayed such vasculopathy. We confirmed the results in healthy pregnant wild-type rats: after anti-asialo GM1 treatment, 67% of maternal rats displayed vasculopathy at the end of pregnancy compared with 0% in rabbit serum-treated control rats. This vasculopathy was associated with a significantly lower fetal weight in wild-type rats and deterioration of fetal brain/liver weight ratio in preeclamptic rats. Anti-asialo GM1 application had no influence on maternal hypertension and albuminuria during pregnancy. Our results show a new role of natural killer cells during hypertensive pregnancy in maintaining vascular integrity. In normotensive pregnancy, this integrity seems important for fetal growth. PMID:27550919

  8. Viral Evasion of Natural Killer Cell Activation

    PubMed Central

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-01-01

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections. PMID:27077876

  9. Viral Evasion of Natural Killer Cell Activation.

    PubMed

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  10. Evidence for Natural Killer Cell Memory

    PubMed Central

    Marcus, Assaf; Raulet, David H.

    2013-01-01

    Natural killer (NK) cells are generally considered part of the innate immune system. However, over the past few years, evidence has accumulated suggesting that NK cells have certain features characteristic of the adaptive immune system. NK cells reportedly respond in an antigen-specific manner to a variety of small molecules and certain viruses, and mediate enhanced responses to these antigens upon re-challenge. In infections with mouse cytomegalovirus (MCMV), MCMV-specific NK cells undergo clonal expansion, and display increased effector function after the resolution of the infection. In addition, inflammatory conditions resulting from exposure to certain cytokines seem to cause prolonged effector function in NK cells in an antigen non-specific fashion. Taken together, these studies reveal new aspects of NK biology, and suggest that NK cells, like T and B cells, may carry out memory responses, and may also exhibit greater capacity to distinguish antigens than was previously recognized. PMID:24028966

  11. Natural killer cells: In health and disease.

    PubMed

    Mandal, Arundhati; Viswanathan, Chandra

    2015-06-01

    Natural killer (NK) cells constitute our bodies' frontline defense system, guarding against tumors and launching attacks against infections. The activities of NK cells are regulated by the interaction of various receptors expressed on their surfaces with cell surface ligands. While the role of NK cells in controlling tumor activity is relatively clear, the fact that they are also linked to various other disease conditions is now being highlighted. Here, we present an overview of the role of NK cells during normal body state as well as under diseased state. We discuss the possible utilization of these powerful cells as immunotherapeutic agents in combating diseases such as asthma, autoimmune diseases, and HIV-AIDS. This review also outlines current challenges in NK cell therapy.

  12. Immunobiology of natural killer cells. Volume II

    SciTech Connect

    Lotzova, E.; Herberman, R.B.

    1986-01-01

    This book provides a review of natural killer (NK) cell-mediated immunity in humans and experimental animal system. Topics for the volume include: In vivo activities of NK cells against primary and metastatic tumors in experimental animals; involvement of NK cells in human malignant disease; impaired NK cell profile in leukemia patients; in vivo modulation of NK activity in cancer patients; implications of aberrant NK cell activity in nonmalignant, chronic diseases; NK cell role in regulation of the growth and functions of hemopoietic and lymphoid cells; NK cells active against viral, bacterial, protozoan, and fungal infections; cytokine secretion and noncytotoxic functions of human large granular lymphocytes; augmentation of NK activity; regulation of NK cell activity by suppressor cells; NK cell cloning technology and characteristics of NK cell clones; comparison of antibody-dependent cellular cytotoxicity (ADCC) and NK activity, and index.

  13. Targeting natural killer cells in cancer immunotherapy.

    PubMed

    Guillerey, Camille; Huntington, Nicholas D; Smyth, Mark J

    2016-08-19

    Alteration in the expression of cell-surface proteins is a common consequence of malignant transformation. Natural killer (NK) cells use an array of germline-encoded activating and inhibitory receptors that scan for altered protein-expression patterns, but tumor evasion of detection by the immune system is now recognized as one of the hallmarks of cancer. NK cells display rapid and potent immunity to metastasis or hematological cancers, and major efforts are now being undertaken to fully exploit NK cell anti-tumor properties in the clinic. Diverse approaches encompass the development of large-scale NK cell-expansion protocols for adoptive transfer, the establishment of a microenvironment favorable to NK cell activity, the redirection of NK cell activity against tumor cells and the release of inhibitory signals that limit NK cell function. In this Review we detail recent advances in NK cell-based immunotherapies and discuss the advantages and limitations of these strategies. PMID:27540992

  14. Metabolic regulation of natural killer cells.

    PubMed

    Finlay, David K

    2015-08-01

    Natural killer (NK) cells have key roles in anti-viral and anti-tumour immune responses. Recent research demonstrates that cellular metabolism is an important determinant for the function of pro-inflammatory immune cells, including activated NK cells. The mammalian target of rapamcyin (mTOR) complex 1 (mTORC1) has been identified as a key metabolic regulator that promotes glycolytic metabolism in multiple immune cell subsets. Glycolysis is integrally linked to pro-inflammatory immune responses such that activated NK cells and effector T-cell subsets are reliant on sufficient glucose availability for maximal effector function. This article will discuss the regulation of cellular metabolism in NK cells as compared with that of T lymphocytes and discuss the implications for NK cell responses to viral infection and cancer.

  15. The antileukemic potential of natural killer cells.

    PubMed

    Torelli, Giovanni F; Peragine, Nadia; Mariglia, Paola; Foà, Robin

    2016-01-01

    The antileukemic potential of natural killer (NK) cells has over the years raised considerable interest and new immune-based treatment protocols characterized by the infusion of freshly isolated or ex vivo activated and expanded effectors have been designed. Several aspects still need to be addressed, including the optimal timing of NK infusion during the course of the disease, the best preparative regimen, the origin of NK cells and the possible need of ex vivo NK cell manipulation before the infusion. The aims of this review are to discuss the experimental and clinical data available on the role played by NK cells for leukemia patients and to revise the different good manufacturing practice protocols for ex vivo manipulation of these effector cells.

  16. Natural killer cell lymphoma of the parotid gland.

    PubMed

    Furukawa, Masayuki; Suzuki, Hideaki; Tohmiya, Yasuo; Matsuura, Kazuto; Takahashi, Etsu; Ichinohasama, Ryo; Kobayashi, Toshimitsu

    2003-01-01

    The majority of all parotid lymphomas are of the non-Hodgkin type and of B-cell origin. Primary natural killer cell lymphomas of the parotid gland are extremely rare. We present a case of natural killer cell lymphoma in a 34-year-old woman. The disease was refractory to chemotherapy, and the patient eventually succumbed due to lymphoma-associated hemophagocytic syndrome. PMID:14564097

  17. Natural Killer Cells: Key Players in Endometriosis.

    PubMed

    Thiruchelvam, Uma; Wingfield, Mary; O'Farrelly, Cliona

    2015-10-01

    Endometriosis affects more than 10% of women, causing significant pain and morbidity. It is also a significant cause of infertility. The aetiology of the disease remains an enigma, and the mechanisms responsible for the associated infertility are unclear. A role for immune cells in endometriosis has been postulated, with attention directed towards natural killer (NK) cells and macrophages. NK cells kill tumours and infected cells but also have roles in tissue remodelling in several organs including the uterus and are key to successful pregnancy. Here, we explore evidence (from peer-reviewed published articles) of phenotypic and functional abnormalities in NK cell subpopulations of women with endometriosis. It is clear that peripheral blood NK cells and peritoneal NK cells have reduced cytotoxic function in women with endometriosis. Uterine NK cells have a vital role in infertility, but very little research has been carried out in this area. We propose that abnormal u NK cell activity may contribute to the pathogenesis of endometriosis and its associated infertility and that future research should focus on this complex area.

  18. Natural killer cells in viral arthritis.

    PubMed Central

    Aaskov, J G; Dalglish, D A; Harper, J J; Douglas, J F; Donaldson, M D; Hertzog, P J

    1987-01-01

    Changes in natural killer (NK) cell activity were studied in patients with polyarthritis associated with rubella or Ross River virus infections. In 30 of 32 Ross River virus patients, peripheral NK cell activity was depressed at some stage of the disease but returned to normal levels as patients recovered from arthritic symptoms. Similar changes did not occur in rubella patients and no difference was found between changes in peripheral NK activity and serum interferon (IFN) levels in rubella patients with arthritis and those without. Neither the peak of NK cell activity in peripheral blood lymphocytes (PBL) recovered early in Ross River virus and rubella infections, nor the depression of NK cell activity late in Ross River virus infections could be correlated with changes in serum IFN levels. The decrease in PBL-NK cell activity in epidemic polyarthritis (EPA) patients could not be attributed solely to loss of NK cells from the peripheral circulation because limiting-cell-dilution (LCD) analyses indicated changes in peripheral NK cell activity were due to changes in both the number and lytic activity of NK cells. Despite the association between HLA-DR7 and EPA no differences were found in levels of peripheral NK cell activity in DR7+ and DR7- EPA patients. The demonstration that peripheral NK cells could kill autologous synovial cells suggested that NK cells in joints of EPA patients may contribute to the arthritis associated with Ross River virus infection. PMID:2443284

  19. Natural Killer Cells for Therapy of Leukemia

    PubMed Central

    Suck, Garnet; Linn, Yeh Ching; Tonn, Torsten

    2016-01-01

    Summary Clinical application of natural killer (NK) cells against leukemia is an area of intense investigation. In human leukocyte antigen-mismatched allogeneic hematopoietic stem cell transplantations (HSCT), alloreactive NK cells exert powerful anti-leukemic activity in preventing relapse in the absence of graft-versus-host disease, particularly in acute myeloid leukemia patients. Adoptive transfer of donor NK cells post-HSCT or in non-transplant scenarios may be superior to the currently widely used unmanipulated donor lymphocyte infusion. This concept could be further improved through transfusion of activated NK cells. Significant progress has been made in good manufacturing practice (GMP)-compliant large-scale production of stimulated effectors. However, inherent limitations remain. These include differing yields and compositions of the end-product due to donor variability and inefficient means for cryopreservation. Moreover, the impact of the various novel activation strategies on NK cell biology and in vivo behavior are barely understood. In contrast, reproduction of the third-party NK-92 drug from a cryostored GMP-compliant master cell bank is straightforward and efficient. Safety for the application of this highly cytotoxic cell line was demonstrated in first clinical trials. This novel ‘off-the-shelf’ product could become a treatment option for a broad patient population. For specific tumor targeting chimeric-antigen-receptor-engineered NK-92 cells have been designed. PMID:27226791

  20. The role of natural killer cells in chronic myeloid leukemia

    PubMed Central

    Danier, Anna Carolyna Araújo; de Melo, Ricardo Pereira; Napimoga, Marcelo Henrique; Laguna-Abreu, Maria Theresa Cerávolo

    2011-01-01

    Chronic myeloid leukemia is a neoplasia resulting from a translocation between chromosomes 9 and 22 producing the BCR-ABL hybrid known as the Philadelphia chromosome (Ph). In chronic myeloid leukemia a proliferation of malignant myeloid cells occurs in the bone marrow due to excessive tyrosine kinase activity. In order to maintain homeostasis, natural killer cells, by means of receptors, identify the major histocompatibility complex on the surface of tumor cells and subsequently induce apoptosis. The NKG2D receptor in the natural killer cells recognizes the transmembrane proteins related to major histocompatibility complex class I chain-related genes A and B (MICA and MICB), and it is by the interaction between NKG2D and MICA that natural killer cells exert cytotoxic activity against chronic myeloid leukemia tumor cells. However, in the case of chronic exposure of the NKG2D receptor, the MICA ligand releases soluble proteins called sMICA from the tumor cell surface, which negatively modulate NKG2D and enable the tumor cells to avoid lysis mediated by the natural killer cells. Blocking the formation of sMICA may be an important antitumor strategy. Treatment using tyrosine kinase inhibitors induces modulation of NKG2DL expression, which could favor the activity of the natural killer cells. However this mechanism has not been fully described in chronic myeloid leukemia. In the present study, we analyze the role of natural killer cells to reduce proliferation and in the cellular death of tumor cells in chronic myeloid leukemia. PMID:23049299

  1. Natural killer cells and natural killer T cells in Lyme arthritis

    PubMed Central

    2013-01-01

    Introduction Natural killer (NK) and natural killer T (NKT) cells provide a first line of defense against infection. However, these cells have not yet been examined in patients with Lyme arthritis, a late disease manifestation. Lyme arthritis usually resolves with antibiotic treatment. However, some patients have persistent arthritis after spirochetal killing, which may result from excessive inflammation, immune dysregulation and infection-induced autoimmunity. Methods We determined the frequencies and phenotypes of NK cells and invariant NKT (iNKT) cells in paired peripheral blood (PB) and synovial fluid (SF) samples from eight patients with antibiotic-responsive arthritis and fifteen patients with antibiotic-refractory arthritis using flow cytometry and cytokine analyses. Results In antibiotic-responsive patients, who were seen during active infection, high frequencies of CD56bright NK cells were found in SF, the inflammatory site, compared with PB (P <0.001); at both sites, a high percentage of cells expressed the activation receptor NKG2D and the chaperone CD94, a low percentage expressed inhibitory killer immunoglobulin-like receptors (KIR), and a high percentage produced IFN-γ. In antibiotic-refractory patients, who were usually evaluated near the conclusion of antibiotics when few if any live spirochetes remained, the phenotype of CD56bright cells in SF was similar to that in patients with antibiotic-responsive arthritis, but the frequency of these cells was significantly less (P = 0.05), and the frequencies of CD56dim NK cells tended to be higher. However, unlike typical NKdim cells, these cells produced large amounts of IFN-γ, suggesting that they were not serving a cytotoxic function. Lastly, iNKT cell frequencies in the SF of antibiotic-responsive patients were significantly greater compared with that of antibiotic-refractory patients where these cells were often absent (P = 0.003). Conclusions In patients with antibiotic-responsive arthritis

  2. Suppression of newborn natural killer cell activity by prostaglandin E2

    SciTech Connect

    Milch, P.O.; Salvatore, W.; Luft, B.; Baker, D.A.

    1988-10-01

    The effect of prostaglandin E2 on natural killer cell activity of cord blood was examined. Natural killer cell activity, determined by chromium 51 release, was significantly reduced after prostaglandin E2 (1 microgram/ml) treatment. Prostaglandin E2 has been found to enhance the cellular spread of herpesvirus. Thus prostaglandins may enhance viral infections indirectly by suppressing natural killer cell activity.

  3. Radiosensitivity of human natural killer cells: Binding and cytotoxic activities of natural killer cell subsets

    SciTech Connect

    Rana, R.; Vitale, M.; Mazzotti, G.; Manzoli, L.; Papa, S. )

    1990-10-01

    The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.

  4. Spectrum of diseases associated with increased proportions or absolute numbers of peripheral blood natural killer cells.

    PubMed

    Okuno, S H; Tefferi, A; Hanson, C A; Katzmann, J A; Li, C Y; Witzig, T E

    1996-06-01

    In a retrospective review of 1501 lymphoid flow cytometric studies of peripheral blood, we identified an increased proportion of natural killer cells in 125 cases (8%), 49 (3%) of which had a concomitant increase in absolute number of natural killer cells. Of the latter, the most frequent associated disorder was chronic natural killer cell lymphocytosis. Substantial quantitative increases in natural killer cells were also observed in some patients with lymphoma, leukaemia, immune thrombocytopenic purpura, or myelodysplastic syndrome. Our study provides incidence figures and clinical associations of an increased number of natural killer cells in the peripheral blood.

  5. Type I natural killer T cells: naturally born for fighting

    PubMed Central

    Tan, Jin-quan; Xiao, Wei; Wang, Lan; He, Yu-ling

    2010-01-01

    Type І natural killer T cells (NKT cells), a subset of CD1d-restricted T cells with invariant Vαβ TCR, are characterized by prompt production of large amounts of Th1 and/or Th2 cytokines upon primary stimulation through the TCR complex. The rapid release of cytokines implies that type І NKT cells may play a critical role in modulating the upcoming immune responses, such as anti-tumor response, protection against infection, and autoimmunity. As a bridge between innate and adaptive immunity, type І NKT cells differentiate and mature upon stimulations to achieve and maintain a homeostasis. Orchestrating with other arms of adaptive immunity, type І NKT cells show strong cytotoxic effects in response to various tumors in a direct and/or indirect manner(s). This review will focus primarily on type І NKT cell development, homeostasis, and effector functions, especially in anti-tumor immunity, and followed by their potential applications in treatment of cancers. PMID:20694020

  6. Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes.

    PubMed

    Hejazi, Maryam; Manser, Angela R; Fröbel, Julia; Kündgen, Andrea; Zhao, Xiaoyi; Schönberg, Kathrin; Germing, Ulrich; Haas, Rainer; Gattermann, Norbert; Uhrberg, Markus

    2015-05-01

    Natural killer cells are well known to mediate anti-leukemic responses in myeloid leukemia but their role in myelodysplastic syndromes is not well understood. Here, in a cohort of newly diagnosed patients (n=75), widespread structural and functional natural killer cell defects were identified. One subgroup of patients (13%) had a selective deficiency of peripheral natural killer cells (count <10/mm(3) blood) with normal frequencies of T and natural killer-like T cells. Natural killer cell-deficient patients were predominantly found in high-risk subgroups and deficiency of these cells was significantly associated with poor prognosis. In the second subgroup, comprising the majority of patients (76%), natural killer cells were present but exhibited poor cytotoxicity. The defect was strongly associated with reduced levels of perforin and granzyme B. Notably, natural killer cell function and arming of cytotoxic granules could be fully reconstituted by in vitro stimulation. Further phenotypic analysis of these patients revealed an immature natural killer cell compartment that was biased towards CD56(bright) cells. The residual CD56(dim) cells exhibited a significant increase of the unlicensed NKG2A(-)KIR(-) subset and a striking reduction in complexity of the repertoire of killer cell immunoglobulin-like receptors. Taken together, these results suggest that the widespread defects in natural killer cell function occurring in patients with myelodysplastic syndromes are mostly due to either unsuccessful or inefficient generation of mature, functionally competent natural killer cells, which might contribute to disease progression through impaired immune surveillance.

  7. Interferon induces natural killer cell blastogenesis in vivo

    NASA Technical Reports Server (NTRS)

    Biron, C. A.; Sonnenfeld, G.; Welsh, R. M.

    1984-01-01

    Interferon (IFN), types beta and gamma, and IFN inducers polyinosinic-polycytidylic acid and lymphocytic choriomeningitis virus, all stimulated the generation of blast-natural killer (NK) cells in mouse spleens, Blast-NK cells were characterized on the basis of size, 3H-thymidine uptake, and NK cell markers These data indicate that in addition to augmenting NK cell-mediated lysis, IFN may regulate NK cell proliferation in vivo.

  8. Effect of spaceflight on natural killer cell activity

    NASA Technical Reports Server (NTRS)

    Rykova, Marina P.; Sonnenfeld, Gerald; Lesniak, A. T.; Taylor, Gerald R.; Meshkov, Dimitrii O.; Mandel, Adrian D.; Medvedev, Andrei E.; Berry, Wallace D.; Fuchs, Boris B.; Konstantinova, Irina V.

    1992-01-01

    The effects of spaceflight on immune cell function were determined in rats flown on Cosmos 2044. Control groups included vivarium, synchronous, and antiorthostatically suspended rats. The ability of natural killer cells to lyse two different target cell lines was determined. Spleen and bone marrow cells obtained from flight rats showed significantly inhibited cytotoxicity for YAC-1 target cells compared with cells from synchronous control rats. This could have been due to exposure of the rats to microgravity. Antiorthostatic suspension did not affect the level of cytotoxicity from spleen cells of suspended rats for YAC-1 cells. On the other hand, cells from rats flown in space showed no significant differences from vivarium and synchronous control rats in cytotoxicity for K-562 target cells. Binding of natural killer cells to K-562 target cells was unaffected by spaceflight. Antiorthostatic suspension resulted in higher levels of cytotoxicity from spleen cells for Cr-51-labeled K-562 cells. The results indicate differential effects of spaceflight on function of natural killer cells. This shows that spaceflight has selective effects on the immune response.

  9. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  10. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies

    PubMed Central

    Pittari, Gianfranco; Filippini, Perla; Gentilcore, Giusy; Grivel, Jean-Charles; Rutella, Sergio

    2015-01-01

    Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies. PMID:26029215

  11. Cytolysis of oligodendrocytes is mediated by killer (K) cells but not by natural killer (NK) cells.

    PubMed

    Satoh, J; Kim, S U; Kastrukoff, L F

    1991-03-01

    The cytotoxic activity of killer (K) cells against enriched cultures of bovine oligodendrocytes (BOL) was investigated in multiple sclerosis (MS) and controls. Human K cells mediated cytotoxicity to primary cultures of BOL in the presence of anti-BOL antiserum in all study groups, while BOL were resistant to human natural killer (NK) cells. Cytotoxic activity was significantly reduced in MS when compared to age-matched normal controls but not when compared to other neurologic disease (OND) patients. K cell-mediated lysis of BOL could also be induced with anti-galactocerebroside antibody but not with other antibodies including those specific for OL antigens (myelin basic protein, proteolipid apoprotein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase). Enrichment of the effector population indicated that antibody-dependent cell-mediated cytotoxicity (ADCC) to BOL was mediated by large granular lymphocytes, and the effector population was further characterized by flow cytometry. The effector cells mediating ADCC could be inhibited by protein A of Staphylococcus aureus, and by K562 cells in cold competition assay. These observations indicate that oligodendrocytes are resistant to NK cells but are susceptible to cytolysis mediated by K cells. This may represent a potentially important immune mechanism in the pathogenesis of MS.

  12. Present and Future of Allogeneic Natural Killer Cell Therapy

    PubMed Central

    Lim, Okjae; Jung, Mi Young; Hwang, Yu Kyeong; Shin, Eui-Cheol

    2015-01-01

    Natural killer (NK) cells are innate lymphocytes that are capable of eliminating tumor cells and are therefore used for cancer therapy. Although many early investigators used autologous NK cells, including lymphokine-activated killer cells, the clinical efficacies were not satisfactory. Meanwhile, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation revealed the antitumor effect of allogeneic NK cells, and HLA-haploidentical, killer cell immunoglobulin-like receptor ligand-mismatched allogeneic NK cells are currently used for many protocols requiring NK cells. Moreover, allogeneic NK cells from non-HLA-related healthy donors have been recently used in cancer therapy. The use of allogeneic NK cells from non-HLA-related healthy donors allows the selection of donor NK cells with higher flexibility and to prepare expanded, cryopreserved NK cells for instant administration without delay for ex vivo expansion. In cancer therapy with allogeneic NK cells, optimal matching of donors and recipients is important to maximize the efficacy of the therapy. In this review, we summarize the present state of allogeneic NK cell therapy and its future directions. PMID:26089823

  13. Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity.

    PubMed

    Shavit, Y; Lewis, J W; Terman, G W; Gale, R P; Liebeskind, J C

    1984-01-13

    The cytotoxic activity of natural killer cells was investigated in rats subjected to one of two inescapable footshock stress paradigms, both of which induce analgesia, but only one via activation of opioid mechanisms. Splenic natural killer cell activity was suppressed by the opioid, but not the nonopioid, form of stress. This suppression was blocked by the opioid antagonist naltrexone. Similar suppression of natural killer activity was induced by high doses of morphine. These results suggest that endogenous opioid peptides mediate the suppressive effect of certain forms of stress on natural killer cell cytotoxicity.

  14. Bringing natural killer cells to the clinic: ex vivo manipulation.

    PubMed

    Childs, Richard W; Berg, Maria

    2013-01-01

    Recently, there has been a substantial gain in our understanding of the role that natural killer (NK) cells play in mediating innate host immune responses against viruses and cancer. Although NK cells have long been known to be capable of killing cancer cells independently of antigen recognition, the full therapeutic potential of NK cell-based immunotherapy has yet to be realized. Here we review novel methods to activate and expand human NK cells ex vivo for adoptive transfer in humans, focusing on the important phenotypic and functional differences observed among freshly isolated, cytokine activated, and ex vivo-expanded NK populations. PMID:24319186

  15. The occurrence of killer activity in yeasts isolated from natural habitats.

    PubMed

    Wójcik, Monika; Kordowska-Wiater, Monika

    2015-01-01

    Yeast's ability to restrict the growth and kill other yeasts, fungi and bacteria has been known for over 50 years. Killer activity was detected in yeasts deposited in the world collections or isolated from natural habitats. In this study, isolates from the forest environment, leaves of fruit trees, flower petals, cereals and frozen fruit have been screened in terms of their killer activities. Killer activity was tested on strains belonging to six yeast species: Candida, Rhodotorula, Pichia, Pachysolen, Yarrowia, Trichosporon. The reference strains were Kluyveromyces lactis Y-6682 and Kluyveromyces marxinanus Y-8281, well-known to be sensitive to yeast killer toxins. Among one hundred and two tested strains, 24 (23.5% of isolates) showed positive killer action, and 10 (9.8% of the isolates) a weak killer action against at least one sensitive reference strain. The highest killer activity was observed among isolates from forest soil and flowers. PMID:26636138

  16. Effect of different levels of alcohol consumption on natural killer and lymphokine activated killer cells

    SciTech Connect

    Klassen, L.W.; DeVasure, J.M.; Lemley-Gillespie, S.D.; Thiele, G.M. Omaha VA Hospital, NE )

    1991-03-11

    The effect of alcohol consumption on natural killer (NK) cell activity is controversial as both increased and decreased levels have been reported. It was the purpose of this study to determine the effects of feeding BDF1 mice different levels of alcohol on NK and lymphokine activated killer (LAK) cell activity. After four-six weeks of chronic alcohol feeding, mice were sacrificed, spleen cells obtained and assayed for NK and IL-2 boosted NK activity against YAC-1 cells in a traditional {sup 51}chromium release assay. Cells were also cultured in the presence of IL-2 for five days and tested for cytolytic activity using P815 cells as targets. Cells from each group were passed over a nylon wool column and the adherent (AD) and nonadherent (NAD) populations collected and tested as above. Increased NK, 24 hour IL-2 boosted NK and 5 day LAK activity were observed only in the spleen cells obtained from mice on 20% alcohol. Also, NAD populations had a 2-4 fold higher lytic unit values (LU{sub 20}) at all levels of alcohol consumption and in all assays, as compared with the unseparated spleen cells. Analysis of cell surface markers on these three populations of cells show that there were differences in MAC-2, Asialo GM-1, Thy 1.2, B220 and NK 1.1 that may correlate with the differences observed in the cytolytic assays. These data suggest that different levels of alcohol affect the cytolytic activity of NK and LAK cells and may result from alterations in the cell subset populations.

  17. Comparative Genomics of Natural Killer Cell Receptor Gene Clusters

    PubMed Central

    Kelley, James; Walter, Lutz; Trowsdale, John

    2005-01-01

    Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules. PMID:16132082

  18. Immunosuppression of pulmonary natural killer activity by exposure to ozone

    SciTech Connect

    Burleson, G.R.; Keyes, L.L.; Stutzman, J.D. )

    1989-01-01

    Ozone is an oxidant gas and an ubiquitous oxidant air pollutant with the potential to adversely affect pulmonary immune function with a consequent increase in disease susceptibility. Pulmonary natural killer (NK) activity was measured in order to assess the pulmonary immunotoxicity of continuous ozone exposure. Continuous ozone exposures at 1.0 ppm were performed for 23.5 hours per day for either 1, 5, 7, or 10 consecutive days. Pulmonary immune function was assessed by measuring natural killer (NK) activity from whole-lung homogenates of male Fischer-344 rats. Results of this study indicated that continuous ozone exposure for 1, 5, or 7 days resulted in a significant decrease in pulmonary NK activity. This suppressed pulmonary NK activity returned to control levels after continuous exposure to ozone for 10 days. The suppressed pulmonary NK response was thus attenuated and returned to normal values in the continued presence of ozone gas. This attenuation process is dynamic, complex, and doubtless involves several cell types and/or products of these cells. Pulmonary NK activity was also suppressed at 0.5 ppm ozone, but not at 0.1 ppm ozone, following 23.5 hours of exposure. NK activity is important for defense against viral, bacterial, and neoplastic disease. The depressed NK activity resulting from continuous ozone exposure could therefore result in a compromised ability to defend against pulmonary diseases.

  19. Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation.

    PubMed

    Levanon, Ditsa; Negreanu, Varda; Lotem, Joseph; Bone, Karen Rae; Brenner, Ori; Leshkowitz, Dena; Groner, Yoram

    2014-03-01

    Natural killer cells belong to the family of innate lymphoid cells comprising the frontline defense against infected and transformed cells. Development and activation of natural killer cells is highly dependent on interleukin-15 signaling. However, very little is known about the transcription program driving this process. The transcription factor Runx3 is highly expressed in natural killer cells, but its function in these cells is largely unknown. We show that loss of Runx3 impaired interleukin-15-dependent accumulation of mature natural killer cells in vivo and under culture conditions and pregnant Runx3(-/-) mice completely lack the unique population of interleukin-15-dependent uterine natural killer cells. Combined chromatin immunoprecipitation sequencing and differential gene expression analysis of wild-type versus Runx3-deficient in vivo activated splenic natural killer cells revealed that Runx3 cooperates with ETS and T-box transcription factors to drive the interleukin-15-mediated transcription program during activation of these cells. Runx3 functions as a nuclear regulator during interleukin-15-dependent activation of natural killer cells by regulating the expression of genes involved in proliferation, maturation, and migration. Similar studies with additional transcription factors will allow the construction of a more detailed transcriptional network that controls natural killer cell development and function.

  20. Cord Blood as a Source of Natural Killer Cells.

    PubMed

    Mehta, Rohtesh S; Shpall, Elizabeth J; Rezvani, Katayoun

    2015-01-01

    Cord blood (CB) offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT). The risk of relapse and graft vs. host disease after cord blood transplantation (CBT) is lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen mismatch. Natural killer (NK) cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, and they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors ligand mismatch and outcomes after CBT. Finally, we will touch on current strategies for the use of CB NK cells in cellular immunotherapy. PMID:26779484

  1. Natural born killers?: the development of the sexually sadistic serial killer.

    PubMed

    Johnson, B R; Becker, J V

    1997-01-01

    Today's society seems enthralled with serial killers in the news and the media. Forensic psychiatrists often interview serial killers after they have been caught. There are retrospective studies and case reports of individuals who have committed sexually sadistic serial murders. However, there exists a dearth of case reports on adolescents who have expressed serious fantasies about becoming serial killer prior to actualizing their fantasy. This article presents nine clinical cases of 14- to 18-year-olds who have clinically significant fantasies of becoming a serial killer. Similarities exist in these adolescent cases when compared with retrospective studies and case reports of serial killers on the role of sexually sadistic fantasies and actual killings. Since it has been established that sexual paraphilias may develop at a young age, one can surmise that sadistic paraphilias may also develop in some adolescents. The question is posed, can we predict which of these adolescents may go on to actually become serial killers? This article focuses on how the sexually sadistic fantasy can eventually be acted out and possible motives for the act to be repeated multiple times. Finally, recommendations are made about assessing and treating a youngster who expresses violent sexually sadistic killing fantasies so that attempts can be made to interrupt the progression to actual killing.

  2. Natural born killers?: the development of the sexually sadistic serial killer.

    PubMed

    Johnson, B R; Becker, J V

    1997-01-01

    Today's society seems enthralled with serial killers in the news and the media. Forensic psychiatrists often interview serial killers after they have been caught. There are retrospective studies and case reports of individuals who have committed sexually sadistic serial murders. However, there exists a dearth of case reports on adolescents who have expressed serious fantasies about becoming serial killer prior to actualizing their fantasy. This article presents nine clinical cases of 14- to 18-year-olds who have clinically significant fantasies of becoming a serial killer. Similarities exist in these adolescent cases when compared with retrospective studies and case reports of serial killers on the role of sexually sadistic fantasies and actual killings. Since it has been established that sexual paraphilias may develop at a young age, one can surmise that sadistic paraphilias may also develop in some adolescents. The question is posed, can we predict which of these adolescents may go on to actually become serial killers? This article focuses on how the sexually sadistic fantasy can eventually be acted out and possible motives for the act to be repeated multiple times. Finally, recommendations are made about assessing and treating a youngster who expresses violent sexually sadistic killing fantasies so that attempts can be made to interrupt the progression to actual killing. PMID:9323659

  3. Novel targets for natural killer/T-cell lymphoma immunotherapy.

    PubMed

    Kumai, Takumi; Kobayashi, Hiroya; Harabuchi, Yasuaki

    2016-01-01

    Extranodal natural killer/T-cell lymphoma, nasal type (NKTL) is a rare but highly aggressive Epstein-Barr virus-related malignancy, which mainly occurs in nasopharyngeal and nasal/paranasal areas. In addition to its high prevalence in Asian, Central American and South American populations, its incidence rate has been gradually increasing in Western countries. The current mainstay of treatment is a combination of multiple chemotherapies and irradiation. Although chemoradiotherapy can cure NKTL, it often causes severe and fatal adverse events. Because a growing body of evidence suggests that immunotherapy is effective against hematological malignancies, this treatment could provide an alternative to chemoradiotherapy for treatment of NKTL. In this review, we focus on how recent findings could be used to develop efficient immunotherapies against NKTL. PMID:26642249

  4. Cytotoxic and natural killer cell stimulatory constituents of Phyllanthus songboiensis

    PubMed Central

    Ren, Yulin; Yuan, Chunhua; Deng, Youcai; Kanagasabai, Ragu; Ninh, Tran Ngoc; Tu, Vuong Tan; Chai, Hee-Byung; Soejarto, Djaja D.; Fuchs, James R.; Yalowich, Jack C.; Yu, Jianhua; Kinghorn, A. Douglas

    2014-01-01

    A dichapetalin-type triterpenoid and a dibenzylbutyrolactone-type lignan, together with five known lignans, a known aromatic diterpenoid, and a known acylated phytosterol, were isolated from the aerial parts of Phyllanthus songboiensis, collected in Vietnam. Their structures were determined by interpretation of the spectroscopic data, and the inhibitory activity toward the HT-29 human colon cancer cells of all isolates was evaluated by a cytotoxicity assay. The known arylnaphthalene lignan, (+)-acutissimalignan A, was highly cytotoxic toward HT-29 cells, with an IC50 value of 19 nM, but this compound was inactive as a DNA topoisomerase IIα (topo IIα) poison. The known phytosterol, (−)-β-sitosterol-3-O-β-D-(6-O-palmitoyl)glucopyranoside, was found to stimulate natural killer (NK) cells at a concentration of 10 μM in the presence of interleukin 12 (IL-12). PMID:25596805

  5. Stressin and natural killer cell activity in professional soldiers.

    PubMed

    Lauc, G; Dabelić; Dumić, J; Flögel, M

    1998-06-30

    Chronic stress causes multiple biochemical and physiological changes in the human organism. Recently we have identified stressin, a human serum glycoprotein that was significantly increased in sera of prisoners released from Serbian concentration camps. To eliminate malnutrition and maltreatment as possible causes for the increased stressin concentration, we have analyzed stressin in sera of 40 professional soldiers after involvement in major military activity and compared it to stressin in sera of 20 control individuals. As expected, the sera of professional soldiers contained more than 2.2 times higher concentrations of stressin than control sera. It is interesting that, contrary to expectations, the natural killer cell activity of professional soldiers was normal or even increased. We hypothesize that this might be an effect of winning the war that could have, at least temporarily, erased the immunosuppressive effects of stress.

  6. Novel targets for natural killer/T-cell lymphoma immunotherapy.

    PubMed

    Kumai, Takumi; Kobayashi, Hiroya; Harabuchi, Yasuaki

    2016-01-01

    Extranodal natural killer/T-cell lymphoma, nasal type (NKTL) is a rare but highly aggressive Epstein-Barr virus-related malignancy, which mainly occurs in nasopharyngeal and nasal/paranasal areas. In addition to its high prevalence in Asian, Central American and South American populations, its incidence rate has been gradually increasing in Western countries. The current mainstay of treatment is a combination of multiple chemotherapies and irradiation. Although chemoradiotherapy can cure NKTL, it often causes severe and fatal adverse events. Because a growing body of evidence suggests that immunotherapy is effective against hematological malignancies, this treatment could provide an alternative to chemoradiotherapy for treatment of NKTL. In this review, we focus on how recent findings could be used to develop efficient immunotherapies against NKTL.

  7. Endocytosis and Intracellular Trafficking of Human Natural Killer Cell Receptors

    PubMed Central

    Masilamani, Madhan; Peruzzi, Giovanna; Borrego, Francisco; Coligan, John E.

    2009-01-01

    Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor, and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking. PMID:19719476

  8. The effects of IL-17 upon human natural killer cells.

    PubMed

    Al Omar, Suliman; Flanagan, Brian F; Almehmadi, Mazen; Christmas, Stephen E

    2013-04-01

    These experiments were designed to investigate the effects of IL-17 upon the phenotype and function of human Natural Killer (NK) cells. Peripheral blood mononuclear cells from healthy subjects were cultured in the presence or absence of different combinations of IL-17s and changes in relative numbers and cell surface phenotype of NK cells and CD56+CD3+ cells measured by flow cytometry. Real time PCR was used to measure changes in expression of the cytotoxicity-related genes perforin A and granzymes A and B and IL-17 receptors. A chromium release assay was used to measure cytotoxic function against K562 tumour cells. IL-17D, IL-17A, IL-17F or the combination of both of the latter had little effect upon NK cell surface expression of Killer Immunoglobulin-like Receptors, although IL-17A modestly increased NK cell numbers. Slight but not significant increases in expression of perforin and granzymes were induced by IL-17A and/or IL-17F. Both IL-17A and D significantly increased cytotoxic function of NK cells at some E:T ratios. Similarly, numbers of NK cells induced to express CD107a after interaction with K562 cells were increased, but not significantly, by all combinations of IL-17s tested. IL-17RC was not found at the NK cell surface but was expressed at the message level and the protein detected intracellularly. NK cells are known to produce IL-17 but here we report that there is little response to this cytokine although some isoforms may moderately enhance cytotoxic function. There may therefore be some enhancement of NK cell function resulting from Th17 cell activation.

  9. [Nasal type natural killer/T cell lymphoma: case series and literature review].

    PubMed

    Düzlü, Mehmet; Ant, Ayça; Tutar, Hakan; Karamert, Recep; Şahin, Melih; Sayar, Erolcan; Cesur, Nesibe

    2016-01-01

    Nasal type natural killer/T-cell lymphoma is a rare type of extranodal non-Hodgkin lymphoma which originates from nasal cavity and paranasal sinuses. Exact diagnosis of nasal natural killer/T-cell lymphoma, which is a rapidly progressive clinical condition, may be established by immunohistochemical analysis on biopsy material after clinical suspicion. In this article, we report four cases of nasal natural killer/T-cell lymphoma who were followed-up in our clinic and discuss the diagnosis and treatment of the disease in light of the literature data. PMID:27405082

  10. Natural killer cells in patients with polycythemia vera.

    PubMed

    Sanchez, Carole; Baier, Céline; Colle, Julien G; Chelbi, Rabie; Rihet, Pascal; Le Treut, Thérèse; Imbert, Jean; Sébahoun, Gérard; Venton, Geoffroy; Costello, Régis T

    2015-09-01

    Natural killer cells (NK) are pivotal cells of innate immunity. They are potent antileukemic cytotoxic effectors. A defect in their cytotoxicity has been described in some hematopoietic malignancies such as acute myeloid leukemia, multiple myeloma and myelodysplastic syndromes. This defect is at least partially linked to a decreased or absent expression of some activating NK cells molecules, more particularly the so-called natural cytotoxicity receptors. In the present study, we more particularly focused our attention on NK cells of polycythemia vera, a myeloproliferative disease characterized by the presence of mutated JAK2 tyrosine kinase. The polymerase chain reaction analysis of NK cells from patients showed that they expressed the mutated form of JAK2. In polycythemia vera the proportion of NK was increased compared to healthy donors. The proliferative and cytotoxic abilities of NK cells from patients were similar to healthy donors. Expression of activating or inhibitory receptors was comparable in patients and donors, with nonetheless an imbalance for the inhibitory form of the CD158a,h couple of receptors in patients. Finally, the transcriptomic profile analysis clearly identified a discriminant signature between NK cells from patients and donors that could putatively be the consequence of abnormal continuous activation of mutated JAK2.

  11. Human natural killer cell development in secondary lymphoid tissues.

    PubMed

    Freud, Aharon G; Yu, Jianhua; Caligiuri, Michael A

    2014-04-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34(+)CD45RA(+) hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field.

  12. Therapeutic depletion of natural killer cells controls persistent infection.

    PubMed

    Waggoner, Stephen N; Daniels, Keith A; Welsh, Raymond M

    2014-02-01

    Persistent viral infections are associated with host and viral factors that impair effective antiviral immunity. Natural killer (NK) cells contribute to establishment of persistent lymphocytic choriomeningitis virus (LCMV) infection in mice through suppression of virus-specific T cell responses during the first few days of infection, but NK cell depletion during those early time points can enable severe T cell-mediated immune pathology and death of the host. Here we show that long after their peak in cytolytic activation, NK cells continue to support viral persistence at later times of infection. Delayed depletion of NK cells, 2 to 3 weeks after infection, enhanced virus-specific T cell responses and viral control. This enhancing effect of delayed NK cell depletion on antiviral immunity, in contrast to early NK cell depletion, was not associated with increased morbidity and mortality, and mice quickly regained weight after treatment. The efficacy of the depletion depended in part upon the size of the original virus inoculum, the viral load at the time of depletion, and the presence of CD4 T cells. Each of these factors is an important contributor to the degree of CD8 T cell dysfunction during viral persistence. Thus, NK cells may continuously contribute to exhaustion of virus-specific T cells during chronic infection, possibly by depleting CD4 T cells. Targeting of NK cells could thus be considered in combination with blockade of other immunosuppressive pathways, such as the interleukin-10 (IL-10) and programmed death 1 (PD-1) pathways, as a therapy to cure chronic human infections, including those with HIV or hepatitis C virus. IMPORTANCE Persistent virus infections are a major threat to global human health. The capacity of viruses, including HIV and hepatitis C virus, to overwhelm or subvert host immune responses contributes to a prolonged state of dampened antiviral immune functionality, which in turn facilitates viral persistence. Recent efforts have focused on

  13. Multiplicity and plasticity of natural killer cell signaling pathways

    PubMed Central

    Chiesa, Sabrina; Mingueneau, Michael; Fuseri, Nicolas; Malissen, Bernard; Raulet, David H.; Malissen, Marie; Vivier, Eric; Tomasello, Elena

    2006-01-01

    Natural killer (NK) cells express an array of activating receptors that associate with DAP12 (KARAP), CD3ζ, and/or FcRγ ITAM (immunoreceptor tyrosine-based activation motif)–bearing signaling subunits. In T and mast cells, ITAM-dependent signals are integrated by critical scaffolding elements such as LAT (linker for activation of T cells) and NTAL (non–T-cell activation linker). Using mice that are deficient for ITAM-bearing molecules, LAT or NTAL, we show that NK cell cytotoxicity and interferon-γ secretion are initiated by ITAM-dependent and -independent as well as LAT/NTAL-dependent and -independent pathways. The role of these various signaling circuits depends on the target cell as well as on the activation status of the NK cell. The multiplicity and the plasticity of the pathways that initiate NK cell effector functions contrast with the situation in T cells and B cells and provide an explanation for the resiliency of NK cell effector functions to various pharmacologic inhibitors and genetic mutations in signaling molecules. PMID:16291591

  14. Natural killer cell activity in cigarette smokers and asbestos workers

    SciTech Connect

    Ginns, L.C.; Ryu, J.H.; Rogol, P.R.; Sprince, N.L.; Oliver, L.C.; Larsson, C.J.

    1985-06-01

    In order to evaluate the effects of cigarette smoking and asbestos exposure on cellular immunity, the authors tested a group of cigarette smokers and asbestos workers for natural killer (NK) activity in the peripheral blood. The mean NK activity in cigarette smokers was lower than in normal subjects (13.7 +/- 1.6 versus 29.0 +/- 3%; p less than 0.05). As a group, the mean NK activity for the asbestos-exposed group was also reduced compared with that of the nonsmoking control group (22.6 +/- 3.2%; p less than 0.05). When divided according to the smoking status, the asbestos workers who were nonsmokers or ex-smokers showed similar decreases in NK activity compared with normal subjects (19.5 +/- 6.2 and 21.2 +/- 4.5%, respectively; p less than 0.05). A subgroup of asbestos-exposed subjects who currently smoked showed no decrease in NK activity. The data show that NK activity is reduced in the peripheral blood of cigarette smokers and asbestos workers. The relatively normal NK activity found in asbestos workers who also smoked is unexplained. Impairment of NK activity is a potential mechanism for the increased incidence of infection and cancer in smokers and neoplasia in asbestos workers.

  15. Newtonian cell interactions shape natural killer cell education.

    PubMed

    Goodridge, Jodie P; Önfelt, Björn; Malmberg, Karl-Johan

    2015-09-01

    Newton's third law of motion states that for every action on a physical object there is an equal and opposite reaction. The dynamic change in functional potential of natural killer (NK) cells during education bears many features of such classical mechanics. Cumulative physical interactions between cells, under a constant influence of homeostatic drivers of differentiation, lead to a reactive spectrum that ultimately shapes the functionality of each NK cell. Inhibitory signaling from an array of self-specific receptors appear not only to suppress self-reactivity but also aid in the persistence of effector functions over time, thereby allowing the cell to gradually build up a functional potential. Conversely, the frequent non-cytolytic interactions between normal cells in the absence of such inhibitory signaling result in continuous stimulation of the cells and attenuation of effector function. Although an innate cell, the degree to which the fate of the NK cell is predetermined versus its ability to adapt to its own environment can be revealed through a Newtonian view of NK cell education, one which is both chronological and dynamic. As such, the development of NK cell functional diversity is the product of qualitatively different physical interactions with host cells, rather than simply the sum of their signals or an imprint based on intrinsically different transcriptional programs.

  16. The influence of natural killer cells in neuroblastoma.

    PubMed

    Reynolds, J V; Shou, J; Choi, H; Sigal, R; Ziegler, M M; Daly, J M

    1989-02-01

    Human neuroblastoma (NRB) cell lines are markedly sensitive to natural killer (NK) cell lysis in vitro, but patients with NRBs have low or absent NK activity. This study evaluated the NK sensitivity of murine NRBs (C1300 and TBJ) in the regulation of NRB growth and determined the effects of recombinant (r) interferon gamma and recombinant interleukin 2 (rIL-2). Both basal (8% +/- 3% specific cytotoxicity) and induced (20% +/- 3%) NK lyses of C1300-NRB were observed. In vivo depletion of NK cells with anti-asialo GM-1 significantly enhanced growth of C1300-NRB and decreased survival. Treatment with r-interferon gamma or rIL-2 on days 1 through 3 after C1300-NRB inoculation significantly prolonged the mean tumor latency period, decreased the tumor growth rate, and enhanced in vitro NK killing of C1300-NRB and YAC-1. The effects of r-interferon gamma and IL-2 were abrogated by pretreatment with anti-asialo GM-1. These results demonstrated that NK cells form one important component of regulation of a murine NRB, but immunomodulation with potent lymphokines requires cooperation of more than one cell type.

  17. Natural killer cells regulate eosinophilic inflammation in chronic rhinosinusitis

    PubMed Central

    Kim, Ji Heui; Choi, Go Eun; Lee, Bong-Jae; Kwon, Seog Woon; Lee, Seung-Hyo; Kim, Hun Sik; Jang, Yong Ju

    2016-01-01

    Eosinophils play a major pathologic role in the pathogenesis of diverse inflammatory diseases including chronic rhinosinusitis (CRS). Dysregulated production of prostaglandin (PG), particularly PGD2, is considered to be an important contributing factor to eosinophilic inflammation in CRS primarily through proinflammatory and chemotactic effects on eosinophils. Here, we provide evidence that PGD2 can promote eosinophilic inflammation through a suppression of Natural killer (NK) cell effector function and NK cell-mediated eosinophil regulation. Eosinophil apoptosis mediated by NK cells was significantly decreased in CRS patients compared with healthy controls. This decrease was associated with NK cell dysfunction and eosinophilic inflammation. Tissue eosinophils were positively correlated with blood eosinophils in CRS patients. In a murine model of CRS, NK cell depletion caused an exacerbation of blood eosinophilia and eosinophilic inflammation in the sinonasal tissue. PGD2 and its metabolite, but not PGE2 and a panel of cytokines including TGF-β, were increased in CRS patients compared with controls. Effector functions of NK cells were potently suppressed by PGD2-dependent, rather than PGE2-dependent, pathway in controls and CRS patients. Thus, our results suggest decreased NK cell-mediated eosinophil regulation, possibly through an increased level of PGD2, as a previously unrecognized link between PG dysregulation and eosinophilic inflammation in CRS. PMID:27271931

  18. Natural killer cell biology: an update and future directions.

    PubMed

    Campbell, Kerry S; Hasegawa, Jun

    2013-09-01

    Natural killer (NK) cells constitute a minor subset of normal lymphocytes that initiate innate immune responses toward tumor and virus-infected cells. They can mediate spontaneous cytotoxicity toward these abnormal cells and rapidly secrete numerous cytokines and chemokines to promote subsequent adaptive immune responses. Significant progress has been made in the past 2 decades to improve our understanding of NK cell biology. Here we review recent discoveries, including a better comprehension of the "education" of NK cells to achieve functional competence during their maturation and the discovery of "memory" responses by NK cells, suggesting that they might also contribute to adaptive immunity. The improved understanding of NK cell biology has forged greater awareness that these cells play integral early roles in immune responses. In addition, several promising clinical therapies have been used to exploit NK cell functions in treating patients with cancer. As our molecular understanding improves, these and future immunotherapies should continue to provide promising strategies to exploit the unique functions of NK cells to treat cancer, infections, and other pathologic conditions.

  19. Newtonian cell interactions shape natural killer cell education.

    PubMed

    Goodridge, Jodie P; Önfelt, Björn; Malmberg, Karl-Johan

    2015-09-01

    Newton's third law of motion states that for every action on a physical object there is an equal and opposite reaction. The dynamic change in functional potential of natural killer (NK) cells during education bears many features of such classical mechanics. Cumulative physical interactions between cells, under a constant influence of homeostatic drivers of differentiation, lead to a reactive spectrum that ultimately shapes the functionality of each NK cell. Inhibitory signaling from an array of self-specific receptors appear not only to suppress self-reactivity but also aid in the persistence of effector functions over time, thereby allowing the cell to gradually build up a functional potential. Conversely, the frequent non-cytolytic interactions between normal cells in the absence of such inhibitory signaling result in continuous stimulation of the cells and attenuation of effector function. Although an innate cell, the degree to which the fate of the NK cell is predetermined versus its ability to adapt to its own environment can be revealed through a Newtonian view of NK cell education, one which is both chronological and dynamic. As such, the development of NK cell functional diversity is the product of qualitatively different physical interactions with host cells, rather than simply the sum of their signals or an imprint based on intrinsically different transcriptional programs. PMID:26284479

  20. Utilizing Chimeric Antigen Receptors to Direct Natural Killer Cell Activity

    PubMed Central

    Hermanson, David L.; Kaufman, Dan S.

    2015-01-01

    Natural killer (NK) cells represent an attractive lymphocyte population for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization and without need for human leukocyte antigens-matching. Chimeric antigen receptors (CARs) are able to enhance lymphocyte targeting and activation toward diverse malignancies. CARs consist of an external recognition domain (typically a small chain variable fragment) directed at a specific tumor antigen that is linked with one or more intracellular signaling domains that mediate lymphocyte activation. Most CAR studies have focused on their expression in T cells. However, use of CARs in NK cells is starting to gain traction because they provide a method to redirect these cells more specifically to target refractory cancers. CAR-mediated anti-tumor activity has been demonstrated using NK cell lines, as well as NK cells isolated from peripheral blood, and NK cells produced from human pluripotent stem cells. This review will outline the CAR constructs that have been reported in NK cells with a focus on comparing the use of different signaling domains in combination with other co-activating domains. PMID:25972867

  1. Natural Killer Cell Mediated Cytotoxic Responses in the Tasmanian Devil

    PubMed Central

    Brown, Gabriella K.; Kreiss, Alexandre; Lyons, A. Bruce; Woods, Gregory M.

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii), the world's largest marsupial carnivore, is under threat of extinction following the emergence of an infectious cancer. Devil facial tumour disease (DFTD) is spread between Tasmanian devils during biting. The disease is consistently fatal and devils succumb without developing a protective immune response. The aim of this study was to determine if Tasmanian devils were capable of forming cytotoxic antitumour responses and develop antibodies against DFTD cells and foreign tumour cells. The two Tasmanian devils immunised with irradiated DFTD cells did not form cytotoxic or humoral responses against DFTD cells, even after multiple immunisations. However, following immunisation with xenogenic K562 cells, devils did produce cytotoxic responses and antibodies against this foreign tumour cell line. The cytotoxicity appeared to occur through the activity of natural killer (NK) cells in an antibody dependent manner. Classical NK cell responses, such as innate killing of DFTD and foreign cancer cells, were not observed. Cells with an NK-like phenotype comprised approximately 4 percent of peripheral blood mononuclear cells. The results of this study suggest that Tasmanian devils have NK cells with functional cytotoxic pathways. Although devil NK cells do not directly recognise DFTD cancer cells, the development of antibody dependent cell-mediated cytotoxicity presents a potential pathway to induce cytotoxic responses against the disease. These findings have positive implications for future DFTD vaccine research. PMID:21957452

  2. Advantages and applications of CAR-expressing natural killer cells

    PubMed Central

    Glienke, Wolfgang; Esser, Ruth; Priesner, Christoph; Suerth, Julia D.; Schambach, Axel; Wels, Winfried S.; Grez, Manuel; Kloess, Stephan; Arseniev, Lubomir; Koehl, Ulrike

    2015-01-01

    In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy. PMID:25729364

  3. Determination of natural killer cell function by flow cytometry.

    PubMed Central

    Kane, K L; Ashton, F A; Schmitz, J L; Folds, J D

    1996-01-01

    Natural killer cells (NK cells) are a subset of peripheral blood lymphocytes that mediate non-major histocompatibility complex-restricted cytotoxicity of foreign target cells. The "gold standard" assay for NK cell activity has been the chromium release assay. This method is not easily performed in the clinical laboratory because of difficulties with disposal of radioactive and hazardous materials, short reagent half-lives, expense, and difficulties with assay standardization. We describe a flow cytometric assay for the clinical measurement of NK cell activity. This study compared the chromium release assay and the flow cytometric assay by using clinically relevant specimens. There were no significant differences between the two assays in the measurement of lytic activity for 17 peripheral blood specimens or in reproducibility in repeated samplings of healthy individuals. We also established a normal range of values for NK activity in healthy adults and identified a small cluster of individuals who have exceptionally high or low levels of NK activity. The flow cytometric assay was validated by testing specimens from subjects expected to have abnormally low levels of NK activity (pregnant women) and specimens from healthy individuals in whom the activity of NK cells was enhanced by exposure to interleukin-2 or alpha interferon. Treatment with these agents was associated with a significant increase in NK activity. These results confirm and extend those of others, showing that the flow cytometric assay is a viable alternative to the chromium release assay for measuring NK cell activity. PMID:8705672

  4. Characterization of tumor infiltrating natural killer cell subset.

    PubMed

    Levi, Inbar; Amsalem, Hagai; Nissan, Aviram; Darash-Yahana, Merav; Peretz, Tamar; Mandelboim, Ofer; Rachmilewitz, Jacob

    2015-05-30

    The presence of tumor-infiltrating Natural Killer (NK) within a tumor bed may be indicative of an ongoing immune response toward the tumor. However, many studies have shown that an intense NK infiltration, is associated with advanced disease and may even facilitate cancer development. The exact role of the tumor infiltrating NK cells and the correlation between their presence and poor prognosis remains unclear. Interestingly, during pregnancy high numbers of a specific NK subset, CD56(bright)CD16(dim), are accumulated within first trimester deciduas. These decidual NK (dNK) cells are unique in their gene expression pattern secret angiogenic factors that induce vascular growth. In the present study we demonstrate a significant enrichment of a CD56(brigh)CD16(dim) NK cells within tumors. These NK cells express several dNK markers including VEGF. Hence, this study adds new insights into the identity of tumor residual NK cells, which has clear implications for the treatment of human cancer. PMID:26079948

  5. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-01

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states. PMID:26967308

  6. Natural killer (NK) cell cytotoxicity in athymic (nude) rats.

    PubMed

    Grzelak, I; Olszewski, W L; Fossum, S; Engeset, A

    1984-01-01

    The in vitro and in vivo natural killer (NK) cell activity of congenitally athymic, nude (ATH) rats and of normal, euthymic (EUTH) rats was compared. We found: a) a higher level of in vitro NK cell activity in blood, spleen and lymph nodes of ATH rats compared with their heterozygous littermates, b) in the spleen the number of NK lytic units per organ was not higher in ATH compared with EUTH whereas it was significantly higher in lymph nodes, c) a lack of age-dependence of in vitro NK cell activity tested in culture with heat inactivated fetal calf serum, d) a higher rate of in vivo elimination of target tumor cells in 4-week ATH rats compared with EUTH rats, e) an age-dependent decrease in the rate of in vivo target cell elimination in both groups, and finally, f) an age-dependent increase in the inhibitory effect of autologous serum on NK cell activity in vitro in both groups. These findings show that the blood and lymphoid organs of athymic rats contain a substantially higher proportion of NK cells, active both in vitro and in vivo against K562 tumor cells, than their euthymic littermates. In the spleen this increased proportion can be attributed to the lack of T cells, whereas in the ATH rat lymph nodes there is an absolute increase in NK cell activity, and that the decrease of cytotoxicity in vivo with age reflects the increasing inhibitory properties of autologous serum both in nude and in normal rats.

  7. Immunotherapeutic strategies targeting natural killer T cell responses in cancer.

    PubMed

    Shissler, Susannah C; Bollino, Dominique R; Tiper, Irina V; Bates, Joshua P; Derakhshandeh, Roshanak; Webb, Tonya J

    2016-08-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where type II cells generally suppress tumor immunity while type I NKT cells can enhance anti-tumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell-targeted therapies for the treatment of cancer. PMID:27393665

  8. Functional heterogeneity among cytotoxic clones derived from natural killer cells.

    PubMed

    Christmas, S E; Moore, M

    1987-01-01

    Clones were obtained from highly purified populations of human peripheral blood natural killer (NK) cells propagated in the presence of interleukin-2 and phytohaemagglutinin. Almost all clones were cytotoxic against standard NK targets and many were also able to kill the B lymphoblastoid cell line BSM. This latter property was not necessarily a result of the incorporation of this cell line into the feeder mixture used to derive the clones. In most cloning experiments there was a high degree of concordance between the killing of the NK targets K562 and Molt 4 by panels of clones. In some cases this extended to the killing of BSM targets but in other instances there was no relationship or even an inverse correlation between killing of BSM and other targets. In a single cloning experiment there was no relationship between killing of BSM and Raji targets. In some cases a panel of clones could be divided into two or more distinct groups based on their differential activity towards BSM and K562. Such differences were not solely due to inter-donor variation. These findings were extended by cold target inhibition experiments in which at least three types of clone were identified. In one group of clones, which was nonreactive towards BSM, cold BSM significantly enhanced the killing of K562 in a dose-dependent fashion. These experiments provide evidence for a limited degree of functional heterogeneity among clones derived from human peripheral blood NK cells.

  9. Natural killer cells in hepatitis C: Current progress

    PubMed Central

    Yoon, Joo Chun; Yang, Chang Mo; Song, Youkyong; Lee, Jae Myun

    2016-01-01

    Patients infected with the hepatitis C virus (HCV) are characterized by a high incidence of chronic infection, which results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The functional impairment of HCV-specific T cells is associated with the evolution of an acute infection to chronic hepatitis. While T cells are the important effector cells in adaptive immunity, natural killer (NK) cells are the critical effector cells in innate immunity to virus infections. The findings of recent studies on NK cells in hepatitis C suggest that NK cell responses are indeed important in each phase of HCV infection. In the early phase, NK cells are involved in protective immunity to HCV. The immune evasion strategies used by HCV may target NK cells and might contribute to the progression to chronic hepatitis C. NK cells may control HCV replication and modulate hepatic fibrosis in the chronic phase. Further investigations are, however, needed, because a considerable number of studies observed functional impairment of NK cells in chronic HCV infection. Interestingly, the enhanced NK cell responses during interferon-α-based therapy of chronic hepatitis C indicate successful treatment. In spite of the advances in research on NK cells in hepatitis C, establishment of more physiological HCV infection model systems is needed to settle unsolved controversies over the role and functional status of NK cells in HCV infection. PMID:26819513

  10. [Additive effect of marihuana and retrovirus in the anergy of natural killer cells in mice].

    PubMed

    Ongrádi, J; Specter, S; Horváth, A; Friedman, H

    1999-01-10

    Among the immunosuppressive effects of marijuana, impairment of natural killer cell activity is significant. HIV also inhibits these cells. Friend leukemia virus complex and its helper component Rowson-Parr virus induce early immunosuppression in mice resembling human AIDS, and late leukemia, providing a small animal AIDS model. Leukemia susceptible BALB/c and resistant C57BL/6 mice were infected with these viruses. At different time points, their natural killer cells separated from spleens were treated with 0 to 10 micrograms/ml tetrahydrocannabinol, subsequently mixed with Yac-1 target cells for 4 and 18 h. The natural killer cell activity in both mouse strains infected by either virus complex or helper virus weakened on days 2 to 4 postinfection, normalized by day 8 and enhanced on days 11 to 14. Natural killer cell activity upon the effect of low concentration (1.0 to 2.5 micrograms/ml) of tetrahydrocannabinol slightly increased in BALB/c, was unaffected in C57BL/6, especially in 18 h assays. In the combined effects of marijuana and retrovirus, damages by marijuana dominated over those of retroviruses. Inhibition or reactive enhancement of natural killer cell activity on the effect of viruses are similar to those of infected but marijuana-free counterparts, but on the level of uninfected cells treated with marijuana. The effects of marijuana and retrovirus are additive resulting in anergy of natural killer cells.

  11. Evolution of non-cytotoxic uterine natural killer cells.

    PubMed

    Kalkunte, Satyan; Chichester, Clinton O; Gotsch, Francesca; Sentman, Charles L; Romero, Roberto; Sharma, Surendra

    2008-05-01

    The immune tolerance and de novo vascularization are two highly intriguing processes at the maternal-fetal interface that appear to be central to normal pregnancy outcome. Immune tolerance occurs despite the local presence of an active maternal immune system including macrophages, dendritic cells and specialized CD56(bright)CD16(-) uterine natural killer (uNK) cells (65-70%). Recent observations indicate that the phenotypic and functional repertoire of uNK cells is distinct from peripheral blood NK and endometrial NK cells, challenging the understanding of their temporal occurrence and function. Origin and specialized programming of uNK cells continue to be debated. uNK cells, replete with an armamentarium to kill the foreign, tolerate the conceptus and facilitate pregnancy. Why do these uNK cells remain non-cytotoxic? Are these NK cells 'multitasking' in nature harboring beneficial and detrimental roles in pregnancy? Are there distinct subpopulations of NK cells that may populate the decidua? We propose that the endometrium/decidua functions as an 'inducible tertiary lymphoid tissue' that supports the recruitment and expansion of CD56(bright)CD16(-) NK cells and induces transcriptional up-regulation of angiogenic machinery in response to exposure to local hormonal factors, cytokine milieu and perhaps hypoxia. The angiogenic features of uNK cells could further result in a 'multitasking' phenotype that still remains to be characterized. This article discusses the factors and pathways that bridge the angiogenic and non-cytotoxic response machineries at the maternal-fetal interface. PMID:18405313

  12. Expression of different lipoprotein receptors in natural killer cells and their effect on natural killer proliferative and cytotoxic activity.

    PubMed Central

    De Sanctis, J B; Blanca, I; Bianco, N E

    1995-01-01

    Natural killer (NK) cells take up chylomicrons (CM), very low density (VLDL), low density (LDL), high density (HDL) and acetyl-modified low density (AcLDL) lipoproteins through different receptors, VLDL being the lipoprotein with the highest uptake and HDL the lowest. The uptake of LDL can be selectively blocked by the anti-LDL receptor, which does not affect the uptake of CM, VLDL, HDL and AcLDL. Although the uptake of lipoproteins assessed by flow cytometry using DiI is not very high, the lipoproteins are able to induce an increase in proliferative responses, VLDL, AcLDL and HDL being the most important ones with 12- and 17-fold increments, respectively. CM, VLDL and LDL at low concentrations increase NK cytotoxic activity, while HDL and AcLDL inhibit, in a dose-dependent fashion, the killing of NK cells against K562. These results suggest the presence of four different receptors that are responsible for the cytotoxic and proliferative responses observed. PMID:8550077

  13. Psychosocial resources, aging, and natural killer cell terminal maturity

    PubMed Central

    Segerstrom, Suzanne C.; Al-Attar, Ahmad; Lutz, Charles T.

    2012-01-01

    Psychosocial factors may influence aspects of immunological aging. The present study tested the hypothesis that psychosocial resources correlate with the expression of the cell surface maker CD57 on natural killer (NK) immune cells. CD57 is a marker of terminal maturation and senescence in this cell subset. The study further tested the relative contribution of specific resources in the social, psychological, financial, and status-skill domains, given the potential differential value of different resources for younger and older adults, and the contribution of relative vs. absolute resources. Younger (N=38) and older (N=34) women completed measures of relative and absolute resources and had blood drawn. Examined both between groups and within the older women, older age and fewer total relative resources were associated with more CD57 expression on NK cells. One SD in resources was the equivalent of 5 years of aging among the older women. Among the specific resource types, a preponderance of financial resources, both relative and absolute, was associated with less CD57 expression on NK cells, and these relationships did not significantly vary between younger and older women. There was no evidence that depressive symptoms mediated the effects of resources on CD57 expression on NK cells. These findings provide support for the hypothesis that the sense that one has substantial resources, particular with regard to finances and possessions, may retard age-associated aspects of the microenvironment in which NK cells develop and mature, independent of effects on distress, and this process may begin in younger adulthood. PMID:22708535

  14. Regulation of Natural Killer Cell Function by STAT3

    PubMed Central

    Cacalano, Nicholas A.

    2016-01-01

    Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell–cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of “immune surveillance.” Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses. PMID:27148255

  15. Potassium channels mediate killing by human natural killer cells

    SciTech Connect

    Schlichter, L.; Sidell N.; Hagiwara, S.

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. Using the whole-cell variation of the patch-clamp technique, the authors found a voltage-dependent potassium (K/sup +/) current in NK cells. The K/sup +/ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd/sup 2 +/. They tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard /sup 51/Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd/sup 2 +/, and 4-aminopyridine at concentrations comparable to those that blocked the K/sup +/ current in NK cells. In K562 target cells only a voltage-dependent Na= current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K/sup +/ current was found that was similar to the one in NK cells. The findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process.

  16. Cardif (MAVS) Regulates the Maturation of Natural Killer Cells

    PubMed Central

    Haynes, LaTeira D.; Verma, Shilpi; McDonald, Bryan; Wu, Runpei; Tacke, Robert; Ekstein, Jennifer; Feuvrier, Ariana; Benedict, Chris A.; Hedrick, Catherine C.

    2015-01-01

    Cardif, also known as IPS-1, VISA and, MAVS, is an intracellular adaptor protein that functions downstream of the RIG-I family of pattern recognition receptors. Cardif is required for the production of type I-IFNs and other inflammatory cytokines after RIG-I like receptors recognize intracellular antigenic RNA. Studies have recently shown that Cardif may have other roles in the immune system in addition to its role in viral immunity. In this study, we find that the absence of Cardif alters normal natural killer cell development and maturation. Cardif−/− mice have a 35% loss of mature CD27−CD11b+ NK cells in the periphery. Additionally, Cardif−/− NK cells have altered surface marker expression, lower cytoxicity, decreased intracellular STAT1 levels, increased apoptosis and decreased proliferation compared to wild-type NK cells. Mixed chimeric mice revealed that the defective maturation and increased apoptotic rate of peripheral Cardif−/− NK cells is cell-intrinsic. However, Cardif−/− mice showed enhanced control of mouse cytomegalovirus (MCMV, a DNA β-herpesvirus) by NK cells, commensurate with increased activation and IFNγ production by these immature NK cell subsets. These results indicate that the skewed differentiation and altered STAT expression of Cardif−/− NK cells can result in their hyper-responsiveness in some settings, and support recent findings that Cardif-dependent signaling can regulate aspects of immune cell development and/or function distinct from its well characterized role in mediating cell-intrinsic defense to RNA viruses. PMID:26232430

  17. Ozone exposed epithelial cells modify cocultured natural killer cells

    PubMed Central

    Müller, Loretta; Brighton, Luisa E.

