Science.gov

Sample records for 18o fractionation factors

  1. Precise and accurate isotope fractionation factors (α17O, α18O and αD) for water and CaSO4·2H2O (gypsum)

    NASA Astrophysics Data System (ADS)

    Gázquez, Fernando; Evans, Nicholas P.; Hodell, David A.

    2017-02-01

    Gypsum (CaSO4·2H2O) is a hydrated mineral containing crystallization water, also known as gypsum hydration water (GHW). We determined isotope fractionation factors (α17O, α18O and αD) between GHW and free water of the mother solution in the temperature range from 3 °C to 55 °C at different salinities and precipitation rates. The hydrogen isotope fractionation factor (αDgypsum-water) increases by 0.0001 units per °C between 3 °C and 55 °C and salinities <150 g/L of NaCl. The αDgypsum-water is 0.9812 ± 0.0007 at 20 °C, which is in good agreement with previous estimates of 0.981 ± 0.001 at the same temperature. The α18Ogypsum-water slightly decreases with temperature by 0.00001 per °C, which is not significant over much of the temperature range considered for paleoclimate applications. Between 3 °C and 55 °C, α18Ogypsum-water averages 1.0035 ± 0.0002. This value is more precise than that reported previously (e.g. 1.0041 ± 0.0004 at 25 °C) and lower than the commonly accepted value of 1.004. We found that NaCl concentrations below 150 g/L do not significantly affect α18Ogypsum-water, but αDgypsum-water increases linearly with NaCl concentrations even at relatively low salinities, suggesting a salt correction is necessary for gypsum formed from brines. Unlike oxygen isotopes, the αDgypsum-water is affected by kinetic effects that increase with gypsum precipitation rate. As expected, the relationship of the fractionation factors for 17O and 18O follows the theoretical mass-dependent fractionation on Earth (θ = 0.529 ± 0.001). We provide specific examples of the importance of using the revised fractionation factors when calculating the isotopic composition of the fluids.

  2. Identification of Highly Fractionated 18O-Rich Silicate Grains in the Queen Alexandra Range 99177 CR3 Chondrite

    NASA Astrophysics Data System (ADS)

    Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.

    2015-07-01

    Silicate grains with ~5% 18O enrichment are found in the QUE 99177 meteorite. TEM analysis of one grain indicates an aggregate of pyroxene grains and olivine. The grains could have formed from a fractionated 16O-poor gas reservoir.

  3. A novel isotopic fractionation during dissolved oxygen consumption in mesopelagic waters inferred from observation and model simulation of dissolved oxygen δ18O in open oceanic regions

    NASA Astrophysics Data System (ADS)

    Nakayama, N.; Oka, A.; Gamo, T.

    2012-12-01

    Oxygen isotopic ratio (δ18O) of dissolved oxygen is a useful for bioactive tracer of the subsurface aphotic (mesopelagic) ocean since it varies nonlinearly related to oxygen consumption via stoichiometry of organic matter decomposition. Therefore, along with global circulation model (GCM), observed δ18O and their vertical/geographical distribution can be effectively used to quantitatively determine how marine biological and ocean physical processes contribute to varying dissolved oxygen (DO) concentration in the ocean, in particular mesopelagic zone where pronounced biological activity alters DO concentration significantly. In the central north Pacific Ocean and Indian Ocean, including Arabian Sea, one of the few regions in the open ocean which has oxygen minimum zone (OMZ, a layer with severely depleted DO), vertical profiles of DO and δ18O were observed. These observed data are compared with a GCM simulation in which a constant isotopic fractionation factor of DO by marine biological respiration and a fixed Redfield molar ratio between P and O are assumed. Even in the Arabian Sea OMZ, relationship between DO and δ18O was found to be similar to those observed in other open oceans, indicating that no specific oxygen consumption process occurred in the OMZ. Using the GCM model, we attempted to reproduce the observed overall relationship between DO and δ18O, but it failed when we adopted the previously reported isotopic fractionation factor: Discrepancy became larger when oxygen saturation level decreased, in particular in thermocline water (at 20% oxygen saturation level, modeled δ18O was heavier than observed values by +7‰). Sensitivity simulations with the GCM model revealed that (1) simply changing the intensity of oxygen consumption by respiration/organic matter decomposition nor physical processes (diffusion and/or advection) could explain the observed relationship between DO and δ18O, (2) applying a smaller isotopic fractionation for deep waters

  4. Factors Influencing the Stable Oxygen and Hydrogen Isotopic Composition (δ 18O and δ D) of a Subarctic Freshwater Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wooller, M. J.

    2005-12-01

    Previous studies have shown that the stable oxygen and hydrogen isotopic compositions (δ 18O and δD) in various animal tissues can be used to examine past climates and animal migration pattern. Little attention has been paid to the relative roles of diet and water influencing the overall δ 18O and δD of animal tissues in freshwater ecosystems. It is unclear whether different trophic levels in a freshwater lake ecosystem have an identical relationship to the water that surrounds them. The δ18O and δD values of animal tissues may be controlled by numerous different factors, including metabolic and biosynthetic isotopic fractionation and variations of δ 18O and δD in the food available. We began to examine these issues by analyzing the δ 18O and δD throughout a freshwater aquatic ecosystem at Smith Lake in Alaska. We collected samples representing primary producers and consumers (primary and secondary). Samples included green algae, various aquatic plants, such as Nuphar variegatum (water lily), Polygonum amphibium (water smartweed), Carex utriculata (sedge), Utricularia vulgaris (common bladderwort), Typha latifolia (common cattail), and a range of aquatic invertebrates, including Chironomus. sp (midge), Zygoptera (damselfly), Anisoptera (dragonfly), Dytiscidae (diving beetle) and Euhirudinea (leeches). The δ 18O and δD of Smith Lake water were ~-13.5e and -129.0e, respectively, and we present the δ 18O and δD of the rest of the ecosystem relative to these data. For instance, the δ 18O of chironomus sp. was ~12.1, which is greater than the of the lake water. Preliminary results suggest the extent of the fractionation between δ 18O of chironomids vs. lake water δ 18O is consistent with previous studies. Our data provide an insight into the range of variations that could be expected within a single freshwater ecosystem.

  5. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction

    NASA Astrophysics Data System (ADS)

    Antler, Gilad; Turchyn, Alexandra V.; Ono, Shuhei; Sivan, Orit; Bosak, Tanja

    2017-04-01

    Several enzymatic steps in microbial sulfate reduction (MSR) fractionate the isotope ratios of 33S/32S, 34S/32S and 18O/16O in extracellular sulfate, but the effects of different intracellular processes on the isotopic composition of residual sulfate are still not well quantified. We measured combined multiple sulfur (33S/32S, 34S/32S) and oxygen (18O/16O) isotope ratios of sulfate in pure cultures of a marine sulfate reducing bacterium Desulfovibrio sp. DMSS-1 grown on different organic substrates. These measurements are consistent with the previously reported correlations of oxygen and sulfur isotope fractionations with the cell-specific rate of MSR: faster reduction rates produced smaller isotopic fractionations for all isotopes. Combined isotope fractionation of oxygen and multiple sulfur isotopes are also consistent with the relationship between the rate limiting step during microbial sulfate reduction and the availability of the DsrC subunit. These experiments help reconstruct and interpret processes that operate in natural pore waters characterized by high 18O/16O and moderate 34S/32S ratios and suggest that some multiple isotope signals in the environment cannot be explained by microbial sulfate reduction alone. Instead, these signals support the presence of active, but slow sulfate reduction as well as the reoxidation of sulfide.

  6. Determination of 16O and 18O sensitivity factors and charge-exchange processes in low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Téllez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Brongersma, H. H.; Kilner, J. A.

    2012-10-01

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He+ scattered by 18O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for Ei < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for Ei > 2 keV. The ion fractions P+ were determined for Si and O using the characteristic velocity method to quantify the surface density. The 18O/16O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  7. Determination of {sup 16}O and {sup 18}O sensitivity factors and charge-exchange processes in low-energy ion scattering

    SciTech Connect

    Tellez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Kilner, J. A.; Brongersma, H. H.

    2012-10-08

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He{sup +} scattered by {sup 18}O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for E{sub i} < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for E{sub i} > 2 keV. The ion fractions P{sup +} were determined for Si and O using the characteristic velocity method to quantify the surface density. The {sup 18}O/{sup 16}O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  8. Coordinated Isotopic and Mineral Characterization of Highly Fractionated 18O-Rich Silicates in the Queen Alexandra Range 99177 CR3 Chondrite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.

    2016-01-01

    Carbonaceous chondrites contain a mixture of solar system condensates, pre-solar grains, and primitive organic matter. Each of these materials record conditions and processes in different regions of the solar nebula, on the meteorite parent body, and beyond the solar system. Oxygen isotopic studies of meteorite components can trace interactions of distinct oxygen isotopic reservoirs in the early solar system and secondary alteration processes. The O isotopic compositions of the earliest solar system condensates fall along a carbonaceous chondrite anhydrous mineral (CCAM) line of slope approximately 1 in a plot of delta 17O against delta 18O. This trend is attributed to mixing of material from 16O-poor and 16O-rich reservoirs. Secondary processing can induce mass-dependent fractionation of the O isotopes, shifting these compositions along a line of slope approximately 0.52. Substantial mass-dependent fractionation of O isotopes has been observed in secondary minerals in CAIs, calcite, and FUN inclusions. These fractionations were caused by significant thermal or aqueous alteration. We recently reported the identification of four silicate grains with extremely fractionated O isotopic ratios (delta 18O equals 37 - 55 per mille) in the minimally altered CR3 chondrite QUE 99177. TEM analysis of one grain indicates it is a nebular condensate that did not experience substantial alteration. The history of these grains is thus distinct from those of the aforementioned fractionated materials. To constrain the origin of the silicate grains, we conducted further Mg and Fe isotopic studies and TEM analyses of two grains.

  9. Online Determination of 18O Fractionation Between CO2 and Soil-Water during Soil Dessication by a Novel Mid-Infrared CO2 Isotope Analyzer Coupled to an Dynamic Chamber Incubation System

    NASA Astrophysics Data System (ADS)

    Nowak, A.

    2015-12-01

    The stable oxygen isotope composition of CO2 is an important tracer for quantifying gas interactions between soils and atmosphere. Soils impact atmospheric 18O-CO2 signatures by CO2-H2O equilibration during diffusion of CO2 through the soil column. However, recent research has revealed that also catalytic reactions by carbonic anhydrase, an enzyme used by microorganisms for triggering the conversion of CO2 and water to bicarbonate and protons, is an important factor influencing the oxygen isotopic signature of CO2. In order to study the importance of biotic and abiotic factors for 18O-CO2, we used a novel mid infrared 18O/13C-CO2 analyser coupled to a dynamic chamber system, which allowed us to measure online 18O and 13C of a continuous CO2 stream percolating through soil samples while drying out from fully water saturated to air dry. Our results indicate that changes in CO2- 18O signatures peak at certain soil moistures levels, which is most probably catalysed by the activity of certain microbial groups under optimum growth conditions. More analyses with different soil types and depths, combined with molecular analyses are planned in order to understand the importance of microbial processes and dynamics for influencing soil-CO2 interactions.

  10. 13C, 18O, and D fractionation effects in the reactions of CH3OH isotopologues with Cl and OH radicals.

    PubMed

    Feilberg, Karen L; Gruber-Stadler, Margret; Johnson, Matthew S; Mühlhäuser, Max; Nielsen, Claus J

    2008-11-06

    A relative rate experiment is carried out for six isotopologues of methanol and their reactions with OH and Cl radicals. The reaction rates of CH2DOH, CHD2OH, CD3OH, (13)CH3OH, and CH3(18)OH with Cl and OH radicals are measured by long-path FTIR spectroscopy relative to CH3OH at 298 +/- 2 K and 1013 +/- 10 mbar. The OH source in the reaction chamber is photolysis of ozone to produce O((1)D) in the presence of a large excess of molecular hydrogen: O((1)D) + H2 --> OH + H. Cl is produced by the photolysis of Cl2. The FTIR spectra are fitted using a nonlinear least-squares spectral fitting method with measured high-resolution infrared spectra as references. The relative reaction rates defined as alpha = k(light)/k(heavy) are determined to be: k(OH + CH3OH)/k(OH + (13)CH3OH) = 1.031 +/- 0.020, k(OH + CH3OH)/k(OH + CH3(18)OH) = 1.017 +/- 0.012, k(OH + CH3OH)/k(OH + CH2DOH) = 1.119 +/- 0.045, k(OH + CH3OH)/k(OH + CHD2OH) = 1.326 +/- 0.021 and k(OH + CH3OH)/k(OH + CD3OH) = 2.566 +/- 0.042, k(Cl + CH3OH)/k(Cl + (13)CH3OH) = 1.055 +/- 0.016, k(Cl + CH3OH)/k(Cl + CH3(18)OH) = 1.025 +/- 0.022, k(Cl + CH3OH)/k(Cl + CH2DOH) = 1.162 +/- 0.022 and k(Cl + CH3OH)/k(Cl + CHD2OH) = 1.536 +/- 0.060, and k(Cl + CH3OH)/k(Cl + CD3OH) = 3.011 +/- 0.059. The errors represent 2sigma from the statistical analyses and do not include possible systematic errors. Ground-state potential energy hypersurfaces of the reactions were investigated in quantum chemistry calculations at the CCSD(T) level of theory with an extrapolated basis set. The (2)H, (13)C, and (18)O kinetic isotope effects of the OH and Cl reactions with CH3OH were further investigated using canonical variational transition state theory with small curvature tunneling and compared to experimental measurements as well as to those observed in CH4 and several other substituted methane species.

  11. High Resolution δ18O and δ13C Records of AMS 14C Dated Stalagmites From Jinlun and Yilingyan Caves in Guangxi, China: Climate Variability and Controlling Factors in the Monsoonal Region During the Past 2300 Years

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Lien, W. Y.; Mii, H. S.; Jiang, G. H.; Chou, C. Y.; Chou, P. J.

    2015-12-01

    Jinlun Cave in Mashan County and Yilingyan Cave in Wuming County are ~120km and ~60km north of Nanning in Guangxi Province under influence of both Indian Monsoon and North Western Pacific Monsoon. Several stalagmites have been dated by AMS 14C dating method since 230Th/U is not applicable due to very low U contents. Twenty (20) AMS 14C dates on Stalagmite JL20131005-10 (10-cm long) show "Bomb carbon curve", spanning the past 60 years. Lamination counting further confirms the chronology. Thirty nine (39) AMS 14C dates on Stalagmite JL20131005-12 (33-cm long) reveal 2300-year continuous growth. Stalagmite YLY20130727-12 (10-cm long) from Yilingyan Cave covers a continuous record of past 2300 years. All studied stalagmites in the caves contain low dead carbon fractions. The annual resolution δ18O and δ13C records obtained from the stalagmites allow us to compare the stalagmite δ18O records with the instrumental rainfall and temperature records, Pacific Decadal Oscillation (PDO), Southern Oscillation Index (SOI), and Sunspot variation, etc. The δ18O and δ13C records exhibit relatively good correlation throughout the time, indicating climatic control on vegetation change. Based on the high-resolution δ18O and δ13C records, we interpret that dry climatic conditions and poor vegetation coverage during periods of AD1880~1850, 1700~1600, 1460~1320, 1210~1280, 860~750, 540~420, 300~220, and AD100~0 shown by increased δ18O and δ13C. The δ18O and δ13C were strongly depleted during the Medieval Warm Period (MWP between AD900 and AD1100) and Current Warm Period (CWP, since AD1900), reflecting strongly increased East Asian Summer Monsoon. After AD1900, the δ13C decreased about 6‰, perhaps indicating human impact on surface vegetation. The δ18O records from the study area are comparable to the published WX42B δ18O record of Wanxiang Cave (Zhang et al., 2008) except for the period of AD1400~1850. Our study suggests that AMS 14C dating is an alternative method for

  12. Chironomid δ 18O as a proxy for past lake water δ 18O: a Lateglacial record from Rotsee (Switzerland)

    NASA Astrophysics Data System (ADS)

    Verbruggen, F.; Heiri, O.; Reichart, G.-J.; Lotter, A. F.

    2010-08-01

    We explored whether the stable oxygen isotope composition (δ 18O) of fossil chironomid remains can be used to reconstruct past variations in lake water δ 18O from Lateglacial and early Holocene sediments from Rotsee (Switzerland). A sediment core from the former littoral zone of the lake was examined since it contained both high concentrations of chironomid remains and abundant authigenic carbonates and therefore allowed a direct comparison of chironomid δ 18O with values measured on bulk carbonates. Since carbonate particles adhering to chironomid remains potentially affect 18O measurements we tested two methods to chemically remove residual carbonates. Trials with isotopically heavy and light acid solutions indicated that treatment with hydrochloric acid promoted oxygen exchange between chironomid remains and the water used during pretreatment. In contrast, a buffered 2 M ammonium chloride (NH 4Cl) solution did not seem to affect chironomid δ 18O to a significant extent. Fossil chironomid δ 18O was analyzed for the Rotsee record both using standard palaeoecological methods and after pretreatment with NH 4Cl. Samples prepared using standard techniques showed a poor correlation with δ 18O of bulk carbonate ( r2 = 0.14) suggesting that carbonate contamination of the chironomid samples obscured the chironomid δ 18O signature. Samples pretreated with NH 4Cl correlated well with bulk carbonate δ 18O ( r2 = 0.67) and successfully tracked the well-known Lateglacial changes in δ 18O. Chironomid δ 18O indicated depleted lake water δ 18O during the Oldest Dryas period, the Aegelsee and Gerzensee Oscillations, and the Younger Dryas, whereas enriched δ 18O values were associated with sediments deposited during the Lateglacial interstadial and the early Holocene. Differences in the amplitude of variations in bulk carbonate and chironomid δ 18O are attributed to differential temperature effects on oxygen isotope fractionation during the formation of carbonates and

  13. Predicting animal δ18O: Accounting for diet and physiological adaptation

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.

    1996-12-01

    Theoretical predictions and measured isotope variations indicate that diet and physiological adaptation have a significant impact on animals δ18O and cannot be ignored. A generalized model is therefore developed for the prediction of animal body water and phosphate δ18O to incorporate these factors quantitatively. Application of the model reproduces most published compositions and compositional trends for mammals and birds. A moderate dependence of animal δ18O on humidity is predicted for drought-tolerant animals, and the correlation between humidity and North American deer bone composition as corrected for local meteoric water is predicted within the scatter of the data. In contrast to an observed strong correlation between kangaroo δ18O and humidity (Δδ18O/Δh ∼ 2.5± 0.4‰/10%r.h.), the predicted humidity dependence is only 1.3 - 1.7‰/10% r.h., and it is inferred that drinking water in hot dry areas of Australia is enriched in 18O over rainwater. Differences in physiology and water turnover readily explain the observed differences in δ18O for several herbivore genera in East Africa, excepting antelopes. Antelope models are more sensitive to biological fractionations, and adjustments to the flux of transcutaneous water vapor within experimentally measured ranges allows their δ18O values to be matched. Models of the seasonal changes of forage composition for two regions with dissimilar climates show that significant seasonal variations in animal isotope composition are expected, and that animals with different physiologies and diets track climate differently. Analysis of different genera with disparate sensitivities to surface water and humidity will allow the most accurate quantification of past climate changes.

  14. A conceptual model for interpreting δ18O and δD biomarker records from terrestrial archives

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Tuthorn, Mario; Detsch, Florian; Rozanski, Kazimierz; Zech, Roland; Zöller, Ludwig; Zech, Wolfgang; Glaser, Bruno

    2013-04-01

    The natural abundances of stable oxygen (18O/16O) and hydrogen isotopes (D/H) are valuable proxies for reconstructing paleoclimate history on global as well as on regional scale. While stable isotope analyses of sedimentary leaf wax-derived n-alkanes enables establishing δD biomarker records, we recently developed a method based on compound-specific δ18O analyses of hemicellulose sugars (Zech and Glaser, 2009), which now additionally allows establishing δ18O biomarker records from soil/sedimentary organic matter of terrestrial archives. Here we present a conceptual model for interpreting combined δ18O and δD biomarker records (Zech et al., submitted). Based on this model, we suggest that both δ18O and δD biomarker records primarily reflect the isotopic composition of paleoprecipitation modified by evaporative isotope enrichment of leaf water during transpiration. Considering biosynthetic fractionation factors allows reconstructing from combined δ18O and δD biomarker records the leaf water isotopic composition and the deuterium excess of the leaf water. The deuterium excess may serve as proxy for evaporative enrichment and allows reconstructing relative humidity using a Craig-Gordon model. Furthermore, the model allows calculating δ18O of the plant source water (δ18Osource water), which can be assumed to primarily reflect δ18O of paleoprecipitation. Hence, paleoclimatic conclusions in terms of temperature can be drawn in high latitude study areas and precipitation amount can be reconstructed in monsoon regions. Zech, M., Glaser, B., 2009. Compound-specific δ18O analyses of neutral sugars in soils using GC-Py-IRMS: problems, possible solutions and a first application. Rapid Commun. Mass Spectrom. 23, 3522-3532. Zech et al., 2013. A 220 ka terrestrial δ18O and deuterium excess biomarker record from an eolian permafrost paleosol sequence, NE-Siberia. Submitted to Chemical Geology.

  15. Evolution of low-18O Icelandic crust

    NASA Astrophysics Data System (ADS)

    Pope, Emily C.; Bird, Dennis K.; Arnórsson, Stefán

    2013-07-01

    The Krafla central volcano in the neovolcanic zone of Iceland hosts a chemically diverse suite of magmas characterized by anomalously low δ18O values. A rhyolite magma intercepted by the Iceland Deep Drilling Project (IDDP) exploratory well at 2.1 km depth provided a unique opportunity to investigate the origins of an unerupted rhyolite melt in the primarily basaltic central volcano at Krafla. Here we compare whole rock hydrogen and oxygen isotopes of this melt to those of lavas within and near the caldera of the Krafla central volcano ranging from recent fissure eruptions to Plio--Pleistocene age (including analyses of 18 new samples, plus previously published values) in order to evaluate the petrogenesis of low-18O magmas within the neovolcanic zone of Iceland. Oxygen isotope values of the IDDP-1 melt (δ18O=+3.2±0.2‰) are within the range of Krafla eruptives that have a bimodal composition of olivine-tholeiite and rhyolite (δ18O=+1.6‰ to +4.5‰). Lavas show significantly more variability in hydrogen isotope values (δD=-161‰ to -92‰) than the IDDP-1 melt (-121±2‰), whose δD is comparable to local hydrothermal epidote (-127 to -108‰), and show significantly lower water contents than IDDP-1 (0.1-1.1 wt%, in contrast to ~1.8 wt%). Basaltic to dacitic lavas from the proximal Heidarspordur ridge volcanic zone have δ18O between +3.4‰ and +4.2‰ and δD between -105‰ and -99‰. Uniformity of oxygen isotopes in the Heidarspordur ridge lavas suggests that their magmatic compositional variations are a consequence of fractional crystallization. The δD of the glass sampled by IDDP-1 unequivocally identifies the source of silicic low-18O melts like those erupted from within the caldera of the Krafla volcano as anatexis of meteoric-hydrothermally altered basalts resulting from the intrusion of mantle-derived basaltic magma. Finally, mantle-derived basalts in both the Krafla central volcano and Heidarspordur ridge (MgO>5 wt%) have δ18O values lower

  16. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    PubMed

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J

    2016-02-02

    Determination of the (182)W/(184)W ratio to a precision of ± 5 ppm (2σ) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2σ, 1-3 μg loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2σm) for loads between 3000 and 50 ng.

  17. δ18O analysis of individual carbohydrates - a new method for GC-pyrolysis-IRMS

    NASA Astrophysics Data System (ADS)

    Lehmann, Marco M.; Fischer, Maria; Zech, Michael; Siegwolf, Rolf T. W.; Saurer, Matthias

    2015-04-01

    Measuring the oxygen isotopic composition (δ18O) of various plant tissues is a widely used tool to investigate biochemical and physiological processes. While we have a good understanding about the hydrological cycle in plants with an evaporative enrichment in 18O in leaf water, we still lack knowledge about the biochemical link between the oxygen atoms in leaf water, leaf assimilates, and stem cellulose and associated isotope fractionations. Especially, the influence of different environmental factors on δ18O of individual carbohydrates (i.e. sugars) and thus on δ18O of cellulose is not fully resolved. A better understanding of these processes may improve climatic reconstructions of tree-ring studies about past environmental conditions. However, further progress in this topic is limited since a precise and reliable method to determine δ18O of individual sugars has not been available yet. With our new approach we attempt to overcome this issue by establishing a new methylation derivatization method suitable for GC-pyrolysis -IRMS. A methyl group (CH3) was thereby added to all hydroxyl groups of a sugar (e.g., glucose, fructose, and sucrose) during a catalyzed one-pot reaction overnight in acetonitrile with methyl iodide (CH3-I) and silver oxide, making them amenable for GC analysis. First results show a very good precision for δ18O of sucrose, but also δ18O of other high-abundant sugars such as glucose and fructose could be measured for the first time. We successfully analyzed a standard mix of all three sugars and determined various other carbohydrates not only related to plant sciences (e.g. mannitol, lactose), showing promising δ18O results. First tests with real plant samples were performed to make this method available for determining δ18O of individual carbohydrates of diverse plant tissues. In future, this new methylation derivatization method should allow us analyzing plant samples of different field sites and of lab experiments to investigate the

  18. Improving stable carbon and oxygen isotope geochemical measurements in dolomite: reference material and acid fractionation factor

    NASA Astrophysics Data System (ADS)

    Vandeginste, V.; John, C. M.; Jourdan, A.; Davis, S.

    2010-12-01

    The analysis of stable carbon and oxygen isotope composition is one of the most commonly used techniques in stratigraphic and diagenetic research of carbonate rocks. The wide-spread use and easy access of this long-established method has the side effect that little attention is paid to fundamental calibrations. Dolomite is often measured against a calcite standard (NBS19), and the acid fractionation factor used to calibrate is based on the one for calcite. To date, no reference material exists for dolomite. In this study, which is part of dolomite research in the Qatar Carbonates and Carbon Storage Research Centre project, we focus on two main goals. First, we characterize a current standard of dolomite used for major and minor elemental geochemistry, and assess its suitability as a new dolomite standard for δ18O and δ13C. Second, we attempt to better constrain the acid fractionation factor for dolomite and assess the influence of different dolomite types on this fractionation factor. As only two third of the total oxygen in the carbonate is released in the form of CO2 during acid reaction, a fractionation between the reacting carbonate and the resulting gas will occur. A recent study by Kim et al. (2007) improved on the acid fractionation factors for calcite and aragonite. Often, the acid fractionation factor for dolomite is used to calculate δ18O and δ13C from the values obtained by calibration with the calcite standard. Only two studies (from the 1980’s) have attempted to constrain the acid fractionation factor for dolomite, of which only Rosenbaum and Sheppard (1986) did experiments not only at 25°C, but also at 50 and 100°C. The dataset of the latter authors is, however, very limited and contains only two dolomite samples. We aim at improving the constraints on the acid fractionation factor of dolomite by reacting a wide range of different types of dolomite at a wide range of acid temperature, and compare this to the absolute isotopic composition of

  19. Determination of δ18O and δ15N in Nitrate

    USGS Publications Warehouse

    Revesz, K.; Böhlke, J.K.; Yoshinari, T.

    1997-01-01

    The analyses of both O and N isotopic compositions of nitrate have many potential applications in studies of nitrate sources and reactions in hydrology, oceanography, and atmospheric chemistry, but simple and precise methods for these analyses have yet to be developed. Testing of a new method involving reaction of potassium nitrate with catalyzed graphite (C + Pd + Au) at 520 °C resulted in quantitative recovery of N and O from nitrate as free CO2, K2CO3, and N2. The δ18O values of nitrate reference materials were obtained by analyzing both the CO2 and K2CO3 from catalyzed graphite combustion. Provisional values of δ18OVSMOW for the internationally distributed KNO3 reference materials IAEA-N3 and USGS-32 were both equal to +22.7 ± 0.5‰. Because the fraction of free CO2 and the isotopic fractionation factor between CO2 and K2CO3 were constant in the combustion products, the δ18O value of KNO3 could be calculated from measurements of the δ18O of free CO2. Thus, δ18OKNO3 = aδ18Ofree CO2 − b, where a and b were equal to 0.9967 and 3.3, respectively, for the specific conditions of the experiments. The catalyzed graphite combustion method can be used to determine δ18O of KNO3 from measurements of δ18O of free CO2 with reproducibility on the order of ±0.2‰ or better if local reference materials are prepared and analyzed with the samples. Reproducibility of δ15N was ±0.1‰ after trace amounts of CO were removed.