    2013-01-01

    Ozone (O3) causes significant adverse health effects worldwide. Nasal epithelial cells (NECs) are among the first sites within the respiratory system to be exposed to inhaled air pollutants. They recruit, activate, and interact with immune cells via soluble mediators and direct cell-cell contacts. Based on our recent observation demonstrating the presence of natural killer (NK) cells in nasal lavages, the goal of this study was to establish a coculture model of NECs and NK cells and examine how exposure to O3 modifies this interaction. Flow cytometry analysis was used to assess immunophenotypes of NK cells cocultured with either air- or O3-exposed NECs. Our data show that coculturing NK cells with O3-exposed NECs decreased intracellular interferon-γ (IFN-γ), enhanced, albeit not statistically significant, IL-4, and increased CD16 expression on NK cells compared with air controls. Additionally, the cytotoxicity potential of NK cells was reduced after coculturing with O3-exposed NECs. To determine whether soluble mediators released by O3-exposed NECs caused this shift, apical and basolateral supernatants of air- and O3-exposed NECs were used to stimulate NK cells. While the conditioned media of O3-exposed NECs alone did not reduce intracellular IFN-γ, O3 enhanced the expression of NK cell ligands ULBP3 and MICA/B on NECs. Blocking ULBP3 and MICA/B reversed the effects of O3-exposed NECs on IFN-γ production in NK cells. Taken together, these data showed that interactions between NECs and NK cells in the context of O3 exposure changes NK cell activity via direct cell-cell interactions and is dependent on ULBP3/MICA/B expressed on NECs. PMID:23241529

  18. Acquisition of enhanced natural killer cell activity under anesthesia.

    PubMed

    Hsueh, C M; Lorden, J F; Hiramoto, R N; Ghanta, V K

    1992-01-01

    An increase in natural killer (NK) cell activity can be conditioned with a one trial learning paradigm to demonstrate the interaction between the central nervous system (CNS) and the immune system. In order to demonstrate learning possibilities during 'non-conscious' state, mice were anesthetized with a ketamin/rompun mixture and underwent one trial learning with odor cue as the conditioned stimulus (CS) preceding the unconditioned stimulus (US). The results indicated that mice that were exposed to camphor odor cue under the influence of anesthesia can associate the signal with the poly I:C unconditioned stimulus and were able to recall the conditioned response upon reexposure to the CS. Secondly, the conditioned association made in a conscious state can be recalled by exposure to the same olfactory odor cue in a 'non-conscious' state. The increase in the conditioned change in NK cell activity of both situations was significantly higher than the control group. The results demonstrate that learning can take place and the learned response can be recalled under the reduced awareness caused by anesthesia. The findings we report are unusual and novel in that they demonstrate that the CNS can learn new associations under conditions where the host is apparently unaware of the signals being linked. Anesthesia combined with the long interstimulus interval indicates that certain neuronal pathways in the CNS are receptive to second signals (elicited by the US) even when the second signal is separated by one day. This means the conditioned learning of a physiological response can take place unconsciously at a separate level and under situations where the host is totally unaware of the events which the brain is processing and linking as incoming information.

  19. Emotional stability, anxiety, and natural killer activity under examination stress.

    PubMed

    Borella, P; Bargellini, A; Rovesti, S; Pinelli, M; Vivoli, R; Solfrini, V; Vivoli, G

    1999-08-01

    This study was performed to evaluate the relation between a stable personality trait, a mood state and immune response to an examination stress. A self-reported measure of emotional stability (BFQ-ES scale) was obtained in a sample (n = 39) randomly selected from 277 cadets; this personality trait was also investigated by completing a neuroticism scale (Eysenck personality inventory) and a trait-anxiety scale (STAI). Natural killer (NK) cell activity was measured at baseline, long before the examination time and the examination day. The state-anxiety scale evaluated the response to the stressful stimulus. Taking subjects all together, the academic task did not result in significant modification over baseline in NK cell activity. Subjects were then divided into three groups based on emotional stability and state-anxiety scores: high emotional stability/low anxiety, medium, and low emotional stability/high anxiety. Examination stress induced significant increases in NK cell activity in the high emotional stability/low anxiety group, no effect in the medium group, and significant decreases in the low emotional stability/high anxiety group. The repeated-measure ANOVA revealed a significant interaction of group x period (baseline vs. examination) for both lytic units and percent cytolysis. The results did not change after introducing coffee and smoking habits as covariates. Our findings suggest that the state-anxiety acts in concert with a stable personality trait to modulate NK response in healthy subjects exposed to a psychological naturalistic stress. The relation between anxiety and poor immune control has been already described, whereas the ability of emotional stability to associate with an immunoenhancement has not yet reported. The peculiarity of our population, a very homogeneous and healthy group for life style and habits, can have highlighted the role of emotional stability, and may account for the difference with other studies.

  20. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell

  1. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells.

    PubMed

    Torelli, Giovanni F; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Foà, Robin

    2014-07-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL(+) blasts, regardless of patient age. Accordingly, BCR-ABL(+) blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL(+), are worth pursuing further.

  2. Recognition of Microbial Glycolipids by Natural Killer T Cells.

    PubMed

    Zajonc, Dirk M; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  3. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  4. Super natural killer cells that target metastases in the tumor draining lymph nodes.

    PubMed

    Chandrasekaran, Siddarth; Chan, Maxine F; Li, Jiahe; King, Michael R

    2016-01-01

    Tumor draining lymph nodes are the first site of metastasis in most types of cancer. The extent of metastasis in the lymph nodes is often used in staging cancer progression. We previously showed that nanoscale TRAIL liposomes conjugated to human natural killer cells enhance their endogenous therapeutic potential in killing cancer cells cultured in engineered lymph node microenvironments. In this work, it is shown that liposomes decorated with apoptosis-inducing ligand TRAIL and an antibody against a mouse natural killer cell marker are carried to the tumor draining inguinal lymph nodes and prevent the lymphatic spread of a subcutaneous tumor in mice. It is shown that targeting natural killer cells with TRAIL liposomes enhances their retention time within the tumor draining lymph nodes to induce apoptosis in cancer cells. It is concluded that this approach can be used to kill cancer cells within the tumor draining lymph nodes to prevent the lymphatic spread of cancer.

  5. Increased killer immunoglobulin-like receptor expression and functional defects in natural killer cells in lung cancer.

    PubMed

    Al Omar, Suliman Y; Marshall, Ernie; Middleton, Derek; Christmas, Stephen E

    2011-05-01

    Frequencies of natural killer (NK) cells from patients with non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) did not differ from healthy controls. A higher proportion of NK cells from NSCLC patients expressed the killer immunoglobulin-like receptor (KIR) CD158b than in controls (P = 0.0004), in the presence or absence of its ligand, HLA-C1. A similar result was obtained for CD158e in the presence of its ligand HLA-Bw4 in NSCLC patients (P = 0.003); this was entirely attributable to the Bw4I group of alleles in the presence of which a fivefold higher percentage of CD158e(+) NK cells was found in NSCLC patients than controls. Proportions of CD158b(+) NK cells declined with advancing disease in NSCLC patients. Expression of NKp46, CD25 and perforin A, and production of interferon-γ following stimulation with interleukin-12 and interleukin-18, were all significantly lower in NK cells from NSCLC patients than in controls. Both NK cell cytotoxicity and granzyme B expression were also reduced in lung cancer patients. Increased inhibitory KIR expression would decrease NK cell cytotoxic function against tumour cells retaining class I HLA expression. Furthermore, the reduced ability to produce interferon-γ would restrict the ability of NK cells to stimulate T-cell responses in patients with lung cancer.

  6. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions.

    PubMed

    Saadoun, Samira; Bridges, Leslie R; Verkman, A S; Papadopoulos, Marios C

    2012-12-19

    Neuromyelitis optica is a severe inflammatory demyelinating disease of the central nervous system. Most patients with neuromyelitis optica have circulating immunoglobulin G (IgG) antibodies against the astrocytic water channel protein aquaporin-4 (AQP4), which are pathogenic. Anti-AQP4 IgG-mediated complement-dependent astrocyte toxicity is a key mechanism of central nervous system damage in neuromyelitis optica, but the role of natural killer and cytotoxic T cells is unknown. Our objective was to determine whether natural killer and cytotoxic T cells play a role in human neuromyelitis optica lesions. We immunostained four actively demyelinating lesions, obtained from patients with anti-AQP4 IgG positive neuromyelitis optica, for Granzyme B and Perforin. The inflammatory cells were perivascular neutrophils, eosinophils and macrophages, with only occasional Granzyme B+ or Perforin+ cells. Greater than 95% of inflamed vessels in each lesion had no surrounding Granzyme B+ or Perforin+ cells. Granzyme B+ or Perforin+ cells were abundant in human spleen (positive control). Although natural killer cells produce central nervous system damage in mice injected with anti-AQP4 IgG, our findings here indicate that natural killer-mediated and T cell-mediated cytotoxicity are probably not involved in central nervous system damage in human neuromyelitis optica.

  7. Methylprednisolone pulse therapy induced fall in natural killer cell activity in rheumatoid arthritis.

    PubMed

    Pedersen, B K; Beyer, J M; Rasmussen, A; Klarlund, K; Pedersen, B N; Helin, P

    1984-10-01

    Natural killer (NK) cell activity was studied in 8 patients with classic or definite rheumatoid arthritis (RA) by investigating the killing of K 562 cells by peripheral blood lymphocytes before, during, and after intravenous methylprednisolone pulse therapy (MPPT). MPPT produced a considerable fall in NK activity and after 3 months NK activity was less than half that before MPPT. PMID:6516854

  8. Analysis of GzmbCre as a Model System for Gene Deletion in the Natural Killer Cell Lineage.

    PubMed

    Xu, Yiying; Evaristo, Cesar; Alegre, Maria-Luisa; Gurbuxani, Sandeep; Kee, Barbara L

    2015-01-01

    The analysis of gene function in mature and activated natural killer cells has been hampered by the lack of model systems for Cre-mediated recombination in these cells. Here we have investigated the utility of GzmbCre for recombination of loxp sequences in these cells predicated on the observation that Gzmb mRNA is highly expressed in mature and activated natural killer cells. Using two different reporter strains we determined that gene function could be investigated in mature natural killer cells after GzmbCre mediated recombination in vitro in conditions that lead to natural killer cell activation such as in the cytokine combination of interleukin 2 and interleukin 12. We demonstrated the utility of this model by creating GzmbCre;Rosa26IKKbca mice in which Cre-mediated recombination resulted in expression of constitutively active IKKβ, which results in activation of the NFκB transcription factor. In vivo and in vitro activation of IKKβ in natural killer cells revealed that constitutive activation of this pathway leads to natural killer cell hyper-activation and altered morphology. As a caveat to the use of GzmbCre we found that this transgene can lead to recombination in all hematopoietic cells the extent of which varies with the particular loxp flanked allele under investigation. We conclude that GzmbCre can be used under some conditions to investigate gene function in mature and activated natural killer cells.

  9. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells

    PubMed Central

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-01-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells. PMID:24979331

  10. Relationship between uterine natural killer cells and unexplained repeated miscarriage

    PubMed Central

    Farghali, Mohamed M.; El-kholy, Abdel-Latif G.; Swidan, Khaled H.; Abdelazim, Ibrahim A.; Rashed, Ahmed R.; El-Sobky, Ezzat; Goma, Mostafa F.

    2015-01-01

    Objective To evaluate the relation between uterine killer (uK) cells and unexplained repeated miscarriage (RM). Material and Methods Eighty women with unexplained repeated miscarriage and missed miscarriage of current pregnancy were studied. Fetal viability and gestational age of the current pregnancy were confirmed by ultrasound, followed by suction evacuation to collect abortion specimens and uterine wall curettage to collect decidua specimens. Abortion specimens were collected for long-term monolayer cell culture and subsequent chromosome analysis using conventional G-banding. Decidua specimens were subjected to immunohistochemical staining using monoclonal antibodies specific to CD56+ and CD16+ expressed by uK cells. Results CD56+ CD16+ uK cells were found in 85% [68/80] of the studied decidua specimens of women with unexplained repeated miscarriage; 88.5% [54/61] had normal abortion karyotyping and 73.7% [14/19] had abnormal abortion karyotyping. Moreover, 73.75% [59/80] of the studied women with a past history of early miscarriage had CD56+ CD16+ uK cells in their decidua specimens, and 66.25% [53/80] of studied women with a past history of late miscarriage had CD56+ CD16+ uK cells in their decidua specimens; the association between early and late miscarriage and CD56+ CD16+ uK cells in decidua specimens was significant. Conclusion CD56+CD16+ uK cells were predominant in the decidua specimens of the studied women with repeated miscarriage. A significant association was found between the presence of CD56+ CD16+ uK cells in the studied decidua specimens and unexplained repeated miscarriage. PMID:26692771

  11. Effects of OK-432 on murine bone marrow and the production of natural killer cells

    SciTech Connect

    Pollack, S.B.; Rosse, C.

    1985-01-01

    The streptococcal preparation, OK-432, which augments anti-tumor responses in humans and mice, has been shown to be a potent immunomodulator. Among its effects is a pronounced augmentation of natural killer (NK) activity. The hypothesis that OK-432 alters the rates of production and maturation of NK cells in the bone marrow was tested. Studies to determine the kinetic parameters of NK cell production in normal C57BL/6J mice using tritiated thymidine, /sup 3/H-TdR, as a DNA marker are described. We are now extending those studies to determine the effect of OK-432 on the bone marrow and on the production of NK cells in the marrow. Initial observations are reported which indicate that OK-432 has profound effects on the cellularity and mitotic activity of the bone marrow, and in particular, on cells with the characteristics of natural killer cells within the marrow. 17 refs., 3 figs., 4 tabs.

  12. Carbamate pesticide-induced apoptosis and necrosis in human natural killer cells.

    PubMed

    Li, Q; Kobayashi, M; Kawada, T

    2014-01-01

    We previously found that ziram, a carbamate fungicide, significantly induced apoptosis and necrosis in human NK-92MI, a natural killer cell line. To investigate whether other carbamate pesticides also induce apoptosis and necrosis in human natural killer cell, we conducted further experiments with NK-92CI, a human natural killer cell line using a more sensitive assay. NK-92CI cells were treated with ziram, thiram, maneb or carbaryl at 0.031-40 microM for 2-24 h in the present study. Apoptosis and necrosis were determined by FITC-Annexin-V/PI staining. To explore the mechanism of apoptosis, intracellular levels of active caspases 3 and mitochondrial cytochrome-c release were determined by flow cytometry. We found that ziram and thiram also induced apoptosis and necrosis in a time- and dose-dependent manner; however, maneb and carbaryl induced apoptosis and necrosis only at higher doses in NK-92CI cells. The strength of the apoptosis-inducing effect differed among the pesticides, and the order was as follows: thiram > ziram greater than maneb greater than carbaryl. NK-92CI was more sensitive to ziram than NK-92MI. Moreover, ziram and thiram significantly increased the intracellular level of active caspase 3 in NK-92CI and caspase inhibitor significantly inhibited the apoptosis. Ziram and thiram significantly caused mitochondrial cytochrome-c release in NK-92CI. These findings indicate that carbamate pesticides can induce apoptosis in natural killer cells, and the apoptosis is mediated by both the caspase-cascade and mitochondrial cytochrome-c pathways.

  13. Natural killer T cell strategies to combat Epstein–Barr virus infection

    PubMed Central

    Priatel, John J; Chung, Brian K; Tsai, Kevin; Tan, Rusung

    2014-01-01

    Epstein–Barr virus (EBV) infection results in rapid loss of CD1d expression from the surface of infected B cells, thus enabling the virus to evade immune recognition by natural killer T (NKT) cells. Using pharmacologic means to boost CD1d expression, potent NKT cell effector functions can be elicited toward EBV-infected B cells, suggesting the promise of novel strategies to target EBV-associated diseases such as some B-cell malignancies. PMID:25050206

  14. Noninvasive Imaging of Natural Killer Cell-Mediated Apoptosis in a Mouse Tumor Model.

    PubMed

    Singh, Thoudam Debraj; Lee, Jaetae; Jeon, Yong Hyun

    2016-01-01

    Natural killer (NK) cells are cytotoxic lymphocytes that induce apoptosis in cancer cells infected with viruses and bacteria through a caspase-3-dependent pathway. Effective NK cell-based immunotherapy requires highly sensitive imaging tools for in vivo monitoring of the dynamic events involved in apoptosis. Here, we describe a noninvasive bioluminescence imaging approach to determine the antitumor effects of NK cell-based therapy by serial imaging of caspase-3-dependent apoptosis in a mouse model of human glioma. PMID:27177676

  15. CD94 expression and natural killer cell activity after acute exercise.

    PubMed

    Roberts, C; Pyne, D B; Horn, P L

    2004-06-01

    This study examined the effects of acute exercise on natural killer (NK) cell numbers, their expression of CD94 and cytotoxic capacity in triathletes over a 10-week training period. Nine highly trained male triathletes (age 25.9+/-4.1 yrs, VO2max 5.14+/-0.33 L.min(-1)) attended the laboratory on weeks 0, 2, 5 and 10 for incremental submaximal and maximal cycle ergometry. Peripheral blood was analysed for white blood cell counts, lymphocyte phenotype and cytolytic activity (51Cr release from K562 cells). Maximum oxygen consumption increased from week 2 (5.14+/-0.33 L.min(-1)) to week 10 (5.28+/-0.32 L.min(-1)). Resting NK cell numbers and their expression of CD94 were not altered over the 10-week study period. Natural killer cells expressing CD94+ were not differentially recruited into the circulation and cytolytic activity of exercise-recruited NKs did not differ from those present at rest. There was longitudinal stability (over the 10 weeks of the study) in CD94 expression on NK cells, exercise recruitment of CD94+ NK cells and cytolytic capacity of NK cells. The distribution and functional activity of NK cells are not markedly influenced by 10 weeks of training in competitive triathletes. Natural killer cytotoxic activity after exercise reflects numbers of NK cells and not a changed activation state of these cells per se.

  16. Interactive effects of Na and K in killing by natural killer cells

    SciTech Connect

    Schlichter, L.C.; MacCoubrey, I.C. )

    1989-09-01

    Contact-mediated lysis by human natural killer cells is inhibited by a number of drugs that block the predominant K channel. In this study the authors have further examined the role of the K channel and the interactions between passive K and Na transport in killing. Low external Na-inhibited killing and inhibition were not due to reduced inward current through the Na channels in the target cell. A role for the Na/H antiport is suggested since amiloride inhibited killing in a dose-dependent manner that was competitive with external Na. Depolarizing the killer cell with elevated external K did not inhibit killing. On the contrary, high K{sub 0} reduced the inhibition caused by low Na{sub 0} and by the K-channel blockers quinidine, verapamil, and retinoic acid. Hyperpolarizing the killer cell with low K{sub 0} or valinomycin inhibited killing. Hence, the primary role of the K channels during killing is not to maintain the negative membrane potential. On the contrary, depolarization may promote killing under conditions where killing is submaximal.

  17. Peripheral Foxp3+ regulatory T cells and natural killer group 2, member D expression levels in natural killer cells of patients with colorectal cancer.

    PubMed

    Shen, Yajuan; Wang, Qian; Qi, Yuanying; Cui, Bin; Zhang, Zhifen; Su, Jingran; Liu, Xiaowen; Lu, Chao; Ye, Hui; Ju, Ying; Lu, Zhiming

    2014-08-01

    Foxp3+ regulatory T cells (Tregs) and natural killer group 2, member D (NKG2D)-positive natural killer (NK) cells are considered to be important in the immune escape of colorectal cancer (CRC). However, the association between these two variables remains obscure. Therefore, in the present study, the levels of peripheral Tregs and NKG2D expression in NK cells and the associations in CRC patients were investigated. A total of 35 CRC patients and 16 healthy controls were enrolled in this study. Flow cytometry was performed to assay Treg numbers and NKG2D expression levels in NK cells in peripheral blood samples. Serum carcino-embryonic antigen (CEA) protein was assayed by electrochemiluminescence. Peripheral Treg numbers were significantly increased (P<0.05), while NKG2D expression levels in NK cells were significantly reduced (P<0.01) in CRC patients compared with healthy controls. However, no significant differences were identified in Treg numbers between CRC patients with and without lymph node metastases and between CRC patients with different clinical stages of CRC. Similarly, no significant differences were detected in NKG2D expression levels in NK cells between the different patient groups. Statistical analysis revealed that increased Treg numbers were not correlated with reduced NKG2D expression levels in NK cells from CRC patients. In addition, no statistical correlation was observed between Treg numbers and serum CEA protein in CRC patients. In conclusion, the upregulation of Tregs was not significantly correlated with the downregulation of NKG2D expression in NK cells in peripheral blood from CRC patients.

  18. Regulation of natural killer activity of lymphocytes from normal subjects and patients with chronic lymphatic leukemia by interaction between T and non-T cells

    SciTech Connect

    Khonina, N.A.; Shubinskii, G.Z.; Lozovoi, V.P.

    1987-08-01

    The authors study the effect of culture of human cells on functional activity of natural killer cells and investigate the possible mechanisms of regulation of natural killer activity by acting on cytodifferentiation of lymphocytes in normal subjects and in patients with the B-cell variant of chromic lymphatic leukemia. To estimate natural killer cell function, a membranotoxic test was carried out, using cells of the transplantable line K-562, labeled with /sup 3/H-uridine as the targets.

  19. Natural killer cells in intravenous drug abusers with lymphadenopathy syndrome.

    PubMed Central

    Poli, G; Introna, M; Zanaboni, F; Peri, G; Carbonari, M; Aiuti, F; Lazzarin, A; Moroni, M; Mantovani, A

    1985-01-01

    We have investigated 25 intravenous drug abusers with the clinical and laboratory features of lymphadenopathy syndrome (LAS) and 10 AIDS patients for the expression of NK activity. LAS and AIDS patients had low NK cytotoxicity compared to normal donors. The defective NK cytotoxicity was analysed in the eight LAS subjects with most marked depression. NK effectors were identified by morphology (large granular lymphocytes, LGL) and monoclonal antibody-defined surface markers (B73.1, N901, HNK1). LAS patients had normal percentages of LGL and B73.1+ and N901+ cells. with the exception of two subjects with very low frequency of B73.1+ and N901+ cells. The percentage of HNK1+ cells was increased in LAS, probably because of the reactivity of this reagent with a subset of conventional OKT8+ cells, relatively augmented in LAS subjects. Depletion of monocytes did not enhance NK activity consistently. LAS patients had a normal frequency of cells capable of binding K562. In-vitro exposure to interferon beta (natural) or gamma (recombinant) augmented the defective NK activity of LAS subjects. Thus, patients with LAS have defective NK activity that cannot be accounted for by a low frequency of the relevant effector cells or by monocytic suppressors. These observations suggest a functional defect of NK cells at one or more of the post-binding steps required for the completion of killing. PMID:2415279

  20. Maternal uterine natural killer cells nurture fetal growth: in medio stat virtus.

    PubMed

    Colucci, Francesco; Kieckbusch, Jens

    2015-02-01

    Much research in reproductive immunology is preoccupied with maternal tolerance of the semi-allogeneic fetus. This inevitably leads to the assumption that the maternal immune system should be suppressed, similarly to the immunosuppression needed to avoid rejection of an allograft. However, the parallels with transplantation immunology are misleading, and we discuss how interactions between variable immune system genes expressed on maternal natural killer (NK) cells and on the fetal trophoblast modulate fetal growth. Exaggerated suppression or activation of maternal NK cells associates with both extremes of birth weight.

  1. Enough! Stop the arguments and get on with the science of natural killer cell testing.

    PubMed

    Sacks, Gavin

    2015-07-01

    Natural killer cell testing is currently practised widely, and there are studies indicating potential benefit in terms of targeting women with repeated reproductive failure for immune therapy. This may be a better approach than empirical immune therapy without any investigation. More and better studies are needed before such an approach can be fully endorsed. There is still uncertainty over the precise pathophysiological basis for all immune investigation and therapy, but this should not be a barrier for clinical observation and empirical care. On the contrary, clinicians and researchers should work more closely together to provide the best care for our patients.

  2. Natural Killer Cell Diversity in Viral Infection: Why and How Much?

    PubMed Central

    Blish, Catherine A.

    2016-01-01

    Natural killer cells are a diverse group of innate lymphocytes that are specialized to rapidly respond to cancerous or virus-infected cells. NK cell function is controlled by the integration of signals from activating and inhibitory receptors expressed at the cell surface. Variegated expression patterns of these activating and inhibitory receptors at the single cell level leads to a highly diverse NK cell repertoire. Here I review the factors that influence NK cell repertoire diversity and its functional consequences for our ability to fight viruses. PMID:27635417

  3. Natural killer lymphoma/leukemia: an uncommon pediatric case with indolent course.

    PubMed

    Di Cataldo, Andrea; Bertuna, Gregoria; Mirabile, Elena; Munda, Silvana; Tettoni, Katia; Notarangelo, Luigi D; Facchetti, Fabio; Lo Nigro, Luca

    2004-08-01

    Natural killer (NK) cell lymphomas are rare in the USA and Europe but more common in Asia and Central America although very rare among children. We report a case of Epstein-Barr virus-positive NK lymphoma/leukemia, that showed peculiar features represented by a very long clinical course with a significant interval between the first clinical signs and the diagnosis, detection of neoplastic cells in the peripheral blood but not in the bone marrow, and good response to treatment and clinical outcome.

  4. IMPAIRED NATURAL KILLER CELL LYSIS IN BREAST CANCER PATIENTS WITH HIGH LEVELS OF PSYCHOLOGICAL STRESS IS ASSOCIATED WITH ALTERED EXPRESSION OF KILLER IMMUNOGLOBULIN-LIKE RECEPTORS

    PubMed Central

    Varker, Kimberly A.; Terrell, Catherine E.; Welt, Marilyn; Suleiman, Samer; Thornton, Lisa; Andersen, Barbara L.; Carson, William E.

    2007-01-01

    Background We previously reported that cancer-related psychological stress is associated with reduced natural killer (NK) cell lysis. We hypothesized that reduced NK cell cytotoxicity in patients with increased levels of stress would correlate with alterations in the expression of inhibitory NK cell receptors (killer immunoglobulin-like receptors, or KIRs). The specific aim of this study was to examine KIR expression in patients with high or low levels of psychologic stress and correlate alterations in KIR expression with NK cell function. Materials and Methods 227 patients underwent baseline evaluation of cancer-related psychological stress and were randomized to psychosocial intervention versus observation. From this population, two groups were defined based on pre-treatment measurements of NK lytic activity, stress levels, and the availability of cryopreserved peripheral blood mononuclear cells (PBMC). Group I (n = 9) had low stress by the Impact of Events Scale (IES), and high NK cell lysis at the 50:1 effector: target ratio (NK50 = 52–89%). Group II (n = 8) had high stress and low NK50 (27–52%). Lymphokine activated killer (LAK) activity, antibody dependent cellular cytotoxicity (ADCC), and expression of cytokine receptors, adhesion molecules, and killer immunoglobulin-like receptors (KIRs) were assessed in PBMC. Results Incubation of PBMC with NK-stimulatory cytokines (IL-2, IL-12, or IL-15) led to significant increases in cytotoxic activity regardless of IES/NK50 scores. There were no significant group differences in NK cell surface expression of the IL-2 receptor components CD25 and CD122, antibody-dependent lysis of HER2/neu-positive SKBr3 cells treated with an anti-HER2/neu monoclonal antibody, expression of adhesion molecules (CD2, CD11a, CD18) and markers of activation (CD69), or expression of the KIRs CD158a, NKG2a, NKB1, and CD161. However, levels of CD158b were significantly higher in Group I after incubation in media alone or with IL-2, and CD94

  5. Skin TLR7 triggering promotes accumulation of respiratory dendritic cells and natural killer cells.

    PubMed

    Hackstein, Holger; Hagel, Nicole; Knoche, Angela; Kranz, Sabine; Lohmeyer, Jürgen; von Wulffen, Werner; Kershaw, Olivia; Gruber, Achim D; Bein, Gregor; Baal, Nelli

    2012-01-01

    The TLR7 agonist imiquimod has been used successfully as adjuvant for skin treatment of virus-associated warts and basal cell carcinoma. The effects of skin TLR7 triggering on respiratory leukocyte populations are unknown. In a placebo-controlled experimental animal study we have used multicolour flow cytometry to systematically analyze the modulation of respiratory leukocyte subsets after skin administration of imiquimod. Compared to placebo, skin administration of imiquimod significantly increased respiratory dendritic cells (DC) and natural killer cells, whereas total respiratory leukocyte, alveolar macrophages, classical CD4+ T helper and CD8+ T killer cell numbers were not or only moderately affected. DC subpopulation analyses revealed that elevation of respiratory DC was caused by an increase of respiratory monocytic DC and CD11b(hi) DC subsets. Lymphocyte subpopulation analyses indicated a marked elevation of respiratory natural killer cells and a significant reduction of B lymphocytes. Analysis of cytokine responses of respiratory leukocytes after stimulation with Klebsiella pneumonia indicated reduced IFN-γ and TNF-α expression and increased IL-10 and IL-12p70 production after 7 day low dose skin TLR7 triggering. Additionally, respiratory NK cytotoxic activity was increased after 7d skin TLR7 triggering. In contrast, lung histology and bronchoalveolar cell counts were not affected suggesting that skin TLR7 stimulation modulated respiratory leukocyte composition without inducing overt pulmonary inflammation. These data suggest the possibility to modulate respiratory leukocyte composition and respiratory cytokine responses against pathogens like Klebsiella pneumonia through skin administration of a clinically approved TLR7 ligand. Skin administration of synthetic TLR7 ligands may represent a novel, noninvasive means to modulate respiratory immunity. PMID:22927956

  6. Skin TLR7 Triggering Promotes Accumulation of Respiratory Dendritic Cells and Natural Killer Cells

    PubMed Central

    Hackstein, Holger; Hagel, Nicole; Knoche, Angela; Kranz, Sabine; Lohmeyer, Jürgen; von Wulffen, Werner; Kershaw, Olivia; Gruber, Achim D.; Bein, Gregor; Baal, Nelli

    2012-01-01

    The TLR7 agonist imiquimod has been used successfully as adjuvant for skin treatment of virus-associated warts and basal cell carcinoma. The effects of skin TLR7 triggering on respiratory leukocyte populations are unknown. In a placebo-controlled experimental animal study we have used multicolour flow cytometry to systematically analyze the modulation of respiratory leukocyte subsets after skin administration of imiquimod. Compared to placebo, skin administration of imiquimod significantly increased respiratory dendritic cells (DC) and natural killer cells, whereas total respiratory leukocyte, alveolar macrophages, classical CD4+ T helper and CD8+ T killer cell numbers were not or only moderately affected. DC subpopulation analyses revealed that elevation of respiratory DC was caused by an increase of respiratory monocytic DC and CD11bhi DC subsets. Lymphocyte subpopulation analyses indicated a marked elevation of respiratory natural killer cells and a significant reduction of B lymphocytes. Analysis of cytokine responses of respiratory leukocytes after stimulation with Klebsiella pneumonia indicated reduced IFN-γ and TNF-α expression and increased IL-10 and IL-12p70 production after 7 day low dose skin TLR7 triggering. Additionally, respiratory NK cytotoxic activity was increased after 7d skin TLR7 triggering. In contrast, lung histology and bronchoalveolar cell counts were not affected suggesting that skin TLR7 stimulation modulated respiratory leukocyte composition without inducing overt pulmonary inflammation. These data suggest the possibility to modulate respiratory leukocyte composition and respiratory cytokine responses against pathogens like Klebsiella pneumonia through skin administration of a clinically approved TLR7 ligand. Skin administration of synthetic TLR7 ligands may represent a novel, noninvasive means to modulate respiratory immunity. PMID:22927956

  7. Association of polymorphisms in natural killer cell-related genes with preterm birth.

    PubMed

    Harmon, Quaker E; Engel, Stephanie M; Olshan, Andrew F; Moran, Thomas; Stuebe, Alison M; Luo, Jingchun; Wu, Michael C; Avery, Christy L

    2013-10-15

    Inflammation is implicated in preterm birth, but genetic studies of inflammatory genes have yielded inconsistent results. Maternal DNA from 1,646 participants in the Pregnancy, Infection, and Nutrition Cohort, enrolled in Orange and Wake counties, North Carolina (1995-2005), were genotyped for 432 tag single-nucleotide polymorphisms (SNPs) in 30 candidate genes. Gene-level and SNP associations were modeled within strata of genetic ancestry. Six genes were associated with preterm birth among European Americans: interleukin 12A (IL12A); colony-stimulating factor 2 (CSF2); interferon γ receptor 2 (IFNGR2); killer cell immunoglobulin-like receptor, three domain, long cytoplasmic tail, 2 (KIR3DL2); interleukin 4 (IL4); and interleukin 13 (IL13). Of these, relatively strong single-SNP associations were seen in IFNGR2 and KIR3DL2. Among the 4 genes related to natural killer cell function, 2 (IL12A and CSF2) were consistently associated with reduced risk of prematurity for both European and African Americans. SNPs tagging a locus control region for IL4 and IL13 were associated with an increased risk of spontaneous preterm birth for European Americans (rs3091307; risk ratio = 1.9; 95% confidence interval: 1.4, 2.5). Although gene-level associations were detected only in European Americans, single-SNP associations among European and African Americans were often similar in direction, though estimated with less precision among African Americans. In conclusion, we identified novel associations between variants in the natural killer cell immune pathway and prematurity in this biracial US population.

  8. Bone marrow mesenchymal stem cells suppressing activation of allogeneic cytokine-induced killer/natural killer cells either by direct or indirect interaction.

    PubMed

    Li, Yang; Qu, Yu H; Wu, Yan F; Liu, Ling; Lin, Xiang H; Huang, Ke; Wei, Jing

    2015-04-01

    Bone marrow mesenchymal stem cells (MSC) were recently found to be associated with some special immunological characteristics, the immunoregulatory effect of MSC was dose-dependent. Low amount of MSC was associated with mild immunosuppression or even immune activation, while the high amount of that was associated with significant immunosuppressive effect. In this study, by using a transwell system, we explored the effect of MSC on the cell cycle, apoptosis rate and the expression of CD69, an activation marker, on the allogeneic cord blood derived cytokine-induced killer(CIK)/natural killer(NK) cells. The results showed that either by transwell or mixed cell-cell co-culture, the MSC can effect CIK/NK cells on the cell cycle, such as arrested in the G0/G1 phase, diminished the ratio of cells in S, G2/M phase, and increased the apoptosis of them. MSC can also depress the expression of CD69 on these killer cells, as well as increased the ratio of CD4(+) CD25(+) CD127(low) T regulatory (Treg) cells in the CIK/NK cell culture system. We draw conclusions that either by transwell or mixed co-culture, the MSC can suppress activation of allogeneic CB-CIK/NK cells in a dose-dependent manner.

  9. Identification of a potent microbial lipid antigen for diverse Natural Killer T cells1

    PubMed Central

    Wolf, Benjamin J.; Tatituri, Raju V. V.; Almeida, Catarina F.; Le Nours, Jérôme; Bhowruth, Veemal; Johnson, Darryl; Uldrich, Adam P.; Hsu, Fong-Fu; Brigl, Manfred; Besra, Gurdyal S.; Rossjohn, Jamie; Godfrey, Dale I.; Brenner, Michael B.

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a well-characterized CD1d-restricted T cell subset. The availability of potent antigens and tetramers for iNKT cells has allowed this population to be extensively studied and has revealed their central roles in infection, autoimmunity, and tumor immunity. In contrast, diverse Natural Killer T (dNKT) cells are poorly understood because the lipid antigens they recognize are largely unknown. We sought to identify dNKT cell lipid antigen(s) by interrogating a panel of dNKT mouse cell hybridomas with lipid extracts from the pathogen Listeria monocytogenes. We identified Listeria phosphatidylglycerol (PG) as a microbial antigen that was significantly more potent than a previously characterized dNKT cell antigen, mammalian PG. Further, while mammalian PG loaded CD1d tetramers did not stain dNKT cells, the Listeria-derived PG loaded tetramers did. The structure of Listeria PG was distinct from mammalian PG since it contained shorter, fully-saturated anteiso fatty acid lipid tails. CD1d binding lipid displacement studies revealed that the microbial PG antigen binds significantly better to CD1d than counterparts with the same headgroup. These data reveal a highly-potent microbial lipid antigen for a subset of dNKT cells and provide an explanation for its increased antigen potency compared to the mammalian counterpart. PMID:26254340

  10. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    PubMed

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells.

  11. Antibody-dependent cellular cytotoxicity toward neuroblastoma enhanced by activated invariant natural killer T cells.

    PubMed

    Mise, Naoko; Takami, Mariko; Suzuki, Akane; Kamata, Toshiko; Harada, Kazuaki; Hishiki, Tomoro; Saito, Takeshi; Terui, Keita; Mitsunaga, Tetsuya; Nakata, Mitsuyuki; Ikeuchi, Takayuki; Nakayama, Toshinori; Yoshida, Hideo; Motohashi, Shinichiro

    2016-03-01

    Anti-ganglioside GD2 antibodies mainly work through antibody-dependent cellular cytotoxicity (ADCC) and have demonstrated clinical benefit for children with neuroblastoma. However, high-risk neuroblastoma still has a high recurrence rate. For further improvement in patient outcomes, ways to maximize the cytotoxic effects of anti-GD2 therapies with minimal toxicity are required. Activated invariant natural killer T (iNKT) cells enhance both innate and type I acquired anti-tumor immunity by producing several kinds of cytokines. In this report, we investigated the feasibility of combination therapy using iNKT cells and an anti-GD2 antibody. Although some of the expanded iNKT cells expressed natural killer (NK) cell markers, including FcγR, iNKT cells were not directly associated with ADCC. When co-cultured with activated iNKT cells, granzyme A, granzyme B and interferon gamma (IFNγ) production from NK cells were upregulated, and the cytotoxicity of NK cells treated with anti-GD2 antibodies was increased. Not only cytokines produced by activated iNKT cells, but also NK-NKT cell contact or NK cell-dendritic cell contact contributed to the increase in NK cell cytotoxicity and further IFNγ production by iNKT cells and NK cells. In conclusion, iNKT cell-based immunotherapy could be an appropriate candidate for anti-GD2 antibody therapy for neuroblastoma.

  12. Reduced spleen natural killer cell activity in virally challenged iron-deficient rat pups

    SciTech Connect

    Lockwood, J.F.; Sherman, A.R.

    1986-03-01

    Neonatal iron deficiency has been shown to alter several aspects of immunity in rats. This study determined the effects of iron deficiency on cytotoxicity of virally-induced natural killer cells (NK) in spleen. Rats (n = 8-12/grp) were fed 6 (severe deficiency, SID), 10 (moderate deficiency, MID), or 250 (adequate iron status, AIS) ppm iron d 1 pregnancy through d 21 lactation. Litters were adjusted to 7 on d 2. On d 17 pups were challenged intraperitoneally with 5 x 10/sup 5/ plaque forming units of vaccinia virus. Spleens were collected 4 d later and cell suspensions prepared and pooled within each litter. After isolation of mononuclear cells on a Ficoll-Hypaque gradient, macrophages were removed, and the resulting lymphocytes were incubated with Cr/sup 51/ labelled Yac-1 target cells at effector:target ratios (E:T) of 10:1 and 50:1. Cytotoxicity of NK cells were measured after 4 and 16 hrs by the Cr/sup 51/ release assay. In SID and MID groups body weights, spleen weights, and hemoglobin levels were significantly lower than in AIS pups (p < 0.001). Spleen NK cell cytotoxicity was significantly impaired in SID and MID pups. Depending on the E:T and incubation time, SID and MID cells had activities 30-50% of AIS cells (p < 0.001). Both severe and moderate iron deficiency markedly impair the cytotoxic activity of spleen natural killer cells in suckling rats.

  13. Pit cells as liver-associated natural killer cells: morphology and function.

    PubMed

    Nakatani, Kazuki; Kaneda, Kenji; Seki, Shuichi; Nakajima, Yuji

    2004-03-01

    Pit cells are one type of hepatic sinusoidal cells, defined morphologically as large granular lymphocytes (LGLs) and functionally as liver-associated natural killer (NK) cells. They are situated inside the sinusoidal lumen, adhering to the endothelial cells and Kupffer cells. They contain multivesicular body-related dense granules and rod-cored vesicles. The number and size of granules and vesicles differ between hepatic NK cells and peripheral blood cells, suggesting possible differentiation of the latter into the former in the microenvironment of the liver. In addition to NK cells, natural killer T (NKT) cells are also abundant in the liver. They share several morphological properties with NK cells, and at least some are probably observed as pit cells under an electron microscope. NK cells recognize target cells with their surface receptors such as inhibitory and activating receptors. They exert antitumor functions by exocytosis of perforin/granzyme-containing granules, induction of death receptor-mediated apoptosis in target cells, and production of various cytokines that augment the activities of other immune cells. NKT cells play important roles in initiating and assisting the function of NK cells by producing interferon-gamma.

  14. Role natural killer group 2D-ligand interactions in hepatitis B infection

    PubMed Central

    Pollicino, Teresa; Koumbi, Lemonica

    2015-01-01

    Hepatitis B virus (HBV) infection is the leading cause of liver disease and hepatocellular carcinoma (HCC) worldwide, in spite of prophylactic vaccination and antiviral treatment modalities. The immunopathogenesis of HBV infection has been intensively studied and is propelled by complex interactions between the virus and the host immune system. Natural killer group 2D (NKG2D) is a well-characterized activating receptor, expressed on natural killer (NK) cells, NK T cells and CD8+ cytotoxic T cells. This receptor is present in both humans and mice and binds to a diverge family of ligands that resemble the MHC-class I molecules. Increasing evidence shows that NKG2D-ligand interactions are critical in the establishment of HBV persistence and the development of liver injury and HCC. The expression of NKG2D ligands depends on the presence of several polymorphisms and is also modulated post-transcriptionally by HBV. While it is known that HBV circumvents host’s innate immunity via the NKG2D pathway but the exact mechanisms involved are still elusive. This letter discusses previous accomplishments on the role of NKG2D ligand regulation in the development of chronic HBV, liver injury and HCC. PMID:25937859

  15. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  16. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  17. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  18. Chromosomal localization of the human natural killer cell class I receptor family genes to 19q13.4 by fluorescence in situ hybridization

    SciTech Connect

    Suto, Yumiko; Maenaka, Katsumi; yabe, Toshio

    1996-07-01

    This report describes the localization of the human natural killer cell I receptor family genes to human chromosome 19q13.4 using fluorescence in situ hybridization. These genes mediate the inhibition of the cytotoxicity of subsets of natural killer cells. 8 refs., 1 fig.

  19. Effects of X-ray irradiation on natural killer (NK) cell system. II. Increased sensitivity to natural killer cytotoxic factor (NKCF)

    SciTech Connect

    Uchida, A.; Mizutani, Y.; Nagamuta, M.; Ikenaga, M. )

    1989-01-01

    Irradiation with low-doses of X-rays of tumor cells elevated their susceptibility to lysis by natural killer (NK) cells in an accompanying paper. Cytotoxicity assays conducted at the single cell level revealed that X-ray irradiation of K562 cells did not affect the number of effector-target conjugates but increased the frequency of dead conjugated target cells. During interaction with K562 cells large granular lymphocytes released a soluble cytotoxic factor (NKCF) that killed the target cells. X-ray irradiation did not affect the NKCF stimulatory ability of K562 cells, while it elevated their sensitivity to the lytic effect of NKCF. In contrast to X-rays, exposure to ultraviolet (UV) radiation of K562 cells did not elevate their NK sensitivity but rather reduced it. Treatment with mitomycin C produced no effect on NK sensitivity. These results indicate that X-ray irradiation elevates the target sensitivity to NKCF, which may be involved in the increased NK sensitivity, and that the X-ray effect may be different from that of UV radiation or DNA synthesis inhibition.

  20. Consequences of the crosstalk between monocytes/macrophages and natural killer cells

    PubMed Central

    Michel, Tatiana; Hentges, François; Zimmer, Jacques

    2013-01-01

    The interaction between natural killer (NK) cells and different other immune cells like T cells and dendritic cells is well-described, but the crosstalk with monocytes or macrophages and the nature of ligands/receptors implicated are just emerging. The macrophage-NK interaction is a major first-line defense against pathogens (bacteria, viruses, fungi, and parasites). The recruitment and the activation of NK cells to perform cytotoxicity or produce cytokines at the sites of inflammation are important to fight infections. The two main mechanisms by which macrophages can prime NK cells are (1) activation through soluble mediators such as IL-12, IL-18, and (2) stimulation through direct cell-to-cell contact. We will discuss the progress in matters of modulation of NK cell functions by monocytes and macrophages, in the steady state and during diseases. PMID:23316194

  1. Invariant natural killer T cells and their ligands: focus on multiple sclerosis

    PubMed Central

    O'Keeffe, Joan; Podbielska, Maria; Hogan, Edward L

    2015-01-01

    Invariant natural killer T (iNKT) cells are an innate population of T cells identified by the expression of an invariant T-cell receptor and reactivity to lipid-based antigens complexed with CD1d. They account for a small percentage of lymphocytes, but are extremely potent and play central roles in immunity to infection, in some cancers, and in autoimmunity. The list of relevant stimulatory lipids and glycolipid antigens now includes a range of endogenous self-antigens including the myelin-derived acetylated galactosylceramides. Recent progress in studies to identify the nature of lipid recognition for iNKT cells in autoimmune diseases like multiple sclerosis is likely to foster the development of therapeutic strategies aimed at harnessing iNKT cell activity. PMID:25976210

  2. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia.

    PubMed

    Romee, Rizwan; Rosario, Maximillian; Berrien-Elliott, Melissa M; Wagner, Julia A; Jewell, Brea A; Schappe, Timothy; Leong, Jeffrey W; Abdel-Latif, Sara; Schneider, Stephanie E; Willey, Sarah; Neal, Carly C; Yu, Liyang; Oh, Stephen T; Lee, Yi-Shan; Mulder, Arend; Claas, Frans; Cooper, Megan A; Fehniger, Todd A

    2016-09-21

    Natural killer (NK) cells are an emerging cellular immunotherapy for patients with acute myeloid leukemia (AML); however, the best approach to maximize NK cell antileukemia potential is unclear. Cytokine-induced memory-like NK cells differentiate after a brief preactivation with interleukin-12 (IL-12), IL-15, and IL-18 and exhibit enhanced responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We hypothesized that memory-like NK cells exhibit enhanced antileukemia functionality. We demonstrated that human memory-like NK cells have enhanced interferon-γ production and cytotoxicity against leukemia cell lines or primary human AML blasts in vitro. Using mass cytometry, we found that memory-like NK cell functional responses were triggered against primary AML blasts, regardless of killer cell immunoglobulin-like receptor (KIR) to KIR-ligand interactions. In addition, multidimensional analyses identified distinct phenotypes of control and memory-like NK cells from the same individuals. Human memory-like NK cells xenografted into mice substantially reduced AML burden in vivo and improved overall survival. In the context of a first-in-human phase 1 clinical trial, adoptively transferred memory-like NK cells proliferated and expanded in AML patients and demonstrated robust responses against leukemia targets. Clinical responses were observed in five of nine evaluable patients, including four complete remissions. Thus, harnessing cytokine-induced memory-like NK cell responses represents a promising translational immunotherapy approach for patients with AML.

  3. Classification of human natural killer cells based on migration behavior and cytotoxic response.

    PubMed

    Vanherberghen, Bruno; Olofsson, Per E; Forslund, Elin; Sternberg-Simon, Michal; Khorshidi, Mohammad Ali; Pacouret, Simon; Guldevall, Karolin; Enqvist, Monika; Malmberg, Karl-Johan; Mehr, Ramit; Önfelt, Björn

    2013-02-21

    Despite intense scrutiny of the molecular interactions between natural killer (NK) and target cells, few studies have been devoted to dissection of the basic functional heterogeneity in individual NK cell behavior. Using a microchip-based, time-lapse imaging approach allowing the entire contact history of each NK cell to be recorded, in the present study, we were able to quantify how the cytotoxic response varied between individual NK cells. Strikingly, approximately half of the NK cells did not kill any target cells at all, whereas a minority of NK cells was responsible for a majority of the target cell deaths. These dynamic cytotoxicity data allowed categorization of NK cells into 5 distinct classes. A small but particularly active subclass of NK cells killed several target cells in a consecutive fashion. These "serial killers" delivered their lytic hits faster and induced faster target cell death than other NK cells. Fast, necrotic target cell death was correlated with the amount of perforin released by the NK cells. Our data are consistent with a model in which a small fraction of NK cells drives tumor elimination and inflammation.

  4. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia.

    PubMed

    Romee, Rizwan; Rosario, Maximillian; Berrien-Elliott, Melissa M; Wagner, Julia A; Jewell, Brea A; Schappe, Timothy; Leong, Jeffrey W; Abdel-Latif, Sara; Schneider, Stephanie E; Willey, Sarah; Neal, Carly C; Yu, Liyang; Oh, Stephen T; Lee, Yi-Shan; Mulder, Arend; Claas, Frans; Cooper, Megan A; Fehniger, Todd A

    2016-09-21

    Natural killer (NK) cells are an emerging cellular immunotherapy for patients with acute myeloid leukemia (AML); however, the best approach to maximize NK cell antileukemia potential is unclear. Cytokine-induced memory-like NK cells differentiate after a brief preactivation with interleukin-12 (IL-12), IL-15, and IL-18 and exhibit enhanced responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We hypothesized that memory-like NK cells exhibit enhanced antileukemia functionality. We demonstrated that human memory-like NK cells have enhanced interferon-γ production and cytotoxicity against leukemia cell lines or primary human AML blasts in vitro. Using mass cytometry, we found that memory-like NK cell functional responses were triggered against primary AML blasts, regardless of killer cell immunoglobulin-like receptor (KIR) to KIR-ligand interactions. In addition, multidimensional analyses identified distinct phenotypes of control and memory-like NK cells from the same individuals. Human memory-like NK cells xenografted into mice substantially reduced AML burden in vivo and improved overall survival. In the context of a first-in-human phase 1 clinical trial, adoptively transferred memory-like NK cells proliferated and expanded in AML patients and demonstrated robust responses against leukemia targets. Clinical responses were observed in five of nine evaluable patients, including four complete remissions. Thus, harnessing cytokine-induced memory-like NK cell responses represents a promising translational immunotherapy approach for patients with AML. PMID:27655849

  5. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies

    PubMed Central

    Seidel, Ursula J. E.; Schlegel, Patrick; Lang, Peter

    2013-01-01

    In the last decade several therapeutic antibodies have been Federal Drug Administration (FDA) and European Medicines Agency (EMEA) approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumor models. However, a direct in vivo effect of ADCC in tumor reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic hematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of Killer-cell Immunoglobuline-like Receptor (KIR) receptor ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function. PMID:23543707

  6. Clinical utility of natural killer cells in cancer therapy and transplantation

    PubMed Central

    Knorr, David; Bachanova, Veronika; Verneris, Michael R.; Miller, Jeffrey S.

    2014-01-01

    Natural killer (NK) cells recognize deranged cells that display stress receptors or loss of major histocompatibility complex (MHC) class I. During development, NK cells become “licensed” only after they encounter cognate human leucocyte antigen (HLA) class I, leading to the acquisition of effector function. NK cells can be exploited for cancer therapy in several ways. These include targeting within monoclonal antibodies alone or combined with ex vivo and in vivo NK cell activation to facilitate adoptive immunotherapy using donor-derived NK cell products to induce graft-vs-tumor effects. In the adoptive transfer setting, persistence and in vivo expansion requires lymphodepleting chemotherapy to prevent rejection and provide homeostatic cytokines (such as IL-15) that activate NK cells. IL-15 has the advantage of avoiding regulatory T-cell expansion. Clinical applications are currently being tested. To enhance in vivo expansion, IL-2 has been used at low doses. However, low dose administration also leads to the stimulation of regulatory T cells. Monoclonal antibodies and bispecific killer engagers (BiKEs) may enhance specificity by targeting CD16 on NK cells to tumor antigens. Inhibition of CD16 shedding may also promote enhanced cytotoxicity. Future strategies include exploiting favorable donor immunogenetics or ex vivo expansion of NK cells from blood, progenitors, or pluripotent cells. Comparative clinical trials are needed to test these approaches. PMID:24618042

  7. Natural killer cells in highly exposed hepatitis C-seronegative injecting drug users.

    PubMed

    Mina, M M; Cameron, B; Luciani, F; Vollmer-Conna, U; Lloyd, A R

    2016-06-01

    Injecting drug use remains the major risk factor for hepatitis C (HCV) transmission. A minority of long-term injecting drug users remain seronegative and aviraemic, despite prolonged exposure to HCV - termed highly exposed seronegative subjects. Natural killer (NK) cells have been implicated in this apparent protection. A longitudinal nested, three group case-control series of subjects was selected from a prospective cohort of seronegative injecting drug users who became incident cases (n = 11), remained seronegative (n = 11) or reported transient high-risk behaviour and remained uninfected (n = 11). The groups were matched by age, sex and initial risk behaviour characteristics. Stored peripheral blood mononuclear cells were assayed in multicolour flow cytometry to enumerate natural killer cell subpopulations and to assess functional activity using Toll-like receptor ligands before measurement of activation, cytokine production and natural cytotoxicity receptor expression. Principal components were derived to describe the detailed phenotypic characteristics of the major NK subpopulations (based on CD56 and CD16 co-expression), before logistic regression analysis to identify associations with exposed, seronegative individuals. The CD56(dim) CD16(+) (P = 0.05, OR 6.92) and CD56(dim) CD16(-) (P = 0.05, OR 6.07) principal components differed between exposed, seronegative individuals and pre-infection samples of the other two groups. These included CD56(dim) CD16(+) and CD56(dim) CD16(-) subsets with CD56(dim) CD16(+) IFN-γ and TNF-α on unstimulated cells, and CD56(dim) CD16(-) CD69(+) , CD107a(+) , IFN-γ and TNF-α following TLR stimulation. The cytotoxic CD56(dim) NK subset thus distinguished highly exposed, seronegative subjects, suggesting NK cytotoxicity may contribute to protection from HCV acquisition. Further investigation of the determinants of this association and prospective assessment of protection against HCV infection are warranted.

  8. Natural cytotoxicity in immunodeficiency diseases: preservation of natural killer activity and the in vivo appearance of radioresistant killing

    SciTech Connect

    Pierce, G.F.; Polmar, S.H.; Schacter, B.Z.; Brovall, C.; Hornick, D.L.; Sorensen, R.U.

    1986-01-01

    We studied spontaneous natural killer (NK) cell activity and radiation-resistant NK mediated cytotoxicity in four patients with clinically documented severe combined immune deficiency disease (SCID), and in one subject each with intestinal lymphangiectasia and cartilage-hair hypoplasia. We observed the preservation of spontaneous NK activity in all patients despite the presence of profound B- and T-lymphocytopenia and clinical immunodeficiency. NK activity was associated with relatively normal circulating numbers of OKM1+ lymphocytes, a population known to contain NK effectors. Spontaneous NK activity resistant to 3000 rad was increased in all patients, indicating the presence of activated natural killer cells in vivo. The concept of a chronically activated immune system in these patients was further supported by the presence of increased Ia positive T cells in all subjects tested, suggesting that radioresistant NK activity may be a useful parameter to measure when assessing in vivo immune activation. Our data, as well as that of others, supports the hypothesis that at least one population of NK cells is a distinct lineage arising at the differentiation level of myeloid and lymphoid stem cells in the bone marrow.

  9. Loss and Gain of Natural Killer Cell Receptor Function in an African Hunter-Gatherer Population.

    PubMed

    Hilton, Hugo G; Norman, Paul J; Nemat-Gorgani, Neda; Goyos, Ana; Hollenbach, Jill A; Henn, Brenna M; Gignoux, Christopher R; Guethlein, Lisbeth A; Parham, Peter

    2015-08-01

    Modulating natural killer cell functions in human immunity and reproduction are diverse interactions between the killer cell immunoglobulin-like receptors (KIR) of Natural Killer (NK) cells and HLA class I ligands on the surface of tissue cells. Dominant interactions are between KIR2DL1 and the C2 epitope of HLA-C and between KIR2DL2/3 and the C1 epitope of HLA-C. KhoeSan hunter-gatherers of Southern Africa represent the earliest population divergence known and are the most genetically diverse indigenous people, qualities reflected in their KIR and HLA genes. Of the ten KhoeSan KIR2DL1 alleles, KIR2DL1*022 and KIR2DL1*026 likely originated in the KhoeSan, and later were transmitted at low frequency to the neighboring Zulus through gene flow. These alleles arose by point mutation from other KhoeSan KIR2DL1 alleles that are more widespread globally. Mutation of KIR2DL1*001 gave rise to KIR2DL1*022, causing loss of C2 recognition and gain of C1 recognition. This makes KIR2DL1*022 a more avid and specific C1 receptor than any KIR2DL2/3 allotype. Mutation of KIR2DL1*012 gave rise to KIR2DL1*026, causing premature termination of translation at the end of the transmembrane domain. This makes KIR2DL1*026 a membrane-associated receptor that lacks both a cytoplasmic tail and signaling function. At higher frequencies than their parental allotypes, the combined effect of the KhoeSan-specific KIR2DL1*022 and KIR2DL1*026 is to reduce the frequency of strong inhibitory C2 receptors and increase the frequency of strong inhibitory C1 receptors. Because interaction of KIR2DL1 with C2 is associated with risk of pregnancy disorder, these functional changes are potentially advantageous. Whereas all other KhoeSan KIR2DL1 alleles are present on a wide diversity of centromeric KIR haplotypes, KIR2DL1*026 is present on a single KIR haplotype and KIR2DL1*022 is present on two very similar haplotypes. The high linkage disequilibrium across their haplotypes is consistent with a recent

  10. Glutathione diminishes Dibutyltin- and tributyltin-induced loss of lytic function in human natural killer cells

    PubMed Central

    Powell, Jeralyn J.; Davis, McLisa V.; Whalen, Margaret M.

    2008-01-01

    This study investigated whether reduced glutathione (GSH) was able to alter the negative effects of tributyltin (TBT) or dibutyltin (DBT) on the lytic function of human natural killer (NK) cells. NK cells are an intital immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). The results indicated that the presence of GSH during exposure of NK cells to TBT or DBT diminished the negative effect of the BT on the lytic function of NK cells. This suggests that interaction TBT and DBT with functionally relevant sulfhydryl groups in NK cells may be part of the mechanism by which they decrease NK lytic function. PMID:18821099

  11. Mouse Adenovirus Type 1 Infection of Natural Killer Cell-Deficient Mice

    PubMed Central

    Welton, Amanda R.; Gralinski, Lisa E.; Spindler, Katherine R.

    2008-01-01

    Natural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8-20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice. PMID:18155121

  12. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy

    PubMed Central

    Tarazona, Raquel; Duran, Esther; Solana, Rafael

    2016-01-01

    Natural killer (NK) cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of MHC class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g., cytokine induction of activating receptors) has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma. PMID:26779186

  13. Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies?

    PubMed

    Sanchez-Correa, Beatriz; Campos, Carmen; Pera, Alejandra; Bergua, Juan M; Arcos, Maria Jose; Bañas, Helena; Casado, Javier G; Morgado, Sara; Duran, Esther; Solana, Rafael; Tarazona, Raquel

    2016-04-01

    Several age-associated changes in natural killer (NK) cell phenotype have been reported that contribute to the defective NK cell response observed in elderly patients. A remodelling of the NK cell compartment occurs in the elderly with a reduction in the output of immature CD56(bright) cells and an accumulation of highly differentiated CD56(dim) NK cells. Acute myeloid leukaemia (AML) is generally a disease of older adults. NK cells in AML patients show diminished expression of several activating receptors that contribute to impaired NK cell function and, in consequence, to AML blast escape from NK cell immunosurveillance. In AML patients, phenotypic changes in NK cells have been correlated with disease progression and survival. NK cell-based immunotherapy has emerged as a possibility for the treatment of AML patients. The understanding of age-associated alterations in NK cells is therefore necessary to define adequate therapeutic strategies in older AML patients.

  14. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy.

    PubMed

    Tarazona, Raquel; Duran, Esther; Solana, Rafael

    2015-01-01

    Natural killer (NK) cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of MHC class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g., cytokine induction of activating receptors) has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma.

  15. Cytokine balance and cytokine-driven natural killer cell dysfunction in systemic juvenile idiopathic arthritis.

    PubMed

    Avau, Anneleen; Put, Karen; Wouters, Carine H; Matthys, Patrick

    2015-02-01

    Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory childhood disorder, characterized by a specific pattern of systemic features and a typical cytokine profile. Patients are at risk to develop macrophage activation syndrome (MAS), an acute life-threatening condition defined by excessive proliferation and activation of macrophages and T cells. Defects of unknown cause in the natural killer (NK) cell cytotoxic capacity are presumed to underlie the pathogenesis of MAS and have been detected in sJIA patients. Here, we provide an overview of the cytokine profiles in sJIA and related mouse models. We discuss the influence of cytokines on NK cell function, and hypothesize that NK cell dysfunction in sJIA is caused by altered cytokine profiles.

  16. Mechanisms of tumor and viral immune escape from natural killer cell-mediated surveillance.

    PubMed

    Groth, Ariane; Klöss, Stephan; von Strandmann, Elke Pogge; Koehl, Ulrike; Koch, Joachim

    2011-01-01

    Human natural killer (NK) cells recognize and efficiently eliminate MHC class I low or negative malignant targets and virally infected host cells, without requirement for prior sensitization. However, viruses and various tumor cells display elaborate adaptations to evade and overcome immunosurveillance. The current review focuses on escape mechanisms of viruses and malignantly transformed 'stressed' cells to evade from NK cell cytotoxicity. A general overview of recent clinical studies using allogeneic donor NK cells is given, summarizing first data about a possible benefit for patients suffering from high-risk leukemia and solid tumors. Finally, the review discusses the future perspectives and hypotheses aiming to improve therapeutic NK cell strategies against tumor immune escape mechanisms.

  17. Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.

    PubMed

    Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M

    2016-01-01

    Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing. PMID:27177667

  18. Inhibition of natural killer cell activity by eicosapentaenoic acid in vivo and in vitro

    SciTech Connect

    Yamashita, N.; Sugiyama, E.; Hamazaki, T.; Yano, S.

    1988-01-15

    To examine the effects of in vivo eicosapentaenoic acid (EPA) on natural killer (NK) cell activity, C3H/He mice each received a single intraperitoneal bolus of an emulsion of trieicosapentaenoyl-glycerol (EPA-TG). Spleen cells were tested for NK activity using /sup 51/Chromium-release assays against YAC-1 target cells. Forty eight hours after injection, NK activity was inhibited in a dose-dependent manner. EPA-TG emulsion also inhibited the NK activity of NK-enriched effector cells. Decreased cytotoxicity was first noted 24 hr after injection; it resumed the baseline by 7 days. The addition of EPA-TG emulsion to a cytotoxicity assay system resulted in moderate depression of NK activity. These results demonstrate that EPA has significant immunomodulatory effects on NK activity.

  19. Anger expression and natural killer cell activity in family caregivers participating in a physical activity trial.

    PubMed

    Wilcox, S; King, A C; Vitaliano, P P; Brassington, G S

    2000-07-01

    Associations between psychological functioning and natural killer cell activity (NKA) were examined in 23 older (62.2 ± 7.5 years) family caregivers randomized to a moderate intensity four-month exercise program or to a wait-list control condition. At baseline, although NKA was related to anger-control (r = -.42; trend p < .06) and anger-out (r = .50; p < .03), it was not related to depression, anxiety, perceived stress, or caregiver burden. After controlling for baseline NKA, changes in anger-control explained 14 percent of the variance in NKA four months later. Decreases in anger-control predicted increases in NKA. Group assignment (exercise vs control) was unrelated to changes in NKA over the four-month period; however, the study was not powered to detect this effect. These results are consistent with reported relationships of anger expression with other physiological measures, and extend the importance of anger expression to immune functioning in older family caregivers.

  20. Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells

    PubMed Central

    Jiao, Yuhao; Huntington, Nicholas D.; Belz, Gabrielle T.; Seillet, Cyril

    2016-01-01

    Group 1 innate lymphoid cells (ILCs) comprise the natural killer (NK) cells and ILC1s that reside within peripheral tissues. Several different ILC1 subsets have recently been characterized; however, no unique markers have been identified that uniquely define these subsets. Whether ILC1s and NK cells are in fact distinct lineages, or alternately exhibit transitional molecular programs that allow them to adapt to different tissue niches remains an open question. NK cells are the prototypic member of the Group 1 ILCs and have been historically assigned the functions of what now appears to be a multi-subset family that are distributed throughout the body. This raises the question of whether each of these populations mediate distinct functions during infection and tumor immunosurveillance. Here, we review the diversity of the Group 1 ILC subsets in their transcriptional regulation, localization, mobility, and receptor expression, and highlight the challenges in unraveling the individual functions of these different populations of cells. PMID:27785129

  1. Synthesis and evaluation of immunostimulant plasmalogen lysophosphatidylethanolamine and analogues for natural killer T cells.

    PubMed

    Ni, Guanghui; Li, Zhiyuan; Liang, Kangjiang; Wu, Ting; De Libero, Gennaro; Xia, Chengfeng

    2014-06-01

    Plasmalogen lysophosphatidylethanolamine (pLPE) had been identified as a self antigen for natural killer T cells (NKT cells). It is very important in the development, maturation and activation of NKT cells in thymus. Besides, pLPE is a novel type of antigen for NKT cells. To evaluate the structure-activity relationship (SAR) of this new antigen, pLPE and its analogues referred to different aliphatic chains and linkages at the sn-1 position of the glycerol backbone were synthesized, and the biological activities of these analogues was characterized. It is discovered that the linkages between phosphate and lipid moiety are not important for the antigens' activities. The pLPE analogues 1, 3, 4, 7 and 9, which have additional double bonds on lipid parts, were identified as new NKT agonists. Moreover, the analogues 4, 7 and 9 were discovered as potent Th2 activators for NKT cells.

  2. Differential effects of stimulatory factors on natural killer cell activities of young and aged mice.

    PubMed

    Nogusa, Shoko; Murasko, Donna M; Gardner, Elizabeth M

    2012-09-01

    Age-associated influences on natural killer (NK) cell functions following cytokine stimulation were examined in splenocytes from C57BL/6 mice. NK cells of both young and aged mice exhibited significantly increased: interferon-γ production after interleukin (IL)-12 or IL-15 alone or any combination of IL-12, IL-18, and IL-2; cytotoxicity after IL-2 or IL-15; and granzyme B expression after IL-15. The only significant age-associated differences were observed in interferon-γ production after IL-15 or IL-12 + 18 + 2 and in granzyme B expression following IL-2 or IL-15. Perforin expression did not increase following stimulation; however, NK cells from aged mice expressed significantly higher levels than young mice. These results underscore the complexity of the cytokine-induced functional activities of NK cells and illustrate the differential response of NK cells from young and aged mice to cytokine stimulation.

  3. Type I interferon regulation of natural killer cell function in primary and secondary infections.

    PubMed

    Stackaruk, Michele L; Lee, Amanda J; Ashkar, Ali A

    2013-08-01

    The priming of natural killer (NK) cells by type I interferon (IFN) is necessary for protection against primary and secondary viral infections. However, the pathway by which type I IFN activates NK cells to elicit antiviral responses is controversial. There is evidence to suggest that type I IFN priming of NK cells occurs through both direct and indirect pathways. As with many innate mechanisms, type I IFN and NK cells also orchestrate the adaptive immune response and thus aid in protection against secondary infections. Type I IFN can shape CD4(+) T cell, B cell and humoral memory formation. In addition, long-lived NK cells can perform specific and enhanced memory-like protection in secondary infections. This review outlines the different mechanisms underlying type I IFN regulation of NK cells and how type I IFN and NK cells can be used as a therapeutic target in vaccinations.

  4. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection

    PubMed Central

    Deng, Weiwen; Gowen, Benjamin G.; Zhang, Li; Wang, Lin; Lau, Stephanie; Iannello, Alexandre; Xu, Jianfeng; Rovis, Tihana L.; Xiong, Na; Raulet, David H.

    2016-01-01

    Immune cells, including natural killer (NK) cells, recognize transformed cells and eliminate them in a process termed immunosurveillance. It is thought that tumor cells evade immunosurveillance by shedding membrane ligands that bind to the NKG2D activating receptor on NK cells and/or T cells, and desensitize these cells. In contrast, we show that in mice, shedding of MULT1, a high affinity NKG2D ligand, causes NK cell activation and tumor rejection. Recombinant soluble MULT1 stimulated tumor rejection in mice. Soluble MULT1 functions, at least in part, by competitively reversing a global desensitization of NK cells imposed by engagement of membrane NKG2D ligands on tumor-associated cells, such as myeloid cells. The results overturn conventional wisdom that soluble ligands are inhibitory, and suggest a new approach for cancer immunotherapy. PMID:25745066

  5. Marijuana effects on immunity: suppression of human natural killer cell activity of delta-9-tetrahydrocannabinol.

    PubMed

    Specter, S C; Klein, T W; Newton, C; Mondragon, M; Widen, R; Friedman, H

    1986-01-01

    Delta-9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, was tested for its ability to modulate human natural killer (NK) cell function. THC was toxic for peripheral blood lymphocytes at 20 micrograms/ml but not at 10 micrograms/ml or less. This component of marijuana also was inhibitory for NK activity against K562, a human tumor cell line at concentrations down to 5 micrograms/ml when pre-incubated with the effector cells. Suppression of NK function was dependent upon the concentration of THC and the length of time of pre-incubation but was independent of the ratio of effector to target cells. Prostaglandins were not involved in suppression of NK activity.

  6. Inhibition of hematopoietic recovery from radiation-induced myelosuppression by natural killer cells

    SciTech Connect

    Pantel, K.; Boertman, J.; Nakeff, A. )

    1990-05-01

    We have examined the role of natural killer (NK) cells in situ in the recovery of marrow hematopoiesis in B6D2F1 mice receiving various doses of total-body irradiation (TBI) as a well-characterized model for treatment-induced myelosuppression. Applying an in situ cytotoxic approach for ablating NK 1.1 cells, we have demonstrated that NK 1.1 cells differentially inhibit the recovery of hematopoietic stem cells (CFU-S) and their progenitor cells committed to granulocyte-macrophage differentiation from a sublethal dose of TBI (9 Gy) while not affecting the recovery of progenitor cells committed to either erythroid or megakaryocyte differentiation from TBI. However, recoveries of CFU-S and progenitor cells were unaffected by the ablation of NK cells prior to a moderate dose of TBI (2 Gy). These findings provide in situ evidence that NK cells are potential inhibitors of hematopoietic recovery from treatment-induced myelosuppression.

  7. Psychoneuroimmunology and natural killer cells: the chromium release whole blood assay.

    PubMed

    Fletcher, Mary Ann; Barnes, Zachary; Broderick, Gordon; Klimas, Nancy G

    2012-01-01

    Natural killer (NK) cells are an essential component of innate immunity. These lymphocytes are also sensitive barometers of the effects of endogenous and exogenous stressors on the immune system. This chapter will describe a chromium ((51)Cr) release bioassay designed to measure the target cell killing capacity of NK cells (NKCC). Key features of the cytotoxicity assay are that it is done with whole blood and that numbers of effector cells are determined for each sample by flow cytometry and lymphocyte count. Effector cells are defined as CD3-CD56+ lymphocytes. Target cells are the K562 eyrthroleukemia cell line. Killing capacity is defined as number of target cells killed per effector cell, at an effector cell/target cell ratio of 1:1 during a 4 h in vitro assay.

  8. [Music therapy induced alternations in natural killer cell count and function].

    PubMed

    Hasegawa, Y; Kubota, N; Inagaki, T; Shinagawa, N

    2001-03-01

    The effects of music therapy on natural killer (NK) cell count and activity (NKCA) were studied in 19 persons. Alzheimer's disease, cerebrovessel disease and Parkinson's disease subjects were assigned to a music therapy. Blood samples were drawn at rest and after completion of music therapy. Music therapy did not change the number of circulating lymphocytes. The percentage of NK cells increased during music therapy, along with an increase in the NK cell activity. The proportion of T cells, CD4 and CD8 did not change significantly during music therapy. One hour after the music therapy session, plasma adrenaline increased but cortisol and noradrenalin did not change. The results indicate that music therapy can significantly increase NK cell count and activity. The change in NK cell and function were independent of neuro-degenerative diseases.

  9. Quantitative analysis of resistance to natural killer attacks reveals stepwise killing kinetics.

    PubMed

    Choi, Paul J; Mitchison, Timothy J

    2014-12-01

    Molecular mechanisms can protect cancer cells from immune attacks. At the level of bulk tissue, these survival mechanisms are often indistinguishable and simply appear as reduced cell death. However, by tracking individual cell survival and death times, we found broad variation in the kinetics of immune evasion. In response to attacks by natural killer cells, we observed that some cancer lines exhibited exponential survival time distributions. Slowly killed cancer lines had reduced exponential rate constants. In contrast, a line engineered to express the serpin protein PI-9, which is known to promote resistance to immune killing, exhibited a markedly nonexponential survival time distribution. By following the histories of individual cancer cells with multiplexed reporters, we obtained evidence that two or more immune attacks are likely required to kill serpin-expressing cells. Thus, resistance is a finite and measurable quantity, with a distinct kinetic signature. A quantitative model based on independently measured parameters is consistent with our conclusions.

  10. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity

    PubMed Central

    Xiong, Peng; Sang, Hai-Wei; Zhu, Min

    2015-01-01

    Natural killer (NK) cells, which can exert early and powerful anti-tumour and anti-viral responses, are important components of the innate immune system. DNAX accessory molecule-1 (DNAM-1) is an activating receptor molecule expressed on the surface of NK cells. Recent findings suggest that DNAM-1 is a critical regulator of NK cell biology. DNAM-1 is involved in NK cell education and differentiation, and also plays a pivotal role in the development of cancer, viral infections and immune-related diseases. However, tumours and viruses have developed multiple mechanisms to evade the immune system. They are able to impair DNAM-1 activity by targeting the DNAM-1 receptor–ligand system. We have reviewed the roles of DNAM-1, and its biological functions, with respect to NK cell biology and DNAM-1 chimeric antigen receptor-based immunotherapy. PMID:26235210

  11. The effect of transfected MHC class I genes on sensitivity to natural killer cells.

    PubMed Central

    Holscher, M; Givan, A L; Brooks, C G

    1991-01-01

    To test the hypothesis that major histocompatibility complex (MHC) molecules protect target cells from lysis by natural killer cells (NKC), we transfected the MHC- B16 melanoma line F10 with the class I genes encoding Dd, Kb, and Kk. Only low levels of Dd expression could be obtained and there was no protection against NKC. By contrast, Kb and Kk transfectants were obtained which displayed significant resistance to NKC, and with the latter transfectants resistance was clearly related to the level of transgene expression. Various mutants of the F10 line with altered patterns of MHC expression were also obtained. These mutant lines provided evidence that (i) the Db molecule is also capable of inducing resistance to NKC and (ii) high MHC class I expression does not by itself guarantee lowered susceptibility to NKC. PMID:1904402

  12. Natural killer cells: the secret weapon in dendritic cell vaccination strategies.

    PubMed

    Van Elssen, Catharina H M J; Oth, Tammy; Germeraad, Wilfred T V; Bos, Gerard M J; Vanderlocht, Joris

    2014-03-01

    In cancer therapy, dendritic cell (DC) vaccination is still being explored. Clinical responses, however, are diverse and there is a lack of immunologic readout systems that correspond with clinical outcome. Only in the minority of patients, T-cell responses correlate with clinical outcome, indicating that other immune cells also gain anticancer activity. We still have limited knowledge of the effect of DC vaccination on different immune effector cells. However, it has been shown that bidirectional cross-talk between natural killer (NK) cells and DCs is responsible for enhanced activation of both cell types and increases their antitumor activity. In this review, we postulate the possibility that NK cells are the secret weapons in DC vaccination and studying their behavior together with T-cell activation in vaccinated individuals might predict clinical outcome. PMID:24590885

  13. Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.

    PubMed

    Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M

    2016-01-01

    Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.

  14. Psychoneuroimmunology and natural killer cells: the chromium release whole blood assay.

    PubMed

    Fletcher, Mary Ann; Barnes, Zachary; Broderick, Gordon; Klimas, Nancy G

    2012-01-01

    Natural killer (NK) cells are an essential component of innate immunity. These lymphocytes are also sensitive barometers of the effects of endogenous and exogenous stressors on the immune system. This chapter will describe a chromium ((51)Cr) release bioassay designed to measure the target cell killing capacity of NK cells (NKCC). Key features of the cytotoxicity assay are that it is done with whole blood and that numbers of effector cells are determined for each sample by flow cytometry and lymphocyte count. Effector cells are defined as CD3-CD56+ lymphocytes. Target cells are the K562 eyrthroleukemia cell line. Killing capacity is defined as number of target cells killed per effector cell, at an effector cell/target cell ratio of 1:1 during a 4 h in vitro assay. PMID:22933153

  15. Terminal Differentiation of CD56(dim)CD16(+) Natural Killer Cells Is Associated with Increase in Natural Killer Cell Frequencies After Antiretroviral Treatment in HIV-1 Infection.

    PubMed

    Ahmad, Fareed; Tufa, Dejene Milkessa; Mishra, Neha; Jacobs, Roland; Schmidt, Reinhold E

    2015-12-01

    HIV-1 infection results in immunological abnormalities of natural killer (NK) cells such as disturbed distribution of NK cell subsets and downmodulation of activating and upregulation of inhibitory receptors thereby diminishing NK cell killing capacity and cytokine secretion. Antiretroviral treatment (ART) is known to restore phenotype and functions of NK cells. However, the effects of ART on NK cell terminal differentiation, activation, and disturbed distribution have not been studied yet longitudinally. Here, we analyzed the effects of ART on these parameters of peripheral blood NK cells in a longitudinal as well as in a cross-sectional study. We observed that expanded CD56(-)CD16(+) NK cell frequency is inversely correlated with the frequency of CD56(dim)CD16(+) NK cells in treatment-naive HIV-1 patients. Loss of CD56(dim)CD16(+) and expansion of CD56(-)CD16(+) NK cells again restore to the levels of healthy controls after ART. Enhanced immune activation of different NK cell subsets is partially restored after ART. Terminal differentiation of CD56(dim)CD16(+) NK cells is enhanced after ART as measured by CD57 expression. Frequencies of CD57(+)CD56(dim)CD16(+) NK cells are directly correlated with the frequencies of total NK cells suggesting that an increase in the frequencies of CD57(+)CD56(dim)CD16(+) NK cells is reflected by increased frequencies of total NK cells after ART. Taken together these data demonstrate that ART has an effect on the immune restoration of NK cells and is enhanced in the terminal differentiation of CD56(dim)CD16(+) NK cells, which is associated with increased frequencies of total NK cells after ART.

  16. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers.

    PubMed

    Krzywinska, Ewelina; Allende-Vega, Nerea; Cornillon, Amelie; Vo, Dang-Nghiem; Cayrefourcq, Laure; Panabieres, Catherine; Vilches, Carlos; Déchanet-Merville, Julie; Hicheri, Yosr; Rossi, Jean-François; Cartron, Guillaume; Villalba, Martin

    2015-10-01

    Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56(dim)CD16(+) NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA(+)RO(+) phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA(+)RO(-) phenotype similar to naïve T cells. In summary, we show that CD45RA(+)RO(+) cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias.

  17. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers

    PubMed Central

    Krzywinska, Ewelina; Allende-Vega, Nerea; Cornillon, Amelie; Vo, Dang-Nghiem; Cayrefourcq, Laure; Panabieres, Catherine; Vilches, Carlos; Déchanet-Merville, Julie; Hicheri, Yosr; Rossi, Jean-François; Cartron, Guillaume; Villalba, Martin

    2015-01-01

    Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56dimCD16+ NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA+RO+ phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA+RO− phenotype similar to naïve T cells. In summary, we show that CD45RA+RO+ cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias. PMID:26629531

  18. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients.

    PubMed

    Huth, T K; Brenu, E W; Staines, D R; Marshall-Gradisnik, S M

    2016-01-01

    Killer cell immunoglobulin-like receptor (KIR) genes encode for activating and inhibitory surface receptors, which are correlated with the regulation of Natural Killer (NK) cell cytotoxic activity. Reduced NK cell cytotoxic activity has been consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients, and KIR haplotypes and allelic polymorphism remain to be investigated. The aim of this article was to conduct a pilot study to examine KIR genotypes, haplotypes, and allelic polymorphism in CFS/ME patients and nonfatigued controls (NFCs). Comparison of KIR and allelic polymorphism frequencies revealed no significant differences between 20 CFS/ME patients and 20 NFCs. A lower frequency of the telomeric A/B motif (P < 0.05) was observed in CFS/ME patients compared with NFCs. This pilot study is the first to report the differences in the frequency of KIR on the telomeric A/B motif in CFS/ME patients. Further studies with a larger CFS/ME cohort are required to validate these results.

  19. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

    PubMed Central

    Huth, T. K.; Brenu, E. W.; Staines, D. R.; Marshall-Gradisnik, S. M.

    2016-01-01

    Killer cell immunoglobulin-like receptor (KIR) genes encode for activating and inhibitory surface receptors, which are correlated with the regulation of Natural Killer (NK) cell cytotoxic activity. Reduced NK cell cytotoxic activity has been consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients, and KIR haplotypes and allelic polymorphism remain to be investigated. The aim of this article was to conduct a pilot study to examine KIR genotypes, haplotypes, and allelic polymorphism in CFS/ME patients and nonfatigued controls (NFCs). Comparison of KIR and allelic polymorphism frequencies revealed no significant differences between 20 CFS/ME patients and 20 NFCs. A lower frequency of the telomeric A/B motif (P < 0.05) was observed in CFS/ME patients compared with NFCs. This pilot study is the first to report the differences in the frequency of KIR on the telomeric A/B motif in CFS/ME patients. Further studies with a larger CFS/ME cohort are required to validate these results. PMID:27346947

  20. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients.

    PubMed

    Huth, T K; Brenu, E W; Staines, D R; Marshall-Gradisnik, S M

    2016-01-01

    Killer cell immunoglobulin-like receptor (KIR) genes encode for activating and inhibitory surface receptors, which are correlated with the regulation of Natural Killer (NK) cell cytotoxic activity. Reduced NK cell cytotoxic activity has been consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients, and KIR haplotypes and allelic polymorphism remain to be investigated. The aim of this article was to conduct a pilot study to examine KIR genotypes, haplotypes, and allelic polymorphism in CFS/ME patients and nonfatigued controls (NFCs). Comparison of KIR and allelic polymorphism frequencies revealed no significant differences between 20 CFS/ME patients and 20 NFCs. A lower frequency of the telomeric A/B motif (P < 0.05) was observed in CFS/ME patients compared with NFCs. This pilot study is the first to report the differences in the frequency of KIR on the telomeric A/B motif in CFS/ME patients. Further studies with a larger CFS/ME cohort are required to validate these results. PMID:27346947

  1. KLRG+ invariant natural killer T cells are long-lived effectors.

    PubMed

    Shimizu, Kanako; Sato, Yusuke; Shinga, Jun; Watanabe, Takashi; Endo, Takaho; Asakura, Miki; Yamasaki, Satoru; Kawahara, Kazuyoshi; Kinjo, Yuki; Kitamura, Hiroshi; Watarai, Hiroshi; Ishii, Yasuyuki; Tsuji, Moriya; Taniguchi, Masaru; Ohara, Osamu; Fujii, Shin-ichiro

    2014-08-26

    Immunological memory has been regarded as a unique feature of the adaptive immune response mediated in an antigen-specific manner by T and B lymphocytes. However, natural killer (NK) cells and γδT cells, which traditionally are classified as innate immune cells, have been shown in recent studies to have hallmark features of memory cells. Invariant NKT cell (iNKT cell)-mediated antitumor effects indicate that iNKT cells are activated in vivo by vaccination with iNKT cell ligand-loaded CD1d(+) cells, but not by vaccination with unbound NKT cell ligand. In such models, it previously was thought that the numbers of IFN-γ-producing cells in the spleen returned to the basal level around 1 wk after the vaccination. In the current study, we demonstrate the surprising presence of effector memory-like iNKT cells in the lung. We found long-term antitumor activity in the lungs of mice was enhanced after vaccination with iNKT cell ligand-loaded dendritic cells. Further analyses showed that the KLRG1(+) (Killer cell lectin-like receptor subfamily G, member 1-positive) iNKT cells coexpressing CD49d and granzyme A persisted for several months and displayed a potent secondary response to cognate antigen. Finally, analyses of CDR3β by RNA deep sequencing demonstrated that some particular KLRG1(+) iNKT-cell clones accumulated, suggesting the selection of certain T-cell receptor repertoires by an antigen. The current findings identifying effector memory-like KLRG1(+) iNKT cells in the lung could result in a paradigm shift regarding the basis of newly developed extrathymic iNKT cells and could contribute to the future development of antitumor immunotherapy by uniquely energizing iNKT cells. PMID:25118276

  2. Natural killer cells and regulatory T cells in early pregnancy loss

    PubMed Central

    SHARMA, SURENDRA

    2015-01-01

    Survival of the allogeneic embryo in the uterus depends on the maintenance of immune tolerance at the maternal-fetal interface. The pregnant uterus is replete with activated maternal immune cells. How this immune tolerance is acquired and maintained has been a topic of intense investigation. The key immune cells that predominantly populate the pregnant uterus are natural killer (NK) cells. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation. In placental mammals, an array of highly orchestrated immune elements to support successful pregnancy outcome has been incorporated. This includes active cooperation between maternal immune cells, particularly NK cells, and trophoblast cells. This intricate process is required for placentation, immune regulation and to remodel the blood supply to the fetus. During the past decade, various types of maternal immune cells have been thought to be involved in cross-talk with trophoblasts and in programming immune tolerance. RegulatoryT cells (Tregs) have attracted a great deal of attention in promoting implantation and immune tolerance beyond implantation. However, what has not been fully addressed is how this immune-trophoblast axis breaks down during adverse pregnancy outcomes, particularly early pregnancy loss, and in response to unscheduled inflammation. Intense research efforts have begun to shed light on the roles of NK cells and Tregs in early pregnancy loss, although much remains to be unraveled in order to fully characterize the mechanisms underlying their detrimental activity. An increased understanding of host-environment interactions that lead to the cytotoxic phenotype of these otherwise pregnancy compatible maternal immune cells is important for prediction, prevention and treatment of pregnancy maladies, particularly recurrent pregnancy loss. In this review, we discuss relevant information from experimental and human

  3. Natural killer cells and regulatory T cells in early pregnancy loss.

    PubMed

    Sharma, Surendra

    2014-01-01

    Survival of the allogeneic embryo in the uterus depends on the maintenance of immune tolerance at the maternal-fetal interface. The pregnant uterus is replete with activated maternal immune cells. How this immune tolerance is acquired and maintained has been a topic of intense investigation. The key immune cells that predominantly populate the pregnant uterus are natural killer (NK) cells. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation. In placental mammals, an array of highly orchestrated immune elements to support successful pregnancy outcome has been incorporated. This includes active cooperation between maternal immune cells, particularly NK cells, and trophoblast cells. This intricate process is required for placentation, immune regulation and to remodel the blood supply to the fetus. During the past decade, various types of maternal immune cells have been thought to be involved in cross-talk with trophoblasts and in programming immune tolerance. Regulatory T cells (Tregs) have attracted a great deal of attention in promoting implantation and immune tolerance beyond implantation. However, what has not been fully addressed is how this immune-trophoblast axis breaks down during adverse pregnancy outcomes, particularly early pregnancy loss, and in response to unscheduled inflammation. Intense research efforts have begun to shed light on the roles of NK cells and Tregs in early pregnancy loss, although much remains to be unraveled in order to fully characterize the mechanisms underlying their detrimental activity. An increased understanding of host-environment interactions that lead to the cytotoxic phenotype of these otherwise pregnancy compatible maternal immune cells is important for prediction, prevention and treatment of pregnancy maladies, particularly recurrent pregnancy loss. In this review, we discuss relevant information from experimental and human

  4. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules.

    PubMed

    Solaymani-Mohammadi, Shahram; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Frey, Blake F; Billeskov, Rolf; Singer, Steven M; Berzofsky, Jay A; Eckmann, Lars; Kagnoff, Martin F

    2016-03-01

    The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function.

  5. Multifunctional human CD56 low CD16 low natural killer cells are the prominent subset in bone marrow of both healthy pediatric donors and leukemic patients.

    PubMed

    Stabile, Helena; Nisti, Paolo; Morrone, Stefania; Pagliara, Daria; Bertaina, Alice; Locatelli, Franco; Santoni, Angela; Gismondi, Angela

    2015-04-01

    We phenotypically and functionally characterized a distinct CD56(low) natural killer cell subset based on CD16 expression levels in bone marrow and peripheral blood of healthy children and pediatric patients with acute lymphoblastic leukemia. Our findings demonstrate for the first time that CD56(low)CD16(low) natural killer cells are more abundant in bone marrow than in peripheral blood and that their frequency is further increased in children with acute lymphoblastic leukemia. Bone marrow and peripheral blood CD56(low)CD16(low) natural killer cells compared with CD56(low)CD16(high) natural killer cells express lower levels of killer inhibitory receptors, higher levels of CD27, CD127, CD122, CD25, but undetectable levels of CD57, suggesting that they have a higher proliferative and differentiation potential. Moreover, CD56(low)CD16(low) natural killer cells display higher levels of CXCR4 and undetectable levels of CX3CR1 and can be consistently and rapidly mobilized in peripheral blood in response to CXCR4 antagonist. Unlike CD56(low)CD16(high), both bone marrow and peripheral blood CD56(low)CD16(low) natural killer cells release IFNγ following cytokine stimulation, and represent the major cytotoxic natural killer cell population against K562 or acute lymphoblastic leukemia target cells. All these data suggest that CD56(low)CD16(low) natural killer cells are multifunctional cells, and that the presence of hematologic malignancies affects their frequency and functional ability at both tumor site and in the periphery.

  6. Interleukin 2 enhances natural killer cell activity through induction of gamma interferon.

    PubMed Central

    Weigent, D A; Stanton, G J; Johnson, H M

    1983-01-01

    Highly purified interleukin 2 (IL 2), free of interferon activity, enhanced natural killer (NK) cell activity against tumor cells in mouse spleen cell cultures and in human peripheral lymphocyte cultures in a manner similar to that of interferon (IFN). We determined that IL 2 enhanced NK activity indirectly in a cascade manner by the induction of gamma IFN (IFN-gamma) in the cultures, which actually mediated the enhanced killing. Accordingly, lymphocyte cultures treated with IL 2 alone produced 10 to 100 U of IFN per ml in 6 to 24 h of culture. The IFN was typed as IFN-gamma by specific antibodies. Specific antibodies either to natural IFN-gamma or to a synthetic peptide corresponding to the human IFN-gamma N-terminal amino acids, when added to cultures treated with IL 2, completely blocked IL 2 enhancement of NK cell activity for both the mouse and human systems. IL 2-induced proliferation was not affected by the antibodies. Thus, the enhancement of NK cell activity by IL 2 is completely mediated by IL 2-induced IFN-gamma. The findings clearly indicate a cascade effect whereby one lymphokine (IL 2) induces the production of another. The latter lymphokine (IFN-gamma) then mediates an important biological effect (natural killing). PMID:6411624

  7. Target-induced natural killer cell loss as a measure of NK cell responses.

    PubMed

    Warren, Hilary

    2013-01-01

    Natural killer (NK) cells are an important effector cell of innate immunity. Their interaction with susceptible target cells triggers NK cell cytotoxicity and the release of cytokines. Immunofluorescence flow cytometry-based assays are now the preferred methods for measuring NK cell responses. For these assays, assessment is made on NK cells (CD3(-)CD56(+) CD16(+)) within the viable lymphocyte gate, defined by the parameters of size (FSC) and granularity (SSC). Accordingly, NK cells that have not dissociated from target cells at the time of measurement, or that have undergone target cell-induced apoptosis, are excluded from the viable lymphocyte gate and therefore from analysis. This unit describes a protocol for assessing NK cell function in response to various target cells (natural killing, antibody-dependent cell cytotoxicity, and NK cell alloreactivity) based on the loss of NK cells from the lymphocyte gate. This target-induced NK loss (TINKL) should provide a sensitive measure of NK cell responses in a clinical laboratory setting.

  8. ImuVert activation of natural killer cytotoxicity and interferon gamma production via CD16 triggering.

    PubMed

    Cunningham-Rundles, S; Pearson, F C

    1990-01-01

    The effect and mechanism of action of ImuVert, a new biological response modifier consisting of ribosomes and natural membrane vesicles of Serratia marcescens, on endogenous natural killer (NK) cells and activated NK activity has been analyzed. The studies showed that endogenous NK activity of peripheral blood mononuclear cells (PBMC) from normal cell donors was significantly increased (P less than 0.03) against K562, U937, and Molt-4 target cells. PBMC from cord blood of newborn infants lacking NK activity were upregulated (1.5-4 fold over endogenous NK activity) by ImuVert. Other studies showed that the abnormal NK activity of PBMC from patients with the human immunodeficiency virus (HIV) infection was significantly augmented in vitro (P less than 0.01) by ImuVert. ImuVert strongly stimulated interferon gamma production and in combination with interleukin 2 produced synergistically enhanced interferon gamma production and greater cytotoxicity than that induced by either alone. Studies on lymphocyte differentiation antigen expression following treatment with ImuVert indicated that ImuVert triggers interferon gamma production through binding the low affinity IgG Fc receptor, type III, CD16. The studies suggest that ImuVert may trigger interferon gamma production by binding to the Fc receptor and that the amplitude of the ensuing reaction and the ability of ImuVert to induce cytotoxicity in a setting where this activity has been down regulated is based on the absence of suppressor activation or direct contra suppressor activity.

  9. A species of human alpha interferon that lacks the ability to boost human natural killer activity.

    PubMed Central

    Ortaldo, J R; Herberman, R B; Harvey, C; Osheroff, P; Pan, Y C; Kelder, B; Pestka, S

    1984-01-01

    Most species of recombinant leukocyte interferons (IFN-alpha A, -alpha B, -alpha C, -alpha D, -alpha F, -alpha I, and -alpha K) were capable of boosting human natural killer (NK) activity after a 2-hr treatment of cells at a concentration of 1-80 units/ml. In contrast, recombinant human IFN-alpha J was found to be incapable of augmenting NK activity after exposure of cells for 2 hr to concentrations as high as 10,000 units/ml. This inability of IFN-alpha J to boost NK activity was not complete because, after exposure of cells to a high concentration of IFN-alpha J (10,000 units/ml) for 18 hr, boosting of cytolysis was observed. IFN-alpha J appeared to interact with receptors for IFN on NK cells since it was found to interfere with the boosting of NK activity by other species of IFN-alpha. In contrast to its deficient ability to augment NK activity, IFN-alpha J has potent antiviral and antiproliferative activities. Such extensive dissociation of these biological activities has not been observed previously with any other natural or recombinant IFN species. Thus, this IFN species may be useful for evaluating the relative importance of various biological activities on the therapeutic effects of IFN, for understanding structure-function relationships, and for determining the biochemical pathways related to the various biological effects of IFN. PMID:6589637

  10. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins.

    PubMed

    Vanderven, Hillary A; Ana-Sosa-Batiz, Fernanda; Jegaskanda, Sinthujan; Rockman, Steven; Laurie, Karen; Barr, Ian; Chen, Weisan; Wines, Bruce; Hogarth, P Mark; Lambe, Teresa; Gilbert, Sarah C; Parsons, Matthew S; Kent, Stephen J

    2016-06-01

    The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected subjects. Healthy adults had antibodies to M1 and NP capable of binding dimeric FcγRIIIa and activating NK cells. Natural symptomatic and experimental influenza infections resulted in a rise in antibody dependent NK cell activation post-infection to the hemagglutinin of the infecting strain, but changes in NK cell activation to M1 and NP were variable. Although antibody dependent killing of target cells infected with vaccinia viruses expressing internal influenza proteins was not detected, opsonising antibodies to NP and M1 likely contribute to an antiviral microenvironment by stimulating innate immune cells to secrete cytokines early in infection. We conclude that effector cell activating antibodies to conserved internal influenza proteins are common in healthy and influenza-infected adults. Given the significance of such antibodies in animal models of heterologous influenza infection, the definition of their importance and mechanism of action in human immunity to influenza is essential. PMID:27428437

  11. Expression of perforin in nasal lymphoma. Additional evidence of its natural killer cell derivation.

    PubMed Central

    Mori, N.; Yatabe, Y.; Oka, K.; Kinoshita, T.; Kobayashi, T.; Ono, T.; Asai, J.

    1996-01-01

    Eight patients with nasal lymphoma in whom fresh-frozen tissues were available were studied to elucidate the nature of the lymphoma cells. Two cases were diagnosed as diffuse, large cell lymphoma, and the remaining six cases as diffuse, mixed cell types. Immunohistochemical studies revealed that all of the cases were positive for perforin, which is a specific marker for cytotoxic T or natural killer (NK) cells. As all of the cases were CD8 negative, the perforin-positive finding further confirmed the concept that nasal lymphoma is a distinct neoplastic entity derived from NK or NK-related cells. Light microscopic immunohistochemical studies revealed that these nasal lymphoma cases could be classified into Leu19(CD56)+Leu4(CD3)+ (two cases) and Leu19(CD56)+Leu4(CD3)- (six cases) types according to the phenotypes of the proliferating cells. However, simultaneous staining for perforin and Leu4 (CD3) using immunoelectron microscopy on the Leu19+Leu4+ cases showed that the perforin-positive cells were different from the Leu4-positive cells. This finding suggests that the Leu4-positive cells are not neoplastic NK cells but reactive T cells. Six cases were positive for EBER-1 by in situ hybridization analysis. This finding reconfirms the previous studies that Epstein-Barr virus plays a significant role in the pathogenesis of nasal lymphoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8702007

  12. Artificial antigen presenting cell (aAPC) mediated activation and expansion of natural killer T cells.

    PubMed

    East, James E; Sun, Wenji; Webb, Tonya J

    2012-01-01

    Natural killer T (NKT) cells are a unique subset of T cells that display markers characteristic of both natural killer (NK) cells and T cells(1). Unlike classical T cells, NKT cells recognize lipid antigen in the context of CD1 molecules(2). NKT cells express an invariant TCRα chain rearrangement: Vα14Jα18 in mice and Vα24Jα18 in humans, which is associated with Vβ chains of limited diversity(3-6), and are referred to as canonical or invariant NKT (iNKT) cells. Similar to conventional T cells, NKT cells develop from CD4-CD8- thymic precursor T cells following the appropriate signaling by CD1d (7). The potential to utilize NKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human NKT cells with α-Galactosylceramide (α-GalCer) and a variety of cytokines(8). Importantly, these cells retained their original phenotype, secreted cytokines, and displayed cytotoxic function against tumor cell lines. Thus, ex vivo expanded NKT cells remain functional and can be used for adoptive immunotherapy. However, NKT cell based-immunotherapy has been limited by the use of autologous antigen presenting cells and the quantity and quality of these stimulator cells can vary substantially. Monocyte-derived DC from cancer patients have been reported to express reduced levels of costimulatory molecules and produce less inflammatory cytokines(9,10). In fact, murine DC rather than autologous APC have been used to test the function of NKT cells from CML patients(11). However, this system can only be used for in vitro testing since NKT cells cannot be expanded by murine DC and then used for adoptive immunotherapy. Thus, a standardized system that relies on artificial Antigen Presenting Cells (aAPC) could produce the stimulating effects of DC without the pitfalls of allo- or xenogeneic cells(12, 13). Herein, we describe a method for generating CD1d-based aAPC. Since the engagement of the T cell receptor (TCR) by CD1d-antigen complexes is

  13. [Changes in the natural killer activity of lymphocytes in peripheral blood of patients with purulent-septic diseases under the effect of extracorporeal perfusion of pig spleen sections].

    PubMed

    Zhidkov, K P; Malygin, A M; Dmitriev, N V; Borison, A E; Shevchenko, E V

    1989-01-01

    23 patients with pyo-septic diseases resistant to conservative therapy were treated by extracorporeal perfusion of xenospleen (EPXS). In 17 patients on EPXS a persistent detoxicating effect was achieved. 6 patients died. EPXS procedure was accompanied by a drop in medium-molecular lipid blood level and normalization of natural killer activity that was decreased considerably prior to EPXS. It is concluded that EPXS has a normalizing effect on the natural killer activity, which may be essential for resistance to infectious complications.

  14. Combination chemo-immunotherapy: kinetics of in vivo and in vitro generation of natural killer cells and lymphokine-activated killer cells in the rat.

    PubMed Central

    Stewart, L S; Sewell, H F; Thomson, A W

    1990-01-01

    Rats received a single high dose of cyclophosphamide (Cy) (150 mg/kg), followed 48 h later (on day 0) by immunization with a T cell-dependent soluble antigen, ovalbumin in Freund's complete adjuvant (FCA). The effect of this treatment on lymphoid cell subpopulations in the spleen, natural killer (NK) cell and interleukin-2 (IL-2) induced lymphokine-activated killer (LAK) cell activity was examined. Cy (with and without ovalbumin) caused a large relative increase (by day 14) in splenic OX8+, OX19- cells with NK morphology. A marked relative increase in fresh NK cell activity was noted after Cy + ovalbumin, but not consistently after Cy alone. Elevated NK activity was Cy dose- and time-dependent, was evident within 7 days post Cy/ovalbumin and persisted for at least 28 days. Pooled splenic mononuclear cells (MNC), obtained 14 days after Cy/ovalbumin, lost all cytolytic activity against YAC-1 cells when cultured in the absence of human recombinant IL-2 (rIL-2). In contrast, similarly maintained cells from normal rats displayed NK activity higher than normal 'fresh' levels. Upon culture in medium containing 500 U/ml rIL-2, however, 'augmented' NK activity was equivalent, on a per-cell basis, in both normal and Cy/ovalbumin-pretreated groups. LAK activity generated in vitro (i.e. against NK-resistant target cells) was significantly lower in the latter group, and the overall yield of cells was reduced. By day 21 after Cy/ovalbumin, augmented NK activity was significantly greater than controls, on a per-cell and total culture yield basis. Moreover, LAK activity was now similar between groups. It is concluded that the chemotherapy/immunization protocol which we have used can greatly enhance NK activity in vivo and that these cells are responsive to induction of LAK activity by IL-2 in vitro. Images Fig. 1 PMID:2317946

  15. Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides

    PubMed Central

    Schafer, Jamie L.; Ries, Moritz; Guha, Natasha; Connole, Michelle; Colantonio, Arnaud D.; Wiertz, Emmanuel J.; Wilson, Nancy A.; Kaur, Amitinder; Evans, David T.

    2015-01-01

    Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses. PMID:26333068

  16. Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides.

    PubMed

    Schafer, Jamie L; Ries, Moritz; Guha, Natasha; Connole, Michelle; Colantonio, Arnaud D; Wiertz, Emmanuel J; Wilson, Nancy A; Kaur, Amitinder; Evans, David T

    2015-09-01

    Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.

  17. Natural Killer Cell Receptors and Cytotoxic Activity in Phosphomannomutase 2 Deficiency (PMM2-CDG)

    PubMed Central

    García-López, Roberto; de la Morena-Barrio, María Eugenia; Alsina, Laia; Pérez-Dueñas, Belén; Jaeken, Jaak; Serrano, Mercedes; Casado, Mercedes; Hernández-Caselles, Trinidad

    2016-01-01

    Background PMM2-CDG is the most common N-glycosylation defect and shows an increased risk of recurrent and/or severe, sometimes fatal, infections in early life. We hypothesized that natural killer (NK) cells, as important mediators of the immune response against microbial pathogens and regulators of adaptive immunity, might be affected in this genetic disorder. Objective To evaluate possible defects on PMM2-CDG NK peripheral blood cell number, killing activity and expression of membrane receptors. Methods We studied fresh and activated NK cells from twelve PMM2-CDG cells. The number and expression of lymphoid surface receptors were studied by flow cytometry. The NK responsiveness (frequency of degranulated NK cells) and killing activity against K562 target cells was determined in the NK cytotoxicity assay. Results We found an increase of blood NK cells in three patients with a severe phenotype. Two of them, who had suffered from moderate/severe viral infections during their first year of life, also had reduced T lymphocyte numbers. Patient activated NK cells showed increased expression of CD54 adhesion molecule and NKG2D and NKp46 activating receptors. NKp46 and 2B4 expression was inversely correlated with the expression of NKG2D in activated PMM2-CDG cells. Maximal NK activity against K562 target cells was similar in control and PMM2-CDG cells. Interestingly, the NK cell responsiveness was higher in patient cells. NKG2D and specially CD54 increased surface expression significantly correlated with the increased NK cell cytolytic activity according to the modulation of the killer activity by expression of triggering receptors and adhesion molecules. Conclusions Our results indicate that hypoglycosylation in PMM2-CDG altered NK cell reactivity against target cells and the expression of CD54 and NKG2D, NKp46 and 2B4 activating receptors during NK cell activation. This suggests a defective control of NK cell killing activity and the overall anti-viral immune response

  18. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type.

    PubMed

    Yu, Jian-Bo; Zuo, Zhuo; Zhang, Wen-Yan; Yang, Qun-Pei; Zhang, Ying-Chun; Tang, Yuan; Zhao, Sha; Mo, Xian-Ming; Liu, Wei-Ping

    2014-11-01

    To analyze the differentiation characteristics of extranodal natural killer/T-cell lymphoma, nasal type, one nude mouse model, cell lines SNK6 and SNT8, and 16 fresh human samples were analyzed by flow cytometry immunophenotyping and immunohistochemistry staining; and 115 archived cases were used for phenotypic detection and prognostic analysis. We found that CD25 was expressed by most tumor cells in all samples, and CD56(+)CD25(+) cells were the predominant population in the mouse model, the 2 cell lines, and 10 of the 16 fresh tumor samples; in the other 6 fresh tumor samples, the predominant cell population was of the CD16(+)CD25(+) phenotype, and only a minor population showed the CD56(+)CD25(+) phenotype. The phenotype detected by immunohistochemistry staining generally was consistent with the phenotype found by flow cytometry immunophenotyping. According to the expression of CD56 and CD16, 115 cases could be classified into 3 phenotypic subtypes: CD56(-)CD16(-), CD56(+)CD16(-), and CD56(dim/-)CD16(+). Patients with tumors of the CD56(dim/-)CD16(+) phenotype had a poorer prognosis than patients with tumors of the other phenotypes. Differentiation of extranodal natural killer/T-cell lymphoma, nasal type apparently resembles the normal natural killer cell developmental pattern, and these tumors can be classified into 3 phenotypic subtypes of different aggressiveness. Expression of CD56(dim/-)CD16(+) implies a poorer prognosis.

  19. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type.

    PubMed

    Yu, Jian-Bo; Zuo, Zhuo; Zhang, Wen-Yan; Yang, Qun-Pei; Zhang, Ying-Chun; Tang, Yuan; Zhao, Sha; Mo, Xian-Ming; Liu, Wei-Ping

    2014-11-01

    To analyze the differentiation characteristics of extranodal natural killer/T-cell lymphoma, nasal type, one nude mouse model, cell lines SNK6 and SNT8, and 16 fresh human samples were analyzed by flow cytometry immunophenotyping and immunohistochemistry staining; and 115 archived cases were used for phenotypic detection and prognostic analysis. We found that CD25 was expressed by most tumor cells in all samples, and CD56(+)CD25(+) cells were the predominant population in the mouse model, the 2 cell lines, and 10 of the 16 fresh tumor samples; in the other 6 fresh tumor samples, the predominant cell population was of the CD16(+)CD25(+) phenotype, and only a minor population showed the CD56(+)CD25(+) phenotype. The phenotype detected by immunohistochemistry staining generally was consistent with the phenotype found by flow cytometry immunophenotyping. According to the expression of CD56 and CD16, 115 cases could be classified into 3 phenotypic subtypes: CD56(-)CD16(-), CD56(+)CD16(-), and CD56(dim/-)CD16(+). Patients with tumors of the CD56(dim/-)CD16(+) phenotype had a poorer prognosis than patients with tumors of the other phenotypes. Differentiation of extranodal natural killer/T-cell lymphoma, nasal type apparently resembles the normal natural killer cell developmental pattern, and these tumors can be classified into 3 phenotypic subtypes of different aggressiveness. Expression of CD56(dim/-)CD16(+) implies a poorer prognosis. PMID:25213430

  20. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii).

    PubMed

    van der Kraan, Lauren E; Wong, Emily S W; Lo, Nathan; Ujvari, Beata; Belov, Katherine

    2013-01-01

    Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.

  1. Delineation of Natural Killer Cell Differentiation from Myeloid Progenitors in Human.

    PubMed

    Chen, Qingfeng; Ye, Weijian; Jian Tan, Wei; Mei Yong, Kylie Su; Liu, Min; Qi Tan, Shu; Loh, Eva; Te Chang, Kenneth; Chye Tan, Thiam; Preiser, Peter R; Chen, Jianzhu

    2015-01-01

    Understanding of natural killer (NK) cell development in human is incomplete partly because of limited access to appropriate human tissues. We have developed a cytokine-enhanced humanized mouse model with greatly improved reconstitution and function of human NK cells. Here we report the presence of a cell population in the bone marrow of the cytokine-treated humanized mice that express both NK cell marker CD56 and myeloid markers such as CD36 and CD33. The CD56(+)CD33(+)CD36(+) cells are also found in human cord blood, fetal and adult bone marrow. Although the CD56(+)CD33(+)CD36(+) cells do not express the common NK cell functional receptors and exhibit little cytotoxic and cytokine-producing activities, they readily differentiate into mature NK cells by acquiring expression of NK cell receptors and losing expression of the myeloid markers. Further studies show that CD33(+)CD36(+) myeloid NK precursors are derived from granulo-myelomonocytic progenitors. These results delineate the pathway of human NK cell differentiation from myeloid progenitors in the bone marrow and suggest the utility of humanized mice for studying human hematopoiesis. PMID:26456148

  2. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.

    PubMed

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2015-12-01

    In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase.

  3. Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism.

    PubMed

    Kim, Hun Sik; Kwon, Hyung-Joon; Kim, Gye Eun; Cho, Mi-Hyang; Yoon, Seung-Yong; Davies, Alexander J; Oh, Seog Bae; Lee, Heuiran; Cho, Young Keol; Joo, Chul Hyun; Kwon, Seog Woon; Kim, Sun Chang; Kim, Yoo Kyum

    2014-07-01

    The assessment of the biological activity of capsaicin, the compound responsible for the spicy flavor of chili pepper, produced controversial results, showing either carcinogenicity or cancer prevention. The innate immune system plays a pivotal role in cancer pathology and prevention; yet, the effect of capsaicin on natural killer (NK) cells, which function in cancer surveillance, is unclear. This study found that capsaicin inhibited NK cell-mediated cytotoxicity and cytokine production (interferon-γ and tumor necrosis factor-α). Capsaicin impaired the cytotoxicity of NK cells, thereby inhibiting lysis of standard target cells and gastric cancer cells by modulating calcium mobilization in NK cells. Capsaicin also induced apoptosis in gastric cancer cells, but that effect required higher concentrations and longer exposure times than those required to trigger NK cell dysfunction. Furthermore, capsaicin inhibited the cytotoxicity of isolated NK cells and of an NK cell line, suggesting a direct effect on NK cells. Antagonists of transient receptor potential vanilloid subfamily member 1 (TRPV1), a cognate capsaicin receptor, or deficiency in TRPV1 expression failed to prevent the defects induced by capsaicin in NK cells expressing functional TRPV1. Thus, the mechanism of action of capsaicin on NK cells is largely independent of TRPV1. Taken together, capsaicin may have chemotherapeutic potential but may impair NK cell function, which plays a central role in tumor surveillance. PMID:24743513

  4. Peripheral natural killer cell maturation depends on the transcription factor Aiolos.

    PubMed

    Holmes, Melissa L; Huntington, Nicholas D; Thong, Rebecca P L; Brady, Jason; Hayakawa, Yoshihiro; Andoniou, Christopher E; Fleming, Peter; Shi, Wei; Smyth, Gordon K; Degli-Esposti, Mariapia A; Belz, Gabrielle T; Kallies, Axel; Carotta, Sebastian; Smyth, Mark J; Nutt, Stephen L

    2014-11-18

    Natural killer (NK) cells are an innate lymphoid cell lineage characterized by their capacity to provide rapid effector functions, including cytokine production and cytotoxicity. Here, we identify the Ikaros family member, Aiolos, as a regulator of NK-cell maturation. Aiolos expression is initiated at the point of lineage commitment and maintained throughout NK-cell ontogeny. Analysis of cell surface markers representative of distinct stages of peripheral NK-cell maturation revealed that Aiolos was required for the maturation in the spleen of CD11b(high)CD27(-) NK cells. The differentiation block was intrinsic to the NK-cell lineage and resembled that found in mice lacking either T-bet or Blimp1; however, genetic analysis revealed that Aiolos acted independently of all other known regulators of NK-cell differentiation. NK cells lacking Aiolos were strongly hyper-reactive to a variety of NK-cell-mediated tumor models, yet impaired in controlling viral infection, suggesting a regulatory function for CD27(-) NK cells in balancing these two arms of the immune response. These data place Aiolos in the emerging gene regulatory network controlling NK-cell maturation and function.

  5. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency

    PubMed Central

    Gineau, Laure; Cognet, Céline; Kara, Nihan; Lach, Francis Peter; Dunne, Jean; Veturi, Uma; Picard, Capucine; Trouillet, Céline; Eidenschenk, Céline; Aoufouchi, Said; Alcaïs, Alexandre; Smith, Owen; Geissmann, Frédéric; Feighery, Conleth; Abel, Laurent; Smogorzewska, Agata; Stillman, Bruce; Vivier, Eric; Casanova, Jean-Laurent; Jouanguy, Emmanuelle

    2012-01-01

    Natural killer (NK) cells are circulating cytotoxic lymphocytes that exert potent and nonredundant antiviral activity and antitumoral activity in the mouse; however, their function in host defense in humans remains unclear. Here, we investigated 6 related patients with autosomal recessive growth retardation, adrenal insufficiency, and a selective NK cell deficiency characterized by a lack of the CD56dim NK subset. Using linkage analysis and fine mapping, we identified the disease-causing gene, MCM4, which encodes a component of the MCM2-7 helicase complex required for DNA replication. A splice-site mutation in the patients produced a frameshift, but the mutation was hypomorphic due to the creation of two new translation initiation methionine codons downstream of the premature termination codon. The patients’ fibroblasts exhibited genomic instability, which was rescued by expression of WT MCM4. These data indicate that the patients’ growth retardation and adrenal insufficiency likely reflect the ubiquitous but heterogeneous impact of the MCM4 mutation in various tissues. In addition, the specific loss of the NK CD56dim subset in patients was associated with a lower rate of NK CD56bright cell proliferation, and the maturation of NK CD56bright cells toward an NK CD56dim phenotype was tightly dependent on MCM4-dependent cell division. Thus, partial MCM4 deficiency results in a genetic syndrome of growth retardation with adrenal insufficiency and selective NK deficiency. PMID:22354167

  6. Improving the outcome of leukemia by natural killer cell-based immunotherapeutic strategies.

    PubMed

    Chouaib, Salem; Pittari, Gianfranco; Nanbakhsh, Arash; El Ayoubi, Hanadi; Amsellem, Sophie; Bourhis, Jean-Henri; Spanholtz, Jan

    2014-01-01

    Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells are widely recognized as potent anti-leukemia mediators. Alloreactive donor NK cells have been shown to improve the outcome of allogeneic stem-cell transplantation for leukemia. In addition, in vivo transfer of NK cells may soon reveal an important therapeutic tool for leukemia, if tolerance to NK-mediated anti-leukemia effects is overcome. This will require, at a minimum, the ex vivo generation of a clinically safe NK cell product containing adequate numbers of NK cells with robust anti-leukemia potential. Ideally, ex vivo generated NK cells should also have similar anti-leukemia potential in different patients, and be easy to obtain for convenient clinical scale-up. Moreover, optimal clinical protocols for NK therapy in leukemia and other cancers are still lacking. These and other issues are being currently addressed by multiple research groups. This review will first describe current laboratory NK cell expansion and differentiation techniques by separately addressing different NK cell sources. Subsequently, it will address the mechanisms known to be responsible for NK cell alloreactivity, as well as their clinical impact in the hematopoietic stem cells transplantation setting. Finally, it will briefly provide insight on past NK-based clinical trials. PMID:24672522

  7. INCREASES IN CYTOSOLIC CALCIUM ION LEVELS IN HUMAN NATURAL KILLER CELLS IN RESPONSE TO BUTYLTIN EXPOSURE

    PubMed Central

    Lane, Rhonda; Ghazi, Sabah O.; Whalen, Margaret M.

    2009-01-01

    This study investigated whether exposures to butyltins (BTs), tributylin (TBT) and dibutyltin (DBT) were able to alter cytosolic calcium levels in human natural killer (NK) cells. Additionally, the effects of cytosolic calcium ion increases on the activation state of mitogen activated protein kinases (MAPKs) in NK cells were also investigated. NK cells are an intital immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). TBT has also been shown to activate MAPKs in NK cells. The results of this study indicated that TBT increased cytosolic calcium levels by as much as 100% after a 60 min exposure to 500 nM TBT while DBT increased cytosolic calcium levels to a much smaller extent (and required higher concentrations). The results also indicated that increases in cytosolic calcium could activate MAPKs but only for a short period of time (5 min), while previous studies showed that activation of MAPKs by TBT last for at least 6 hours. Thus, it appears that TBT stimulated increases in cytosolic calcium may contribute to, but are not fully responsible for, TBT-induced activation of MAPKs. PMID:19365649

  8. Modulation of natural killer cytotoxicity by muramyl dipeptide and trehalose dimycolate incorporated in squalane droplets.

    PubMed

    Masihi, K N; Lange, W; Rohde-Schulz, B

    1987-01-01

    The effect on natural killer (NK) cytotoxicity of splenic cells from BALB/c mice pretreated i.v. with squalane-in-water preparations of muramyl dipeptide (MDP), trehalose dimycolate (TDM), or the combination of MDP-plus-TDM was investigated. MDP or TDM augmented the NK cytotoxicity which peaked 48 h after the pretreatment whereas the combination of MDP and TDM induced an inhibition of the NK activity. Infection with influenza virus, a potent stimulator of NK cells, after the pretreatment with biological response modifiers resulted in a markedly enhanced NK activity on day 2 in MDP and control groups. Mice pretreated with TDM or the combination of MDP and TDM showed only moderate NK activity which peaked on day 3 after influenza infection. The NK activity was susceptible to asialo GM1 and complement treatment. The cytotoxicity of MDP-plus-TDM cells could be significantly enhanced after treatment with anti-macrophage monoclonal antibody and complement. NK activity induced by MDP or TDM was reduced by mixing MDP-plus-TDM cells. Addition of adherent cell-depleted MDP-plus-TDM suspension to MDP or TDM cells had a NK restorative effect. Splenic cells from mice pretreated 2 days earlier with MDP or TDM, but not MDP-plus-TDM, generated enhanced levels of luminol-dependent chemiluminescence.

  9. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells.

    PubMed

    Chauveau, Anne; Aucher, Anne; Eissmann, Philipp; Vivier, Eric; Davis, Daniel M

    2010-03-23

    Membrane nanotubes are membranous tethers that physically link cell bodies over long distances. Here, we present evidence that nanotubes allow human natural killer (NK) cells to interact functionally with target cells over long distances. Nanotubes were formed when NK cells contacted target cells and moved apart. The frequency of nanotube formation was dependent on the number of receptor/ligand interactions and increased on NK cell activation. Most importantly, NK cell nanotubes contained a submicron scale junction where proteins accumulated, including DAP10, the signaling adaptor that associates with the activating receptor NKG2D, and MHC class I chain-related protein A (MICA), a cognate ligand for NKG2D, as occurs at close intercellular synapses between NK cells and target cells. Quantitative live-cell fluorescence imaging suggested that MICA accumulated at small nanotube synapses in sufficient numbers to trigger cell activation. In addition, tyrosine-phosphorylated proteins and Vav-1 accumulated at such junctions. Functionally, nanotubes could aid the lysis of distant target cells either directly or by moving target cells along the nanotube path into close contact for lysis via a conventional immune synapse. Target cells moving along the nanotube path were commonly polarized such that their uropods faced the direction of movement. This is the opposite polarization than for normal cell migration, implying that nanotubes can specifically drive target cell movement. Finally, target cells that remained connected to an NK cell by a nanotube were frequently lysed, whereas removing the nanotube using a micromanipulator reduced lysis of these target cells.

  10. Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells.

    PubMed

    Rydyznski, Carolyn; Daniels, Keith A; Karmele, Erik P; Brooks, Taylor R; Mahl, Sarah E; Moran, Michael T; Li, Caimei; Sutiwisesak, Rujapak; Welsh, Raymond M; Waggoner, Stephen N

    2015-02-27

    The goal of most vaccines is the induction of long-lived memory T and B cells capable of protecting the host from infection by cytotoxic mechanisms, cytokines and high-affinity antibodies. However, efforts to develop vaccines against major human pathogens such as HIV and HCV have not been successful, thereby highlighting the need for novel approaches to circumvent immunoregulatory mechanisms that limit the induction of protective immunity. Here, we show that mouse natural killer (NK) cells inhibit generation of long-lived virus-specific memory T- and B cells as well as virus-specific antibody production after acute infection. Mechanistically, NK cells suppressed CD4 T cells and follicular helper T cells (T(FH)) in a perforin-dependent manner during the first few days of infection, resulting in a weaker germinal centre (GC) response and diminished immune memory. We anticipate that innovative strategies to relieve NK cell-mediated suppression of immunity should facilitate development of efficacious new vaccines targeting difficult-to-prevent infections.

  11. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    PubMed

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance.

  12. mTORC1-dependent metabolic reprogramming is a prerequisite for Natural Killer cell effector function

    PubMed Central

    Donnelly, Raymond P.; Loftus, Róisín M.; Keating, Sinéad E.; Liou, Kevin T.; Biron, Christine A.; Gardiner, Clair M.; Finlay, David K.

    2014-01-01

    The mammalian target of rapamcyin complex 1 (mTORC1) is a key regulator of cellular metabolism and also has fundamental roles in controlling immune responses. Emerging evidence suggests that these two functions of mTORC1 are integrally linked. However, little is known regarding mTORC1 function in controlling the metabolism and function of natural killer (NK) cells, lymphocytes that play key roles in anti-viral and anti-tumour immunity. This study investigated the hypothesis that mTORC1-controlled metabolism underpins normal NK cell pro-inflammatory function. We demonstrate that mTORC1 is robustly stimulated in NK cells activated in vivo and in vitro. This mTORC1 activity is required for the production of the key NK cell effector molecules IFNγ, important in delivering antimicrobial and immunoregulatory functions, and granzyme B, a critical component of NK cell cytotoxic granules. The data reveal that NK cells undergo dramatic metabolic reprogramming upon activation, up-regulating rates of glucose uptake and glycolysis, and that mTORC1 activity is essential for attaining this elevated glycolytic state. Directly limiting the rate of glycolysis is sufficient to inhibit IFNγ production and granzyme B expression. This study provides the highly novel insight that mTORC1-mediated metabolic reprogramming of NK cells is a prerequisite for the acquisition of normal effector functions. PMID:25261477

  13. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis

    PubMed Central

    Jeung, InCheul; Cheon, Keunyoung; Kim, Mee-Ran

    2016-01-01

    Endometriosis causes significant chronic pelvic pain, dysmenorrhea, and infertility and affects 10% of all women. In endometriosis, ectopic endometrium surviving after retrograde menstruation exhibits an abnormal immune response characterized by increased levels of activated macrophages and inflammatory cytokines. Particularly, dysfunctional natural killer (NK) cells play an important role in the pathogenesis of the disease by either facilitating or inhibiting the survival, implantation, and proliferation of endometrial cells. NK cells in the peritoneum and peritoneal fluid exhibit reduced levels of cytotoxicity in women with endometriosis. Several cytokines and inhibitory factors in the serum and peritoneal fluid also dysregulate NK cell cytotoxicity. Additionally, increased numbers of immature peripheral NK cells and induction of NK cell apoptosis are evident in the peritoneal fluid of women with endometriosis. The high rate of endometriosis recurrence after pharmaceutical or surgical treatment, which is associated with dysfunctional NK cells, indicates that new immunomodulatory management strategies are required. A good understanding of immune dysfunction would enable improvement of current treatments for endometriosis. PMID:27294113

  14. Characterization of Natural Killer Cells and Cytokines in Maternal Placenta and Fetus of Diabetic Mothers

    PubMed Central

    Hara, Cristiane de Castro Pernet; França, Eduardo Luzía; Fagundes, Danny Laura Gomes; de Queiroz, Adriele Ataides; Rudge, Marilza Vieira Cunha; Honorio-França, Adenilda Cristina; Calderon, Iracema de Mattos Paranhos

    2016-01-01

    The present study characterized natural killer cells and cytokines in diabetic mothers, their placenta, and fetus. In the maternal blood from the hyperglycemic groups, the CD16+CD56− NK cells increased, whereas that of CD16+CD56+ decreased in gestational diabetes mellitus [GDM] group. Cord blood from type 2 diabetes [DM-2] showed a higher proportion of CD16+CD56− and CD16−CD56+. The placental extravillous layer of GDM and DM-2 showed an increase of CD16+CD56− cells and, irrespective of region, the proportion of CD16−CD56+ cells was higher in mild gestational hyperglycemia [MGH] and GDM and lower in DM-2. IL-2 was lower in maternal blood and IFN-γ higher in maternal and cord blood from the GDM group. IL-17 was higher in maternal and cord blood from the DM-2 group. The placental extravillous layer of the MGH showed high levels of IL-4, IL-6, IL-10, IL-17, and IFN-γ and low levels of IL-1β and IL-8, whereas the placental villous layer contained high levels of IL-17 and IFN-γ. The GDM group, irrespective of region, showed higher levels of IL-8. The DM-2 group, irrespective of region, placenta showed high levels of TNF-α, IL-17, and IFN-γ. The hyperglycemia produces an inflammatory environment with a high content of inflammatory cytokines and cells expressing CD16+. PMID:27294162

  15. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation.

    PubMed Central

    Dinges, D F; Douglas, S D; Zaugg, L; Campbell, D E; McMann, J M; Whitehouse, W G; Orne, E C; Kapoor, S C; Icaza, E; Orne, M T

    1994-01-01

    The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep. PMID:7910171

  16. Role of natural killer cells in innate protection against lethal ebola virus infection.

    PubMed

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  17. Cellular redox status influences both cytotoxic and NF-kappa B activation in natural killer cells.

    PubMed Central

    Valle Blázquez, M; Luque, I; Collantes, E; Aranda, E; Solana, R; Peña, J; Muñoz, E

    1997-01-01

    The role of cellular redox status in both cytotoxic activity and NF-kappa B activation in natural killer (NK) cells was investigated. The results indicate that stimulation of NK cells, either freshly isolated from peripheral blood lymphocytes (PBL) or long-term cultured NK clones, with specific cell targets results in an increased binding activity of NF-kappa B and AP-1 transcription factors measured by gel retardation. Pretreatment of NK cells with the antioxidant pyrrolidine dithiocarbarmate (PDTC) leads to the inhibition of NF-kappa B activation but the AP-1 binding to DNA was superinduced. The inhibition of NF-kappa B by PDTC paralleled with an inhibition of spontaneous cytotoxicity mediated by NK cells. Moreover, the inhibitors of serine proteases, N-alpha-tosyl-L-lysine chloromethyl ketone and N-alpha-tosyl-L-phenylalanine chloromethyl ketone, also blocked the cytolytic activity of NK cells against the sensitive target K562. In contrast, NK activity was not affected by pretreatment of the effector cells with the proteasome inhibitor N-acetyl-leu-leu-norleucinal which selectively inhibits NF-kappa B activation. Altogether, these results support the hypothesis that the activation of NK cells involved transcriptional and post-transcriptional events, and that reactive intermediates may play an important role in the molecular processes related with the generation of a cytotoxic response by NK cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9155655

  18. Natural killer cells and HLA-G expression in the basal decidua of human placenta adhesiva.

    PubMed

    van Beekhuizen, H J; Joosten, I; Lotgering, F K; Bulten, J; van Kempen, L C

    2010-12-01

    Retained placenta is caused by abnormal adherence of the placenta to the uterine wall, leading to delayed expulsion of the placenta and causing postpartum haemorrhage. The mildest form of retained placenta is the placenta adhesiva (PA), of which the cause is unknown. The aim of our study was to explore possible differences in immune response in the basal decidua between PA and control placentas (CP). We performed a descriptive analysis of immunohistochemical differences in 17 PA and 10 CP. Our results show that in PA the amount of uterine natural killer (uNK) cells is significantly reduced (0.2 uNK cell/standardised area) as compared to CP (9.8 uNK cell/standardised area, p < 0.001) whereas the number of trophoblast cells and the expression of HLA-G by trophoblast are similar in the decidua of PA and CP. We speculate that adequate numbers of uNK cells in the basal decidua are needed for normal expulsion of the placenta.

  19. Natural Killer Cells and Liver Transplantation: Orchestrators of Rejection or Tolerance?

    PubMed

    Harmon, C; Sanchez-Fueyo, A; O'Farrelly, C; Houlihan, D D

    2016-03-01

    Natural killer (NK) cells are highly heterogeneous innate lymphocytes with a diverse repertoire of phenotypes and functions. Their role in organ transplantation has been poorly defined due to conflicting clinical and experimental data. There is evidence that NK cells can contribute to graft rejection and also to tolerance induction. In most solid organ transplantation settings, the role of NK cells is only considered from the perspective of the recipient immune system. In contrast to other organs, the liver contains major resident populations of immune cells, particularly enriched with innate lymphocytes such as NK cells, NKT cells, and gamma-delta T cells. Liver transplantation therefore results in a unique meeting of donor and recipient immune systems. The unusual immune repertoire and tolerogenic environment of the liver may explain why this potentially inflammatory "meeting" often results in attenuated immune responses and reduced requirement for immunosuppression. Recent trials of immunosuppression withdrawal in liver transplant patients have identified NK cell features as possible predictors of tolerance. Here we propose that hepatic NK cells play a key role in the induction of tolerance post-liver transplant and examine potential mechanisms by which these cells influence liver transplant outcome.

  20. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    SciTech Connect

    Li Ang . E-mail: liang3829@sina.com.cn; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-05

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-{alpha}, IFN-{gamma}), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-{kappa}B pathways related with immune response. Our results demonstrated that ATRA suppressed NF-{kappa}B activity and prevented I{kappa}B{alpha} degradation in a dose-dependent way, inhibited IFN-{gamma} production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo.

  1. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma.

    PubMed

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M; Blokland, Nina J G; van Noesel, Max M; Molenaar, Jan J; Heemskerk, Mirjam H M; Boes, Marianne; Nierkens, Stefan

    2015-11-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20-40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses.

  2. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.

    PubMed

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2015-12-01

    In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase. PMID:26468976

  3. Gene Modification of Human Natural Killer Cells Using a Retroviral Vector.

    PubMed

    Kellner, Joshua N; Cruz, Conrad R; Bollard, Catherine M; Yvon, Eric S

    2016-01-01

    As part of the innate immune system, natural killer (NK) cells are regarded as promising effector cells for adoptive cell therapy approaches to treat patients with cancer. In some cases, genetic modification of the NK cells may be considered but such manipulation has to be integrated into the expansion method to allow the generation of clinically relevant numbers of gene-modified NK cells. Therefore, an efficient gene transfer procedure is needed.Our group developed a retrovirus-based transduction protocol capable of robust expansion of gene-modified NK cells with a high rate of transgene expression. Actively dividing cells is a prerequisite for efficient gene transfer when using a retroviral vector. In the procedure presented here, strong activation of the NK cells was provided by a combination of IL-15 and the K-562 feeder cells. Beside the interest in developing a simple procedure compliant with good manufacturing practice (GMP) for the production of therapeutic products, this approach also provides a valuable means of generating genetically modified primary NK cells for future preclinical studies. PMID:27177668

  4. Intravital Imaging – Dynamic Insights into Natural Killer T Cell Biology

    PubMed Central

    Liew, Pei Xiong; Kubes, Paul

    2015-01-01

    Natural killer T (NKT) cells were first recognized more than two decades ago as a separate and distinct lymphocyte lineage that modulates an expansive range of immune responses. As innate immune cells, NKT cells are activated early during inflammation and infection, and can subsequently stimulate or suppress the ensuing immune response. As a result, researchers hope to harness the immunomodulatory properties of NKT cells to treat a variety of diseases. However, many questions still remain unanswered regarding the biology of NKT cells, including how these cells traffic from the thymus to peripheral organs and how they play such contrasting roles in different immune responses and diseases. In this new era of intravital fluorescence microscopy, we are now able to employ this powerful tool to provide quantitative and dynamic insights into NKT cell biology including cellular dynamics, patrolling, and immunoregulatory functions with exquisite resolution. This review will highlight and discuss recent studies that use intravital imaging to understand the spectrum of NKT cell behavior in a variety of animal models. PMID:26042123

  5. Reduced number of peripheral natural killer cells in schizophrenia but not in bipolar disorder.

    PubMed

    Karpiński, Paweł; Frydecka, Dorota; Sąsiadek, Maria M; Misiak, Błażej

    2016-05-01

    Overwhelming evidence indicates that subthreshold inflammatory state might be implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BPD). It has been reported that both groups of patients might be characterized by abnormal lymphocyte counts. However, little is known about alterations in lymphocyte proportions that may differentiate SCZ and BPD patients. Therefore, in this study we investigated blood cell proportions quantified by means of microarray expression deconvolution using publicly available data from SCZ and BPD patients. We found significantly lower counts of natural killer (NK) cells in drug-naïve and medicated SCZ patients compared to healthy controls across all datasets. In one dataset from SCZ patients, there were no significant differences in the number of NK cells between acutely relapsed and remitted SCZ patients. No significant difference in the number of NK cells between BPD patients and healthy controls was observed in all datasets. Our results indicate that SCZ patients, but not BPD patients, might be characterized by reduced counts of NK cells. Future studies looking at lymphocyte counts in SCZ should combine the analysis of data obtained using computational deconvolution and flow cytometry techniques.

  6. Low natural-killer-cell activity in familial melanoma patients and their relatives.

    PubMed

    Hersey, P; Edwards, A; Honeyman, M; McCarthy, W H

    1979-07-01

    Patients with melanoma who had one or more close relatives with melanoma were studied for their natural-killer-cell (NK) activity against cultured melanoma cells and Chang cells. A high proportion of the patients and their relatives were found to have low NK activity against these target cells. In most of the patients this could not be attributed to general depression of their immune function, since B- and T-cell numbers and the mitogenic response to PHA were within normal limits. The levels of NK activity of the patients and their relatives were found to be significantly correlated, suggesting that the NK activity in these families may have been genetically (or environmentally) determined. Several genetic markers were examined in the patients and their relatives for association with the disease state and NK activity. No association with HLA antigens or ABO blood groups was detected, but there was a low incidence of the Rhesus negative phenotype in the patients (the Rh phenotype had previously been associated with high NK activity). The present results indicate that NK activity has a familial association in families with a high incidence of melanoma, and raise the question whether low NK activity may be one of the predisposing factors in the development of familial melanoma.

  7. Low Dose Focused Ultrasound Induces Enhanced Tumor Accumulation of Natural Killer Cells

    PubMed Central

    Sta Maria, Naomi S.; Barnes, Samuel R.; Weist, Michael R.; Colcher, David; Raubitschek, Andrew A.; Jacobs, Russell E.