  20. δ18O anchoring to VPDB: calcite digestion with 18O-adjusted ortho-phosphoric acid.

    PubMed

    Wendeberg, Magnus; Richter, Jürgen M; Rothe, Michael; Brand, Willi A

    2011-04-15

    For anchoring CO(2) isotopic measurements on the δ(18)O(VPD-CO2) scale, the primary reference material (NBS 19 calcite) needs to be digested using concentrated ortho-phosphoric acid. During this procedure, great care must be taken to ensure that the isotopic composition of the liberated gas is accurate. Apart from controlling the reaction temperature to ±0.1 °C, the potential for oxygen isotope exchange between the produced CO(2) and water must be kept to a minimum. The water is usually assumed to reside on the walls in the headspace of the reaction vessel. We demonstrate here that a large fraction of the exchange may also occur with water inside the acid. Our results indicate that both exchange reactions have a significant impact on the results and may have largely been responsible for scale inconsistencies between laboratories in the past. The extent of CO(2)/H(2)O oxygen exchange depends on the concentration (amount of free water) in the acid. For acids with a nominal H(3)PO(4) mass fraction of less than 102%, oxygen isotope exchange can create a substantial isotopic bias during high-precision measurements with the degree of the alteration being proportional to the effective isotopic contrast between the acid and the CO(2) released from the calcite. Water evaporating from the acid at 25 °C has a δ(18)O value of -34.5‰ relative to the isotopic composition of the whole acid. This large fractionation is likely to occur in two steps; by exchange with phosphate, water inside the acid is decreased in oxygen-18 relative to the bulk acid by ∼ -22‰. This water is then fractionated further during evaporation. Oxygen exchange with both water inside the acid and water condensate in the headspace can contribute to the measured isotopic signature depending on the experimental parameters. The system employed for this study has been specifically designed to minimize oxygen exchange with water. However, the amount of altered CO(2) for a 95% H(3)PO(4) at 25 °C still

  1. Modeling Interannual Variability of δ^1^8O of Atmospheric CO2 and its Dependence on Humidity and Isotope Hydrology

    NASA Astrophysics Data System (ADS)

    Buenning, N. H.; Noone, D. C.; Still, C. J.; Riley, W. J.; Randerson, J. T.; Welp, L. R.; White, J. W.; Vaughn, B.; Miller, J. B.; Tans, P. P.

    2006-12-01

    Measurements of the δ^1^8O value of CO2 at the NOAA/ESRL baseline observatories showed a gradual downward trend from the early 1990s until 1997. The cause of this trend is not well understood, although it is likely due to a change in the isotopic composition of the terrestrial water pools with which CO2 interacts during photosynthesis and respiration, particularly in the tropics, where the largest isotope forcing occurs. There are a number of factors that affect the isotopic composition of soil and leaf water, however, studies have indicated that relative humidity has a strong impact on the water pools. Humidity records at several stations in Southeast Asia show an upward trend during the 1990s, which is consistent with the expected trend in the δ^1^8O value of atmospheric CO2. While an increase in humidity would increase stomatal conductance and in turn increase biospheric productivity, it also will allow leaves to take in more of the isotopically light water vapor, causing the leaf water to become less enriched with ^1^8O isotope. Using the isotopic version of the NCAR Land Surface Model (ISOLSM) and Community Atmosphere Model (CAM), the interannual variability of simulated δ^1^8O of CO2 were examined from 1979 to 2002. ISOLSM was forced with interannually varying meteorological data from the NCEP reanalysis. Computed fluxes from ISOLSM for each month of the 24-year simulation were used in CAM to simulate the seasonal cycle and trends in δ^1^8O values of CO2. Experiments were constructed to determine the impact on interannual variability in the δ^1^8O value of CO2 of humidity, δ^1^8O of precipitation, and δ^1^8O of water vapor. To demonstrate the affect of humidity, two experiments were constructed whereby relative humidity (1) is gradually increased by 0.5% per year from 1990 to 1997 (as is seen in some of the humidity records in Southeast Asia during the early 1990s yet this trend does not appear in the NCEP Reanalysis) and (2) assigned long-term monthly

  2. The CW-CRDS spectra of the 16O/18O isotopologues of ozone between 5930 and 6340 cm-1—Part 3: 16O18O18O and 18O16O18O

    NASA Astrophysics Data System (ADS)

    De Backer, M.-R.; Barbe, A.; Starikova, E.; Tyuterev, Vl. G.; Mondelain, D.; Kassi, S.; Campargue, A.

    2013-09-01

    Our systematic investigation of the high sensitivity CW-Cavity Ring Down Spectra of 16O/18O ozone isotopologues at high vibrational excitation continues with the study of the 16O18O18O and 18O16O18O species. The first two papers of this series were devoted to the analysis of the same four bands of the 16O16O18O and 16O18O16O species in the 5930-6340 cm-1domain. Here, after a brief reminder of relevant experiment and theory, we report the analyses of two bands of 16O18O18O, vibrationally assigned as 2ν2+5ν3 and 2ν1+2ν2+3ν3_2 and three bands of 18O16O18O, assigned to 2ν1+2ν2+3ν3_1, 5ν1+ν3 and 3ν1+ν2+3ν3.They correspond to the highest vibration excitations observed so far for the 16O18O18O and 18O16O18O isotopologues. Altogether for the two new bands of 16O18O18O, 1214 rovibrational transitions were assigned up to Jmax=29 and for the three new bands of 18O16O18O, 948 rovibrational transitions were assigned up to Jmax=27. Observed line positions were fitted with root-mean squares deviations ranging from 0.005 to 0.011 cm-1, using effective Hamiltonian models accounting for dark state perturbations. The derived band centres and rotational constants are in good agreement with new theoretical calculations from the molecular potential function. The corresponding lists of 3365 lines are provided as Supplementary material.

  3. Variations of 18O/ 16O in plants from temperate peat bogs (Switzerland): implications for paleoclimatic studies

    NASA Astrophysics Data System (ADS)

    Ménot-Combes, Guillemette; Burns, Stephen J.; Leuenberger, Markus

    2002-09-01

    in surface water samples. Some species, the cotton sedge Eriophorum vaginatum and the moss Sphagnum capillifolium, show statistically significant δ 18O relationships to an altitude of -1.8‰/km and -2.9‰/km respectively. However, some other plant species, Calluna vulgaris, Vaccinium uliginosum, Andromeda poliflora, Carex pauciflora, Sphagnum cuspidatum and Sphagnum magellanicum, do not, or only partially, reflect changes in climatic parameters associated with an altitude increase. Furthermore, changes in relative humidity, which are not correlated with altitude, are found to explain a large part of the variability in δ 18O-values for the sedge Carex pauciflora and the moss Sphagnum cuspidatum. Therefore, this study confirms the importance of species-specific studies when interpreting 18O/ 16O ratios of macrofossils along a fossil peat sequence as a record of past climate changes. Our study allows to extend the mechanistic model that isotopically links source water and cellulose to the physiological specificities of sedges and mosses. A comparison of the modeled and calculated net biological fractionation factors for Eriophorum vaginatum and Sphagnum capillifolium reveals that these two species appear to have a more homogeneous leaf reservoir than trees.

  4. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, radOH, and H2O and its implications for isotope variations in atmospheric nitrate

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-10-01

    The oxygen stable isotope composition (δ18O) of nitrogen oxides [NOx = nitric oxide (NO) + nitrogen dioxide (NO2)] and their oxidation products (NOy = NOx + nitric acid (HNO3) + particulate nitrate (p-NO3-) + nitrate radical (NO3) + dinitrogen pentoxide (N2O5) + nitrous acid (HONO) + …) have been shown to be a useful tool for inferring the proportion of NOx that is oxidized by ozone (O3). However, isotopic fractionation processes may have an influence on δ18O of various NOy molecules and other atmospheric O-bearing molecules pertinent to NOx oxidation chemistry. Here we have evaluated the impacts of O isotopic exchange involving NOy molecules, the hydroxyl radical (radOH), and water (H2O) using reduced partition function ratios (xβ) calculated by hybrid density functional theory. Assuming atmospheric isotopic equilibrium is achieved between NO and NO2 during the daytime, and NO2, NO3, and N2O5 during the nighttime, δ18O-δ15N compositions were predicted for the major atmospheric nitrate formation pathways using our calculated exchange fractionation factors and isotopic mass-balance. Our equilibrium model predicts that various atmospheric nitrate formation pathways, including NO2 + radOH → HNO3, N2O5 + H2O + surface → 2HNO3, and NO3 + R → HNO3 + Rrad will yield distinctive δ18O-δ15N compositions. Our calculated δ18O-δ15N compositions match well with previous atmospheric nitrate measurements, and will potentially help better understand the role oxidation chemistry plays on the N and O isotopic composition of atmospheric nitrate.

  5. Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration

    USGS Publications Warehouse

    Böhlke, J.K.; Mroczkowski, S.J.; Coplen, T.B.

    2003-01-01

    Despite a rapidly growing literature on analytical methods and field applications of O isotope-ratio measurements of NO3- in environmental studies, there is evidence that the reported data may not be comparable because reference materials with widely varying ?? 18O values have not been readily available. To address this problem, we prepared large quantities of two nitrate salts with contrasting O isotopic compositions for distribution as reference materials for O isotope-ratio measurements: USGS34 (KNO3) with low ??18O and USGS35 (NaNO3) with high ??18O and 'mass-independent' ??17O. The procedure used to produce USGS34 involved equilibration of HNO3 with 18O-depleted meteoric water. Nitric acid equilibration is proposed as a simple method for producing laboratory NO3- reference materials with a range of ??18O values and normal (mass-dependent) 18O: 17O:16O variation. Preliminary data indicate that the equilibrium O isotope-fractionation factor (??) between [NO 3-] and H2O decreases with increasing temperature from 1.0215 at 22??C to 1.0131 at 100??C. USGS35 was purified from the nitrate ore deposits of the Atacama Desert in Chile and has a high 17O:18O ratio owing to its atmospheric origin. These new reference materials, combined with previously distributed NO3- isotopic reference materials IAEA-N3 (=IAEA-NO-3) and USGS32, can be used to calibrate local laboratory reference materials for determining offset values, scale factors, and mass-independent effects on N and O isotope-ratio measurements in a wide variety of environmental NO 3- samples. Preliminary analyses yield the following results (normalized with respect to VSMOW and SLAP, with reproducibilities of ??0.2-0.3???, 1??): IAEA-N3 has ??18O = +25.6??? and ??17O = +13.2??? USGS32 has ?? 18O = +25.7??? USGS34 has ??18O = -27. 9??? and ??17O = -14.8??? and USGS35 has ?? 18O = +57.5??? and ??17O = +51.5???.

  6. Simulating speleothem growth in the laboratory: Determination of stable isotope fractionation factors during precipitation of speleothem calcite

    NASA Astrophysics Data System (ADS)

    Hansen, Maximilian; Schöne, Bernd R.; Spötl, Christoph; Scholz, Denis

    2016-04-01

    We present laboratory experiments aiming to understand the processes affecting the δ13C and δ18O values of speleothems during precipitation of calcite from a thin layer of solution. In particular, we determined the precipitation rates and the isotope fractionation factors in dependence of several parameters, such as temperature, cave pCO2 and supersaturation with respect to calcite. The experiments were performed in a climate box in order to simulate cave conditions and to control them during the experiments[1]. In the experiments, a thin film of a CaCO3-CO2-H2O-solution supersaturated with respect to calcite flew down an inclined marble surface or a sand-blasted borosilicate glass plate, and the drip water was sampled at different distances and, thus, residence times on the plate. Subsequently, pH, electrical conductivity and the δ13C and δ18O values of the dissolved inorganic carbon (DIC) as well as the precipitated CaCO3 were determined. In addition, we determined the stable isotope values of the drip water and the atmosphere inside the box during the experiments. This enabled the identification of carbon and oxygen isotope fractionation factors between all carbonate species. The experiments were conducted at 10, 20 and 30 ° C, a pCO2 of 1000 and 3000 ppmV and with a Ca2+ concentration of 2 and 5 mmol/l. We observed an exponential decay of conductivity with increasing distance of flow documenting progressive precipitation of calcite confirming previous observations[2]. The corresponding time constants of precipitation range from 180 to 660 s. Both the δ13C and δ18O values show a progressive increase along the flow path. The enrichment of the δ13C values seems to be strongly influenced by kinetic isotope fractionation, whereas the δ18O values are in the range of isotopic equilibrium. The fractionation between the precipitated CaCO3 and DIC is between -1 and - 6.5 ‰ for carbon isotopes (13ɛ) and between -1.5 and -3 ‰ for oxygen isotopes (18ɛ). The

  7. The role of soil processes in δ18O terrestrial climate proxies

    NASA Astrophysics Data System (ADS)

    Kanner, Lisa C.; Buenning, Nikolaus H.; Stott, Lowell D.; Timmermann, Axel; Noone, David

    2014-03-01

    A paleoclimate interpretation of a terrestrial hydrologic proxy such as the δ18O of tree cellulose or speleothem calcite may be biased or misinterpreted if the isotopic composition of the soil water from which the proxy originated undergoes isotopic exchange or fractionation. In this study, we use a global isotope-enabled land surface model to investigate how the δ18O of precipitation may be altered in a soil column due to evaporation and vertical moisture transport. In order to assess how precipitation and evaporation contribute to the soil water isotopic variability, we compare seasonal and interannual changes in simulated xylem water δ18O within a control simulation and in a suite of sensitivity experiments where the effects of precipitation δ18O, water vapor δ18O, and soil water evaporation are independently removed. The simulations, carried out for the period 1979 to 2004, reveal that in semiarid regions, such as the southwest United States, the seasonal cycle in xylem water δ18O is strongly affected by evaporative loss during the dry season and evaporation can also constitute as much as 50% of the interannual δ18O variance. Additional simulations, including soil water tagging experiments, indicate that upward fluxes of soil water occur during drier periods. For soil water δ18O profiles that are isotopically more depleted in 18O at depth, this imparts a low isotopic signature to xylem water δ18O during such dry intervals. Hence, without taking into account vertical moisture transport in the soils, low δ18O years could be misinterpreted as wet conditions (due to decreased evaporative enrichment) when instead drier conditions are equally as likely.

  8. Theoretical prediction for several important equilibrium Ge isotope fractionation factors

    NASA Astrophysics Data System (ADS)

    Tang, M.; Li, X.; Liu, Y.

    2008-12-01

    As a newly emerging field, the stable isotope geochemistry of germanium (Ge) needs basic equilibrium fractionation factors to explore its unknown world. In this study, the Ge isotope fractionations between systems including the aqueous Ge(OH)4 and GeO(OH)3- which are the dominant Ge species in seawater, the Ge-bearing organic complexes (e.g. Ge-catechol, Ge-oxalic acid and Ge-citric acid), the quartz- (or opal- ), albite-, K-feldspar- and olivine- like mineral structures are studied. It is the first time that some geologically important equilibrium Ge isotope fractionation factors are reported. Surprisingly, up to 5 per mil large isotopic fractionations between these Ge isotope systems are found at 25 degree. These results suggest a potentially broad application for the Ge isotope geochemistry. Our theoretical calculations are based on the Urey model (or Bigeleisen-Mayer equation) and high level quantum chemistry calculations. The B3LYP/6-311+G(d,p) level quantum chemistry method and the explicit solvent model ("water droplet" method) are used. Many different conformers are also used for the aqueous complexes in order to reduce the possible errors coming from the differences of configurations in solution. The accuracy of our calculation of the Ge isotopic fractionations is estimated about 0.2 per mil. Our results show quartz-like or opal-like structure can enrich most heavy Ge isotopes. Relative to quartz (or opal), some Ge isotopic fractionations are (at 25 C): quartz-organic Ge = 4-5,quartz-Ge(OH)4 =0.9,quartz-GeO(OH)3- =1.5,quartz-albite=0.6,quartz-K-feldspar=0.4 and quartz-olivine=3.9 per mil. The large fractionations between inorganic Ge complexes and organic Ge ones could be used to distinguish the possible bio-involving processes. Our results suggest a good explanation to the experimental observations of Siebert et al. (2006) and Rouxel et al. (2006) and provide important constraints to the study of Ge cycle in ocean.

  9. Iron isotopic fractionation factor between magnetite and hydrous silicic melt

    NASA Astrophysics Data System (ADS)

    Huang, F.; Lundstrom, C. C.

    2006-12-01

    A "thermal migration" experiment was conducted in the piston cylinder to investigate the changes in composition of a wet andesitic bulk composition in a temperature gradient at 0.5 GPa. A homogeneous andesite powder (AGV-1 containing 4 wt.% H2O was sealed in a AuPd double capsule with the hot end at 950°C and the bottom end 350°C for 66 days. The charge changes from 100% melt at the top to the progressively more crystalline with the sequential appearance of apatite, magnetite, amphibole, biotite, plagioclase, quartz, and K-feldspar. We microdrilled 5 samples along the temperature gradient and analyzed these for Fe isotope ratios by double spike MC-ICP-MS at UIUC. Results show that the 100% melt area is depleted in heavy Fe isotopes relative to all more crystalline portions of the experiment (4 samples) with the offset in {δ}^{56/54}FeIRMM of about 1.7‰. This does not appear to reflect Fe loss in the experiment as the Fe content and isotopes mass balance and no detectable Fe was found in the capsule after the experiment. Instead the offset is interpreted to reflect the combination of diffusive fractionation of Fe moving by diffusion and possible equilibrium fractionations between melt and magnetite that occurs throughout the crystalline portion of the experiment. However, both the isotopic fractionation factor between magnetite and melt and the effect of diffusion on Fe isotopes remains unknown. We are currently investigating Fe isotopic fractionation factor between magnetite and melt and effects of melt diffusion on Fe isotopes. To assess diffusion, we will microdrill and analyze melt-melt diffusion couples from Lundstrom(G-Cubed, 2003). To assess magnetite-melt fractionation, we have begun piston cylinder experiments at 0.5 GPa and 800°C using a starting material synthesized based on the melt composition within the thermal migration experiment. Initial experiments produce a layer of 100% melt on top of a 2-phase mush of magnetite-melt. This will allow

  10. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber experiment

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Mayr, Christoph; Tuthorn, Mario; Leiber-Sauheitl, Katharina; Glaser, Bruno

    2014-02-01

    enrichment of leaf water. Finally, we present a conceptual model for the interpretation of δ18Ohemicellulose records and propose that a combined δ18Ohemicellulose and δ2Hn-alkane biomarker approach is promising for disentangling δ18Oprecipitation variability from evapotranspirative 18O enrichment variability in future paleoclimate studies. One major factor influencing δ18Ohemicellulose is the oxygen isotopic composition of the plant source water (Fig. 4). Basically, it depends on δ18Oprecipitation which can vary over time due to temperature, amount and/or source effects (Dansgaard, 1964; Rozanski et al., 1993; Araguas-Araguas et al., 2000). While it is generally accepted that the uptake of water by roots is not associated with a 18O fractionation (Wershaw et al., 1966; Dawson et al., 2002), other factors may need careful consideration. For instance, the uptake of ground water depleted in 18O by deep rooting plants versus uptake of soil water enriched in 18O by evaporation (Fig. 4), seasonality of δ18Oprecipitation (growing season) (see also our companion study presented by Tuthorn et al., 2014) or uptake of permafrost meltwater (Sugimoto et al., 2002). A second major influencing factor is evapotranspirative 18O enrichment of leaf water (Fig. 4). It is most rigorously controlled by relative air humidity (Fig. 3A), whereas the direct physical effect of temperature on evapotranspirative 18O enrichment is much smaller (Fig. 3B). However, temperature can indirectly exert influence via plant physiological reactions, namely by affecting the transpiration rate which strongly controls δ18Oleaf water due to the Péclet effect at least under very arid climatic conditions (Fig. 3C). While this effect is highlighted in the here presented climate chamber study with an automatic irrigation system, the relevance of the temperature and the Péclet effect in paleoclimate studies where water supply is actually often limited is presumably considerably lower than the relevance of

  11. Age differences between Atlantic and Pacific benthic d18O change at terminations

    NASA Astrophysics Data System (ADS)

    Lisiecki, L. E.; Raymo, M. E.

    2007-12-01

    Because a large fraction of benthic δ18O change is due to global ice volume change, benthic δ18O is often used as stratigraphic tool to place marine records on a common age model and as a proxy for the timing of ice volume/sea level change. These applications require the assumptions that δ18O change is rapidly transmitted throughout the deep ocean and that the effects of hydrographic changes are in phase with ice volume. Recently, Skinner and Shackleton [2005] found that the timing of benthic δ18O change at the last termination differed by 4500 years between two sites in the Atlantic and Pacific. Based on Mg/Ca paleothermometry, they argued that these age discrepancies resulted from a late temperature increase in the Pacific and millennial-scale circulation changes in the Atlantic. Do these results imply that benthic δ18O change may not accurately record the timing of terminations? We compare benthic δ18O records from 34 sites in the Atlantic and Pacific to evaluate the impact of ocean mixing rates and deep water changes on the relative timing of terminations recorded in benthic δ18O. Statistical analysis of sedimentation rates derived from the alignment of benthic δ18O suggests an Atlantic lead over Pacific benthic δ18O change for all terminations of the last 600 kyr. The magnitude of sedimentation rate change suggests an average termination age difference of 1000-1500 years between the Atlantic and Pacific, consistent with or slightly greater than the delay expected due to ocean mixing rates, given that most glacial meltwater probably enters the North Atlantic.

  12. Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New Hampshire, USA

    USGS Publications Warehouse

    Pardo, Linda H.; Kendall, Carol; Pett-Ridge, Jennifer; Chang, Cecily C.Y.

    2004-01-01

    The natural abundance of nitrogen and oxygen isotopes in nitrate can be a powerful tool for identifying the source of nitrate in streamwater in forested watersheds, because the two main sources of nitrate, atmospheric deposition and microbial nitrification, have distinct δ18O values. Using a simple mixing model, we estimated the relative fractions in streamwater derived from these sources for two forested watersheds with markedly different streamwater nitrate outputs. In this study, we monitored δ15N and δ18O of nitrate biweekly in atmospheric deposition and in streamwater for 20 months at the Hubbard Brook Experimental Forest, New Hampshire, USA (moderate nitrogen export), and monthly in streamwater at the Bowl Research Natural Area, New Hampshire, USA (high nitrogen export). For rain, δ18O values ranged from +47 to +77‰ (mean: +58‰) and δ15N from −5 to +1‰ (mean: −3‰); for snow, δ18O values ranged from +52 to +75‰ (mean: +67‰) and δ15N from −3 to +2‰ (mean: −1‰). Streamwater nitrate, in contrast to deposition, had δ18O values between +12 and +33‰ (mean: +18‰) and δ15N between −3 and +6‰ (mean: 0‰). Since nitrate produced by nitrification typically has δ18O values ranging from −5 to +15‰, our field data suggest that most of the nitrate lost from the watersheds in streamflow was nitrified within the catchment. Our results confirm the importance of microbial nitrogen transformations in regulating nitrogen losses from forested ecosystems and suggest that hydrologic storage may be a factor in controlling catchment nitrate losses.

  13. Measurements of 18O18O and 17O18O in the atmosphere and the role of isotope-exchange reactions

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.; Young, Edward D.; Schauble, Edwin A.

    2012-09-01

    Of the six stable isotopic variants of O2, only three are measured routinely. Observations of natural variations in 16O18O/16O16O and 16O17O/16O16O ratios have led to insights in atmospheric, oceanographic, and paleoclimate research. Complementary measurements of the exceedingly rare 18O18O and 17O18O isotopic variants might therefore broaden our understanding of oxygen cycling. Here we describe a method to measure natural variations in these multiply substituted isotopologues of O2. Its accuracy is demonstrated by measuring isotopic effects for Knudsen diffusion and O2 electrolysis in the laboratory that are consistent with theoretical predictions. We then report the first measurements of 18O18O and 17O18O proportions relative to the stochastic distribution of isotopes (i.e., Δ36 and Δ35 values, respectively) in tropospheric air. Measured enrichments in 18O18O and 17O18O yield Δ36 = 2.05 ± 0.24‰ and Δ35 = 1.4 ± 0.5‰ (2σ). Based on the results of our electrolysis experiment, we suggest that autocatalytic O(3P) + O2 isotope exchange reactions play an important role in regulating the distribution of 18O18O and 17O18O in air. We constructed a box model of the atmosphere and biosphere that includes the effects of these isotope exchange reactions, and we find that the biosphere exerts only a minor influence on atmospheric Δ36 and Δ35 values. O(3P) + O2 isotope exchange in the stratosphere and troposphere is therefore expected to govern atmospheric Δ36 and Δ35 values on decadal timescales. These results suggest that the `clumped' isotopic composition of atmospheric O2in ice core records is sensitive to past variations in atmospheric dynamics and free-radical chemistry.

  14. O18O and C18O observations of ρ Ophiuchi A

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Larsson, B.; Bergman, P.; Pagani, L.; Black, J. H.; Hjalmarson, Å.; Justtanont, K.

    2010-02-01

    Context. Contrary to theoretical expectation, surprisingly low concentrations of molecular oxygen, O2, have been found in the interstellar medium. Telluric absorption makes ground based O2 observations essentially impossible and observations had to be done from space. Millimetre-wave telescopes on space platforms were necessarily small, which resulted in large, several arcminutes wide, beam patterns. Observations of the (NJ = 11-10) ground state transition of O2 with the Odin satellite resulted in a ≳ 5σ detection toward the dense core ρ {Oph A}. At the frequency of the line, 119 GHz, the Odin telescope has a beam width of 10', larger than the size of the dense core. Aims: The precise nature of the emitting source and its exact location and extent are therefore unknown. The current investigation is intended to remedy this. Methods: Although the Earth's atmosphere is entirely opaque to low-lying O2 transitions, it allows ground based observations of the much rarer 16O18O in favourable conditions and at much higher angular resolution with larger telescopes. In addition, ρ {Oph A} exhibits both multiple radial velocity systems and considerable velocity gradients. Extensive mapping of the region in the proxy C18O (J = 3-2) line can be expected to help identify the O2 source on the basis of its line shape and Doppler velocity. Line opacities were determined from observations of optically thin 13C18O (J = 3-2). During several observing periods, two C18O intensity maxima in ρ {Oph A} were searched for O18O in the (21-01) line at 234 GHz with the 12 m APEX telescope. These positions are associated also with peaks in the mm-continuum emission from dust. Results: Our observations resulted in an upper limit on the integrated O18O intensity of int T*A d\\upsilon < 0.01 K km s-1 (3 σ) into the 26.6 arcsec beam. Together with the C18O data, this leads to a ratio of N(C18O)/N(O18O) > 16. Combining Odin's O2 with the present O18O observations we infer an O2 abundance 5

  15. Effect of in-stream physicochemical processes on the seasonal variations in δ13C and δ18O values in laminated travertine deposits in a mountain stream channel

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Liu, Zaihua; Sun, Hailong

    2017-04-01

    Travertines are potential archives of continental paleoclimate. Records of stable carbon and oxygen isotopic composition (δ13C and δ18O) in laminated travertine deposits from endogene spring waters show regular cyclic patterns which may be due to seasonal change in climate determinants such as temperature and rainfall. In this study, δ13C and δ18O measurements of three travertine specimens that grew naturally over the eight years, 2004-2011, at upstream, middle and downstream sites in a canal at Baishuitai, SW China, are presented. They exhibit clear seasonal variations that generally correlate with biannual laminations. Specifically, δ13C and δ18O values show significant positive correlation with each other for the three travertine specimens, with the correlation coefficients increasing downstream along the canal. To reveal the factors governing the seasonal and spatial variations in δ13C and δ18O values, newly formed travertines precipitated on Plexiglas substrates are also examined. Both δ13C and δ18O of the substrate travertines are low in the summer/rainy season and high in the winter/dry season, showing a great consistency with the patterns in the natural travertines. Spatially, isotope values increase downstream in both seasons, with higher increase rates in winter that are related to removal of larger fractions of dissolved inorganic carbon (DIC) from the solution and stronger kinetic isotopic fractionation in winter. Due to in-stream physicochemical processes, including CaCO3 precipitation and the associated degassing of CO2, seasonal changes in δ13C and δ18O in the travertines are amplified by two times between the upstream and downstream sites: this is opposite to trends for epigene (meteogene) tufas whose seasonal changes in stable isotope compositions are reduced downstream. We suggest in-stream physicochemical processes are a potential reason for underestimation of annual temperature ranges that are inferred from epigene tufa δ18O data.

  16. The relationship between phytolith- and plant-water δ 18O values in grasses

    NASA Astrophysics Data System (ADS)

    Webb, Elizabeth A.; Longstaffe, Fred J.