    2015-01-01

    Natural killer (NK) cells play a vital antitumor role as part of the innate immune system. Efficacy of adoptive transfer of NK cells depends on their ability to recognize and target tumors. We investigated whether low dose focused ultrasound with microbubbles (ldbFUS) could facilitate the targeting and accumulation of NK cells in a mouse xenograft of human colorectal adenocarcinoma (carcinoembryonic antigen (CEA)-expressing LS-174T implanted in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice) in the presence of an anti-CEA immunocytokine (ICK), hT84.66/M5A-IL-2 (M5A-IL-2). Human NK cells were labeled with an FDA-approved ultra-small superparamagnetic iron oxide particle, ferumoxytol. Simultaneous with the intravenous injection of microbubbles, focused ultrasound was applied to the tumor. In vivo longitudinal magnetic resonance imaging (MRI) identified enhanced accumulation of NK cells in the ensonified tumor, which was validated by endpoint histology. Significant accumulation of NK cells was observed up to 24 hrs at the tumor site when ensonified with 0.50 MPa peak acoustic pressure ldbFUS, whereas tumors treated with at 0.25 MPa showed no detectable NK cell accumulation. These clinically translatable results show that ldbFUS of the tumor mass can potentiate tumor homing of NK cells that can be evaluated non-invasively using MRI. PMID:26556731

  8. Natural killer T cells in adipose tissue are activated in lean mice.

    PubMed

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or high-fat diets. NKT cells comprised a larger portion of lymphocytes in adipose tissues compared with the spleen and peripheral blood, with epididymal adipose tissue having the highest number of NKT cells. Furthermore, some NKT cells in adipose tissues expressed higher levels of CD69 and intracellular interferon-γ, whereas the Vβ repertoires of NKT cells in adipose tissues were similar to other cells. In obese mice fed a high-fat diet, adipose tissue inflammation had little effect on the Vβ repertoire of NKT cells in epididymal adipose tissues. We speculate that the NKT cells in adipose tissues may form an equivalent subset in other tissues and that these subsets are likely to participate in adipose tissue inflammation. Additionally, the high expression level of CD69 and intracellular IFN-γ raises the possibility that NKT cells in adipose tissue may be stimulated by some physiological mechanism.

  9. Modulation of invariant natural killer T cell cytokine responses by indoleamine 2,3-dioxygenase

    PubMed Central

    Molano, Alberto; Illarionov, Petr A.; Besra, Gurdyal S.; Putterman, Chaim; Porcelli, Steven A.

    2008-01-01

    1. SUMMARY The intracellular enzyme indoleamine 2,3-dioxygenase (IDO), which degrades the rare and essential aminoacid tryptophan and converts it into a series of biologically active catabolites, has been linked to the regulation of immune tolerance by specific dendritic cell subsets, and to the downmodulation of exacerbated immune responses. Although the immunoregulatory effects of IDO may be in part due to generalized suppression of cell proliferation caused by tryptophan starvation, there is also evidence that tryptophan catabolites could be directly responsible for some of the observed effects. In this report, we investigated the consequences of IDO activity, particularly with regard to the effects of tryptophan-derived catabolites, on the cytokine responses of activated invariant natural killer T (iNKT) cells, a specialized T cell subset known to have immunoregulatory properties. Our results showed that pharmacologic inhibition of IDO skewed cytokine responses of iNKT cells towards a Th1 profile. In contrast, the presence at low micromolar concentrations of the tryptophan catabolites L-kynurenine, 3-hydroxy-kynurenine, or 3-hydroxy-anthranilic acid shifted the cytokine balance towards a Th2 pattern. These findings have implications for our current understanding of immunoregulation, and the mechanisms by which iNKT cells participate in the modulation of immune responses. PMID:18272236

  10. Therapeutic Potential and Challenges of Natural Killer Cells in Treatment of Solid Tumors

    PubMed Central

    Gras Navarro, Andrea; Björklund, Andreas T.; Chekenya, Martha

    2015-01-01

    Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach. PMID:25972872

  11. Target cell lysis by natural killer cells is influenced by beta 2-microglobulin expression.

    PubMed

    Müllbacher, A; King, N J

    1989-07-01

    Natural killer (NK) cells form part of the vertebrate defence against viruses and tumours, but show only limited specificity. The molecule(s) recognized by NK cells on target cells are at present unknown. Major histocompatibility complex (MHC) class I antigen concentration on target cells is inversely correlated with NK cell lysis. Here we show that MHC class I-unassociated beta 2-microglobulin (beta 2-m) expression is involved in NK cell-target cell interaction. Two human MHC class I negative cell lines, Daudi and K562, are differentially susceptible to NK cell lysis. Daudi cells are beta 2-m-negative and resistant to NK lysis, K562 are beta 2-m-positive and highly susceptible to lysis by NK cells. Interferon (IFN) treatment augments beta 2-m expression and NK lysis of K562, but not in Daudi cells. NK cell lysis of K562, but not YAC-1 cells, can be inhibited by monoclonal anti-human beta 2-m antibody. Furthermore, susceptibility of mouse embryo fibroblasts (MEF) to NK lysis can be increased by infection with recombinant vaccinia virus expressing the human beta 2-m gene.

  12. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis

    PubMed Central

    Rodríguez-Martín, E; Picón, C; Costa-Frossard, L; Alenda, R; Sainz de la Maza, S; Roldán, E; Espiño, M; Villar, L M; Álvarez-Cermeño, J C

    2015-01-01

    Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56bright/CD56dim) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56bright and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease. PMID:25565222

  13. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis.

    PubMed

    Rodríguez-Martín, E; Picón, C; Costa-Frossard, L; Alenda, R; Sainz de la Maza, S; Roldán, E; Espiño, M; Villar, L M; Álvarez-Cermeño, J C

    2015-05-01

    Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56(bright) /CD56(dim) ) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56(bright) and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease. PMID:25565222

  14. Proteomic investigation of natural killer cell microsomes using gas-phase fractionation by mass spectrometry.

    PubMed

    Blonder, Josip; Rodriguez-Galan, Maria Cecilia; Lucas, David A; Young, Howard A; Issaq, Haleem J; Veenstra, Timothy D; Conrads, Thomas P

    2004-04-01

    We have explored the utility of gas-phase fractionation by mass spectrometry (MS) in the mass-to-charge (m/z) dimension (GPF(m/z)) for increasing the effective number of protein identifications in cases where sample quantity limits the use of multi-dimensional chromatographic fractionation. A peptide digestate from proteins isolated from the membrane fraction of natural killer (NK) cells was analyzed by microcapillary reversed-phase liquid chromatography coupled online to an ion-trap (IT) mass spectrometer. Performing GPF(m/z) using eight narrow precursor ion scan m/z ranges enabled the identification of 340 NK cell proteins from 12 microg of digestate, representing more than a fivefold increase in the number of proteins identified as compared to the same experiment employing a standard precursor ion survey scan m/z range (i.e., m/z 400-2000). The results show that GPF(m/z) represents an effective technique for increasing protein identifications in global proteomic investigations especially when sample quantity is limited.

  15. Porphyromonas gingivalis Lipopolysaccharide Induced Proliferation and Activation of Natural Killer Cells in Vivo.

    PubMed

    Wang, Yuhua; Zhang, Wei; Xu, Li; Jin, Jun-O

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) promoted different innate immune activation than that promoted by Escherichia coli (E. coli) LPS. In this study, we examined the effect of P. gingivalis LPS on the proliferation and activation of natural killer (NK) cells in vivo and compared that function with that of E. coli LPS. Administration of P. gingivalis LPS to C57BL/6 mice induced stronger proliferation of NK cells in the spleen and submandibular lymph nodes (sLNs) and increased the number of circulating NK cells in blood compared to those treated with E. coli LPS. However, P. gingivalis LPS did not induce interferon-gamma (IFN-γ) production and CD69 expression in the spleen and sLN NK cells in vivo, and this was attributed to the minimal activation of the spleen and sLN dendritic cells (DCs), including low levels of co-stimulatory molecule expression and pro-inflammatory cytokine production. Furthermore, P. gingivalis LPS-treated NK cells showed less cytotoxic activity against Yac-1 target cells than E. coli LPS-treated NK cells. Hence, these data demonstrated that P. gingivalis LPS promoted limited activation of spleen and sLN NK cells in vivo, and this may play a role in the chronic inflammatory state observed in periodontal disease. PMID:27548133

  16. Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus.

    PubMed

    Sturgill, Elizabeth R; Malouli, Daniel; Hansen, Scott G; Burwitz, Benjamin J; Seo, Seongkyung; Schneider, Christine L; Womack, Jennie L; Verweij, Marieke C; Ventura, Abigail B; Bhusari, Amruta; Jeffries, Krystal M; Legasse, Alfred W; Axthelm, Michael K; Hudson, Amy W; Sacha, Jonah B; Picker, Louis J; Früh, Klaus

    2016-08-01

    The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection. PMID:27580123

  17. beta. -endorphin augments the cytolytic activity and interferon production of natural killer cells

    SciTech Connect

    Mandler, R.N.; Biddison, W.E.; Mandler, R.; Serrate, S.A.

    1986-02-01

    The in vitro effects of the neurohormone ..beta..-endorphin (b-end) on natural killer (NK) activity and interferon (IFN) production mediated by large granular lymphocytes (LGL) were investigated. LGL-enriched fractions from peripheral blood mononuclear cells (PBMC) from normal human volunteers were obtained by fractionation over discontinuous Percoll gradients. LGL were preincubated with or without various concentrations of b-end or the closely related peptides ..cap alpha..-endorphin (a-end), ..gamma..-endorphin (g-end), or D-ALA/sub 2/-..beta..-endorphin (D-ALA/sub 2/-b-end), a synthetic b-end analogue. NK activity was assayed on /sup 51/Cr-labeled K562 target cells. Preincubation of LGL effectors (but not K562 targets) for 2 to 18 hr with concentrations of b-end between 10/sup -7/ M and 10/sup -10/ M produced significant augmentation of NK cytolytic activity (mean percentage increase: 63%). The classic opiate antagonist naloxone blocked the enhancing effect when used at a 100-fold molar excess relative to b-end. These findings demonstrate that b-end enhances NK activity and IFN production of purified LGL, and suggests that b-end might bind to an opioid receptor on LGL that can be blocked by naloxone. These results lend support to the concepts of regulation of the immune response by neurohormones and the functional relationship between the nervous and immune systems.

  18. The proinflammatory cytokine interleukin-18 alters multiple signaling pathways to inhibit natural killer cell death

    USGS Publications Warehouse

    Hodge, D.L.; Subleski, J.J.; Reynolds, D.A.; Buschman, M.D.; Schill, W.B.; Burkett, M.W.; Malyguine, A.M.; Young, H.A.

    2006-01-01

    The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-?? (IFN-??) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors. ?? Mary Ann Liebert, Inc.

  19. Cystatin F regulates proteinase activity in IL-2-activated natural killer cells.

    PubMed

    Maher, Katarina; Konjar, Spela; Watts, Colin; Turk, Boris; Kopitar-Jerala, Natasa

    2014-01-01

    Cystatin F is a unique member of the cystatin family of cysteine protease inhibitors, which is synthesized as an inactive dimer and it is activated by N-terminal cleavage in the endolysosomes. It is expressed in the cells of the immune system: myeloid cells and the cells involved in target cell killing: natural killer (NK) cells and cytotoxic T cells (CTLs). Upon activation of the NK cells with interleukin 2 (IL-2), cystatin F was found upregulated and co-localized in cytotoxic granules with cathepsin C (CatC) and CatV. However, cystatin F inhibits the CatC in cells only when its N-terminal part is processed. Although cystatin F could inhibit both CatV and CatC, the IL-2 stimulation of the YT cells resulted in an increased CatV activity, while the CatC activity was unchanged. The incubation of IL-2 activated NK cells with a cysteine proteinase inhibitor E-64d increased the cystatin F dimer formation. Our results suggest that cystatin F not only inhibits CatV, but it is processed by the CatV in order to inhibit the CatC activity in cytotoxic granules. The regulation of the CatC activity in the cytotoxic granules of the NK cells by the cystatin F could be important for the processing and activation of granule-associated serine proteases - granzymes.

  20. Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281

  1. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment

    PubMed Central

    Joncker, Nathalie T.; Shifrin, Nataliya; Delebecque, Frédéric

    2010-01-01

    Some mature natural killer (NK) cells cannot be inhibited by major histocompatibility complex (MHC) I molecules, either because they lack corresponding inhibitory receptors or because the host lacks the corresponding MHC I ligands for the receptors. Such NK cells nevertheless remain self-tolerant and exhibit a generalized hyporesponsiveness to stimulation through activating receptors. To address whether NK cell responsiveness is set only during the NK cell differentiation process, we transferred mature NK cells from wild-type (WT) to MHC I–deficient hosts or vice versa. Remarkably, mature responsive NK cells from WT mice became hyporesponsive after transfer to MHC I–deficient mice, whereas mature hyporesponsive NK cells from MHC I–deficient mice became responsive after transfer to WT mice. Altered responsiveness was evident among mature NK cells that had not divided in the recipient animals, indicating that the cells were mature before transfer and that alterations in activity did not require cell division. Furthermore, the percentages of NK cells expressing KLRG1, CD11b, CD27, and Ly49 receptors specific for H-2b were not markedly altered after transfer. Thus, the functional activity of mature NK cells can be reset when the cells are exposed to a changed MHC environment. These findings have important implications for how NK cell functions may be curtailed or enhanced in the context of disease. PMID:20819928

  2. An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen.

    PubMed

    Govindarajan, Srinath; Elewaut, Dirk; Drennan, Michael

    2015-01-01

    The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells. Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5(+)) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5(+) fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 10(8) iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice. PMID:26555769

  3. Acute stress reduces intraparenchymal lung natural killer cells via beta-adrenergic stimulation

    PubMed Central

    Kanemi, O; Zhang, X; Sakamoto, Y; Ebina, M; Nagatomi, R

    2005-01-01

    There are lines of evidence that natural killer (NK) cells are sensitive to physical and psychological stress. Alterations in the immune system including NK cells are known to differ among tissues and organs. The effect of stress on the lung immune system, however, has not been well documented in spite of the fact that the lungs always confront viral or bacterial attacks as well as tumour cell metastasis. In this study, we intended to investigate the effect of restraint stress on lung lymphocytes including NK cells. C57BL/6 mice were exposed to 2 h restraint stress. The concentration of plasma epinephrine significantly rose immediately after the release from restraint as compared to home-cage control mice. Flow cytometric analysis revealed that the numbers of most lymphocyte subsets including NK cells were decreased in the lungs and blood but not in the spleen, immediately after restraint stress. Immunohistochemical examination revealed that the number of NK cells was decreased in the intraparenchymal region of the lungs, while the number of alveolar macrophages did not change. The decrease in the number of NK cells in the lungs and blood was reversed by the administration of propranolol, a nonselective beta adrenergic antagonist. Taken together, our findings suggest that acute stress reduces the number of intraparenchymal lung NK cells via activation of beta adrenergic receptors. PMID:15606610

  4. Differentiation of uterine natural killer cells in pregnant SCID (scid/scid) mice.

    PubMed

    Hiyama, Masato; Kusakabe, Ken Takeshi; Kuwahara, Ai; Wakitani, Shoichi; Khan, Hamayun; Kiso, Yasuo

    2011-10-01

    To determine whether functional T- and B-cells can affect differentiation and/or proliferation of uterine natural killer (uNK) cells, their numbers in SCID mice (genotype, C.B.-17/Icr-scid/scid) were compared with those of control mice (genotype, C.B.-17/Icr-+/+) on days 8, 12 and 16 of pregnancy. Using biotinylated-Dolichos biflorus agglutinin (DBA) lectin staining, uNK cells can be readily classified into 4 subtypes, I to IV, from immature to mature types. The number of uNK cells was significantly lower in the decidua basalis of SCID mice than in that of control mice on day 8 of pregnancy. Particularly, the number of uNK cells of immature subtype II was significantly lower in SCID mice than in the control mice. By day 12, however, the uNK cell number in the SCID mice reached the same level as that of the control mice. It is likely that uNK cell differentiation in SCID mice was delayed during the early placentation period due to a lack of functional T and B cells.

  5. Regulation and antimetastatic functions of liver-associated natural killer cells.

    PubMed

    Wiltrout, R H

    2000-04-01

    The liver is a complex organ composed of hepatic parenchymal cells and a variety of non-parenchymal cells that consist of endothelial cells, Kupffer cells, and several subsets of resident lymphocytes, including natural killer (NK), T, and NK1.1+/CD3+ (NK/T) cells. The regulation of these various lymphoid subpopulations and their relative contributions to antiviral, antitumor and pathogenic inflammatory responses in the liver remain topics of much interest. Studies from our laboratory have shown that various immune stimulants and cytokines can augment liver-associated NK activity at least partially through the mobilization of NK cells from the bone marrow to the liver. The mobilization process can be dependent on the induction of interferon (IFN)-gamma and/or tumor necrosis factor-alpha and on very late activation antigen-4/vascular cell adhesion molecule-1 interaction. The induction of IFN-gamma by cytokines such as interleukin (IL)-12 also rapidly triggers the induction of chemokine genes in parenchymal cells that may contribute to the localization of NK and T cells. Both IL-2 and IL-12 trigger changes in the number and functions of liver-associated leukocyte subsets, and induce antimetastatic effects that are likely mediated through several direct and indirect mechanisms. The overall goal of these studies is to understand the interactions and functions of liver-associated NK1.1+ cells in the context of innate and adaptive immune responses to neoplasia.

  6. Neuropeptide Y effects on murine natural killer activity: changes with ageing and cAMP involvement.

    PubMed

    De la Fuente, M; Del Río, M; Víctor, V M; Medina, S

    2001-09-15

    Changes in the bidirectional interaction between the nervous and the immune systems have been proposed as a cause of ageing. Neuropeptides, such as neuropeptide Y (NPY), could show different effects on immune function with age. In the present work, we have studied the in vitro action of a wide range of NPY concentrations, i.e. from 10(-13) to 10(-7) M, on natural killer (NK) activity, a function which decreases with age. Spleen, axillary nodes, thymus and peritoneum leukocytes from mice of different ages: young (12+/-2 weeks), adult (24+/-2 weeks), mature (50+/-2 weeks) and old (72+/-2 weeks) were used. Stimulation by NPY of NK activity was observed in adult and mature animals in axillary nodes and thymus, and an inhibition in the spleen from young mice. The specificity of the NPY effect on cytotoxic activity was confirmed using a C-terminal fragment of NPY. Furthermore, cAMP levels in leukocytes were found to be decreased by NPY in adult mice, suggesting an involvement of this messenger system in the NK modulation by this neuropeptide.

  7. Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation

    SciTech Connect

    Lee, Jiwon; Lee, Suk Hyung; Shin, Nara; Jeong, Mira; Kim, Mi Sun; Kim, Mi Jeong; Yoon, Suk Ran; Chung, Jin Woong; Kim, Tae-Don; Choi, Inpyo

    2009-09-04

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappa B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.

  8. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis.

    PubMed

    Rodríguez-Martín, E; Picón, C; Costa-Frossard, L; Alenda, R; Sainz de la Maza, S; Roldán, E; Espiño, M; Villar, L M; Álvarez-Cermeño, J C

    2015-05-01

    Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56(bright) /CD56(dim) ) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56(bright) and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease.

  9. Inhibition of human natural killer cell functional activity by human aspartyl β-hydroxylase.

    PubMed

    Huyan, Ting; Li, Qi; Ye, Lin-Jie; Yang, Hui; Xue, Xiao-Ping; Zhang, Ming-Jie; Huang, Qing-Sheng; Yin, Da-Chuan; Shang, Peng

    2014-12-01

    Natural killer (NK) cells are a key component of the innate immune system and play pivotal roles as inflammatory regulators and in tumor surveillance. Human aspartyl β-hydroxylase (HAAH) is a plasma membrane and endoplasmic reticulum protein with hydroxylation activity, which is over-expressed in many malignant neoplasms and can be detected from the sera of tumor patients. HAAH is involved in regulating tumor cell infiltration and metastasis. Escaping from immune surveillance may help tumor cell infiltration and metastasis. However, the effects of HAAH on tumor immune surveillance have not yet been investigated carefully. The present study investigated the potential use of HAAH as an immune regulator of human NK cells. We assessed the effects of recombinant HAAH (r-HAAH) on primary human NK cell morphology, viability, cytotoxicity, apoptosis, receptors expression and cytokine/cytolytic proteins production. Our results demonstrated that r-HAAH negatively affects NK cell activity in a time and dose-dependent manner. It noticeably reduces the viability of the NK cells by increasing apoptosis and necrosis via caspase signaling pathways. Moreover, r-HAAH reduces the NK cell cytotoxicity by inhibiting surface expression of NKG2D, NKp44 and IFN-γ secretion. These findings suggest that one of the ways by which HAAH actively promotes tumor formation and proliferation is by inhibiting NK cell-surveillance activity.

  10. The natural killer cell serine protease gene Lmet1 maps to mouse chromosome 10

    SciTech Connect

    Thia, K.Y.T.; Smyth, M.J.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.

    1995-01-01

    Cytotoxic lymphocytes play a key role in immune responses against viruses and tumors. Lymphocyte-mediated cytolysis by both cytotoxic T lymphocytes (CTL) and natural killer (NK) cells is often associated with the formation of membrane lesions on target cells caused by exocytosis of cytoplasmic granule serine proteases and a pore-forming protein, perforin. A variety of granzymes have been found to reside within the cytoplasmic granules of cytotoxic lymphocytes, but unlike perforin, isolated serine proteases are not intrinsically lytic. However, a role for serine proteases in cellular cytotoxicity has been supported by the ability of protease inhibitors to completely abrogate lymphocyte cytotoxicity, and the demonstration that serine proteases can initiate DNA fragmentation in target cells transfected or pretreated with a sublytic concentration of perforin. Granzymes cloned in human, mouse, and rat encode four granzyme activities and all are expressed in either T cells, their thymic precursors, and/or NK cells. In particular, a rat granzyme that cleaves after methionine residues, but not phenylalanine residues and its human equivalent, human Met-ase 1, are unique granzymes with restricted expression in CD3-NK cells. 24 refs., 2 figs.

  11. Cloning and sequence analysis of candidate human natural killer-enhancing factor genes

    SciTech Connect

    Shau, H.; Butterfield, L.H.; Chiu, R.; Kim, A.

    1994-12-31

    A cytosol factor from human red blood cells enhances natural killer (NK) activity. This factor, termed NK-enhancing factor (NKEF), is a protein of 44000 M{sub r} consisting of two subunits of equal size linked by disulfide bonds. NKEF is expressed in the NK-sensitive erythroleukemic cell line K562. Using an antibody specific for NKEF as a probe for immunoblot screening, we isolated several clones from a {lambda}gt11 cDNA library of K562. Additional subcloning and sequencing revealed that the candidate NKEF cDNAs fell into one of two categories of closely related but non-identical genes, referred to as NKEF A and B. They are 88% identical in amino acid sequence and 71% identical in nucleotide sequence. Southern blot analysis suggests that there are two to three NKEF family members in the genome. Analysis of predicted amino acid sequences indicates that both NKEF A and B are cytosol proteins with several phosphorylation sites each, but that they have no glycosylation sites. They are significantly homologous to several other proteins from a wide variety of organisms ranging from prokaryotes to mammals, especially with regard to several well-conserved motifs within the amino acid sequences. The biological functions of these proteins in other species are mostly unknown, but some of them were reported to be induced by oxidative stress. Therefore, as well as for immunoregulation of NK activity, NKEF may be important for cells in coping with oxidative insults. 32 refs., 3 figs.

  12. Lymphocyte, monocyte, and natural killer cell reference ranges in postpartal women.

    PubMed

    Gennaro, S; Fehder, W; Gallagher, P; Miller, S; Douglas, S D; Campbell, D E

    1997-03-01

    Normative values for immune-cell subsets in postpartal women, who are recovering from the relative immunosuppression of pregnancy, have not been established. Considerable differences in normative values for subsets of immune cells have been demonstrated based on sociodemographic factors, such as age and race. In order to make accurate clinical decisions about postpartal women, comparisons with normal reference ranges are necessary. Therefore, flow cytometric data for 51 healthy women at 4 months postpartum are presented and changes over the first 4 postpartal months are documented. The levels of some lymphocyte cell subsets, such as CD4+/CD45RA+ and Ia on lymphocytes, remained stable over time. The levels of other lymphocyte cell subsets, such as CD4+/CD29+, increased over the first 4 postpartal months, while those of other cell subsets, such as CD8 and CD11b, increased between delivery and 2 months postpartum and then dropped again by the fourth postpartal month. The levels of two natural killer cell subsets (CD3-/CD16+ and CD3-/CD57+) rose from delivery until 1 month postpartum and then plateaued. Comparisons were made with reference ranges of nonpostpartal groups provided in the literature and in a study of healthy women being conducted in the same laboratory, and postpartal women were found to have lower values of CD8, CD3-/CD16+, CD4+/CD45RA+, CD20, and CD11b than those reported in the literature.

  13. Natural Killer Cells Mediate Protection against Yersinia pseudotuberculosis in the Mesenteric Lymph Nodes

    PubMed Central

    Rosenheinrich, Maik; Heine, Wiebke; Schmühl, Carina M.; Pisano, Fabio; Dersch, Petra

    2015-01-01

    Natural killer cells play a crucial role in the initial defense against bacterial pathogens. The crosstalk between host cells infected with intracellular pathogens and NK cells has been studied intensively, but not much attention has been given to characterize the role of NK cells in the response to extracellular bacterial pathogens such as yersiniae. In this study we used antibody-mediated NK cell depletion to address the importance of this immune cell type in controlling a Y. pseudotuberculosis infection. Analysis of the bacterial counts was used to follow the infection and flow cytometry was performed to characterize the composition and dynamic of immune cells. Depletion of NK cells led to higher bacterial loads within the mesenteric lymph nodes. We further show that in particular CD11b+ CD27+ NK cells which express higher levels of the activation marker CD69 increase within the mesenteric lymph nodes during a Y. pseudotuberculosis infection. Moreover, in response to the activation NK cells secrete higher levels of IFNy, which in turn triggers the production of the proinflammatory cytokine TNFα. These results suggest, that NK cells aid in the clearance of Y. pseudotuberculosis infections mainly by triggering the expression of proinflammatory cytokines manipulating the host immune response. PMID:26296209

  14. Enhanced targeting of stem-like solid tumor cells with radiation and natural killer cells

    PubMed Central

    Ames, Erik; Canter, Robert J; Grossenbacher, Steven K; Mac, Stephanie; Smith, Rachel C; Monjazeb, Arta M; Chen, Mingyi; Murphy, William J

    2015-01-01

    Natural killer (NK) cells are innate lymphocytes postulated to mediate resistance against primary haematopoietic but not solid tumor malignancies. Cancer stem cells (CSCs) are a small subset of malignant cells with stem-like properties which are resistant to chemo- and radiotherapies and are able to repopulate a tumor after cytoreductive treatments. We observed increased frequencies of stem-like tumor cells after irradiation, with increased expression of stress ligands on surviving stem-like cells. Ex vivo NK cells activated by low dose IL2 in vitro and IL15 in vivo displayed an increased ability to target solid tumor stem-like cells both in vitro and in vivo after irradiation. Mechanistically, both upregulation of stress-related ligands on the stem-like cells as well as debulking of non-stem populations contributed to these effects as determined by data from cell lines, primary tumor samples, and most relevant patient derived specimens. In addition, pretreatment of tumor-bearing mice with local radiation prior to NK transfer resulted in significantly longer survival indicating that radiation therapy in conjunction with NK cell adoptive immunotherapy targeting stem-like cancer cells may offer a promising novel radio-immunotherapy approach in the clinic. PMID:26405602

  15. Improving the Outcome of Leukemia by Natural Killer Cell-Based Immunotherapeutic Strategies

    PubMed Central

    Chouaib, Salem; Pittari, Gianfranco; Nanbakhsh, Arash; El Ayoubi, Hanadi; Amsellem, Sophie; Bourhis, Jean-Henri; Spanholtz, Jan

    2014-01-01

    Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells are widely recognized as potent anti-leukemia mediators. Alloreactive donor NK cells have been shown to improve the outcome of allogeneic stem-cell transplantation for leukemia. In addition, in vivo transfer of NK cells may soon reveal an important therapeutic tool for leukemia, if tolerance to NK-mediated anti-leukemia effects is overcome. This will require, at a minimum, the ex vivo generation of a clinically safe NK cell product containing adequate numbers of NK cells with robust anti-leukemia potential. Ideally, ex vivo generated NK cells should also have similar anti-leukemia potential in different patients, and be easy to obtain for convenient clinical scale-up. Moreover, optimal clinical protocols for NK therapy in leukemia and other cancers are still lacking. These and other issues are being currently addressed by multiple research groups. This review will first describe current laboratory NK cell expansion and differentiation techniques by separately addressing different NK cell sources. Subsequently, it will address the mechanisms known to be responsible for NK cell alloreactivity, as well as their clinical impact in the hematopoietic stem cells transplantation setting. Finally, it will briefly provide insight on past NK-based clinical trials. PMID:24672522

  16. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands

    PubMed Central

    Munich, Stephan; Sobo-Vujanovic, Andrea; Buchser, William J.; Beer-Stolz, Donna; Vujanovic, Nikola L.

    2012-01-01

    Autocrine and paracrine cell communication can be conveyed by multiple mediators, including membrane-associate proteins, secreted proteins and exosomes. Exosomes are 30–100 nm endosome-derived vesicles consisting in cytosolic material surrounded by a lipid bilayer containing transmembrane proteins. We have previously shown that dendritic cells (DCs) express on their surface multiple TNF superfamily ligands (TNFSFLs), by which they can induce the apoptotic demise of tumor cells as well as the activation of natural killer (NK) cells. In the present study, we demonstrate that, similar to DCs, DC-derived exosomes (DCex) express on their surface TNF, FasL and TRAIL, by which they can trigger caspase activation and apoptosis in tumor cells. We also show that DCex activate NK cells and stimulate them to secrete interferonγ (IFNγ) upon the interaction of DCex TNF with NK-cell TNF receptors. These data demonstrate that DCex can mediate essential innate immune functions that were previously ascribed to DCs. PMID:23170255

  17. In vitro infection of natural killer cells with different human immunodeficiency virus type 1 isolates.

    PubMed Central

    Chehimi, J; Bandyopadhyay, S; Prakash, K; Perussia, B; Hassan, N F; Kawashima, H; Campbell, D; Kornbluth, J; Starr, S E

    1991-01-01

    Natural killer (NK) cells are a discrete subset of leukocytes, distinct from T and B lymphocytes. NK cells mediate spontaneous non-MHC-restricted killing of a wide variety of target cells without prior sensitization and appear to be involved in initial protection against certain viral infections. Depressed NK cell-mediated cytotoxicity, one of the many immunological defects observed in AIDS patients, may contribute to secondary virus infections. Here we report that clonal and purified polyclonal populations of NK cells, which expressed neither surface CD4 nor CD4 mRNA, were susceptible to infection with various isolates of human immunodeficiency virus type 1 (HIV-1). Viral replication was demonstrated by detection of p24 antigen intracellularly and in culture supernatants, by the presence of HIV DNA within infected cells, and by the ability of supernatants derived from HIV-infected NK cells to infect peripheral blood mononuclear cells or CD4+ cell lines. Infection of NK cells was not blocked by anti-CD4 or anti-Fc gamma RIII monoclonal antibodies. NK cells from HIV-infected and uninfected cultures were similar in their ability to lyse three different target cells. Considerable numbers of cells died in HIV-infected NK cell cultures. These results suggest that loss of NK cells in AIDS patients is a direct effect of HIV infection but that reduced NK cell function involves another mechanism. The possibility that NK cells serve as a potential reservoir for HIV-1 must be considered. Images PMID:1672164

  18. Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus.

    PubMed

    Sturgill, Elizabeth R; Malouli, Daniel; Hansen, Scott G; Burwitz, Benjamin J; Seo, Seongkyung; Schneider, Christine L; Womack, Jennie L; Verweij, Marieke C; Ventura, Abigail B; Bhusari, Amruta; Jeffries, Krystal M; Legasse, Alfred W; Axthelm, Michael K; Hudson, Amy W; Sacha, Jonah B; Picker, Louis J; Früh, Klaus

    2016-08-01

    The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection.

  19. Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus

    PubMed Central

    Sturgill, Elizabeth R.; Malouli, Daniel; Hansen, Scott G.; Burwitz, Benjamin J.; Schneider, Christine L.; Womack, Jennie L.; Verweij, Marieke C.; Ventura, Abigail B.; Bhusari, Amruta; Jeffries, Krystal M.; Legasse, Alfred W.; Axthelm, Michael K.; Hudson, Amy W.; Sacha, Jonah B.; Picker, Louis J.; Früh, Klaus

    2016-01-01

    The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection. PMID:27580123

  20. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells.

    PubMed

    Choi, Paul J; Mitchison, Timothy J

    2013-04-16

    Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues.

  1. The functional role of natural killer cells early in clinical sepsis.

    PubMed

    Giannikopoulos, George; Antonopoulou, Anastasia; Kalpakou, Georgia; Makaritsis, Konstantinos; Panou, Charalambos; Papadomichelakis, Evangelos; Sinapidis, Dimitrios; Theodotou, Anna; Tzagkaraki, Aikaterini; Giamarellos-Bourboulis, Evangelos J

    2013-04-01

    Although much information is available for the function of circulating monocytes when signs of sepsis are apparent, little is known for natural killer (NK) cells. NK cells were isolated from 10 healthy controls and from 103 patients with sepsis within the first 24 h from diagnosis. NK cells were stimulated with lipopolysaccharide for cytokine production. Release of tumor necrosis factor-alpha and of interleukin (IL)-6 was below the limit of detection. Release of IL-23 and of interferon-gamma (IFNγ) was significantly greater among patients than among healthy volunteers. Release of IFNγ was pronounced in septic shock. Patients were divided into two subgroups based on the ratio of IFNγ to IL-23 released by the NK cells after stimulation: those with ratio ≤5 and 28-day survival 13.5%, and those with ratio >5 and 28-day survival 29.4% (p: 0.048). It is concluded that early after clinical development of sepsis, NK cells remain active for the production of IFNγ. Their activity is associated with the final outcome. PMID:23072664

  2. Role of Cortactin Homolog HS1 in Transendothelial Migration of Natural Killer Cells

    PubMed Central

    Mukherjee, Suranjana; Kim, Joanna; Mooren, Olivia L.; Shahan, Stefanie T.; Cohan, Megan; Cooper, John A.

    2015-01-01

    Natural Killer (NK) cells perform many functions that depend on actin assembly, including adhesion, chemotaxis, lytic synapse assembly and cytolysis. HS1, the hematopoietic homolog of cortactin, binds to Arp2/3 complex and promotes actin assembly by helping to form and stabilize actin filament branches. We investigated the role of HS1 in transendothelial migration (TEM) by NK cells. Depletion of HS1 led to a decrease in the efficiency of TEM by NK cells, as measured by transwell assays with endothelial cell monolayers on porous filters. Transwell assays involve chemotaxis of NK cells across the filter, so to examine TEM more specifically, we imaged live-cell preparations and antibody-stained fixed preparations, with and without the chemoattractant SDF-1α. We found small to moderate effects of HS1 depletion on TEM, including whether the NK cells migrated via the transcellular or paracellular route. Expression of HS1 mutants indicated that phosphorylation of HS1 tyrosines at positions 222, 378 and 397 was required for rescue in the transwell assay, but HS1 mutations affecting interaction with Arp2/3 complex or SH3-domain ligands had no effect. The GEF Vav1, a ligand of HS1 phosphotyrosine, influenced NK cell transendothelial migration. HS1 and Vav1 also affected the speed of NK cells migrating across the surface of the endothelium. We conclude that HS1 has a role in transendothelial migration of NK cells and that HS1 tyrosine phosphorylation may signal through Vav1. PMID:25723543

  3. Hepatitis B virus infection correlates with poor prognosis of extranodal natural killer/T cell lymphoma.

    PubMed

    Wang, Liang; Wu-Xiao, Zhi-jun; Chen, Xiao-qin; Zhang, Yu-jing; Lu, Yue; Xia, Zhong-jun

    2015-04-01

    Studies have shown that hepatitis B virus (HBV) infection may play an important role in the lymphomagenesis of lymphoma, but no studies regarding the relationship between HBV infection and extranodal natural killer/T cell lymphoma (ENKTL) have been reported previously. One hundred and seven patients diagnosed with ENKTL were retrospectively reviewed. The hepatitis B surface antigen (HBsAg)-positive rate was 13.1%, and no significant correlation existed between HBV infection and clinical characteristics (p > 0.05). No significant difference existed in complete remission rate between HBsAg-positive and -negative groups (42.9% vs. 44.1%, p = 1.000). In a multivariate Cox regression model that included international prognostic index (IPI) score, induction chemotherapy regimen and HBsAg status, all these variables were independent prognostic factors for overall survival (OS) and progression-free survival (PFS) (p < 0.05). In conclusion, the HBsAg-positive rate in ENKTL was similar to that of the normal population in a high HBV endemic area, and HBsAg-positive status was an independent prognostic factor for OS and PFS.

  4. Effects of Novel Isoform-Selective Phosphoinositide 3-Kinase Inhibitors on Natural Killer Cell Function

    PubMed Central

    Yea, Sung Su; So, Lomon; Mallya, Sharmila; Lee, Jongdae; Rajasekaran, Kamalakannan; Malarkannan, Subramaniam; Fruman, David A.

    2014-01-01

    Phosphoinositide 3-kinases (PI3Ks) are promising targets for therapeutic development in cancer. The class I PI3K isoform p110α has received considerable attention in oncology because the gene encoding p110α (PIK3CA) is frequently mutated in human cancer. However, little is known about the function of p110α in lymphocyte populations that modulate tumorigenesis. We used recently developed investigational inhibitors to compare the function of p110α and other isoforms in natural killer (NK) cells, a key cell type for immunosurveillance and tumor immunotherapy. Inhibitors of all class I isoforms (pan-PI3K) significantly impaired NK cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity against tumor cells, whereas p110α-selective inhibitors had no effect. In NK cells stimulated through NKG2D, p110α inhibition modestly reduced PI3K signaling output as measured by AKT phosphorylation. Production of IFN-γ and NK cell-derived chemokines was blocked by a pan-PI3K inhibitor and partially reduced by a p110δinhibitor, with lesser effects of p110α inhibitors. Oral administration of mice with MLN1117, a p110α inhibitor in oncology clinical trials, had negligible effects on NK subset maturation or terminal subset commitment. Collectively, these results support the targeting of PIK3CA mutant tumors with selective p110α inhibitors to preserve NK cell function. PMID:24915189

  5. Clonal Tracking of Rhesus Macaque Hematopoiesis Highlights A Distinct Lineage Origin for Natural Killer Cells

    PubMed Central

    Koelle, Samson J.; Yang, Yanqin; Jares, Alexander; Krouse, Alan E.; Metzger, Mark; Liang, Frank; Loré, Karin; Wu, Colin O.; Donahue, Robert E.; Chen, Irvin S.Y; Weissman, Irving; Dunbar, Cynthia E.

    2014-01-01

    Summary Analysis of hematopoietic stem cell function in non-human primates provides insights that are relevant for human biology and therapeutic strategies. In this study, we applied quantitative genetic barcoding to track the clonal output of transplanted autologous rhesus macaque hematopoietic stem and progenitor cells over a time period of up to 9.5 months. We found that uni-lineage short-term progenitors reconstituted myeloid and lymphoid lineages at one month, but were supplanted over time by multi-lineage clones, initially myeloid-restricted, then myeloid-B clones, and then stable myeloid-B-T multi-lineage long-term repopulating clones. Surprisingly, reconstitution of the natural killer cell lineage, and particularly the major CD16+/CD56− peripheral blood NK compartment, showed limited clonal overlap with T, B or myeloid lineages, and therefore appears to be ontologically distinct. Thus, in addition to providing insights into clonal behavior over time, our analysis suggests an unexpected paradigm for the relationship between NK cells and other hematopoietic lineages in primates. PMID:24702997

  6. Natural killer cell activity in elderly men is enhanced by beta-carotene supplementation.

    PubMed

    Santos, M S; Meydani, S N; Leka, L; Wu, D; Fotouhi, N; Meydani, M; Hennekens, C H; Gaziano, J M

    1996-11-01

    Natural killer (NK) cell activity has been postulated to be an immunologic link between beta-carotene and cancer prevention. In a cross-sectional, placebo-controlled, double-blind study we examined the effect of 10-12 y of beta-carotene supplementation (50 mg on alternate days) on NK cell activity in 59 (38 middle-aged men, 51-64 y; 21 elderly men, 65-86 y) Boston area participants in the Physicians' Health Study. No significant difference was seen in NK cell activity due to beta-carotene supplementation in the middle-aged group. The elderly men had significantly lower NK cell activity than the middle-aged men; however, there was no age-associated difference in NK cell activity in men supplemented with beta-carotene. beta-carotene-supplemented elderly men had significantly greater NK cell activity than elderly men receiving placebo. The reason for this is unknown; however, it was not due to an increase in the percentage of NK cells, nor to an increase in interleukin 2 (IL-2) receptor expression, nor to IL-2 production. beta-carotene may be acting directly on one or more of the lytic stages of NK cell cytotoxicity, or on NK cell activity-enhancing cytokines other than IL-2, such as IL-12. Our results show that long-term beta-carotene supplementation enhances NK cell activity in elderly men, which may be beneficial for viral and tumoral surveillance.

  7. Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis.

    PubMed

    VanderLaan, Paul A; Reardon, Catherine A; Sagiv, Yuval; Blachowicz, Lydia; Lukens, John; Nissenbaum, Michael; Wang, Chyung-Ru; Getz, Godfrey S

    2007-03-01

    Natural killer T (NKT) cells have recently been implicated in atherogenesis, primarily for their ability to recognize and respond to lipid antigens. Because the atherosclerotic lesion is characterized by the retention and modification of lipids in the vascular wall, NKT cells may be involved in promoting the local vascular inflammatory response. Here, we investigate the proatherogenic role of NKT cells in an adoptive transfer model of atherosclerosis, using as recipients immune-deficient, atherosclerosis-susceptible RAG1(-/-)LDLR(-/-) mice. The adoptive transfer of an NKT cell-enriched splenocyte population from Valpha14Jalpha18 T-cell receptor transgenic mice resulted in a 73% increase in aortic root lesion area compared with recipients of NKT cell-deficient splenocytes derived from CD1d(-/-) mice after 12 weeks of Western-type diet feeding. The total serum from hypercholesterolemic mice leads to a small but significant activation of Valpha14Jalpha18 T-cell receptor-expressing hybridoma line by dendritic cells that is CD1d-dependent. Therefore, these studies demonstrate that NKT cells are proatherogenic in the absence of exogenous stimulation, and this activity is likely associated with endogenous lipid antigens carried by lipoproteins in the circulation and perhaps also in the atherosclerotic plaque.

  8. Characterization of the Natural Killer T-Cell Response in an Adoptive Transfer Model of Atherosclerosis

    PubMed Central

    VanderLaan, Paul A.; Reardon, Catherine A.; Sagiv, Yuval; Blachowicz, Lydia; Lukens, John; Nissenbaum, Michael; Wang, Chyung-Ru; Getz, Godfrey S.

    2007-01-01

    Natural killer T (NKT) cells have recently been implicated in atherogenesis, primarily for their ability to recognize and respond to lipid antigens. Because the atherosclerotic lesion is characterized by the retention and modification of lipids in the vascular wall, NKT cells may be involved in promoting the local vascular inflammatory response. Here, we investigate the proatherogenic role of NKT cells in an adoptive transfer model of atherosclerosis, using as recipients immune-deficient, atherosclerosis-susceptible RAG1−/−LDLR−/− mice. The adoptive transfer of an NKT cell-enriched splenocyte population from Vα14Jα18 T-cell receptor transgenic mice resulted in a 73% increase in aortic root lesion area compared with recipients of NKT cell-deficient splenocytes derived from CD1d−/− mice after 12 weeks of Western-type diet feeding. The total serum from hypercholesterolemic mice leads to a small but significant activation of Vα14Jα18 T-cell receptor-expressing hybridoma line by dendritic cells that is CD1d-dependent. Therefore, these studies demonstrate that NKT cells are proatherogenic in the absence of exogenous stimulation, and this activity is likely associated with endogenous lipid antigens carried by lipoproteins in the circulation and perhaps also in the atherosclerotic plaque. PMID:17322392

  9. Murine cytomegalovirus stimulates natural killer cell function but kills genetically resistant mice treated with radioactive strontium

    SciTech Connect

    Masuda, A.; Bennett, M.

    1981-12-01

    Treatment of C3H/St mice with 100 microCi of 89Sr weakened their genetic resistance to murine cytomegalovirus (MCMV) infection. The criteria utilized to detect increased susceptibility were: (i) survival of mice; (ii) numbers of MCMV-infected cells in the spleens and liver; and (iii) serum glutamic pyruvic transaminase levels. The natural killer (NK) cell activity of spleen cells from mice treated with 89Sr is very low. However, the NK activities of spleen cells of both normal and 89Sr-treated mice were greatly augmented 3 days after infection with MCMV. These NK cells lysed a variety of tumor cells and shared several features with conventional NK cells, but were not lysed by anti-Nk-1.2 serum (specific for NK cells) plus complement. Splenic adherent cells did not lyse tumor cells themselves but were necessary for the stimulation of NK cells by MCMV. The paradox of high NK cell function and poor survival in 89Sr-treated mice infected with MCMV was a surprise. We conclude that these augmented NK cells, of themselves, cannot account for the genetic resistance of C3H/St mice to infection with MCMV.

  10. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy.

    PubMed

    Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang

    2015-10-01

    The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%-50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment.

  11. Selection and expansion of natural killer cells for NK cell-based immunotherapy.

    PubMed

    Becker, Petra S A; Suck, Garnet; Nowakowska, Paulina; Ullrich, Evelyn; Seifried, Erhard; Bader, Peter; Tonn, Torsten; Seidl, Christian

    2016-04-01

    Natural killer (NK) cells have been used in several clinical trials as adaptive immunotherapy. The low numbers of these cells in peripheral blood mononuclear cells (PBMC) have resulted in various approaches to preferentially expand primary NK cells from PBMC. While some clinical trials have used the addition of interleukin 2 (IL-2) to co-stimulate the expansion of purified NK cells from allogeneic donors, recent studies have shown promising results in achieving in vitro expansion of NK cells to large numbers for adoptive immunotherapy. NK cell expansion requires multiple cell signals for survival, proliferation and activation. Thus, expansion strategies have been focused either to substitute these factors using autologous feeder cells or to use genetically modified allogeneic feeder cells. Recent developments in the clinical use of genetically modified NK cell lines with chimeric antigen receptors, the development of expansion protocols for the clinical use of NK cell from human embryonic stem cells and induced pluripotent stem cells are challenging improvements for NK cell-based immunotherapy. Transfer of several of these protocols to clinical-grade production of NK cells necessitates adaptation of good manufacturing practice conditions, and the development of freezing conditions to establish NK cell stocks will require some effort and, however, should enhance the therapeutic options of NK cells in clinical medicine.

  12. Cytotoxic function of umbilical cord blood natural killer cells: relevance to adoptive immunotherapy.

    PubMed

    Lin, Syh-Jae; Kuo, Ming-Ling

    2011-11-01

    Decreased graft-versus-host disease (GVHD), ease of accessibility, and sustained engraftment encourage the use of umbilical cord blood (UCB) as an alternative source to bone marrow for immune reconstitution in children with leukemia. Natural killer (NK) cells rapidly expand after stem cell transplantation and are important for regulating GVHD and providing graft-versus-leukemia (GVL) effects. This review highlights the phenotypic and functional differences between UCB NK cells and adult peripheral blood (APB) NK cells, and discusses the possible therapeutic benefit of using UCB NK cells for adoptive immunotherapy in leukemia. Alloreactive NK cells show potent cytotoxic activities against human leukocyte antigen (HLA)-nonidentical leukemic cells and reduce leukemia relapses. The higher numbers of NK progenitors in UCB makes it a convenient source for ex vivo expansion of UCB NK cells for posttransplant treatment. UCB NK cells readily respond to interleukin-15, which may greatly enhance their antitumor effect. Activation and expansion protocols for UCB NK cells are currently being developed.

  13. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice.

    PubMed

    Subramanian, Savitha; Turner, Michael S; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Buckner, Jane H; O'Brien, Kevin; Getz, Godfrey S; Reardon, Catherine A; Chait, Alan

    2013-10-01

    Obesity is a chronic inflammatory state characterized by infiltration of adipose tissue by immune cell populations, including T lymphocytes. Natural killer T (NKT) cells, a specialized lymphocyte subset recognizing lipid antigens, can be pro- or anti-inflammatory. Their role in adipose inflammation continues to be inconclusive and contradictory. In obesity, the infiltration of tissues by invariant NKT (iNKT) cells is decreased. We therefore hypothesized that an excess iNKT cell complement might improve metabolic abnormalities in obesity. Vα14 transgenic (Vα14tg) mice, with increased iNKT cell numbers, on a LDL receptor-deficient (Ldlr(-/-)) background and control Ldlr(-/-) mice were placed on an obesogenic diet for 16 weeks. Vα14tg.Ldlr(-/-) mice gained 25% more weight and had increased adiposity than littermate controls. Transgenic mice also developed greater dyslipidemia, hyperinsulinemia, insulin resistance, and hepatic triglyceride accumulation. Increased macrophage Mac2 immunostaining and proinflammatory macrophage gene expression suggested worsened adipose inflammation. Concurrently, these mice had increased atherosclerotic lesion area and aortic inflammation. Thus, increasing the complement of iNKT cells surprisingly exacerbated the metabolic, inflammatory, and atherosclerotic features of obesity. These findings suggest that the reduction of iNKT cells normally observed in obesity may represent a physiological attempt to compensate for this inflammatory condition.

  14. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells.

    PubMed

    An, Dingding; Oh, Sungwhan F; Olszak, Torsten; Neves, Joana F; Avci, Fikri Y; Erturk-Hasdemir, Deniz; Lu, Xi; Zeissig, Sebastian; Blumberg, Richard S; Kasper, Dennis L

    2014-01-16

    Coevolution of beneficial microorganisms with the mammalian intestine fundamentally shapes mammalian physiology. Here, we report that the intestinal microbe Bacteroides fragilis modifies the homeostasis of host invariant natural killer T (iNKT) cells by supplementing the host's endogenous lipid antigen milieu with unique inhibitory sphingolipids. The process occurs early in life and effectively impedes iNKT cell proliferation during neonatal development. Consequently, total colonic iNKT cell numbers are restricted into adulthood, and hosts are protected against experimental iNKT cell-mediated, oxazolone-induced colitis. In studies with neonatal mice lacking access to bacterial sphingolipids, we found that treatment with B. fragilis glycosphingolipids-exemplified by an isolated peak (MW = 717.6) called GSL-Bf717-reduces colonic iNKT cell numbers and confers protection against oxazolone-induced colitis in adulthood. Our results suggest that the distinctive inhibitory capacity of GSL-Bf717 and similar molecules may prove useful in the treatment of autoimmune and allergic disorders in which iNKT cell activation is destructive.

  15. Human Invariant Natural Killer T cells possess immune-modulating functions during Aspergillus infection.

    PubMed

    Beitzen-Heineke, Antonia; Bouzani, Maria; Schmitt, Anna-Lena; Kurzai, Oliver; Hünniger, Kerstin; Einsele, Hermann; Loeffler, Juergen

    2016-02-01

    Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection.

  16. NKp80 Defines a Critical Step during Human Natural Killer Cell Development.

    PubMed

    Freud, Aharon G; Keller, Karen A; Scoville, Steven D; Mundy-Bosse, Bethany L; Cheng, Stephanie; Youssef, Youssef; Hughes, Tiffany; Zhang, Xiaoli; Mo, Xiaokui; Porcu, Pierluigi; Baiocchi, Robert A; Yu, Jianhua; Carson, William E; Caligiuri, Michael A

    2016-07-12

    Human natural killer (NK) cells develop in secondary lymphoid tissues (SLTs) through distinct stages. We identified two SLT lineage (Lin)(-)CD34(-)CD117(+/-)CD94(+)CD16(-) "stage 4" subsets according to expression of the C-type lectin-like surface-activating receptor, NKp80: NKp80(-) (stage "4a") and NKp80(+) (stage "4b"). Whereas stage 4b cells expressed more of the transcription factors T-BET and EOMES, produced interferon-gamma, and were cytotoxic, stage 4a cells expressed more of the transcription factors RORγt and AHR and produced interleukin-22, similar to SLT Lin(-)CD34(-)CD117(+)CD94(-)CD16(-) "stage 3" cells, whose phenotype overlaps with that of group 3 innate lymphoid cells (ILC3s). Co-culture with dendritic cells or transplantation into immunodeficient mice produced mature NK cells from stage 3 and stage 4a populations. These data identify NKp80 as a marker of NK cell maturity in SLTs and support a model of human NK cell development through a stage 4a intermediate with ILC3-associated features.

  17. HIV Latency-Reversing Agents Have Diverse Effects on Natural Killer Cell Function

    PubMed Central

    Garrido, Carolina; Spivak, Adam M.; Soriano-Sarabia, Natalia; Checkley, Mary Ann; Barker, Edward; Karn, Jonathan; Planelles, Vicente; Margolis, David M.

    2016-01-01

    In an effort to clear persistent HIV infection and achieve a durable therapy-free remission of HIV disease, extensive pre-clinical studies and early pilot clinical trials are underway to develop and test agents that can reverse latent HIV infection and present viral antigen to the immune system for clearance. It is, therefore, critical to understand the impact of latency-reversing agents (LRAs) on the function of immune effectors needed to clear infected cells. We assessed the impact of LRAs on the function of natural killer (NK) cells, the main effector cells of the innate immune system. We studied the effects of three histone deacetylase inhibitors [SAHA or vorinostat (VOR), romidepsin, and panobinostat (PNB)] and two protein kinase C agonists [prostratin (PROST) and ingenol] on the antiviral activity, cytotoxicity, cytokine secretion, phenotype, and viability of primary NK cells. We found that ex vivo exposure to VOR had minimal impact on all parameters assessed, while PNB caused a decrease in NK cell viability, antiviral activity, and cytotoxicity. PROST caused non-specific NK cell activation and, interestingly, improved antiviral activity. Overall, we found that LRAs can alter the function and fate of NK cells, and these effects must be carefully considered as strategies are developed to clear persistent HIV infection. PMID:27708642

  18. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma.

    PubMed

    Jiang, Lu; Gu, Zhao-Hui; Yan, Zi-Xun; Zhao, Xia; Xie, Yin-Yin; Zhang, Zi-Guan; Pan, Chun-Ming; Hu, Yuan; Cai, Chang-Ping; Dong, Ying; Huang, Jin-Yan; Wang, Li; Shen, Yang; Meng, Guoyu; Zhou, Jian-Feng; Hu, Jian-Da; Wang, Jin-Fen; Liu, Yuan-Hua; Yang, Lin-Hua; Zhang, Feng; Wang, Jian-Min; Wang, Zhao; Peng, Zhi-Gang; Chen, Fang-Yuan; Sun, Zi-Min; Ding, Hao; Shi, Ju-Mei; Hou, Jian; Yan, Jin-Song; Shi, Jing-Yi; Xu, Lan; Li, Yang; Lu, Jing; Zheng, Zhong; Xue, Wen; Zhao, Wei-Li; Chen, Zhu; Chen, Sai-Juan

    2015-09-01

    Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL. PMID:26192917

  19. Atypical natural killer T-cell receptor recognition of CD1d–lipid antigens

    PubMed Central

    Le Nours, Jérôme; Praveena, T.; Pellicci, Daniel G.; Gherardin, Nicholas A.; Ross, Fiona J.; Lim, Ricky T.; Besra, Gurdyal S.; Keshipeddy, Santosh; Richardson, Stewart K.; Howell, Amy R.; Gras, Stephanie; Godfrey, Dale I.; Rossjohn, Jamie; Uldrich, Adam P.

    2016-01-01

    Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d–α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1+ type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7–8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A′-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d–α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition. PMID:26875526

  20. Common variable immunodeficiency and inclusion body myositis: a distinct myopathy mediated by natural killer cells.

    PubMed

    Dalakas, M C; Illa, I

    1995-06-01

    Inclusion body myositis developed in two men, 36 and 48 years old with long-standing common variable immunodeficiency. Immunophenotypic analysis of the endomysial cells showed an increased number of natural killer (NK) cells (defined as CD57+, CD56+, CD3-, CD8-, CD68-) accounting for 8.5 to 9.5% of the total cells, compared with a mean of 1% in sporadic inclusion body myositis. The remaining cells were CD8+, macrophages, and CD4+ T cells. NK cells were positive for intercellular cell adhesion molecule-1 and invaded muscle fibers negative for major histocompatibility complex (MHC) class I. In contrast to ubiquitous endomysial expression of MHC class I antigen in sporadic inclusion body myositis, the MHC class I in common variable immunodeficiency and inclusion body myositis was absent or weakly expressed in only some of the muscle fibers surrounded by CD8+ cells. Enteroviral or retroviral RNA sequences were not amplified. Treatment with intravenous immunoglobulin improved strength in 1 patient whose repeated muscle biopsy specimen showed normal NK cells. We conclude that inclusion body myositis can develop in patients with common variable immunodeficiency. Common variable immunodeficiency with inclusion body myositis is an immune myopathy mediated by NK cells in a non-MHC class I-restricted cytotoxicity, and by CD8+ cells in an MHC class I-restricted process. This is the first description of an inflammatory myopathy in which NK cells participate in the myocytotoxic process.

  1. Functional Reconstitution of Natural Killer Cells in Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Ullah, Md Ashik; Hill, Geoffrey R.; Tey, Siok-Keen

    2016-01-01

    Natural killer (NK) cells are the first lymphocyte population to reconstitute following allogeneic hematopoietic stem cell transplantation (HSCT) and are important in mediating immunity against both leukemia and pathogens. Although NK cell numbers generally reconstitute within a month, the acquisition of mature NK cell phenotype and full functional competency can take 6 months or more, and is influenced by graft composition, concurrent pharmacologic immunosuppression, graft-versus-host disease, and other clinical factors. In addition, cytomegalovirus infection and reactivation have a dominant effect on NK cell memory imprinting following allogeneic HSCT just as it does in healthy individuals. Our understanding of NK cell education and licensing has evolved in the years since the “missing self” hypothesis for NK-mediated graft-versus-leukemia effect was first put forward. For example, we now know that NK cell “re-education” can occur, and that unlicensed NK cells can be more protective than licensed NK cells in certain settings, thus raising new questions about how best to harness graft-versus-leukemia effect. Here, we review current understanding of the functional reconstitution of NK cells and NK cell education following allogeneic HSCT, highlighting a conceptual framework for future research. PMID:27148263

  2. Natural killer cell populations in Egyptians infected with hepatitis C virus.

    PubMed

    Rafik, M; Sidhom, G; Mamdouh, R; Ellebedy, D; Mohamed, M

    2012-09-01

    Natural killer (NK) cells are key players in the immune response to viruses. This study examined the effect of hepatitis C virus (HCV) on the frequency of NK cells and their subsets in individuals with different clinical outcomes; 20 positive for anti-HCV and HCV-RNA (chronic hepatitis C), 20 positive for anti-HCV but negative for HCV-RNA (spontaneously resolved) and 20 healthy controls free of HCV. There was a significant reduction in the frequency of total NK cells in the chronic group compared to the control (P = 0.001) or resolved (P = 0.01) groups. The percentage of CD56(bright) cells was significantly higher than the control group (P = 0.04). While the percentages of CD56 (dim) cells and their CD16 expression were lower in the chronic group, this was not statistically significant. The frequency of CD3+CD56- T cells was significantly lower in both the chronic and resolved groups compared to the control group (P = 0.04). Our results confirm a potential role of NK cells and the different subsets in the pathogenesis of chronic HCV infection.

  3. Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection.

    PubMed

    Zheng, Q; Zhu, Y Y; Chen, J; Ye, Y B; Li, J Y; Liu, Y R; Hu, M L; Zheng, Y C; Jiang, J J

    2015-06-01

    Emerging evidence indicates that natural killer (NK) cells may contribute to liver injury in patients with hepatitis B virus (HBV) infection. Because HBV infection progresses through various disease phases, the cytolytic profiles of peripheral and intrahepatic NK cells in HBV-infected patients remain to be defined. In this study, we comprehensively characterized intrahepatic and peripheral NK cells in a cohort of HBV-infected individuals, and investigated their impact on liver pathogenesis during chronic HBV infection. The study population included 34 immune-clearance (IC) patients, 36 immune-tolerant (IT) carriers and 10 healthy subjects. We found that the activity of peripheral NK cells from IC patients was functionally elevated compared to IT carriers and controls, and NK cell activation was indicated by an increased expression of CD69, CD107a, interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Further analysis showed that the increased activity of both peripheral and hepatic NK cells was correlated positively with liver injury, which was assessed by serum alanine aminotransferase levels (ALT) and the liver histological activity index (HAI). Interestingly, the frequency of peripheral NK cells was reduced in IC patients (especially those with higher HAI scores of 3-4), but there was a concomitant increase in hepatic NK cells. The functionally activated NK cells are enriched preferentially in the livers of IC patients and skew towards cytolytic activity that accelerates liver injury in chronic hepatitis B (CHB) patients.

  4. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents

    PubMed Central

    Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A

    2016-01-01

    Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed. PMID:27195112

  5. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells.

    PubMed

    Sathe, Priyanka; Delconte, Rebecca B; Souza-Fonseca-Guimaraes, Fernando; Seillet, Cyril; Chopin, Michael; Vandenberg, Cassandra J; Rankin, Lucille C; Mielke, Lisa A; Vikstrom, Ingela; Kolesnik, Tatiana B; Nicholson, Sandra E; Vivier, Eric; Smyth, Mark J; Nutt, Stephen L; Glaser, Stefan P; Strasser, Andreas; Belz, Gabrielle T; Carotta, Sebastian; Huntington, Nicholas D

    2014-01-01

    The cytokine IL-15 is required for natural killer (NK) cell homeostasis; however, the intrinsic mechanism governing this requirement remains unexplored. Here we identify the absolute requirement for myeloid cell leukaemia sequence-1 (Mcl1) in the sustained survival of NK cells in vivo. Mcl1 is highly expressed in NK cells and regulated by IL-15 in a dose-dependent manner via STAT5 phosphorylation and subsequent binding to the 3'-UTR of Mcl1. Specific deletion of Mcl1 in NK cells results in the absolute loss of NK cells from all tissues owing to a failure to antagonize pro-apoptotic proteins in the outer mitochondrial membrane. This NK lymphopenia results in mice succumbing to multiorgan melanoma metastases, being permissive to allogeneic transplantation and being resistant to toxic shock following polymicrobial sepsis challenge. These results clearly demonstrate a non-redundant pathway linking IL-15 to Mcl1 in the maintenance of NK cells and innate immune responses in vivo.

  6. Effect of elevated serum prolactin concentrations on cytokine production and natural killer cell activity.

    PubMed

    Clodi, M; Svoboda, T; Kotzmann, H; Deyssig, R; Woloszczuk, W; Zielinski, C C; Luger, A

    1992-12-01

    In vitro and in vivo studies in rodents and human suggested an immunostimulatory effect of prolactin. The aim of the present study was to determine the impact of chronically elevated serum prolactin concentrations on the immune system in patients with prolactinomas. For this purpose parameters of the humoral and cellular immune system were studied in seven patients with prolactinomas on two occasions (1) when their serum prolactin concentration had been normalized through treatment with dopamine agonists and (2) when their serum prolactin concentration was high. Serum concentrations of immunoglobulines, interleukin 1, 3 and 6, TNF-alpha, interferon-gamma and the soluble interleukin 2 receptor, leukocyte subsets and the natural killer cell activity were found to be within the normal range on both occasions, i.e. at normal and at high serum prolactin concentrations. The assumption could be made that long-lasting elevation of serum prolactin concentration induces adaptive changes when the acute stimulatory effects of prolactin on several parameters of the immune system have subsided.

  7. Prognostic significance of peripheral monocyte count in patients with extranodal natural killer/T-cell lymphoma

    PubMed Central

    2013-01-01

    Background Extranodal natural killer/T-cell lymphoma (ENKL) has heterogeneous clinical manifestations and prognosis. This study aims to evaluate the prognostic impact of absolute monocyte count (AMC) in ENKL, and provide some immunologically relevant information for better risk stratification in patients with ENKL. Methods Retrospective data from 163 patients newly diagnosed with ENKL were analyzed. The absolute monocyte count (AMC) at diagnosis was analyzed as continuous and dichotomized variables. Independent prognostic factors of survival were determined by Cox regression analysis. Results The AMC at diagnosis were related to overall survival (OS) and progression-free survival (PFS) in patients with ENKL. Multivariate analysis identified AMC as independent prognostic factors of survival, independent of International Prognostic Index (IPI) and Korean prognostic index (KPI). The prognostic index incorporating AMC and absolute lymphocyte count (ALC), another surrogate factor of immune status, could be used to stratify all 163 patients with ENKL into different prognostic groups. For patients who received chemotherapy followed by radiotherapy (102 cases), the three AMC/ALC index categories identified patients with significantly different survivals. When superimposed on IPI or KPI categories, the AMC/ALC index was better able to identify high-risk patients in the low-risk IPI or KPI category. Conclusion The baseline peripheral monocyte count is shown to be an effective prognostic indicator of survival in ENKL patients. The prognostic index related to tumor microenvironment might be helpful to identify high-risk patients with ENKL. PMID:23638998

  8. Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells.

    PubMed

    Rukavina, D; Laskarin, G; Rubesa, G; Strbo, N; Bedenicki, I; Manestar, D; Glavas, M; Christmas, S E; Podack, E R

    1998-10-01

    In this study a flow cytometric technique for detecting cytoplasmic perforin (P) has been used to quantify age-related changes in perforin expression in human peripheral blood lymphocytes (PBL). Proportions of P+ lymphocytes increased after birth, but declined rapidly after the age of 70 years. This was true for both T cells and CD16(+) and CD56(+) natural killer (NK) cells. Children showed in addition to high levels of perforin positive CD8(+) cells a much higher proportion of CD4(+)P+ cells than the other age groups. In elderly individuals there was also a highly significant reduction in mean levels of perforin per cell as compared with all other groups (P < .05 to .001). Adult women had consistently higher mean levels of perforin per cell than adult men for all P+ cell phenotypes. Functional tests clearly showed the deficiency in early spontaneous cytotoxic potential of PBL from elderly persons due to relative P deficiency, which can be corrected by stimulation of cytolytic cells with target cells and interleukin-2 (IL-2). The deficiency in cytolytic activity on the contact with target cells may have implications for antiviral and antitumor immunity in elderly persons.

  9. CD45 Isoform Profile Identifies Natural Killer (NK) Subsets with Differential Activity

    PubMed Central

    Krzywinska, Ewelina; Cornillon, Amelie; Allende-Vega, Nerea; Vo, Dang-Nghiem; Rene, Celine; Lu, Zhao-Yang; Pasero, Christine; Olive, Daniel; Fegueux, Nathalie; Ceballos, Patrick; Hicheri, Yosr; Sobecki, Michal; Rossi, Jean-François; Cartron, Guillaume; Villalba, Martin

    2016-01-01

    The leucocyte-specific phosphatase CD45 is present in two main isoforms: the large CD45RA and the short CD45RO. We have recently shown that distinctive expression of these isoforms distinguishes natural killer (NK) populations. For example, co-expression of both isoforms identifies in vivo the anti tumor NK cells in hematological cancer patients. Here we show that low CD45 expression associates with less mature, CD56bright, NK cells. Most NK cells in healthy human donors are CD45RA+CD45RO-. The CD45RA-RO+ phenotype, CD45RO cells, is extremely uncommon in B or NK cells, in contrast to T cells. However, healthy donors possess CD45RAdimRO- (CD45RAdim cells), which show immature markers and are largely expanded in hematopoietic stem cell transplant patients. Blood borne cancer patients also have more CD45RAdim cells that carry several features of immature NK cells. However, and in opposition to their association to NK cell progenitors, they do not proliferate and show low expression of the transferrin receptor protein 1/CD71, suggesting low metabolic activity. Moreover, CD45RAdim cells properly respond to in vitro encounter with target cells by degranulating or gaining CD69 expression. In summary, they are quiescent NK cells, with low metabolic status that can, however, respond after encounter with target cells. PMID:27100180

  10. [Change in the activity of natural killer cells in normal subjects and in virus diseases on exposure to interferon in vitro].

    PubMed

    Petrov, R V; Saidov, M Z; Koval'chuk, L V; Sorokin, A M; Kaganov, B S

    1984-04-01

    The activity of natural killers was examined in peripheral blood of healthy subjects and patients with chronic hepatitis and disseminated sclerosis. An attempt was made to correct natural killer activity by human leukocyte interferon in vitro. To assess the activity of natural killers, use was made of the method of serial dilutions. An optimal effector/target ratio was employed in experiments. The patients with chronic hepatitis and disseminated sclerosis demonstrated a reduction in the activity of natural killers whatever the effector/target ratio. The action of interferon in vitro is specific immunomodulatory in nature. Administration of interferon in a dose of 250 Units/ml raises the magnitude of the cytotoxic index in healthy donors and in patients with chronic hepatitis and disseminated sclerosis, making the shape of the killer activity curve approach that of normal. Such an approach can be used for preliminary assessment of the sensitivity of natural killers to interferon in viral diseases of man. The potentialities and efficacy of interferon in clinical medicine are discussed.

  11. Pyoderma gangrenosum preceding the onset of extranodal natural killer/T-cell lymphoma

    PubMed Central

    Yang, Ting-Hua; Hu, Chung-Hong; Tsai, Hsiou-Hsin

    2016-01-01

    Abstract Introduction: Pyoderma gangrenosum (PG) is a neutrophilic dermatosis that may be associated with systemic diseases. The association of PG with lymphoid malignancies has rarely been reported. Extranodal natural killer/T-cell lymphoma (ENKTL) is a rare but aggressive entity with a poor prognosis. Here, we report the case of a patient who had idiopathic PG refractory to systemic steroids and subsequently developed ENKTL. Case report: A 70-year-old man presented with a 2-month history of intermittent fever and multifocal painful papules, plaques, and ulcerations on his extremities. The histological and culture results of the lesions were consistent with those of PG. A thorough work-up was performed and did not demonstrate any underlying systemic diseases including malignancy. The PG lesions were refractory to systemic steroid therapy. An enlarging nodule was observed over his right infraorbital area 4 months after the onset of the skin eruptions. The nodule was later biopsied and diagnosed as ENKTL by using histopathological and immunohistochemical studies. Fludeoxyglucose positron emission tomography/computed tomography revealed multiple intense fludeoxyglucose-avid masses in the bones and lungs, suggesting multiorgan metastases. The patient rejected chemotherapy and died 4 weeks after the diagnosis. Conclusion: The present case indicates that in any patient with idiopathic PG refractory to conventional therapy, the presence of any underlying disease or malignancy must be thoroughly evaluated. The present case serves as a reminder that when assessing patients with PG, clinicians should increase their awareness regarding the delayed association with malignancy, even in the absence of a concomitant systemic disease at presentation. Furthermore, the prompt evaluation of any suspicious lesions in the context of PG for the possibility of a malignant nature can improve the prognosis, particularly in cases of aggressive malignancy. Understanding the cutaneous

  12. Assessment of injuries to killer whales in Prince William Sound. Marine mammal study number 2. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Dahlheim, M.E.; Matkin, C.O.

    1993-12-01

    Photo-identification studies of individual killer whales inhabiting Prince William Sound were collected from 1989-91 to determine the impact of the spill on whale abundance and distribution. Concurrent photo-identification studies were also conducted in Southeast Alaska to determine if PWS killer whales were displaced to other areas. Despite increased effort, the number of encounters with PWS killer whales appears to be decreasing. The authors assume, that the whales are dead from natural causes, a result of interactions with fisheries, from the spill, or a combination of these causes.

  13. Up‐modulation of interferon‐γ mediates the enhancement of spontanous cytotoxicity in prolactin‐activated natural killer cells

    PubMed Central

    Matera, L; Contarini, M; Bellone, G; Forno, B; Biglino, A

    1999-01-01

    Prolactin (PRL) has been shown to participate in lymphocyte activation. In particular, the constitutive natural killer (NK) and the lymphokine‐activated killer (LAK) cytotoxicity of CD56+ CD16+ cells is increased by its physiological to supraphysiological concentrations. As PRL has been shown to up‐regulate the production of interferon‐γ (IFN‐γ) by peripheral blood mononuclear cells, we studied its effect on IFN‐γ production by NK cells as a possible mechanism of autocrine activation of cytotoxicity. Released and intracellular IFN‐γ, as well as IFN‐γ mRNA expression, were increased by pituitary and recombinant human PRL, which stimulated optimal NK and LAK cytotoxicity. Treatment with blocking anti‐IFN‐γ monoclonal antibody (mAb) selectively affected PRL‐increased killing of K562 targets, demonstrating that PRL‐mediated enhancement of spontaneous cytotoxicity depends, at least in part, on up‐regulation of IFN‐γ. PMID:10583598

  14. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    PubMed Central

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  15. Human Circulating and Tissue-Resident CD56bright Natural Killer Cell Populations

    PubMed Central

    Melsen, Janine E.; Lugthart, Gertjan; Lankester, Arjan C.; Schilham, Marco W.

    2016-01-01

    Two human natural killer (NK) cell subsets are usually distinguished, displaying the CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK cells present in blood, where the CD56dim NK cells predominate. However, CD56bright NK cells outnumber CD56dim NK cells in the human body due to the fact that they are predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright NK cell compartment, a major phenotypical and functional diversity is observed, as demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and produce little interferon-γ upon monokine stimulation. Their distribution and specific phenotype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. In this review, we examine the CD56bright NK cell diversity by discussing the distribution, phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, we address the ongoing debate concerning the developmental relationship between circulating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells from circulating CD56bright NK cells is a prerequisite for the better understanding of the specific role of CD56bright NK cells in the complex process of human immune regulation. PMID:27446091

  16. Effects of microwave exposure on the hamster immune system. I. Natural killer cell activity

    SciTech Connect

    Yang, H.K.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Hamsters were exposed to repeated or single doses of microwave energy and monitored for changes in core body temperature, circulating leukocyte profiles, serum corticosteroid levels, and natural killer (NK) cell activity in various tissues. NK cytotoxicity was measured in a /sup 51/Cr-release assay employing baby hamster kidney (BHK) targets or BHK infected with herpes simplex virus. Repeated exposure of hamsters at 15 mW/cm2 for 60 min/day had no significant effect on natural levels of spleen-cell NK activity against BHK targets. Similarly, repeated exposure at 15 mW/cm2 over a 5-day period had no demonstrable effect on the induction of spleen NK activity by vaccinia virus immunization, that is, comparable levels of NK were induced in untreated and microwave-treated animals. In contrast, treatment of hamsters with a single 60-min microwave exposure at 25 mW/cm2 caused a significant suppression in induced spleen NK activity. A similar but less marked decrease in spleen NK activity was observed in sham-exposed animals. Moreover, the sham effects on NK activity were not predictable and appeared to represent large individual animal variations in the response to stress factors. Depressed spleen NK activity was evident as early as 4 h postmicrowave treatment and returned to normal levels by 8 h. Hamsters exposed at 25 mW/cm2 showed an elevated temperature of 3.0-3.5 degrees C that returned to normal within 60 min after termination of microwave exposure. These animals also showed a marked lymphopenia and neutrophilia by 1 h posttreatment that returned to normal by 8-10 h. Serum glucocorticosteroids were elevated between 1 aNd 8 h after microwave treatment. Sham-exposed animals did not demonstrate significant changes in core body temperature, peripheral blood leukocyte (PBL) profile, or glucocorticosteroid levels as compared to minimum-handling controls.

  17. Role of natural killer cell subsets and natural cytotoxicity receptors for the outcome of immunotherapy in acute myeloid leukemia

    PubMed Central

    Martner, Anna; Rydström, Anna; Riise, Rebecca E; Aurelius, Johan; Anderson, Harald; Brune, Mats; Foà, Robin; Hellstrand, Kristoffer; Thorén, Fredrik B

    2016-01-01

    In a phase IV trial, 84 patients (age 18–79) with acute myeloid leukemia (AML) in first complete remission (CR) received cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose human recombinant interleukin 2 (IL-2) for 18 months to prevent leukemic relapse. During cycles, the treatment resulted in expansion of CD56bright (CD3−/16−/56bright) and CD16+ (CD3−/16+/56+) natural killer (NK) cells in the blood along with increased NK cell expression of the natural cytotoxicity receptors (NCRs) NKp30 and NKp46. Multivariate analyses correcting for age and risk group demonstrated that high CD56bright NK cell counts and high expression of NKp30 or NKp46 on CD16+ NK cells independently predicted leukemia-free survival (LFS) and overall survival (OS). Our results suggest that the dynamics of NK cell subsets and their NCR expression may determine the efficiency of relapse-preventive immunotherapy in AML. PMID:26942055

  18. Mechanistic Model of Natural Killer Cell Proliferative Response to IL-15 Receptor Stimulation

    PubMed Central

    Zhao, Yun M.; French, Anthony R.

    2013-01-01

    Natural killer (NK) cells are innate lymphocytes that provide early host defense against intracellular pathogens, such as viruses. Although NK cell development, homeostasis, and proliferation are regulated by IL-15, the influence of IL-15 receptor (IL-15R)-mediated signaling at the cellular level has not been quantitatively characterized. We developed a mathematical model to analyze the kinetic interactions that control the formation and localization of IL-15/IL-15R complexes. Our computational results demonstrated that IL-15/IL-15R complexes on the cell surface were a key determinant of the magnitude of the IL-15 proliferative signal and that IL-15R occupancy functioned as an effective surrogate measure of receptor signaling. Ligand binding and receptor internalization modulated IL-15R occupancy. Our work supports the hypothesis that the total number and duration of IL-15/IL-15R complexes on the cell surface crosses a quantitative threshold prior to the initiation of NK cell division. Furthermore, our model predicted that the upregulation of IL-15Rα on NK cells substantially increased IL-15R complex formation and accelerated the expansion of dividing NK cells with the greatest impact at low IL-15 concentrations. Model predictions of the threshold requirement for NK cell recruitment to the cell cycle and the subsequent exponential proliferation correlated well with experimental data. In summary, our modeling analysis provides quantitative insight into the regulation of NK cell proliferation at the receptor level and provides a framework for the development of IL-15 based immunotherapies to modulate NK cell proliferation. PMID:24068905

  19. Menstrual cycle distribution of uterine natural killer cells is altered in heavy menstrual bleeding.

    PubMed

    Biswas Shivhare, Sourima; Bulmer, Judith N; Innes, Barbara A; Hapangama, Dharani K; Lash, Gendie E

    2015-11-01

    Heavy menstrual bleeding (HMB) affects 30% of women of reproductive age and significantly interferes with quality of life. Altered endometrial vascular maturation has been reported in HMB and recurrent miscarriage, the latter associated with increased uterine natural killer (uNK) cell numbers. This study compared endometrial leukocyte populations in controls and women with HMB. Formalin-fixed paraffin-embedded endometrial biopsies from controls (without endometrial pathology) and HMB were immunostained for CD14 (macrophages), CD56 (uNK cells), CD83 (dendritic cells), FOXP3 (regulatory T cells/Tregs), CD3 and CD8 (T cells). Leukocyte numbers were analysed as a percentage of total stromal cells in five randomly selected fields of view in the stratum functionalis of each sample. In control women across the menstrual cycle, 2-8% of total stromal cells were CD3(+) cells, 2-4% were CD8(+) T cells and 6-8% were CD14(+) macrophages. Compared with controls, CD3(+) cells were reduced during the mid-secretory phase (4%, P<0.01) and increased in the late secretory phase (12%, P=0.01) in HMB. CD83(+) dendritic cells and FOXP3(+) Tregs were scarce throughout the menstrual cycle in both groups. In controls, 2% of stromal cells in proliferative endometrium were CD56(+) uNK cells, increasing to 17% during the late secretory phase. In HMB, CD56(+) uNK cells were increased in the proliferative (5%, P<0.01) and early secretory (4%, P<0.02) phases, but reduced (10%, P<0.01) in the late secretory phase. This study demonstrates dysregulation of uNK cells in HMB, the functional consequence of which may have an impact on endometrial vascular development and/or endometrial preparation for menstruation.

  20. Physiology of natural killer cells. In vivo regulation of progenitors by interleukin 3

    SciTech Connect

    Kalland, T.

    1987-12-01

    Adoptive transfer of bone marrow cells to syngeneic lethally irradiated C57BL/6 mice was used to study the maturation of natural killer (NK) cells from their progenitors. The NK progenitor cell was found to be asialomonoganglioside-negative, (aGM1-) Thy-1-, NK-1-, Ly-1-, Ly-2-, and L3T4-. The NK cells emerging from the bone marrow grafts were aGM1+, NK-1+, Thy-1+/-, Ly-1-, Ly-2-, and L3T4- and to have a target specter similar to that of NK cells isolated from the spleen of normal mice. The regulatory role of interleukin 2 (IL-2) and interleukin 3 (IL-3) for the maturation of NK cells was examined by exposure of the bone marrow cells to the lymphokines in vitro before bone marrow grafting or by treatment of bone marrow-grafted mice with lymphokines through s.c. implanted miniosmotic pumps. IL-3 antagonized the IL-2-induced maturation of NK cells in vitro and strongly inhibited the generation of NK cells after adoptive transfer of bone marrow cells in vivo. The suppressive effect of IL-3 was evident throughout the treatment period (8 or 16 days) but was apparently reversible because NK activity returned to control levels within 8 days after cessation of treatment. The inhibition of cytotoxic activity was accompanied by a reduced appearance of cells with the NK phenotypic markers aGM1 or NK-1, indicating that not only the cytotoxic activity of NK cells but also their actual formation was inhibited. Concomitantly, a moderate increase in cells expressing the T cell marker L3T4 and an increased proliferative response to the T cell mitogen concanavalin A was observed. A direct estimate of the effect of IL-3 on the frequency of NK cell progenitors was obtained by limiting dilution analysis of bone marrow cells at day 8 after bone marrow transplantation.

  1. EFFECTS OF A SERIES OF TRIORGANOTINS ON ATP LEVELS IN HUMAN NATURAL KILLER CELLS

    PubMed Central

    Holloway, Laurin N.; Pannell, Keith H.; Whalen, Margaret M.

    2008-01-01

    Natural killer (NK) cells are our initial immune defense against viral infections and cancer development. Thus, agents that are able to interfere with their function increase the risk of cancer and/or infection. A series of triorganotins, (trimethyltin (TMT), dimethylphenyltin (DMPT), methyldiphenyltin (MDPT), and triphenyltin (TPT)) have been shown to decrease the lytic function of human NK cells. TPT and MDPT were much more effective than DMPT or TMT at reducing lytic function. This study investigates the role that decreased ATP levels may play in decreases in the lytic function of NK cells induced by these OTs. A 24 h exposure to as high as 10 μM TMT caused no decrease in ATP levels even though this level of TMT caused a greater than 75% loss of lytic function. TPT at 200 nM caused a decrease in ATP levels of about 20% while decreasing lytic function by greater than 85%. There was no association between ATP levels and lytic function for any of the compounds when NK cells were exposed for 1h or 24 h. However, after a 48 h exposure to both DMPT and TPT decreased lytic function was associated with decreased ATP levels. There was an association between decreased lytic function and decreased ATP levels after a 6 day exposure to each of the four compounds. These studies indicate that the loss of lytic function seen after 1 h and 24 h exposures to this series of organotins cannot be accounted for by decreases in ATP. However, after longer exposures loss of lytic function may be in part be attributable to inadequate ATP levels. PMID:19122738

  2. High folic acid intake reduces natural killer cell cytotoxicity in aged mice.

    PubMed

    Sawaengsri, Hathairat; Wang, Junpeng; Reginaldo, Christina; Steluti, Josiane; Wu, Dayong; Meydani, Simin Nikbin; Selhub, Jacob; Paul, Ligi

    2016-04-01

    Presence of unmetabolized folic acid in plasma, which is indicative of folic acid intake beyond the metabolic capacity of the body, is associated with reduced natural killer (NK) cell cytotoxicity in postmenopausal women ≥50years. NK cells are cytotoxic lymphocytes that are part of the innate immune system critical for surveillance and defense against virus-infected and cancer cells. We determined if a high folic acid diet can result in reduced NK cell cytotoxicity in an aged mouse model. Female C57BL/6 mice (16-month-old) were fed an AIN-93M diet with the recommended daily allowance (1× RDA, control) or 20× RDA (high) folic acid for 3months. NK cytotoxicity was lower in splenocytes from mice fed a high folic acid diet when compared to mice on control diet (P<.04). The lower NK cell cytotoxicity in high folic acid fed mice could be due to their lower mature cytotoxic/naïve NK cell ratio (P=.03) when compared to the control mice. Splenocytes from mice on high folic acid diet produced less interleukin (IL)-10 when stimulated with lipopolysaccharide (P<.05). The difference in NK cell cytotoxicity between dietary groups was abolished when the splenocytes were supplemented with exogenous IL-10 prior to assessment of the NK cytotoxicity, suggesting that the reduced NK cell cytotoxicity of the high folic acid group was at least partially due to reduced IL-10 production. This study demonstrates a causal relationship between high folic acid intake and reduced NK cell cytotoxicity and provides some insights into the potential mechanisms behind this relationship.

  3. Identification and Analysis of Natural Killer Cells in Murine Nasal Passages

    PubMed Central

    Okada, Kazunari; Sato, Shintaro; Sato, Ayuko; Mandelboim, Ofer; Yamasoba, Tatsuya; Kiyono, Hiroshi

    2015-01-01

    Background Natural killer (NK) cells in the upper respiratory airways are not well characterized. In the current study, we sought to characterize and functionally assess murine nasal NK cells. Methods Using immunohistochemistry and flow cytometry, we compared the nasal NK cells of Ncr1GFP/+ knock-in mice, whose NK cells produced green fluorescent protein, with their splenic and pulmonary counterparts. In addition, we functionally analyzed the nasal NK cells of these mice in vitro. To assess the in vivo functions of nasal NK cells, C57BL/6 mice depleted of NK cells after treatment with PK136 antibody were nasally infected with influenza virus PR8. Results Immunohistochemical analysis confirmed the presence of NK cells in the lamina propria of nasal mucosa, and flow cytometry showed that these cells were of NK cell lineage. The expression patterns of Ly49 receptor, CD11b/CD27, CD62L and CD69 revealed that nasal NK cells had an immature and activated phenotype compared with that of their splenic and pulmonary counterparts. Effector functions including degranulation and IFN(interferon)-γ production after in vitro stimulation with phorbol 12-myristate-13-acetate plus ionomycin or IL(interleukin)-12 plus IL-18 were dampened in nasal NK cells, and the depletion of NK cells led to an increased influenza virus titer in nasal passages. Conclusions The NK cells of the murine nasal passage belong to the conventional NK cell linage and characteristically demonstrate an immature and activated phenotype. Despite their hyporesponsiveness in vitro, nasal NK cells play important roles in the host defense against nasal influenza virus infection. PMID:26575399

  4. Disialoganglioside-specific human natural killer cells are effective against drug-resistant neuroblastoma.

    PubMed

    Seidel, Diana; Shibina, Anastasia; Siebert, Nikolai; Wels, Winfried S; Reynolds, C Patrick; Huebener, Nicole; Lode, Holger N

    2015-05-01

    The disialoganglioside GD2 is a well-established target antigen for passive immunotherapy in neuroblastoma (NB). Despite the recent success of passive immunotherapy with the anti-GD2 antibody ch14.18 and cytokines, treatment of high-risk NB remains challenging. We expanded the approach of GD2-specific, antibody-based immunotherapy to an application of a GD2-specific natural killer (NK) cell line, NK-92-scFv(ch14.18)-zeta. NK-92-scFv(ch14.18)-zeta is genetically engineered to express a GD2-specific chimeric antigen receptor generated from ch14.18. Here, we show that chimeric receptor expression enables NK-92-scFv(ch14.18)-zeta to effectively lyse GD2(+) NB cells also including partially or multidrug-resistant lines. Our data suggest that recognition of GD2 by the chimeric receptor is the primary mechanism involved in NK-92-scFv(ch14.18)-zeta-mediated lysis and is independent of activating NK cell receptor/ligand interactions. Furthermore, we demonstrate that NK-92-scFv(ch14.18)-zeta is able to mediate a significant anti-tumor response in vivo in a drug-resistant GD2(+) NB xenograft mouse model. NK-92-scFv(ch14.18)-zeta is an NB-specific NK cell line that has potential for future clinical development due to its high stability and activity toward GD2(+) NB cell lines.

  5. Activation of human natural killer cells by the soluble form of cellular prion protein

    SciTech Connect

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  6. Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity.

    PubMed

    Sutton, Vivien R; Brennan, Amelia J; Ellis, Sarah; Danne, Jill; Thia, Kevin; Jenkins, Misty R; Voskoboinik, Ilia; Pejler, Gunnar; Johnstone, Ricky W; Andrews, Daniel M; Trapani, Joseph A

    2016-03-01

    The anionic proteoglycan serglycin is a major constituent of secretory granules in cytotoxic T lymphocyte (CTL)/natural killer (NK) cells, and is proposed to promote the safe storage of the mostly cationic granule toxins, granzymes and perforin. Despite the extensive defects of mast cell function reported in serglycin gene-disrupted mice, no comprehensive study of physiologically relevant CTL/NK cell populations has been reported. We show that the cytotoxicity of serglycin-deficient CTL and NK cells is severely compromised but can be partly compensated in both cell types when they become activated. Reduced intracellular granzyme B levels were noted, particularly in CD27(+) CD11b(+) mature NK cells, whereas serglycin(-/-) TCR-transgenic (OTI) CD8 T cells also had reduced perforin stores. Culture supernatants from serglycin(-/-) OTI T cells and interleukin-2-activated NK contained increased granzyme B, linking reduced storage with heightened export. By contrast, granzyme A was not significantly reduced in cells lacking serglycin, indicating differentially regulated trafficking and/or storage for the two granzymes. A quantitative analysis of different granule classes by transmission electronmicroscopy showed a selective loss of dense-core granules in serglycin(-/-) CD8(+) CTLs, although other granule types were maintained quantitatively. The findings of the present study show that serglycin plays a critical role in the maturation of dense-core cytotoxic granules in cytotoxic lymphocytes and the trafficking and storage of perforin and granzyme B, whereas granzyme A is unaffected. The skewed retention of cytotoxic effector molecules markedly reduces CTL/NK cell cytotoxicity, although this is partly compensated for as a result of activating the cells by physiological means.

  7. Natural killer-cell function in hemodialysis patients: effect of the dialysis membrane.

    PubMed

    Zaoui, P; Hakim, R M

    1993-06-01

    Natural killer (NK) cells are specific peripheral blood lymphocytes which are involved in the lysis of malignant and virally transformed cells. In a prospective study of eight hemodialysis patients, we investigated the effects of recurrent exposure to the cuprophane (CU) membrane on the number and functional ability of NK cells, against both their classical in vitro target, K562 cell line, as well as the beta 2m/HLA negative cells that emerge during dialysis with CU membrane. The percent of NK cells, defined by the CD56 epitope, increased from 27.7 +/- 7.9% of cells at baseline to 59.2 +/- 12.0% after two weeks of dialysis with new CU membrane (P < 0.01). The ability of these cells to lyse K562 cells decreased from 28.7 +/- 16.5% at baseline to 12.5 +/- 6.2% (P < 0.001) after two weeks of dialysis with CU membrane, while their cytotoxicity against beta 2m negative cells increased during the same period from 32.5 +/- 12.4% to 61.3 +/- 23.7% (P < 0.001). These results are consistent with the observation that the cytolytic ability of NK cells is inversely related to target cell expression of HLA antigens and beta 2m expression on cell surfaces. In addition, the results of these studies confirm in vitro observations of the decrease in cytolytic activity of the NK cells when exposed to the CU membrane, and may explain the emergence of these beta 2m/HLA negative cells during dialysis with CU membrane. It is possible that these observations may also have a clinical relevance to the immune defects and increased incidence of malignancy in uremia.

  8. Membrane-Bound TRAIL Supplements Natural Killer Cell Cytotoxicity Against Neuroblastoma Cells

    PubMed Central

    Sheard, Michael A.; Asgharzadeh, Shahab; Liu, Yin; Lin, Tsen-Yin; Wu, Hong-Wei; Ji, Lingyun; Groshen, Susan; Lee, Dean A.; Seeger, Robert C.

    2013-01-01

    Neuroblastoma cells have been reported to be resistant to death induced by soluble, recombinant forms of TRAIL (CD253/TNFSF10) due to low or absent expression of caspase-8 and/or TRAIL-receptor 2 (TRAIL-R2/DR5/CD262/TNFRSF10b). However, their sensitivity to membrane-bound TRAIL on natural killer (NK) cells is not known. Comparing microarray gene expression and response to NK cell-mediated cytotoxicity, we observed a correlation between TRAIL-R2 expression and the sensitivity of fourteen neuroblastoma cell lines to the cytotoxicity of NK cells activated with IL-2 plus IL-15. Even though most NK cytotoxicity was dependent upon perforin, the cytotoxicity was supplemented by TRAIL in fourteen of seventeen (82%) neuroblastoma cell lines as demonstrated using an anti-TRAIL neutralizing antibody. Similarly, a recently developed NK cell expansion system employing IL-2 plus lethally irradiated K562 feeder cells constitutively expressing membrane-bound IL-21 (K562 clone 9.mbIL21) resulted in activated NK cells derived from normal healthy donors and neuroblastoma patients that also utilized TRAIL to supplement cytotoxicity. Exogenous IFNγ up-regulated expression of caspase-8 in three of four neuroblastoma cell lines and increased the contribution of TRAIL to NK cytotoxicity against two of the three lines; however, relatively little inhibition of cytotoxicity was observed when activated NK cells were treated with an anti-IFNγ neutralizing antibody. Constraining the binding of anti-TRAIL neutralizing antibody to membrane-bound TRAIL but not soluble TRAIL indicated that membrane-bound TRAIL alone was responsible for essentially all of the supplemental cytotoxicity. Together, these findings support a role for membrane-bound TRAIL in the cytotoxicity of NK cells against neuroblastoma cells. PMID:23719242

  9. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells

    PubMed Central

    Smith, Drake J.; Liu, Siyuan; Ji, Sunjong; Li, Bo; McLaughlin, Jami; Cheng, Donghui; Witte, Owen N.; Yang, Lili

    2015-01-01

    Invariant natural killer T (iNKT) cells comprise a small population of αβ T lymphocytes. They bridge the innate and adaptive immune systems and mediate strong and rapid responses to many diseases, including cancer, infections, allergies, and autoimmunity. However, the study of iNKT cell biology and the therapeutic applications of these cells are greatly limited by their small numbers in vivo (∼0.01–1% in mouse and human blood). Here, we report a new method to generate large numbers of iNKT cells in mice through T-cell receptor (TCR) gene engineering of hematopoietic stem cells (HSCs). We showed that iNKT TCR-engineered HSCs could generate a clonal population of iNKT cells. These HSC-engineered iNKT cells displayed the typical iNKT cell phenotype and functionality. They followed a two-stage developmental path, first in thymus and then in the periphery, resembling that of endogenous iNKT cells. When tested in a mouse melanoma lung metastasis model, the HSC-engineered iNKT cells effectively protected mice from tumor metastasis. This method provides a powerful and high-throughput tool to investigate the in vivo development and functionality of clonal iNKT cells in mice. More importantly, this method takes advantage of the self-renewal and longevity of HSCs to generate a long-term supply of engineered iNKT cells, thus opening up a new avenue for iNKT cell-based immunotherapy. PMID:25605948

  10. Hepatitis B viral replication influences the expression of natural killer cell ligands

    PubMed Central

    Koumbi, Lemonica; Pollicino, Teresa; Raimondo, Giovanni; Kumar, Naveenta; Karayiannis, Peter; Khakoo, Salim I.

    2016-01-01

    Background Hepatitis B virus (HBV) is accounting for over one million deaths annually due to immune-mediated chronic liver damage. Natural killer (NK) cells are abundant in the liver and contribute in HBV persistence. NK cytotoxic effects are controlled by signals from activating and inhibitory receptors. HBV may circumvent host antiviral immunity via the regulation of NK receptors and their ligands. We investigated the effect of viral replication and HBeAg mutations on NK mediators expression in the livers of chronic HBV (CHB) patients and in cell cultures. Methods HBV monomers bearing hotspot mutations in the basal core promoter and precore region were transfected into HepG2 cells using a plasmid-free assay. Serum viremia and liver HBV RNA were measured in 19 CHB patients. The expression of HBV RNA and of NKG2D ligands, B7H6, DNAX accessory molecule-1, lectin-like transcript 1 (LLT1), LFA-1 and TRAIL was measured in the livers of CHB patients and transfected cells. Results In general, high HBV replication in CHB patients and cell lines upregulated the mRNA of all NK cell ligands and particularly the inhibitory NK cell ligand, LLT1. The exception was the NKG2D ligand, MICA, that was significantly decreased in patients with high serum viremia and intrahepatic HBV RNA levels. Conclusions HBV replication has differential effects on NK cell ligands suggesting a potential escape mechanisms through up-regulation of LLT1 and down-regulation of MICA. A general trend towards upregulating NK cell ligands can be counteracted by decreasing MICA and hence weakening NK surveillance. PMID:27366037

  11. Alzheimer caregiver stress: basal natural killer cell activity, pituitary-adrenal cortical function, and sympathetic tone.

    PubMed

    Irwin, M; Hauger, R; Patterson, T L; Semple, S; Ziegler, M; Grant, I

    1997-01-01

    The association between Alzheimer caregiving and natural killer (NK) cell activity and basal plasma levels of adrenocorticotropic hormone (ACTH), cortisol, beta-endorphin, prolactin, epinephrine, norepinephrine, and neuropeptide Y was determined in 100 spousal Alzheimer caregivers and 33 age- and gender-comparable control volunteers upon intake into a study of the psychological and physiologic impact of caregiving. The relationship between these physiologic measures and individual characteristics such as age, gender, medical status, severity of stress, severity of depressive symptoms, and caregiver burden was tested. In addition, the association between NK activity and alterations of the neuroendocrine measures was investigated. As compared to controls, the Alzheimer caregivers had similar levels of NK activity and of basal plasma neuroendocrine hormones and sympathetic measures. While older age and male gender status were associated with increased levels of ACTH, neither medical caseness, severity of life stress, nor severity of depressive symptoms was associated with alterations in any of the multiple physiologic domains. Classification of Alzheimer caregiver burden identified caregivers who were mismatched in terms of the amount of care they were required to provide and the amount of respite time received. The mismatched caregivers had significantly higher basal plasma ACTH but no change in other physiological measures, as compared to non-mismatched caregivers. NK activity was negatively correlated with plasma levels of neuropeptide Y but not with any of the other neuroendocrine measures. Based on this cross-sectional evaluation of NK activity and neuroendocrine and sympathetic measures, we conclude that most Alzheimer caregivers do not show evidence of altered basal physiology.

  12. Secretion of cytokines by natural killer cells primed with interleukin-2 and stimulated with different lipoproteins.

    PubMed Central

    De Sanctis, J B; Blanca, I; Bianco, N E

    1997-01-01

    Natural killer (NK) cells were shown to secrete differentially interleukins (IL), IL-1 alpha, IL-1 beta, IL-2, IL-8, interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukaemia inhibitory factor (LIF) upon stimulation with optimal concentrations of chylomicrons (CM), very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoprotein (HDL) or acetyl-modified low-density lipoprotein (AcLDL). CM, VLDL, LDL and AcLDL induced LIF secretion which was absent in nonstimulated cells. CM, VLDL, and LDL did not affect IL-1 alpha secretion. CM stimulated IL-8 > TNF-alpha > IL-1 alpha > IL-2 = IFN-gamma, and decreased seventeen-fold GM-CSF secretion. VLDL stimulated IL-8 secretion > IL-1 alpha = IL-2 > IFN-gamma > TNF-alpha and decreased fivefold GM-CSF secretion. LDL stimulated IL-8 secretion > IL-1 alpha > IL-2 = IFN-gamma, it did not modify TNF-alpha and inhibited five hundred-fold GM-CSF secretion. HDL stimulated IL-2 secretion = IFN-gamma > IL-8, it decreased GM-CSF secretion > IL-1 alpha > IL-1 beta > TNF-alpha without affecting LIF. AcLDL stimulated IL-8 secretion > TNF-alpha > IL-1 alpha > IL-2 = IFN-gamma = IL-1 beta, and decreased GM-CSF secretion eightfold. When NK cells were primed with 10, 100 or 500 IU/ml of IL-2 before the addition of lipoproteins, a decrease in the secretion of cytokines was observed as compared with cells primed with IL-2 only. Differences in cytokine secretion were observed among the diverse type of lipoproteins used for cell stimulus. Thus, lipoproteins may condition NK cytokine secretion and cell activation. Images Figure 1 PMID:9176105

  13. In-vivo stimulation of macaque natural killer T cells with α-galactosylceramide.

    PubMed

    Fernandez, C S; Jegaskanda, S; Godfrey, D I; Kent, S J

    2013-09-01

    Natural killer T cells are a potent mediator of anti-viral immunity in mice, but little is known about the effects of manipulating NKT cells in non-human primates. We evaluated the delivery of the NKT cell ligand, α-galactosylceramide (α-GalCer), in 27 macaques by studying the effects of different dosing (1-100 μg), and delivery modes [directly intravenously (i.v.) or pulsed onto blood or peripheral blood mononuclear cells]. We found that peripheral NKT cells were depleted transiently from the periphery following α-GalCer administration across all delivery modes, particularly in doses of ≥10 μg. Furthermore, NKT cell numbers frequently remained depressed at i.v. α-GalCer doses of >10 μg. Levels of cytokine expression were also not enhanced after α-GalCer delivery to macaques. To evaluate the effects of α-GalCer administration on anti-viral immunity, we administered α-GalCer either together with live attenuated influenza virus infection or prior to simian immunodeficiency virus (SIV) infection of two macaques. There was no clear enhancement of influenza-specific T or B cell immunity following α-GalCer delivery. Further, there was no modulation of pathogenic SIVmac251 infection following α-GalCer delivery to a further two macaques in a pilot study. Accordingly, although macaque peripheral NKT cells are modulated by α-GalCer in vivo, at least for the dosing regimens tested in this study, this does not appear to have a significant impact on anti-viral immunity in macaque models.

  14. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer

    PubMed Central

    Rezvani, Katayoun; Rouce, Rayne H.

    2015-01-01

    Natural killer (NK) cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo-expanded, chimeric antigen receptor (CAR)-engineered, or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated antitumor effect can be achieved in the absence of graft-vs.-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer, such as the failure of infused NK cells to expand and persist in vivo. Therefore, efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors, and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next few years. PMID

  15. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  16. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    PubMed

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  17. In vitro effect of bacterial lipopolysaccharide on the cytotoxicity of human natural killer cells.

    PubMed

    Miranda, D; Puente, J; Blanco, L; Wolf, M E; Mosnaim, A D

    1998-04-01

    Preincubation with a number of mediators of infection, such as Gram negative bacteria (S. typhi), bacterial lipopolysaccharide (LPS), tumor necrotic factor-alpha (TNF-alpha), and interleukin-2 (IL-2), significantly increases natural killer (NK) cell activity in samples of human peripheral blood mononuclear cells (PBMC), without changing the levels of either the phenotypic CD16/56 or stimulatory CD25 marker. We now report similar results after preincubation of highly purified NK cell preparations (CD16 + 56 > 95%; the rest corresponding to CD3+ T-cells) with either S. typhi, TNF-alpha or IL-2. However, in similar experiments, LPS inhibits, in a dose-dependent manner (final conc. 2.5, 5.0 or 10.0 micrograms/mL), NK cell cytotoxicity against K-562 tumor cells. Preincubation of purified NK cells with LPS (25 micrograms/mL; 10 and 30 min) produced significant alterations in the tyrosine phosphorylation/dephosphorylation pattern of several intracellular proteins, including a significant increase (10 min) in the phosphorylation of the 120; 100; 72 and 59 kDa proteins, followed (30 min) by the essentially complete desphosphorylation of the p59 protein. Qualitatively similar results were obtained at lower LPS concentrations e.g., range 2.5 to 20 micrograms/mL. The absence of phosphoproteins in the 40-44 kDa range, known to be present after incubation of monocytes with LPS, raises the possibility that these "class" of proteins may be critical in explaining the LPS inhibitory effect on NK lytic function. Our finding may contribute to a better understanding of the mechanisms involved in the complex in vivo interaction between LPS, monocytes and NK cells.

  18. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth.

    PubMed

    Li, Liping; Yang, Jing; Jiang, Yao; Tu, Jiaoqin; Schust, Danny J

    2015-04-01

    Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.

  19. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells.

    PubMed

    Smith, Drake J; Liu, Siyuan; Ji, Sunjong; Li, Bo; McLaughlin, Jami; Cheng, Donghui; Witte, Owen N; Yang, Lili

    2015-02-01

    Invariant natural killer T (iNKT) cells comprise a small population of αβ T lymphocytes. They bridge the innate and adaptive immune systems and mediate strong and rapid responses to many diseases, including cancer, infections, allergies, and autoimmunity. However, the study of iNKT cell biology and the therapeutic applications of these cells are greatly limited by their small numbers in vivo (∼0.01-1% in mouse and human blood). Here, we report a new method to generate large numbers of iNKT cells in mice through T-cell receptor (TCR) gene engineering of hematopoietic stem cells (HSCs). We showed that iNKT TCR-engineered HSCs could generate a clonal population of iNKT cells. These HSC-engineered iNKT cells displayed the typical iNKT cell phenotype and functionality. They followed a two-stage developmental path, first in thymus and then in the periphery, resembling that of endogenous iNKT cells. When tested in a mouse melanoma lung metastasis model, the HSC-engineered iNKT cells effectively protected mice from tumor metastasis. This method provides a powerful and high-throughput tool to investigate the in vivo development and functionality of clonal iNKT cells in mice. More importantly, this method takes advantage of the self-renewal and longevity of HSCs to generate a long-term supply of engineered iNKT cells, thus opening up a new avenue for iNKT cell-based immunotherapy.

  20. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis.

    PubMed

    Van Kaer, Luc; Wu, Lan; Parekh, Vrajesh V

    2015-09-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that causes demyelination of neurons in the central nervous system. Traditional therapies for MS have involved anti-inflammatory and immunosuppressive drugs with significant side effects that often only provide short-term relief. A more desirable outcome of immunotherapy would be to protect against disease before its clinical manifestation or to halt disease after its initiation. One attractive approach to accomplish this goal would be to restore tolerance by targeting immunoregulatory cell networks. Although much of the work in this area has focused on CD4(+) Foxp3(+) regulatory T cells, other studies have investigated natural killer T (NKT) cells, a subset of T cells that recognizes glycolipid antigens in the context of the CD1d glycoprotein. Studies with human MS patients have revealed alterations in the numbers and functions of NKT cells, which have been partially supported by studies with the experimental autoimmune encephalomyelitis model of MS. Additional studies have shown that activation of NKT cells with synthetic lipid antigens can, at least under certain experimental conditions, protect mice against the development of MS-like disease. Although mechanisms of this protection remain to be fully investigated, current evidence suggests that it involves interactions with other immunoregulatory cell types such as regulatory T cells and immunosuppressive myeloid cells. These studies have provided a strong foundation for the rational design of NKT-cell-based immunotherapies for MS that induce tolerance while sparing overall immune function. Nevertheless, additional pre-clinical and clinical studies will be required to bring this goal to fruition.

  1. Autologous Stem Cell Transplant Recipients Tolerate Haploidentical Related-Donor Natural Killer Cell Enriched Infusions

    PubMed Central

    Klingemann, Hans; Grodman, Carrie; Cutler, Elliott; Duque, Marvin; Kadidlo, Diane; Klein, Andreas K.; Sprague, Kellie A.; Miller, Kenneth B.; Comenzo, Raymond L.; Kewalramani, Tarun; Yu, Neng; Van Etten, Richard A.; McKenna, David H.

    2012-01-01

    BACKGROUND In the setting of allogeneic stem cell transplantation (alloSCT), infusing natural killer (NK) cells from a major histocompatibility complex (MHC) mismatched donor can mediate an anti-leukemic effect. Graft versus tumor (GvT) effect following autologous stem cell transplantation (ASCT) may result in less disease relapse. STUDY DESIGN AND METHODS We performed a phase I clinical trial to assess the safety and feasibility of infusing distantly processed donor NK enriched mononuclear cell (NK-MC) infusions from a MHC haplotype mismatched (haploidentical) donor to patients who recently underwent ASCT for a hematologic malignancy. On day 1, peripheral blood mononuclear cells (MC) were obtained by steady-state leukapheresis and sent from Boston to the Production Assistance for Cellular Therapies (PACT) facility at the University of Minnesota, where immunomagnetic depletion of CD3 cells was performed on day 2. NK-MC product were then returned to Boston on day 2 for infusion on day 3. Toxicity, cellular product characteristics and logistic events were monitored. RESULTS At a median of 90 days (range, 49–191) following ASCT, thirteen patients were treated with escalating doses of NK-MC per kg from 105 to 2 ×107. Adverse effects included grade 2 rigors and muscle aches, but no grade 3 or 4 events, and no GvHD or marrow suppression. One air courier delay occurred. NK-MC products were viable with cytotoxic activity after transport. CONCLUSION CD3-depleted, MHC mismatched allogeneic NK-MC infusions can be safely and feasibly administered to patients after ASCT following distant processing and transport, justifying further development of this approach. PMID:22738379

  2. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells.

    PubMed

    Lawson, Victoria

    2012-09-01

    CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.

  3. Surface aminopeptidase activity of rat natural killer cells. I. Biochemical and biological properties.

    PubMed

    Amoscato, A A; Spiess, R R; Brumfield, A M; Herberman, R B; Chambers, W H

    1994-04-28

    Aminopeptidase (AP) activity on rat natural killer (NK) cells was found to have the following characteristics: (1) the activity was surface associated and not secreted, as determined by extracellular location of product and by the cessation of hydrolysis of substrate upon removal of the cells from the medium. (2) The activity was linear with respect to time and cell number. (3) The enzymatic activity on splenocytes and on the NK leukemia cell line CRNK-16, but not on IL-2 activated NK (A-NK) cells, was sensitive to trypsin treatment. (4) The AP activity on intact cells had a broad pH dependency with optimal activity at slightly alkaline pH but lower activity at acidic pH. (5) There was a preference for neutral substrates and essentially no activity towards acidic substrates. (6) Enzymatic activity was inhibited in the presence of the AP inhibitors bestatin and amastatin, and in the presence of the chelator, 1,10 phenanthroline, indicating the involvement of a metalloprotease. (7) Culture of A-NK cells with bestatin resulted in a decrease in cytotoxicity against YAC-1 and P815 targets. Amastatin treatment caused only a slight decrease in cytotoxicity against YAC-1 targets, but a significant decrease in cytotoxicity against P815 targets. (8) Treatment of A-NK cultures with specific inhibitors of APases caused an increase in expression of CD2 (an increase from 20-80% with bestatin and an increase from 25-35% in the presence of amastatin). These results provide the first evidence for the existence of APases on the surface of NK cells and suggest a role for these enzymes in the regulation of cytotoxic activity and of CD2 surface expression.

  4. Natural killer cells act as early responders in an experimental infection with Neospora caninum in calves.

    PubMed

    Klevar, Siv; Kulberg, Siri; Boysen, Preben; Storset, Anne K; Moldal, Torfinn; Björkman, Camilla; Olsen, Ingrid

    2007-03-01

    The intracellular protozoan parasite Neospora caninum is a cause of abortion and congenital disease in cattle worldwide. We have previously shown that natural killer (NK) cells produce IFN-gamma in response to N. caninum tachyzoites in vitro. This study aimed to investigate the role of NK cells and other cellular immune responses in an experimental N. caninum infection model in calves. Phenotyping of peripheral blood lymphocytes showed a drop in the percentage of NK cells at days 4-6 after i.v. inoculation, followed by an increase in the percentage of both NK cells and CD8+ T cells which peaked at days 11-15. A whole blood flow cytometric assay showed that CD4+ T cells were the major IFN-gamma producing cells, but in the early stages of the infection both NK cells and CD8+ T cells contributed to IFN-gamma production. We also compared the ability of two different N. caninum antigen preparations--sonicated soluble antigens and intact heat-inactivated parasites--to induce proliferation and IFN-gamma production in various cell types. Heat-inactivated tachyzoites induced a 3.7 times greater increase in the number of IFN-gamma producing NK cells compared with sonicated soluble antigens. This indicated the presence of some NK cell-stimulating antigens in the intact tachyzoite that were absent from the sonicated soluble antigens. The heat-inactivated whole tachyzoites also inhibited gammadelta T cell proliferation while the soluble antigens from N. caninum did not. We believe this is the first time NK cells have been demonstrated to be early responders in N. caninum infection in calves. PMID:17188277

  5. Regulation of human natural killer cell migration and proliferation by the exodus subfamily of CC chemokines.

    PubMed

    Robertson, M J; Williams, B T; Christopherson, K; Brahmi, Z; Hromas, R

    2000-01-10

    Natural killer (NK) cells play an important role in innate and adaptive immune responses to obligate intracellular pathogens. Nevertheless, the regulation of NK cell trafficking and migration to inflammatory sites is poorly understood. Exodus-1/MIP-3alpha/LARC, Exodus-2/6Ckine/SLC, and Exodus-3/MIP-3beta/ELC/CKbeta-11 are CC chemokines that share a unique aspartate-cysteine-cysteine-leucine motif near their amino terminus and preferentially stimulate the migration of T lymphocytes. The effects of Exodus chemokines on human NK cells were examined. Exodus-1, -2, and -3 did not induce detectable chemotaxis of resting peripheral blood NK cells. In contrast, Exodus-2 and -3 stimulated migration of polyclonal activated peripheral blood NK cells in a dose-dependent fashion. Exodus-2 and -3 also induced dose-dependent chemotaxis of NKL, an IL-2-dependent human NK cell line. Results of modified checkerboard assays indicate that migration of NKL cells in response to Exodus-2 and -3 represents true chemotaxis and not simply chemokinesis. Exodus-1, -2, and -3 did not induce NK cell proliferation in the absence of other stimuli. Nevertheless, Exodus-2 and -3 significantly augmented IL-2-induced proliferation of normal human CD56(dim) NK cells. In contrast, Exodus-1, -2, and -3 did not affect the cytolytic activity of resting or activated peripheral blood NK cells. Expression of message for CCR7, a shared receptor for Exodus-2 and -3, was detected in activated polyclonal NK cells and NKL cells but not resting NK cells. Taken together, these results indicate that Exodus-2 and -3 can participate in the recruitment and proliferation of activated NK cells. Exodus-2 and -3 may regulate interactions between T cells and NK cells that are crucial for the generation of optimal immune responses.

  6. The association between DRESS and the diminished numbers of peripheral B lymphocytes and natural killer cells.

    PubMed

    Yazicioglu, Mehtap; Elmas, Reyhan; Turgut, Burhan; Genchallac, Tugba

    2012-05-01

    Drug reaction with eosinophilia and systemic symptoms (DRESS) is a drug-induced, severe multiorgan system reaction whose exact pathogenesis remains unknown. This study aimed at evaluating specific changes in peripheral blood lymphocyte subtypes associated with DRESS during antibiotic treatment. We analyzed six patients with DRESS. A complete blood count and peripheral blood lymphocytes immunophenotyping were carried out at symptom onset and at follow-up visits. Acute-phase reactants and liver enzymes were measured in all patients. Other tests - viral serology, serum immunoglobulin levels, and skin tests were performed when possible. B-cell counts were low in all patients at the onset of DRESS, and natural killer (NK) cells were low in all cases except one. During recovery, B-cell numbers were within a normal range in five patients. In one, there was even a 10-fold increase in B-cell counts, although the level was mildly low after 3 months. NK-cell numbers were within a normal range in three patients. The mean numbers of B cells and NK cells were significantly higher in the second samples compared to the values on admission. Serum IgA and IgM levels were low in one patient. The drug provocation test was positive with cefotaxime in one patient. Viral serology, performed on five patients, was negative. A decrease in B-cell and NK-cell counts was the most consistent finding associated with the onset of antibiotic-induced DRESS in our patients. This immunologic alteration might be a useful predictor of DRESS development.

  7. Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality.

    PubMed

    Schneidawind, Dominik; Baker, Jeanette; Pierini, Antonio; Buechele, Corina; Luong, Richard H; Meyer, Everett H; Negrin, Robert S

    2015-05-28

    Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4(+) iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4(+) iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4(+) iNKT cells from third-party mice were as protective as CD4(+) iNKT cells from donor mice although third-party CD4(+) iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4(+) iNKT cells resulted in a robust expansion of donor CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation.

  8. Induced Pluripotent Stem Cell-Derived Natural Killer Cells for Treatment of Ovarian Cancer.

    PubMed

    Hermanson, David L; Bendzick, Laura; Pribyl, Lee; McCullar, Valarie; Vogel, Rachel Isaksson; Miller, Jeff S; Geller, Melissa A; Kaufman, Dan S

    2016-01-01

    Natural killer (NK) cells can provide effective immunotherapy for ovarian cancer. Here, we evaluated the ability of NK cells isolated from peripheral blood (PB) and NK cells derived from induced pluripotent stem cell (iPSC) to mediate killing of ovarian cancer cells in a mouse xenograft model. A mouse xenograft model was used to evaluate the intraperitoneal delivery of three different NK cell populations: iPSC-derived NK cells, PB-NK cells that had been activated and expanded in long-term culture, and overnight activated PB-NK cells that were isolated through CD3/CD19 depletion of PB B and T cells. Bioluminescent imaging was used to monitor tumor burden of luciferase expressing tumor lines. Tumors were allowed to establish prior to administering NK cells via intraperitoneal injection. These studies demonstrate a single dose of any of the three NK cell populations significantly reduced tumor burden. When mice were given three doses of either iPSC-NK cells or expanded PB-NK cells, the median survival improved from 73 days in mice untreated to 98 and 97 days for treated mice, respectively. From these studies, we conclude iPSC-derived NK cells mediate antiovarian cancer killing at least as well as PB-NK cells, making these cells a viable resource for immunotherapy for ovarian cancer. Due to their ability to be easily differentiated into NK cells and their long-term expansion potential, iPSCs can be used to produce large numbers of well-defined NK cells that can be banked and used to treat a large number of patients including treatment with multiple doses if necessary.

  9. Homeostatic regulation of marginal zone B cells by invariant natural killer T cells.

    PubMed

    Wen, Xiangshu; Yang, Jun-Qi; Kim, Peter J; Singh, Ram Raj

    2011-01-01

    Marginal zone B cells (MZB) mount a rapid antibody response, potently activate naïve T cells, and are enriched in autoreactive B cells. MZBs express high levels of CD1d, the restriction element for invariant natural killer T cells (iNKT). Here, we examined the effect of iNKT cells on MZB cell activation and numbers in vitro and in vivo in normal and autoimmune mice. Results show that iNKT cells activate MZBs, but restrict their numbers in vitro and in vivo in normal BALB/c and C57/BL6 mice. iNKT cells do so by increasing the activation-induced cell death and curtailing proliferation of MZB cells, whereas they promote the proliferation of follicular B cells. Sorted iNKT cells can directly execute this function, without help from other immune cells. Such MZB regulation by iNKTs is mediated, at least in part, via CD1d on B cells in a contact-dependent manner, whereas iNKT-induced proliferation of follicular B cells occurs in a contact- and CD1d-independent manner. Finally, we show that iNKT cells reduce 'autoreactive' MZB cells in an anti-DNA transgenic model, and limit MZB cell numbers in autoimmune-prone (NZB×NZW)F1 and non-obese diabetic mice, suggesting a potentially new mechanism whereby iNKT cells might regulate pathologic autoimmunity. Differential regulation of follicular B cells versus potentially autoreactive MZBs by iNKT cells has important implications for autoimmune diseases as well as for conditions that require a rapid innate B cell response.

  10. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    SciTech Connect

    Rowe, Alexander M.; Brundage, Kathleen M.; Barnett, John B. . E-mail: jbarnett@hsc.wvu.edu

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.

  11. Immunosuppressive effects of triclosan, nonylphenol, and DDT on human natural killer cells in vitro.

    PubMed

    Udoji, Felicia; Martin, Tamara; Etherton, Rachel; Whalen, Margaret M

    2010-01-01

    Human natural killer (NK) cells are a first-line immune defense against tumor cells and virally-infected cells. If their function is impaired, it leaves an individual more susceptible to cancer development or viral infection. The ability of compounds that contaminate the environment to suppress the function of NK cells could contribute to the increased risk of cancer development. There are a wide spectrum of compounds that significantly contaminate water and food that are consumed by humans, leading to accumulation of some of these compounds in human tissues. In the current study, we examined the ability of three such compounds to diminish the function of human NK cells. Triclosan (TC) is an antimicrobial agent used in a large number of antibacterial soaps. Nonylphenol (NP) is a degradation product of compounds used as surfactants and as stabilizers in plastics. 4,4'-Dichlorodiphenyltrichloroethane (DDT) is a pesticide that is mainly used to control mosquitoes. The compounds were examined for their ability to suppress NK function following exposures of 1 h, 24 h, 48 h, and 6 days. Each agent was able to substantially decrease NK lytic function within 24 h. At a concentration of 5 microM, both TC and NP inhibited NK lytic function by 87 and 30%, respectively; DDT decreased function by 55% at 2.5 microM. The negative effects of each of these compounds persisted and/or intensified following a brief (1 h) exposure to the compounds, indicating that the impairment of function cannot be eliminated by removal of the compound under in vitro conditions. PMID:20297919

  12. Chronic natural killer lymphoproliferative disorders: characteristics of an international cohort of 70 patients

    PubMed Central

    Poullot, E.; Zambello, R.; Leblanc, F.; Bareau, B.; De March, E.; Roussel, M.; Boulland, M. L.; Houot, R.; Renault, A.; Fest, T.; Semenzato, G.; Loughran, T.; Lamy, T.

    2014-01-01

    Background The 2008 World Health Organization (WHO) classification distinguishes three entities among the large granular lymphocytic leukemia (LGL leukemia): T-cell LGL leukemia (T-LGL leukemia), aggressive natural killer (NK) cell leukemia, and chronic NK lymphoproliferative disorders (LPD), the later considered as a provisional entity. Only a few and small cohorts of chronic NK LPD have been published. Patients and methods We report here clinicobiological features collected retrospectively from 70 cases of chronic NK LPD, and compared with those of T-LGL leukemia. Results There were no statistical differences between chronic NK LPD and T-LGL leukemia concerning median age [61 years (range 23–82 years)], organomegaly (26%), associated autoimmune diseases (24%), and associated hematological malignancies (11%). Patients with chronic NK LPD were significantly less symptomatic (49% versus 18%, P < 0.001) and the association with rheumatoid arthritis was more rarely observed (7% versus 17%, P = 0.03). The neutropenia (<0.5 × 109/l) was less severe in chronic NK LPD (33% versus 61%, P < 0.001) without difference in the rate of recurrent infections. STAT3 mutation was detected in 12% of the cohort, which is lower than the frequency observed in T-LGL leukemia. Thirty-seven percent of the patients required specific therapy. Good results were obtained with cyclophosphamide. Overall and complete response rates were, respectively, 69% and 56%. Overall survival was 94% at 5 years. Conclusion This study suggests very high similarities between chronic NK LPD and T-LGL leukemias. Since chronic NK LPD is still a provisional entity, our findings should be helpful when considering further revisions of the WHO classification. PMID:25096606

  13. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice

    PubMed Central

    Obata, Fumiko; Subrahmanyam, Priyanka B.; Vozenilek, Aimee E.; Hippler, Lauren M.; Jeffers, Tynae; Tongsuk, Methinee; Tiper, Irina; Saha, Progyaparamita; Jandhyala, Dakshina M.; Kolling, Glynis L.; Latinovic, Olga; Webb, Tonya J.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease. PMID:25904903

  14. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells

    PubMed Central

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44highCD24lowHER2low cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells. PMID:23593542

  15. Delineation of multiple subpopulations of natural killer cells in rhesus macaques

    PubMed Central

    Webster, Ramothea L; Johnson, R Paul

    2005-01-01

    Natural killer (NK) cells in rhesus macaques have been variably defined as CD3− CD16+ or CD3− CD8+, although only limited efforts have been made to validate these definitions rigorously. To better understand the role of NK cells in macaque disease models, we undertook a multiparameter analysis of macaque NK cells employing four-colour flow cytometry and a panel of lineage-specific and non-lineage-specific lymphocyte markers. Using this approach, we identified two distinct populations of candidate NK cells: a major CD8bright CD16+ population and a minor CD8bright CD16− population. Further analysis of the major and minor NK cell populations revealed the expression of multiple markers characteristic of NK cells, including CD2, CD7, CD16, CD161, NKG2A and granzyme B. In addition, a CD56+ subset of cells within the minor rhesus NK population was identified which expressed chemokine and lymph node homing receptors similar to those expressed by the CD56bright NK cell population identified in humans. Cytolytic assays confirmed that the phenotypically defined rhesus NK cells lysed NK-susceptible target cells. Our observations support the existence of several distinct subpopulations of rhesus macaque NK cells, which have significant phenotypic and functional similarities to their human counterparts. These improved immunophenotypic definitions of macaque NK cells should facilitate future analysis of innate immune responses in rhesus macaques and the role of NK cells in AIDS pathogenesis in Simian immunodeficiency virus (SIV)-infected macaques. PMID:15885126

  16. The breast tumor microenvironment alters the phenotype and function of natural killer cells

    PubMed Central

    Krneta, Tamara; Gillgrass, Amy; Chew, Marianne; Ashkar, Ali A.

    2016-01-01

    Natural killer (NK) cells are innate immune cells with the ability to identify and eliminate transformed cells. However, within tumors, many studies have described NK cells as non-functional. The developmental stage of tumor-associated NK cells and how this may relate to functionality has not been explored. We examined the developmental state of NK cells from polyoma middle T antigen (pyMT) transgenic mouse (MMTV-pMT) breast tumors. In pyMT tumors, NK cells were immature as evidenced by their decreased expression of DX5 and their CD27lowCD11blow phenotype. These immature NK cells also had increased expression of NKG2A and expressed low levels of NKp46, perforin, and granzyme B. In contrast, splenic NK cells isolated from the same mice maintained their maturity and their expression of activation markers. To delineate whether the tumor microenvironment directly alters NK cells, we adoptively transferred labeled NK cells and followed their activation status in both the spleen and the tumor. NK cells that arrived at the tumor had half the expression of NKp46 within three days of transfer in comparison to those which arrived at the spleen. In an effort to modify the tumor microenvironment and assess the plasticity of intratumoral NK cells, we treated pyMT tumors with IL-12 and anti-TGF-β. After one week of treatment, the maturity of tumor-associated NK cells was increased; thus, indicating that these cells possess the ability to mature and become activated. A better understanding of how NK cells are modified by the tumor microenvironment will help to develop strategies aimed at bolstering immune responses against tumors. PMID:26277898

  17. Innate immune control of EBV-infected B cells by invariant natural killer T cells.

    PubMed

    Chung, Brian K; Tsai, Kevin; Allan, Lenka L; Zheng, Dong Jun; Nie, Johnny C; Biggs, Catherine M; Hasan, Mohammad R; Kozak, Frederick K; van den Elzen, Peter; Priatel, John J; Tan, Rusung

    2013-10-10

    Individuals with X-linked lymphoproliferative disease lack invariant natural killer T (iNKT) cells and are exquisitely susceptible to Epstein-Barr virus (EBV) infection. To determine whether iNKT cells recognize or regulate EBV, resting B cells were infected with EBV in the presence or absence of iNKT cells. The depletion of iNKT cells increased both viral titers and the frequency of EBV-infected B cells. However, EBV-infected B cells rapidly lost expression of the iNKT cell receptor ligand CD1d, abrogating iNKT cell recognition. To determine whether induced CD1d expression could restore iNKT recognition in EBV-infected cells, lymphoblastoid cell lines (LCL) were treated with AM580, a synthetic retinoic acid receptor-α agonist that upregulates CD1d expression via the nuclear protein, lymphoid enhancer-binding factor 1 (LEF-1). AM580 significantly reduced LEF-1 association at the CD1d promoter region, induced CD1d expression on LCL, and restored iNKT recognition of LCL. CD1d-expressing LCL elicited interferon γ secretion and cytotoxicity by iNKT cells even in the absence of exogenous antigen, suggesting an endogenous iNKT antigen is expressed during EBV infection. These data indicate that iNKT cells may be important for early, innate control of B cell infection by EBV and that downregulation of CD1d may allow EBV to circumvent iNKT cell-mediated immune recognition.

  18. Influence of interferon on the functional expression of natural killer target structures of murine lymphoma cells.

    PubMed

    Marini, S; Guadagni, F; Bonmassar, E; Potenza, P; Giuliani, A

    1986-10-01

    Murine lymphoma cells (YAC-1), induced by Moloney leukemia virus, nontreated (YAC) or pretreated in vitro with interferon (YAC-IF), were tested for their susceptibility to natural killer (NK)-mediated cytolysis. In line with previous reports YAC-IF were less susceptible to NK lysis than YAC cells. In cold competition assay, YAC-IF inhibited cytotoxicity to a lesser extent than YAC lymphoma when labeled target YAC cells were used. However, when radioactive YAC-IF cells were used as targets, cold competition attained with both YAC and YAC-IF was essentially the same. Furthermore, effector splenocytes, depleted of NK effector cells through immunoabsorption on YAC monolayer, were inactive against both YAC and YAC-IF targets. On the other hand, effector lymphocytes, absorbed on YAC-IF monolayer, retained NK activity against YAC cells but not against YAC-IF targets. These results are compatible with the hypothesis that interferon (IF) modulates negatively a subset of "interferon-susceptible" (IFS) NK target structure(s) (TS) of YAC cells, which would then express membrane determinants not functionally present on YAC-IF cells. On the other hand YAC and YAC-IF cells share "interferon-resistant" (IFR) TS not affected by pretreatment with IF. In order to test whether IFS X TS and IFR X TS are present on the same cell or clonally distributed, YAC cells were cloned and tested for NK susceptibility following IF pretreatment. The results did not support the hypothesis of a clonal distribution of both IFS X TS and IFR X TS since IF pretreatment of all clones, obtained by limiting dilution, resulted in a net impairment of target susceptibility to NK effector cells.

  19. Prognostic biomarkers in patients with localized natural killer/T-cell lymphoma treated with concurrent chemoradiotherapy

    PubMed Central

    Yamaguchi, Motoko; Takata, Katsuyoshi; Yoshino, Tadashi; Ishizuka, Naoki; Oguchi, Masahiko; Kobayashi, Yukio; Isobe, Yasushi; Ishizawa, Kenichi; Kubota, Nobuko; Itoh, Kuniaki; Usui, Noriko; Miyazaki, Kana; Wasada, Izumi; Nakamura, Shigeo; Matsuno, Yoshihiro; Oshimi, Kazuo; Kinoshita, Tomohiro; Tsukasaki, Kunihiro; Tobinai, Kensei

    2014-01-01

    Concurrent chemoradiotherapy has become one of the standard management approaches for newly diagnosed localized nasal natural killer (NK)/T-cell lymphoma (NKTCL). Few data are available on the prognostic biomarkers of NKTCL among patients treated with concurrent chemoradiotherapy. To evaluate the prognostic significance of immunophenotypic biomarkers for patients treated with concurrent chemoradiotherapy, latent membrane protein 1 (LMP1), cutaneous lymphocyte antigen (CLA) and cell origin were examined in samples from 32 patients who were enrolled in the Japan Clinical Oncology Group 0211 trial and treated with concurrent chemoradiotherapy. LMP1 and CLA were positive in 66% (19/29) and 29% (9/31) of the cases examined, respectively. The median follow-up duration was 68 months (range, 61–94). The patients with LMP1-positive tumors showed a better overall survival (OS) than the patients with LMP1-negative tumors (hazard ratio, 0.240; 95% confidence interval [CI], 0.057–1.013; 80% CI, 0.093–0.615; P = 0.035). All five patients with LMP1-negative tumors who experienced disease progression died of lymphoma, and both patients with local failure had LMP1-negative tumors. There was no significant difference in OS according to CLA expression. A total of 27 (84%) cases were of NK-cell origin, two were of αβ T-cell origin and three were of γδ T-cell origin. In contrast to those with tumors of NK-cell origin, all five patients with NKTCL of T-cell origin were alive without relapse at the last follow up. Our results indicate that LMP1 expression is a favorable prognostic marker and suggest that a T-cell origin of the tumor may be a favorable prognostic marker for patients with localized NKTCL treated with concurrent chemoradiotherapy. PMID:25181936

  20. Immunosuppressive Effects of Triclosan, Nonylphenol, and DDT on Human Natural Killer Cells In Vitro

    PubMed Central

    Udoji, Felicia; Martin, Tamara; Etherton, Rachel; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are a first line immune defense against tumor cells and virally infected cells. If their function is impaired, it leaves an individual more susceptible to cancer development or viral infection. The ability of compounds that contaminate the environment to suppress the function of NK cells could contribute to increased risk of cancer development. There are a wide spectrum of compounds that significantly contaminate water and food that is consumed by humans leading to accumulation of some of these compounds in human tissues. In the current study, we examined the ability of three such compounds to diminish the function of human NK cells. Triclosan (TC) is an antimicrobial agent used in a large number of antibacterial soaps. Nonylphenol (NP) is a degradation product of compounds used as surfactants and as stabilizers in plastics. 4, 4′-dichlorodiphenyltrichloroethane (DDT) is a pesticide that is mainly used to control mosquitoes. The compounds were examined for their ability to suppress NK function following exposures of 1 hr, 24 hr, 48 hr, and 6 d. Each agent was able to substantially decrease NK lytic function within 24 hr. At a concentration of 5 μM, both TC and NP inhibited NK lytic function by 87 and 30%, respectively; DDT decreased function by 55% at 2.5 μM. The negative effects of each of these compounds persisted and/or intensified following a brief (1 hr) exposure to the compounds, indicating that the impairment of function cannot be eliminated by removal of the compound under in vitro conditions. PMID:20297919

  1. Expression of complement regulatory proteins on human natural killer cell subsets.

    PubMed

    Wang, Lin; Halliday, Deborah; Johnson, Peter M; Christmas, Stephen E

    2007-10-15

    The cell surface complement regulatory (CReg) proteins CD46, CD55 and CD59 are widely distributed on human leucocytes and protect against complement-mediated damage. To investigate heterogeneity in CReg protein expression by human natural killer (NK) cells, levels were assessed on resting and activated NK cell subsets identified phenotypically on the basis of expression of CD56 and CD158 markers. Levels of all three CReg proteins on CD56+ cells were lower than on T cells (p<0.05). Freshly isolated CD56(bright) cells expressed higher levels of CD55 than CD56dim cells (p<0.05). CD158a+ cells expressed significantly lower levels of both CD46 and CD59, and CD158e+ cells expressed significantly lower levels of CD46, than CD158a(-) CD158e(-) cells, respectively (both p<0.05). Stimulation with PHA did not significantly alter NK cell surface CReg protein levels whereas, following culture with IL-2, CD46 and CD59 were decreased on both CD56bright and CD56dim subsets (p<0.05). In the case of CD59, this was independent of T cells. Only CD46 was significantly downregulated on CD158b+ (GL183+) and CD158e (NKB1+) subsets (p<0.05). However, culture in IL-15 significantly increased levels of all three CReg proteins. These observations that CReg proteins are downregulated on certain NK cell subsets following activation with IL-2 are opposite to previous findings for other leucocyte subpopulations. Activated NK cells may instead use other strategies for protection against complement-mediated damage in a local inflammatory response.

  2. Upregulation of NKG2D ligands and enhanced natural killer cell cytotoxicity by hydralazine and valproate.

    PubMed

    Chávez-Blanco, A; De la Cruz-Hernández, E; Domínguez, G I; Rodríguez-Cortez, O; Alatorre, B; Pérez-Cárdenas, E; Chacón-Salinas, R; Trejo-Becerril, C; Taja-Chayeb, L; Trujillo, J E; Contreras-Paredes, A; Dueñas-González, A

    2011-12-01

    Natural killer cells play a role in the immune antitumor response by recognizing and eliminating tumor cells through the engagement of NKG2D receptors with their ligands on target cells. This work aimed to investigate whether epigenetic drugs are able to increase MICA and MICB expression as well as NK cell cytotoxicity. Prostate, colon, breast and cervical cancer cell lines were analyzed for the expression of MICA and MICB at the mRNA and protein levels by RT-PCR, Western blot, flow cytometry and ELISA. The activating mark H3K4m2 at the MICA and MICB promoters was investigated by ChIP assays. Cytotoxicity of NK cells against the target epithelial cancer cells was investigated with the CD107 cytotoxicity assay. The results show that hydralazine and valproic acid not only increase the expression of MICA and MICB ligands of target cells, but also reduce their shedding to the supernatant. This upregulation occurs at the transcriptional level as revealed by increase of the H3K4 activating mark at the promoter of MICA and MICB genes. These effects are paralleled by increased cytotoxicity of NK cells, which was attenuated at different degrees by using blocking antibodies against the NKG2D receptor and ligands. In conclusion, our results demonstrate the ability of hydralazine and valproate to increase the NK activity against epithelial cancer cell lines and suggest that these drugs could reduce the levels of soluble MICA and MICB helping in avoiding tumor-induced suppression of NK cytotoxicity against the tumor.