    2003-04-01

    Information regarding climatic conditions during plant growth is preserved by the oxygen-isotope composition of biogenic silica (phytoliths) deposited in grasses. The O-isotope compositions of phytoliths and the plant water from which they precipitate are dependent on soil-water δ 18O values, relative humidity, evapotranspiration rates, and temperature. Plant water and phytoliths from two grass species, Ammophila breviligulata (C 3) and Calamovilfa longifolia (C 4) at Pinery Provincial Park in southwestern Ontario, Canada, were examined to determine the variability in their δ 18O values. Stem water was unfractionated from soil-water in oxygen isotopic composition and the δ 18O values of stem silica provide a good proxy for the soil water available to roots during the growing season. Greater spatial and temporal variation in the δ 18O values of water in the top 5 cm of the soil, and their enhanced sensitivity to evaporative 18O enrichment, are reflected in the generally higher δ 18O values of water in the shallow roots and rhizomes of these grasses. Water within the sheath and lower and upper leaf tissues experiences continual evaporation, becoming progressively enriched in 18O as it moves towards the tip of the leaf. However, the water from which leaf silica precipitates has not acquired the extreme 18O enrichment predicted using steady-state models, or measured for midday or average daily leaf water. Possible explanations for this behaviour include preferential deposition of silica at night; the existence of a secluded water fraction within the leaf, which experiences smaller diurnal variations in isotopic composition than leaf water at sites of evaporation; kinetic isotope effects during rapid precipitation of leaf silica; and incomplete exchange between the oxygen in the silicic acid and the leaf water.

  17. Effect of temperature on the oxygen isotope composition of carbon dioxide (δ18O) prepared from carbonate minerals by reaction with polyphosphoric acid: An example of the rhombohedral CaCO 3-MgCO 3 group minerals

    NASA Astrophysics Data System (ADS)

    Crowley, Stephen F.

    2010-11-01

    Measurement of the ratio of 18O to 16O in CO 2(δ18O) produced from rhombohedral carbonate minerals in the compositional range CaCO 3-MgCO 3 by reaction with polyphosphoric acid (PPA), at temperatures of between 25 and 110 °C, shows that values of δ18O are linearly correlated ( r o > 0.99) with the reciprocal of absolute reaction temperature (K/ T). This observation is consistent with earlier studies documenting the effect of temperature on the kinetic fractionation of oxygen isotopes between parent carbonate and product CO 2 and H 2O during acid decomposition. However, analysis of the resultant data reveals: (1) a progressive increase in dδ18O/dT-1 with increasing Mg content, and (2) a significant variation in dδ18O/dT-1 between individual samples of carbonate of identical lattice symmetry and similar chemical composition. The overall increase in gradient with increasing Mg content is assumed to reflect cation radius dependent factors that control the bonding environment at the interface between the metal cation exposed at the surface of the reacting carbonate solid and a H 2CO 3 transitional species during disproportionation of H 2CO 3 to CO 2 and H 2O ("cluster model" of Guo et al., 2009). Phase-specific variations in dδ18O/dT-1 might result from differences in lattice structure variables (e.g., degree of lattice distortion, extent of positional disorder, and non-ideal mixing of substituent cations where carbonates depart from end-member compositions). Lattice structure variables may be dependent on geochemical conditions pertaining at the time of carbonate precipitation (e.g., biosynthetic versus inorganic precipitates) and suggests that dδ18O/dT-1 has the potential to vary, within limits, in response to both the chemical composition and structure of each carbonate sample. Because the oxygen isotope composition of carbonate minerals (δ18O) measured on the VPDB scale is defined by the oxygen isotope composition of CO 2 prepared from NBS19 (calcite) by

  18. Isolating relative humidity: dual isotopes d18O and dD as deuterium deviations from the global meteoric water line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose d18O and dD can provide insights on climates and hydrological cycling in the distant past and how these factors differ spatially. However, most studies of plant cellulose have used only one isotope, most commonly d18O, resulting in difficulties partitioning variation in d18O of precipitati...

  19. A 220 ka terrestrial δ18O and deuterium excess biomarker record from an eolian permafrost paleosol sequence, NE-Siberia

    NASA Astrophysics Data System (ADS)

    Tuthorn, Mario; Zech, Michael; Detsch, Florian; Rozanski, Kazimierz; Zech, Roland; Zöller, Ludwig; Zech, Wolfgang; Glaser, Bruno

    2013-04-01

    The natural abundances of stable oxygen (18O/16O) and hydrogen isotopes (D/H) are valuable proxies of climate changes in the past. Yet, to date no continuous δ18O and only few δD records are available from loess-paleosol sequences. Taking advantage of a recently developed method based on compound-specific δ18O analyzes of hemicellulose sugar biomarkers in soils (Zech and Glaser, 2009), we here present a first terrestrial δ18O biomarker record from an eolian permafrost paleosol sequence in NE-Siberia that covers the last ~220 ka. The δ18O values of the hemicellulose biomarkers arabinose and xylose range from 22.5 to 32.8‰ and from 21.3 to 31.9‰, respectively, and reveal systematic glacial - interglacial shifts. The modern topsoil and the interglacial paleosols exhibit more positive δ18O values, whereas the glacial paleosols are characterized by more negative δ18O values. This is in agreement with the δD record obtained for sedimentary n-alkane leaf wax biomarkers. We present a conceptual model for interpreting the combined δ18O and δD biomarker record. Based on this model, we suggest that both our δ18O and the δD record primarily reflect the temperature-controlled isotopic composition of paleoprecipitation modified by evaporative isotope enrichment of leaf water during transpiration. Considering fractionation factors during sugar and n-alkane biomarker biosynthesis allows reconstructing the leaf water isotopic composition and the deuterium excess of the leaf water. The deuterium excess may serve as proxy for evaporative enrichment and allows calculating relative humidity using a Craig-Gordon model. Accordingly, relative humidity in NE-Siberia was higher during marine isotope stage (MIS) 6 compared to MIS 2, 4 and 5d and thus could help explaining the much larger extent of the Late Saalian glaciation compared to the Weichselian glaciations. Using the Craig-Gordon model, we also calculated δ18O of the plant source water (δ18Osource water), which can

  20. Cellulose δ18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants

    PubMed Central

    Kahmen, Ansgar; Sachse, Dirk; Arndt, Stefan K.; Tu, Kevin P.; Farrington, Heraldo; Vitousek, Peter M.; Dawson, Todd E.

    2011-01-01

    Cellulose in plants contains oxygen that derives in most cases from precipitation. Because the stable oxygen isotope composition, δ18O, of precipitation is associated with environmental conditions, cellulose δ18O should be as well. However, plant physiological models using δ18O suggest that cellulose δ18O is influenced by a complex mix of both climatic and physiological drivers. This influence complicates the interpretation of cellulose δ18O values in a paleo-context. Here, we combined empirical data analyses with mechanistic model simulations to i) quantify the impacts that the primary climatic drivers humidity (ea) and air temperature (Tair) have on cellulose δ18O values in different tropical ecosystems and ii) determine which environmental signal is dominating cellulose δ18O values. Our results revealed that ea and Tair equally influence cellulose δ18O values and that distinguishing which of these factors dominates the δ18O values of cellulose cannot be accomplished in the absence of additional environmental information. However, the individual impacts of ea and Tair on the δ18O values of cellulose can be integrated into a single index of plant-experienced atmospheric vapor demand: the leaf-to-air vapor pressure difference (VPD). We found a robust relationship between VPD and cellulose δ18O values in both empirical and modeled data in all ecosystems that we investigated. Our analysis revealed therefore that δ18O values in plant cellulose can be used as a proxy for VPD in tropical ecosystems. As VPD is an essential variable that determines the biogeochemical dynamics of ecosystems, our study has applications in ecological-, climate-, or forensic-sciences. PMID:21245322

  1. Tracing atmospheric moisture from precipitation δ18O to climate proxy using an isotope enabled land surface model

    NASA Astrophysics Data System (ADS)

    Kanner, L.; Buenning, N. H.; Stott, L. D.; Timmermann, A.

    2013-12-01

    A paleoclimate interpretation of a terrestrial hydrologic proxy such as the δ18O of tree cellulose or speleothem calcite may be biased or misinterpreted if the isotopic composition of the soil water from which the proxy originated undergoes isotopic exchange or fractionation. In this study, we use a global isotope-enabled land surface model (IsoLSM) to investigate how the δ18O of precipitation may be altered in a soil column due to evaporation and vertical moisture flux. In order to assess how precipitation and evaporation contribute the soil water isotopic variability, we compare seasonal and interannual changes in simulated xylem water δ18O within a control simulation and in a suite of experiments where the effect of precipitation δ18O, water vapor δ18O, and ground water evaporation are independently removed. The simulations, carried out for 1979 to 2004, reveal that in semi-arid regions, such as the southwest United States, the seasonal cycle in xylem water δ18O is strongly affected by evaporative loss during the dry season and this can constitute as much as 50% of the interannual δ18O variance. Additional simulations, including soil water tagging experiments, indicate that upward fluxes of soil water occur during drier periods. For soil water δ18O profiles that are isotopically more depleted in 18O at depth, this imparts a low isotopic signature to xylem water δ18O during such dry intervals. Hence, without taking into account moisture flux processes, an isotopic proxy could be misinterpreted as wet conditions (due to decreased evaporative enrichment) for low δ18O years when instead drier conditions are equally as likely. Using IsoLSM simulated xylem water and leaf water δ18O, offline calculations of cellulose δ18O compare well with observations in diverse climatic regimes. Thus, the driving mechanisms on soil water δ18O identified in this study, and in particular the important role of evaporation on seasonal and interannual timescales, may

  2. Diachronous benthic δ18O responses during late Pleistocene terminations

    NASA Astrophysics Data System (ADS)

    Lisiecki, Lorraine E.; Raymo, Maureen E.

    2009-09-01

    Benthic δ18O is often used as a stratigraphic tool to place marine records on a common age model and as a proxy for the timing of ice volume/sea level change. However, Skinner and Shackleton (2005) found that the timing of benthic δ18O change at the last termination differed by 3900 years between one Atlantic site and one Pacific site. These results suggest that benthic δ18O change may not always accurately record the timing of deglaciation. We compare benthic δ18O records from 20 Atlantic sites and 14 Pacific sites to evaluate systematic differences in the timing of terminations in benthic δ18O. Analysis of sedimentation rates derived from the alignment of benthic δ18O suggests a statistically significant Atlantic lead over Pacific benthic δ18O change during the last six terminations. We estimate an average Pacific benthic δ18O lag of 1600 years for Terminations 1-5, slightly larger than the delay expected from ocean mixing rates given that most glacial meltwater probably enters the North Atlantic. We additionally find evidence of ˜4000-year Pacific δ18O lags at approximately 128 ka and 330 ka, suggesting that stratigraphic correlation of δ18O has the potential to generate age model errors of several thousand years during terminations. A simple model demonstrates that these lags can be generated by diachronous temperature changes and do not require slower circulation rates. Most importantly, diachronous benthic δ18O responses must be taken into account when comparing Atlantic and Pacific benthic δ18O records or when using benthic δ18O records as a proxy for the timing of ice volume change.

  3. Influence of glacial meltwater on equilibrium process of two Tibetan lakes indicated by δ18O

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2009-12-01

    δ18O measurements based on systematic sampling and isotopic model have been adopted to study the affects of glacial meltwater in two lake basins (Lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, δ18O values in precipitation and lake water display a seasonal fluctuation in both lakes. Spatially, δ18O values in the two lake basins increase by 10‰ from the termini of glaciers to the lake shores, by about 1‰ from the lakeshores to the lake center, by 0.4‰ from the water surface to depth in these lakes. The obvious annual δ18O variations indicate that lake water mixes sufficient in a short time. Model results show that glacial meltwater is an important factor on lake water equilibrium process. Equilibrium δ18O values decrease 0.8‰ for Yamdrok-tso Lake and 0.6‰ for Puma Yum-tso Lake when contributions of glacial meltwater to these lakes shrink by 60%. δ18O increases rapidly during the initial stages and then it takes a long time to approach the equilibrium value. The modeled results also show that the surface lake water temperature has only a little impact on this process.

  4. A precise method for the analysis of d18O of dissolved inorganic phosphate in seawater

    USGS Publications Warehouse

    McLaughlin, K.; Silva, S.; Kendall, C.; Stuart-Williams, Hilary; Paytan, A.

    2004-01-01

    A method for preparation and analysis of the oxygen isotope composition (d18O) of dissolved inorganic phosphate (DIP) has been developed and preliminary results for water samples from various locations are reported. Phosphate is extracted from seawater samples by coprecipitation with magnesium hydroxide. Phosphate is further purified through a series of precipitations and resin separation and is ultimately converted to silver phosphate. Silver phosphate samples are pyrolitically decomposed to carbon monoxide and analyzed for d18O. Silver phosphate samples weighing 0.7 mg (3.5 mol oxygen) can be analyzed routinely with an average standard deviation of about 0.3. There is no isotope fractionation during extraction and blanks are negligible within analytical error. Reproducibility was determined for both laboratory standards and natural samples by multiple analyses. A comparison between filtered and unfiltered natural seawater samples was also conducted and no appreciable difference was observed for the samples tested. The d18O values of DIP in seawater determined using this method range from 18.6 to 22.3, suggesting small but detectable natural variability in seawater. For the San Francisco Bay estuary DIP d18O is more variable, ranging from 11.4 near the San Joaquin River to 20.1 near the Golden Gate Bridge, and was well correlated with salinity, phosphate concentration, and d18O of water.

  5. Tooth Enamel δ13C and δ18O Variations in Modern and Archaeological Horses From Northern Kazakhstan as Indicators of Regional Climate

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Rosenmeier, M. F.; Stacy, E. M.; Olsen, S. L.

    2007-12-01

    In this study, the oxygen and carbon isotope values of tooth enamel were measured in forty-one modern and twenty-three Copper Age (3600 - 3100 B.C.) horse specimens from the grassland steppe region of northern Kazakhstan. Modern tooth enamel δ13C and δ18O values were compared with the carbon isotopic compositions of local vegetation and the δ18O values of meteoric waters. Tooth enamel isotope values within the Copper Age specimens (attributed to the so-called Botai culture) were, in turn, compared with modern samples. Average carbon isotopic values within modern bulk tooth enamel samples ranged between -13.7 and -12.0‰ (VPDB). This suggests that the diet of modern northern Kazakhstani horses is comprised almost entirely of C3 plants (considering enamel-diet fractionation factors) consistent with documented grassland compositions within the region. The observed amplitude of δ13C variations within individual teeth (typically less than ~2‰) suggests only minimal seasonal variation in the δ13C of grasses attributed to heat and water stress. Alternatively, the minimal seasonal changes observed within intra-tooth δ13C values may be the direct result of fodder provisioning. Ingested water δ18O values derived from oxygen isotope ratios within bulk tooth enamel samples appear statistically indistinguishable from estimates of regional precipitation, suggesting that Kazakhstani horse tooth enamel δ18O measurements may be used as a direct estimate of the oxygen isotopic composition of meteoric waters. Intra-tooth oxygen isotopic variations therefore reflect the pronounced seasonal variability in precipitation δ18O values tied to temperature changes and amount effects observed annually within Kazakhstan. However, these intra-tooth isotopic variations exhibit slightly reduced amplitudes relative to meteoric water values, suggesting that horses likely consume water from buffered sources such as lakes and wells. Average bulk tooth enamel δ13C values within

  6. A field-based method for simultaneous measurements of the δ18O and δ13C of soil CO2 efflux

    NASA Astrophysics Data System (ADS)

    Mortazavi, B.; Prater, J. L.; Chanton, J. P.

    Three approaches for determining the stable isotopic composition (δ13C and δ18O) of soil CO efflux were compared. A new technique employed mini-towers, constructed of open-topped piping, that were placed on the soil surface to collect soil-emitted CO2. Samples were collected along a vertical gradient and analyzed for CO2 concentration and isotopic composition. These data were then used to produce Keeling plots to determine the δ18O and δ13C of CO2 emitted from the soil. These results were then compared to the δ18O and δ13C of soil-respired CO2 measured with two other techniques: (1) flux chambers and (2) estimation from the application of the diffusional fractionation factor to measured values of below ground soil CO2 and to CO2 in equilibrium with soil water δ18O. Mini-tower δ18O Keeling plots were linear and highly significant (0.81< r 2 > 0.96), in contrast to chamber δ18O Keeling plots, which showed significant curvature, necessitating the use of a mass balance to calculate the δ18O of respired CO2. In the chambers, the values determined for the δ18O of soil respired CO2 approached the value of CO2 in equilibrium with surficial soil water, and the results were significantly δ18O enriched relative to the mini-tower results and the δ18O of soil CO2 efflux

  7. Leaf morphological effects predict effective path length and enrichment of 18O in leaf water of different Eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Merchant, A.; Callister, A.; Dawson, T. E.; Arndt, S. K.

    2006-12-01

    Stable isotopes have been a valuable tool to study water or carbon fluxes of plants and ecosystems. In particular oxygen isotopes (δ18O) in leaf water or plant organic material are now beginning to be established as a simple and integrative measure for plant - water relations. Current δ18O models, however, are still limited in their application to a broad range of different species and ecosystems. It remains for example unclear, if species-specific effects such as different leaf morphologies need to be included in the models for a precise understanding and prediction of δ18O signals. In a common garden experiment (Currency Creek Arboretum, South Australia), where over 900 different Eucalyptus species are cultivated in four replicates, we tested effects of leaf morphology and anatomy on δ18O signals in leaf water of 25 different species. In particular, we determined for all species enrichment in 18O of mean lamina leaf water above source water (Δ18O) as related to leaf physiology as well as leaf thickness, leaf area, specific leaf area and weight and selected anatomical properties. Our data revealed that diurnal Δ18O in leaf water at steady state was significantly different among the investigated species and with differences up to 10% at midday. Fitting factors (effective path length) of leaf water Δ18O models were also significantly different among the investigated species and were highly affected by species-specific morphological parameters. For example, leaf area explained a high percentage of the differences in effective path length observed among the investigated species. Our data suggest that leaf water δ18O can act as powerful tool to estimate plant - water relations in comparative studies but that additional leaf morphological parameters need to be considered in existing δ18O models for a better interpretation of the observed δ18O signals.

  8. Calibration of speleothem δ18O records against hydroclimate instrumental records in Central Brazil

    NASA Astrophysics Data System (ADS)

    Moquet, J. S.; Cruz, F. W.; Novello, V. F.; Stríkis, N. M.; Deininger, M.; Karmann, I.; Santos, R. Ventura; Millo, C.; Apaestegui, J.; Guyot, J.-L.; Siffedine, A.; Vuille, M.; Cheng, H.; Edwards, R. L.; Santini, W.

    2016-04-01

    δ18O in speleothems is a powerful proxy for reconstruction of precipitation patterns in tropical and sub-tropical regions. The aim of this study is to calibrate the δ18O record of speleothems against historical precipitation and river discharge data in central Brazil, a region directly influenced by the Southern Atlantic Convergence Zone (SACZ), a major feature of the South American Monsoon System (SAMS). The present work is based on a sub-annual resolution speleothem record covering the last 141 years (the period between the years 1870 and 2011) from a cave in central Brazil. The comparison of this record with instrumental hydroclimate records since 1921 allows defining a strong relationship between precipitation variability and stable oxygen isotope ratios from speleothems. The results from a monitoring program of climatic parameters and isotopic composition of rainfall and cave seepage waters performed in the same cave, show that the rain δ18O variability is dominated by the amount effect in this region, while δ18O drip water remains almost constant over the monitored period (1.5 years). The δ18O of modern calcite, on the other hand, shows clear seasonal variations, with more negative values observed during the rainy season, which implies that other factors also influence the isotopic composition of carbonate. However, the relationship between δ18O of carbonate deposits and rainwater is supported by the results from the comparison between speleothem δ18O records and historical hydroclimate records. A significant correlation between speleothem δ18O and monsoon rainfall variability is observed on sub-decadal time scales, especially for the monsoon period (DJFM and NDJFM), once the rainfall record have been smoothed with a 7-9 years running mean. This study confirms that speleothem δ18O is directly associated with monsoon rainfall variability in central Brazil. The relationship between speleothem δ18O records and hydroclimatic historical records allows

  9. Predicting paleoelevation of Tibet and the Himalaya from δ 18O vs. altitude gradients in meteoric water across the Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Garzione, Carmala N.; Quade, Jay; DeCelles, Peter G.; English, Nathan B.

    2000-11-01

    The δ 18O value of meteoric water varies with elevation, providing a means to reconstruct paleoelevation if the δ 18O values of paleowater are known. In this study, we determined the δ 18O values of water (δ 18O mw) from small tributaries along the Seti River and Kali Gandaki in the Nepal Himalaya. We found that δ 18O mw values decrease with increasing altitude for both transects. δ 18O mw vs. altitude along the Kali Gandaki in west-central Nepal fit a second order polynomial curve, consistent with increasing depletion of 18O with increasing elevation, as predicted by a Rayleigh-type fractionation process. This modern δ 18O mw vs. altitude relationship can be used to constrain paleoelevation from the δ 18O values of Miocene-Pliocene carbonate (δ 18O c) deposited in the Thakkhola graben in the southern Tibetan Plateau. Paleoelevations of 3800±480 m to 5900±350 are predicted for the older Tetang Formation and 4500±430 m to 6300±330 m for the younger Thakkhola Formation. These paleoelevation estimates suggest that by ˜11 Ma the southern Tibetan Plateau was at a similar elevation to modern.

  10. 13C 18O clumping in speleothems: Observations from natural caves and precipitation experiments

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G.

    2011-06-01

    The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ 18O. Interpreting speleothem δ 18O records in terms of absolute paleotemperatures and δ 18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C 18O bonds in CO 2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation. Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ 18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ 18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ 18O and Δ47 values, probably inherited from prior degassing within the cave system. In addition

  11. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation

    PubMed Central

    Yeung, Laurence Y.; Affek, Hagit P.; Hoag, Katherine J.; Guo, Weifu; Wiegel, Aaron A.; Atlas, Elliot L.; Schauffler, Sue M.; Okumura, Mitchio; Boering, Kristie A.; Eiler, John M.

    2009-01-01

    The stratospheric CO2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO2 isotopologue 16O13C18O, in concert with 18O and 17O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO2 sample to date. We show, through photochemical experiments, that lower 16O13C18O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher 16O13C18O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric 16O13C18O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change. PMID:19564595

  12. 18O enrichment in phosphorus pools extracted from soybean leaves.

    PubMed

    Pfahler, Verena; Dürr-Auster, Thilo; Tamburini, Federica; Bernasconi, M Stefano; Frossard, Emmanuel

    2013-01-01

    The objective of this study was to investigate the isotopic composition of oxygen bound to phosphate (δ(18)O-PO(4)) in different phosphorus (P) pools in plant leaves. As a model plant we used soybean (Glycine max cv Toliman) grown in the presence of ample P in hydroponic cultures. The leaf blades were extracted with 0.3 M trichloroacetic acid (TCA) and with 10 M nitric acid. These extractions allowed measurement of the TCA-soluble reactive P (TCA P) that is rapidly cycled within the cell and the total leaf P. The difference between total leaf P and TCA P yielded the structural P which includes organic P compounds not extractable by TCA. P uptake and its translocation and transformation within the soybean plants lead to an (18)O enrichment of TCA P (δ(18)O-PO(4) between 16.9 and 27.5‰) and structural P (δ(18)O-PO(4) between 42.6 and 68.0 ‰) compared with 12.4‰ in the phosphate in the nutrient solution. δ(18)O values of phosphate extracted from soybean leaves grown under optimal conditions are greater than the δ(18)O-PO(4) values of the provided P source. Furthermore, the δ(18)O-PO(4) of TCA P seems to be controlled by the δ(18)O of leaf water and the activity of inorganic pyrophosphatase or other pyrophosphatases.

  13. Comparison of δ18O measurements in Nitrate by different combustion techniques

    USGS Publications Warehouse

    Revesz, Kinga; Böhlke, John Karl

    2002-01-01

    Three different KNO3 salts with δ18O values ranging from about −31 to +54‰ relative to VSMOW were used to compare three off-line, sealed glass tube combustion methods (widely used for isotope studies) with a more recently developed on-line carbon combustion technique. All methods yielded roughly similar isotope ratios for KNO3 samples with δ18O values in the midpoint of the δ18O scale near that of the nitrate reference material IAEA-NO-3 (around +21 to +25‰). This reference material has been used previously for one-point interlaboratory and intertechnique calibrations. However, the isotope ratio scale factors by all of the off-line combustion techniques are compressed such that they are between 0.3 and 0.7 times that of the on-line combustion technique. The contraction of the δ18O scale in the off-line preparations apparently is caused by O isotope exchange between the sample and the glass combustion tubes. These results reinforce the need for nitrate reference materials with δ18O values far from that of atmospheric O2, to improve interlaboratory comparability.

  14. The enigma of effective pathlength for 18O enrichment in leaf water of conifers

    NASA Astrophysics Data System (ADS)

    Roden, J. S.; Kahmen, A.; Buchmann, N. C.; Siegwolf, R. T.

    2013-12-01

    The stable isotopes of oxygen (δ18O) in tree ring cellulose provide valuable proxy information about past environments and climate. Mechanistic models have been used to clarify the important drivers of isotope fractionation and help interpret δ18O variation in tree rings. A critical component to these models is an estimate of leaf water enrichment. However, standard models seldom accurately predict 18O enrichment in conifer needles and Péclet corrections often require effective pathlengths (L) that seem unreasonable from the perspective of needle morphology (>0.5 m). To analyze the potential role of path length on the Péclet effect in conifers we carried out experiments in controlled environment chambers. We exposed seedlings of six species of conifer (Abies alba, Larix decidua, Picea abies, Pinus cembra, P. sylvestris, Taxus bacata), that differ in needle morphology, to four different vapor pressure deficits (VPD), in order to modify transpiration rates (E) and leaf water 18O enrichment. Environmental and δ18O data (leaf, stem and chamber water vapor) were collected to parameterize leaf water models. Cross-sections of needles were sampled for an analysis of needle anatomy. Conifer needles have a single strand of vascular tissue making pathlength determinations through anatomical assessments possible. The six species differed in mesophyll distance (measured from endodermis to epidermis) and cell number, with Pinus and Picea species having the shortest distance and Abies and Taxus the longest (flat needle morphology). Other anatomical measures (transfusion distance, cell size etc.) did not differ significantly. A suberized strip was apparent in the endodermis of all species except Taxus and Abies. Conifer needles have a large proportion (from 0.2 to 0.4) of needle cross-sectional area in vascular tissues that may not be subject to evaporative enrichment. As expected, leaf water δ18O and E responded strongly to VPD and standard models (Craig

  15. 13CO/C18O Gradients across the Disks of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank; Leroy, Adam K.; Gallagher, Molly; Krumholz, Mark R.; Usero, Antonio; Hughes, Annie; Kramer, Carsten; Meier, David; Murphy, Eric; Pety, Jérôme; Schinnerer, Eva; Schruba, Andreas; Schuster, Karl; Sliwa, Kazimierz; Tomicic, Neven

    2017-02-01

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of 12CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  16. Abrupt shift in δ18O values at Medicine Lake volcano (California, USA)

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.

    1998-01-01

     Oxygen-isotope analyses of lavas from Medicine Lake volcano (MLV), in the southern Cascade Range, indicate a significant change in δ18O in Holocene time. In the Pleistocene, basaltic lavas with <52% SiO2 averaged +5.9‰, intermediate lavas averaged +5.7‰, and silicic lavas (≥63.0%SiO2) averaged +5.6‰. No analyzed Pleistocene rhyolites or dacites have values greater than +6.3‰. In post-glacial time, basalts were similar at +5.7‰ to those erupted in the Pleistocene, but intermediate lavas average +6.8‰ and silicic lavas +7.4‰ with some values as high as +8.5‰. The results indicate a change in the magmatic system supplying the volcano. During the Pleistocene, silicic lavas resulted either from melting of low-18O crust or from fractionation combined with assimilation of very-low-18O crustal material such as hydrothermally altered rocks similar to those found in drill holes under the center of the volcano. By contrast, Holocene silicic lavas were produced by assimilation and/or wholesale melting of high-18O crustal material such as that represented by inclusions of granite in lavas on the upper flanks of MLV. This sudden shift in assimilant indicates a fundamental change in the magmatic system. Magmas are apparently ponding in the crust at a very different level than in Pleistocene time.