  3. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kheav, Vissal David; Busson, Marc; Scieux, Catherine; Peffault de Latour, Régis; Maki, Guitta; Haas, Philippe; Mazeron, Marie-Christine; Carmagnat, Maryvonnick; Masson, Emeline; Xhaard, Aliénor; Robin, Marie; Ribaud, Patricia; Dulphy, Nicolas; Loiseau, Pascale; Charron, Dominique; Socié, Gérard; Toubert, Antoine; Moins-Teisserenc, Hélène

    2014-12-01

    Natural killer cells are the first lymphocyte subset to reconstitute, and play a major role in early immunity after allogeneic hematopoietic stem cell transplantation. Cells expressing the activating receptor NKG2C seem crucial in the resolution of cytomegalovirus episodes, even in the absence of T cells. We prospectively investigated natural killer-cell reconstitution in a cohort of 439 adult recipients who underwent non-T-cell-depleted allogeneic hematopoietic stem cell transplantation between 2005 and 2012. Freshly collected blood samples were analyzed 3, 6, 12 and 24 months after transplantation. Data were studied with respect to conditioning regimen, source of stem cells, underlying disease, occurrence of graft-versus-host disease, and profiles of cytomegalovirus reactivation. In multivariate analysis we found that the absolute numbers of CD56(bright) natural killer cells at month 3 were significantly higher after myeloablative conditioning than after reduced intensity conditioning. Acute graft-versus-host disease impaired reconstitution of total and CD56(dim) natural killer cells at month 3. In contrast, high natural killer cell count at month 3 was associated with a lower incidence of chronic graft-versus-host disease, independently of a previous episode of acute graft-versus-host disease and stem cell source. NKG2C(+)CD56(dim) and total natural killer cell counts at month 3 were lower in patients with reactivation of cytomegalovirus between month 0 and month 3, but expanded greatly afterwards. These cells were also less numerous in patients who experienced later cytomegalovirus reactivation between month 3 and month 6. Our results advocate a direct role of NKG2C-expressing natural killer cells in the early control of cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation.

  4. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Kheav, Vissal David; Busson, Marc; Scieux, Catherine; de Latour, Régis Peffault; Maki, Guitta; Haas, Philippe; Mazeron, Marie-Christine; Carmagnat, Maryvonnick; Masson, Emeline; Xhaard, Aliénor; Robin, Marie; Ribaud, Patricia; Dulphy, Nicolas; Loiseau, Pascale; Charron, Dominique; Socié, Gérard; Toubert, Antoine; Moins-Teisserenc, Hélène

    2014-01-01

    Natural killer cells are the first lymphocyte subset to reconstitute, and play a major role in early immunity after allogeneic hematopoietic stem cell transplantation. Cells expressing the activating receptor NKG2C seem crucial in the resolution of cytomegalovirus episodes, even in the absence of T cells. We prospectively investigated natural killer-cell reconstitution in a cohort of 439 adult recipients who underwent non-T-cell-depleted allogeneic hematopoietic stem cell transplantation between 2005 and 2012. Freshly collected blood samples were analyzed 3, 6, 12 and 24 months after transplantation. Data were studied with respect to conditioning regimen, source of stem cells, underlying disease, occurrence of graft-versus-host disease, and profiles of cytomegalovirus reactivation. In multivariate analysis we found that the absolute numbers of CD56bright natural killer cells at month 3 were significantly higher after myeloablative conditioning than after reduced intensity conditioning. Acute graft-versus-host disease impaired reconstitution of total and CD56dim natural killer cells at month 3. In contrast, high natural killer cell count at month 3 was associated with a lower incidence of chronic graft-versus-host disease, independently of a previous episode of acute graft-versus-host disease and stem cell source. NKG2C+CD56dim and total natural killer cell counts at month 3 were lower in patients with reactivation of cytomegalovirus between month 0 and month 3, but expanded greatly afterwards. These cells were also less numerous in patients who experienced later cytomegalovirus reactivation between month 3 and month 6. Our results advocate a direct role of NKG2C-expressing natural killer cells in the early control of cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation. PMID:25085354

  5. Mechanisms of selective killing of neuroblastoma cells by natural killer cells and lymphokine activated killer cells. Potential for residual disease eradication.

    PubMed

    Foreman, N K; Rill, D R; Coustan-Smith, E; Douglass, E C; Brenner, M K

    1993-05-01

    Widely disseminated neuroblastoma in children older than infancy remains a very poor prognosis disease. Even the introduction of marrow ablative chemotherapy with autologous rescue has not significantly improved the outlook for these children, presumably because of a failure to eradicate minimal residual disease. One additional approach which may hold promise is the use of immunomodulation with cytokines such as IL2 in the setting of minimal residual disease (MDR), for example after intensive chemotherapy and ABMT. However, considerable variability in the susceptibility of neuroblastoma cells to natural killer (NK) and lymphokine-activated (LAK) killing has been observed, and it is presently unclear how NK and LAK cells recognise neuroblastoma cells. In this paper we examine expression of cell adhesion molecules on neuroblastoma to determine which of these modify interaction with NK and LAK cells. We find that LFA-3 (CD58), the ligand for CD2 is of predominant importance in predicting susceptibility of neuroblastoma to the cytotoxic actions of NK and LAK cells, while expression of ICAM-1 (CD54) may also modify susceptibility. These findings were confirmed by blocking experiments in which co-culture of target cells with ICAM-1 and LFA-3 reduced LAK and NK cytotoxicity. Study of the immunophenotypic features of each patient's neuroblastoma cells before induction of MRD may be valuable in determining the likely effect of IL2 in predicting disease reactivation.

  6. Inflammatory mechanisms in sepsis: elevated invariant natural killer T-cell numbers in mouse and their modulatory effect on macrophage function.

    PubMed

    Heffernan, Daithi S; Monaghan, Sean F; Thakkar, Rajan K; Tran, Mai L; Chung, Chun-Shiang; Gregory, Stephen H; Cioffi, William G; Ayala, Alfred

    2013-08-01

    Invariant natural killer T cells (iNKT) cells are emerging as key mediators of innate immune cellular and inflammatory responses to sepsis and peritonitis. Invariant natural killer T cells mediate survival following murine septic shock. Macrophages are pivotal to survival following sepsis. Invariant natural killer T cells have been shown to modulate various mediators of the innate immune system, including macrophages. We demonstrate sepsis-inducing iNKT-cell exodus from the liver appearing in the peritoneal cavity, the source of the sepsis. This migration was affected by programmed death receptor 1. Programmed death receptor 1 is an inhibitory immune receptor, reported as ubiquitously expressed at low levels on iNKT cells. Programmed death receptor 1 has been associated with markers of human critical illness. Programmed death receptor 1-deficient iNKT cells failed to demonstrate similar migration. To the extent that iNKT cells affected peritoneal macrophage function, we assessed peritoneal macrophages' ability to phagocytose bacteria. Invariant natural killer T(-/-) mice displayed dysfunctional macrophage phagocytosis and altered peritoneal bacterial load. This dysfunction was reversed when peritoneal macrophages from iNKT(-/-) mice were cocultured with wild-type iNKT cells. Together, our results indicate that sepsis induces liver iNKT-cell exodus into the peritoneal cavity mediated by programmed death receptor 1, and these peritoneal iNKT cells appear critical to regulation of peritoneal macrophage phagocytic function. Invariant natural killer T cells offer therapeutic targets for modulating immune responses and detrimental effects of sepsis.

  7. Effects of footshock stress and morphine on natural killer lymphocytes in rats: studies of tolerance and cross-tolerance.

    PubMed

    Shavit, Y; Terman, G W; Lewis, J W; Zane, C J; Gale, R P; Liebeskind, J C

    1986-05-01

    Exposure to a form of footshock stress known to cause opioid-mediated analgesia suppresses the cytotoxic activity of natural killer (NK) cells in rats. This suppression is blocked by the opioid antagonist, naltrexone and is mimicked by morphine administration, suggesting mediation by opioid receptors. Supporting this hypothesis, we now report that the morphine-induced suppression of NK activity shows tolerance after 14 daily injections. The NK-suppressive effect of stress, however, shows neither tolerance with repetition nor cross-tolerance in morphine-tolerant rats.

  8. Optimization of natural killer T cell-mediated immunotherapy in cancer using cell-based and nanovector vaccines.

    PubMed

    Faveeuw, C; Trottein, F

    2014-03-15

    α-Galactosylceramide (α-GalCer) represents a new class of immune stimulators and vaccine adjuvants that activate type I natural killer T (NKT) cells to swiftly release cytokines and to exert helper functions for acquired immune responses. This unique property prompted clinicians to exploit the antitumor potential of NKT cells. Here, we review the effects of α-GalCer in (pre)clinics and discuss current and future strategies that aim to optimize NKT cell-mediated antitumor therapy, with a particular focus on cell-based and nanovector vaccines.

  9. Met-ase: Cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells

    SciTech Connect

    Smyth, M.J.; Trapani, J.A. ); Sayers, T.J.; Wiltrout, T. ); Powers, J.C. )

    1993-12-01

    A cDNA clone encoding a human NK serine protease was obtained by screening a [lambda]-gt10 library from the Lopez NK leukemia with the rat natural killer Met-ase (RNK-Met-1) cDNA clone. In Northern blot analysis human Met-ase (Hu-Met-1) cDNA hybridized with a 0.9-kb mRNA in two human NK leukemia cell lines, unstimulated human PBMC, and untreated purified CD3[sup [minus

  10. Cell-autonomous requirement for TCF1 and LEF1 in the development of Natural Killer T cells.

    PubMed

    Berga-Bolaños, Rosa; Zhu, Wandi S; Steinke, Farrah C; Xue, Hai-Hui; Sen, Jyoti Misra

    2015-12-01

    Natural killer T (NKT) cells develop from common CD4(+) CD8(+) thymocyte precursors. Transcriptional programs that regulate the development of NKT cells in the thymus development remain to be fully delineated. Here, we demonstrate a cell-intrinsic requirement for transcription factors TCF1 and LEF1 for the development of all subsets of NKT cells. Conditional deletion of TCF1 alone results in a substantial reduction in NKT cells. The remaining NKT cells are eliminated when TCF1 and LEF1 are both deleted. These data reveal an essential role for TCF1 and LEF1 in development of NKT cells.

  11. NCR1+ cells in dogs show phenotypic characteristics of natural killer cells.

    PubMed

    Grøndahl-Rosado, Christine; Bønsdorff, Tina B; Brun-Hansen, Hege C; Storset, Anne K

    2015-03-01

    No specific markers for natural killer (NK) cells in dogs have currently been described. NCR1 (NKp46, CD355) has been considered a pan species NK cell marker and is expressed on most or all NK cells in all species investigated except for the pig which has both a NCR1(+) and a NCR1(-) population. In this study peripheral blood mononuclear cells (PBMC) from 14 healthy dogs, 37 dogs with a clinical diagnosis, including a dog diagnosed with LGL leukemia, and tissue samples from 8 dogs were evaluated for NCR1(+) expression by a cross reacting anti bovine NCR1 antibody. CD3(-)NCR1(+) cells were found in the blood of 93 % of healthy dogs and comprised up to 2.5 % of lymphocytes in PBMC. In a selection of healthy dogs, sampling and immunophenotyping were repeated throughout a period of 1 year revealing a substantial variation in the percentage of CD3(-)NCR1(+) over time. Dogs allocated to 8 disease groups had comparable amounts of CD3(-)NCR1(+) cells in PBMC to the healthy individuals. All organs examined including liver, spleen and lymph nodes contained CD3(-)NCR1(+) cells. Circulating CD3(-)NCR1(+) cells were further characterized as CD56(-)GranzymeB(+)CD8(-). A CD3(+)NCR1(+) population was observed in PBMC in 79 % of the healthy dogs examined representing at the most 4.8 % of the lymphocyte population. In canine samples examined for CD56 expression, CD56(+) cells were all CD3(+) and NCR1(-). To our knowledge, this is the first examination of NCR1 expression in the dog. The study shows that this NK cell associated receptor is expressed both on populations of CD3(+) and CD3(-) blood lymphocytes in dogs and the receptor is found on a CD3(+) GranzymeB(+) CD8(+) leukemia. Our results support that CD56 is expressed only on CD3(+) cells in dogs and shows that NCR1 defines a different CD3(+) lymphocyte population than CD56(+)CD3(+) cells in this species. CD3(-)NCR1(+) cells may represent canine NK cells.

  12. Maternal peripheral blood natural killer cells incorporate placenta-associated microRNAs during pregnancy.

    PubMed

    Ishida, Yoichi; Zhao, Dongwei; Ohkuchi, Akihide; Kuwata, Tomoyuki; Yoshitake, Hiroshi; Yuge, Kazuya; Takizawa, Takami; Matsubara, Shigeki; Suzuki, Mitsuaki; Saito, Shigeru; Takizawa, Toshihiro

    2015-06-01

    Although recent studies have demonstrated that microRNAs (miRNAs or miRs) regulate fundamental natural killer (NK) cellular processes, including cytotoxicity and cytokine production, little is known about the miRNA-gene regulatory relationships in maternal peripheral blood NK (pNK) cells during pregnancy. In the present study, to determine the roles of miRNAs within gene regulatory networks of maternal pNK cells, we performed comprehensive miRNA and gene expression profiling of maternal pNK cells using a combination of reverse transcription quantitative PCR (RT-qPCR)-based miRNA array and DNA microarray analyses and analyzed the differential expression levels between first- and third-trimester pNK cells. Furthermore, we constructed regulatory networks for miRNA-mediated gene expression in pNK cells during pregnancy by Ingenuity Pathway Analysis (IPA). PCR-based array analysis revealed that the placenta-derived miRNAs [chromosome 19 miRNA cluster (C19MC) miRNAs] were detected in pNK cells during pregnancy. Twenty-five miRNAs, including six C19MC miRNAs, were significantly upregulated in the third- compared to first-trimester pNK cells. The rapid clearance of C19MC miRNAs also occurred in the pNK cells following delivery. Nine miRNAs, including eight C19MC miRNAs, were significantly downregulated in the post-delivery pNK cells compared to those of the third-trimester. DNA microarray analysis identified 69 NK cell function-related genes that were differentially expressed between the first- and third-trimester pNK cells. On pathway and network analysis, the observed gene expression changes of pNK cells likely contribute to the increase in the cytotoxicity, as well as the cell cycle progression of third- compared to first-trimester pNK cells. Thirteen of the 69 NK cell function-related genes were significantly downregulated between the first- and third-trimester pNK cells. Nine of the 13 downregulated NK-function-associated genes were in silico target candidates of 12

  13. Immunohistochemical Analysis of Scarring Trachoma Indicates Infiltration by Natural Killer and Undefined CD45 Negative Cells

    PubMed Central

    Hu, Victor H.; Luthert, Philip J.; Pullin, James; Weiss, Helen A.; Massae, Patrick; Mtuy, Tara; Makupa, William; Essex, David; Mabey, David C. W.; Bailey, Robin L.; Holland, Martin J.; Burton, Matthew J.

    2016-01-01

    Introduction The phenotype and function of immune cells infiltrating the conjunctiva in scarring trachoma have yet to be fully characterized. We assessed tissue morphology and immunophenotype of cellular infiltrates found in trachomatous scarring compared to control participants. Methodology Clinical assessments and conjunctival biopsy samples were obtained from 34 individuals with trachomatous scarring undergoing trichiasis surgery and 33 control subjects undergoing cataract or retinal detachment surgery. Biopsy samples were fixed in buffered formalin and embedded in paraffin wax. Hematoxylin and eosin (H&E) staining was performed for assessment of the inflammatory cell infiltrate. Immunohistochemical staining of single markers on individual sections was performed to identify cells expressing CD3 (T-cells), CD4 (helper T-cells), CD8 (suppressor/cytotoxic T-cells and Natural Killer, NK, cells), NCR1 (NK cells), CD20 (B-cells), CD45 (nucleated hematopoietic cells), CD56 (NK and T-cells), CD68 (macrophages/monocytes) and CD83 (mature dendritic cells). The degree of scarring was assessed histologically using cross-polarized light to visualize collagen fibres. Principle Findings Scarring, regardless of clinical inflammation, was associated with increased inflammatory cell infiltrates on H&E and CD45 staining. Scarring was also associated with increased CD8+ and CD56+ cells, but not CD3+ cells, suggestive of a NK cell infiltrate. This was supported by the presence of NCR1+ cells. There was some increase in CD20+ cells, but no evidence for increased CD4+, CD68+ or CD83+ cells. Numerous CD45 negative cells were also seen in the population of infiltrating inflammatory cells in scarred conjunctiva. Disorganization of the normal collagen architecture was strongly associated with clinical scarring. Conclusions/Significance These data point to the infiltration of immune cells with a phenotype suggestive of NK cells in conjunctival trachomatous scarring. A large proportion of

  14. Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10

    PubMed Central

    2014-01-01

    Background Stroke is accompanied by a distinguished inflammatory reaction that is initiated by the infiltration of immunocytes, expression of cytokines, and other inflammatory mediators. As natural killer cells (NK cells) are a type of cytotoxic lymphocyte critical to the innate immune system, we investigated the mechanism of NK cells-induced brain injuries after cerebral ischemia and the chemotactic effect of IP-10 simultaneously. Methods NK cells infiltration, interferon-gamma (IFN-γ) and IP-10 expression were detected by immunohistochemistry, immunofluorescence, PCR and flow cytometry in human and C57/BL6 wild type mouse ischemic brain tissues. The ischemia area was detected via 2,3,5-triphenyltetrazolium chloride staining. CXCR3 mean fluorescence intensity of isolated NK cells was measured by flow cytometry. The neuronal injury made by NK cells was examined via apoptosis experiment. The chemotactic of IP-10 was detected by migration and permeability assays. Results In human ischemic brain tissue, infiltrations of NK cells were observed and reached a peak at 2 to 5 days. In a permanent middle cerebral artery occlusion (pMCAO) model, infiltration of NK cells into the ischemic infarct region reached their highest levels 12 hours after ischemia. IFN-γ-positive NK cells and levels of the chemokine IP-10 were also detected within the ischemic region, from 6 hours up to 4 days after pMCAO was performed, and IFN-γ levels decreased after NK cells depletion in vivo. Co-culture experiments of neural cells with NK cells also showed that neural necrosis was induced via IFN-γ. In parallel experiments with IP-10, the presence of CXCR3 indicates that NK cells were affected by IP-10 via CXCR3, and the effect was dose-dependent. After IP-10 depletion in vivo, NK cells decreased. In migration assays and permeability experiments, disintegration of the blood–brain barrier (BBB) was observed following the addition of NK cells. Moreover, in the presence of IP-10 this injury

  15. Effect of Helixor A on Natural Killer Cell Activity in Endometriosis

    PubMed Central

    Jeung, In-Cheul; Chung, Youn-Jee; Chae, Boah; Kang, So-Yeon; Song, Jae-Yen; Jo, Hyun-Hee; Lew, Young-Ok; Kim, Jang-Heub; Kim, Mee-Ran

    2015-01-01

    Background and Aim: NK cells are one of the major immune cells in endometriosis pathogenesis. While previous clinical studies have shown that helixor A to be an effective treatment for endometriosis, little is known about its mechanism of action, or its relationship with immune cells. The aim of this study is to investigate the effects of helixor A on Natural killer cell (NK cell) cytotoxicity in endometriosis Materials and Methods: We performed an experimental study. Samples of peritoneal fluid were obtained from January 2011 to December 2011 from 50 women with endometriosis and 50 women with other benign ovarian cysts (control). Peritoneal fluid of normal control group and endometriosis group was collected during laparoscopy. Baseline cytotoxicity levels of NK cells were measured with the peritoneal fluid of control group and endometriosis group. Next, cytotoxicity of NK cells was evaluated before and after treatment with helixor A. NK-cell activity was determined based upon the expression of CD107a, as an activation marker. Results: NK cells cytotoxicity was 79.38±2.13% in control cells, 75.55±2.89% in the control peritoneal fluid, 69.59±4.96% in endometriosis stage I/II endometriosis, and 63.88±5.75% in stage III/IV endometriosis. A significant difference in cytotoxicity was observed between the control cells and stage III/IV endometriosis, consistent with a significant decrease in the cytotoxicity of NK cells in advanced stages of endometriosis; these levels increased significantly after treatment with helixor A; 78.30% vs. 86.40% (p = 0.003) in stage I/II endometriosis, and 73.67% vs. 84.54% (p = 0.024) in stage III/IV. The percentage of cells expressing CD107a was increased significantly in each group after helixor A treatment; 0.59% vs. 1.10% (p = 0.002) in stage I/II endometriosis, and 0.79% vs. 1.40% (p = 0.014) in stage III/IV. Conclusions: Helixor A directly influenced NK-cell cytotoxicity through direct induction of CD107a expression. Our results

  16. In vivo glucocorticoid effects on porcine natural killer cell activity and circulating leukocytes.

    PubMed

    Salak-Johnson, J L; McGlone, J J; Norman, R L

    1996-03-01

    Porcine natural killer (NK) cell cytotoxicity, plasma cortisol, total white blood cells (WBC), neutrophil:lymphocyte ratio (N:L), and circulating blood leukocytes were examined from pigs injected i.v. with either saline, ACTH, cortisol, or treated with metyrapone. Plasma cortisol increased (P < .05) after ACTH and cortisol treatments and decreased (P < .05) after metyrapone treatment; thus, treatments had the intended effects on in vivo cortisol concentrations. In Exp. 1, pigs were injected with either saline or ACTH at 0600 after the initial blood samples were taken (time 0). The ACTH had no effect (P > .10) on NK cytotoxicity. Pigs injected i.v. with ACTH had fewer lymphocytes and more neutrophils (P < .05) than control pigs. The N:L ratio was greater (P < .05) among ACTH-injected than among control pigs. In Exp. 2, pigs were injected i.v. with either saline or 40 or 400 micrograms of cortisol at 0600 after the initial blood samples were obtained (time 0). Cortisol at 40 micrograms had no effect (P > .10) on NK cytotoxicity. However, a 400-micrograms bolus of cortisol reduced (P < .05) NK cytotoxicity (control = 39.5, cortisol = 28.3% cytotoxicity, SEM = 3.7). Each dose of cortisol reduced (P < .05) circulating blood lymphocyte numbers. In Exp. 3, pigs were fed 1 g of metyrapone or no metyrapone the night before sampling. Blood samples were obtained at 0600, 0700, and 0800. Metyrapone reduced (P < .05) NK cytotoxicity (control = 28.6, metyrapone = 11.8%, SEM = 1.9). Pigs treated with metyrapone had greater (P < .05) numbers of neutrophils than control pigs. Numbers of lymphocytes were greater (P < .05) among control than among treated pigs. Pigs treated with metyrapone had a greater (P < .05) N:L ratio than control pigs. In conclusion, normal physiological concentrations or moderately increased blood cortisol concentrations did not influence NK activity, although leukocyte distributions were changed. We conclude that greatly increased or greatly decreased

  17. Analysis of sphingosine kinase activity in single natural killer cells from peripheral blood.

    PubMed

    Dickinson, Alexandra J; Meyer, Megan; Pawlak, Erica A; Gomez, Shawn; Jaspers, Ilona; Allbritton, Nancy L

    2015-04-01

    Sphingosine-1-phosphate (S1P), a lipid second messenger formed upon phosphorylation of sphingosine by sphingosine kinase (SK), plays a crucial role in natural killer (NK) cell proliferation, migration, and cytotoxicity. Dysregulation of the S1P pathway has been linked to a number of immune system disorders and therapeutic manipulation of the pathway has been proposed as a method of disease intervention. However, peripheral blood NK cells, as identified by surface markers (CD56(+)CD45(+)CD3(-)CD16) consist of a highly diverse population with distinct phenotypes and functions and it is unknown whether the S1P pathway is similarly diverse across peripheral blood NK cells. In this work, we measured the phosphorylation of sphingosine-fluorescein (SF) and subsequent metabolism of S1P fluorescein (S1PF) to form hexadecanoic acid fluorescein (HAF) in 111 single NK cells obtained from the peripheral blood of four healthy human subjects. The percentage of SF converted to S1PF or HAF was highly variable amongst the cells ranging from 0% to 100% (S1PF) and 0% to 97% (HAF). Subpopulations of cells with varying levels of S1PF formation and metabolism were readily identified. Across all subjects, the average percentage of SF converted to S1PF or HAF was 37 ± 36% and 12 ± 19%, respectively. NK cell metabolism of SF by the different subjects was also distinct with hierarchical clustering suggesting two possible phenotypes: low (<20%) or high (>50%) producers of S1PF. The heterogeneity of SK and downstream enzyme activity in NK cells may enable NK cells to respond effectively to a diverse array of pathogens as well as incipient tumor cells. NK cells from two subjects were also loaded with S1PF to assess the activity of S1P phosphatase (S1PP), which converts S1P to sphingosine. No NK cells (n = 41) formed sphingosine, suggesting that S1PP was minimally active in peripheral blood NK cells. In contrast to the SK activity, S1PP activity was homogeneous across the peripheral blood NK

  18. Diesel exhaust particles modify natural killer cell function and cytokine release

    PubMed Central

    2013-01-01

    Background Natural killer (NK) cells are an important lymphocyte population in the nasal mucosa and play important roles in linking the innate and the adaptive immune response. Their two main functions are direct cell-mediated cytotoxicity and the release of cytokines. They are important during viral infections and cancer. Due to their location in the nasal mucosa, NK cells are likely exposed to inhaled pollutants, such as diesel exhaust. Whether and how exposure to diesel exhaust particles (DEP) affects NK cell function in the context of viral infections has not been investigated. Methods NK cells were isolated from peripheral blood obtained from normal healthy volunteers and subsequently stimulated with the viral mimetic polyinosinic:polycytidylic acid (pI:C), DEP, or pI:C+DEP for 18 hours. NK cells were subsequently analyzed for changes in surface marker expression, cytokine production, gene expression changes, and cytotoxic function using flow cytometry, ELISA, qRT-PCR, and cell-mediated cytotoxicity assay, respectively. Results Stimulation of NK cells with pI:C and pI:C+DEP, but not DEP alone, increased the release of IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12p70, IFN-γ and TNF-α. As compared to pI:C alone or pI:C+DEP, the release of IL-1β, IL-8 and TNF-α was significantly lower after DEP stimulation alone. Stimulation with pI:C alone increased the gene and protein expression of granzyme B and perforin, which was completely blunted by adding DEP. Addition of DEP further reduced CD16 expression in pI:C stimulated cells. Similarly, cell-mediated cytotoxicity was significantly reduced by the addition of DEP. Conclusions In the context of viral infection, DEP potentially reduces NK cells' ability to kill virus-infected host cells, in spite of normal cytokine levels, and this may increase susceptibility to viral infections . This reduction in the potential ability of NK cells to kill virus-infected host cells may increase the susceptibility to viral infections

  19. Analysis of sphingosine kinase activity in single natural killer cells from peripheral blood†

    PubMed Central

    Dickinson, Alexandra J.; Meyer, Megan; Pawlak, Erica A.; Gomez, Shawn; Jaspers, Ilona; Allbritton, Nancy L.

    2015-01-01

    Sphingosine-1-phosphate (S1P), a lipid second messenger formed upon phosphorylation of sphingosine by sphingosine kinase (SK), plays a crucial role in natural killer (NK) cell proliferation, migration, and cytotoxicity. Dysregulation of the S1P pathway has been linked to a number of immune system disorders and therapeutic manipulation of the pathway has been proposed as a method of disease intervention. However, peripheral blood NK cells, as identified by surface markers (CD56+CD45+CD3−CD16) consist of a highly diverse population with distinct phenotypes and functions and it is unknown whether the S1P pathway is similarly diverse across peripheral blood NK cells. In this work, we measured the phosphorylation of sphingosine–fluorescein (SF) and subsequent metabolism of S1P fluorescein (S1PF) to form hexadecanoic acid fluorescein (HAF) in 111 single NK cells obtained from the peripheral blood of four healthy human subjects. The percentage of SF converted to S1PF or HAF was highly variable amongst the cells ranging from 0% to 100% (S1PF) and 0% to 97% (HAF). Subpopulations of cells with varying levels of S1PF formation and metabolism were readily identified. Across all subjects, the average percentage of SF converted to S1PF or HAF was 37 ± 36% and 12 ± 19%, respectively. NK cell metabolism of SF by the different subjects was also distinct with hierarchical clustering suggesting two possible phenotypes: low (<20%) or high (>50%) producers of S1PF. The heterogeneity of SK and downstream enzyme activity in NK cells may enable NK cells to respond effectively to a diverse array of pathogens as well as incipient tumor cells. NK cells from two subjects were also loaded with S1PF to assess the activity of S1P phosphatase (S1PP), which converts S1P to sphingosine. No NK cells (n = 41) formed sphingosine, suggesting that S1PP was minimally active in peripheral blood NK cells. In contrast to the SK activity, S1PP activity was homogeneous across the peripheral blood NK

  20. Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer.

    PubMed

    deMagalhaes-Silverman, M; Donnenberg, A; Lembersky, B; Elder, E; Lister, J; Rybka, W; Whiteside, T; Ball, E

    2000-01-01

    Relapse after high-dose chemotherapy is the main cause of therapeutic failure in patients with metastatic breast cancer. Adoptive immunotherapy with interleukin-2 (IL-2) plus activated natural killer cells may eliminate residual disease without excessive toxicity. The authors sought to determine if immunotherapy immediately after transplantation would affect engraftment and the toxicity associated with transplantation. Fifteen consecutive patients with metastatic breast cancer were allocated to three cohorts. Cohort 1 (five patients) received high-dose cyclophosphamide, thiotepa, and carboplatin (CTCb) followed by peripheral blood stem cell infusion and granulocyte colony-stimulating factor at 10 micrograms/kg. Cohort 2 (five patients) received in addition rhIL-2 (2 x 10(6) IU/m2/day) for 4 days intravenously via continuous infusion after peripheral blood stem cell infusion. In cohort 3 (five patients), peripheral blood stem cell transplant was followed by infusion of autologous activated NK cells and rhIL-2 (2 x 10(6) IU/m2/day) for 4 days (via continuous intravenous infusion). Generation of activated NK cells was possible in all patients in cohort 3. All patients has successful engraftment. Median time to absolute neutrophil count more than 0.5 x 10(9)/L was 8 days (range, 8 to 11 days) in cohort 1, 9 days (range, 7 to 11 days) in cohort 2, and 9 days (range, 8 to 9 days) in cohort 3. Median time until the platelet count was more than 20 x 10(9)/L was 14 days (range, 9 to 22 days) in cohort 1, 11 days (range, 6 to 14 days) in cohort 2, and 12 days (range, 11 to 21 days) in cohort 3. All patients developed neutropenic fevers, but the overall toxicity associated with the infusion of IL-2 (cohort 2) or IL-2 plus activated NK cells (cohort 3) did not differ from that observed in cohort 1. Complete responses were achieved in one patient in cohort 1, in two patients in cohort 2, and in one patient in cohort 3. In conclusion, post-transplant adoptive immunotherapy with

  1. T helper type 2-polarized invariant natural killer T cells reduce disease severity in acute intra-abdominal sepsis

    PubMed Central

    Anantha, R V; Mazzuca, D M; Xu, S X; Porcelli, S A; Fraser, D D; Martin, C M; Welch, I; Mele, T; Haeryfar, S M M; McCormick, J K

    2014-01-01

    Sepsis is characterized by a severe systemic inflammatory response to infection that is associated with high morbidity and mortality despite optimal care. Invariant natural killer T (iNK T) cells are potent regulatory lymphocytes that can produce pro- and/or anti-inflammatory cytokines, thus shaping the course and nature of immune responses; however, little is known about their role in sepsis. We demonstrate here that patients with sepsis/severe sepsis have significantly elevated proportions of iNK T cells in their peripheral blood (as a percentage of their circulating T cells) compared to non-septic patients. We therefore investigated the role of iNK T cells in a mouse model of intra-abdominal sepsis (IAS). Our data show that iNK T cells are pathogenic in IAS, and that T helper type 2 (Th2) polarization of iNK T cells using the synthetic glycolipid OCH significantly reduces mortality from IAS. This reduction in mortality is associated with the systemic elevation of the anti-inflammatory cytokine interleukin (IL)-13 and reduction of several proinflammatory cytokines within the spleen, notably interleukin (IL)-17. Finally, we show that treatment of sepsis with OCH in mice is accompanied by significantly reduced apoptosis of splenic T and B lymphocytes and macrophages, but not natural killer cells. We propose that modulation of iNK T cell responses towards a Th2 phenotype may be an effective therapeutic strategy in early sepsis. PMID:24965554

  2. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cellfree CD8aa+, CD3_ cells with natural killing activity. Cell-mediated cytotoxicity assay...

  3. The pretreatment albumin to globulin ratio predicts survival in patients with natural killer/T-cell lymphoma

    PubMed Central

    Bi, Xi-wen; Wang, Liang; Zhang, Wen-wen; Yan, Shu-mei; Sun, Peng; Xia, Yi; Li, Zhi-ming

    2016-01-01

    Background. The pretreatment albumin to globulin ratio (AGR) has been reported to be a predictor of survival in several types of cancer. The aim of this study was to evaluate the prognostic impact of AGR in patients with natural killer/T-cell lymphoma (NKTCL). Methods. We retrospectively reviewed the available serum biochemistry results for 331 NKTCL patients before treatment. AGR was calculated as albumin/(total protein—albumin), and a cut-off value of 1.3 was used to define AGR as low or high. Survival analysis was used to assess the prognostic value of AGR. Results. A low AGR (<1.3) was associated with significantly more adverse clinical features, including old age, poor performance status, advanced stage, elevated lactate dehydrogenase, B symptoms, and high International Prognostic Index (IPI) and natural killer/T-cell lymphoma prognostic index (NKPI) scores. Patients with a low AGR had a significantly lower 5-year overall survival (44.5 vs. 65.2%, P < 0.001) and progression-free survival (33.1 vs. 57.4%, P < 0.001). In the multivariate analysis, a low AGR remained an independent predictor of poorer survival. Additionally, AGR distinguished patients with different outcomes in the IPI low-risk group and in the NKPI high-risk group. Discussion. Pretreatment AGR may serve as a simple and effective predictor of prognosis in patients with NKTCL. PMID:26966671

  4. The pretreatment albumin to globulin ratio predicts survival in patients with natural killer/T-cell lymphoma.

    PubMed

    Bi, Xi-Wen; Wang, Liang; Zhang, Wen-Wen; Yan, Shu-Mei; Sun, Peng; Xia, Yi; Li, Zhi-Ming; Jiang, Wen-Qi

    2016-01-01

    Background. The pretreatment albumin to globulin ratio (AGR) has been reported to be a predictor of survival in several types of cancer. The aim of this study was to evaluate the prognostic impact of AGR in patients with natural killer/T-cell lymphoma (NKTCL). Methods. We retrospectively reviewed the available serum biochemistry results for 331 NKTCL patients before treatment. AGR was calculated as albumin/(total protein-albumin), and a cut-off value of 1.3 was used to define AGR as low or high. Survival analysis was used to assess the prognostic value of AGR. Results. A low AGR (<1.3) was associated with significantly more adverse clinical features, including old age, poor performance status, advanced stage, elevated lactate dehydrogenase, B symptoms, and high International Prognostic Index (IPI) and natural killer/T-cell lymphoma prognostic index (NKPI) scores. Patients with a low AGR had a significantly lower 5-year overall survival (44.5 vs. 65.2%, P < 0.001) and progression-free survival (33.1 vs. 57.4%, P < 0.001). In the multivariate analysis, a low AGR remained an independent predictor of poorer survival. Additionally, AGR distinguished patients with different outcomes in the IPI low-risk group and in the NKPI high-risk group. Discussion. Pretreatment AGR may serve as a simple and effective predictor of prognosis in patients with NKTCL.

  5. Enhancing effects of agelasphin-11 on natural killer cell activities of normal and tumor-bearing mice.

    PubMed

    Kobayashi, E; Motoki, K; Natori, T; Uchida, T; Fukushima, H; Koezuka, Y

    1996-03-01

    Agelasphin-11 (AGL-11), a novel alpha-galactosylceramide isolated from an extract of a marine sponge, Agelas mauritianus, markedly prolonged the life span of mice intraperitoneally inoculated with B16 cells. Since AGL-11 did not show any direct cytotoxic activity against B16 cells, this compound is considered to be a biological response modifier (BRM). We focused on the enhancing effect of this compound on in vivo natural killer (NK) cell activity because several BRMs have already been determined to enhance the in vivo natural killer (NK) cell activity. When we evaluated the enhancing activity of AGL-11 using normal mice, AGL-11 enhanced in vivo NK cell activity more potently than Poly I:C, which is a positive control. In addition, we examined the effect of this compound on the NK cell activity of tumor-bearing mice, and found that AGL-11 recovers the reduced NK cell activity in a tumor-bearing condition to a higher level than that of normal mice. These results suggest that AGL-11 shows antitumor activity by the activation of antitumor effector cells such as NK cells.

  6. Reduced expression of osteonectin and increased natural killer cells may contribute to the pathophysiology of aplastic anemia.

    PubMed

    Park, Meerim; Park, Chan-Jeoung; Jang, Seongsoo; Kim, Dae-Young; Lee, Jung-Hee; Lee, Je-Hwan; Lee, Kyoo-Hyung; Hwang, Kyoujung; Lee, Young Ho

    2015-02-01

    Normal hematopoiesis involves complex interactions between hematopoietic cells and the bone marrow (BM) microenvironment. The exact causes and mechanisms involved in aplastic anemia (AA) are not known. For better understanding of the pathophysiology of AA, we investigated changes in the hematopoietic stem cell (HSC) compartment and the BM microenvironment in patients with AA by immunohistochemical analysis. A total of 10 AA patients and 10 controls were enrolled. Using BM biopsy specimen, we performed immunohistochemistry for osteopontin, osteonectin, osteocalcin, nestin, stromal-derived factor-1 (SDF-1), lymphocytes, macrophage, and HSCs. Numbers of HSCs and T/B lymphocytes were significantly lower in the AA specimens than the controls, and the AA specimens contained more natural killer cells (CD56(+) cells) (P < 0.01). The 2 groups had similar levels of expression of osteopontin, osteocalcin, nestin, and SDF-1. However, the number of osteonectin(+) cells in the AA specimens was significantly lower than in the control specimens (P<0.01). Our findings support the hypothesis that defects in the stromal cells contribute to the pathogenesis of AA by damaging HSC niche. Immune-mediated natural killer cells may also play a role in the pathogenesis of AA.

  7. Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type, with Primary Manifestation as an Upper Eyelid Swelling.

    PubMed

    Kanzaki, Akiko; Funasaka, Yoko; Nakamizo, Munenaga; Shima, Ayaka; Ryotokuji, Takeshi; Dan, Kazuo; Terasaki, Mika; Sugisaki, Yuichi; Fukuda, Yu; Kawana, Seiji; Saeki, Hidehisa

    2016-01-01

    Extranodal natural killer/T-cell lymphoma (ENK/TCL) is most often in the nose or the nasopharynx but can present elsewhere. We report a rare case of ENK/TCL that presented as swelling of an upper eyelid without ocular involvement. A 76-year-old man visited our hospital with a swollen lesion of the left upper eyelid which had appeared 2 months earlier. A biopsy of the upper eyelid revealed slight perivascular and periadnexal infiltration of mononuclear cells with dermal edema. Treatment with oral prednisolone at a dosage of 20 mg/day decreased the eyelid swelling. However, 5 months later, exacerbation of the swelling and nasal congestion were observed. A second biopsy of the upper eyelid revealed a diffuse dermal infiltrate composed of mononuclear cells with an angiocentic growth pattern. Immunohistochemical studies and in situ hybridization showed natural killer-lineage antigens (CD56, granzyme B, and T-cell intracellular antigen 1) with expression of Epstein-Barr virus. These findings lead to the diagnosis of ENK/TCL. We treated the patient with radiation therapy (50 Gy) and 3 courses of a regimen including dexamethasone, carboplatin, etoposide, and ifosphamide. This case suggests that ENK/TCL can present with swelling of an upper eyelid as the primary sign of the skin lesion. Swelling of an upper eyelid should be considered in the differential diagnosis of ENK/TCL. PMID:27680487

  8. A case of hypersensitivity to mosquito bites without peripheral natural killer cell lymphocytosis in a 6-year-old Korean boy.

    PubMed

    Seon, Han-Su; Roh, Ji-Hyeon; Lee, Seung-Ho; Kang, Eun-Kyeong

    2013-01-01

    Hypersensitivity to mosquito bites (HMB) is a rare disease characterized by intense skin reactions such as bulla and necrotic ulcerations at bite sites, accompanied by general symptoms such as high-grade fever and malaise occurred after mosquito bites. It has been suggested that HMB is associated with chronic Epstein-Barr virus (EBV) infection and natural killer (NK) cell leukemia/lymphoma. We describe here a Korean child who presented with 3-yr history of HMB without natural killer cell lymphocytosis. He has been ill for 6 yr with HMB. Close observation and examination for the development of lymphoproliferative status or hematologic malignant disorders is needed.

  9. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  10. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis.

    PubMed

    Seshadri, Srividya; Sunkara, Sesh Kamal

    2014-01-01

    INTRODUCTION Embryo implantation is a complex process involving maternal hormonal changes, immune responses and maturational events in the embryo. A pregnancy could fail when these events are not synchronized. It is speculated that in women, an elevation of natural killer (NK) cells may have an effect on reproductive performance, and NK cell levels in blood are currently being used as a diagnostic test to guide the initiation of therapies in patients with infertility. METHODS We conducted a systematic review to evaluate the (i) levels of NK cells in blood and endometrium in infertile versus fertile women, (ii) association between NK cells and IVF outcome, (iii) levels of NK cells in blood and endometrium in women with recurrent miscarriage (RM) versus controls. The following electronic databases were searched: Medline, EMBASE, Cochrane Library, Web of Science and National Research Register. RESULTS A total of 22 studies were included. Meta-analysis of studies that evaluated peripheral and uterine NK (uNK) cell percentages in infertile versus fertile women showed no significant difference between the two groups [standardized mean difference (SMD) -0.33; 95% confidence intervals (CI) -1.06, 0.4; P = 0.37; SMD -1.82; 95% CI -4.80, 1.17; P = 0.23 respectively]. Pooling of studies that reported peripheral NK cells as numbers showed significantly higher NK cell numbers in infertile women compared with fertile controls (SMD 3.16; 95% CI 1.07, 5.24; P = 0.003). Meta-analysis of studies that evaluated the role of NK cells in IVF outcome showed no significant difference in live birth rates in women with elevated NK cells or NK cell activity compared with women without elevated peripheral NK cells or NK cell activity (NK activity assessed using a cytotoxicity assay) (relative risk 0.57; 95% CI 0.06, 5.22; P = 0.62). Meta-analysis of studies that evaluated peripheral NK cell percentages in women with RM versus controls showed significantly higher NK cell percentages in women

  11. Lysis of neuroblastoma cell lines by human natural killer cells activated by interleukin-2 and interleukin-12.

    PubMed

    Rossi, A R; Pericle, F; Rashleigh, S; Janiec, J; Djeu, J Y

    1994-03-01

    Neuroblastoma is the most common extracranial, solid tumor in children. Despite intensive chemotherapy and bone marrow transplantation, the 5-year projected survival rate is 20% to 25%. In vitro studies have shown enhanced natural killer cell (NK) lysis of tumor cells after exposure of NK cells to interleukin-2 (IL-2). In vivo studies have demonstrated similar immunologic effects but have also revealed severe toxicities associated with the use of IL-2. IL-12 is a newly described cytokine that has several properties, including the ability to act synergistically with IL-2 in generating lymphokine-activated killer cells (LAK) against known tumor targets. We investigated the role of IL-12 in the generation of peripheral blood mononuclear cell (PBMC) lysis of neuroblastoma cell lines. PBMC were activated with IL-12 alone and in combination with IL-2. Whereas IL-12 alone produced only modest enhancement of NK cell cytotoxicity, the combination of IL-2 and IL-12 was most effective in activating NK cell lysis of neuroblastoma cell lines. Further, we showed that large granular lymphocytes were the effector cells involved in target cell lysis. Finally, the CD18 molecule was shown to be critical in the lysis of neuroblastoma cells by activated PBMC.

  12. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome.

    PubMed

    Sohlberg, Ebba; Pfefferle, Aline; Andersson, Sandra; Baumann, Bettina C; Hellström-Lindberg, Eva; Malmberg, Karl-Johan

    2015-10-27

    5-azacytidine (5-aza) is a hypomethylating agent approved for the treatment of high-risk myelodysplastic syndrome (MDS). It is assumed to act by demethylating tumor suppressor genes and via direct cytotoxic effects on malignant cells. In vitro treatment with hypomethylating agents has profound effects on the expression of killer-cell immunoglobulin-like (KIR) receptors on natural killer (NK) cells, as these receptors are epigenetically regulated via methylation of the promoters. Here we investigated the influence of 5-aza on the NK-cell repertoire during cytokine-induced proliferation in vitro and homeostatic proliferation in vivo in patients with high-risk MDS. In vitro treatment of NK cells from both healthy donors and MDS patients with low doses of 5-aza led to a significant increase in expression of multiple KIRs, but only in cells that had undergone several rounds of cell division. Proliferating 5-aza exposed NK cells exhibited increased IFN-γ production and degranulation towards tumor target cells. MDS patients had lower proportions of educated KIR-expressing NK cells than healthy controls but after systemic treatment with 5-aza, an increased proportion of Ki-67+ NK cells expressed multiple KIRs suggesting uptake of 5-aza in cycling cells in vivo. Hence, these results suggest that systemic treatment with 5-aza may shape the NK cell repertoire, in particular during homeostatic proliferation, thereby boosting NK cell-mediated recognition of malignant cells.

  13. Modulation of in vitro porcine natural killer cell activity by recombinant interleukin-1 alpha, interleukin-2 and interleukin-4.

    PubMed Central

    Knoblock, K F; Canning, P C

    1992-01-01

    In order to understand better how cytokines modulate porcine lymphocyte-mediated natural cytotoxicity and to develop a rapid and reliable colorimetric assay to study that activity in young pigs, we studied inherent and cytokine induced in vitro natural killer (NK) activity. The cytokines we studied were human recombinant interleukin-1 alpha (IL-1 alpha), IL-2, IL-4 and interferon-gamma (IFN-gamma). Natural killer activity by peripheral blood mononuclear cells (PBMC), reported as per cent specific lysis (%SL), was determined by the colorimetric measurement of lactate dehydrogenase released from tumour cell targets, YAC-1 and K562. Inherent NK activity was low and remained relatively unchanged by alterations of assay length or effector cell concentration. Low NK activity was also observed in response to IL-4 and IFN-gamma. IL-2 and, to a lesser extent, IL-1 alpha induced significant NK activity with trends towards increasing %SL with increasing cytokine dose. Optimal IL-1 alpha- and IL-2-induced NK activity could be observed at 18 hr, with significant activity stimulated by IL-2 as early as 4 hr. IL-2-induced NK activity was sensitive to effector cell concentration; %SL decreased as the effector to target ratio decreased. IL-1 alpha- and IL-2-induced NK activities were decreased in the presence of IL-4. These results indicate porcine PBMC are sensitive to in vitro modulation by human recombinant IL-1 alpha, IL-2 and IL-4. The ability of IL-1 alpha and IL-2 to induce swine NK activity and the ability of IL-4 to inhibit that activity are similar to the actions of those cytokines in human NK systems. PMID:1634252

  14. hIFN-α gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function.

    PubMed

    Jiang, W; Zhang, C; Tian, Z; Zhang, J

    2013-11-01

    Natural killer (NK) cells are characterized by an efficient antitumor activity, and this activity has been exploited as the basis of cancer immunotherapy strategies. Interferon-α (IFN-α) is an important cytokine required for induction of the durable antitumor immune response and is an important stimulator of NK cells. In this study, to augment the efficiency of NK cell cytotoxicity to tumor cells, human IFN-α gene-modified natural killer cell line (NKL) (NKL-IFNα) cells, which could stably secrete IFN-α, were established. We investigated the natural cytotoxicity of NKL-IFNα cells against human hepatocarcinoma cells (HCCs) in vitro and in vivo. NKL-IFNα cells displayed a significantly stronger cytolytic activity against both human HCC cell lines and primary human hepatoma cancer cells compared with parental NKL cells. The increased cytolytic activity of NKL-IFNα cells was associated with the upregulation of cytotoxicity-related genes, such as perforin, granzyme B and Fas ligand, in the NK cells. Moreover, cytokines secreted by NKL-IFNα cells, such as tumor necrosis factor-α and IFN-γ, induced increased expression of Fas on the target HCC cells, and resulted in increased susceptibility of the HCC cells to NK-mediated cytolysis. Encouragingly, NKL-IFNα cells could significantly inhibit HCC tumor growth in a xenograft model and prolonged the survival of tumor-bearing nude mice. These results suggest that IFN-α gene-modified NKL cells could be suitable for the future development of cell-based immunotherapeutic strategies for hepatocellular carcinoma.

  15. Infection with foot-and-mouth disease virus (FMDV) induces a natural killer (NK) cell response in cattle that is lacking following vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural killer (NK) cells play a role in innate antiviral immunity by directly lysing virus-infected cells and producing antiviral cytokines such as interferon gamma (IFNgamma). We developed a system for characterizing the bovine NK response to foot-and-mouth disease virus (FMDV), which causes a dis...

  16. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro.

    PubMed

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-10-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46(+)/CD3(-)) in bovine mammary gland tissue after an intramammary challenge with Escherichia (E.) coli. A small number of NK cells was detected in milk from quarters before and during an E. coli challenge. In vitro cultures of primary bovine mammary gland epithelial cells stimulated with UV irradiated E. coli induced significant migration of peripheral blood NK cells (pbNK) within 2h. Furthermore, pbNK cells significantly reduced counts of live E. coli in vitro within 2h of culture. The results show that bovine NK cells have the capacity to migrate to the site of infection and produce antibacterial mediators. These findings introduce NK cells as a leukocyte population in the mammary gland with potential functions in the innate immune response in bovine mastitis. PMID:27638120

  17. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity. PMID:27112424

  18. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia.

    PubMed

    Klose, Ralph; Krzywinska, Ewelina; Castells, Magali; Gotthardt, Dagmar; Putz, Eva Maria; Kantari-Mimoun, Chahrazade; Chikdene, Naima; Meinecke, Anna-Katharina; Schrödter, Katrin; Helfrich, Iris; Fandrey, Joachim; Sexl, Veronika; Stockmann, Christian

    2016-01-01

    Chemotherapy remains a mainstay of cancer treatment but its use is often limited by the development of adverse reactions. Severe loss of body weight (cachexia) is a frequent cause of death in cancer patients and is exacerbated by chemotherapy. We show that genetic inactivation of vascular endothelial growth factor (VEGF)-A in myeloid cells prevents chemotherapy-induced cachexia by inhibiting skeletal muscle loss and the lipolysis of white adipose tissue. It also improves clearance of senescent tumour cells by natural killer cells and inhibits tumour regrowth after chemotherapy. The effects depend on the chemoattractant chemerin, which is released by the tumour endothelium in response to chemotherapy. The findings define chemerin as a critical mediator of the immune response, as well as an important inhibitor of cancer cachexia. Targeting myeloid cell-derived VEGF signalling should impede the lipolysis and weight loss that is frequently associated with chemotherapy, thereby substantially improving the therapeutic outcome. PMID:27538380

  19. Conditioned enhancement of natural killer cell activity, but not interferon, with camphor or saccharin-LiCl conditioned stimulus.

    PubMed

    Ghanta, V K; Hiramoto, N S; Solvason, H B; Tyring, S K; Spector, N H; Hiramoto, R N

    1987-01-01

    Pavlovian conditioning of the natural killer (NK) cell response has been demonstrated by pairing camphor with polyinosinic:polycytidylic acid (poly I:C) in nine association trials. The NK cell response could be conditioned also by using combined saccharin and lithium chloride (LiCl) as the conditioned stimulus. The camphor and saccharin-LiCl paradigms were tested to determine if the conditioned NK cell activity was the result of conditioning of the interferon response. Interferon levels were measured at 6 hr and NK cell activity at 24 hr after application of the conditioned stimulus. The interferon levels measured in separate experiments were not uniformly elevated in conditioned animals compared with controls.

  20. Interleukin 15–mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1

    PubMed Central

    Huntington, Nicholas D; Puthalakath, Hamsa; Gunn, Priscilla; Naik, Edwina; Michalak, Ewa M; Smyth, Mark J; Tabarias, Hyacinth; Degli-Esposti, Mariapia A; Dewson, Grant; Willis, Simon N; Motoyama, Noboru; Huang, David C S; Nutt, Stephen L; Tarlinton, David M; Strasser, Andreas

    2010-01-01

    Interleukin 15 (IL-15) promotes the survival of natural killer (NK) cells by preventing apoptosis through mechanisms unknown at present. Here we identify Bim, Noxa and Mcl-1 as key regulators of IL-15-dependent survival of NK cells. IL-15 suppressed apoptosis by limiting Bim expression through the kinases Erk1 and Erk2 and mechanisms dependent on the transcription factor Foxo3a, while promoting expression of Mcl-1, which was necessary and sufficient for the survival of NK cells. Withdrawal of IL-15 led to upregulation of Bim and, accordingly, both Bim-deficient and Foxo3a−/− NK cells were resistant to cytokine deprivation. Finally, IL-15-mediated inactivation of Foxo3a and cell survival were dependent on phosphotidylinositol-3-OH kinase. Thus, IL-15 regulates the survival of NK cells at multiple steps, with Bim and Noxa being key antagonists of Mcl-1, the critical survivor factor in this process. PMID:17618288

  1. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia

    PubMed Central

    Klose, Ralph; Krzywinska, Ewelina; Castells, Magali; Gotthardt, Dagmar; Putz, Eva Maria; Kantari-Mimoun, Chahrazade; Chikdene, Naima; Meinecke, Anna-Katharina; Schrödter, Katrin; Helfrich, Iris; Fandrey, Joachim; Sexl, Veronika; Stockmann, Christian

    2016-01-01

    Chemotherapy remains a mainstay of cancer treatment but its use is often limited by the development of adverse reactions. Severe loss of body weight (cachexia) is a frequent cause of death in cancer patients and is exacerbated by chemotherapy. We show that genetic inactivation of vascular endothelial growth factor (VEGF)-A in myeloid cells prevents chemotherapy-induced cachexia by inhibiting skeletal muscle loss and the lipolysis of white adipose tissue. It also improves clearance of senescent tumour cells by natural killer cells and inhibits tumour regrowth after chemotherapy. The effects depend on the chemoattractant chemerin, which is released by the tumour endothelium in response to chemotherapy. The findings define chemerin as a critical mediator of the immune response, as well as an important inhibitor of cancer cachexia. Targeting myeloid cell-derived VEGF signalling should impede the lipolysis and weight loss that is frequently associated with chemotherapy, thereby substantially improving the therapeutic outcome. PMID:27538380

  2. From sabotage to camouflage: viral evasion of cytotoxic T lymphocyte and natural killer cell-mediated immunity.

    PubMed

    Farrell, H E; Davis-Poynter, N J

    1998-06-01

    The outcome of a virus infection is strongly influenced by interactions between host immune defences and virus 'antidefence' mechanisms. For many viruses, their continued survival depends on the speed of their attack:their capacity to replicate and transmit to uninfected hosts prior to their elimination by an effective immune response. In contrast, the success of persistent viruses lies in their capacity for immunological subterfuge: the evasion of host defence mechanism by either mutation (covered elsewhere in this issue, by Gould and Bangham, pp. 331-338) or interference with the action of host cellular proteins that are important components of the immune response. This review will focus on the strategies employed by persistent viruses against two formidable host defences against virus infection: the CD8+ cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses.

  3. Class I (H-2Kb) gene transfection reduces susceptibility of YAC-1 lymphoma targets to natural killer cells.

    PubMed

    Carlow, D A; Payne, U; Hozumi, N; Roder, J C; Czitrom, A A

    1990-04-01

    A "hybrid gene" (MTKb) comprised of the human metallothionein IIA promoter ligated to the genomic sequence of the major histocompatibility complex class I (H-2Kb) gene was subcloned into the expression vector pSV2neo and transfected into the natural killer (NK) cell-sensitive YAC-1 lymphoma. The Kb gene product was readily detectable on the cell surface of G418-resistant transfectants using both Kb-specific monoclonal antibodies and H-2b-specific cytolytic T cells. Unlike control pSV2neo transfectants, MTKb-pSV2neo transfectants were relatively resistant to lysis by NK cells from H-2a, H-2b, H-2k or H-2 (a x b)F1 haplotype mice. These data strongly suggest that the effects of MHC expression on susceptibility to NK cells can be mediated by a single and well-defined class I molecule, Kb.

  4. Understanding the Regulatory Roles of Natural Killer T Cells in Rheumatoid Arthritis: T Helper Cell Differentiation Dependent or Independent?

    PubMed

    Chen, J; Yang, J; Qiao, Y; Li, X

    2016-10-01

    Rheumatoid arthritis (RA) is the most common chronic systemic autoimmune disease. This disease is thought to be caused by pathogenic T cells. Th1, Th2, Th17 and Treg cells have been implicated in the pathogenesis of RA. These Th cells differentiate from CD4+ T cells primarily due to the effects of cytokines. Natural killer T (NKT) cells are a distinct subset of lymphocytes that can rapidly secrete massive amount of cytokines, including IL-2, IL-4, IL-12 and IFN-γ. Numerous studies showed that NKT cells can influence the differentiation of CD4+ T cells via cytokines in vitro. These findings suggest that NKT cells play an important role in RA by polarizing Th1, Th2, Th17 and Treg cells. In view of the complexity of RA, we discussed whether NKT cells really influence the development of RA through regulating the differentiation of Th cells. PMID:27384545

  5. Distinct Conformations of Ly49 Natural Killer Cell Receptors Mediate MHC Class I Recognition in Trans and Cis

    SciTech Connect

    Back, J.; Malchiodi, E; Cho, S; Scarpellino, L; Schneider, P; Kerzic, M; Mariuzza, R; Held, W

    2009-01-01

    Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors and explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.

  6. [Modification of a method for determining the cytotoxic activity of lymphocytes--natural killers in space experiments].

    PubMed

    Buravkova, L B; Rykova, M P; Antropova, E N; Grigor'eva, O V

    2005-01-01

    A space modification of a method for determining the cytotoxic activity of natural killers (NK) uses cultures of human lymphocytes and re-inoculated suspension of tumorous myeloblasts K-562. The 3H-uridine labeled target-cells fixated in 0.1 % formalin solution proved to be best suited to the conditions prohibiting regular recharge of cultural medium and utilization of radioactive agents. The following practical conclusions were made from the space-flown experiment: pre-launch procedures (lymphocyte isolation and delivery to the launch site) and time period till dock must not be longer than 5 days (1) and during transportation to the orbiting vehicle cell cultures must be kept at 18-20 degrees C (2). The modified method can be employed to study various aspects of cell interaction such as the NK ability to destroy target-cells in suspension cultured exposed in microgravity.

  7. The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection.

    PubMed

    Beaulieu, Aimee M; Zawislak, Carolyn L; Nakayama, Toshinori; Sun, Joseph C

    2014-06-01

    Natural killer (NK) cells are innate lymphocytes that exhibit many features of adaptive immunity, including clonal proliferation and long-lived memory. Here we demonstrate that the BTB-ZF transcription factor Zbtb32 (also known as ROG, FAZF, TZFP and PLZP) was essential for the proliferative burst and protective capacity of virus-specific NK cells. Signals from proinflammatory cytokines were both necessary and sufficient to induce high expression of Zbtb32 in NK cells. Zbtb32 facilitated NK cell proliferation during infection by antagonizing the anti-proliferative factor Blimp-1 (Prdm1). Our data support a model in which Zbtb32 acts as a cellular 'hub' through which proinflammatory signals instruct a 'proliferation-permissive' state in NK cells, thereby allowing their prolific expansion in response to viral infection.

  8. Gut-targeted immunonutrition boosting natural killer cell activity using Saccharomyces boulardii lysates in immuno-compromised healthy elderly subjects.

    PubMed

    Naito, Yasuhiro; Marotta, Francesco; Kantah, Makoto K; Zerbinati, Nicola; Kushugulova, Almagul; Zhumadilov, Zhaxybay; Illuzzi, Nicola; Sapienza, Chiara; Takadanohara, Hiroshi; Kobayashi, Riyichi; Catanzaro, Roberto

    2014-04-01

    The aim of this study was to assess the immunomodulatory effect of KC-1317 (a symbiotic mixture containing Saccharomyces boulardii lysate in a cranberry, colostrum-derived lactoferrin, fragaria, and lactose mixture) supplementation in immune-compromised but otherwise healthy elderly subjects. A liquid formulation of KC-1317 was administered in a randomized controlled trial (RCT) fashion to healthy volunteers (65-79 years) previously selected for low natural killer (NK) cell activity, and this parameter was checked at the completion of the study. A significant improvement in NK cell activity of KC-1317 consumers was observed as compared to placebo at the end of 2 months. Although preliminary, these beneficial immune-modulatory effects of KC-1317 in aged individuals might indicate its employment within a wider age-management strategy. PMID:24059806

  9. Unusual Indolent Course of a Chronic Active Epstein-Barr Virus-Associated Natural Killer Cell Lymphoproliferative Disorder

    PubMed Central

    Al-Riyami, Arwa Z.; Al-Farsi, Khalil; Al-Khabori, Murtadha; Al-Huneini, Mohammed; Al-Hadabbi, Ibrahim

    2016-01-01

    Natural killer (NK) cell lymphoproliferative disorders are uncommon and the Epstein-Barr virus (EBV) plays an important aetiological role in their pathogenesis. We report a 20-year-old male with a chronic active EBV infection associated with a NK cell lymphoproliferative disorder which had an unusual indolent course. He presented to the Sultan Qaboos University Hospital in Muscat, Oman, in December 2011 with a history of intermittent fever and coughing. Examinations revealed generalised lymphadenopathy, hepatosplenomegaly, leukocytosis, transaminitis, diffuse bilateral lung infiltrates and bone marrow lymphocyte involvement. A polymerase chain reaction (PCR) test revealed a high EBV viral load in the peripheral blood cells. The patient received a course of piperacillin-tazobactam for Klebsiella pneumoniae, but no active treatment for the lymphoproliferative disorder. However, his lymphocyte count, serum lactate dehydrogenase and liver enzymes dropped spontaneously. In addition, EBV PCR copies fluctuated and then decreased significantly. He remained clinically asymptomatic over the following four years. PMID:27226916

  10. Distinct Integrin-Dependent Signals Define Requirements for Lytic Granule Convergence and Polarization in Natural Killer Cells

    PubMed Central

    Hsu, Hsiang-Ting; Orange, Jordan S.

    2015-01-01

    Lytic granules in natural killer (NK) cells represent a dangerous cargo that is targeted for secretion to destroy diseased cells. The appropriate management of these organelles enables the mounting of a precise and valuable host defense. The process of NK cell adhesion to a target cell through engagement of the integrin LFA-1 (lymphocyte function–associated antigen 1) promotes lytic granule organization through complex cellular mechanics and a signaling pathway characterized by Zhang et al. in this issue of Science Signaling. A limited, partially overlapping set of signaling molecules can be distinguished for their ability to promote the convergence of NK cell lytic granules on the microtubule organizing center and their polarization as they progress en masse toward the interface with a target cell. PMID:25292212

  11. A PEPTIDE ANTAGONIST DISRUPTS NATURAL KILLER CELL INHIBITORY SYNAPSE FORMATION1

    PubMed Central

    Borhis, Gwenoline; Ahmed, Parvin S.; Mbiribindi, Bérénice; Naiyer, Mohammed M.; Davis, Daniel M; Purbhoo, Marco A; Khakoo, Salim I

    2013-01-01

    Productive engagement of MHC Class I by inhibitory NK cell receptors depends on the peptide bound by the MHC class I molecule. Peptide:MHC complexes that bind weakly to killer cell immunoglobulin-like receptors (KIR) can antagonize the inhibition mediated by high affinity peptide:MHC complexes and cause NK cell activation. We show that low affinity peptide:MHC complexes stall inhibitory signalling at the step of SHP-1 recruitment and do not go on to form the KIR microclusters induced by high affinity peptide:MHC, which are associated with Vav dephosphorylation and downstream signalling. Furthermore the low affinity peptide:MHC complexes prevented the formation of KIR microclusters by high affinity peptide:MHC. Thus peptide antagonism of NK cells is an active phenomenon of inhibitory synapse disruption. PMID:23382564

  12. Cytotoxic T lymphocytes and natural killer cells display impaired cytotoxic functions and reduced activation in patients with alcoholic hepatitis.

    PubMed

    Støy, Sidsel; Dige, Anders; Sandahl, Thomas Damgaard; Laursen, Tea Lund; Buus, Christian; Hokland, Marianne; Vilstrup, Hendrik

    2015-02-15

    The dynamics and role of cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and NKT cells in the life-threatening inflammatory disease alcoholic hepatitis is largely unknown. These cells directly kill infected and damaged cells through, e.g., degranulation and interferon-γ (IFNγ) production, but cause tissue damage if overactivated. They also assist tissue repair via IL-22 production. We, therefore, aimed to investigate the frequency, functionality, and activation state of such cells in alcoholic hepatitis. We analyzed blood samples from 24 severe alcoholic hepatitis patients followed for 30 days after diagnosis. Ten healthy abstinent volunteers and 10 stable abstinent alcoholic cirrhosis patients were controls. Using flow cytometry we assessed cell frequencies, NK cell degranulation capacity following K562 cell stimulation, activation by natural killer group 2 D (NKG2D) expression, and IL-22 and IFNγ production. In alcoholic hepatitis we found a decreased frequency of CTLs compared with healthy controls (P < 0.001) and a similar trend for NK cells (P = 0.089). The NK cell degranulation capacity was reduced by 25% compared with healthy controls (P = 0.02) and by 50% compared with cirrhosis patients (P = 0.04). Accordingly, the NKG2D receptor expression was markedly decreased on NK cells, CTLs, and NKT cells (P < 0.05, all). The frequencies of IL-22-producing CTLs and NK cells were doubled compared with healthy controls (P < 0.05, all) but not different from cirrhosis patients. This exploratory study for the first time showed impaired cellular cytotoxicity and activation in alcoholic hepatitis. This is unlikely to cause hepatocyte death but may contribute toward the severe immune incompetence. The results warrant detailed and mechanistic studies.

  13. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFNγ production and tumor control

    PubMed Central

    Veinotte, Linnea; Gebremeskel, Simon; Johnston, Brent

    2016-01-01

    ABSTRACT Crosstalk interactions between dendritic cells (DCs) and invariant natural killer T (iNKT) cells are important in regulating antitumor responses elicited by glycolipid antigens. iNKT cells constitutively express the chemokine receptor CXCR6, while cytokine-activated DCs upregulate the transmembrane chemokine ligand, CXCL16. This study examined the co-stimulatory role of CXCR6/CXCL16 interactions in glycolipid-dependent iNKT cell activation and tumor control. Spleen and liver DCs in wild-type mice, but not iNKT cell deficient (Jα18−/−) mice, transiently upregulated surface CXCL16 following in vivo administration of the glycolipid antigen α-galactosylceramide. Recombinant CXCL16 did not directly induce iNKT cell activation in vitro but enhanced interferon (IFN)-γ production when mouse or human iNKT cells were stimulated with plate-bound anti-CD3. Compared with glycolipid-loaded CXCL16neg DCs, CXCL16hi DCs induced higher levels of IFNγ production in iNKT cell cultures and following adoptive transfer in vivo. The number of IFNγ+ iNKT cells and expansion of T-bet+ iNKT cells were reduced in vivo when CXCL16−/− DCs were used to activate iNKT cells. Enhanced IFNγ production in vivo was not dependent on CXCR6 expression on natural killer (NK) cells. Adoptive transfer of glycolipid-loaded CXCL16hi DCs provided superior protection against tumor metastasis compared to CXCL16neg DC transfers. Similarly, wild-type DCs provided superior protection against metastasis compared with CXCL16−/− DCs. These experiments implicate an important role for CXCR6/CXCL16 interactions in regulating iNKT cell IFNγ production and tumor control. The selective use of CXCL16hi DCs in adoptive transfer immunotherapies may prove useful for enhancing T helper (Th) type 1 responses and clinical outcomes in cancer patients. PMID:27471636

  14. Antimicrobial activity of various immunomodulators: independence from normal levels of circulating monocytes and natural killer cells. Technical report

    SciTech Connect

    Morahan, P.S.; Dempsey, W.L.; Volkman, A.; Connor, J.