  17. Decadal patterns in δ18O of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Zakem, E.; White, J. W.

    2010-12-01

    The stable oxygen isotope 18O is unique to isotope ecology in that it links the hydrosphere to the carbon cycle. Since land biosphere fluxes are the dominant influences on 18O of atmospheric CO2, particularly on shorter times scales, analysis of atmospheric δ18O trends can provide useful insight into the terrestrial carbon cycle. The isotopic values imprinted by leaf water and soil water exchanges with CO2 out-compete those from ocean exchange, fossil fuel and biomass burning, and stratospheric reactions. The opposing isotopic imprints of photosynthesis and ecosystem respiration therefore control the majority of atmospheric 18O concentration. The resulting seasonal cycle in δ18O data of peaks during early summer, when photosynthesis dominates, and lows during early winter, when respiration dominates, has been clearly established. However, the reasons for the interannual variability of atmospheric 18O remain unknown. Studies have shown that the size and isotopic value of the “retrodiffusion” flux- the CO2 that enters and exits leaves without being fixed by photosynthesis- is a function of stomatal conductance, which is affected by the relative humidity in the surrounding atmosphere. We observe that data from numerous global sites shows a global decadal oscillation in δ18O, suggesting a climatological forcing. We compare decadal trends in δ18O with climate oscillations and the 11-year solar cycle, as well as relative humidity records, examining correlations and proposing associated mechanisms. Understanding the decadal patterns in atmospheric 18O of CO2 will shed light on global terrestrial carbon fluxes and the carbon-water interaction on decadal time scales, potentially helping to scale human versus natural impacts on this coupled system.

  18. THz and Ft-Ir Study of 18-O Isotopologues of Sulfur Dioxide: 32S16O18O and 32S18O_2

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Demaison, J.; Perrin, Agnes; Kwabia Tchana, F.; Manceron, Laurent

    2016-06-01

    Sulfur dioxide is a molecule that have a great interest in different domains: for atmospheric and planetology chemistry, it is also ubiquitous and abundant in interstellar medium. If the 16O species were extensively studied, this is not the case of the 18O isotopologues. The aim of this study is first to complete the rotational spectra of the ground state with these new measurements up to 1.5 THz, previous measurements are up to 1050 GHz for the 32S16O18O species, and 145 GHz concerning the 32S18O_2 species. The second part is making a global fit of the rotational and vibrational transitions for the excited vibrational states. For the v_2 band, we will complete the recent I.R. analysis. About the triad (v_1, 2v_2, v_3): 32S18O_2 species was studied, but not the 32S16O18O one. and 145 GHz concerning the 32S18O_2 species. The second part is making a global fit of the rotational and vibrational transitions for the excited vibrational states. For the v_2 band, we will complete the recent I.R. analysis. About the triad (v_1, 2v_2, v_3): 32S18O_2 species was studied, but not the 32S16O18O one. The FT-IR spectra were recorded on the AILES Beamline at Synchrotron SOLEIL using the Synchrotron light source, coupled to the Bruker IFS125HR Fourier transform spectrometer. The THz spectra were obtained from 150 to 1500 GHz using the Lille's solid state spectrometer. The analysis is in progress, the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged Belov, S. P.; et al., 1998, J. Mol. Spectrosc. 191, 17 Lindermayer, J.; et al., 1985, J. Mol. Spectrosc. 110, 357 Gueye, F.; et al. Mol. Phys. in press Ulenikov, O. N.; et al., 2015, JQSRT 166, 13 Brubach, J.; et al., 2010, AIP Conf. Proc. 1214, 81 Zakharenko, O.; et al., 2015, J. Mol. Spectrosc. 317, 41

  19. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O

    NASA Astrophysics Data System (ADS)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Tashkun, S. A.; Perevalov, V. I.

    2017-04-01

    This contribution is the second part of the analysis of the room temperature absorption spectrum of 18O enriched carbon dioxide by very high sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). Overall, more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues were rovibrationnally assigned. In a first part (Kassi et al. J Quant Spectrosc Radiat Transfer 187 (2017) 414-425, http://dx.doi.org/10.1016/j.jqsrt.2016.09.002), the results relative to mono-substituted isotopologues, 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2, were presented. This second contribution is devoted to the multiply-substituted isotopologues or clumped isotopologues of particular importance in geochemistry: 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O. On the basis of the predictions of effective Hamiltonian models, a total of 3195 transitions belonging to 73 bands were rovibrationnally assigned for these seven species. Among the 73 observed bands, 55 are newly reported. All the identified bands correspond to ΔP=10 and 11 series of transitions, where P= 2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The accurate spectroscopic parameters of 70 bands have been determined from the standard band-by-band analysis. Global fits of the measured line intensities of the ΔP=10 series of transitions of 17O12C18O and 16O13C18O and of the ΔP=11 series of transitions of 12C18O2, 17O12C18O, 16O13C18O and 13C18O2 were performed to determine the corresponding sets of the effective dipole moment parameters.

  20. Mechanisms linking metabolism of Helicobacter pylori to (18)O and (13)C-isotopes of human breath CO2.

    PubMed

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-06-03

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 ((18)O) and carbon-13 ((13)C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of (18)O/(16)O and (13)C/(12)C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of (18)O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of (18)O in breath CO2 were manifested in individuals without the infections. In contrast, the (13)C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to (13)C-enriched glucose uptake, whereas a distinguishable change of breath (13)C/(12)C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the (18)O and (13)C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath (12)C(18)O(16)O and (13)C(16)O(16)O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen's physiology along with isotope-specific non-invasive diagnosis of the infection.

  1. Influence of glacial meltwater and humidity on evaporation of two Tibetan lakes indicated by delta 18O

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2009-04-01

    delta 18O and model results are adopted to study the affects of glacial meltwater and relative humidity in two lake basins (Lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, the lake water delta 18O of Yamdrok-tso Lake displays a seasonal fluctuation, whereas the lake water delta 18O is stable in Puma Yum-tso Lake in whole year. Spatially, the delta 18O value in Yamdrok-tso Lake is 2‰ higher than that in Puma Yum-tso Lake. delta 18O values in the two lake basins increase by 10‰ from the termini of glaciers to the lake shores, by about 1‰ from the lakeshores to the lake center, by 0.4‰ from the water surface to depth in these lakes. The largest difference, from the terminus of the Qiangyong Glacier to the depth of 35 m, is 14.1‰ and demonstrates the importance of glacial meltwater. Evaporation alters the changes of delta 18O in the two lake basins. Model results show that relative humidity is a major controlling factor of evaporation. delta 18O values of both Yamdrok-tso and Puma Yum-tso Lakes are at their steady condition, but Puma Yum-tso Lake has taken a longer time to approach the current condition, which might be attributed to higher humidity and more glacial meltwater at the lake.

  2. δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions

    NASA Astrophysics Data System (ADS)

    Yu, Wusheng; Tian, Lide; Risi, Camille; Yao, Tandong; Ma, Yaoming; Zhao, Huabiao; Zhu, Haifeng; He, You; Xu, Baiqing; Zhang, Hongbo; Qu, Dongmei

    2016-12-01

    This study is the first to examine δ18O in daily water vapor at Taxkorgan on the eastern Pamir Plateau. The results show that changes in observed and simulated δ18O values in water vapor/precipitation at the event scale (using a LMDZ-iso model) were mainly affected by temperature. The influences of humidity, precipitation amount, and different moisture sources, such as the westerlies, local evaporated moisture, and polar air masses, on δ18O values are comparatively weak. The combination of the δ18O record from the Muztagata ice core, 58 km away from the study area, and the LMDZ-iso simulated annual δ18O pattern in precipitation at Taxkorgan also demonstrated that temperature, and particularly the temperature of the regions over which the southern branch of the westerlies flows, is the most important factor controlling δ18O variations. The results from this study area, which is dominated by the westerlies throughout the year, are markedly different from those derived from parts of the Tibetan Plateau that are dominated by the combined influences of the westerlies in winter and the Indian monsoon in summer. The results suggested that the eastern Pamir Plateau is an ideal location to reconstruct past temperature variations and that the δ18O records preserved in ice cores from the region are a suitable and robust proxy for temperature.

  3. Direct Synthesis of ESBO Derivatives-18O Labelled with Dioxirane

    PubMed Central

    Tommasi, Immacolata; Fusco, Caterina

    2013-01-01

    This work addresses a new approach developed in our laboratory, consisting in the application of isolated dimethyldioxirane (DDO, 1a) labelled with 18O for synthesis of epoxidized glyceryl linoleate (Gly-LLL, 2). We expect that this work could contribute in improving analytical methods for the determination of epoxidized soybean oil (ESBO) in complex food matrices by adopting an 18O-labelled-epoxidized triacylglycerol as an internal standard. PMID:24163617

  4. Late Holocene hydroclimate change inferred from δ18O of lake sediments, Lost River Range, Idaho

    NASA Astrophysics Data System (ADS)

    Krueger, C. R.; Finney, B. P.; Shapley, M.

    2012-12-01

    High-resolution paleohydrological records are needed to assess the frequency and magnitude of past droughts in Idaho and the northern Rocky Mountain region, but are scarce in this semi-arid region. Sediments from Lost Keys Pond (LKP) can be used to reconstruct hydroclimate. LKP is closed to surface outflow and is therefore sensitive to precipitation minus evaporation; surface water is enriched in δ18O compared to the local meteoric waters. In summer 2011 several sediment cores were collected from LKP using a square rod piston corer; the focus of this analysis is an 82-cm Bolivia core. This core contains thinly banded to laminated, authigenic carbonate mud, a recorder of lake δ18O at the time of deposition. This core was sampled for δ18O and /δ13C at 0.5 cm intervals, and the <20 um fraction was isolated to avoid any detrital carbonate. Based on the current age model, sampling at this interval records sub-decadal (5-10 year) hydroclimate variability. The δ18O signal recovered has 5‰ variability over the length of the record, including several major fluctuations in last 1,000 years. During this period, several major dry and wet periods have been recorded occurring over multidecadal timescales, with a trend toward increasing aridity. The δ18O and δ13C records in the lowest decimeter are divergent and mirror each other, above this interval isotopic records have strong covariance. This pattern may be indicative of a change from surface outflow to no surface outflow conditions. The age model is being refined to better assess how this record correlates with other regional records, and ultimately improve our understanding of past atmospheric circulation.

  5. Using 16O/18O to Determine the Evolutionary History of the R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey; Geballe, Tom; Welch, Douglas; Tisserand, Patrick

    2014-08-01

    All of the Galactic hydrogen-deficient carbon (HdC) and R Coronae Borealis (RCB) stars for which oxygen isotopic ratios can be measured, show 16O/18O < 5, values that are orders of magnitude lower than measured in other stars (the Solar value is 500). This suggests that most if not all HdC and RCB stars are highly enriched in 18O. This is an important clue to determining the evolutionary pathways of HdC and RCB stars, for which two models have been proposed: the double degenerate (white dwarf (WD) merger), and the final helium-shell flash (FF). No overproduction of 18O is expected in the FF scenario. However, some RCB stars also show characteristics, such as 13C and Lithium, seen in FF stars. Therefore, we are conducting a survey of all the RCB stars in the LMC and SMC for the characteristics of a WD merger or a FF. Most of the stars have been surveyed for 13C already, and we are also planning to survey them for Lithium. But no RCB star in the Magellanic Clouds has been observed for 18O. The Magellanic Clouds provide an unbiased, relatively complete sample of RCB stars which are at a known distance so their bolometric luminosities can be used in our stellar evolution models. This proposal is to use Gemini/Flamingos-2 to survey all of the Magellanic Cloud stars, which are cool enough to show CO bands, for the presence of 18O near 2.3 micron. This survey, combined with our stellar evolution models, will reveal the true fraction of RCB stars formed by each of the proposed scenarios.

  6. Constraining the origin of the Messinian gypsum deposits using coupled measurement of δ^{18}O$/δD in gypsum hydration water and salinity of fluid inclusions

    NASA Astrophysics Data System (ADS)

    Evans, Nicholas P.; Gázquez, Fernando; McKenzie, Judith A.; Chapman, Hazel J.; Hodell, David A.

    2016-04-01

    We used oxygen and hydrogen isotopes of gypsum hydration water (GHW) coupled with salinity deduced from ice melting temperatures of primary fluid inclusions in the same samples (in tandem with 87Sr/86Sr, δ34S and other isotopic measurements) to determine the composition of the mother fluids that formed the gypsum deposits of the Messinian Salinity Crisis from shallow and intermediate-depth basins. Using this method, we constrain the origin of the Messinian Primary Lower Gypsum (PLG) of the Sorbas basin (Betic foreland) and both the Upper Gypsum (UG) and the Lower Gypsum of the Sicilian basin. We then compare these results to measurements made on UG recovered from the deep Ionian and Balearic basins drilled during DSDP Leg 42A. The evolution of GHW δ18O/δD vs. salinity is controlled by mixing processes between fresh and seawater, coupled with the degree of evaporation. Evaporation and subsequent precipitation of gypsum from fluids dominated by freshwater will result in a depressed 87Sr/86Sr values and different trajectory in δ18O/δD vs. salinity space compared to fluids dominated by seawater. The slopes of these regression equations help to define the end-members from which the fluid originated. For example, salinity estimates from PLG cycle 6 in the Sorbas basin range from 18 to 51ppt, and after correction for fractionation factors, estimated δ18O and δD values of the mother water are low (-2.6 < δ18O < 2.7‰ ; -16.2 < δD < 15.8‰). The intercepts of the regression equations (i.e. at zero salinity) are within error of the average isotope composition of the modern precipitation and groundwater in this region of SE Spain. This indicates there was a significant contribution of meteoric water during gypsum deposition, while 87Sr/86Sr (0.708942 < 87Sr/86Sr < 0.708971) indicate the ions originated from the dissolution of previously marine evaporites. Gypsum from cycle 2 displays similar mother water values (-2.4 < δ18O < 2.4‰ ; -13.2 < δD < 17.0‰) to

  7. Leaf cellulose δD and δ 18O trends with elevation differ in direction among co-occurring, semiarid plant species

    NASA Astrophysics Data System (ADS)

    Terwilliger, Valery J.; Betancourt, Julio L.; Leavitt, Steven W.; Van de water, Peter K.

    2002-11-01

    The potential to reconstruct paleoclimate from analyses of stable isotopes in fossil leaf cellulose could be enhanced by adequate calibration. This potential is likely to be particularly great in mid-latitude deserts, where a rich store of fossil leaves is available from rodent middens. Trends in δD and δ 18O of leaf cellulose were examined for three species growing across climatic gradients caused by elevation and slope aspect in southeastern Utah, USA. The species differed in morphology ( Pinus edulis vs. Yucca glauca), photosynthetic pathway (C 3Y. glauca vs. CAM Yucca baccata) or both ( P. edulis vs. Y. baccata). The δD LCN (leaf cellulose nitrate) and δ 18O LC (leaf cellulose) values of P. edulis decreased with elevation. Stem water δD values either increased (in spring) or did not change with elevation (in summer). Needle water δD values usually decreased with elevation and differed greatly with leaf age. These results suggest that δ cellulose values of P. edulis record the effects of climate on the isotopic composition of leaf water but not climate effects on meteoric water. In contrast to P. edulis, δD LCN values of Y. glauca increased with elevation. The δ 18O LC values of Y. glauca also increased with elevation but less significantly and only on south-facing slopes. The δ cellulose values in both P. edulis and Y. glauca were most significantly related to changes in temperature, although temperature and precipitation were negatively correlated in the study area. Where all three species co-occurred, their δD LCN values differed but their δ 18O LC values were the same. The disparity in δD LCN between Y. baccata and the other species corresponds to differences in biochemical fractionations associated with photosynthetic pathway. Biochemical fractionations may also contribute to differences between the two C 3 species. Knowledge of factors affecting responses of individual plant species to environment may be required to infer climate from δD LCN

  8. High- & Low-δ18O magma: Comparative study of crustal and mantle plagiogranites from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Alberts, R. C.; Grimes, C. B.; Koepke, J.; Erdmann, M.; Kitajima, K.; Spicuzza, M. J.; Valley, J. W.

    2015-12-01

    Plagiogranite (PLGT) from the crust and mantle sections of the Oman ophiolite preserve widely varied δ18O values that monitor different processes occurring during ophiolite construction. Mantle-like δ18O values are expected if MORB fractionation played a dominant role in PLGT genesis. Magmatic values (monitored here by zircon) shifted away from the mantle-like range indicate open system processes which include partial melting of hydrothermally-altered crust or influx of subduction-related, sediment-derived melt. Zircon (zrn) and quartz (qtz) from twenty-four new samples of PLGT from the crustal and mantle sections of the Oman ophiolite were analyzed for δ18O. Rock-averaged δ18O from the sheeted dikes (zrn: 4.3-4.5‰, qtz: 6.7-6.9‰) and dike-gabbro transition (zrn: 3.9-4.8‰, qtz: 4.7-7.7‰) are mostly below values in magmatic equilibrium with MORB (zrn = 5.2±0.5‰, qtz = 7.0-7.5‰). δ18O for PLGT in the gabbro section (zrn: 4.8-5.1‰, qtz: 7.7-8.3‰) are mostly mantle-like. Quartz is generally found to be more variable than coexisting zrn and likely experienced some sub-solidus exchange. When organized into a relative structural position, δ18Ozrn values typically increase with depth. The lowest δ18Ozrn are observed near the dike-gabbro transition and are consistent with petrogenesis involving hydrous partial melting of mafic crust previously hydrothermally-altered at high-T. The return to nominally mantle-equilibrated δ18Ozrn deeper in the gabbro section may reflect decreasing seawater-signatures of fluids penetrating to depth, lower water/rock ratios, or extreme fractional crystallization. Crustal PLGT thus predate the development of high δ18O signatures in the upper oceanic crust as it cools and experiences low temperature hydrothermal alteration. Mantle PLGT intrusions (1-3 m thick) from the Haylayn block extend to considerably higher rock-averaged δ18O values (zrn: 5.1-15.4‰, qtz: 7.0-18.5‰). Individual rocks (5 samples) were uniform in

  9. Theoretical evaluation of isotopic fractionation factors in oxidation reactions of benzene, phenol and chlorophenols.

    PubMed

    Adamczyk, Paweł; Paneth, Piotr

    2011-09-01

    We have studied theoretically the rate determining steps of reactions of benzene with permanganate, perchlorate, ozone and dioxygen in the gas phase and aqueous solution as well as phenol and dichlorophenol in protonated and unprotonated forms in aqueous solution. Kinetic isotope effects were then calculated for all carbon atoms and based on their values isotopic fractionation factors corresponding to compound specific isotopic analysis have been evaluated. The influence of the oxidant, substituents, environment and protonation on the isotopic fractionation factors has been analyzed.

  10. Experimental study of 18O /16O partitioning between crystalline albite, albitic glass and CO 2 gas

    NASA Astrophysics Data System (ADS)

    Matthews, A.; Palin, J. M.; Epstein, S.; Stolper, E. M.

    1994-12-01

    Oxygen isotope partitioning between gaseous CO 2 (~ 1 bar) and crystalline albite and albitic glass has been measured at 750-950°C, using the gas-mineral exchange techniques of O'NEIL and EPSTEIN (1966) and STOLPER and EPSTEIN (1991). Convergence of oxygen isotope ratios of CO 2 and avoidance of surface-correlated fractionation effects is achieved in long runs (>200 days), using relatively coarse grain sizes. Equilibrium CO 2-crystalline albite oxygen isotope fractionation factors are: 4.74 ± 0.22 at 750°C, 3.77 ± 0.23 at 850°C and 3.36 ± 0.21 at 950°C. These values compare well with calculations based on the experimental calcite-albite data of CLAYTON et al. (1989) and the CO 2-calcite fractionation factors determined by CHACKO et al. (1991) and ROSENBAUM (1994). Our results, thus, provide independent support for the high pressure calcite-mineral fractionation factors of CLAYTON et al. (1989). An estimate of the reduced partition function ratio for albite derived from the CO 2-albite data using the reduced partition function ratio of CO 2 ( RICHET et al., 1977) differs by ~2% from that proposed by CLAYTON and KIEFFER (1991). CO 2-albite exchange experiments of relatively short duration give disequilibrium fractionation factors. Oxygen diffusion coefficients calculated from these experiments, however, are comparable with previous determinations of oxygen diffusion in feldspars under nominally anhydrous conditions and support the hypothesis that isotopic exchange is diffusion-controlled. Equilibrium oxygen isotope fractionation factors determined for CO 2-albitic glass are identical within experimental uncertainty to those determined for CO 2-crystalline albite, thus indicating that fractionation between crystalline and glassy albite is unresolvable at the 0.1 %. level. In contrast, additional measurements of oxygen partitioning between CO 2 and silica glass confirm the results of STOLPER and EPSTEIN (1991) and imply that at equilibrium silica glass is 18O

  11. Leaf cellulose δD and δ18O trends with elevation differ in direction among co-occurring, semiarid plant species

    USGS Publications Warehouse

    Terwilliger, Vallery J.; Betancourt, Julio L.; Leavitt, Steven W.; Van De Water, Peter K.

    2002-01-01

    The potential to reconstruct paleoclimate from analyses of stable isotopes in fossil leaf cellulose could be enhanced by adequate calibration. This potential is likely to be particularly great in mid-latitude deserts, where a rich store of fossil leaves is available from rodent middens. Trends in ??D and ??18O of leaf cellulose were examined for three species growing across climatic gradients caused by elevation and slope aspect in southeastern Utah, USA. The species differed in morphology (Pinus edulis vs. Yucca glauca), photosynthetic pathway (C3 Y. glauca vs. CAM Yucca baccata) or both (P. edulis vs. Y. baccata). The ??DLCN (leaf cellulose nitrate) and ??18OLC (leaf cellulose) values of P. edulis decreased with elevation. Stem water ??D values either increased (in spring) or did not change with elevation (in summer). Needle water ??D values usually decreased with elevation and differed greatly with leaf age. These results suggest that ?? cellulose values of P. edulis record the effects of climate on the isotopic composition of leaf water but not climate effects on meteoric water. In contrast to P. edulis, ??DLCN values of Y. glauca increased with elevation. The ??18O LC values ofc Y. glauca also increased with elevation but less significantly and only on south-facing slopes. The ?? cellulose values in both P. edulis and Y. glauca were most significantly related to changes in temperature, although temperature and precipitation were negatively correlated in the study area. Where all three species co-occurred, their ??DLCN values differed but their ??18O LC values were the same. The disparity in ??DLCN between Y. baccata and the other species corresponds to differences in biochemical fractionations associated with photosynthetic pathway. Biochemical fractionations may also contribute to differences between the two C3 species. Knowledge of factors affecting responses of individual plant species to environment may be required to infer climate from ??DLCN and ??18OLC

  12. Reconstructing early Cenozoic topography of the North American Cordillera from authigenic mineral δ18O-Moving beyond Rayleigh distillation

    NASA Astrophysics Data System (ADS)

    Feng, R.; Poulsen, C. J.; Werner, M.

    2012-12-01

    Elevation reconstructions of the North American Cordillera, inferred from the oxygen isotope composition (δ18O) of terrestrial sediments, suggest fast north-to-south migration of topography in the early Cenozoic (pre-49Ma to 28Ma). This interpretation assumes that sediments accurately record the δ18O of ancient precipitation, and that the isotopic fractionation of precipitating air masses are represented by a Rayleigh distillation model (RDM) with a single moisture source from the Pacific. In this study, we test this latter assumption using a global climate model with isotope tracking capability (ECHAM5-wiso). Four Eocene experiments are performed, with topography inferred from proxy δ18O, to investigate how southward propagation of topography affects the climate and δ18O of precipitation over North America. Our ECHAM5-wiso simulations, with prescribed topography scenarios, predict precipitation δ18O distributions that are consistent with maps of temporally binned proxy δ18O. At face value, these simulations confirm the paleoelevation inferences based on proxy δ18O. However, detailed analyses of our GCM results demonstrate that in response to surface uplift, precipitation δ18O is substantially affected by precipitation processes and climate changes that are not captured by Rayleigh distillation. These processes include shifts in local precipitation type between convective and large-scale and between rain and snow; intensification of low-level vapor recycling particularly on leeward slopes; changes in wind direction and moisture source; and changes in upward mixing intensity. Each of these processes can have large (≥ 2‰) influences on precipitation δ18O that are comparable in magnitude to surface uplift of hundreds to thousands of meters. In many regions, these processes compensate each other, explaining the apparent agreement between ECHAM5-wiso and proxy δ18O and, more broadly, between Rayleigh distillation estimates and observed δ18O

  13. First results from a novel methodological approach for δ18O analyses of sugars using GC-Py-IRMS

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Saurer, Matthias; Tuthorn, Mario; Rinne, Katja; Werner, Roland; Juchelka, Dieter; Siegwolf, Rolf; Glaser, Bruno

    2013-04-01

    statistically not significant) for δ18O of sucrose (n = 7) and bulk δ18O (R = 0.62), δ13C of sucrose (R = 0.55) and maximum day temperature (R = 0.58) and negative correlation for δ18O of sucrose and cloudiness (R = -0.80). This highlights the great potential of compound-specific δ18O analyses of sucrose for (paleo-) plimate studies. Zech, M., Glaser, B., 2009. Compound-specific d18O analyses of neutral sugars in soils using GC-Py-IRMS: problems, possible solutions and a first application. RCM 23, 3522-3532. Zech, M., Tuthorn, M., Glaser, B., Amelung, W., Huwe, B., Zech, W., Zöller, L., Löffler, J., 2013. Natural abundance of 18O of sugar biomarkers in topsoils along a climate transect over the Central Scandinavian Mountains, Norway. JPNSS, in press. Zech, M., Werner, R., Juchelka, D., Kalbitz, K., Buggle, B., Glaser, B., 2012. Absence of oxygen isotope fractionation/exchange of (hemi-) cellulose derived sugars during litter decomposition. Org Geochem 42, 1470-1475.

  14. Speleothem calcite farmed in situ: Modern calibration of δ 18O and δ 13C paleoclimate proxies in a continuously-monitored natural cave system

    NASA Astrophysics Data System (ADS)

    Tremaine, Darrel M.; Froelich, Philip N.; Wang, Yang

    2011-09-01

    changes in cave ventilation due to dissolution fissures and ceiling collapse creating and plugging ventilation windows. Farmed calcite δ 18O was found to exhibit a +0.82 ± 0.24‰ offset from values predicted by both theoretical calculations and laboratory-grown inorganic calcite. Unlike δ 13C CaCO3, oxygen isotopes showed no ventilation effects, i.e. Δδ 18O CaCO3 appears to be a function of growth temperature only although we cannot rule out a small effect of (unmeasured) gradients in relative humidity (evaporation) accompanying ventilation. Our results support the findings of other cave investigators that water-calcite fractionation factors observed in speleothem calcite are higher that those measured in laboratory experiments. Cave and laboratory calcite precipitates may differ mainly in the complex effects of kinetic isotope fractionation. Combining our data with other recent speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments: 1000lnα=16.1103T-1-24.6 with a fractionation temperature dependence of Δδ 18O/Δ T = -0.177‰/°C, lower than the currently accepted -0.206‰/°C.

  15. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates.

  16. Influence of glacial meltwater on water balance processes of two Tibetan lakes indicated by δ18O

    NASA Astrophysics Data System (ADS)

    Gao, J.; Itpcas

    2011-12-01

    δ18O measurements based on systematic sampling and isotopic modeling have been adopted to study the affects of glacial meltwater in two lake basins (Lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, δ18O values in precipitation and lake water display a seasonal fluctuation in both lakes. Spatially, δ18O values in the two lake basins increase by 10% from the termini of glaciers to the lake shores, by about 1% from the lakeshores to the lake center, by 0.4% from the water surface to depth in these lakes. The obvious annual δ18O variations indicate that lake water mixes sufficiently in a short time. Model results show that glacial meltwater is an important factor on lake water balance process. Equilibrium δ18O values decrease 0.8% for Yamdrok-tso Lake and 0.6% for Puma Yum-tso Lake when contributions of glacial meltwater to these lakes shrink by 60%. δ18O ratios increase rapidly during the initial stages and take a relatively longer time to approach the equilibrium value. The modeled results also show that the surface lake water temperature has a minimal impact on this process.
    Dr. Jing Gao

  17. Determination of the delta(18O/16O)of Water: RSIL Lab Code 489

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler

    2008-01-01

    The purpose of the technique described by the Reston Stable Isotope Laboratory (RSIL) lab code 489 is to present a method to determine the delta(180/160), abbreviated as delta-180, of water. This delta-18O measurement of water also is a component of National Water Quality Laboratory (NWQL in USGS) schedules 1142 and 1172. Water samples are loaded into glass sample containers on a vacuum manifold to equilibrate gaseous CO2 at constant temperature (25 deg C) with water samples. After loading water samples on the vacuum manifold, air is evacuated through capillary to avoid evaporation, and CO2 is added. The samples are shaken to increase the equilibration rate of water and CO2. When isotopic equilibrium has been attained, an aliquot of CO2 is extracted sequentially from each sample container, separated from water vapor by means of a dry ice trap, and introduced into a dual-inlet isotope-ratio mass spectrometer (DI-IRMS) for determination of the delta-18O value. There is oxygen isotopic fractionation between water and CO2, but it is constant at constant temperature. The DI-IRMS is a DuPont double-focusing mass spectrometer. It has a double collector. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other ion beams are collected in the front collector. The instrument is capable of measuring mass/charge (m/z) 44 and 45 or 44 and 46 by changing the ion-accelerating voltage under computer control. The ion beams from these m/z values are as follows: m/z 44=CO2=12C16O16O, m/z 45=CO2=13C16O16O primarily, and m/z 46 = CO2=12C16O18O primarily. The data acquisition and control software calculates delta-18O values.

  18. Using 16O/18O to Determine the Evolutionary History of the R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey; Geballe, Tom; Welch, Douglas; Tisserand, Patrick

    2013-08-01

    Of the Galactic hydrogen-deficient carbon (HdC) and R Coronae Borealis (RCB) stars for which oxygen isotopic ratios can be measured, all of them show 16O/18O < 5, values that are orders of magnitude lower than measured in other stars (the Solar value is 500). This suggests that most if not all HdC and RCB stars are highly enriched in 18O. This is an important clue in determining the evolutionary pathways of HdC and RCB stars, for which two models have been proposed: the double degenerate (white dwarf (WD) merger), and the final helium-shell flash (FF). No overproduction of 18O is expected in the FF scenario. However, some RCB stars also show characteristics, such as 13C and Lithium, seen in FF stars. Therefore, we are conducting a survey all the RCB stars in the LMC and SMC for the characteristics of a WD merger or a FF. Most of the stars have been surveyed for 13C already and we plan to survey them for Lithium in the future. This proposal is to use Gemini/Flamingos-2 to survey all the stars, which are cool enough to show CO bands, for the presence of 18O near 2.3 micron. The Magellanic Clouds provide an unbiased, relatively complete sample of RCB stars which are at a known distance so their bolometric luminosities can be used in our stellar evolution models. This survey, combined with our models, will reveal the true fraction of RCB stars formed by each of the proposed scenarios.

  19. The D/H and ^18^O/^16^O ratios in water from comet P/Halley.

    NASA Astrophysics Data System (ADS)

    Eberhardt, P.; Reber, M.; Krankowsky, D.; Hodges, R. R.

    1995-10-01

    From a detailed evaluation of the ion currents measured by the Neutral Mass Spectrometer (NMS) on the Giotto spaceprobe in the 17.5amu/e to 21.5amu/e mass range inside the contact surface of P/Halley we derive the cometary ion densities for masses 18amu/e to 21amu/e. From these we calculate the deuterium and ^18^O abundances in the H_3_O^+^ ion to be (D/H)_H_3_O^+^_=(2.55+/-0.18)x10^-4^ and ^18^O/^16^O=(2.13+/-0.18)x10^-3^. The errors are 3σ-errors of the means of eight measurements at different distances. These results are in agreement with the preliminary evaluation (Eberhardt et al. 1987a) but the errors are considerably smaller. In a detailed discussion we show that for deuterium the isotope fractionation between the H_3_O^+^ ion and the H_2_O gas in the coma is not negligible, mainly due to the isotope exchange reaction H_3_O^+^+HDO<->H_2_DO^+^+H_2_O. Based on extensive calculations we obtain for the deuterium abundance in the water of the coma (D/H)_H_2_O_=(3.02+/-0.22)x10^-4^. We show that no significant D/H fractionation between the H_2_O in the coma and the ice in the nucleus is expected. We also apply our fractionation correction to the D/H determination in the H_3_O^+^ ion based on the measurements of the Ion Mass Spectrometer (IMS) (Balsiger et al. 1995) which agree within errors with our results. From the independent results of the NMS and IMS we obtain as best value for the isotopic composition in the H_2_O and H_2_O-ice of P/Halley the values (D/H)_H_2_O_=(3.16+/-0.34)x10^-4^ and (^18^O/^16^O)_H_2_O_=(2.03+/-0.15)x10^-3^. The oxygen isotopic composition in P/Halley is identical with the average solar system value. Deuterium in P/Halley's water is enriched by a factor of 12 relative to the protosolar D/H ratio and by a factor of 2 relative to the terrestrial D/H. We show that this strong deuterium enrichment cannot be explained by processes in the solar nebula such as the H_2_O+HD<->HDO+H_2_ isotope exchange reaction. The deuterium enrichment in P

  20. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange.

    PubMed

    Zheng, Yong-Fei

    2016-01-01

    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.

  1. Laser Fluorination of Meteorites--Small Sample Analysis of delta17O and delta18O

    NASA Astrophysics Data System (ADS)

    Franchi, I. A.; Akagi, T.; Pillinger, C. T.

    1992-07-01

    The importance of oxygen isotope analysis in the field of meteoritics has been firmly established over the past 15 to 20 years, almost exclusively by Clayton and co-workers at the University of Chicago. The ability of the now classical oxygen three isotope plot to distinguish between fractionation and mixing processes has meant that such analyses are particularly powerful in helping to establish the generic relationships between different classes of meteorites. Conventionally, oxygen gas is usually extracted from the samples in nickel, or similar, reaction bombs at temperatures up to 700 degrees C in the presence of a powerful oxidizing reagent. Due to the nature of these experiments relatively large samples are required (35 mg or more) and the maximum temperatures used make analyses of more refractory minerals difficult if not dangerous. In the past two years a number of laboratories have been developing laser fluorination techniques. Such a technique greatly helps to reduce the blank, allow higher reaction temperatures, and speed up the reaction times, resulting in smaller sample size requirements, and potentially in situ analysis. However, to date this has only been applied to delta^18O analyses where the oxygen is analysed as CO2. We report here the development of a laser fluorination technique capable of running small samples for delta^17O and delta^18O using oxygen gas. The laser used is a 25W CO2 laser (10.6 micrometer radiation) and the reagent is ClF3. The sample size requirements are currently 0.5 to 1.0 mg. Replicate analyses of NBS-28 quartz has yielded precision on delta^18O and delta^17O of +-0.15 and +-0.17o/oo respectively and with other terrestrial samples define the expected fractionation line. The results of the first application of this technique to meteorite samples are shown in the figures. The LL6 Appley Bridge has been analyzed four times (Fig. 1a) giving mean values for delta^17O and delta^18O of +3.94o/oo (+-0.14) and +4.99o/oo (+-0

  2. Temporal and spatial distributions of δ18O and δ2H in precipitation in Romania

    NASA Astrophysics Data System (ADS)

    Nagavciuc, Viorica; Bădăluță, Carmen-Andreea; Perșoiu, Aurel

    2015-04-01

    Stable isotope ratios of meteoric water have an important role in climatic, paleoclimatic, hydrological and meteorological studies. While such data are available from most of Europe, so far, in Romania (East Central Europe), no systematic study of the stable isotopic composition of precipitation exists. In this context, the aim of this study is to analyze the isotopic composition of rainwater, its temporal and spatial distribution, the identification of the main factors influencing these variations and the creation of the first map of spatial distribution of stable isotopes in precipitation in Romania. Between March 2012 and March 2014 we have collected monthly samples from 22 stations in Romania, which were subsequently analyzed for their δ18O and δ2H at the Stable Isotopes Laboratory, Stefan cel Mare University, Suceava, Romania. Precipitation in W and NW Romania plot along the GMWL, while those in the East are slightly below it, on an evaporative trend. The LMWL for Romania is defined as δ2H=7,27*δ18O + 6,92. The W-E gradient in the distribution of δ18O and δ2H are less marked than the N-S ones, with local influences dominating in areas of strong evaporation (intramountain basins, rain-shadow areas etc). In SW, and especially in autumn and winter, Meditteranean cyclones carry moisture from the Eastern Mediterranean, the δ18O and δ2H values in precipitation in the area plotting between the GMWL and the Eastern Mediterranean Meteoric Water Line. The isotopic composition of rainwater in Romania correlates well with air temperature, and is influenced to a lesser extent by other factors such as the amount of precipitation, topography configuration, the effect of continentalism and season of the year.

  3. The influence of drinking water on the deltaD and delta18O values of house sparrow plasma, blood and feathers.

    PubMed

    Wolf, Nathan; Bowen, Gabriel J; Del Rio, Carlos Martinez

    2011-01-01

    We investigated the relationships between the δdeuterium (δD) and the δ(18)oxygen (δ(18)O) of drinking water and the δD and δ(18)O of blood plasma, red blood cells and feathers in house sparrows (Passer domesticus) fed on diets with identical hydrogen and oxygen isotopic compositions and five isotopically distinct drinking water treatments. We expected and, with only one exception ((18)O in blood plasma), found linear relationships between the δD and δ(18)O values of drinking water and those of bird tissues. The slopes of these relationships, which estimate the percentage contributions of drinking water to the tissue isotopic signatures, were lower than those of previous studies. We found significant differences in the δD and δ(18)O values of feathers, red blood cells and plasma solids. In feathers and red blood cells, δD and δ(18)O values were linearly correlated. Our results have three implications for isotopic field studies: (1) if the isotopic composition of drinking water differs from that of food, its effect on tissue isotope values can confound the assignment of animals to a site of origin; (2) comparisons of the δD and δ(18)O values of different tissues must account for inter-tissue discrimination factors; and (3) δD/δ(18)O linear relationships are probably as prevalent in animal systems as they are in geohydrological systems. These relationships may prove to be useful tools in animal isotopic ecology.

  4. Mg/Ca and δ18O in the calcite of benthic foraminifera: does size matter?

    NASA Astrophysics Data System (ADS)

    de Nooijer, Lennart; Bijma, Jelle; -Jan Reichart, Gert; Hathorne, Ed

    2010-05-01

    Mg/Ca and del-18O are popular proxies for past sea water temperatures, ice volume and, together, salinity. The biological control that foraminifera have over calcification results in precipitation of calcium carbonate that has an isotope and element composition that is very different from those of inorganically precipitated calcium carbonates. Indications for an effect of ontogeny (i.e. size of a specimen) on the fractionation of oxygen isotopes are contradictory, while for the incorporation of most (trace) elements, data are lacking. The causes of size-based variability in element incorporation and isotope fractionation need to be understood and quantified in order to reliably use them as paleoproxies. In this study, we present Mg/Ca and oxygen isotope data from cultured specimens of the benthic foraminifer Ammonia tepida. When asexual reproduction takes place in this species, 50-300 genetically identical juveniles (i.e. clones) are produced. These juveniles are cultured at constant temperature, carbonate chemistry, salinity, etc to determine inter- and intra-specimen variability in Mg/Ca, Ba/Ca and Sr/Ca. From the same groups of clones, del-18O was determined from specimens with different sizes. Results show that the variability differs greatly between the analysed elements (e.g. relatively constant for Sr and Ba, variable for Mg) and isotopes, underscoring the need for a biological understanding of foraminiferal calcification pathways.

  5. Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2

    PubMed Central

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B.; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-01-01

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 (18O) and carbon-13 (13C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of 18O/16O and 13C/12C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of 18O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of 18O in breath CO2 were manifested in individuals without the infections. In contrast, the 13C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to 13C-enriched glucose uptake, whereas a distinguishable change of breath 13C/12C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the 18O and 13C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath 12C18O16O and 13C16O16O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen’s physiology along with isotope-specific non-invasive diagnosis of the infection. PMID:26039789

  6. Forward modeling of δ18O in Andean ice cores

    NASA Astrophysics Data System (ADS)

    Hurley, J. V.; Vuille, M.; Hardy, D. R.

    2016-08-01

    Tropical ice core archives are among the best dated and highest resolution from the tropics, but a thorough understanding of processes that shape their isotope signature as well as the simulation of observed variability remain incomplete. To address this, we develop a tropical Andean ice core isotope forward model from in situ hydrologic observations and satellite water vapor isotope measurements. A control simulation of snow δ18O captures the mean and seasonal trend but underestimates the observed intraseasonal variability. The simulation of observed variability is improved by including amount effects associated with South American cold air incursions, linking synoptic-scale disturbances and monsoon dynamics to tropical ice core δ18O. The forward model was calibrated with and run under present-day conditions but can also be driven with past climate forcings to reconstruct paleomonsoon variability. The model is transferable and may be used to render a (paleo)climatic context at other ice core locations.

  7. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  8. /sup 18/O + /sup 12/C fusion-evaporation reaction

    SciTech Connect

    Heusch, B; Beck, C; Coffin, J P; Freeman, R M; Gallmann, A; Haas, F; Rami, F; Wagner, P; Alburger, D E

    1980-01-01

    A study of the /sup 18/O + /sup 12/C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus /sup 30/Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model.

  9. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  10. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter.

    PubMed

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-06-09

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to (12)C to enrich in the released CO2 while (13)C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance.

  11. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter

    PubMed Central

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-01-01

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to 12C to enrich in the released CO2 while 13C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance. PMID:26056012

  12. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter

    NASA Astrophysics Data System (ADS)

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-06-01

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to 12C to enrich in the released CO2 while 13C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance.

  13. Insulin-Like Growth Factor-1 Preserves Salivary Gland Function After Fractionated Radiation

    SciTech Connect

    Limesand, Kirsten H.; Avila, Jennifer L.; Victory, Kerton; Chang, Hui-Hua; Shin, Yoon Joo; Grundmann, Oliver; Klein, Rob R.

    2010-10-01

    Purpose: Radiotherapy for head-and-neck cancer consists of fractionated radiation treatments that cause significant damage to salivary glands leading to chronic salivary gland dysfunction with only limited prevention and treatment options currently available. This study examines the feasibility of IGF-1 in preserving salivary gland function following a fractionated radiation treatment regimen in a pre-clinical model. Methods and Materials: Mice were exposed to fractionated radiation, and salivary gland function and histological analyses of structure, apoptosis, and proliferation were evaluated. Results: In this study, we report that treatment with fractionated doses of radiation results in a significant level of apoptotic cells in FVB mice after each fraction, which is significantly decreased in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Salivary gland function is significantly reduced in FVB mice exposed to fractionated radiation; however, myr-Akt1 transgenic mice maintain salivary function under the same treatment conditions. Injection into FVB mice of recombinant insulin-like growth factor-1 (IGF-1), which activates endogenous Akt, suppressed acute apoptosis and preserved salivary gland function after fractionated doses of radiation 30 to 90 days after treatment. FVB mice exposed to fractionated radiation had significantly lower levels of proliferating cell nuclear antigen-positive salivary acinar cells 90 days after treatment, which correlated with a chronic loss of function. In contrast, FVB mice injected with IGF-1 before each radiation treatment exhibited acinar cell proliferation rates similar to those of untreated controls. Conclusion: These studies suggest that activation of IGF-1-mediated pathways before head-and-neck radiation could modulate radiation-induced salivary gland dysfunction and maintain glandular homeostasis.

  14. A new factor in the blood of patients with peptic ulcer. Distribution in blood fractions.

    PubMed

    Necheles, H; Geisel, A; Berg, M; Jefferson, N C

    1975-08-01

    Previous work on a factor in the blood of patients with peptic ulcer which contracts smooth muscle was confirmed and the work extended to investigation of the activity of blood fractions. Whole heparinized blood and its fractions were tested on a strip of guinea pig ileum and height of contraction and latent period were used as criteria of activity. Whole heparinized blood of ulcer patients had significantly higher activity than that of normal controls. Differences between the fractions of ulcer patients and controls were less significant. With the lysed buffy coat, however, while the differences between the height of contraction between the groups did not differ statistically, the speed of the reaction (shorter latent period) was significantly greater in the ulcer patients. The cellular alterations causing this response are unknown.

  15. Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal RNA genes: identification of a species-dependent initiation factor.

    PubMed Central

    Mishima, Y; Financsek, I; Kominami, R; Muramatsu, M

    1982-01-01

    Mouse and human cell extracts (S100) can support an accurate and efficient transcription initiation on homologous ribosomal RNA gene (rDNA) templates. The cell extracts were fractionated with the aid of a phosphocellulose column into four fractions (termed A, B, C and D), including one containing a major part of the RNA polymerase I activity. Various reconstitution experiments indicate that fraction D is an absolute requirement for the correct and efficient transcription initiation by RNA polymerase I on both mouse and human genes. Fraction B effectively suppresses random initiation on these templates. Fraction A appears to further enhance the transcription which takes place with fractions C and D. Although fractions A, B and C are interchangeable between mouse and human extracts, fraction D is not; i.e. initiation of transcription required the presence of a homologous fraction D for both templates. The factor(s) in fraction D, however, is not literally species-specific, since mouse D fraction is capable of supporting accurate transcription initiation on a rat rDNA template in the presence of all the other fractions from human cell extract under the conditions where human D fraction is unable to support it. We conclude from these experiments that a species-dependent factor in fraction D plays an important role in the initiation of rDNA transcription in each animal species. Images PMID:7177852

  16. Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: Laboratory results and implications for forensics and natural attenuation studies

    USGS Publications Warehouse

    Sturchio, N.C.; Böhlke, J.K.; Beloso, A.D.; Streger, S.H.; Heraty, L.J.; Hatzinger, P.B.

    2007-01-01

    Perchlorate is a widespread environmental contaminant having both anthropogenic and natural sources. Stable isotope ratios of O and Cl in a given sample of perchlorate may be used to distinguish its source(s). Isotopic ratios may also be useful for identifying the extent of biodegradation of perchlorate, which is critical for assessing natural attenuation of this contaminant in groundwater. For this approach to be useful, however, the kinetic isotopic fractionations of O and Cl during perchlorate biodegradation must first be determined as a function of environmental variables such as temperature and bacterial species. A laboratory study was performed in which the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial strains (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10??C and 22??C with acetate as the electron donor. Perchlorate was completely reduced by both strains within 280 h at 22??C and 615 h at 10??C. Measured values of isotopic fractionation factors were ??18O = -36.6 to -29.0??? and ??37Cl = -14.5 to -11.5???, and these showed no apparent systematic variation with either temperature or bacterial strain. An experiment using 18O-enriched water (??18O = +198???) gave results indistinguishable from those observed in the isotopically normal water (??18O = -8.1???) used in the other experiments, indicating negligible isotope exchange between perchlorate and water during biodegradation. The fractionation factor ratio ??18O/??37Cl was nearly invariant in all experiments at 2.50 ?? 0.04. These data indicate that isotope ratio analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (??18O/??37Cl) also has significant implications for forensic studies. ?? 2007 American Chemical Society.

  17. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  18. A dipseudoacid, C 16H 18O 6

    NASA Astrophysics Data System (ADS)

    Liskin, Dmitriy V.; Valente, Edward J.

    2008-04-01

    Pseudoacids, or cyclic oxocarboxylic acids commonly form non-planar, complementary and non-cooperative, dimeric hydrogen-bonds. A dehydration resistant arylpyran dipseudoacid, C 16H 18O 6, has been synthesized and characterized. Crystals of trans-4,4,8,8-tetramethyl-3,7-dihydroxy-1,2,3,4,5,6,7,8-octahydro-2,6-dioxaanthracen-1,5-dione occur in the monoclinic system and form linear hydrogen-bonded chains; it has an elevated melting point without decomposition at 574.6 K.

  19. Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau

    NASA Astrophysics Data System (ADS)

    Bershaw, John; Saylor, Joel E.; Garzione, Carmala N.; Leier, Andrew; Sundell, Kurt E.

    2016-12-01

    Environmental parameters that influence the isotopic composition of meteoric water (δ18O and δD) are well characterized up the windward side of mountains, where orographic precipitation results in a predictable relationship between the isotopic composition of precipitation and elevation. The topographic and climatic evolution of the Andean Plateau and surrounding regions has been studied extensively by exploiting this relationship through the use of paleowater proxies. However, interpretation on the plateau itself is challenged by a poor understanding of processes that fractionate isotopes during vapor transport and rainout, and by the relative contribution of unique moisture sources. Here, we present an extensive dataset of modern surface water samples for the northern Andean Plateau and surrounding regions to elucidate patterns and causes of isotope fractionation in this continental environment. These data show a progressive increase in δ18O of stream water west of the Eastern Cordillera (∼1‰/70 km), almost identical to the rate observed across the Tibetan Plateau, attributed to a larger fraction of recycled water in precipitation and/or increased evaporative enrichment downwind. This may lead to underestimates of paleoelevation, particularly for sites deep into the rainshadow of the Eastern Cordilleran crest. That said, elevation is a primary control on the isotopic composition of surface waters across the entire Andean Plateau and its flanks when considering the most negative δ18O values, highlighting the need for sufficiently large datasets to distinguish minimally evaporated samples. There is a general increase in δ18O on the plateau from north to south, concomitant with an increase in aridity and decrease in convective moistening (amount effect). Lastly, stable isotope and seasonal precipitation patterns suggest easterlies provide the vast majority of moisture that falls as precipitation across the Andean Plateau and Western Cordillera, from Peru to

  20. Probabilistic sequence alignment of Late Pleistocene benthic δ18O data

    NASA Astrophysics Data System (ADS)

    Lawrence, C.; Lin, L.; Lisiecki, L. E.; Stern, J.

    2013-12-01

    The stratigraphic alignment of ocean sediment cores plays a vital role in paleoceanographic research because it is used to develop mutually consistent age models for climate proxies measured in these cores. The most common proxy used for alignment is the The stratigraphic alignment of ocean sediment cores plays a vital role in paleoceanographic research because it is used to develop mutually consistent age models for climate proxies measured in these cores. The most common proxy used for alignment is the δ18O of calcite from benthic or planktonic foraminifera because a large fraction of δ18O variance derives from the global signal of ice volume. To date, alignment has been performed either by manual, qualitative comparison or by deterministic algorithms (Martinson, Pisias et al. Quat. Res. 27 1987; Lisiecki and Lisiecki Paleoceanography 17, 2002; Huybers and Wunsch, Paleoceanography 19, 2004). Here we present a probabilistic sequence alignment algorithm which provides 95% confidence bands for the alignment of pairs of benthic δ18O records. The probabilistic algorithm presented here is based on a hidden Markov model (HMM) (Levinson, Rabiner et al. Bell Systems Technical Journal, 62,1983) similar to those that have been used extensively to align DNA and protein sequences (Durbin, Eddy et al. Biological Sequence Analysis, Ch. 4, 1998). However, here the need to the alignment of sequences stems from expansion and/or contraction in the records due to changes in sedimentation rates rather than the insertion or deletion of residues. Transition probabilities that are used in this HMM to model changes in sedimentation rates are based on radiocarbon estimates of sedimentation rates. The probabilistic algorithm considers all possible alignments with these predefined sedimentation rates. Exact calculations are completed using dynamic programming recursions. The algorithm yields the probability distributions of the age at each point in the record, which are probabilistically

  1. Comparisons of observed and modelled lake δ18O variability

    NASA Astrophysics Data System (ADS)

    Jones, Matthew D.; Cuthbert, Mark O.; Leng, Melanie J.; McGowan, Suzanne; Mariethoz, Gregoire; Arrowsmith, Carol; Sloane, Hilary J.; Humphrey, Kerenza K.; Cross, Iain

    2016-01-01

    With the substantial number of lake sediment δ18O records published in recent decades, a quantitative, process-based understanding of these systems can increase our understanding of past climate change. We test mass balance models of lake water δ18O variability against five years of monthly monitoring data from lakes with different hydrological characteristics, in the East-Midlands region of the UK, and the local isotope composition of precipitation. These mass balance models can explain up to 74% of the measured lake water isotope variability. We investigate the sensitivity of the model to differing calculations of evaporation amount, the amount of groundwater, and to different climatic variables. We show there is only a small range of values for groundwater exchange flux that can produce suitable lake water isotope compositions and that variations in evaporation and precipitation are both required to produce recorded isotope variability in lakes with substantial evaporative water losses. We then discuss the potential for this model to be used in a long-term, palaeo-scenario. This study demonstrates how long term monitoring of a lake system can lead to the development of robust models of lake water isotope compositions. Such systematics-based explanations allow us to move from conceptual, to more quantified reconstructions of past climates and environments.

  2. Glacial-interglacial shifts in global and regional precipitation δ18O

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Lechler, A.; Pausata, F. S. R.; Fawcett, P. J.; Gleeson, T.; Cendón, D. I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; Welker, J. M.; Werner, M.; Yoshimura, K.

    2015-03-01

    Previous analyses of past climate changes have often been based on site-specific isotope records from speleothems, ice cores, sediments and groundwaters. However, in most studies these dispersed records have not been integrated and synthesized in a comprehensive manner to explore the spatial patterns of precipitation isotope changes from the last ice age to more recent times. Here we synthesize 88 globally-distributed groundwater, cave calcite, and ice core isotope records spanning the last ice age to the late-Holocene. Our data-driven review shows that reconstructed precipitation δ18O changes from the last ice age to the late-Holocene range from -7.1‰ (ice age δ18O < late-Holocene δ18O) to +1.8‰ (ice age δ18O > late-Holocene δ18O) with wide regional variability. The majority (75%) of reconstructions have lower ice age δ18O values than late-Holocene δ18O values. High-magnitude, negative glacial-interglacial precipitation δ18O shifts (ice age δ18O < late-Holocene δ18O by more than 3‰) are common at high latitudes, high altitudes and continental interiors. Conversely, lower-magnitude, positive glacial-interglacial precipitation δ18O shifts (ice age δ18O > late-Holocene δ18O by less than 2‰) are most common along subtropical coasts. Broad, global patterns of glacial-interglacial precipitation δ18O shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles. Further, to complement our synthesis of proxy-record precipitation δ18O, we compiled isotope enabled general circulation model simulations of recent and last glacial maximum climate states. Simulated precipitation δ18O from five general circulation models show better inter-model and model-observation agreement in the sign of δ18O changes from the last ice age to present day in temperate and polar regions than in the tropics. Further model precipitation

  3. Quantitative analysis of two-neutron correlations in the 12C(18O,16O)14C reaction

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; Cappuzzello, F.; Bondì, M.; Carbone, D.; Garcia, V. N.; Gargano, A.; Lenzi, S. M.; Lubian, J.; Agodi, C.; Azaiez, F.; De Napoli, M.; Foti, A.; Franchoo, S.; Linares, R.; Nicolosi, D.; Niikura, M.; Scarpaci, J. A.; Tropea, S.

    2013-11-01

    The 12C(18O,16O)14C and 12,13C(18O,17O)13,14C reactions are studied at 84 MeV. Mass distributions and energy spectra of the ejectiles are measured, indicating the selectivity of these reactions to populate two- and one-neutron configurations in the states of the residual nucleus, respectively. The measured absolute cross-section angular distributions are analyzed by exact finite range coupled reaction channel calculations based on a parameter free double-folding optical potential. The form factors for the (18O,16O) reaction are extracted within an extreme cluster and independent particles scheme with shell-model-derived coupling strengths. The results show that the measured cross sections are accurately described for the first time without the need for any arbitrary scaling factor. The (18O,16O) reaction is thus found to be a powerful tool for quantitative spectroscopic studies of pair configurations in nuclear states.

  4. Targeting erythrocyte carbonic anhydrase and 18O-isotope of breath CO2 for sorting out type 1 and type 2 diabetes

    PubMed Central

    Ghosh, Chiranjit; Mandal, Santanu; Banik, Gourab D.; Maity, Abhijit; Mukhopadhyay, Prabuddha; Ghosh, Shibendu; Pradhan, Manik

    2016-01-01

    The inability to envisage the acute onset and progression of type 1 diabetes (T1D) has been a major clinical stumbling block and an important area of biomedical research over the last few decades. Therefore there is a pressing need to develop a new and an effective strategy for early detection of T1D and to precisely distinguish T1D from type 2 diabetes (T2D). Here we describe the precise role of the enzymatic activity of carbonic anhydrase (CA) in erythrocytes in the pathogenesis of T1D and T2D. We show that CA activities are markedly altered during metabolism of T1D and T2D and this facilitates to the oxygen-18 (18O) isotopic fractionations of breath CO2. In our observations, T1D exhibited considerable depletions of 18O-isotopes of CO2, whereas T2D manifested isotopic enrichments of 18O in breath CO2, thus unveiling a missing link of breath18O-isotopic fractionations in T1D and T2D. Our findings suggest that the alterations in erythrocytes CA activities may be the initial step of altered metabolism of T1D and T2D, and breath 18O-isotope regulated by the CA activity is a potential diagnostic biomarker that can selectively and precisely distinguish T1D from T2D and thus may open a potential unifying strategy for treating these diseases. PMID:27767104

  5. Constraining Holocene hydrological changes in the Carpathian-Balkan region using speleothem δ18O and pollen-based temperature reconstructions

    NASA Astrophysics Data System (ADS)

    Drăguşin, V.; Staubwasser, M.; Hoffmann, D. L.; Ersek, V.; Onac, B. P.; Veres, D.