    1986-01-01

    The effects of /sup 89/Sr treatment on the natural host resistance of CD-1 mice and the enhancement of resistance by immunomodulators to infection with Listeria monocytogenes or herpes simplex virus type 2 (HSV-2) were determined. In the CD-1 mouse, single-dose treatment with /sup 89/Sr caused a profound decrease in the number of circulating monocytes (Mo), lymphocytes, and polymorphonuclear leukocytes (PMN) within 1 week. There was also marked functional impairment of the Mo inflammatory response, as well as markedly decreased spontaneous and activatable cytoxicity by splenic natural killer (NK) cells. Despite this profound cellular suppression, there was no significant change in natural resistance of CD-1 mice to L. monocytogenes of HSV-2 infection. Furthermore, prophylactic treatment of mice with the biologic immunomodulator Corynebacterium parvum or the synthetic immunomodulators maleic anhydride-divinyl ether or avridine in liposomes resulted in comparable enhancement of resistance in /sup 89/Sr-treated and normal mice. These data indicate that natural and immunomodulator-enhanced resistance of CD-1 mice to microbail infections do not depend on normal levels of Mo, PMN, or NK cells. The resistance enhancement may rely on activated tissue macrophages. In contrast to the early changes in circulating leukocytes, the residenet peritoneal cell populations were not markedly altered until after day 30. There then was a distinct decline in lymphocytes and a gradual decline in activated tissue macrophages.

  15. Different natural killer (NK) receptor expression and immunoglobulin E (IgE) regulation by NK1 and NK2 cells

    PubMed Central

    Aktas, E; Akdis, M; Bilgic, S; Disch, R; Falk, C S; Blaser, K; Akdis, C; Deniz, G

    2005-01-01

    Many studies concerning the role of T cells and cytokines in allergy have been performed, but little is known about the role of natural killer (NK) cells. Accordingly, the expression of co-stimulatory, inhibitory and apoptosis receptors, cytokine profiles and their effect on immunoglobulin isotypes were investigated in polyallergic atopic dermatitis (AD) patients with hyper immunoglobulin E (IgE) and healthy individuals. AD patients showed significantly decreased peripheral blood NK cells compared to healthy individuals. Freshly isolated NK cells of polyallergic patients spontaneously released higher amounts of interleukin (IL)-4, IL-5, IL-13 and interferon (IFN)-γ compared to healthy individuals. NK cells were differentiated to NK1 cells by IL-12 and neutralizing anti-IL-4 monoclonal antibodies (mAb), and to NK2 cells by IL-4 and neutralizing anti-IL-12 mAb. Following IL-12 stimulation, NK cells produced increased levels of IFN-γ and decreased IL-4. In contrast, stimulation of NK cells with IL-4 inhibited IFN-γ, but increased IL-13, production. The effect of NK cell subsets on IgE regulation was examined in co-cultures of in vitro differentiated NK cells with peripheral blood mononuclear cells (PBMC) or B cells. NK1 cells significantly inhibited IL-4- and soluble CD40-ligand-stimulated IgE production; however, NK2 cells did not have any effect. The inhibitory effect of NK1 cells on IgE production was blocked by neutralization of IFN-γ. Except for CD40, NK cell subsets showed different expression of killer-inhibitory receptors and co-stimulatory molecules between the polyallergic and healthy subjects. These results indicate that human NK cells show differences in numbers, surface receptor and cytokine phenotypes and functional properties in AD. PMID:15807855

  16. Identification of a novel gene expressed in activated natural killer cells and T cells

    SciTech Connect

    Dahl, C.A.; Schall, R.P.; He, H.; Cairns, J.S. )

    1992-01-15

    The authors have isolated a cDNA clone from a human activated NK cell-derived cDNA library that identifies a transcript [NK4] that is selectively expressed in lymphocytes. The expression of this transcript is increased after activation of T cells by mitogens or activation of NK cells by IL-2 (lymphokine-activated killer cells). The transcript levels demonstrated by Northern blot analysis increase by 12 h after activation, remain high for at least 48 h, and require protein synthesis for expression. Southern blot analysis of B lymphoblastoid lines derived from 18 unrelated individuals reveal variable banding patterns suggestive of polymorphism within the NK4 gene. No homology was found between the sequence of the coding region of this transcript and any sequences in the GenBank data base. Sequence homology to the U1 small nuclear RNA was found within the 3[prime] untranslated region immediately upstream of the site of polyadenylation, suggesting a possible role for U1 in the polyadenylation process. Sequence analysis indicates the transcript would encode a protein having a mass of 27 kDa. The presence of a signal sequence and lack of a transmembrane region suggests that the protein is secreted. In addition, the protein contains an RGD sequence that may be involved in cellular adhesion. This transcript appears to encode a novel product common to the activation pathways of both NK cells and T cells. 50 refs., 8 figs.

  17. Alpha-phellandrene promotes immune responses in normal mice through enhancing macrophage phagocytosis and natural killer cell activities.

    PubMed

    Lin, Jen-Jyh; Lin, Ju-Hwa; Hsu, Shu-Chun; Weng, Shu-Wen; Huang, Yi-Ping; Tang, Nou-Ying; Lin, Jaung-Geng; Chung, Jing-Gung

    2013-01-01

    α-Phellandrene, a natural compound from natural plants, has been used in the food and perfume industry. We investigated the effects of α-phellandrene on the immune responses on normal murine cells in vivo. Normal BALB/c mice were treated orally with or without α-phellandrene at 0, 1, 5 and 25 mg/kg and olive oil as a positive control for two weeks. Results indicated that α-phellandrene did not change the weight of animals when compared to olive oil (vehicle for α-phellandrene)-treated groups. After flow cytometric assay of blood samples it was shown that α-phellandrene increased the percentage of CD3 (T-cell marker), CD11b (monocytes) and MAC3 (macrophages), but reduced the percentage of CD19 (B-cell marker) cell surface markers in α-phellandrene-treated groups, compared to untreated groups. α-Phellandrene promoted the phagocytosis of macrophages from blood samples at 5 and 25 mg/kg treatment and promoted natural killer cell activity from splenocytes at 25 mg/kg. Furthermore, α-phellandrene increased B-cell proliferation at 25 mg/kg with or without stimulation but promoted cell proliferation only at 25 mg/kg treatment with stimulation. Based on these observations, 25 mg/kg with α-phellandrene seems to have promoted immune responses in this murine model.

  18. Uterine and circulating natural killer cells and their roles in women with recurrent pregnancy loss, implantation failure and preeclampsia.

    PubMed

    Fukui, Atsushi; Funamizu, Ayano; Yokota, Megumi; Yamada, Kenichi; Nakamua, Rika; Fukuhara, Rie; Kimura, Hidetaka; Mizunuma, Hideki

    2011-06-01

    The regulation of uterine and circulating peripheral blood natural killer (NK) cells has been associated with reproductive conditions including recurrent pregnancy loss (RPL), implantation failure and preeclampsia. Natural cytotoxicity receptors (NCRs) are unique markers that regulate NK cell cytotoxicity and cytokine production. The role of NCRs in reproductive events has not yet been fully characterized. There is an NK1 (Type 1) shift in peripheral blood NK cells in non-pregnant women prone to RPL and implantation failure. The different profile of NCR expression in endometrial or aborted decidual NK cells suggests the presence of abnormal regulation of NK cells in women with reproductive failure. Women with a history of RPL and preeclampsia carry immunological abnormalities of NCRs on peripheral blood NK cells during pregnancy. Evaluation of NKp46 on peripheral blood NK cells may be applicable for the prediction of preeclampsia. The lower expression of NKp46(+) NK cells in women with preeclampsia may account for the higher production of NK1 cytokines - known as the NK1 shift - in pregnant women with preeclampsia. In this review, the expression of NCRs in peripheral blood NK cells and endometrial or decidual NK cells is discussed in relation to reproductive failure.

  19. Association of alpha interferon production with natural killer cell lysis of U937 cells infected with human immunodeficiency virus.

    PubMed Central

    Rappocciolo, G; Toso, J F; Torpey, D J; Gupta, P; Rinaldo, C R

    1989-01-01

    Mononuclear leukocytes from human immunodeficiency virus (HIV)-seronegative and -seropositive homosexual men lysed HIV-infected U937 cells to a significantly greater degree than uninfected U937 cells. Depletion of cell subsets with monoclonal antibodies and complement indicated that the effector cells were primarily of the CD16+ phenotype. Acid-stable alpha interferon (IFN-alpha) production induced by the HIV-infected cells correlated with, although was not an absolute requisite for, preferential lysis of the infected targets. The activity of these CD16+, natural killer (NK) cells decreased in relation to the duration of HIV infection and the presence of acquired immunodeficiency syndrome. Pretreatment of peripheral blood mononuclear cells from HIV-seronegative subjects, but not HIV-seropositive men, with IFN-alpha or recombinant interleukin-2 enhanced lysis of both uninfected and HIV-infected U937 cells. These results suggest that IFN-alpha-associated, NK-like mechanisms are active in the cytotoxic response against HIV-infected cells and that HIV infection results in an early and progressive depression of such responses. Prospective investigations may be useful in determining the role of this NK cell response in the natural history and pathogenesis of HIV infection and the efficacy of therapeutic modalities. PMID:2913035

  20. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect

    PubMed Central

    Cruz, C. Russell; Bollard, Catherine M.

    2015-01-01

    Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation. PMID:26034113

  1. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  2. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules.

    PubMed Central

    Chapes, S K; Hoynowski, S M; Woods, K M; Armstrong, J W; Beharka, A A; Iandolo, J J

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines. PMID:8359928

  3. [Activity of natural killer cells of the spleen of mice exposed to low-intensity of extremely high frequency electromagnetic radiation].

    PubMed

    Ogaĭ, V B; Novoselova, E G; Cherenkov, D A; Fesenko, E E

    2003-01-01

    The dose dependence of natural killer (NK) cell activity from mouse spleen upon action of low-intensity millimeter waves in the exposure range from 5 to 96 hours was studied. It has found an increase of NK activity by 24 hours posttreatment that returned to normal level in a day after the cessation of the irradiation. Also the stimulation of isolated NK cell activity after millimeter waves treatment within 1 hour was revealed.

  4. Unilateral primary adrenal natural killer/T-cell lymphoma: Role of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography for staging and interim response assessment

    PubMed Central

    Kabnurkar, Rasika; Agrawal, Archi; Epari, Sridhar; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    Primary adrenal lymphoma (PAL) is a rare malignancy often involving bilateral adrenal glands. Diffuse large B-cell is the most common histological type. Unilateral presentation and T-cell/natural killer (T/NK) cell histological type is rarer. We report fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography scan findings in a case of unilateral T/NK cell PAL performed for staging and interim treatment response assessment. PMID:26917897

  5. Functional advantage of educated KIR2DL1(+) natural killer cells for anti-HIV-1 antibody-dependent activation.

    PubMed

    Gooneratne, S L; Center, R J; Kent, S J; Parsons, M S

    2016-04-01

    Evidence from the RV144 HIV-1 vaccine trial implicates anti-HIV-1 antibody-dependent cellular cytotoxicity (ADCC) in vaccine-conferred protection from infection. Among effector cells that mediate ADCC are natural killer (NK) cells. The ability of NK cells to be activated in an antibody-dependent manner is reliant upon several factors. In general, NK cell-mediated antibody-dependent activation is most robust in terminally differentiated CD57(+) NK cells, as well as NK cells educated through ontological interactions between inhibitory killer immunoglobulin-like receptors (KIR) and their major histocompatibility complex class I [MHC-I or human leucocyte antigen (HLA-I)] ligands. With regard to anti-HIV-1 antibody-dependent NK cell activation, previous research has demonstrated that the epidemiologically relevant KIR3DL1/HLA-Bw4 receptor/ligand combination confers enhanced activation potential. In the present study we assessed the ability of the KIR2DL1/HLA-C2 receptor/ligand combination to confer enhanced activation upon direct stimulation with HLA-I-devoid target cells or antibody-dependent stimulation with HIV-1 gp140-pulsed CEM.NKr-CCR5 target cells in the presence of an anti-HIV-1 antibody source. Among donors carrying the HLA-C2 ligand for KIR2DL1, higher interferon (IFN)-γ production was observed within KIR2DL1(+) NK cells than in KIR2DL1(-) NK cells upon both direct and antibody-dependent stimulation. No differences in KIR2DL1(+) and KIR2DL1(-) NK cell activation were observed in HLA-C1 homozygous donors. Additionally, higher activation in KIR2DL1(+) than KIR2DL1(-) NK cells from HLA-C2 carrying donors was observed within less differentiated CD57(-) NK cells, demonstrating that the observed differences were due to education and not an overabundance of KIR2DL1(+) NK cells within differentiated CD57(+) NK cells. These observations are relevant for understanding the regulation of anti-HIV-1 antibody-dependent NK cell responses.

  6. A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells

    PubMed Central

    Gowen, Benjamin G; Chim, Bryan; Marceau, Caleb D; Greene, Trever T; Burr, Patrick; Gonzalez, Jeanmarie R; Hesser, Charles R; Dietzen, Peter A; Russell, Teal; Iannello, Alexandre; Coscoy, Laurent; Sentman, Charles L; Carette, Jan E; Muljo, Stefan A; Raulet, David H

    2015-01-01

    Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger. DOI: http://dx.doi.org/10.7554/eLife.08474.001 PMID:26565589

  7. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    PubMed Central

    López-Sagaseta, Jacinto; Sibener, Leah V; Kung, Jennifer E; Gumperz, Jenny; Adams, Erin J

    2012-01-01

    Invariant Natural Killer T (iNKT) cells use highly restricted αβ T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted α1 helix resulting in an open A' pocket. Binding of the iNKT TCR requires a 7-Å displacement of the LPC headgroup but stabilizes the CD1d–LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d–LPC is anchored by the conserved positioning of the CDR3α loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3β and Jβ segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells. PMID:22395072

  8. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  9. Scorpion venom activates natural killer cells in hepatocellular carcinoma via the NKG2D-MICA pathway.

    PubMed

    Chen, Han; Zhidan, Wang; Xia, Ren; Zhaoxia, Wang; Qing, Jia; Qiang, Guo; Haipeng, Yin; Hengxiao, Wang

    2016-06-01

    Previous studies have demonstrated that polypeptides extracted from scorpion venom (PESV) inhibited cell proliferation in several tumors, however, the effect on dysfunctional and exhausted natural killer cells which contribute to tumor escape from immune surveillance remain to be elucidated. In this study, we determined the effect of PESV on NK infiltration into H22 cells orthotopic transplantation tumors and on the expression of MHC class I chain-related proteins A (MICA) in HepG2 cells. We found that tumor growth in mice was significantly inhibited by PESV and the survival time of tumor-bearing mice treated with PESV was significantly prolonged. Moreover, levels of tumor-infiltrating NK cells, NKG2D protein, perforin and granzyme B mRNA were significantly increased in the group treated with PESV compared with the tumor-bearing control group. In addition, In addition, up-regulation of MICA by PESV enhances the susceptibility of HepG2 cells to NK lysis in vitro. These results indicate that the inhibitory effects of PESV on hepatic carcinoma are likely mediated by up-regulation of NK cell activity via the MICA-NKG2D pathway. PMID:27089390

  10. Regulation of natural killer enhancing factor (NKEF) genes in teleost fish, gilthead seabream and European sea bass.

    PubMed

    Esteban, María A; Chaves-Pozo, Elena; Arizcun, Marta; Meseguer, José; Cuesta, Alberto

    2013-10-01

    Peroxiredoxins (Prx) are a family of antioxidant proteins also involved in inflammation and innate immunity. Prx1 and Prx2 are also known as natural killer enhancing factor (NKEF)-A and NKEF-B, respectively, by their ability to prime the mammalian NK-cells activity. In teleost fish, NKEF genes have been isolated but their regulation has been scarcely evaluated. We have identified orthologues of the NKEF-A and NKEF-B genes in the teleost European sea bass (Dicentrarchus labrax) which showed constitutive expression and wide distribution in their tissues. In vitro, the gilthead seabream (Sparus aurata) and sea bass NKEFs were slightly up-regulated in head-kidney leucocytes after stimulation with unmethylated CpG oligodeoxynucleotides, poly I:C or pathogenic bacteria. In vivo, seabream and sea bass infection with nodavirus up-regulated the expression of NKEF genes in the brain (target tissue for nodavirus) and head-kidney at different infection times. Although further studies are necessary to ascertain their role as antioxidant proteins and in the immune response in teleost fish, our results suggest a primary role of seabream and sea bass NKEFs in the innate immune response against bacterial and viral agents. PMID:23511025

  11. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens.

    PubMed

    Arora, Pooja; Baena, Andres; Yu, Karl O A; Saini, Neeraj K; Kharkwal, Shalu S; Goldberg, Michael F; Kunnath-Velayudhan, Shajo; Carreño, Leandro J; Venkataswamy, Manjunatha M; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R; Jervis, Peter J; Veerapen, Natacha; Besra, Gurdyal S; Porcelli, Steven A

    2014-01-16

    Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α(+) DEC-205(+) dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α(+) dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses.

  12. Superresolution microscopy reveals nanometer-scale reorganization of inhibitory natural killer cell receptors upon activation of NKG2D.

    PubMed

    Pageon, Sophie V; Cordoba, Shaun-Paul; Owen, Dylan M; Rothery, Stephen M; Oszmiana, Anna; Davis, Daniel M

    2013-07-23

    Natural killer (NK) cell responses are regulated by a dynamic equilibrium between activating and inhibitory receptor signals at the immune synapse (or interface) with target cells. Although the organization of receptors at the immune synapse is important for appropriate integration of these signals, there is little understanding of this in detail, because research has been hampered by the limited resolution of light microscopy. Through the use of superresolution single-molecule fluorescence microscopy to reveal the organization of the NK cell surface at the single-protein level, we report that the inhibitory receptor KIR2DL1 is organized in nanometer-scale clusters at the surface of human resting NK cells. Nanoclusters of KIR2DL1 became smaller and denser upon engagement of the activating receptor NKG2D, establishing an unexpected crosstalk between activating receptor signals and the positioning of inhibitory receptors. These rearrangements in the nanoscale organization of surface NK cell receptors were dependent on the actin cytoskeleton. Together, these data establish that NK cell activation involves a nanometer-scale reorganization of surface receptors, which in turn affects models for signal integration and thresholds that control NK cell effector functions and NK cell development. PMID:23882121

  13. Lipid and Carbohydrate Modifications of α-Galactosylceramide Differently Influence Mouse and Human Type I Natural Killer T Cell Activation*

    PubMed Central

    Birkholz, Alysia; Nemčovič, Marek; Yu, Esther Dawen; Girardi, Enrico; Wang, Jing; Khurana, Archana; Pauwels, Nora; Farber, Elisa; Chitale, Sampada; Franck, Richard W.; Tsuji, Moriya; Howell, Amy; Van Calenbergh, Serge; Kronenberg, Mitchell; Zajonc, Dirk M.

    2015-01-01

    The ability of different glycosphingolipids (GSLs) to activate type I natural killer T cells (NKT cells) has been known for 2 decades. The possible therapeutic use of these GSLs has been studied in many ways; however, studies are needed in which the efficacy of promising GSLs is compared under identical conditions. Here, we compare five unique GSLs structurally derived from α-galactosylceramide. We employed biophysical and biological assays, as well as x-ray crystallography to study the impact of the chemical modifications of the antigen on type I NKT cell activation. Although all glycolipids are bound by the T cell receptor of type I NKT cells in real time binding assays with high affinity, only a few activate type I NKT cells in in vivo or in vitro experiments. The differences in biological responses are likely a result of different pharmacokinetic properties of each lipid, which carry modifications at different parts of the molecule. Our results indicate a need to perform a variety of assays to ascertain the therapeutic potential of type I NKT cell GSL activators. PMID:26018083

  14. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection.

    PubMed

    Gillespie, Alyssa Lundgren; Teoh, Jeffrey; Lee, Heather; Prince, Jessica; Stadnisky, Michael D; Anderson, Monique; Nash, William; Rival, Claudia; Wei, Hairong; Gamache, Awndre; Farber, Charles R; Tung, Kenneth; Brown, Michael G

    2016-02-01

    The MHC class I D(k) molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds D(k), are required to control viral spread. The extent of D(k)-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust D(k)-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen. PMID:26845690

  15. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    SciTech Connect

    López-Sagaseta, Jacinto; Sibener, Leah V.; Kung, Jennifer E.; Gumperz, Jenny; Adams, Erin J.

    2014-10-02

    Invariant Natural Killer T (iNKT) cells use highly restricted {alpha}{beta} T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted {alpha}1 helix resulting in an open A pocket. Binding of the iNKT TCR requires a 7-{angstrom} displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3{alpha} loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3{beta} and J{beta} segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.

  16. Allogeneic Haematopoietic Cell Transplantation after Nonmyeloablative Conditioning in Patients with T-Cell and Natural Killer-Cell Lymphomas

    PubMed Central

    Shustov, Andrei R.; Gooley, Theodore A.; Sandmaier, Brenda M.; Shizuru, Judith; Sorror, Mohamed L.; Sahebi, Firoozeh; McSweeney, Peter; Niederwieser, Dietger; Bruno, Benedetto; Storb, Rainer; Maloney, David G.

    2010-01-01

    Summary Patients with T-cell (TCL) and natural killer-cell lymphomas (NKCL) have poor outcomes. This study examined the role of allogeneic haematopoietic cell transplantation (HCT) after non-myeloablative conditioning in this setting. Seventeen patients with TCL or NKCL, including three patients in first complete remission, received allogeneic HCT after 2 Gy total-body irradiation and fludarabine. The median age was 57 (range, 18–73) years. The median number of prior therapies was 3 (range, 1–7), six patients (35%) had failed prior autologous HCT, and five patients (29%) had refractory disease at the time of allograft. Postgrafting immunosuppression was provided with mycophenolate mofetil with cyclosporine or tacrolimus. After a median follow-up of 3.3 (range, 0.3–8.0) years among surviving patients, the estimated probabilities of 3-year overall and progression-free survival were 59% and 53%, respectively, while the estimated probabilities of non-relapse mortality and relapse at three years were 19% and 26%, respectively. Sixty-five percent of patients developed grades 2–4 acute graft-versus-host disease and 53% of patients developed chronic graft-versus-host disease. Allogeneic HCT after non-myeloablative conditioning is a promising salvage option for selected patients TCL and NKCL. These results suggest that graft-versus-T-cell lymphoma activity is responsible for long-term disease control. PMID:20507311

  17. Effects of nuclear factor-kappaB inhibitors and its implication on natural killer T-cell lymphoma cells.

    PubMed

    Kim, Kihyun; Ryu, Kyoungju; Ko, Younghyeh; Park, Chaehwa

    2005-10-01

    Natural killer/T-cell lymphoma (NKTL) is a highly aggressive disease. Despite the use of various treatment regimens, the prognosis of NKTL is poor, and new treatment strategies need to be determined. Because of the significant survival potential, nuclear factor (NF)-kappaB has become one of the major targets for drug development. In this study, we explored the effect and action mechanism of NF-kappaB inhibitors, BAY 11-7082 and curcumin, on NKTL cell lines (NKL, NK-92 and HANK1). Electrophoretic mobility shift assay showed that NF-kappaB was constitutively active in HANK1, a chemoresistant cell line. BAY 11-7082 and curcumin suppressed NF-kappaB activation in a time- and dose-dependent manner, which finally resulted in cell death. BAY 11-7082- and curcumin-induced cell death was associated with downregulation of Bcl-xL, cyclin D1, XIAP and c-FLIP, followed by caspase-8, poly(ADP-ribose) polymerase cleavage and activation. Given that the chemoresistant NK-92 cells respond to NF-kappaB inhibitors but not to conventional drugs, BAY 11-7082 and curcumin could be potentially useful for achieving improved outcome in chemotherapy-refractory NKTL.

  18. Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy.

    PubMed

    Lode, H N; Xiang, R; Dreier, T; Varki, N M; Gillies, S D; Reisfeld, R A

    1998-03-01

    Targeted interleukin-2 (IL-2) therapy with a genetically engineered antidisialoganglioside GD2 antibody-IL-2 fusion protein induced a cell-mediated antitumor response that effectively eradicated established bone marrow and liver metastases in a syngeneic model of neuroblastoma. The mechanism involved is exclusively natural killer (NK) cell-dependent, because NK-cell deficiency abrogated the antitumor effect. In contrast, the fusion protein remained completely effective in the T-cell-deficient mice or immunocompetent mice depleted of CD8+ T cells in vivo. A strong stimulation of NK-cell activity was also shown in vitro. Immunohistology of the leukocytic infiltrate of livers from treated mice revealed a strong staining for NK cells but not for CD8+ T cells. The therapeutic effect of the fusion protein was increased when combined with NK-cell-stimulating agents, such as poly I:C or recombinant mouse interferon-gamma. In conclusion, these data show that targeted delivery of cytokines to the tumor microenvironment offers a new strategy to elicit an effective cellular immune response mediated by NK cells against metastatic neuroblastoma. This therapeutic effect may have general clinical implications for the treatment of patients with minimal residual disease who suffer from T-cell suppression after high-dose chemotherapy but are not deficient in NK cells.

  19. Inhibition of Natural Killer Cells through Engagement of CD81 by the Major Hepatitis C Virus Envelope Protein

    PubMed Central

    Crotta, Stefania; Stilla, Annalisa; Wack, Andreas; D'Andrea, Annalisa; Nuti, Sandra; D'Oro, Ugo; Mosca, Marta; Filliponi, Franco; Brunetto, R. Maurizia; Bonino, Ferruccio; Abrignani, Sergio; Valiante, Nicholas M.

    2002-01-01

    The immune response against hepatitis C virus (HCV) is rarely effective at clearing the virus, resulting in ∼170 million chronic HCV infections worldwide. Here we report that ligation of an HCV receptor (CD81) inhibits natural killer (NK) cells. Cross-linking of CD81 by the major envelope protein of HCV (HCV-E2) or anti-CD81 antibodies blocks NK cell activation, cytokine production, cytotoxic granule release, and proliferation. This inhibitory effect was observed using both activated and resting NK cells. Conversely, on NK-like T cell clones, including those expressing NK cell inhibitory receptors, CD81 ligation delivered a costimulatory signal. Engagement of CD81 on NK cells blocks tyrosine phosphorylation through a mechanism which is distinct from the negative signaling pathways associated with NK cell inhibitory receptors for major histocompatibility complex class I. These results implicate HCV-E2–mediated inhibition of NK cells as an efficient HCV evasion strategy targeting the early antiviral activities of NK cells and allowing the virus to establish itself as a chronic infection. PMID:11781363

  20. Self-generating density gradients of Percoll provide a simple and rapid method that consistently enriches natural killer cells.

    PubMed

    Ravnik, S E; Gage, S; Pollack, S B

    1988-06-13

    The separation or enrichment of natural killer (NK) cells from the heterogeneous cell populations in murine spleen or bone marrow is a vital step for the study of NK cells. We report in this study a simple and rapid method for the enrichment of NK cells from B cell-depleted spleen cells, using a self-generating density gradient of polyvinyl pyrrolidone-coated silica (Percoll). Nylon wool-passed spleen cells are suspended in Percoll that is isotonic and isosmotic with mouse blood at a density of 1.087 g/ml and ultracentrifuged at 30,000 x g for 10 min. This method consistently enriches for NK cell cytotoxic activity, in spleen cells of both unstimulated and interferon-stimulated mice, as measured in the chromium release assay. There is a concomitant enrichment for cells bearing the NK marker asialo GM-1 and depletion of L3T4 or Lyt-2-bearing T cells. In contrast to discontinuous, step-wise gradients, the self-generating Percoll gradient, which relies on the intrinsic property of Percoll to form a continuous density gradient, appears to provide the cells with a physiological environment both before and during the centrifugation step.

  1. The natural killer T lymphocyte: a player in the complex regulation of autoimmune diabetes in non-obese diabetic mice

    PubMed Central

    Cardell, S L

    2006-01-01

    Manipulation of the immune response to specifically prevent autoaggression requires an understanding of the complex interactions that occur during the pathogenesis of autoimmunity. Much attention has been paid to conventional T lymphocytes recognizing peptide antigens presented by classical major histocompatibility complex (MHC) class I and II molecules, as key players in the destructive autoreactive process. A pivotal role for different types of regulatory T lymphocytes in modulating the development of disease is also well established. Lately, CD1d-restricted natural killer T (NKT) lymphocytes have been the subject of intense investigation because of their ability to regulate a diversity of immune responses. The non-classical antigen presenting molecule CD1d presents lipids and glycolipids to this highly specialized subset of T lymphocytes found in both humans and mice. From experimental models of autoimmunity, evidence is accumulating that NKT cells can protect from disease. One of the best studied is the murine type 1 diabetes model, the non-obese diabetic (NOD) mouse. While the NKT cell population was first recognized to be deficient in NOD mice, augmenting NKT cell activity has been shown to suppress the development of autoimmune disease in this strain. The mechanism by which CD1d-restricted T cells exert this function is still described incompletely, but investigations in NOD mice are starting to unravel specific effects of NKT cell regulation. This review focuses on the role of CD1d-restricted NKT cells in the control of autoimmune diabetes. PMID:16412042

  2. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-01-01

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity. PMID:27210614

  3. Absence of circulating natural killer (NK) cells in a child with erythrophagocytic lymphohistiocytosis lacking NK cell activity

    SciTech Connect

    Kawai, H.; Komiyama, A.; Aoyama, K.; Miyagawa, Y.; Akabane, T.

    1988-06-01

    A 5-year-old girl who was diagnosed as having erythrophagocytic lymphohistiocytosis died at age 9 years. Peripheral lymphocytes from the patient persistently lacked natural killer (NK) cell activity during the 4-year observation period: the percent lysis values as measured by a 4-hr /sup 51/Cr release assay at a 40:1 effector:target ratio were below 1.0% against K562 and Molt-4 cells as compared with the normal lymphocyte value (mean +/- SD) of 46.2% +/- 5.8% and 43.9% +/- 6.7%, respectively. The patient's lymphocytes never developed NK cell activity by their incubation with target cells for longer time periods or by their stimulation with interferon-alpha, interleukin-2, or polyinosinic-polycytidilic acid. Single cell-in-agarose assay showed the absence of target-binding cells (TBCs): TBC numbers were below 0.3% as compared with the normal lymphocyte value of 8.1% +/- 1.3% (mean +/- SD). Flow cytometry showed a marked decrease in Leu-7+ cells (1.7%) and the absence of Leu-11+ cells (0.4%) in the peripheral blood. These results first demonstrate a case of erythrophagocytic lymphohistiocytosis in which there is the lack of NK cell activity due to the absence of circulating NK cells.

  4. Sea buckthorn (Hippophae rhamnoides L.) oil protects against chronic stress-induced inhibitory function of natural killer cells in rats.

    PubMed

    Diandong, Hou; Feng, Gu; Zaifu, Liang; Helland, Timothy; Weixin, Fu; Liping, Cai

    2016-03-01

    Chronic stress can suppress natural killer (NK) cell activity; this may also be related to the effect of stress on the neuroendocrine-immune network. Sea buckthorn (SBT) (Hippophae rhamnoides L.) is a thorny nitrogen fixing deciduous shrub, native to both Europe and Asia. It has been used as a medicinal plant in Tibetan and Mongolian traditional medicines. SBT has multifarious medical properties, including anti-fatigue as well as immunoregulatory effects. This study reports the effects of SBT oil with regard to the cytotoxicity and quantity of NK cells in the blood of a chronic-stress rat model, in addition to its mechanisms on the neuroendocrine-immune network. These results show that SBT oil, given by gavage to rats with chronic stress, could increase the following: body weight, NK cell quantities, and cytotoxicity, as well as the expression of perforin and granzyme B. The results also show that SBT oil in rats with chronic stress could suppress cortisol, ACTH, IL-1β and TNF-α levels, in addition to increasing 5-HT and IFN-γ serum levels. This leads to suggest that SBT oil, in rats with chronic stress, can increase NK cell cytotoxicity by upregulating the expression of perforin and granzyme B, thus causing associated effects of SBT oil on the neuroendocrine-immune network. PMID:26684638

  5. Natural Killer cell-dependent and non-dependent anti-viral activity of 2-Cys Peroxiredoxin against HIV

    PubMed Central

    Asmal, Mohammed; Letvin, Norman L.; Geiben-Lynn, Ralf

    2013-01-01

    2-cys peroxiredoxins (Prx), a group of anti-oxidative enzyme proteins, act directly on virally-infected cells to inhibit HIV-1 replication, and indirectly through destruction of HIV infected cells by stimulation of Natural Killer (NK) cell-mediated immune responses. We assayed for antibody-dependent NK cell mediated viral inhibition (ADCVI) using plasma from SIV-infected rhesus macaques. We found that Prx-1 strongly increased ADCVI in a dose-dependent manner, suggesting augmentation of NK cell killing. We also investigated the effect of Prx-1 on NK cell-independent HIV-1 and HIV-2 inhibition. We found that primary HIV isolates were potently inhibited at nM concentrations, regardless of viral clade, receptor usage or anti-retroviral drug resistance. During NK cell independent inhibition, we found that Prx-1 reversed the HIV-1 induced gene expression of Heat shock protein 90 kDa alpha (cystolic), class A member 2, (HSP90), a protein of the stress pathway. Prx-1 highly activated Cyclin-dependent kinase inhibitor 2B (CDKN2B), a gene of the TGF-β pathway, and Baculoviral IAP repeat-containing 2 (Birc-2), an anti-apoptotic gene of the NF-κB pathway. We identified gene-expression networks highly dependent on the NFκB and ERK1/2 pathways. Our findings demonstrate that Prx-1 inhibits HIV replication through NK cell-dependent and NK cell-independent mechanisms. PMID:24244928

  6. Inositol hexaphosphate-induced enhancement of natural killer cell activity correlates with suppression of colon carcinogenesis in rats

    PubMed Central

    Zhang, Zheng; Song, Yang; Wang, Xiu-Li

    2005-01-01

    AIM: To investigate the anti-neoplastic effect of inositol hexaphosphate (InsP6 or phytic acid) on dimethylhydrazine (DMH)-induced colon tumor in rats and its effect on blood natural killer (NK) cell activity. METHODS: Healthy Wistar rats, 4 wk old, were divided into control group (fed with common food) and InsP6 group (fed with common food+2% sodium inositol hexaphosphate in the drinking water), 15 rats in each group. Both groups were injected with 1,2-dimethylhydrazine subcutaneously (20 mg/kg body weight) once a week for 20 wk. Rats were killed after 21 wk. The whole large intestine was isolated to determine the general condition of tumors and to test blood NK cell activity by lactate-dehydrogenase-release assay. RESULTS: Administration of InsP6 significantly increased blood NK cell activity in DMH-induced colorectal tumor in rats. InsP6 group had a smaller tumor size on average and a smaller number of tumors than the control group. Its mortality was also higher than that in control. However, the variables of body weight and tumor incidence were not significantly different between the two groups. CONCLUSION: InsP6 can increase blood NK cell activity in DMH-induced colon tumor in rats and inhibit tumor growth and metastasis in rats. PMID:16124063

  7. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    PubMed Central

    Kumagai, Kenichi; Horikawa, Tatsuya; Shigematsu, Hiroaki; Matsubara, Ryota; Kitaura, Kazutaka; Eguchi, Takanori; Kobayashi, Hiroshi; Nakasone, Yasunari; Sato, Koichiro; Yamada, Hiroyuki; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2016-01-01

    Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis. PMID:26771600

  8. Development of a new antibody for detecting natural killer enhancing factor (NKEF)-like protein in infected salmonids.

    PubMed

    Bethke, J; Rojas, V; Berendsen, J; Cárdenas, C; Guzmán, F; Gallardo, J A; Mercado, L

    2012-05-01

    The main cellular responses of innate immunity are phagocytic activity and the respiratory burst, which produces a high amount of reactive oxygen species. Natural killer enhancing factor (NKEF) belongs to the peroxiredoxin family that has an antioxidant function and enhances cytotoxic cell activity. This molecule may play a key role in macrophage and cytotoxic cell communication during the innate immune response of fish against pathogens. In fish, the NKEF gene has been characterized in some species as showing an up-regulation in infected fish, suggesting a trigger effect upon NK-like cells. To detect and localize this molecule in salmonids at protein level, a monospecific polyclonal antibody was generated. A probable NKEF-like protein epitope region was identified and characterized using bioinformatic tools, and the sequence was chemically synthesized using Fmoc strategy, analysed by RP-HPLC and its molecular weight confirmed by mass spectrometry. The synthetic peptide was immunized and antibodies from ascitic fluid were obtained. The resulting antibody is a versatile tool for detecting NKEF by different immune techniques such as ELISA, Western blotting and immunohistochemistry. Analysis of NKEF-like protein is a useful method for characterizing immune properties of this molecule in fish during response to pathogens.

  9. Natural killer cell cytotoxicity, cytokine and neuroendocrine responses to opioid receptor blockade during prolonged restraint in pigs.

    PubMed

    Ciepielewski, Z M; Stojek, W; Borman, A; Myślińska, D; Glac, W; Kamyczek, M

    2013-12-01

    This study evaluated porcine natural killer cell cytotoxicity (NKCC), plasma cytokines including interleukin (IL) 1β, IL-6, IL-10, IL-12 and tumor necrosis factor-α and plasma stress-related hormones including prolactin (PRL), growth hormone (GH), β-endorphin (BEND), ACTH and cortisol (COR) during a 4h restraint and recovery phase after saline or naloxone (1mg/kg BW) administration. The restraint preceded with saline altered NKCC and IL-12 concentration (an early from 15 to 60 min increase followed by a decrease) and increased other measured cytokines and hormones concentrations. Naloxone pretreatment blocked the suppressive effects of the restraint on NKCC and IL-12 and altered IL-10, IL-6, TNF-α, PRL and ACTH concentrations. Furthermore, in naloxone-injected pigs, a positive correlation was found between NKCC and all measured cytokines (with the exception of IL-6) and BEND, ACTH and COR. Results suggest that naloxone-sensitive opioid pathways could influence the mechanisms underlying the immune system (including NKCC) response during stress. PMID:24148869

  10. Lipid and Carbohydrate Modifications of α-Galactosylceramide Differently Influence Mouse and Human Type I Natural Killer T Cell Activation.

    PubMed

    Birkholz, Alysia; Nemčovič, Marek; Yu, Esther Dawen; Girardi, Enrico; Wang, Jing; Khurana, Archana; Pauwels, Nora; Farber, Elisa; Chitale, Sampada; Franck, Richard W; Tsuji, Moriya; Howell, Amy; Van Calenbergh, Serge; Kronenberg, Mitchell; Zajonc, Dirk M

    2015-07-10

    The ability of different glycosphingolipids (GSLs) to activate type I natural killer T cells (NKT cells) has been known for 2 decades. The possible therapeutic use of these GSLs has been studied in many ways; however, studies are needed in which the efficacy of promising GSLs is compared under identical conditions. Here, we compare five unique GSLs structurally derived from α-galactosylceramide. We employed biophysical and biological assays, as well as x-ray crystallography to study the impact of the chemical modifications of the antigen on type I NKT cell activation. Although all glycolipids are bound by the T cell receptor of type I NKT cells in real time binding assays with high affinity, only a few activate type I NKT cells in in vivo or in vitro experiments. The differences in biological responses are likely a result of different pharmacokinetic properties of each lipid, which carry modifications at different parts of the molecule. Our results indicate a need to perform a variety of assays to ascertain the therapeutic potential of type I NKT cell GSL activators. PMID:26018083

  11. Stimulation of natural killer cells by homoeopathic complexes: an in vitro and in vivo pilot study in advanced cancer patients.

    PubMed

    Toliopoulos, Ioannis K; Simos, Yannis; Bougiouklis, Dimitrios; Oikonomidis, Stergios

    2013-12-01

    The present study was designed in order to evaluate the effects of five homoeopathic complex preparations on functional activity natural killer cells (NKCs) in advanced cancer patients. We examined the effects of Coenzyme Compositum®, Ubichinon Compositum®, Glyoxal Compositum®, Katalysatoren® and Traumeel® on the functional activity of NKCs. Experimental procedures included in vitro and in vivo trials. The in vitro trials were performed in NKCs isolated from 12 healthy volunteers (aged 44 ± 4 years) and incubated with the five homoeopathic complex preparations. The in vivo trials were performed in 15 advanced cancer patients (aged 55 ± 12 years) supplemented for 3 months with the homoeopathic preparations. All five homoeopathic preparations significantly increased the cytotoxic activity of the NKCs at the lowest NKCs/target cell ratio 12:1 (p < 0·05). The order of activity was: Ubichinon Compositum® > Glyoxal Compositum® > Katalysatoren® > Traumeel® > Coenzyme Compositum®. In the advanced cancer patients, the homoeopathic preparation significantly increased NKCs cytotoxic activity (p < 0·05). The homoeopathic complex preparations tested in this study can be used as an adjuvant immunotherapy in advanced cancer patients.

  12. EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma.

    PubMed

    Yan, Junli; Li, Boheng; Lin, Baohong; Lee, Pei Tsung; Chung, Tae-Hoon; Tan, Joy; Bi, Chonglei; Lee, Xue Ting; Selvarajan, Viknesvaran; Ng, Siok-Bian; Yang, Henry; Yu, Qiang; Chng, Wee-Joo

    2016-08-18

    The best-understood mechanism by which EZH2 exerts its oncogenic function is through polycomb repressive complex 2 (PRC2)-mediated gene repression, which requires its histone methyltransferase activity. However, small-molecule inhibitors of EZH2 that selectively target its enzymatic activity turn out to be potent only for lymphoma cells with EZH2-activating mutation. Intriguingly, recent discoveries, including ours, have placed EZH2 into the category of transcriptional coactivators and thus raised the possibility of noncanonical signaling pathways. However, it remains unclear how EZH2 switches to this catalytic independent function. In the current study, using natural killer/T-cell lymphoma (NKTL) as a disease model, we found that phosphorylation of EZH2 by JAK3 promotes the dissociation of the PRC2 complex leading to decreased global H3K27me3 levels, while it switches EZH2 to a transcriptional activator, conferring higher proliferative capacity of the affected cells. Gene expression data analysis also suggests that the noncanonical function of EZH2 as a transcriptional activator upregulates a set of genes involved in DNA replication, cell cycle, biosynthesis, stemness, and invasiveness. Consistently, JAK3 inhibitor was able to significantly reduce the growth of NKTL cells, in an EZH2 phosphorylation-dependent manner, whereas various compounds recently developed to inhibit EZH2 methyltransferase activity have no such effect. Thus, pharmacological inhibition of JAK3 activity may provide a promising treatment option for NKTL through the novel mechanism of suppressing noncanonical EZH2 activity. PMID:27297789

  13. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional.

    PubMed

    Sun, Wenji; Wang, Yi; East, James E; Kimball, Amy S; Tkaczuk, Katherine; Kesmodel, Susan; Strome, Scott E; Webb, Tonya J

    2015-03-01

    Invariant natural killer T (iNKT) cells constitute an important subset of T cells that can both directly and indirectly mediate anti-tumor immunity. However, cancer patients have a reduction in both iNKT cell number and function, and these deficits limit the potential clinical application of iNKT cells for cancer therapy. To overcome the problem of limited iNKT cell numbers, we investigated whether iNKT cells can be generated in vitro from bone marrow-derived adult hematopoietic stem-progenitor cells (HSPC). Our data demonstrate that co-culture of HSPC with OP9-DL1 stromal cells, results in a functional CD3(+) T cell population. These T cells can be further differentiated into iNKT cells by secondary culture with CD1d-Ig-based artificial antigen-presenting cells (aAPC). Importantly, these in vitro-generated iNKT cells are functional, as demonstrated by their ability to proliferate and secrete IFN-γ and GM-CSF following stimulation. PMID:25569376

  14. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional

    PubMed Central

    Sun, Wenji; Wang, Yi; East, James E.; Kimball, Amy S.; Tkaczuk, Katherine; Kesmodel, Susan; Strome, Scott E.; Webb, Tonya J.

    2014-01-01

    Invariant natural killer T (iNKT) cells constitute an important subset of T cells that can both directly and indirectly mediate anti-tumor immunity. However, cancer patients have a reduction in both iNKT cell number and function, and these deficits limit the potential clinical application of iNKT cells for cancer therapy. To overcome the problem of limited iNKT cell numbers, we investigated whether iNKT cells can be generated in vitro from bone marrow-derived adult hematopoietic stem-progenitor cells (HSPC). Our data demonstrate that co-culture of HSPC with OP9-DL1 stromal cells, results in a functional CD3+ T cell population. These T cells can be further differentiated into iNKT cells by secondary culture with CD1d-Ig-based artificial antigen-presenting cells (aAPC). Importantly, these in vitro-generated iNKT cells are functional, as demonstrated by their ability to proliferate and secrete IFN-γ and GM-CSF following stimulation. PMID:25569376

  15. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism.

    PubMed

    Lutz, Charles T; Quinn, LeBris S

    2012-08-01

    Human aging is characterized by both physical and physiological frailty. A key feature of frailty, sarcopenia is the age-associated decline in skeletal muscle mass, strength, and endurance that characterize even the healthy elderly. Increases in adiposity, particularly in visceral adipose tissue, are almost universal in aging individuals and can contribute to sarcopenia and insulin resistance by increasing levels of inflammatory cytokines known collectively as adipokines. Aging also is associated with declines in adaptive and innate immunity, known as immune senescence, which are risk factors for cancer and all-cause mortality. The cytokine interleukin-15 (IL-15) is highly expressed in skeletal muscle tissue and declines in aging rodent models. IL-15 inhibits fat deposition and insulin resistance, is anabolic for skeletal muscle in certain situations, and is required for the development and survival of natural killer (NK) lymphocytes. We review the effect that adipokines and myokines have on NK cells, with special emphasis on IL-15. We posit that increased adipokine and decreased IL-15 levels during aging constitute a common mechanism for sarcopenia, obesity, and immune senescence.

  16. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection.

    PubMed

    Gillespie, Alyssa Lundgren; Teoh, Jeffrey; Lee, Heather; Prince, Jessica; Stadnisky, Michael D; Anderson, Monique; Nash, William; Rival, Claudia; Wei, Hairong; Gamache, Awndre; Farber, Charles R; Tung, Kenneth; Brown, Michael G

    2016-02-01

    The MHC class I D(k) molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds D(k), are required to control viral spread. The extent of D(k)-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust D(k)-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen.

  17. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1.

    PubMed

    Speak, Anneliese O; Te Vruchte, Danielle; Davis, Lianne C; Morgan, Anthony J; Smith, David A; Yanjanin, Nicole M; Simmons, Louise; Hartung, Ralf; Runz, Heiko; Mengel, Eugen; Beck, Michael; Imrie, Jackie; Jacklin, Elizabeth; Wraith, James E; Hendriksz, Christian; Lachmann, Robin; Cognet, Celine; Sidhu, Rohini; Fujiwara, Hideji; Ory, Daniel S; Galione, Antony; Porter, Forbes D; Vivier, Eric; Platt, Frances M

    2014-01-01

    Niemann-Pick type C (NPC) is a neurodegenerative lysosomal storage disorder caused by defects in the lysosomal proteins NPC1 or NPC2. NPC cells are characterized by reduced lysosomal calcium levels and impaired sphingosine transport from lysosomes. Natural killer (NK) cells kill virally infected/transformed cells via degranulation of lysosome-related organelles. Their trafficking from lymphoid tissues into the circulation is dependent on sphingosine-1-phosphate (S1P) gradients, sensed by S1P receptor 5 (S1P5). We hypothesized that NK-cell function and trafficking could be affected in NPC disease due to the combined effects of the lysosomal calcium defect and sphingosine storage. In an NPC1 mouse model, we found the frequency of NK cells was altered and phenocopied S1P5-deficient mice, consistent with defects in S1P levels. NK cells from NPC1 mice also had a defect in cytotoxicity due to a failure in degranulation of cytotoxic granules, which was associated with reduced lysosomal calcium levels. Affected NPC1 patients and NPC1 heterozygote carriers had reduced NK-cell numbers in their blood and showed similar phenotypic and developmental changes to those observed in the NPC1 mouse. These findings highlight the effects of lysosomal storage on the peripheral immune system.

  18. Identification and Simian Immunodeficiency Virus Infection of CD1d-Restricted Macaque Natural Killer T Cells

    PubMed Central

    Motsinger, Alison; Azimzadeh, Agnes; Stanic, Aleksandar K.; Johnson, R. Paul; Van Kaer, Luc; Joyce, Sebastian; Unutmaz, Derya

    2003-01-01

    Natural killer T (NKT) cells express a highly conserved T-cell receptor (TCR) and recognize glycolipids in the context of CD1d molecules. We recently demonstrated that CD4+ NKT cells are highly susceptible to human immunodeficiency virus type 1 (HIV-1) infection and are selectively depleted in HIV-infected individuals. Here, we identified macaque NKT cells using CD1d tetramers and human Vα24 antibodies. Similar to human NKT cells, α-galactosylceramide (α-GalCer)-pulsed dendritic cells activate and expand macaque NKT cells. Upon restimulation with α-GalCer-pulsed CD1d+ cells, macaque NKT cells secreted high levels of cytokines, a characteristic of these T cells. Remarkably, the majority of resting and activated macaque NKT cells expressed CD8, and a smaller portion expressed CD4. Macaque NKT cells also expressed the HIV-1/simian immunodeficiency virus (SIV) coreceptor CCR5, and the CD4+ subset was susceptible to SIV infection. Identification of macaque NKT cells has major implications for delineating the role of these cells in nonhuman primate disease models of HIV as well as other pathological conditions, such as allograft rejection and autoimmunity. PMID:12829854

  19. Natural Killer Cells for Immunotherapy – Advantages of the NK-92 Cell Line over Blood NK Cells

    PubMed Central

    Klingemann, Hans; Boissel, Laurent; Toneguzzo, Frances

    2016-01-01

    Natural killer (NK) cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells from a patient’s blood since they represent only 10% of the lymphocytes and are often dysfunctional. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T cells to prevent graft-versus-host reactions. Cytotoxic cell lines have been established from patients with clonal NK-cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. Except for the NK-92 cell line, though, none of the other six known NK cell lines has consistently and reproducibly shown high antitumor cytotoxicity. Only NK-92 cells can easily be genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through antibody-dependent cellular cytotoxicity. NK-92 is also the only cell line product that has been infused into patients with advanced cancer with clinical benefit and minimal side effects. PMID:27014270

  20. Super-resolution Imaging of the Natural Killer Cell Immunological Synapse on a Glass-supported Planar Lipid Bilayer

    PubMed Central

    Chen, Yuhui; Huang, Shengjian; Liu, Dongfang

    2015-01-01

    The glass-supported planar lipid bilayer system has been utilized in a variety of disciplines. One of the most useful applications of this technique has been in the study of immunological synapse formation, due to the ability of the glass-supported planar lipid bilayers to mimic the surface of a target cell while forming a horizontal interface. The recent advances in super-resolution imaging have further allowed scientists to better view the fine details of synapse structure. In this study, one of these advanced techniques, stimulated emission depletion (STED), is utilized to study the structure of natural killer (NK) cell synapses on the supported lipid bilayer. Provided herein is an easy-to-follow protocol detailing: how to prepare raw synthetic phospholipids for use in synthesizing glass-supported bilayers; how to determine how densely protein of a given concentration occupies the bilayer's attachment sites; how to construct a supported lipid bilayer containing antibodies against NK cell activating receptor CD16; and finally, how to image human NK cells on this bilayer using STED super-resolution microscopy, with a focus on distribution of perforin positive lytic granules and filamentous actin at NK synapses. Thus, combining the glass-supported planar lipid bilayer system with STED technique, we demonstrate the feasibility and application of this combined technique, as well as intracellular structures at NK immunological synapse with super-resolution. PMID:25741636

  1. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    PubMed

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  2. Controlled infection with a therapeutic virus defines the activation kinetics of human natural killer cells in vivo

    PubMed Central

    El-Sherbiny, Y M; Holmes, T D; Wetherill, L F; Black, E V I; Wilson, E B; Phillips, S L; Scott, G B; Adair, R A; Dave, R; Scott, K J; Morgan, R S M; Coffey, M; Toogood, G J; Melcher, A A; Cook, G P

    2015-01-01

    Human natural killer (NK) cells play an important role in anti-viral immunity. However, studying their activation kinetics during infection is highly problematic. A clinical trial of a therapeutic virus provided an opportunity to study human NK cell activation in vivo in a controlled manner. Ten colorectal cancer patients with liver metastases received between one and five doses of oncolytic reovirus prior to surgical resection of their tumour. NK cell surface expression of the interferon-inducible molecules CD69 and tetherin peaked 24–48 h post-infection, coincident with a peak of interferon-induced gene expression. The interferon response and NK cell activation were transient, declining by 96 h post-infection. Furthermore, neither NK cell activation nor the interferon response were sustained in patients undergoing multiple rounds of virus treatment. These results show that reovirus modulates human NK cell activity in vivo and suggest that this may contribute to any therapeutic effect of this oncolytic virus. Detection of a single, transient peak of activation, despite multiple treatment rounds, has implications for the design of reovirus-based therapy. Furthermore, our results suggest the existence of a post-infection refractory period when the interferon response and NK cell activation are blunted. This refractory period has been observed previously in animal models and may underlie the enhanced susceptibility to secondary infections that is seen following viral infection. PMID:25469725

  3. Salvage Treatment Improved Survival of Patients With Relapsed Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type

    SciTech Connect

    Zhang Xinxing; Xie Conghua; Xu Yong; Deng Di; Zhao Yanhai; Zou Bingwen; Zhou Lin; Li Mei; Wang Jin; Liu Weiping; Huang Meijuan

    2009-07-01

    Purpose: To evaluate the clinical outcome of salvage treatment for patients with relapsed natural killer (NK)/T-cell lymphoma, nasal type. Methods and Materials: Forty-four patients who had achieved complete response during initial treatment and experienced histologically proven relapse were reviewed. Twenty-nine of them received salvage treatment with radiotherapy (RT) alone (n = 7), chemotherapy (CT) alone (n = 10), or both RT and CT (n = 12); the other 15 patients received best supportive care alone. Results: The estimated 5-year overall survival (OS) rate for patients with or without salvage treatment was 37.8% vs. 0 (p < 0.0001), respectively. Salvage CT did not improve survival of relapsed Stage IE and IIE patients. Among relapsed Stage IIIE and IVE patients who received salvage treatment, RT developed significantly better survival when compared with that of non-RT (1-year OS, 62.5% vs. 0, p = 0.006). Relapsed Ann Arbor stage and receiving salvage treatment were found to be significant factors influencing OS at both univariate and multivariate levels. Conclusions: Salvage treatment improved survival in patients with relapsed NK/T-cell lymphoma, nasal type. Salvage RT may play an important role in salvage treatment of relapsed extranodal NK/T-cell lymphoma.

  4. Histological vascular invasion is a novel prognostic indicator in extranodal natural killer/T-cell lymphoma, nasal type

    PubMed Central

    Wang, Hua; Li, Pengfei; Zhang, Xinke; Xia, Zhongjun; Lu, Yue; Huang, Huiqiang

    2016-01-01

    Extranodal natural killer (NK)/T-cell lymphoma, (ENKTL), nasal type, is an aggressive lymphoma with no validated prognostic parameters, to date. In the present study, vascular invasion by this tumor was retrospectively analyzed in 214 patients with untreated ENKTL to evaluate its association with clinical features, treatment response and prognosis. Histological vascular invasion by the tumor was confirmed in 32.7% of patients with ENKTL. The presence of vascular invasion significantly correlated with poor performance status, B symptoms, extranodal involved sites, advanced stage, elevated serum lactate dehydrogenase, D-dimer and cluster of differentiation 68+ tumor-associated macrophages. Upon treatment termination, the complete remission (CR) rate and overall response rate were significantly lower for the vascular invasion group compared with the non-vascular invasion group. Furthermore, vascular invasion resulted in significantly reduced 5-year progression-free survival (PFS; 21.8 vs. 60.1%) and overall survival (OS; 36.8 vs. 77.0%) rates. Using the multivariate Cox regression model, vascular invasion, stage III/IV and CR after chemotherapy were independent prognostic factors for OS and PFS. Thus, histological vascular invasion by the tumor affected the response to treatment, and was also an independent prognostic factor for OS and PFS in ENKTL, nasal type, suggesting a role for vascular invasion in disease progression. PMID:27446357

  5. Selective Loss of Innate CD4+ Vα24 Natural Killer T Cells in Human Immunodeficiency Virus Infection

    PubMed Central

    Sandberg, Johan K.; Fast, Noam M.; Palacios, Emil H.; Fennelly, Glenn; Dobroszycki, Joanna; Palumbo, Paul; Wiznia, Andrew; Grant, Robert M.; Bhardwaj, Nina; Rosenberg, Michael G.; Nixon, Douglas F.

    2002-01-01

    Vα24 natural killer T (NKT) cells are innate immune cells involved in regulation of immune tolerance, autoimmunity, and tumor immunity. However, the effect of human immunodeficiency virus type 1 (HIV-1) infection on these cells is unknown. Here, we report that the Vα24 NKT cells can be subdivided into CD4+ or CD4− subsets that differ in their expression of the homing receptors CD62L and CD11a. Furthermore, both CD4+ and CD4− NKT cells frequently express both CXCR4 and CCR5 HIV coreceptors. We find that the numbers of NKT cells are reduced in HIV-infected subjects with uncontrolled viremia and marked CD4+ T-cell depletion. The number of CD4+ NKT cells is inversely correlated with HIV load, indicating depletion of this subset. In contrast, CD4− NKT-cell numbers are unaffected in subjects with high viral loads. HIV infection experiments in vitro show preferential depletion of CD4+ NKT cells relative to regular CD4+ T cells, in particular with virus that uses the CCR5 coreceptor. Thus, HIV infection causes a selective loss of CD4+ lymph node homing (CD62L+) NKT cells, with consequent skewing of the NKT-cell compartment to a predominantly CD4− CD62L− phenotype. These data indicate that the key immunoregulatory NKT-cell compartment is compromised in HIV-1-infected patients. PMID:12097565

  6. A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells.

    PubMed

    Gowen, Benjamin G; Chim, Bryan; Marceau, Caleb D; Greene, Trever T; Burr, Patrick; Gonzalez, Jeanmarie R; Hesser, Charles R; Dietzen, Peter A; Russell, Teal; Iannello, Alexandre; Coscoy, Laurent; Sentman, Charles L; Carette, Jan E; Muljo, Stefan A; Raulet, David H

    2015-01-01

    Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger.

  7. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection

    PubMed Central

    Tatituri, Raju V.V.; Watts, Gerald F.M.; Bhowruth, Veemal; Leadbetter, Elizabeth A.; Barton, Nathaniel; Cohen, Nadia R.; Hsu, Fong-Fu; Besra, Gurdyal S.

    2011-01-01

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor–driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12–induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections. PMID:21555485

  8. Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice

    PubMed Central

    Zhang, Jingjing; Bedel, Romain; Krovi, S. Harsha; Tuttle, Kathryn D.; Zhang, Bicheng; Gross, James; Gapin, Laurent; Matsuda, Jennifer L.

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology. PMID:27256918

  9. Functional Alteration of Natural Killer Cells and Cytotoxic T Lymphocytes upon Asbestos Exposure and in Malignant Mesothelioma Patients

    PubMed Central

    Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Matsuzaki, Hidenori; Lee, Suni; Maeda, Megumi; Kishimoto, Takumi; Fukuoka, Kazuya; Nakano, Takashi; Otsuki, Takemi

    2015-01-01

    Malignant mesothelioma is caused by exposure to asbestos, which is known to have carcinogenic effects. However, the development of mesothelioma takes a long period and results from a low or intermediate dose of exposure. These findings have motivated us to investigate the immunological effects of asbestos exposure and analyze immune functions of patients with mesothelioma and pleural plaque, a sign of exposure to asbestos. Here, we review our knowledge concerning natural killer (NK) cells and cytotoxic T lymphocytes (CTL). NK cells showed impaired cytotoxicity with altered expression of activating receptors upon exposure to asbestos, while induction of granzyme+ cells in CD8+ lymphocytes was suppressed by asbestos exposure. It is interesting that a decrease in NKp46, a representative activating receptor, is common between NK cells in PBMC culture with asbestos and those of mesothelioma patients. Moreover, it was observed that CD8+ lymphocytes may be stimulated by some kind of “nonself” cells in plaque-positive individuals and in mesothelioma patients, whereas CTL in mesothelioma is impaired by poststimulation maintenance of cytotoxicity. These findings suggest that analysis of immunological parameters might contribute to the evaluation of health conditions of asbestos-exposed individuals and to a greater understanding of the pathology of malignant mesothelioma. PMID:26161391

  10. Consolidative treatment after salvage chemotherapy improves prognosis in patients with relapsed extranodal natural killer/T-cell lymphoma

    PubMed Central

    Nie, Man; Bi, Xi-wen; Zhang, Wen-wen; Sun, Peng; Xia, Yi; Liu, Pan-pan; Huang, Hui-qiang; Jiang, Wen-qi; Li, Zhi-ming

    2016-01-01

    The optimal treatment strategy for relapsed natural killer/T-cell lymphoma (NKTCL) remains largely unknown. We retrospectively reviewed the treatment modalities and prognosis of 56 relapsed NKTCL patients. Chemotherapy was the initial salvage treatment, followed by radiotherapy (RT) or autologous hematopoietic stem cell transplantation (AHSCT) as consolidative therapy, depending on the status of remission and the pattern of relapse. For patients with locoregional relapse alone, consolidative RT after salvage chemotherapy significantly improved prognosis compared with follow-up (5-year OS: 83.3 vs. 41.7%, P = 0.047). For patients with distant relapse, consolidative AHSCT after salvage chemotherapy significantly prolonged survival compared with follow-up (2-year OS: 100.0 vs. 20.0%, P = 0.004). Patients without consolidative treatment after response to salvage chemotherapy exhibited a comparable survival to those who experienced stable or progressive disease after chemotherapy. Asparaginase (ASP)-containing salvage chemotherapy failed to confer a survival advantage over ASP-absent chemotherapy (5-year OS: 44.2 vs. 39.3%, P = 0.369). In conclusion, consolidative RT or AHSCT improved prognosis in patients with relapsed NKTCL who responded to initial salvage chemotherapy, and the role of ASP in salvage chemotherapy requires further exploration in prospective studies. PMID:27041507

  11. Impaired culture generated cytotoxicity with preservation of spontaneous natural killer-cell activity in cartilage-hair hypoplasia

    SciTech Connect

    Pierce, G.F.; Brovall, C.; Schacter, B.Z.; Polmar, S.H.

    1983-06-01

    Recent studies of cartilage-hair hypoplasia (CHH), a form of short-limbed dwarfism, have shown that all affected individuals have a cellular proliferation defect that results in a cellular immunodeficiency. However, only a minority of CHH individuals suffer from severe, life-threatening infections. For this reason, relevant immune defense mechanisms that may be responsible for maintaining intact host defenses in the majority of CHH individuals were studied. Spontaneous and allogeneic culture-induced (mixed lymphocyte response-MLR) specific and nonspecific (NK-like) cytotoxic mechanisms were analyzed and correlated with lymphocyte subpopulations present in CHH and normal individuals. Spontaneous natural-killer (NK) activity was present at or above normal levels, but culture-induced specific cytotoxicity and NK-like cytotoxicity as well as NK-like activity by T cell lines were significantly reduced in CHH individuals. The generation of radiation-resistant cytotoxicity, which normally occurs during allogeneic MLR, was markedly diminished in CHH, and was correlated with the decreased proliferation observed in CHH cultures. Preservation of spontaneous NK activity and loss of all forms of culture-induced cytotoxicity was associated with an increase in the proportion of lymphocytes bearing a thymic independent NK phenotype, and a significant decrease in thymic derived cytolytic T cell sub-populations in CHH individuals. Therefore, an intact cellular cytotoxic effector mechanism has been identified in CHH (i.e., NK activity).

  12. A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens

    PubMed Central

    Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.

    2014-01-01

    Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610

  13. Induction of natural killer cell-dependent antitumor immunity by the Autographa californica multiple nuclear polyhedrosis virus.

    PubMed

    Kitajima, Masayuki; Abe, Takayuki; Miyano-Kurosaki, Naoko; Taniguchi, Masaru; Nakayama, Toshinori; Takaku, Hiroshi

    2008-02-01

    Wild-type Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects a variety of mammalian cell types in vitro, but does not replicate in these cells. We investigated the effects of AcMNPV in the induction of the immune response and tumor metastasis in mice. After intravenous injection, AcMNPV was taken up by the liver and spleen, and preferentially infected dendritic cells (DCs) and B cells in the spleen; costimulatory molecules CD40, CD80, and CD86 were upregulated in the DCs. The hepatic mononuclear cells (MNCs) in these animals were highly cytotoxic to natural killer (NK)-sensitive YAC-1 and B16 melanoma cells, but not to NK-resistant EL4 cells. Intravenous injection of AcMNPV-induced NK cell proliferation in the liver and spleen, and enhanced antitumor immunity in mice with B16 liver metastases. Furthermore, such treatment increased the survival of C57BL/6, J alpha 281 (-/-), and interferon (IFN)-gamma (-/-) mice that were previously injected with B16 tumor cells. AcMNPV injection did not enhance the survival of NK cell-depleted mice. Moreover, one AcMNPV treatment effectively prolonged survival in a B16 liver metastasis model, and was equivalent to five treatments with recombinant interleukin-12 (IL-12) protein. These findings suggest that AcMNPV efficiently stimulates NK cell-mediated antitumor immunity. PMID:18059370

  14. T-cell/Natural killer-cell neoplasms presenting as leukemia- Case series from single tertiary care center

    PubMed Central

    Naseem, Shano; Kaur, Maninderbir; Sachdeva, Manupdesh Singh; Ahluwalia, Jasmina; Das, Reena; Varma, Neelam; Varma, Subhash

    2016-01-01

    Background: Mature T/ NK-cell neoplasms are a rare group of disorders and their presentation as leukemia is even rarer. Most of the previous studies have focused on mature B-cell lineage leukemias and there is a paucity of data on mature T/NK-cell lineage leukemias. We, therefore, planned this study to analyze their spectrum, frequency, morphology and immunophenotypic features. Subjects and Methods: All cases of lymphomas presenting as leukemia over a period of two and a half years were evaluated. Detailed analysis of cases with T/NK-cell lineage was done for their clinical, hematological and immunophenotypic features. Results: A total of 262 cases of mature lymphoid neoplasms presented as leukemia during the study period. Of whom, only 8 (3.1%) cases were of T /NK-cell lineage and the remaining (96.9%) were of B-cell lineage. Of 8 cases, 4 (50%) had T-prolymphocytic leukemia, 2 (25%) had chronic lymphoproliferative disorder- natural killer cell and 1 (12.5%) case of each T-large granular lymphocytic leukemia and hepatosplenic γ/δ T-NHL. Conclusion: T/NK-cell leukemias are rare. Along with clinical and morphological features, pattern of immunophenotypic markers is vital for their diagnosis and subcategorization. PMID:27047646

  15. Beta-carotene-induced enhancement of natural killer cell activity in elderly men: an investigation of the role of cytokines.