    2014-07-01

    Here we present a speleothem isotope record (POM2) from Ascunsă Cave (Romania) that provides new data on past climate changes in the Carpathian-Balkan region from 8.2 ka until the present. This paper describes an approach to constrain the effect of temperature changes on calcite δ18O values in stalagmite POM2 over the course of the middle Holocene (6-4 ka), and across the 8.2 and 3.2 ka rapid climate change events. Independent pollen temperature reconstructions are used to this purpose. The approach combines the temperature-dependent isotope fractionation of rain water during condensation and fractionation resulting from calcite precipitation at the given cave temperature. The only prior assumptions are that pollen-derived average annual temperature reflects average cave temperature, and that pollen-derived coldest and warmest month temperatures reflect the range of condensation temperatures of rain above the cave site. This approach constrains a range of values between which speleothem δ18O changes should be found if controlled only by surface temperature variations at the cave site. Deviations of the change in δ18Ocspel values from the calculated temperature-constrained range of change are interpreted towards large-scale variability of climate-hydrology. Following this approach, we show that an additional ∼0.6‰ enrichment of δ18Oc in the POM2 stalagmite was caused by changing hydrological patterns in SW Romania across the middle Holocene, most likely comprising local evaporation from the soil and an increase in Mediterranean moisture δ18O. Further, by extending the calculations to other speleothem records from around the entire Mediterranean basin, it appears that all eastern Mediterranean speleothems recorded a similar isotopic enrichment due to changing hydrology, whereas all changes recorded in speleothems from the western Mediterranean are fully explained by temperature variation alone. This highlights a different hydrological evolution between

  6. Terahertz spectroscopy of ground state HD18O

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Miller, Charles E.; Kobayashi, Kaori; Matsushima, Fusakazu

    2016-10-01

    Terahertz absorption spectroscopy was employed to measure the ground state pure rotational transitions of the water isotopologue HD18O . A total of 105 pure rotational transitions were observed in the 0.5-5.0 THz region with ∼ 100 kHz accuracy for the first time. The observed positions were fit to experimental accuracy using the Euler series expansion of the asymmetric-top Hamiltonian together with the literature Microwave, Far-IR and IR data in the ground state and ν2 . The new measurements and predictions reported here support the analysis of astronomical observations by high-resolution spectroscopic telescopes such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or less are required for proper analysis of velocity resolved astrophysical data.

  7. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  8. A 16 ka lacustrine 18O record from High Himalaya reflecting the Indian Monsoon variability

    NASA Astrophysics Data System (ADS)

    Zech, M.; Tuthorn, M.; Zech, R.; Schlütz, F.; Zech, W.; Glaser, B.

    2012-04-01

    Establishing 18O records using organic matter of lake sediments is so far complicated due to analytical challenges. Based on the results obtained by a novel analytical method, the so-called compound-specific delta18O-analysis of hemicellulose monosaccharides (Zech, M. and Glaser, B., 2009. Rapid Communications in Mass Spectrometry 23, 3522-3532), we here present a first well-dated continuous late glacial lacustrine 18O record from High Himalayan lake sediments. Our 18O record, which reflects a coupled hydrological and thermal control, reveals the late glacial Indian Summer Monsoon variability depicting the Bölling/Alleröd and the Younger Dryas. Thus, it closely resembles the 18O records of South Asian speleothems and Greenland ice cores. We hence conclude that our novel 18O method enables regional paleoclimate reconstructions and that our 18O record highlights the previously suggested teleconnections between the Indian and the East Asian Monsoon and Greenland temperatures.

  9. δ2H and δ18O of human body water: a GIS model to distinguish residents from non-residents in the contiguous USA.

    PubMed

    Podlesak, David W; Bowen, Gabriel J; O'Grady, Shannon; Cerling, Thure E; Ehleringer, James R

    2012-06-01

    An understanding of the factors influencing the isotopic composition of body water is important to determine the isotopic composition of tissues that are used to reconstruct movement patterns of humans. The δ(2)H and δ(18)O values of body water (δ(2)H(bw) and δ(18)O(bw)) are related to the δ(2)H and δ(18)O values of drinking water (δ(2)H(dw) and δ(18)O(dw)), but clearly distinct because of other factors including the composition of food. Here, we develop a mechanistic geographical information system (GIS) model to produce spatial projections of δ(2)H(bw) and δ(18)O(bw) values for the USA. We investigate the influence of gender, food, and drinking water on the predicted values by comparing them with the published values. The strongest influence on the predicted values was related to the source of δ(2)H(dw) and δ(18)O(dw) values. We combine the model with equations that describe the rate of turnover to produce estimates for the time required for a non-resident to reach an isotopic equilibrium with a resident population.

  10. Oxygen and Chlorine Isotopic Fractionation During Microbial Reduction of Perchlorate

    NASA Astrophysics Data System (ADS)

    Beloso, A. D.; Sturchio, N. C.; Böhlke, J. K.; Streger, S. H.; Heraty, L. J.; Hatzinger, P. B.

    2006-12-01

    Perchlorate is a widespread environmental contaminant that has both anthropogenic and natural sources. Stable isotope ratios of O and Cl in perchlorate have been used recently to distinguish perchlorate of different origins. Isotopic ratios may also be useful for identifying the occurrence and extent of biodegradation of perchlorate in natural environments, information that is critical for assessing natural attenuation of this contaminant. For this approach to be useful, however, the extent of isotopic fractionation of both Cl and O by bacteria must be determined, and the influence of environmental variables on this process must be defined. During this laboratory study, the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial species (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10 °C and 22 °C with acetate as the electron donor. Perchlorate was completely degraded by both strains within 280 hr at 22 °C and 615 hr at 10 °C. Measured values of isotopic fractionation factors were ɛ18O = -36.6 to -29.0 ‰ and ɛ37Cl = -14.5 to - 11.5 ‰, and these showed no apparent systematic variation with either temperature or bacterial strain. One experiment using 18O-enriched water (δ18O = 200‰) gave results indistinguishable from those observed in isotopically normal water, indicating little or no isotopic exchange between perchlorate and water during biodegradation. The fractionation factor ratio ɛ18O/ɛ37Cl was nearly invariant in all experiments at 2.50 ± 0.04. These data indicate that isotopic analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (ɛ18O/ɛ37Cl) also has significance for forensic studies, as these data indicate that fractionation via biodegradation will not cause the reported mass-dependent Cl and O isotopic signatures of synthetic and natural perchlorate to overlap.

  11. A 240 ka terrestrial 18O record from a NE-Siberian loess-like permafrost paleosol-sequence based on a novel analytical 18O method

    NASA Astrophysics Data System (ADS)

    Tuthorn, M.; Zech, M.; Detsch, F.; Juchelka, D.; Kalbitz, K.; Mayr, C.; Werner, R.; Zech, R.; Zech, W.; Glaser, B.

    2012-04-01

    Recently, we developed a novel analytical tool for paleoclimate research based on compound-specific delta18O analyses of hemicellulose-derived monosaccharides using gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) (Zech and Glaser, 2009. Rapid Communications in Mass Spectrometry 23, 3522-3532). This method overcomes extraction, purification and hygroscopicity problems of so far applied cellulose methods based on TC/EA-IRMS delta18O analyses and allows establishing 18O records from sedimentary organic matter. Taking advantage of plant samples from a climate chamber experiment we can demonstrate that our novel method yields similar results like cellulose for plant material. Furthermore, we demonstrate using 18O-enriched water that the hydroxyl-groups of hemicelluloses are not prone to oxygen exchange reactions (Zech et al., 2012. Organic Geochemistry 42, 1470-1475). Ongoing methodological improvements will be shortly reported. By applying our novel 18O method to a loess-like permafrost paleosol-sequence we established a presumably 240 ka terrestrial 18O record for NE-Siberia. While the modern topsoil and the interglacial/-stadial paleosols reveal more positive delta18O values, the glacial paleosols reveal more negative delta18O values. The 18O variability is generally confirmed by a respective deltaD record which is based on sedimentary plant leafwax-derived n-alkanes. This finding suggests that our high-latitude 240 ka terrestrial 18O and D/H record from NE-Siberia reflects the temperature-dependent isotopic composition of precipitation and the increased isotopic enrichment of leaf-water during interglacials/-stadials.

  12. Population attributable fraction of modifiable risk factors for Alzheimer disease: A systematic review of systematic reviews

    PubMed Central

    Hazar, Narjes; Seddigh, Leila; Rampisheh, Zahra; Nojomi, Marzieh

    2016-01-01

    Background: Alzheimer’s disease (AD) is the most common type of dementia. Demonstrating the modifiable risk factors of AD can help to plan for prevention of this disease. The aim of the current review was to characterize modifiable cardiovascular risk factors of AD using existing data and determine their contribution in AD development in Iran and the world. Methods: The systematic search was done in Medline, Scopus, and Cochrane databases from inception to May 2014 to find systematic reviews or meta-analyses about association between AD and cardiovascular modifiable risk factors included diabetes, hypertension (HTN), physical inactivity, smoking, hypercholesterolemia, and overweight and obesity. The population attributable fraction (PAF) was calculated for these risk factors in Iran and the world. Results: Of 2651 articles, 11 were eligible for data extraction after assessing relevancy and quality. Diabetes mellitus (DM) type 2, smoking, physical inactivity, overweight and obesity were significantly associated with increased risk of AD. Physical inactivity with 22.0% and smoking with 15.7% had the highest PAF for AD in Iran and the world, respectively. Conclusion: Our findings demonstrated that modifiable cardiovascular risk factors could increase the risk of AD. Moreover, about one-third of AD cases were attributed to five modifiable risk factors. PMID:27648178

  13. Microbial, Physical and Chemical Drivers of COS and 18O-CO2 Exchange in Soils

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Boye, K.; Whelan, M.; Pang, E.; von Sperber, C.; Brueggemann, N.; Berry, J. A.; Welander, P. V.

    2015-12-01

    Carbonyl sulfide (COS) and the oxygen isotope composition (δ18O) of CO2 are potential tools for differentiating the contributions of photosynthesis and respiration to the balance of global carbon cycling. These processes are coupled at the leaf level via the enzyme carbonic anhydrase (CA), which hydrolyzes CO2 in the first biochemical step of the photosynthetic pathway (CO2 + H2O ⇌ HCO3- + H+) and correspondingly structural analogue COS (COS + H2O → CO2 + H2S). CA also accelerates the exchange of oxygen isotopes between CO2 and H2O leading to a distinct isotopic imprint [1]. The biogeochemical cycles of these tracers include significant, yet poorly characterized soil processes that challenge their utility for probing the carbon cycle. In soils, microbial CA also hydrolyze COS and accelerate O isotope exchange between CO2 and soil water. Soils have been observed to emit COS by undetermined processes. To account for these soil processes, measurements are needed to identify the key microbial, chemical, and physical factors. In this study, we survey COS and δ18O exchange in twenty different soils spanning a variety of biomes and soil properties. By comparing COS fluxes and δ18O-CO2 values emitted from moist soils we investigate whether the same types of CA catalyze these two processes. Additionally, we seek to identify the potential chemical drivers of COS emissions by measuring COS fluxes in dry soils. These data are compared with soil physical (bulk density, volumetric water content, texture), chemical (pH, elemental analysis, sulfate, sulfur K-edge XANES), and microbial measurements (biomass and phylogeny). Furthermore, we determine the abundance and diversity of CA-encoding genes to directly link CA with measured soil function. This work will define the best predictors for COS fluxes and δ18O-CO2 values from our suite of biogeochemical measurements. The suitability of identified predictor variables can be tested in follow-up studies and applied for modeling

  14. Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NOy molecules

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2015-09-01

    The nitrogen stable isotope ratio (15N/14N) of nitrogen oxides (NOx = NO + NO2) and its oxidation products (NOy = NOx + PAN (peroxyacetyl nitrate = C2H3NO5) + HNO3 + NO3 + HONO + N2O5 + ⋯ + particulate nitrates) has been suggested as a tool for partitioning NOx sources; however, the impact of nitrogen (N) equilibrium isotopic fractionation on 15N/14N ratios during the conversion of NOx to NOy must also be considered, but few fractionation factors for these processes have been determined. To address this limitation, computational quantum chemistry calculations of harmonic frequencies, reduced partition function ratios (15β), and N equilibrium isotope exchange fractionation factors (αA/B) were performed for various gaseous and aqueous NOy molecules in the rigid rotor and harmonic oscillator approximations using the B3LYP and EDF2 density functional methods for the mono-substitution of 15N. The calculated harmonic frequencies, 15β, and αA/B are in good agreement with available experimental measurements, suggesting the potential to use computational methods to calculate αA/B values for N isotope exchange processes that are difficult to measure experimentally. Additionally, the effects of solvation (water) on 15β and αA/B were evaluated using the IEF-PCM model, and resulted in lower 15β and αA/B values likely due to the stabilization of the NOy molecules from dispersion interactions with water. Overall, our calculated 15β and αA/B values are accurate in the rigid rotor and harmonic oscillator approximations and will allow for the estimation of αA/B involving various NOy molecules. These calculated αA/B values may help to explain the trends observed in the N stable isotope ratio of NOy molecules in the atmosphere.

  15. Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction.

    PubMed

    Luo, Yuan; Ahmad, Faraz S; Shah, Sanjiv J

    2017-01-23

    Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome that may benefit from improved subtyping in order to better characterize its pathophysiology and to develop novel targeted therapies. The United States Precision Medicine Initiative comes amid the rapid growth in quantity and modality of clinical data for HFpEF patients ranging from deep phenotypic to trans-omic data. Tensor factorization, a form of machine learning, allows for the integration of multiple data modalities to derive clinically relevant HFpEF subtypes that may have significant differences in underlying pathophysiology and differential response to therapies. Tensor factorization also allows for better interpretability by supporting dimensionality reduction and identifying latent groups of data for meaningful summarization of both features and disease outcomes. In this narrative review, we analyze the modest literature on the application of tensor factorization to related biomedical fields including genotyping and phenotyping. Based on the cited work including work of our own, we suggest multiple tensor factorization formulations capable of integrating the deep phenotypic and trans-omic modalities of data for HFpEF, or accounting for interactions between genetic variants at different omic hierarchies. We encourage extensive experimental studies to tackle challenges in applying tensor factorization for precision medicine in HFpEF, including effectively incorporating existing medical knowledge, properly accounting for uncertainty, and efficiently enforcing sparsity for better interpretability.

  16. Using the Difference in 18O-enrichment in Pedogenic Carbonates and Freshwater Mollusk Shells as a Paleoaridity Proxy

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Koch, P. L.

    2008-12-01

    Aridity is an important climatic attribute, yet few proxies exist to reconstruct this parameter in the past. Here we present initial results from a study using the difference in oxygen isotope value between pedogenic carbonate and freshwater mollusk shells as a proxy for aridity. These carbonates record the oxygen isotope value of the soil water and surface water from which they precipitate, respectively, as well as temperature- dependent isotopic fractionation. Evaporation causes 18O-enrichment of water that may influence the isotopic composition of both reservoirs. Soil water is more susceptible to evaporative enrichment, however, whereas surface waters more closely track the oxygen isotope value of precipitation. If both carbonates are collected from the same region, and if we assume they form at essentially the same temperature, the 18O-enrichment of soil carbonate (soil water) relative to bivalve carbonate (surface water) may reflect aridity. Alternatively, it is possible to determine the temperature of formation of each carbonate independently using the carbonate clumped isotope thermometer (Ghosh, et al., 2006), and then to solve for the oxygen isotope value of soil and surface water. To test the premise that the extent of 18O-enrichment in pedogenic vs. bivalve carbonate will reflect aridity, we collected pedogenic carbonate, freshwater mollusk shells, and stream water samples across an aridity gradient in the midwestern United States (MN, IA, NE, SD). We discovered that while pedogenic carbonates apparently formed from soil waters that are 18O-enriched relative to meteoric water, samples from drier regions are not more strongly 18O-enriched than those from wetter regions. We will extend the study to include samples from even drier regions, such as those in the southwestern US, as 18O enrichment may only become highly pronounced under very arid conditions. While our results have not yet established this approach as a viable tool for reconstructing aridity

  17. Measuring hourly 18O and 2H fluxes in a mixed hardwood forest using an integrated cavity output spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2008-12-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a 'Keeling Plot' approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS--based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi- weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the

  18. δ18O and δ13C Analysis in Tree Rings of Pterocarpus angolensis Growing in Zimbabwe

    NASA Astrophysics Data System (ADS)

    McLeran, K.; Schoof, J. T.; Lefticariu, L.; Therrell, M.

    2015-12-01

    Instrumental weather records in southern Africa are largely limited to the last 100 years and documentary weather-related data are rare prior to the 1800s, hindering our understanding of the natural and/or anthropogenic factors that influence climate variability over this region. Measuring stable isotopes ratios (commonly 13C/12C and 18O/16O) in tree rings can provide a good proxy for extending climate data beyond the instrumental record. The objective of this study is to characterize historical variations in the climatology underlying extreme climatic events in Zimbabwe using instrumental climate records (precipitation and temperature) and a multi-proxy approach (ring width, δ18O, and δ13C) for dendroclimatic proxy reconstructions. A 90-year (1900-1990) δ18O and δ13C tree ring record using four Pterocarpus angolensis samples is being developed and compared to tree ring width, monthly, seasonal, and annual precipitation totals, meteoric water δ18O values, and mean monthly and seasonal temperature. Preliminary results indicate significant correlations between the average δ18O record and the previous year December precipitation totals (r=0.41, p<0.0001), current year January precipitation totals (r=0.45, p<0.0001), and combined total precipitation for the previous year November and December and current year January (r=0.57, p<0.0001). Furthermore, we find that the δ18O values are strongly influenced by maximum temperature during the previous year December (r=0.39, p=0.0001) and current year January (r=0.40, p=0.0001), and average maximum temperature during the months of the previous year December and current year January and February (r=0.47, p<0.001). We thus present one of the first studies to integrate a multi-proxy approach to investigate historical climate variability in southern Africa using ring widths, and tree ring δ18O and δ13C values of trees growing in Zimbabwe.

  19. Transformation of ENSO-related rainwater to dripwater δ18O variability by vadose water mixing

    NASA Astrophysics Data System (ADS)

    Moerman, Jessica W.; Cobb, Kim M.; Partin, Judson W.; Meckler, A. Nele; Carolin, Stacy A.; Adkins, Jess F.; Lejau, Syria; Malang, Jenny; Clark, Brian; Tuen, Andrew A.

    2014-11-01

    Speleothem oxygen isotopes (δ18O) are often used to reconstruct past rainfall δ18O variability, and thereby hydroclimate changes, in many regions of the world. However, poor constraints on the karst hydrological processes that transform rainfall signals into cave dripwater add significant uncertainty to interpretations of speleothem-based reconstructions. Here we present several 6.5 year, biweekly dripwater δ18O time series from northern Borneo and compare them to local rainfall δ18O variability. We demonstrate that vadose water mixing is the primary rainfall-to-dripwater transformation process at our site, where dripwater δ18O reflects amount-weighted rainfall δ18O integrated over the previous 3-10 months. We document large interannual dripwater δ18O variability related to the El Niño-Southern Oscillation (ENSO), with amplitudes inversely correlated to dripwater residence times. According to a simple stalagmite forward model, asymmetrical ENSO extremes produce significant offsets in stalagmite δ18O time series given different dripwater residence times. Our study highlights the utility of generating multiyear, paired time series of rainfall and dripwater δ18O to aid interpretations of stalagmite δ18O reconstructions.

  20. The in vitro biological activities of synthetic 18-O-methyl mycalamide B, 10-epi-18-O-methyl mycalamide B and pederin.

    PubMed

    Richter, A; Kocienski, P; Raubo, P; Davies, D E

    1997-04-01

    Mycalamides A and B, which were originally isolated from a marine sponge, show close structural similarity to the insect toxin pederin, and exhibit potent cytotoxicity and antitumour activity. Detailed investigation of the clinical potential of these compounds has been hampered because they are available in only minute quantities from natural sources. We now describe the biological activities of 18-O-methyl mycalamide B, 10-epi-18-O-methyl mycalamide and pederin, all prepared by total synthesis. The activities of 18-O-methyl mycalamide B and pederin were virtually indistinguishable when evaluated in DNA or protein synthesis assays, and in cytotoxicity assays using human carcinoma cell lines (IC50s 0.2-0.6 nM). In all assays, 10-epi-18-O-methyl mycalamide B was 10(3) times less toxic than its diastereoisomer, demonstrating that the cytotoxicity of 18-O-methyl mycalamide B is inseparable from its ability to inhibit protein synthesis. Short-term exposure of squamous carcinoma cells to 18-O-methyl mycalamide B or pederin caused an irreversible inhibition of cellular proliferation and induced cellular necrosis. In contrast, the antiproliferative effects of the compounds on human fibroblasts were reversible and there was no evidence of necrosis. Demonstration that 18-O-methyl mycalamide B and the synthetically less complex molecule, pederin, show some tumour cell toxicity indicates that this novel class of compounds should be subjected to preclinical evaluation.

  1. Potential linkages between the moisture variability in the northeastern Qaidam Basin, China, since 1800 and the East Asian summer monsoon as reflected by tree ring δ18O

    NASA Astrophysics Data System (ADS)

    Xu, Guobao; Chen, Tuo; Liu, Xiaohong; An, Wenling; Wang, Wenzhi; Yun, Hanbo

    2011-05-01

    We established the first annual resolution tree ring δ18O chronology of Qilian juniper (Sabina przewalskii Kom.) for the eastern margin of the Qaidam Basin, northwestern China. The mean tree ring cellulose δ18O in the study region (33.46‰ ± 0.99‰) was higher than that in the Qilian (28.7‰) and Helan Mountains (27.66‰), northwest China, and higher than the values in other published research (15.0‰ to 33.0‰), possibly as a result of the heavier δ18O in precipitation and the lower relative humidity (43%) during the growing season. The results of our simple correlation, bootstrap correlation, and response analyses showed that the cellulose δ18O was negatively and significantly correlated with relative humidity in July and August and that this correlation explained about 31.4% of the total variance in the moisture variability from 1954 to 2006. We also detected significant correlations among the Palmer drought severity index, the standard precipitation index, and the tree ring δ18O series. These analyses revealed that the summer relative humidity was the main limiting factor that affected δ18O values in the tree ring cellulose. Previous research indicates that the direct influence of the East Asian summer monsoon (EASM) reaches as far west as 100°E in China. However, our study revealed that the tree ring δ18O series was significantly correlated with the EASM index from 1873 to 1975, which means that the EASM influences moisture variability in the Qaidam Basin (farther west than 100°E) and that the tree ring δ18O chronology we obtained can be used as a proxy to study historical variability in the EASM.

  2. Linear model describing three components of flow in karst aquifers using 18O data

    USGS Publications Warehouse

    Long, A.J.; Putnam, L.D.

    2004-01-01

    The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.

  3. Relation between D/H ratios and 18O /16O ratios in cellulose from linen and maize - Implications for paleoclimatology and for sindonology

    NASA Astrophysics Data System (ADS)

    DeNiro, Michael J.; Sternberg, Leonel D.; Marino, Bruno D.; Druzik, James R.

    1988-09-01

    The 18O /16O ratios of cellulose and the D/H ratios of cellulose nitrate were determined for linen, a textile produced from the fibers of the flax plant Linum usitatissimum, and for maize ( Zea mays) from a variety of geographic locations in Europe, the Middle East, and North and South America. The regression lines of δD values on δ 18O values had slopes of 5.4 and 5.8 for the two species. Statistical analysis of results reported in the only other study in which samples of a single species (the silver fir Abies pindrow) that grew under a variety of climatic conditions were analyzed yielded slopes of ~6 when δD values of cellulose nitrate were regressed on δ 18O values of cellulose. The occurrence of this previously unrecognized relationship in three species suggests it may obtain in other plants as well. Determining the basis for this relationship, which is not possible given current understanding of fractionation of the isotopes of oxygen and hydrogen by plants, should lead to increased understanding of how D/H and 18O /16O ratios in cellulose isolated from fossil plants are related to paleoclimates. The separation of most linen samples from Europe from those originating in the Middle East when δD values are plotted against δ 18O values suggests it may be possible to use the isotope ratios of cellulose prepared from the Shroud of Turin to resolve the controversy concerning its geographic origin.

  4. Scale dependence of environmental and physiological correlates of δ18O and δ13C in the magnesium calcite skeletons of bamboo corals (Gorgonacea; Isididae)

    NASA Astrophysics Data System (ADS)

    Thresher, Ronald E.; Neil, Helen

    2016-08-01

    We examine in detail δ18O and δ13C in the calcite internodes of bamboo corals as potential proxies of physiological and environmental variability, through (a) a "core top" calibration that includes specimens from a wide range of habitats and environmental conditions and (b) a comparison of high resolution serial point analyses along radial growth axes of a sub-set of specimens with each other, with instrumental temperature and salinity records, with growth rates and with a nominal skeletal proxy for temperature (Mg/Ca) in the same specimens. At the whole-of-specimen level, δ18O and the intercept of the strong within-specimen regression of δ18O against δ13C correlates highly with ambient temperatures at slopes that are identical to those reported for other marine biogenic carbonates (-0.22 per °C). δ13C varies predominantly with apparent specimen-mean growth rate. It also correlates with the slope of the within-specimen covariance between δ18O and δ13C, which in turn is distributed bi-modally among specimens and linked to differences in apparent growth rates. Within-specimens, variability in δ13C, and to a lesser extent δ18O, correlates between specimens collected in the same region and differs between regions, implying an environmental effect, but the factors involved for either isotope ratio are unclear. Correlations between δ18O and temperature (and Mg/Ca) range from positive to negative among specimens and appear to vary over time even within specimens. The mismatch between the consistent temperature-dependence of δ18O at the whole-of-specimen level and the mixed relationship within-specimens can be reconciled by assuming an unknown temperature-dependent factor affecting δ18O during the growth of Isidid calcite. The contrast between the results of the "core top" temperature calibration for δ18O, which are consistent with studies of other carbonates, and the apparently more complex suite of factors affecting both δ13C and δ18O within specimens

  5. Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions

    SciTech Connect

    Eckerman, K.F.; Stabin, M.G.

    2000-02-01

    The possible inductions of bone cancer and leukemia are the two health effects of primary concern in the irradiation of the skeleton. The relevant target tissues to consider in the dosimetric evaluation have been the cells on or near endosteal surfaces of bone, from which osteosarcomas are thought to arise, and hematopoietic bone marrow, which is associated with leukemia. The complex geometry of the soft tissue-bone intermixture makes calculations of absorbed doses to these target regions a difficult problem. In the case of photon or neutron radiations, charged particle equilibrium may not exist in the vicinity of a soft tissue-bone mineral interface. In this paper, absorbed fraction data are developed for calculations of the dose in the target tissues from electron emitters deposited within the volume or on the surfaces of trabecular bone. The skeletal average absorbed fractions presented are consistent with usage of this quantity in the contemporary dosimetric formulations of the International Commission on Radiological Protection (ICRP). Implementation of the new bone and marrow model is then developed within the context of the calculational schema of the Medical Internal Radiation Dose (MIRD) Committee. Model parameters relevant to the calculation of dose conversion factors (S values) for different regions of the skeleton of individuals of various age are described, and an example calculation is performed for a monoclonal antibody which localizes in the marrow. The utility of these calculations for radiation dose calculations in nuclear medicine is discussed.

  6. Late-Glacial to Late-holocene Shifts in Global Precipitation Delta(sup 18)O

    NASA Technical Reports Server (NTRS)

    Jasechko, S.; Lechler, A.; Pausata, F.S.R.; Fawcett, P.J.; Gleeson, T.; Cendon, D.I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; Welker, J. M.; Werner, M.; Yoshimura, K.

    2015-01-01

    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta(sup 18)O. Here we present a synthesis of 86 globally distributed groundwater (n 59), cave calcite (n 15) and ice core (n 12) isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5000 years). We show that precipitation delta(sup 18)O changes from the late-glacial to the late-Holocene range from -7.1% (delta(sup 18)O(late-Holocene) > delta(sup 18)O(late-glacial) to +1.7% (delta(sup 18)O(late-glacial) > delta(sup 18)O(late-Holocene), with the majority (77) of records having lower late-glacial delta(sup 18)O than late-Holocene delta(sup 18)O values. High-magnitude, negative precipitation delta(sup 18)O shifts are common at high latitudes, high altitudes and continental interiors.

  7. Assessment of phospholipid deacylation-reacylation cycles by H/sub 2/ /sup 18/O incorporation

    SciTech Connect

    Kuwae, T.; Schmid, P.C.; Johnson, S.B.; Schmid, H.H.O.

    1987-05-01

    Quantitative estimation of metabolic turnover involving hydrolysis is possible with the use of H/sub 2/ /sup 18/O which readily equilibrates throughout subcellular compartments and thus obviates many problems associated with the use of exogenous metabolites. Incubation of cells in H/sub 2/ /sup 18/O results in the time-dependent incorporation of /sup 18/O into ester carbonyls of glycerophospholipids. Preparation of methyl esters by alkaline methanolysis preserves the carbonyl oxygen and hydrogenation prior to analysis by gas-chromatography/mass-spectrometry simplifies determination of /sup 18/O//sup 16/O ratios. Mouse peritoneal exudate cells incorporate /sup 18/O from H/sub 2/ /sup 18/O into acyl groups of phosphatidylcholine (PC) and phosphatidylinositol (PI), and smaller amounts into phosphatidylethanolamine (PE) and phosphatidylserine (PS). Acyl groups at the sn-1 position of PC and PE show about the same rate of turnover as those at the sn-2 position. Considering the route of /sup 18/O incorporation via free fatty acid derived through ester hydrolysis in 40% H/sub 2/ /sup 18/O, acyl turnover may exceed 20% per hour. Turnover of 2-O-acyl groups in the plasmalogen analog of PE, as assayed by /sup 18/O incorporation, is drastically lower than in diacylPE. This indicates either a much lower rate of hydrolysis, or reacylation of lysoplasmalogen by direct acyl transfer not involving free fatty acid.

  8. Predictable components in global speleothem δ18O

    NASA Astrophysics Data System (ADS)

    Fischer, Matt J.

    2016-01-01

    The earth's ice-ocean-atmosphere system is made up of subsystems which have different dynamics and which evolve at different timescales. Examples include the slow dynamics of ice sheet growth and melting, the tropical response to precessional cycles (∼21,000 years), and the fast dynamics of Dansgaard-Oeschger cycles (∼1500 years). Since dynamical systems evolve along characteristic trajectories, they are, to some extent, predictable. Further, it should be possible to decompose any dynamical system that is made up of subsystems with discrete dynamics and characteristic timescales, into time series which capture those discrete components. This study reviews five methods which can potentially achieve this, including: Optimal Persistence Analysis (OPA), Slow Feature Analysis (SFA), Principal Trend Analysis (PTA), Average Predictability Time Decomposition (APTD) and Forecastable Components Analysis (ForeCA). These methods produce sets of components that are in some way predictable, such that each component is more predictable than the next component, but each method uses a different measure of predictability. The five methods are applied to a global dataset of speleothem δ18O spanning the period 22-0 ka BP. The two leading predictable components are a monotonic trend, and a low-frequency oscillation with a periodicity of ∼21,000 years. The methods ForeCA and PTA cleanly separate these two components from higher-frequency signals. The third predictable component consists predominantly of a peak which ramps up during Heinrich Stadial 1, and falls thereafter. Furthermore, predictable components analysis can be used not only to investigate the predictability within a field, but can be extended to exploring the predictability between fields, such as between the northern hemisphere field and the southern hemisphere field. Predictable components analysis allows a better insight into the dynamical components of climate fields, and hence should be a useful tool for

  9. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    NASA Astrophysics Data System (ADS)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  10. Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled "universal" reference sample.

    PubMed

    Qian, Wei-Jun; Liu, Tao; Petyuk, Vladislav A; Gritsenko, Marina A; Petritis, Brianne O; Polpitiya, Ashoka D; Kaushal, Amit; Xiao, Wenzhong; Finnerty, Celeste C; Jeschke, Marc G; Jaitly, Navdeep; Monroe, Matthew E; Moore, Ronald J; Moldawer, Lyle L; Davis, Ronald W; Tompkins, Ronald G; Herndon, David N; Camp, David G; Smith, Richard D

    2009-01-01

    The quantitative comparison of protein abundances across a large number of biological or patient samples represents an important proteomics challenge that needs to be addressed for proteomics discovery applications. Herein, we describe a strategy that incorporates a stable isotope (18)O-labeled "universal" reference sample as a comprehensive set of internal standards for analyzing large sample sets quantitatively. As a pooled sample, the (18)O-labeled "universal" reference sample is spiked into each individually processed unlabeled biological sample and the peptide/protein abundances are quantified based on (16)O/(18)O isotopic peptide pair abundance ratios that compare each unlabeled sample to the identical reference sample. This approach also allows for the direct application of label-free quantitation across the sample set simultaneously along with the labeling-approach (i.e., dual-quantitation) since each biological sample is unlabeled except for the labeled reference sample that is used as internal standards. The effectiveness of this approach for large-scale quantitative proteomics is demonstrated by its application to a set of 18 plasma samples from severe burn patients. When immunoaffinity depletion and cysteinyl-peptide enrichment-based fractionation with high resolution LC-MS measurements were combined, a total of 312 plasma proteins were confidently identified and quantified with a minimum of two unique peptides per protein. The isotope labeling data was directly compared with the label-free (16)O-MS intensity data extracted from the same data sets. The results showed that the (18)O reference-based labeling approach had significantly better quantitative precision compared to the label-free approach. The relative abundance differences determined by the two approaches also displayed strong correlation, illustrating the complementary nature of the two quantitative methods. The simplicity of including the (18)O-reference for accurate quantitation makes this

  11. Optimisation of the Factor VIII yield in mammalian cell cultures by reducing the membrane bound fraction.

    PubMed

    Kolind, Mille Petersen; Nørby, Peder Lisby; Berchtold, Martin Werner; Johnsen, Laust Bruun

    2011-02-20

    In vivo, clotting Factor VIII (FVIII) circulates in plasma bound to von Willebrand factor (vWF), and the vWF:FVIII complex prevents binding of FVIII to phosphatidylserine (PS). Activation of FVIII by thrombin releases FVIII from vWF, and subsequently FVIII binds to PS exposed on activated platelets and forms the tenase complex together with clotting Factor IX. In vitro, during serum free production of recombinant FVIII (rFVIII), production cells also expose PS, and since vWF is not present to hinder interaction of secreted rFVIII with PS, rFVIII is partly associated with the cell membrane of the production cells. Recently, we showed that as much as 90% of secreted rFVIII is bound to transiently transfected production cells during serum free conditions. In this study, we investigated the effect of including vWF in the serum free medium, and demonstrate that addition of vWF results in release of active membrane bound rFVIII to the culture medium. Moreover, the attachment of rFVIII to cell membranes of un-transfected HEK293 cells was studied in the presence of compounds that competes for interactions between rFVIII and PS. Competitive assays between iodinated rFVIII (¹²⁵I-rFVIII) and annexin V or ortho-phospho-L-serine (OPLS) demonstrated that annexin V and OPLS were able to reduce the membrane bound fraction of rFVIII by 70% and 30%, respectively. Finally, adding OPLS to CHO cells stably expressing FVIII increased the yield by 50%. Using this new knowledge, the recovery of rFVIII could be increased considerably during serum free production of this therapeutic protein.

  12. The δ2H and δ18O of tap water from 349 sites in the United States and selected territories

    USGS Publications Warehouse

    Coplen, Tyler B.; Landwehr, Jurate M.; Qi, Haiping; Lorenz, Jennifer M.

    2013-01-01

    Because the stable isotopic compositions of hydrogen (δ2H) and oxygen (δ18O) of animal (including human) tissues, such as hair, nail, and urine, reflect the δ2H and δ18O of water and food ingested by an animal or a human and because the δ2H and δ18O of environmental waters vary geographically, δ2H and δ18O values of tap water samples collected in 2007-2008 from 349 sites in the United States and three selected U.S. territories have been measured in support of forensic science applications, creating one of the largest databases of tap water δ2H and δ18O values to date. The results of replicate isotopic measurements for these tap water samples confirm that the expanded uncertainties (U = 2μc) obtained over a period of years by the Reston Stable Isotope Laboratory from δ2H and δ18O dual-inlet mass spectrometric measurements are conservative, at ±2‰ and ±0.2 ‰, respectively. These uncertainties are important because U.S. Geological Survey data may be needed for forensic science applications, including providing evidence in court cases. Half way through the investigation, an isotope-laser spectrometer was acquired, enabling comparison of dual-inlet isotope-ratio mass spectrometric results with isotope-laser spectrometric results. The uncertainty of the laser-based δ2H measurement results for these tap water samples is comparable to the uncertainty of the mass spectrometric method, with the laser-based method having a slightly lower uncertainty. However, the δ18O uncertainty of the laser-based method is more than a factor of ten higher than that of the dual-inlet isotoperatio mass spectrometric method.

  13. Water and nitrogen conditions affect the relationships of Delta13C and Delta18O to gas exchange and growth in durum wheat.

    PubMed

    Cabrera-Bosquet, Llorenç; Molero, Gemma; Nogués, Salvador; Araus, José Luis

    2009-01-01

    Whereas the effects of water and nitrogen (N) on plant Delta(13)C have been reported previously, these factors have scarcely been studied for Delta(18)O. Here the combined effect of different water and N regimes on Delta(13)C, Delta(18)O, gas exchange, water-use efficiency (WUE), and growth of four genotypes of durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] cultured in pots was studied. Water and N supply significantly increased plant growth. However, a reduction in water supply did not lead to a significant decrease in gas exchange parameters, and consequently Delta(13)C was only slightly modified by water input. Conversely, N fertilizer significantly decreased Delta(13)C. On the other hand, water supply decreased Delta(18)O values, whereas N did not affect this parameter. Delta(18)O variation was mainly determined by the amount of transpired water throughout plant growth (T(cum)), whereas Delta(13)C variation was explained in part by a combination of leaf N and stomatal conductance (g(s)). Even though the four genotypes showed significant differences in cumulative transpiration rates and biomass, this was not translated into significant differences in Delta(18)O(s). However, genotypic differences in Delta(13)C were observed. Moreover, approximately 80% of the variation in biomass across growing conditions and genotypes was explained by a combination of both isotopes, with Delta(18)O alone accounting for approximately 50%. This illustrates the usefulness of combining Delta(18)O and Delta(13)C in order to assess differences in plant growth and total transpiration, and also to provide a time-integrated record of the photosynthetic and evaporative performance of the plant during the course of crop growth.

  14. Calibration of δ13C and δ18O measurements in CO2 using Off-axis Integrated Cavity Output Spectrometer (ICOS)

    NASA Astrophysics Data System (ADS)

    Joseph, Jobin; Külls, Christoph

    2014-05-01

    The δ13C and δ18O of CO2 has enormous potential as tracers to study and quantify the interaction between the water and carbon cycles. Isotope ratio mass spectrometry (IRMS) being the conventional method for stable isotopic measurements, has many limitations making it impossible for deploying them in remote areas for online or in-situ sampling. New laser based absorption spectroscopy approaches like Cavity Ring Down Spectroscopy (CRDS) and Integrated Cavity Output Spectroscopy (ICOS) have been developed for online measurements of stable isotopes at an expense of considerably less power requirement but with precision comparable to IRMS. In this research project, we introduce a new calibration system for an Off- Axis ICOS (Los Gatos Research CCIA-36d) for a wide range of varying concentrations of CO2 (800ppm - 25,000ppm), a typical CO2 flux range at the plant-soil continuum. The calibration compensates for the concentration dependency of δ13C and δ18O measurements, and was performed using various CO2 standards with known CO2 concentration and δC13 and δO18 values. A mathematical model was developed after the calibration procedure as a correction factor for the concentration dependency of δ13C and δ18O measurements. Temperature dependency of δ13C and δ18O measurements were investigated and no significant influence was found. Simultaneous calibration of δ13C and δ18O is achieved using this calibration system with an overall accuracy of (~ 0.75±0.24 ‰ for δ13C, ~ 0.81 ±0.26‰ for δ18O). This calibration procedure is found to be appropriate for making Off-Axis ICOS suitable for measuring CO2 concentration and δ13C and δ18O measurements at atmosphere-plant-soil continuum.

  15. A 'hidden' 18O-enriched reservoir in the sub-arc mantle.

    PubMed

    Liu, Chuan-Zhou; Wu, Fu-Yuan; Chung, Sun-Lin; Li, Qiu-Li; Sun, Wei-Dong; Ji, Wei-Qiang

    2014-02-28

    Plate subduction continuously transports crustal materials with high-δ(18)O values down to the mantle wedge, where mantle peridotites are expected to achieve the high-δ(18)O features. Elevated δ(18)O values relative to the upper mantle value have been reported for magmas from some subduction zones. However, peridotites with δ(18)O values significantly higher than the well-defined upper mantle values have never been observed from modern subduction zones. Here we present in-situ oxygen isotope data of olivine crystals in Sailipu mantle xenoliths from South Tibet, which have been subjected to a long history of Tethyan subduction before the India-Asia collision. Our data identify for the first time a metasomatized mantle that, interpreted as the sub-arc lithospheric mantle, shows anomalously enriched oxygen isotopes (δ(18)O = +8.03 ± 0.28 ‰). Such a high-δ(18)O mantle commonly does not contribute significantly to typical island arc basalts. However, partial melting or contamination of such a high-δ(18)O mantle is feasible to account for the high-δ(18)O signatures in arc basalts.

  16. Fractions of Rechtschaffner matrices as supersaturated designs in screening experiments aimed at evaluating main and two-factor interaction effects.

    PubMed

    Cela, R; Phan-Tan-Luu, R; Claeys-Bruno, M; Sergent, M

    2012-04-06

    Optimal fractions of resolution V design matrices proposed by Rechtschaffner in 1967 are developed and applied as supersaturated designs in screening experiments. Rechtschaffner matrices allow evaluation of all main factors and two-factor interactions, which in many real-world studies are of practical significance. However, the number of experimental runs increases rapidly with the number of factors in the matrices, which are therefore impractical for more than 5-6 factors. On the contrary, saturated fractions based on Hadamard matrices, which are commonly applied in screening studies, cannot evaluate the interaction effects. Here, a procedure for selecting the optimum fractions of Rechtschaffner matrices is presented and provides supersaturated matrices that are well adapted to a variety of problems, thus allowing the development of screening studies with a relatively small number of experiments. The procedures developed to derive the size-reduced matrices and to evaluate the active factors are discussed and compared in terms of efficiency and reliability, by means of simulation studies and application to a real problem. These fractions are the first supersaturated design matrices capable of estimating interaction effects. Additionally, one important advantage of these supersaturated matrices is that they enable development of follow-up procedures in cases of inconclusive results, by enlarging the matrix and eventually resolving the full Rechtschaffner matrix of departure when it is necessary to evaluate the active factors and their interactions.

  17. Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer

    SciTech Connect

    Hatzinger, Paul B.; Bohlke, J. K.; Sturchio, N. C.; Gu, Baohua

    2009-01-01

    An in situ experiment was performed in a shallow alluvial aquifer in Maryland to quantify the fractionation of stable isotopes in perchlorate (Cl and O) and nitrate (N and O) during biodegradation. An emulsified soybean oil substrate that was previously injected into this aquifer provided the electron donor necessary for biological perchlorate reduction and denitrification. During the field experiment, groundwater extracted from an upgradient well was pumped into an injection well located within the in situ oil barrier, and then groundwater samples were withdrawn for the next 30 h. After correction for dilution (using Br-as a conservative tracer of the injectate), perchlorate concentrations decreased by 78 % and nitrate concentrations decreased by 87 %, during the initial 8.6 h after the injection. The observed ratio of fractionation effects of O and Cl isotopes in perchlorate (ε18O/ε37Cl) was 2.6, which is similar to that observed in the laboratory using pure cultures (2.5). Denitrification by indigenous bacteria fractionated O and N isotopes in nitrate at a ratio of approximately 0.8 (ε18O/ε15N), which is within the range of values reported previously for denitrification. However, the magnitudes of the individual apparent in situ isotope fractionation effects for perchlorate and nitrate were appreciably smaller than those reported in homogeneous closed systems (0.2 to 0.6 times), even after adjustment for dilution. These results indicate that (1) isotope fractionation factor ratios (ε18O/ε37Cl, ε18O/ε15N) derived from homogeneous laboratory systems (e.g., pure culture studies) can be used qualitatively to confirm the occurrence of in situ biodegradation of both perchlorate and nitrate, but (2) the magnitudes of the individual apparent  values cannot be used quantitatively to estimate the in situ extent of biodegradation of either anion.

  18. Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer

    USGS Publications Warehouse

    Bohlke, Johnkarl F.; Hatzinger, P.B.; Sturchio, N.C.; Gu, B.; Heraty, L.J.; Borden, R.C.

    2009-01-01

    An in situ experiment was performed in a shallow alluvial aquifer in Maryland to quantify the fractionation of stable isotopes in perchlorate (Cl and O) and nitrate (N and O) during biodegradation. An emulsified soybean oil substrate that was previously injected into this aquifer provided the electron donor necessary for biological perchlorate reduction and denitrification. During the field experiment, groundwater extracted from an upgradient well was pumped into an injection well located within the in situ oil barrier, and then groundwater samples were withdrawn for the next 30 h. After correction for dilution (using Br– as a conservative tracer of the injectate), perchlorate concentrations decreased by 78% and nitrate concentrations decreased by 82% during the initial 8.6 h after the injection. The observed ratio of fractionation effects of O and Cl isotopes in perchlorate (e18O/e37Cl) was 2.6, which is similar to that observed in the laboratory using pure cultures (2.5). Denitrification by indigenous bacteria fractionated O and N isotopes in nitrate at a ratio of ~0.8 (e18O/e15N), which is within the range of values reported previously for denitrification. However, the magnitudes of the individual apparent in situ isotope fractionation effects for perchlorate and nitrate were appreciably smaller than those reported in homogeneous closed systems (0.2 to 0.6 times), even after adjustment for dilution. These results indicate that (1) isotope fractionation factor ratios (e18O/e37Cl, e18O/e15N) derived from homogeneous laboratory systems (e.g. pure culture studies) can be used qualitatively to confirm the occurrence of in situ biodegradation of both perchlorate and nitrate, but (2) the magnitudes of the individual apparent e values cannot be used quantitatively to estimate the in situ extent of biodegradation of either anion.

  19. Freshwater fluxes in the Weddell Gyre: results from δ18O

    PubMed Central

    Brown, Peter J.; Meredith, Michael P.; Jullion, Loïc; Naveira Garabato, Alberto; Torres-Valdés, Sinhue; Holland, Paul; Leng, Melanie J.; Venables, Hugh

    2014-01-01

    Full-depth measurements of δ18O from 2008 to 2010 enclosing the Weddell Gyre in the Southern Ocean are used to investigate the regional freshwater budget. Using complementary salinity, nutrients and oxygen data, a four-component mass balance was applied to quantify the relative contributions of meteoric water (precipitation/glacial input), sea-ice melt and saline (oceanic) sources. Combination of freshwater fractions with velocity fields derived from a box inverse analysis enabled the estimation of gyre-scale budgets of both freshwater types, with deep water exports found to dominate the budget. Surface net sea-ice melt and meteoric contributions reach 1.8% and 3.2%, respectively, influenced by the summer sampling period, and −1.7% and +1.7% at depth, indicative of a dominance of sea-ice production over melt and a sizable contribution of shelf waters to deep water mass formation. A net meteoric water export of approximately 37 mSv is determined, commensurate with local estimates of ice sheet outflow and precipitation, and the Weddell Gyre is estimated to be a region of net sea-ice production. These results constitute the first synoptic benchmarking of sea-ice and meteoric exports from the Weddell Gyre, against which future change associated with an accelerating hydrological cycle, ocean climate change and evolving Antarctic glacial mass balance can be determined. PMID:24891394

  20. Water - Isotope - Map (δ 18O, δ 2H, 3H) of Austria: Applications, Extremes and Trends

    NASA Astrophysics Data System (ADS)

    Wyhlidal, Stefan; Kralik, Martin; Benischke, Ralf; Leis, Albrecht; Philippitsch, Rudolf

    2016-04-01

    The isotopic ratios of oxygen and hydrogen in water (2H/1H and 18O/16O) are important tools to characterise waters and their cycles. This starts in the atmosphere as rain or snow and continues in surface water and ends in shallow groundwater as well as in deep groundwater. Tritium formed by natural cosmic radiation in the upper atmosphere and in the last century by tests of thermonuclear bombs in the atmosphere, is characterised by its radioactive decay with a half-life of 12.32 years and is an ideal age-marker during the last 60 years. To determine the origin and mean age of waters in many projects concerning water supply, engineering and scientific projects in the last 45 years on more than 1,350 sites, more than 40,000 isotope measurements were performed in Austria. The median value of all sites of oxygen-18 is δ 18O -10.7 ‰ and for hydrogen-2 δ 2H -75 ‰. As the fractionation is mainly temperature dependent the lowest negative values are observed in winter precipitation (oxygen-18 as low as δ 18O -23 ‰) and in springs in the mountain regions (δ 18O -15.1 ‰). In contrast the highest values were observed in summer precipitation (up to δ 18O - 0.5 ‰) and in shallow lakes in the Seewinkel (up to δ 18O + 5 ‰). The isotopic ratios of the Austrian waters are also influenced by the origin of the evaporated water masses. Therefore the precipitation in the region south of the main Alpine crest (East-Tyrol, Carinthia and South-East Styria) is approximately 1 ‰ higher in δ 18O-values than sites at the same altitude in the northern part. This is most probably caused by the stronger influence of precipitation from the mediterranean area. The median value of all 1,120 sampling sites of decay corrected (2015) tritium measurements is 6.2 tritium units (TU). This is somewhat smaller than the median value of all precipitation stations with 7.2 TU. This can be explained by the fact that in most cases in groundwater the median value has been reduced by decay

  1. Diamond growth from subducted carbon implied by correlated δ18O-δ13C variations in diamonds and garnet inclusions

    NASA Astrophysics Data System (ADS)

    Ickert, R. B.; Stachel, T.; Harris, J. W.

    2011-12-01

    Much of our knowledge of the deep-Earth carbon cycle is derived from studies of diamond. The sources of carbon in the mantle and the mechanisms of transport and precipitation as diamond, however, are not entirely understood. Due to the chemical purity of diamond, scientific effort has focussed on syngenetic mineral inclusions and their relationship to their diamond hosts. For example, it is well known that, on a worldwide scale, diamonds with eclogitic inclusions have a distinct δ13C distribution when compared to more abundant peridotitic diamonds. Eclogitic diamonds have a distribution that extends from mantle-like δ13C values (ca. -5%), to very light carbon (<-20%). Strong 13C depletion has been explained by either invoking subducted organic carbon, or through high temperature isotopic fractionation of mantle carbon. Here we report high-precision SIMS δ18O measurements (2σ±< 0.3%) of eclogitic garnet inclusions in diamonds from the Damtshaa mine (Orapa cluster, Botswana). The δ13C values of the host diamond were determined to have a wide range (-4.4% to -18%; Deines et al. 2009; Lithos v.112 p776). From 15 inclusions, the δ18O variations range from +4.8 to +8.8 %. The relative 18O abundances are negatively correlated with the δ13C of the host diamonds, suggesting a link between high δ18O host rocks and low δ13C diamonds. Although fractionation of δ13C values is possible at high temperature, δ18O values are susceptible only to very small high temperature fractionations. For example, Cartigny et al. (2001, EPSL v.185 p85) suggested that CO2 degassing from a carbonate-bearing melt prior to diamond precipitation may be responsible for a δ13C distribution of eclogitic diamonds worldwide that is skewed to 13C depleted compositions. Our data place new constraints on that model. Depending on the C/O ratio of the melt, CO2 degassing will either have a negligible effect on the δ18O of the residual melt, or (at high C/O) induce a positive correlation between

  2. Oxygen isotope fractionation between aragonite and seawater: Developing a novel kinetic oxygen isotope fractionation model

    NASA Astrophysics Data System (ADS)

    Wang, Zhengrong; Gaetani, Glenn; Liu, Chao; Cohen, Anne

    2013-09-01

    Oxygen isotope fractionation factors between aragonite and seawater are studied at T = 25-55 °C and pH = 7.4-8.1 in a set of 'free-drift' precipitation experiments with various CO2-degassing rates (0-75 cc/min). The measured fractionation factors correlate weakly with degassing rate, but strongly with temperature in the following form (R2 = 0.998): 1000lnα=22.5(±0.5)(103/T)-46.1(±1.6) where α is the fractionation factor and T is the temperature in Kelvin. Along with results from previous studies, these experiments help calibrate two extreme cases of a new kinetic model - extremely fast (e.g., during spontaneous precipitation) and slow aragonite precipitation processes (e.g., during slow 'free-drift' precipitation experiments) - at pH >7.5, T = 0-55 °C and salinity = ˜5-39.6‰. The model assumes little isotopic fractionation between DIC species and aragonite during their attachment and detachment on aragonite surfaces at low temperatures and the δ18O value of aragonite equals the average δ18O value of all contributing DIC species. During the fast precipitation of aragonite, the contribution of each DIC species to the δ18O value of aragonite is proportional to its concentration, whereas in a slow precipitation process when the system reaches a steady state, the contribution is determined by both its concentration and a modifying factor. Although the physical meaning of this modifying factor depends on the method of derivation and other assumptions made, three different derivations based on precipitation/dissolution kinetics, isotope exchange reactions, and isotope disequilibrium among DIC species all lead to the same formulation. At pH >7.5, the natural logarithm of the modifying factor (k) for adjusting the contribution of the bicarbonate ion relative to the carbonate ion is calibrated, using experimental data covering a range of temperature, salinity, pH, and precipitation rate, as follows: lnk=(2.22±0.08)×(pH-pH)+{(846±78)·S-(40.3±2.1)×103}/{RT

  3. Isotope 18 O 16 O Ratio Measurements of Water Vapor by use of Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsumi, Yutaka; Kishigami, Masahiro; Tanaka, Noriyuki; Kawasaki, Masahiro; Inoue, Gen

    1998-09-01

    We applied a photoacoustic spectroscopy technique to isotope ratio measurements of 16 O and 18 O in water-vapor samples, using a pulsed tunable dye laser pumped by a Nd:YAG laser. The fourth overtone bands (4 OH ) of water molecules near 720 nm were investigated. We identified the absorption lines of H 2 16 O and H 2 18 O in the photoacoustic spectra that we measured by using an 18 O-enriched water sample and the HITRAN database. We measured the difference in the 18 O 16 O isotope ratios for normal distilled water and Antarctic ice, using the photoacoustic method. The value obtained for the difference between the two samples is 18 O 32 16 , where the indicated deviation was a 1 value among 240-s measurements, whereas the value measured with a conventional isotope mass spectrometer was 18 O 28 2 . This method is demonstrated to have the potential of a transportable system for in situ and quick measurements of the H 2 18 O H 2 16 O ratio in the environment.

  4. Primary Productivity Rates at Station ALOHA Determined by 18O Labeling and the Triple Isotope Composition of Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Juranek, L. W.; Quay, P. D.; Karl, D. M.

    2002-12-01

    Although knowledge of accurate Primary Productivity (PPr) rates is essential to the understanding of ocean carbon cycling, the standard method of determining ocean productivity, 14C labeling, often yields uncertain results. Typically, 14C-derived PPr rates fall ambiguously between gross and net productivity because the method is sensitive to recycling of a relatively small POC pool. Bottle incubations using labeled oxygen produced from 18O-enriched water have shown promise in giving a more consistent measure of gross productivity, since the pool of dissolved oxygen is less sensitive to recycling than POC. Typically this method gives gross PPr rates that are 2-3 times 14C-derived rates. Recently Luz and Barkan (2001) have pioneered a new technique to determine PPr rates using the triple isotope composition of dissolved oxygen as an in situ tracer. This relies on the observation that a signature of mass-independent fractionation originating in the stratosphere and imparted to the surface ocean by air-sea exchange is diminished by biological oxygen production. In February 2002 we measured gross productivity using both the 18O-labeling and triple isotope in situ methods at Hawaii Ocean Time-Series station ALOHA in the N. Pacific subtropical gyre. We found the in situ oxygen isotope method yielded double the 14C-derived PPr rates while 18O bottle incubations yielded similar rates as 14C. In addition, comparison of in situ isotope measurements with the biological oxygen saturation state indicate that community respiration is approximately equal to gross photosynthesis in the upper 60 m while from 80-200 m respiration exceeds photosynthesis by at most 10 %. We will present these results along with new results from upcoming measurements at station ALOHA.

  5. Spectroscopic strengths for /sup 6/Li-induced alpha-particle transfers on /sup 18/O at 72 MeV

    SciTech Connect

    Tanabe, T.; Ogino, K.; Kadota, Y.; Haga, K.; Kitahara, T.; Shiba, T.

    1982-08-01

    The /sup 18/O(/sup 6/Li,d)/sup 22/Ne reaction has been studied at 72-MeV bombarding energy. The angular distributions for transitions to low-lying states in /sup 22/Ne are fitted by exact finite-range distorted-wave Born approximation calculations and yield relative spectroscopic factors in good agreement with theoretical predictions.