    PubMed

    Santos, M S; Gaziano, J M; Leka, L S; Beharka, A A; Hennekens, C H; Meydani, S N

    1998-07-01

    We showed previously that natural killer (NK) cell activity is significantly greater in elderly men supplemented with beta-carotene than in those taking placebo. In an attempt to determine the mechanism of beta-carotene's effect, we analyzed the production of NK cell-enhancing cytokines (interferon alpha, interferon gamma, and interleukin 12). Boston-area participants in the Physicians' Health Study (men aged 65-88 y; mean age, 73 y) who had been supplemented with beta-carotene (50 mg on alternate days) for an average of 12 y were enrolled in a randomized, placebo-controlled, double-blind study. Elderly subjects taking beta-carotene supplements had significantly greater plasma beta-carotene concentrations than those taking placebo. Beta-carotene-supplemented elderly men had significantly greater NK cell activity than did elderly men receiving placebo. Percentages of NK cells (CD16+CD56+) were not significantly different between the beta-carotene and placebo groups. Production of interleukin 12, interferon alpha, or concanavalin A-stimulated interferon gamma by cultured peripheral blood mononuclear cells was not significantly different between beta-carotene-supplemented elderly and those taking placebo. Our results indicate that beta-carotene-induced enhancement of NK cell activity is not mediated by changes in percentages of CD16+CD56+ NK cells nor through up-regulation of interleukin 12 or interferon alpha.

  16. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells.

    PubMed

    Lowdell, Mark W; Craston, Rose; Samuel, David; Wood, Marion E; O'Neill, Elena; Saha, Vaskar; Prentice, H Grant

    2002-06-01

    Although it has been known for more than 40 years that allogeneic immune responses cure leukaemias after bone marrow transplantation, autologous leukaemia-specific immunity remains controversial and its impact upon survival has not been established. Here we have tested 25 patients with de novo acute leukaemias, while in remission at completion of their anti-leukaemia therapy, for evidence of autologous cytolytic immunity to their leukaemic cells taken and cryopreserved at disease presentation. We have measured this degree of cell-mediated cytotoxicity in vitro and termed it "leukaemia cytolytic activity" (LCA). Patients whose disease ultimately relapsed had significantly lower LCA than those who remained in remission beyond 2 years (P < 0.001); the absence of LCA when in remission predicted subsequent relapse within 2 years with a sensitivity of 100% and specificity of 77%. LCA was mediated in vitro by CD56+/CD8alpha+/CD3- natural killer cells. We propose that it is this immune response, rather than the chemotherapy per se, which is responsible for continued remission and that measurement of LCA in patients at completion of therapy may be used as an indicator of risk of subsequent relapse. Patients lacking this response will require further treatment, either with an allogeneic donor transplant or an alternative immunotherapeutic strategy. PMID:12060116

  17. Natural killer (NK) cells play a critical role in the early innate immune response to Chlamydophila abortus infection in mice.

    PubMed

    Buendía, A J; Martínez, C M; Ortega, N; Del Río, L; Caro, M R; Gallego, M C; Sánchez, J; Navarro, J A; Cuello, F; Salinas, J

    2004-01-01

    Chlamydophila abortus, the aetiological agent of ovine enzootic abortion, induces a strong inflammatory reaction that leads to the T helper cell (Th1) specific immune response necessary for the clearance of infection. Because the role of natural killer (NK) cells during the first stages of this response has received little attention, this study focused on determining the function of these cells in a mouse model of infection. The location of NK cells in the liver and spleen of infected mice was examined immunohistochemically with an anti-Ly49G monoclonal antibody. The number of NK cells increased during the infection both in spleen and liver. In subsequent experiments, an anti-asialo GM1 polyclonal antibody was injected to deplete the NK cells. NK-depleted mice showed a substantial increase in their susceptibility to C. abortus infection, with high mortality rates and an increased burden of bacteria in the liver. Histopathological studies showed that inflammatory foci, composed mainly of neutrophils, were greater in size and number in depleted mice, while numerous chlamydial inclusions were associated with the foci. Serum concentrations of IFN-gamma, a key cytokine in the control of C. abortus infection, were substantially reduced in the NK-depleted mice. To establish the relationship between NK cells and other components of the innate immune response, neutrophils were depleted with the RB6-8C5 antibody. These cells were shown to be crucial in the recruitment of NK cells to the inflammatory foci.

  18. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Acute Cholecystitis.

    PubMed

    Kim, Jung-Chul; Jin, Hye-Mi; Cho, Young-Nan; Kwon, Yong-Soo; Kee, Seung-Jung; Park, Yong-Wook

    2015-05-01

    Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play crucial roles in a variety of diseases, including autoimmunity, infectious diseases, and cancers. However, little is known about the roles of these invariant T cells in acute cholecystitis. The purposes of this study were to examine the levels of MAIT cells and NKT cells in patients with acute cholecystitis and to investigate potential relationships between clinical parameters and these cell levels. Thirty patients with pathologically proven acute cholecystitis and 47 age- and sex-matched healthy controls were enrolled. Disease grades were classified according to the revised Tokyo guidelines (TG13) for the severity assessment for acute cholecystitis. Levels of MAIT and NKT cells in peripheral blood were measured by flow cytometry. Circulating MAIT and NKT cell numbers were significantly lower in acute cholecystitis patients than in healthy controls, and these deficiencies in MAIT cells and NKT cell numbers were associated with aging in acute cholecystitis patients. Notably, a reduction in NKT cell numbers was found to be associated with severe TG13 grade, death, and high blood urea nitrogen levels. The study shows numerical deficiencies of circulating MAIT and NKT cells and age-related decline of these invariant T cells. In addition, NKT cell deficiency was associated with acute cholecystitis severity and outcome. These findings provide an information regarding the monitoring of these changes in circulating MAIT and NKT cell numbers during the course of acute cholecystitis and predicting prognosis.

  19. Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells.

    PubMed

    Hu, Xinli; Kim, Hyun; Brennan, Patrick J; Han, Buhm; Baecher-Allan, Clare M; De Jager, Philip L; Brenner, Michael B; Raychaudhuri, Soumya

    2013-11-19

    Defining and characterizing pathologies of the immune system requires precise and accurate quantification of abundances and functions of cellular subsets via cytometric studies. At this time, data analysis relies on manual gating, which is a major source of variability in large-scale studies. We devised an automated, user-guided method, X-Cyt, which specializes in rapidly and robustly identifying targeted populations of interest in large data sets. We first applied X-Cyt to quantify CD4(+) effector and central memory T cells in 236 samples, demonstrating high concordance with manual analysis (r = 0.91 and 0.95, respectively) and superior performance to other available methods. We then quantified the rare mucosal associated invariant T cell population in 35 samples, achieving manual concordance of 0.98. Finally we characterized the population dynamics of invariant natural killer T (iNKT) cells, a particularly rare peripheral lymphocyte, in 110 individuals by assaying 19 markers. We demonstrated that although iNKT cell numbers and marker expression are highly variable in the population, iNKT abundance correlates with sex and age, and the expression of phenotypic and functional markers correlates closely with CD4 expression.

  20. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis.

    PubMed

    Kumagai, Kenichi; Horikawa, Tatsuya; Shigematsu, Hiroaki; Matsubara, Ryota; Kitaura, Kazutaka; Eguchi, Takanori; Kobayashi, Hiroshi; Nakasone, Yasunari; Sato, Koichiro; Yamada, Hiroyuki; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2016-01-12

    Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion-induced allergic contact dermatitis.

  1. Elevated lead levels and adverse effects on natural killer cells in children from an electronic waste recycling area.

    PubMed

    Zhang, Yu; Huo, Xia; Cao, Junjun; Yang, Tian; Xu, Long; Xu, Xijin

    2016-06-01

    Lead (Pb) has been proved to exert immunotoxicity to influence immune homeostasis in humans. To monitor the internal Pb level and evaluate its effect on natural killer (NK) cells and cytokine/chemokine concentrations, we recruited 285 preschool children from Guiyu, one of the largest electronic waste (e-waste) destinations and recycling areas in the world, and known to have high concentrations of Pb in the air, soil, water, sediment and plants. A total of 126 preschool children were selected from Haojiang as a reference group. Results showed that children in Guiyu, the exposed area, had higher blood Pb levels and lower percentages of NK cells than children from the reference area. A significantly negative association was found between the percentage of NK cells and increasing Pb levels. Moreover, children in Guiyu area had higher platelet counts and IL-1β concentrations, and lower levels of IL-2, IL-27, MIP-1α and MIP-1β were observed in the exposed children. These changes might not be conducive to the development and differentiation of NK cells. Taken together, the elevated Pb levels result in the lower percentages of NK cells, but also alter the levels of platelets, IL-1β and IL-27, which might be unconducive to the activity and function of NK cells.

  2. Biliary glycoprotein (BGP) expression on T cells and on a natural-killer-cell sub-population.

    PubMed

    Moller, M J; Kammerer, R; Grunert, F; von Kleist, S

    1996-03-15

    Human T and natural-killer (NK) cells, that are thought to be the major cytotoxic effector-cell populations in the defence against neoplastic cells, were isolated from blood and decidua in order to analyze their expression of carcinoembronic-antigen-(CEA)-family-member proteins. Biliary glycoprotein (BGP,CD66a) was the only member of the carcinoembryonic antigen family detected. While freshly isolated T-cells expressed low amounts of BGP, freshly isolated NK cells were negative. After in vitro stimulation for 3 days, T cells up-regulated their BGP expression and a sub-group of NK cells (CD16- CD56+), known to predominate in decidua revealed de novo expression of BGP. In contrast, stimulated CD16+ CD56+ NK cells, which occur exclusively in the blood, remained negative. The expression of BGP could be shown on the protein level by using a panel of 12 well-defined MAbs and on the transcription level in rt-PCR and subsequent oligonucleotide hybridization. Interestingly, rIL-2-stimulated T cells expressed 3-fold higher levels of BGP compared with those seen after stimulation with phytohemagglutinin (PHA). PHA, on the other hand, induced a higher expression of HLA-DR, an activation marker of T cells. The differential regulation implies a distinct function of BGP and HLA-DR.

  3. Identification of a Natural Killer Cell Receptor Allele That Prolongs Survival of Cytomegalovirus-Positive Glioblastoma Patients.

    PubMed

    Dominguez-Valentin, Mev; Gras Navarro, Andrea; Rahman, Aminur Mohummad; Kumar, Surendra; Retière, Christèle; Ulvestad, Elling; Kristensen, Vessela; Lund-Johansen, Morten; Lie, Benedicte Alexandra; Enger, Per Øyvind; Njølstad, Gro; Kristoffersen, Einar; Lie, Stein Atle; Chekenya, Martha

    2016-09-15

    By affecting immunological presentation, the presence of cytomegalovirus in some glioblastomas may impact progression. In this study, we examined a hypothesized role for natural killer (NK) cells in impacting disease progression in this setting. We characterized 108 glioblastoma patients and 454 healthy controls for HLA-A,-B,-C, NK-cell KIR receptors, and CMV-specific antibodies and correlated these metrics with clinical parameters. Exome sequences from a large validation set of glioblastoma patients and control individuals were examined from in silico databases. We demonstrated that the KIR allele KIR2DS4*00101 was independently prognostic of prolonged survival. KIR2DS4*00101 displayed 100% concordance with cognate HLA-C1 ligands in glioblastoma patients, but not controls. In the context of both HLA-C1/C2 ligands for the KIR2DS4 receptor, patient survival was further extended. Notably, all patients carrying KIR2DS4*00101 alleles were CMV seropositive, but not control individuals, and exhibited increased NK-cell subpopulations, which expressed the cytotoxicity receptors CD16, NKG2D, and CD94/NKG2C. Finally, healthy controls exhibited a reduced risk for developing glioblastoma if they carried two KIR2DS4*00101 alleles, where protection was greatest among Caucasian individuals. Our findings suggest that KIR2DS4*00101 may offer a molecular biomarker to identify intrinsically milder forms of glioblastoma. Cancer Res; 76(18); 5326-36. ©2016 AACR. PMID:27406829

  4. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance.

    PubMed

    Manser, Angela R; Uhrberg, Markus

    2016-04-01

    A key feature of human natural killer (NK) cells, which enables efficient recognition of infected and malignant target cells, is the expression of HLA class I-specific receptors of the KIR and NKG2 gene families. Cell-to-cell variability in receptor expression leads to the formation of complex NK cell repertoires. As outlined here, NK cells go through major changes from newborns to adults characterized by downregulation of the inhibitory NKG2A receptor and concomitant upregulation of KIR family members. This process is completed in young adults, and in the majority of individuals, KIR/NKG2A repertoires remain remarkably stable until old age. Nonetheless, age-related factors have the potential to majorly influence the complexity of NK cell repertoires: Firstly infection with HCMV is associated with major clonal expansions of terminally differentiated NKG2C- and KIR-expressing NK cells in certain individuals. Secondly, ineffective hematopoiesis can lead to immature and less diversified NK cell repertoires as observed in myelodysplastic syndrome (MDS), a malignant disease of the elderly. Thus, whereas in the majority of elderly the NK cell compartment appears to be highly stable in terms of function and phenotype, in a minority of subjects a breakdown of NK cell repertoire diversity is observed that might influence immune surveillance and healthy aging.

  5. Natural killer cell cytotoxicity, cytokine and neuroendocrine responses to opioid receptor blockade during prolonged restraint in pigs.

    PubMed

    Ciepielewski, Z M; Stojek, W; Borman, A; Myślińska, D; Glac, W; Kamyczek, M

    2013-12-01

    This study evaluated porcine natural killer cell cytotoxicity (NKCC), plasma cytokines including interleukin (IL) 1β, IL-6, IL-10, IL-12 and tumor necrosis factor-α and plasma stress-related hormones including prolactin (PRL), growth hormone (GH), β-endorphin (BEND), ACTH and cortisol (COR) during a 4h restraint and recovery phase after saline or naloxone (1mg/kg BW) administration. The restraint preceded with saline altered NKCC and IL-12 concentration (an early from 15 to 60 min increase followed by a decrease) and increased other measured cytokines and hormones concentrations. Naloxone pretreatment blocked the suppressive effects of the restraint on NKCC and IL-12 and altered IL-10, IL-6, TNF-α, PRL and ACTH concentrations. Furthermore, in naloxone-injected pigs, a positive correlation was found between NKCC and all measured cytokines (with the exception of IL-6) and BEND, ACTH and COR. Results suggest that naloxone-sensitive opioid pathways could influence the mechanisms underlying the immune system (including NKCC) response during stress.

  6. Enhanced cytotoxic function of natural killer and CD3+CD56+ cells in cord blood after culture.

    PubMed

    Tomchuck, Suzanne L; Leung, Wing H; Dallas, Mari H

    2015-01-01

    Rate of immune reconstitution directly correlates with the number of hematopoietic stem cells infused and is particularly delayed in patients undergoing cord blood (CB) transplantation (CBT). Methods to increase the number of CB natural killer (NK) cells have the potential to improve immune reconstitution after CBT. NK cells are the first lymphocyte population to recover after hematopoietic stem cells transplantation and are central to preventing early relapse and infection. CB NK cells are low in number and are known to be incomplete in maturation and require activation for effective function. Here, we report a clinically relevant ex vivo expansion method that increases the number of activated CB NK cells. We report a multilog increase in NK cell number when CB mononuclear cells are cocultured with IL-2 and IL-15. Furthermore, NK cells expressing activating receptors and adhesion molecules responsible for cytotoxicity increased throughout culture, whereas inhibitory receptor expression remained low. Additionally, cytotoxic function against various malignancies was significantly enhanced in cultured NK cells but not CD3(+)CD56(+) cells. These data suggest that ex vivo expansion and activation of CB NK cells is a clinically feasible and relevant approach to prevent early infection and relapse after CBT.

  7. Scorpion venom activates natural killer cells in hepatocellular carcinoma via the NKG2D-MICA pathway.

    PubMed

    Chen, Han; Zhidan, Wang; Xia, Ren; Zhaoxia, Wang; Qing, Jia; Qiang, Guo; Haipeng, Yin; Hengxiao, Wang

    2016-06-01

    Previous studies have demonstrated that polypeptides extracted from scorpion venom (PESV) inhibited cell proliferation in several tumors, however, the effect on dysfunctional and exhausted natural killer cells which contribute to tumor escape from immune surveillance remain to be elucidated. In this study, we determined the effect of PESV on NK infiltration into H22 cells orthotopic transplantation tumors and on the expression of MHC class I chain-related proteins A (MICA) in HepG2 cells. We found that tumor growth in mice was significantly inhibited by PESV and the survival time of tumor-bearing mice treated with PESV was significantly prolonged. Moreover, levels of tumor-infiltrating NK cells, NKG2D protein, perforin and granzyme B mRNA were significantly increased in the group treated with PESV compared with the tumor-bearing control group. In addition, In addition, up-regulation of MICA by PESV enhances the susceptibility of HepG2 cells to NK lysis in vitro. These results indicate that the inhibitory effects of PESV on hepatic carcinoma are likely mediated by up-regulation of NK cell activity via the MICA-NKG2D pathway.

  8. Evaluation of natural killer cell (CD57) as a prognostic marker in oral squamous cell carcinoma: An immunohistochemistry study

    PubMed Central

    Agarwal, Rashmi; Chaudhary, Minal; Bohra, Shruti; Bajaj, Shree

    2016-01-01

    Objectives: Natural killer (NK) cells are important effector lymphocytes. NK cells are considered to represent innate immune system. NK cells target and kill aberrant cells such as virally infected and tumorigenic cells. The purpose of this study was to assess the expression of CD57 in oral squamous cell carcinoma (OSCC) and to correlate the expression of CD57 with 3 years survival in patients with OSCC. Materials and Methods: About 100 histopathologically diagnosed cases of OSCC of various grades were divided into two groups, i.e., Group I (dead patients) and Group II (live patients) from the archives of Department of Oral Pathology and Microbiology. CD57 was detected in these tissues by immunohistochemistry. Result: The results were analyzed using Spearman's correlation coefficient and students unpaired t-test. The mean CD57 labeling index in Group II was significantly higher than that found in Group I (P = 0.000). There was a significant correlation (P = 0.00) in the mean CD57 levels between Groups I and II and prognosis of patient. Conclusion: CD57 could be a good prognostic marker for OSCC patients. PMID:27601804

  9. Elevated lead levels and adverse effects on natural killer cells in children from an electronic waste recycling area.

    PubMed

    Zhang, Yu; Huo, Xia; Cao, Junjun; Yang, Tian; Xu, Long; Xu, Xijin

    2016-06-01

    Lead (Pb) has been proved to exert immunotoxicity to influence immune homeostasis in humans. To monitor the internal Pb level and evaluate its effect on natural killer (NK) cells and cytokine/chemokine concentrations, we recruited 285 preschool children from Guiyu, one of the largest electronic waste (e-waste) destinations and recycling areas in the world, and known to have high concentrations of Pb in the air, soil, water, sediment and plants. A total of 126 preschool children were selected from Haojiang as a reference group. Results showed that children in Guiyu, the exposed area, had higher blood Pb levels and lower percentages of NK cells than children from the reference area. A significantly negative association was found between the percentage of NK cells and increasing Pb levels. Moreover, children in Guiyu area had higher platelet counts and IL-1β concentrations, and lower levels of IL-2, IL-27, MIP-1α and MIP-1β were observed in the exposed children. These changes might not be conducive to the development and differentiation of NK cells. Taken together, the elevated Pb levels result in the lower percentages of NK cells, but also alter the levels of platelets, IL-1β and IL-27, which might be unconducive to the activity and function of NK cells. PMID:26895538

  10. Impairment in natural killer cells editing of immature dendritic cells by infection with a virulent Trypanosoma cruzi population.

    PubMed

    Batalla, Estela I; Pino Martínez, Agustina M; Poncini, Carolina V; Duffy, Tomás; Schijman, Alejandro G; González Cappa, Stella M; Alba Soto, Catalina D

    2013-01-01

    Early interactions between natural killer (NK) and dendritic cells (DC) shape the immune response at the frontier of innate and adaptive immunity. Activated NK cells participate in maturation or deletion of DCs that remain immature. We previously demonstrated that infection with a high virulence (HV) population of the protozoan parasite Trypanosoma cruzi downmodulates DC maturation and T-cell activation capacity. Here, we evaluated the role of NK cells in regulating the maturation level of DCs. Shortly after infection with HV T. cruzi, DCs in poor maturation status begin to accumulate in mouse spleen. Although infection induces NK cell cytotoxicity and cytokine production, NK cells from mice infected with HV T. cruzi exhibit reduced ability to lyse and fail to induce maturation of bone marrow-derived immature DCs (iDCs). NK-mediated lysis of iDCs is restored by in vitro blockade of the IL-10 receptor during NK-DC interaction or when NK cells are obtained from T. cruzi-infected IL-10 knockout mice. These results suggest that infection with a virulent T. cruzi strain alters NK cell-mediated regulation of the adaptive immune response induced by DCs. This regulatory circuit where IL-10 appears to participate might lead to parasite persistence but can also limit the induction of a vigorous tissue-damaging T-cell response.

  11. Effects of beta-adrenergic receptor activation, cholera toxin and forskolin on human natural killer cell function.

    PubMed Central

    Whalen, M M; Bankhurst, A D

    1990-01-01

    Membranes from highly purified natural killer (NK) cells were ADP-ribosylated by treatment with cholera toxin (CTX). CTX resulted in a single band of specific 32P incorporation at Mr 43,600. CTX treatment of intact NK cells caused a 9-fold increase in cyclic AMP (cAMP) concentrations. Pretreatment of NK cells with CTX diminished their ability to lyse K562 tumour cells by up to 79%. Forskolin treatment elevated NK cell cAMP levels 8-fold and decreased lysis of K562 cells by up to 45%. Adrenaline and isoprenaline (isoproterenol) both inhibited lysis of K562 cells by approx. 35% and elevated cAMP by at least 2.5-fold, and their inhibition of lysis was reversed by propranolol. These data suggest that the stimulatory guanine-nucleotide-binding protein GS coupled to beta-adrenergic receptors is involved in transducing signals which inhibit NK cell lysis of tumour cells. CTX and forskolin also diminish the ability of NK cells to bind K562 cells (binding is necessary for lysis). This suggests that the NK-cell receptor(s) for the tumour cell may be altered as a consequence of cAMP-mediated events or by activation of GS. Images Fig. 5. PMID:2176460

  12. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis.

    PubMed

    Bruno, Antonino; Ferlazzo, Guido; Albini, Adriana; Noonan, Douglas M

    2014-08-01

    Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This "polarization" has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as "TINKs") and tumor-associated NK (altered peripheral NK cells, which here we call "TANKs") are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology.

  13. Diabetes, Epstein-Barr virus and extranodal natural killer/T-cell lymphoma in India: Unravelling the plausible nexus

    PubMed Central

    Spadigam, Anita; Dhupar, Anita; Syed, Shaheen; Saluja, Tajindra Singh

    2016-01-01

    The International Diabetes Federation Diabetes Atlas estimates a staggering 590 million people affected with diabetes mellitus (DM) within the next two decades globally, of which Type 2 DM will constitute more than 90%. The associated insulin resistance, hyperinsulinemia, and hyperglycemia pose a further significant risk for developing diverse malignant neoplasms. Diabetes and malignancy are multifactorial heterogeneous diseases. The immune dysfunction secondary to Type 2 diabetes also reactivates latent infections with high morbidity and mortality rates. Epstein-Barr virus (EBV), a ubiquitous human herpes virus-4, is an oncogenic virus; its recrudescence in the immunocompromised condition activates the expression of EBV latency genes, thus immortalizing the infected cell and giving rise to lymphomas and carcinomas. Extranodal natural killer/T-cell lymphoma (ENKTCL), common in South-East Asia and Latin America; is a belligerent type of non-Hodgkin lymphoma (NHL) almost invariably associated with EBV. An analysis of articles sourced from the PubMed database and Google Scholar web resource until February 2014, suggests an increasing incidence of NHL in Asia/India and of ENKTCL in India, over the last few decades. This article reviews the epidemiological evidence linking various neoplasms with Type 2 DM and prognosticates the emergence of ENKTCL as a common lymphoreticular malignancy secondary to Type 2 diabetes, in the Indian population in the next few decades. PMID:27051150

  14. Susceptibility of colorectal-carcinoma cells to natural-killer-mediated lysis: relationship to CEA expression and degree of differentiation.

    PubMed

    Prado, I B; Laudanna, A A; Carneiro, C R

    1995-06-01

    This study addresses the relevance of colorectal-carcinoma-cell (CRC) CEA expression and degree of differentiation in natural-killer(NK)-mediated lysis susceptibility. A 51Cr-release cytotoxicity assay performed with 5 human CRC lines demonstrated that CRC CEA expression was related to resistance to NK lysis. Moreover, the addition of anti-CEA Fab fragments to the assay led to a significant increase of lysability of high-CEA-producing and NK-resistant cells (LS 174-T), whereas purified CEA drastically reduced lysis of low-CEA-producing and NK-susceptible cells (LISP-I) in a dose-dependent manner. These results strongly suggest that CEA plays a causal role in CRC resistance to NK lysis. Nevertheless, our data did not demonstrate CEA binding to effector cell surface, suggesting that CEA expression can protect CRC, possibly by preventing NK-tumor-cell adhesion to occur. Our results also show that CRC susceptibility to NK lysis was related to a less differentiated phenotype. HCT-8, which are poorly differentiated and low-CEA-producing cells, were cultured in vitro in the presence of the differentiation agent sodium butyrate. Treated cells became less susceptible to NK lysis as they progressed towards a more differentiated phenotype. However, CEA production was not altered upon differentiation. Our study thus demonstrates that both features, CEA expression and degree of cellular differentiation, may individually influence CRC susceptibility to NK lysis. PMID:7790122

  15. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity.

    PubMed

    Matalon, Omri; Fried, Sophia; Ben-Shmuel, Aviad; Pauker, Maor H; Joseph, Noah; Keizer, Danielle; Piterburg, Marina; Barda-Saad, Mira

    2016-01-01

    Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.

  16. Testosterone Increases Susceptibility to Amebic Liver Abscess in Mice and Mediates Inhibition of IFNγ Secretion in Natural Killer T Cells

    PubMed Central

    Lotter, Hannelore; Helk, Elena; Bernin, Hannah; Jacobs, Thomas; Prehn, Cornelia; Adamski, Jerzy; González-Roldán, Nestor; Holst, Otto; Tannich, Egbert

    2013-01-01

    Amebic liver abscess (ALA), a parasitic disease due to infection with the protozoan Entamoeba histolytica, occurs age and gender dependent with strong preferences for adult males. Using a mouse model for ALA with a similar male bias for the disease, we have investigated the role of female and male sexual hormones and provide evidence for a strong contribution of testosterone. Removal of testosterone by orchiectomy significantly reduced sizes of abscesses in male mice, while substitution of testosterone increased development of ALA in female mice. Activation of natural killer T (NKT) cells, which are known to be important for the control of ALA, is influenced by testosterone. Specifically activated NKT cells isolated from female mice produce more IFNγ compared to NKT cells derived from male mice. This high level production of IFNγ in female derived NKT cells was inhibited by testosterone substitution, while the IFNγ production in male derived NKT cells was increased by orchiectomy. Gender dependent differences were not a result of differences in the total number of NKT cells, but a result of a higher activation potential for the CD4− NKT cell subpopulation in female mice. Taken together, we conclude that the hormone status of the host, in particular the testosterone level, determines susceptibility to ALA at least in a mouse model of the disease. PMID:23424637

  17. NKR-P1A is a target-specific receptor that activates natural killer cell cytotoxicity.

    PubMed

    Ryan, J C; Niemi, E C; Nakamura, M C; Seaman, W E

    1995-05-01

    NKR-P1A is a lectinlike surface molecule expressed on rat natural killer (NK) cells. NKR-P1A has structural and functional features of an activating NK cell receptor, but a requirement for NKR-P1A in target cell lysis has not been determined. To define the role of NKR-P1A in natural killing, we have generated a mutant of the rat NK cell line, RNK-16, lacking expression of all members of the NKR-P1 receptor family. Although these NKR-P1-deficient NK cells were able to kill many standard tumor targets, including YAC-1, they were selectively deficient in the lysis of IC-21 macrophage, B-16 melanoma, and C1498 lymphoma targets. Reexpression of a single member of the NKR-P1 family, NKR-P1A, on mutant cells restored lysis of IC-21, and killing of IC-21 targets through rat NKR-P1A was completely blocked by F(ab')2 anti-NKR-P1A. Reexpression of NKR-P1A also restored transmembrane signaling to IC-21, as assessed by the generation of inositol-1,4,5-trisphosphate. The generation of inositol-1,4,5-trisphosphate was also restored in response to B-16 targets, but both B-16 and C1498 cells remained resistant to lysis, indicating that other NK cell molecules, perhaps within the NKR-P1 family, are required for the efficient killing of these tumors. These results are the first to demonstrate that NKR-P1A is a target-specific receptor that activates natural killing. PMID:7722466

  18. NKR-P1A is a target-specific receptor that activates natural killer cell cytotoxicity

    PubMed Central

    1995-01-01

    NKR-P1A is a lectinlike surface molecule expressed on rat natural killer (NK) cells. NKR-P1A has structural and functional features of an activating NK cell receptor, but a requirement for NKR-P1A in target cell lysis has not been determined. To define the role of NKR-P1A in natural killing, we have generated a mutant of the rat NK cell line, RNK-16, lacking expression of all members of the NKR-P1 receptor family. Although these NKR-P1-deficient NK cells were able to kill many standard tumor targets, including YAC-1, they were selectively deficient in the lysis of IC-21 macrophage, B-16 melanoma, and C1498 lymphoma targets. Reexpression of a single member of the NKR-P1 family, NKR-P1A, on mutant cells restored lysis of IC-21, and killing of IC-21 targets through rat NKR-P1A was completely blocked by F(ab')2 anti-NKR- P1A. Reexpression of NKR-P1A also restored transmembrane signaling to IC-21, as assessed by the generation of inositol-1,4,5-trisphosphate. The generation of inositol-1,4,5-trisphosphate was also restored in response to B-16 targets, but both B-16 and C1498 cells remained resistant to lysis, indicating that other NK cell molecules, perhaps within the NKR-P1 family, are required for the efficient killing of these tumors. These results are the first to demonstrate that NKR-P1A is a target-specific receptor that activates natural killing. PMID:7722466

  19. Immunophenotypic and functional characterization of ex vivo expanded natural killer cells for clinical use in acute lymphoblastic leukemia patients.

    PubMed

    Peragine, Nadia; Torelli, Giovanni F; Mariglia, Paola; Pauselli, Simona; Vitale, Antonella; Guarini, Anna; Foà, Robin

    2015-02-01

    The management of acute lymphoblastic leukemia (ALL) patients has witnessed profound changes in recent years. Nonetheless, most patients tend to relapse, underlining the need for new therapeutic approaches. The anti-leukemic potential of natural killer (NK) cells has over the years raised considerable interest. In this study, we developed an efficient method for the expansion and activation of NK cells isolated from healthy donors and ALL patients for clinical use. NK cell products were derived from peripheral blood mononuclear cells of 35 healthy donors and 4 B-lineage ALL by immunomagnetic CD3 T cell depletion followed by CD56 cell enrichment. Isolated NK cells were expanded and stimulated in serum-free medium supplemented with irradiated autologous feeder cells and autologous plasma in the presence of clinical grade interleukin (IL)-2 and IL-15 for 14 days. Healthy donor NK cells expanded on average 34.9 ± 10.4 fold and were represented, after expansion, by a highly pure population of CD3(-)CD56(+) cells showing a significant upregulation of natural cytotoxicity receptors, activating receptors and maturation markers. These expanded effectors showed cytolytic activity against K562 cells and, most importantly, against primary adult B-lineage ALL blasts. NK cells could be efficiently isolated and expanded-on average 39.5 ± 20.3 fold-also from primary B-lineage ALL samples of patients in complete remission. The expanded NK cells from these patients showed a significantly increased expression of the NKG2D- and DNAM1-activating receptors and were cytotoxic against K562 cells. These data provide the basis for developing new immunotherapeutic strategies for the management of ALL patients.

  20. Medial Septal NMDA Glutamate Receptors are Involved in Modulation of Blood Natural Killer Cell Activity in Rats.

    PubMed

    Podlacha, Magdalena; Glac, Wojciech; Listowska, Magdalena; Grembecka, Beata; Majkutewicz, Irena; Myślińska, Dorota; Plucińska, Karolina; Jerzemowska, Grażyna; Grzybowska, Maria; Wrona, Danuta

    2016-03-01

    The purpose of the present study was to determine the specific role of the medial septal (MS) NMDA glutamate receptors on peripheral blood natural killer cell cytotoxicity (NKCC) and their (large granular lymphocyte, LGL) number, as well as the plasma concentration of tumor necrosis factor α (TNF-α) and corticosterone in male Wistar rats exposed to elevated plus maze (EPM) stress or non-stress conditions. The NMDA groups were injected with NMDA glutamate receptor agonist (N-methyl-D-aspartate; 0.25 μg/rat), the D-AP7 group was injected with DL-2-amino-7-phosphoheptanoate (0.1 μg/rat), an antagonist of NMDA glutamate receptors, and the control Sal group with saline (0.5 μl/rat) via previously implanted cannulae into the MS. There was an increase in the NKCC, NK/LGL number and plasma TNF-α concentration after the NMDA injections, being much stronger within the rats under non-stress conditions rather than the rats exposed to EPM stress. These parameters were decreased in the D-AP7 rats, suggesting receptor/ion channel specificity. Moreover, a lower plasma corticosterone concentration within the NMDA rather than the Sal and D-AP7 groups was found. The obtained results suggest that activation of the NMDA glutamate receptors in the MS, accompanied by changes in the corticosterone and cytokine responses, may be involved in modulation of the blood natural anti-tumor response, under EPM stress and non-stress conditions. PMID:26454750

  1. Natural killer cells are essential for the ability of BRAF inhibitors to control BRAFV600E-mutant metastatic melanoma.

    PubMed

    Ferrari de Andrade, Lucas; Ngiow, Shin F; Stannard, Kimberley; Rusakiewicz, Sylvie; Kalimutho, Murugan; Khanna, Kum Kum; Tey, Siok-Keen; Takeda, Kazuyoshi; Zitvogel, Laurence; Martinet, Ludovic; Smyth, Mark J

    2014-12-15

    BRAF(V600E) is a major oncogenic mutation found in approximately 50% of human melanoma that confers constitutive activation of the MAPK pathway and increased melanoma growth. Inhibition of BRAF(V600E) by oncogene targeting therapy increases overall survival of patients with melanoma, but is unable to produce many durable responses. Adaptive drug resistance remains the main limitation to BRAF(V600E) inhibitor clinical efficacy and immune-based strategies could be useful to overcome disease relapse. Tumor microenvironment greatly differs between visceral metastasis and primary cutaneous melanoma, and the mechanisms involved in the antimetastatic efficacy of BRAF(V600E) inhibitors remain to be determined. To address this question, we developed a metastatic BRAF(V600E)-mutant melanoma cell line and demonstrated that the antimetastatic properties of BRAF inhibitor PLX4720 (a research analogue of vemurafenib) require host natural killer (NK) cells and perforin. Indeed, PLX4720 not only directly limited BRAF(V600E)-induced tumor cell proliferation, but also affected NK cell functions. We showed that PLX4720 increases the phosphorylation of ERK1/2, CD69 expression, and proliferation of mouse NK cells in vitro. NK cell frequencies were significantly enhanced by PLX4720 specifically in the lungs of mice with BRAF(V600E) lung metastases. Furthermore, PLX4720 also increased human NK cell pERK1/2, CD69 expression, and IFNγ release in the context of anti-NKp30 and IL2 stimulation. Overall, this study supports the idea that additional NK cell-based immunotherapy (by checkpoint blockade or agonists or cytokines) may combine well with BRAF(V600E) inhibitor therapy to promote more durable responses in melanoma.

  2. Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4.

    PubMed

    Holt, Dawn M; Ma, Xinrong; Kundu, Namita; Collin, Peter D; Fulton, Amy M

    2012-01-01

    Breast malignancies often have high levels of COX-2. The COX-2 product prostaglandin E2 (PGE2) contributes to the high metastatic capacity of breast tumors. Our published data indicate that inhibiting either PGE2 production or PGE2-mediated signaling through the PGE2 receptor EP4 (1 of 4 EP expressed on the malignant cell) reduces metastasis by a mechanism that requires natural killer (NK) cells. Tumor-derived PGE2 and exogenous PGE2 are known to have direct inhibitory effects on NK cell functions, but less is known regarding which EP receptors mediate these effects. We now show that several NK functions (lysis, migration, cytokine production) are compromised in tumor-bearing mice and that tumor-produced PGE2 interferes with NK cell functions. PGE2 inhibits the potential of NK cells to migrate, exert cytotoxic effects, and secrete interferon γ. The ability of PGE2 to inhibit NK cells from tumor-bearing mice is by acting on EP2 and EP4 receptors. NK cells from tumor-bearing mice were more sensitive to inhibition by EP4 and EP2 agonists compared with endogenous NK cells from healthy mice. PGE2 was inhibitory to most NK functions of either normal or tumor-bearing mice. In contrast, there was a trend for enhanced tumor necrosis factor α production in response to PGE2 by NK cells from tumor-bearing mice. We also report that a recently described EP4 antagonist, frondoside A, inhibits breast tumor metastasis in an NK-dependent manner and protects interferon γ production by NK cells from PGE2-mediated suppression. Taken together these data show that NK functions are depressed in tumor-bearing hosts relative to normal NK cells and that PGE2 suppresses NK functions by acting on EP2 and EP4 receptors.

  3. Oncogenicity of human papillomavirus- or adenovirus-transformed cells correlates with resistance to lysis by natural killer cells.

    PubMed Central

    Routes, J M; Ryan, S

    1995-01-01

    The reasons for the dissimilar oncogenicities of human adenoviruses and human papillomaviruses (HPV) in humans are unknown but may relate to differences in the capacities of the E1A and E7 proteins to target cells for rejection by the host natural killer (NK) cell response. As one test of this hypothesis, we compared the abilities of E1A- and E7-expressing human fibroblastic or keratinocyte-derived human cells to be selectively killed by either unstimulated or interferon (IFN)-activated NK cells. Cells expressing the E1A oncoprotein were selectively killed by unstimulated NK cells, while the same parental cells but expressing the HPV type 16 (HPV-16) or HPV-18 E7 oncoprotein were resistant to NK cell lysis. The ability of IFN-activated NK cells to selectively kill virally transformed cells depends on IFN's ability to induce resistance to NK cell lysis in normal (i.e., non-viral oncogene-expressing) but not virally transformed cells. E1A blocked IFN's induction of cytolytic resistance, resulting in the selective lysis of adenovirus-transformed cells by IFN-activated NK cells. The extent of IFN-induced NK cell killing of E1A-expressing cells was proportional to the level of E1A expression and correlated with the ability of E1A to block IFN-stimulated gene expression in target cells. In contrast, E7 blocked neither IFN-stimulated gene expression nor IFN's induction of cytolytic resistance, thereby precluding the selective lysis of HPV-transformed cells by IFN-activated NK cells. In conclusion, E1A expression marks cells for destruction by the host NK cell response, whereas the E7 oncoprotein lacks this activity. PMID:7494272

  4. Invariant natural killer T cells act as an extravascular cytotoxic barrier for joint-invading Lyme Borrelia.

    PubMed

    Lee, Woo-Yong; Sanz, Maria-Jesus; Wong, Connie H Y; Hardy, Pierre-Olivier; Salman-Dilgimen, Aydan; Moriarty, Tara J; Chaconas, George; Marques, Adriana; Krawetz, Roman; Mody, Christopher H; Kubes, Paul

    2014-09-23

    CXCR6-GFP(+) cells, which encompass 70% invariant natural killer T cells (iNKT cells), have been found primarily patrolling inside blood vessels in the liver. Although the iNKT cells fail to interact with live pathogens, they do respond to bacterial glycolipids presented by CD1d on liver macrophage that have caught the microbe. In contrast, in this study using dual laser multichannel spinning-disk intravital microscopy of joints, the CXCR6-GFP, which also made up 60-70% iNKT cells, were not found in the vasculature but rather closely apposed to and surrounding the outside of blood vessels, and to a lesser extent throughout the extravascular space. These iNKT cells also differed in behavior, responding rapidly and directly to joint-homing pathogens like Borrelia burgdorferi, which causes Lyme disease. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted dissemination attempts by these microbes into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway, an observation also made in vitro for iNKT cells from joint but not liver or spleen. These results suggest a novel, critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier and explains a large increase in pathogen burden of B. burgdorferi in the joint of iNKT cell-deficient mice, and perhaps the greater susceptibility of humans to this pathogen because of fewer iNKT cells in human joints.

  5. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis.

    PubMed

    Shephard, R J; Shek, P N

    1999-09-01

    Meta-analysis techniques have been used to accumulate data from 94 studies describing the natural killer (NK) cell response of some 900 volunteers to acute and chronic exercise. NK cell numbers have been indicated in terms of CD3-CD16+CD56+, CD16+ or CD56+ phenotypes, and cytolytic activity has been expressed per 10,000 peripheral blood mononuclear cells or in terms of lytic units. Acute exercise has been categorised as sustained moderate (50 to 65% of aerobic power), sustained vigorous (>75% of aerobic power), brief maximal or 'supramaximal', prolonged, eccentric or resistance, and repeated exercise. In general, there was a marked increase in NK cell count at the end of exercise, probably attributable to a catecholamine-mediated demargination of cells. Following exercise, cell counts dropped to less than half of normal levels for a couple of hours but, except in unusual circumstances (e.g. prolonged, intense and stressful exercise), normal resting values are restored within 24 hours. If activity is both prolonged and vigorous, the decrease in NK cell counts and cytolytic activity may begin during the exercise session. Although the usual depression of NK cell count seems too brief to have major practical importance for health, there could be a cumulative adverse effect on immunosurveillance and health experience in athletes who induce such changes several times per week. There is a weak suggestion of an offsetting increase in resting NK cell counts and cytolytic action in trained individuals, and this merits further exploration in studies where effects of recent training sessions are carefully controlled. PMID:10541441

  6. Interleukin-15 enhances the expansion and function of natural killer T cells from adult peripheral and umbilical cord blood.

    PubMed

    Lin, Syh-Jae; Huang, Ying-Cheng; Cheng, Po-Jen; Lee, Pei-Tzu; Hsiao, Hsiu-Shan; Kuo, Ming-Ling

    2015-12-01

    Invariant natural killer T cells (iNKT cells) are innate-like non-conventional T cells restricted by the CD1d molecule that are unique in their ability to play a pivotal role in immune regulation. Deficient iNKT function has been reported in patients receiving umbilical cord blood (UCB) transplantation. We sought to determine the effect of interleukin (IL)-15 on α-galactosylceramide (α-GalCer)-expanded iNKT cell function from UCB and adult peripheral blood (APB) mononuclear cells (MNCs). Fresh APB and UCB MNCs were cultured with IL-15 (50 ng/ml) in the presence or absence of α-GalCer (100 ng/ml) for 10 days. Cells were harvested for examination of cell yield, apoptosis, cytokine production and cytotoxic function of Vα24(+)/Vβ11(+) iNKT cells. We observed that α-GalCer-expanded APB and UCB iNKT cells and such expansion was further enhanced with IL-15. The percentage of CD3(+)CD56(+) NKT-like cells in both APB and UCB MNCs was increased with IL-15 but not with α-GalCer. Apoptosis of UCB iNKT cells was ameliorated by IL-15. Although APB and UCB iNKT cells secreted lower IFN-γ, it could be enhanced with IL-15. The expression of perforin in APB iNKT cells can also be enhanced with IL-15. UCB Vα24(+)Vβ11(+) iNKT cells further augmented K562 cytotoxicity mediated by IL-15. Taken together, these results demonstrated the relative functional deficiencies of α-GalCer induced UCB iNKT cells, which can be ameliorated by IL-15. Our findings suggest a therapeutic benefit of IL-15 immunotherapy during the post-UCB transplant period when iNKT function remains poor.

  7. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection

    PubMed Central

    Zhang, Yan; Wallace, Diana L; de Lara, Catherine M; Ghattas, Hala; Asquith, Becca; Worth, Andrew; Griffin, George E; Taylor, Graham P; Tough, David F; Beverley, Peter C L; Macallan, Derek C

    2007-01-01

    Human natural killer (NK) cells form a circulating population in a state of dynamic homeostasis. We investigated NK cell homeostasis by labelling dividing cells in vivo using deuterium-enriched glucose in young and elderly healthy subjects and patients with viral infection. Following a 24-hr intravenous infusion of 6,6-D2-glucose, CD3– CD16+ NK cells sorted from peripheral blood mononuclear cells (PBMC) by fluorescence-activated cell sorter (FACS) were analysed for DNA deuterium content by gas chromatography mass spectrometry to yield minimum estimates for proliferation rate (p). In healthy young adults (n = 5), deuterium enrichment was maximal ∼10 days after labelling, consistent with postmitotic maturation preceding circulation. The mean (± standard deviation) proliferation rate was 4·3 ± 2·4%/day (equivalent to a doubling time of 16 days) and the total production rate was 15 ± 7·6 × 106 cells/l/day. Labelled cells disappeared from the circulation at a similar rate [6·9 ± 4·0%/day; half-life (T½) <10 days]. Healthy elderly subjects (n = 8) had lower proliferation and production rates (P = 2·5 ± 1·0%/day and 7·3 ± 3·7 × 106 cells/l/day, respectively; P = 0·04). Similar rates were seen in patients chronically infected with human T-cell lymphotropic virus type I (HTLV-I) (P = 3·2 ± 1·9%/day). In acute infectious mononucleosis (n = 5), NK cell numbers were increased but kinetics were unaffected (P = 2·8 ± 1·0%/day) a mean of 12 days after symptom onset. Human NK cells have a turnover time in blood of about 2 weeks. Proliferation rates appear to fall with ageing, remain unperturbed by chronic HTLV-I infection and normalize rapidly following acute Epstein–Barr virus infection. PMID:17346281

  8. Immunophenotypic and Clinical Differences Between the Nasal and Extranasal Subtypes of Upper Aerodigestive Tract Natural Killer/T-Cell Lymphoma

    SciTech Connect

    Liu, Qing-Feng; Wang, Wei-Hu; Wang, Shu-Lian; Liu, Yue-Ping; Huang, Wen-Ting; Lu, Ning; Zhou, Li-Qiang; Ouyang, Han; Jin, Jing; Li, Ye-Xiong

    2014-03-15

    Purpose: To investigate, in a large cohort of patients, the immunophenotypic and clinical differences of nasal and extranasal extranodal nasal-type natural killer/T-cell lymphoma of the upper aerodigestive tract (UADT-NKTCL) and examine the relevance of the immunophenotype on the clinical behavior, prognosis, and treatment. Methods and Materials: A total of 231 patients with UADT-NKTCL were recruited. One hundred eighty-one patients had primary location in the nasal cavity (nasal UADT-NKTCL), and 50 patients had primary extranasal UADT-NKTCL. Results: Patients with extranasal UADT-NKTCL had more adverse clinical features, including advanced-stage disease, regional lymph node involvement, B symptoms, and poor performance status, than patients with nasal UADT-NKTCL. In addition, CD56 and granzyme B were less frequently expressed in extranasal UADT-NKTCL. The 5-year overall survival rate was 74.1% for the entire group and 76.0% for early-stage disease. The 5-year overall survival rate for extranasal UADT-NKTCL was similar or superior to that of nasal UADT-NKTCL for all disease stages (76.9% vs 73.4%, P=.465), stage I disease (75.9% vs 79.2%, P=.786), and stage II disease (83.3% vs 50.3%, P=.018). CD56 expression and a Ki-67 proliferation rate ≥50% predicted poorer survival for extranasal UADT-NKTCL but not for nasal UADT-NKTCL. Conclusions: Patients with nasal and extranasal UADT-NKTCL have significantly different clinical features, immunophenotypes, and prognosis. Extranasal UADT-NKTCL should be considered as a distinct subgroup apart from the most commonly diagnosed prototype of nasal UADT-NKTCL.

  9. Negative regulation of natural killer cell in tumor tissue and peripheral blood of oral squamous cell carcinoma.

    PubMed

    Dutta, Anupam; Banerjee, Arunabha; Saikia, Nabajyoti; Phookan, Jyotirmoy; Baruah, Munindra Narayan; Baruah, Shashi

    2015-12-01

    Natural killer (NK) cells are the key lymphocytes in solid tumors. Its activity is regulated by both germline encoded receptors and cytokine microenvironment. We conducted a case-control study to investigate the activation status of NK cell in oral squamous cell carcinoma (OSCC). NK cell activation was assessed in context of NK cell cytotoxicity and transcript expression of NK cell receptors (NKp46 and KIRs) and NK cell associated cytokines (IL-1β, IL-2, IL-10, IL-12β, IL-15, IL-18, IL-21, IFN-γ, TNF-α and TGF-β). The results revealed possible mechanisms involved in reduced NK cell activation in peripheral circulation: quantitative deficiency of NK cell number and lowered cytotoxicity together with qualitative NK impairments caused by--(1) decreased expression of NK activating receptor NKp46, (2) increased expression of NK suppressive cytokines--IL-10 and TGF-β and (3) induction of FOXP3(+)CTLA4(+) suppressor cells. On the other hand, in the tumor tissue, escape of NK immune surveillance appeared to be modulated by upregulation of TGF-β and IL-10 together with downregulation of NK cell activating cytokines (IL-2, IL-12β, IL-15, IL-18, IL-21 and IFN-γ) and NK receptors (NKp46 and KIRs). In addition, our study supported the earlier contention that TNF-α and IL-1β expression levels may be used as markers of malignant transformation in oral leukoplakia. In conclusion, the study provided an insight into the negative regulation of NK cell in tumor tissue and peripheral blood of OSCC patients, which can be exploited to boost the current NK cell and cytokine based immunotherapy for the treatment of oral cancer. PMID:26372424

  10. Progressive natural killer cell dysfunction associated with alterations in subset proportions and receptor expression in soft-tissue sarcoma patients.

    PubMed

    Bücklein, Veit; Adunka, Tina; Mendler, Anna N; Issels, Rolf; Subklewe, Marion; Schmollinger, Jan C; Noessner, Elfriede

    2016-07-01

    Immunotherapy is currently investigated as treatment option in many types of cancer. So far, results from clinical trials have demonstrated that significant benefit from immunomodulatory therapies is restricted to patients with select histologies. To broaden the potential use of these therapies, a deeper understanding for mechanisms of immunosuppression in patients with cancer is needed. Soft-tissue sarcoma (STS) presents a medical challenge with significant mortality even after multimodal treatment. We investigated function and immunophenotype of peripheral natural killer (NK) cells from chemotherapy-naive STS patients (1st line) and STS patients with progression or relapse after previous chemotherapeutic treatment (2nd line). We found NK cells from peripheral blood of both STS patient cohorts to be dysfunctional, being unable to lyse K562 target cells while NK cells from renal cell cancer (RCC) patients did not display attenuated lytic activity. Ex vivo stimulation of NK cells from STS patients with interleukin-2 plus TKD restored cytotoxic function. Furthermore, altered NK cell subset composition with reduced proportions of CD56(dim) cells could be demonstrated, increasing from 1st- to 2nd-line patients. 2nd-line patients additionally displayed significantly reduced expression of receptors (NKG2D), mediators (CD3ζ), and effectors (perforin) of NK cell activation. In these patients, we also detected fewer NK cells with CD57 expression, a marker for terminally differentiated cytotoxic NK cells. Our results elucidate mechanisms of NK cell dysfunction in STS patients with advanced disease. Markers like NKG2D, CD3ζ, and perforin are candidates to characterize NK cells with effective antitumor function for immunotherapeutic interventions. PMID:27622032

  11. Type 2 diabetes mellitus is associated with altered CD8+ T and natural killer cell function in pulmonary tuberculosis

    PubMed Central

    Kumar, Nathella P; Sridhar, Rathinam; Nair, Dina; Banurekha, Vaithilingam V; Nutman, Thomas B; Babu, Subash

    2015-01-01

    Type 2 diabetes mellitus (DM) is associated with expanded frequencies of mycobacterial antigen-specific CD4+ T helper type 1 (Th1) and Th17 cells in individuals with active pulmonary tuberculosis (TB). No data are available on the role of CD8+ T and natural killer (NK) cells in TB with coincident DM. To identify the role of CD8+ T and NK cells in pulmonary TB with diabetes, we examined mycobacteria-specific immune responses in the whole blood of individuals with TB and DM (TB-DM) and compared them with those without DM (TB-NDM). We found that TB-DM is characterized by elevated frequencies of mycobacterial antigen-stimulated CD8+ T cells expressing type 1 [interferon-γ and interleukin-2 (IL-2)] and type 17 (IL-17F) cytokines. We also found that TB-DM is characterized by expanded frequencies of TB antigen-stimulated NK cells expressing type 1 (tumour necrosis factor-α) and type 17 (IL-17A and IL-17F) cytokines. In contrast, CD8+ T cells were associated with significantly diminished expression of the cytotoxic markers perforin, granzyme B and CD107a both at baseline and following antigen or anti-CD3 stimulation, while NK cells were associated with significantly decreased antigen-stimulated expression of CD107a only. This was not associated with alterations in CD8+ T-cell or NK cell numbers or subset distribution. Therefore, our data suggest that pulmonary TB complicated with type 2 DM is associated with an altered repertoire of cytokine-producing and cytotoxic molecule-expressing CD8+ T and NK cells, possibly contributing to increased pathology. PMID:25363329

  12. Murine Splenic Natural Killer Cells Do Not Develop Immunological Memory after Re-Encounter with Mycobacterium bovis BCG.

    PubMed

    Kawahara, Mamoru; Hasegawa, Nozomi; Takaku, Hiroshi

    2016-01-01

    Several lines of evidence have recently suggested that natural killer (NK) cells develop immunological memory against viral infections. However, there is no apparent evidence that NK cells acquire specific memory against Mycobacterium bovis bacillus Calmette-Guérin (BCG), the only currently licensed vaccine for preventing tuberculosis. In the present study, we investigated whether murine splenic NK cells can be activated by BCG in a dendritic cell (DC)-independent or -dependent manner, and furthermore examined whether these NK cells acquire specific memory following BCG vaccination. NK cells isolated from spleens of BCG-immunized mice produced interferon (IFN)γ through direct BCG stimulation in the absence of antigen-presenting cells; however, NK cells from control animals similarly directly responded to BCG, and the response level was not statistically significant between the immunized and the naïve NK cells. When purified NK cells that had been exposed to BCG were cocultured with RAW murine macrophages infected with BCG, the antibacterial activity of the macrophages was strongly enhanced; however, its level was similar to that by naïve NK cells, which had not been exposed to BCG. When splenocytes harvested from BCG-immunized mice were stimulated with purified protein derivative (PPD) derived from Mycobacterium tuberculosis, a specific IFNγ response was clearly observed, mainly attributed to NK cells and memory CD4+ T cells. To investigate whether these NK cells as well as the T cells are activated by cell-cell interaction with DCs presenting mycobacterial antigens, NK cells isolated from BCG-immunized mice were cocultured with splenocytes harvested from naïve mice in the presence of PPD stimulation. However, no IFNγ response was found in the NK cells. These results suggest that murine splenic NK cells do not develop BCG-specific immunological memory in either a DC-independent or -dependent manner.

  13. Invariant Natural Killer T cells in lupus patients promote IgG and IgG autoantibody production

    PubMed Central

    Shen, Lei; Zhang, Hong; Caimol, Maria; Benike, Claudia J.; Chakravarty, Eliza F.; Strober, Samuel; Engleman, Edgar G.

    2014-01-01

    IgG autoantibodies, including antibodies to double-stranded DNA (dsDNA), are pathogenic in systemic lupus erythematosus, but the mechanisms controlling their production are not understood. To assess the role of invariant natural killer T (iNKT) cells in this process, we studied 44 lupus patients. We took advantage of the propensity of PBMCs from patients with active disease to spontaneously secrete IgG, in vitro. Despite the rarity of iNKT cells in lupus blood (0.002∼0.05% of CD3-positive T cells), antibody blockade of the conserved iNKT TCR or its ligand, CD1d, or selective depletion of iNKT cells, inhibited spontaneous secretion of total IgG and anti-dsDNA IgG by lupus PBMCs. Addition of anti-iNKT or anti-CD1d antibody to PBMC cultures also reduced the frequency of plasma cells, suggesting that lupus iNKT cells induce B cell maturation. Like fresh iNKT cells, expanded iNKT cell lines from lupus patients, but not healthy subjects, induced autologous B cells to secrete antibodies, including IgG anti-dsDNA. This activity was inhibited by anti-CD40L antibody, as well as anti-CD1d antibody, confirming a role for CD40L-CD40 and TCR-CD1d interactions in lupus iNKT mediated help. These results reveal a critical role for iNKT cells in B cell maturation and autoantibody production in patients with lupus. PMID:25352488

  14. Evaluation of CD56dim and CD56bright natural killer cells in peripheral blood of women with IVF failures

    PubMed Central

    Mardanian, Farahnaz; Kazeroonizadeh, Moones; Rashidi, Bahman

    2015-01-01

    Background: Infertility is an increasing medical and social problem. In vitro fertilization (IVF) has become a common and accessible treatment for a wide variety of indications that have variable outcomes. Natural killer (NK) cells have been identified as relevant immunological factors involved in reproductive success or failure. Objective: The aim of this study was to compare the percentage of peripheral blood CD56+ (CD56dim and CD56bright) cells and the level of NK cell in patients with IVF failure with those of successful IVF control women. Materials and Methods: We assessed the level of CD56dim CD16+ and CD56bright CD16- cells in 50 women under IVF treatment and compared between successful IVF and IVF failure with the flowcytometry technique. Results: Of studied women, 68% did not response to IVF therapy and 32% had successful IVF, the level of CD56dim CD16+ cells in women with IVF failure was significantly higher than successful IVF (p<0.0001) but the level of CD56bright CD16- cells was not significantly different between women with IVF failure and successful IVF (p=0.28). Conclusion: The results of present study demonstrated that the level of NK cells as a risk factor is associated with pregnancy loss in women with IVF failure. However, number of sample in this study is low and further studies with more sample size are needed to be done. We suggest considering treatment option for women undergoing repeated IVF failure with increased percentage of CD56dim cells and the level of peripheral blood NK cell. PMID:26568763

  15. Murine Splenic Natural Killer Cells Do Not Develop Immunological Memory after Re-Encounter with Mycobacterium bovis BCG

    PubMed Central

    Kawahara, Mamoru; Hasegawa, Nozomi; Takaku, Hiroshi

    2016-01-01

    Several lines of evidence have recently suggested that natural killer (NK) cells develop immunological memory against viral infections. However, there is no apparent evidence that NK cells acquire specific memory against Mycobacterium bovis bacillus Calmette—Guérin (BCG), the only currently licensed vaccine for preventing tuberculosis. In the present study, we investigated whether murine splenic NK cells can be activated by BCG in a dendritic cell (DC)-independent or -dependent manner, and furthermore examined whether these NK cells acquire specific memory following BCG vaccination. NK cells isolated from spleens of BCG-immunized mice produced interferon (IFN)γ through direct BCG stimulation in the absence of antigen-presenting cells; however, NK cells from control animals similarly directly responded to BCG, and the response level was not statistically significant between the immunized and the naïve NK cells. When purified NK cells that had been exposed to BCG were cocultured with RAW murine macrophages infected with BCG, the antibacterial activity of the macrophages was strongly enhanced; however, its level was similar to that by naïve NK cells, which had not been exposed to BCG. When splenocytes harvested from BCG-immunized mice were stimulated with purified protein derivative (PPD) derived from Mycobacterium tuberculosis, a specific IFNγ response was clearly observed, mainly attributed to NK cells and memory CD4+ T cells. To investigate whether these NK cells as well as the T cells are activated by cell−cell interaction with DCs presenting mycobacterial antigens, NK cells isolated from BCG-immunized mice were cocultured with splenocytes harvested from naïve mice in the presence of PPD stimulation. However, no IFNγ response was found in the NK cells. These results suggest that murine splenic NK cells do not develop BCG-specific immunological memory in either a DC-independent or -dependent manner. PMID:26999357

  16. Cortisol is not the primary mediator for augmented CXCR4 expression on natural killer cells after acute exercise.

    PubMed

    Okutsu, Mitsuharu; Ishii, Kenji; Niu, Kaijun; Nagatomi, Ryoichi

    2014-08-01

    CXC-chemokine receptor 4 (CXCR4) and its ligand, stromal-derived factor 1α (SDF-1α; also known as CXCL12), are crucial for the redistribution of immune cells after acute exercise. We investigated the relationships between acute exercise and CXCR4 expression on natural killer (NK) cells. Peripheral blood mononuclear cells (PBMCs) were cultured with cortisol and analyzed for CXCR4 expression on CD3(-)/CD56(+) NK cells and NK cell migration activity. To determine the effect of exercise, we isolated PBMCs from subjects before and after a 90-min exercise at 70% peak O2 uptake (V̇o2peak) and determined the changes in CXCR4 expression on NK cells after exercise. We cultured PBMCs with plasma obtained before and after exercise and with the glucocorticoid antagonist RU-486 to determine NK cell migration activity and the effects of cortisol on CXCR4 expression in vitro. Cortisol treatment increased CXCR4 expression (P < 0.05) and migration activity (P < 0.05) of NK cells. Exercise did not affect CXCR4 expression on NK cells, whereas incubating them with postexercise plasma significantly increased CXCR4 expression (P < 0.05) and migration activity (P < 0.05). RU-486 blocked cortisol-induced CXCR4 upregulation on NK cells, but only partially blocked (7%) CXCR4 upregulation when PMBCs were incubated with postexercise plasma. Thus acute exercise increases CXCR4 expression on NK cells and their migration activity and may contribute to NK cell redistribution after acute exercise; however, cortisol did not appear to be the primary mediator of augmented CXCR4 expression.

  17. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    SciTech Connect

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.; Garofoli, Daniella; Ewen, Catherine; Davidson, Courtney E.; Ghaffari, Mazyar; Kane, Kevin P.; Lacy, Paige; Logan, Michael R.; Befus, A. Dean; Bleackley, R. Chris; Moqbel, Redwan

    2008-02-15

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 {mu}g/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo.

  18. Molecular Architecture of the Major Histocompatibility Complex Class I-binding Site of Ly49 Natural Killer Cell Receptors*

    PubMed Central

    Deng, Lu; Cho, Sangwoo; Malchiodi, Emilio L.; Kerzic, Melissa C.; Dam, Julie; Mariuzza, Roy A.

    2008-01-01

    Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2Kb complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally. PMID:18426793

  19. Invariant natural killer T cells act as an extravascular cytotoxic barrier for joint-invading Lyme Borrelia

    PubMed Central

    Lee, Woo-Yong; Sanz, Maria-Jesus; Wong, Connie H. Y.; Hardy, Pierre-Olivier; Salman-Dilgimen, Aydan; Moriarty, Tara J.; Chaconas, George; Marques, Adriana; Krawetz, Roman; Mody, Christopher H.; Kubes, Paul

    2014-01-01

    CXCR6-GFP+ cells, which encompass 70% invariant natural killer T cells (iNKT cells), have been found primarily patrolling inside blood vessels in the liver. Although the iNKT cells fail to interact with live pathogens, they do respond to bacterial glycolipids presented by CD1d on liver macrophage that have caught the microbe. In contrast, in this study using dual laser multichannel spinning-disk intravital microscopy of joints, the CXCR6-GFP, which also made up 60–70% iNKT cells, were not found in the vasculature but rather closely apposed to and surrounding the outside of blood vessels, and to a lesser extent throughout the extravascular space. These iNKT cells also differed in behavior, responding rapidly and directly to joint-homing pathogens like Borrelia burgdorferi, which causes Lyme disease. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted dissemination attempts by these microbes into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway, an observation also made in vitro for iNKT cells from joint but not liver or spleen. These results suggest a novel, critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier and explains a large increase in pathogen burden of B. burgdorferi in the joint of iNKT cell-deficient mice, and perhaps the greater susceptibility of humans to this pathogen because of fewer iNKT cells in human joints. PMID:25205813

  20. Polyinosinic-cytidylic acid as an adjuvant on natural killer- and dendritic cell-mediated antitumor activities.

    PubMed

    Huang, Yu-Kun; Zheng, Zhi; Qiu, Fu

    2013-06-01

    Previously, we demonstrated that treatment with E7(44-62) and the adjuvant polyinosinic-cytidylic acid (poly(I:C)) in a rodent model generates antitumor immune responses, but the effect of E7(44-62) with poly(I:C) on natural killer (NK)- and dendritic cell (DC)-mediated antitumor activities is still unclear. Our goal was to examine the antitumor effects of E7(44-62) with poly(I:C). We examined the ability of E7(44-62) with poly(I:C) to induce toll-like receptor 3 (TLR3) expression, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mRNA expression, and tumor cell-killing activity in human NK cells as well as its ability to induce CD11c and CD86 expression and proliferation in human DCs. We found that E7(44-62) with poly(I:C) treatment markedly increased TLR3 expression and cytotoxicity against HeLa cells in human NK92 cells. Moreover, treatment with E7(44-62) and poly(I:C) markedly up-regulated IFN-γ and TNF-α mRNA expression in NK92 cells. Human patients with cervical cancer exhibited a marked decrease in the frequency of DCs; however, ex vivo treatment with E7(44-62) and poly(I:C) restored DC frequency. Stimulation of human DCs in patients with E7(44-62) and poly(I:C) led to high levels of CD11c and CD86 expression. Our data reveal the involvement of E7(44-62) combined with poly(I:C) in potentiating antitumor cytotoxicity and cytokine-producing activities in human NK92 cells and DCs.

  1. Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation⋆

    PubMed Central

    Farhadi, Nazanin; Lambert, Laura; Triulzi, Chiara; Openshaw, Peter J.M.; Guerra, Nadia; Culley, Fiona J.

    2014-01-01

    Background The diverse roles of innate immune cells in the pathogenesis of asthma remain to be fully defined. Natural killer (NK) cells are innate lymphocytes that can regulate adaptive immune responses. NK cells are activated in asthma; however, their role in allergic airway inflammation is not fully understood. Objective We investigated the importance of NK cells in house dust mite (HDM)-triggered allergic pulmonary inflammation. Specifically, we aimed to determine the role of the major NK-cell activating receptor NKG2D and NK-cell effector functions mediated by granzyme B. Methods Allergic airway inflammation was induced in the airways of mice by repeated intranasal HDM extract administration and responses in wild-type and NKG2D-deficient mice were compared. Adoptive transfer studies were used to identify the cells and mechanisms involved. Results Mice that lacked NKG2D were resistant to the induction of allergic inflammation and showed little pulmonary eosinophilia, few airway TH2 cells, and no rise in serum IgE after multiple HDM-allergen exposures. However, NKG2D was not required for pulmonary inflammation after a single inoculation of allergen. NKG2D-deficient mice showed no alteration in responses to respiratory virus infection. Transfer of wild-type NK cells (but not CD3+ cells) into NKG2D-deficient mice restored allergic inflammatory responses only if the NK cells expressed granzyme B. Conclusions These studies established a pivotal role for NK-cell NKG2D and granzyme B in the pathogenesis of HDM-induced allergic lung disease, and identified novel therapeutic targets for the prevention and treatment of asthma. PMID:24290277

  2. NKG2D functions as an activating receptor on natural killer cells in the common marmoset (Callithrix jacchus).

    PubMed

    Watanabe, Masamichi; Kudo, Yohei; Kawano, Mitsuko; Nakayama, Masafumi; Nakamura, Kyohei; Kameda, Mai; Ebara, Masamune; Sato, Takeki; Nakamura, Marina; Omine, Kaito; Kametani, Yoshie; Suzuki, Ryuji; Ogasawara, Kouetsu

    2014-11-01

    The natural killer group 2 membrane D (NKG2D) receptor is an NK-activating receptor that plays an important role in host defense against tumors and viral infections. Although the marmoset is an important and reliable animal model, especially for the study of human-specific viral infections, functional characterization of NKG2D on marmoset NK cells has not previously been conducted. In the present study, we investigated a subpopulation of marmoset NK cells that express NKG2D and exhibit cytolytic potential. On the basis of their CD16 and CD56 expression patterns, marmoset NK cells can be classified into three subpopulations: CD16(+) CD56(-), CD16(-) CD56(+) and CD16(-) CD56(-) cells. NKG2D expression on marmoset CD16(+) CD56(-) and CD16(-) CD56(+) splenocytes was confirmed using an NKG2D ligand composed of an MHC class I chain-related molecule A (MICA)-Fc fusion protein. When marmoset splenocytes were cultured with IL-2 for 4 days, NKG2D expression was retained on CD16(+) CD56(-) and CD16(-) CD56(+). In addition, CD16(+) CD56(+) cells within the marmoset NK population appeared which expressed NKG2D after IL-2 stimulation. IL-2-activated marmoset NK cells showed strong cytolytic activity against K562 target cells and target cells stably expressing MICA. Further, the cytolytic activity of marmoset splenocytes was significa