  6. True absorption and scattering of pions on 16O and 18O

    NASA Astrophysics Data System (ADS)

    Navon, I.; Piasetzky, E.; Ashery, D.; Altman, A.; Azuelos, G.; Schlepütz, F. W.; Walter, H. K.

    1980-10-01

    The inclusive pion inelastic scattering and true absorption cross sections on 16O and 18O were measured at 165 MeV for π± and at 315 MeV for π+. The results show large effects of the two neutrons in 18O on the absorption and inelastic scattering cross sections at the resonance energy. In particular, the inelastic scattering of π+ from 18O is considerably smaller than from 16O and this effect is attributed to the coupling between the reaction channels.

  7. Low-(18)O Silicic Magmas: Why Are They So Rare?

    SciTech Connect

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  8. Antinutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing.

    PubMed

    Nidhina, N; Muthukumar, S P

    2015-04-15

    Proximate composition analysis and antinutritional factor composition of different fractions of industrial guar meal: raw churi (IRC), heated churi (IHC), final churi (IFC) and guar korma (IGK) were studied and compared. Protein content was found to be very high in IGK (52.7%) when compared to the churi fractions (32-33%) and the trypsin inhibitor activities were found to be negligible in all the fractions (0.58-1.8 mg/g). Single fraction (IGK) was selected for further studies, based on the protein content. The antinutritional factors of selected fractions were significantly reduced by different heat treatments. Heat treatments significantly increased the water absorbing capacity of IGK, but reduced the nitrogen solubility, emulsifying and foaming capacity. Highest L(∗) value was observed for boiled IGK, highest a(∗) and b(∗) values for roasted IGK, during colour measurement. FTIR spectral analysis revealed the presence several aromatic groups in IGK and slight modifications in the molecular structure during heat treatments.

  9. Chios mastic fractions in experimental colitis: implication of the nuclear factor κB pathway in cultured HT29 cells.

    PubMed

    Papalois, Apostolos; Gioxari, Aristea; Kaliora, Andriana C; Lymperopoulou, Aikaterini; Agrogiannis, George; Papada, Efstathia; Andrikopoulos, Nikolaos K

    2012-11-01

    The Pistacia lentiscus tree gives a resinous exudate called Chios mastic (CM) rich in triterpenoids. CM can be fractionated into acidic and neutral fractions (AF and NF, respectively). Oleanolic acid (OA) is a major triterpenic acid in CM with several antioxidant and anti-inflammatory properties. We have recently shown that CM is beneficial in experimental colitis in the form of powder mixture with inulin, as supplied commercially. However, the bioactive fraction or compound of CM is unidentified. Thus, based on the hypothesis that terpenoids exhibit functional activities via distinguishable pathways, we fractionated CM and applied different fractions or individual OA in experimental colitis. Furthermore, we investigated the mechanism underlying this effect in human colon epithelial cells. CM powder mixture (100 mg/kg of body weight) or the respective CM powder mixture components (i.e., inulin, AF, NF, or OA) were individually administered in trinitrobenzene sulfonic acid-treated rats. Colonic damage was assessed microscopically, and levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and intercellular adhesion molecule-1were measured. A model of inflammation in co-cultured human colon epithelial HT29 cells and monocytes/macrophages was established. Lactate dehydrogenase release and levels of TNF-α, IL-8, and nuclear factor-κB (NF-κB) p65 were measured. In vivo, histological amelioration of colitis and significant regulation in inflammation occurred with CM powder mixture, even at the mRNA level. Although no histological improvement was observed, AF and NF reduced levels of inflammatory markers. Inulin was ineffective. In vitro, CM treatment down-regulated IL-8 and NF-κB p65. Neither fractions nor OA was the bioactive component solely. Most probably, the entire CM rather than its individual fractions reduces inflammation via NF-κB regulation.

  10. High-Resolution ∂18O record of middle-late Holocene hydrologic variability from the central Peruvian Andes (Invited)

    NASA Astrophysics Data System (ADS)

    Rodbell, D. T.; Abbott, M.; Bird, B. W.; Stansell, N.

    2009-12-01

    Laguna Yuraicocha in the western cordillera of the central Peruvian Andes (12.53°S; 75.50°W; 4460 masl) is dammed by late glacial moraines and is underlain and surrounded by Jurassic and Cretaceous limestone interbedded with siliciclastic rocks. A 6.9 meter-long sediment core from the distal end of the lake is dominated by authigenic calcite (marl) with a mean concentration of 82 weight percent that has accumulated at a rate of ~ 1 mm yr-1 for the past 6200 years. The age model for the core is based on a combination of 210Pb and AMS 14C ages from charcoal; modern lake water is ~1‰ evaporatively enriched from mean regional precipitation. Marl samples were taken with an average sampling interval of 8 years; samples were treated to remove organic matter, sieved to concentrate the <75 µm fraction, and the clay fraction was removed by repeated pipette withdrawal. The <75 µm fraction contains abundant euhedral grains of calcite that are not abraded or corroded, thus reflecting their authigenic origin in Laguna Yuraicocha. The 18O and 13C stratigraphy reveals decadal, century, and millennial-scale variability that is comparable to isotope records from other carbonate lakes and ice cores in the region. The 18O and 13C records generally covary with similar amplitudes; δ13C ranges from -0.5 to 3.5 ‰ (PDB). A pronounced linear trend of δ18O depletion (from -10.5 to -14.5 ‰) spans the length of record and likely reflects a progressive increase in hydrologic balance (i.e., the ratio of precipitation/evaporation) through the middle and late Holocene. This interpretation is consistent with basal core sediment that records pronounced lake low stands, and possible periodic dessication in the early-middle Holocene. The last 1200 yr of record reveals a 2‰ depletion culminating with the most depleted isotopes on record ~ AD 1800 followed by an abrupt 1.5 ‰ enrichment that began ~AD 1900 and continues to the present. These trends match closely the 18O record from the

  11. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors.

    PubMed

    Schliep, Martin; Crossett, Ben; Willows, Robert D; Chen, Min

    2010-09-10

    The cyanobacterium Acaryochloris marina was cultured in the presence of either H(2)(18)O or (18)O(2), and the newly synthesized chlorophylls (Chl a and Chl d) were isolated using high performance liquid chromatography and analyzed by mass spectroscopy. In the presence of H(2)(18)O, newly synthesized Chl a and d, both incorporated up to four isotopic (18)O atoms. Time course H(2)(18)O labeling experiments showed incorporation of isotopic (18)O atoms originating from H(2)(18)O into Chl a, with over 90% of Chl a (18)O-labeled at 48 h. The incorporation of isotopic (18)O atoms into Chl d upon incubation in H(2)(18)O was slower compared with Chl a with approximately 50% (18)O-labeled Chl d at 115 h. The rapid turnover of newly synthesized Chl a suggested that Chl a is the direct biosynthetic precursor of Chl d. In the presence of (18)O(2) gas, one isotopic (18)O atom was incorporated into Chl a with approximately the same kinetic incorporation rate observed in the H(2)(18)O labeling experiment, reaching over 90% labeling intensity at 48 h. The incorporation of two isotopic (18)O atoms derived from molecular oxygen ((18)O(2)) was observed in the extracted Chl d, and the percentage of double isotopic (18)O-labeled Chl d increased in parallel with the decrease of non-isotopic-labeled Chl d. This clearly indicated that the oxygen atom in the C3(1)-formyl group of Chl d is derived from dioxygen via an oxygenase-type reaction mechanism.

  12. Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5

    NASA Astrophysics Data System (ADS)

    Wainer, K.; Genty, D.; Blamart, D.; Daëron, M.; Bar-Matthews, M.; Vonhof, H.; Dublyansky, Y.; Pons-Branchu, E.; Thomas, L.; van Calsteren, P.; Quinif, Yves; Caillon, N.

    2011-01-01

    The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U-Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite. Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O. Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ˜20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site. Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.

  13. A multi-model-proxy comparison study to refine the climatic interpretations of a speleothem δ18O record

    NASA Astrophysics Data System (ADS)

    Jex, C.; Phipps, S. J.; Baker, A.; Bradley, C.; Scholz, D.

    2012-12-01

    Speleothem δ18O (δ18Ospel) is arguably one of the best proxies for understanding seasonal groundwater recharge dynamics on all timescales, and therefore for inferring past changes in regional hydroclimate. Statistical relationships between δ18Ospel and the amount of seasonally effective precipitation or its isotopic composition may be demonstrated at cave sites where there is a reliable seasonally distinct composition of δ18O of precipitation (δ18Opptn). This is often the case where recharge is driven by spring snow-melt, seasonal soil moisture excess, or in monsoonal regimes with distinct changes in moisture source. We suggest that there are also three main areas of uncertainty that need to be addressed with any individual record of δ18Ospel. Here we present the results of a multi-model-proxy comparison using a published record of δ18Ospel from Turkey that has grown over the last 500 years in order to quantify these three main areas of uncertainty. First, we assess the stability of previously observed relationships between local climate parameters and regional circulation dynamics over the last 1ka using the CSIRO Mk3L climate system model [Phipps et al., 2011] in order to estimate the variability of δ18Opptn that could be explained by internal climate variability alone. Second, we estimate the variability in δ18Odw that could be explained by storage and routing of water in the karst aquifer over the last 1 ka using the temperature and precipitation output of a three-member ensemble of transient simulations and synthetic δ18Opptn for this location, to drive the KarstFor karst systems model [Baker et al., 2012]. Finally, we estimate the variability in δ18Ospel that may be attributed to kinetic fractionation processes associated with non-equilibrium CaCO3 formation for this cave system [Scholz et al., 2009]. Baker, A., C. Bradley, S. J. Phipps, M. Fischer, I. J. Fairchild, L. Fuller, C. Spötl, and C. Azcurra (2012), Millennial-length forward models and

  14. Evaporation induced 18O and 13C enrichment in lake systems: A global perspective on hydrologic balance effects

    NASA Astrophysics Data System (ADS)

    Horton, Travis W.; Defliese, William F.; Tripati, Aradhna K.; Oze, Christopher

    2016-01-01

    Growing pressure on sustainable water resource allocation in the context of global development and rapid environmental change demands rigorous knowledge of how regional water cycles change through time. One of the most attractive and widely utilized approaches for gaining this knowledge is the analysis of lake carbonate stable isotopic compositions. However, endogenic carbonate archives are sensitive to a variety of natural processes and conditions leaving isotopic datasets largely underdetermined. As a consequence, isotopic researchers are often required to assume values for multiple parameters, including temperature of carbonate formation or lake water δ18O, in order to interpret changes in hydrologic conditions. Here, we review and analyze a global compilation of 57 lacustrine dual carbon and oxygen stable isotope records with a topical focus on the effects of shifting hydrologic balance on endogenic carbonate isotopic compositions. Through integration of multiple large datasets we show that lake carbonate δ18O values and the lake waters from which they are derived are often shifted by >+10‰ relative to source waters discharging into the lake. The global pattern of δ18O and δ13C covariation observed in >70% of the records studied and in several evaporation experiments demonstrates that isotopic fractionations associated with lake water evaporation cause the heavy carbon and oxygen isotope enrichments observed in most lakes and lake carbonate records. Modeled endogenic calcite compositions in isotopic equilibrium with lake source waters further demonstrate that evaporation effects can be extreme even in lake records where δ18O and δ13C covariation is absent. Aridisol pedogenic carbonates show similar isotopic responses to evaporation, and the relevance of evaporative modification to paleoclimatic and paleotopographic research using endogenic carbonate proxies are discussed. Recent advances in stable isotope research techniques present unprecedented

  15. Body composition among Sri Lankan infants by 18*O dilution method and the validity of anthropometric equations to predict body fat against 18*O dilution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Body composition indicators provide a better guidance for growth and nutritional status of the infants. This study was designed to (1) measure the body composition of the Sri Lankan infants using a reference method, the 18*O dilution method; (2) calculate the body fat content of the infants using pu...

  16. Stable Isotope (18O, 2H) and Arsenic Distribution in the Shallow Aquifers in Araihazar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Datta, S.; Stute, M.; Dhar, R.; Hoque, M. A.; Rahman, M. W.; Ahmed, K. M.; Schlosser, P.; van Geen, A.

    2005-12-01

    Recent estimates indicate that in Bangladesh alone, an estimated 50 million people have been exposed to Arsenic levels that exceed the WHO guideline of 10 μgL-1 for drinking water by up to two orders of magnitude. There is still debate on what processes control the spatial heterogeneity of dissolved As concentrations. One recent suggestion has been that surface waters enriched in labile organic matter and transferred to greater depths by irrigation pumping may be an important factor. We have monitored for a year the oxygen and hydrogen isotopic composition of precipitation in Dhaka, Bangladesh, and of surface waters and groundwaters in a 25 km2 study area in Araihazar, 20 km east of Dhaka. The data show a large spatial and temporal heterogeneity, with δ18O covering a range of up to 12 ‰. The isotopic composition of precipitation falls on the global meteoric water line (GMWL), while most surface waters collected from rivers, ponds and irrigated rice fields plot below and to the right of the meteoric water line, suggesting that evaporation is an important mechanism in this system. Surface waters show a strong evaporative enrichment during the dry season of up to 10 ‰ in δ18O and then show increased mixing with precipitation during the wet season. The groundwater isotopic composition obtained at 6 multi level well sites covers the range between the GMWL and moderately evaporated surface waters. These data indicate that some groundwaters are recharged directly by precipitation while others show evidence of recharge from evaporated surface waters during the wet and at the beginning of the dry season. For several well nests, the sources of groundwater vary in a systematic way as a function of depth. Highly evaporated irrigation water from rice fields in the dry season does not seem to contribute much to groundwater recharge. The degree of evaporation expressed as deuterium excess does not correlate with As concentrations in the groundwater samples. This finding

  17. Investigating the past and recent δ18O-accumulation relationship seen in Greenland ice cores

    NASA Astrophysics Data System (ADS)

    Buchardt, S. L.; Clausen, H. B.; Vinther, B. M.; Dahl-Jensen, D.

    2012-08-01

    Decadal means of δ18O and accumulation rates from 52 ice core sites in Greenland are presented. The accumulation rates are derived from annual layers determined in the δ18O curve. Investigation of the δ18O-accumulation relationship across the ice divide reveals a significant Foehn effect with anticorrelation of δ18O and accumulation on the lee side of the divide in Southern Greenland, while no effect is seen in Central Greenland. Furthermore, the sensitivity of accumulation rate to changes in temperature is found to be smaller in Northern Greenland than in the central and southern parts. Four sites in the data set contain sufficient recent data that the period of observed temperature rise from the 1990's and onwards can be investigated. All four sites are located close to the ice divide in Northern Greenland and while three sites show increased temperatures, none show evidence of increased accumulation.

  18. Coupled measurement of δ18O/δD in gypsum hydration water and salinity of fluid inclusions in gypsum: A novel tool for reconstructing parent water chemistry and depositional environment

    NASA Astrophysics Data System (ADS)

    Evans, Nick; Gázquez, Fernando; Turchyn, Alexandra; Chapman, Hazel; Hodell, David

    2015-04-01

    The measurement of oxygen and hydrogen isotopes in gypsum hydration water (CaSO4•2H2O) is a powerful tool to determine the isotopic composition of the parent fluid from which gypsum precipitated. To be useful, however, the hydration water must retain its original isotope signal and not have undergone postdepositional exchange. We developed a novel method to ascertain whether hydration waters have secondarily exchanged by coupling oxygen and hydrogen isotopes of gypsum hydration water with the salinities of fluid inclusions. Salinity is obtained through microthermometric analysis of the same gypsum crystals measured for hydration water by freezing the sample and then measuring the melting point of the fluid inclusions. We apply the method to Messinian gypsum deposits of Cycle 6 within the Yesares Member, Río de Aguas section, Sorbas Basin (SE Spain). After correction of oxygen and hydrogen isotopes of gypsum hydration water for fractionation factors, the estimated range of the mother water is -1.8o to 2.8o for δ18O and -12.5o to 16.3o for δD. In the same samples, estimated salinity of primary fluid inclusions range from 18 to 51ppt. Salinity is highly correlated with δ18O and δD, yielding an r2 of 0.88 and 0.87, respectively. The intercepts of the regression equations (i.e., at zero salinity) define the isotope composition of the freshwater endmember, and average -4.4±1.3o for δ18O and -28.9±8.7o for δD. These values are within error of the average isotope composition of precipitation and groundwater data from the local region of Almería today (-4.3o and -22.2o for δ18O and δD, respectively). This agreement provides strong evidence that the gypsum hydration water has retained its isotope composition and has not undergone postdepositional exchange. Furthermore, the isotope and salinity values indicate a significant contribution of meteoric water during gypsum deposition. This observation contrasts with sulfur and oxygen isotopes in sulfate (21.9 > δ34S

  19. Robust electrocatalysts from metal doped W18O49 nanofibers for hydrogen evolution.

    PubMed

    Zhao, Yuanyuan; Tang, Qunwei; Yang, Peizhi; He, Benlin

    2017-04-03

    We report here robust electrocatalysts from metal doped W18O49 nanofibers (NFs) for high-efficiency hydrogen evolution. By tuning Pd dosages, the optimal 5 at% Pd doped W18O49 NFs yield an onset overpotential of only 65 mV and exchange current densities up to 2.36 × 10(-3) mA cm(-2). Moreover, the resultant electrocatalyst is relatively stable during persistent operation.

  20. Dentine oxygen isotopes (δ (18)O) as a proxy for odontocete distributions and movements.

    PubMed

    Matthews, Cory J D; Longstaffe, Fred J; Ferguson, Steven H

    2016-07-01

    Spatial variation in marine oxygen isotope ratios (δ (18)O) resulting from differential evaporation rates and precipitation inputs is potentially useful for characterizing marine mammal distributions and tracking movements across δ (18)O gradients. Dentine hydroxyapatite contains carbonate and phosphate that precipitate in oxygen isotopic equilibrium with body water, which in odontocetes closely tracks the isotopic composition of ambient water. To test whether dentine oxygen isotope composition reliably records that of ambient water and can therefore serve as a proxy for odontocete distribution and movement patterns, we measured δ (18)O values of dentine structural carbonate (δ (18) OSC) and phosphate (δ (18) OP) of seven odontocete species (n = 55 individuals) from regional marine water bodies spanning a surface water δ (18)O range of several per mil. Mean dentine δ (18) OSC (range +21.2 to +25.5‰ VSMOW) and δ (18) OP (+16.7 to +20.3‰) values were strongly correlated with marine surface water δ (18)O values, with lower dentine δ (18) OSC and δ (18) OP values in high-latitude regions (Arctic and Eastern North Pacific) and higher values in the Gulf of California, Gulf of Mexico, and Mediterranean Sea. Correlations between dentine δ (18) OSC and δ (18) OP values with marine surface water δ (18)O values indicate that sequential δ (18)O measurements along dentine, which grows incrementally and archives intra- and interannual isotopic composition over the lifetime of the animal, would be useful for characterizing residency within and movements among water bodies with strong δ (18)O gradients, particularly between polar and lower latitudes, or between oceans and marginal basins.

  1. On the enigmatic similarity in Greenland δ18O between the Oldest and Younger Dryas

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Löfverström, Marcus

    2015-12-01

    The last deglaciation (20.0-10.0 kyr B.P.) was punctuated by two major cooling events affecting the Northern Hemisphere: the Oldest Dryas (OD; 18.0-14.7 kyr B.P.) and the Younger Dryas (YD; 12.8-11.5 kyr B.P.). Greenland ice core δ18O temperature reconstructions suggest that the YD was as cold as the OD, despite a 50 ppmv increase in atmospheric CO2, while modeling studies suggest that the YD was approximately 4-5°C warmer than the OD. This discrepancy has been surmised to result from changes in the origin of the water vapor delivered to Greenland; however, this hypothesis has not been hitherto tested. Here we use an atmospheric circulation model with an embedded moisture-tracing module to investigate atmospheric processes that may have been responsible for the similar δ18O values during the OD and YD. Our results show that the summer-to-winter precipitation ratio over central Greenland in the OD is twice as high as in the YD experiment, which shifts the δ18O signal toward warmer (summer) temperatures (enriched δ18O values and it accounts for ~45% of the expected YD-OD δ18O difference). A change in the inversion (cloud) temperature relationship between the two climate states further contributes (~20%) to altering the δ18O-temperature-relation model. Our experiments also show a 7% decrease of δ18O-depleted precipitation from distant regions (e.g., the Pacific Ocean) in the OD, hence further contributing (15-20%) in masking the actual temperature difference. All together, these changes provide a physical explanation for the ostensible similarity in the ice core δ18O temperature reconstructions in Greenland during OD and YD.

  2. Relation between D/H ratios and sup 18 O/ sup 16 O ratios in cellulose from linen and maize--Implications for paleoclimatology and for sindonology

    SciTech Connect

    DeNiro, M.J.; Sternberg, L.D.; Marino, B.D. ); Druzik, J.R. )

    1988-09-01

    The {sup 18}O/{sup 16}O ratios of cellulose and the D/H ratios of cellulose nitrate were determined for linen, a textile produced from the fibers of the flax plant Linum usitatissimum, and for maize (Zea mays) from a variety of geographic locations in Europe, the Middle East, and North and South America. The regression lines of {delta}D values on {delta}{sup 18}O values had slopes of 5.4 and 5.8 for the two species. Statistical analysis of results reported in the only other study in which samples of a single species that grew under a variety of climatic conditions were analyzed yielded slopes of {approximately}6 when {delta}D values of cellulose nitrate were regressed on {delta}{sup 18}O values of cellulose. The occurrence of this previously unrecognized relationship in three species suggests it may obtain in other plants as well. Determining the basis for this relationship, which is not possible given current understanding of fractionation of the isotopes of oxygen and hydrogen by plants, should lead to increased understanding of how D/H and {sup 18}O/{sup 16}O ratios in cellulose isolated from fossil plants are related to paleoclimates. The separation of most linen samples from Europe from those originating in the Middle East when {delta}D values are plotted against {delta}{sup 18}O values suggests it may be possible to use the isotope ratios of cellulose prepared from the Shroud of Turin to resolve the controversy concerning its geographic origin.

  3. Regional and global benthic δ18O stacks for the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Lisiecki, Lorraine E.; Stern, Joseph V.

    2016-10-01

    Although detailed age models exist for some marine sediment records of the last glacial cycle (0-150 ka), age models for many cores rely on the stratigraphic correlation of benthic δ18O, which measures ice volume and deep ocean temperature change. The large amount of data available for the last glacial cycle offers the opportunity to improve upon previous benthic δ18O compilations, such as the "LR04" global stack. Not only are the age constraints for the LR04 stack now outdated but a single global alignment target neglects regional differences of several thousand years in the timing of benthic δ18O change during glacial terminations. Here we present regional stacks that characterize mean benthic δ18O change for 8 ocean regions and a volume-weighted global stack of data from 263 cores. Age models for these stacks are based on radiocarbon data from 0 to 40 ka, correlation to a layer-counted Greenland ice core from 40 to 56 ka, and correlation to radiometrically dated speleothems from 56 to 150 ka. The regional δ18O stacks offer better stratigraphic alignment targets than the LR04 global stack and, furthermore, suggest that the LR04 stack is biased 1-2 kyr too young throughout the Pleistocene. Finally, we compare global and regional benthic δ18O responses with sea level estimates for the last glacial cycle.

  4. Late-Pleistocene precipitation δ18O interpolated across the global landmass

    NASA Astrophysics Data System (ADS)

    Jasechko, Scott

    2016-08-01

    Global water cycles, ecosystem assemblages, and weathering rates were impacted by the ˜4°C of global warming that took place over the course of the last glacial termination. Fossil groundwaters can be useful indicators of late-Pleistocene precipitation isotope compositions, which, in turn, can help to test hypotheses about the drivers and impacts of glacial-interglacial climate changes. Here, a global catalog of 126 fossil groundwater records is used to interpolate late-Pleistocene precipitation δ18O across the global landmass. The interpolated data show that extratropical late-Pleistocene terrestrial precipitation was near uniformly depleted in 18O relative to the late Holocene. By contrast, tropical δ18O responses to deglacial warming diverged; late-Pleistocene δ18O was higher-than-modern across India and South China but lower-than-modern throughout much of northern and southern Africa. Groundwaters that recharged beneath large northern hemisphere ice sheets have different Holocene-Pleistocene δ18O relationships than paleowaters that recharged subaerially, potentially aiding reconstructions of englacial transport in paleo ice sheets. Global terrestrial late-Pleistocene precipitation δ18O maps may help to determine 3-D groundwater age distributions, constrain Pleistocene mammal movements, and better understand glacial climate dynamics.

  5. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    PubMed Central

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  6. Variable sea ice contributions to seawater δ18O on glacial-interglacial timescales

    NASA Astrophysics Data System (ADS)

    Brennan, C. E.; Weaver, A. J.; Eby, M.; Meissner, K. J.

    2011-12-01

    The oxygen isotope composition of seawater varies in time, mainly based on the amount of (depleted) ice stored on continents. Oxygen isotope records derived from ocean sediment cores serve as indicators of changes in both seawater temperature and continental ice volume. Seawater δ18O may contain a variable signature of sea ice production, especially at high latitudes. Sea ice growth produces isotopically enriched ice and depleted brine. Over glacial-interglacial cycles, changes in the sites and rates of sea ice production (and by extension sea ice meltwater and brine export) hold the potential to shift local to regional seawater isotopic chemistry. Neglecting variability in sea ice production may therefore superimpose error upon reconstructions employing high latitude δ18O records. We examine the effects of variability in sea ice production between glacial and interglacial climate states on seawater δ18O in the University of Victoria Earth System Climate Model. Oxygen isotopes are implemented in all components (ocean, atmosphere, land surface, and sea ice) of the coupled model. The role of glacial-interglacial sea ice variability is investigated in a set of model experiments. Here we isolate the seawater δ18O field due only to sea ice in the model. By contrasting the seawater δ18O fields due to sea ice resulting from the glacial and interglacial climates, we investigate the potential for variable sea ice formation to shift seawater δ18O.

  7. Regional scale high resolution δ18O prediction in precipitation using MODIS EVI.

    PubMed

    Chan, Wei-Ping; Yuan, Hsiao-Wei; Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ(18)O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ(18)O are highly correlated and thus the EVI is a good predictor of precipitated δ(18)O. We then test the predictability of our EVI-δ(18)O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ(18)O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ(18)O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape.

  8. Application of δ(18)O, δ(13)CDIC, and major ions to evaluate micropollutant sources in the Bay of Vidy, Lake Geneva.

    PubMed

    Halder, Janine; Pralong, Charles; Bonvin, Florence; Lambiel, Frederic; Vennemann, Torsten W

    2016-01-01

    Waters were sampled monthly from a profile at the wastewater outlet and a reference point in the Bay of Vidy (Lake Geneva) for a year. The samples were analyzed for (18)O/(16)O of water, (13)C/(12)C of dissolved inorganic carbon (DIC), major ions, and selected micropollutant concentrations. δ(18)O values, combined with the major ion concentrations, allowed discharged waste and storm-drainage water to be traced within the water column. On the basis of δ(18)O values, mole fractions of wastewater (up to 45 %), storm-drainage (up to 16 %), and interflowing Rhône River water (up to 34 %) could be determined. The results suggest that the stormwater fractions do not influence micropollutant concentrations in a measurable way. In contrast, the Rhône River interflow coincides with elevated concentrations of Rhône River-derived micropollutants in some profiles. δ(13)C values of DIC suggest that an increase in micropollutant concentrations at the sediment-water interface could be related to remineralization processes or resuspension.

  9. High resolution δ17O-δ18O as a single mineral thermometer

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Sengupta, S.; Pack, A.

    2014-12-01

    The equilibrium relationship α17O/16Oa-b = (α18O/16Oa-b)θ makes the analysis of δ17O redundant for most terrestrial applications. However the θ term varies with temperature, so that ultra-high precision δ17O data provide additional information not available from δ18O alone. If the δ18O and δ17O values of formation water covary in a known way (e.g., meteoric water, ocean water), then a unique solution for both temperature and the δ18O of the formation fluids can be obtained from the combined δ18O-δ17O mineral values. The paired δ18O-δ17O values are in essence a single mineral thermometer. Unlike clumped isotopes or combined δ18O-δD data, the δ18O and δ17O values of a mineral have identical 'diagenetic potential', and will only be altered with a high F/R ratio. We have made an empirical determination of the temperature dependence on θ = -710/T2 + 0.5305 using Pleistocene diatom data from ODP Leg 177, Site 1093 (δ18O = 39.610, δ17O = 20.536‰), which is almost identical to Pack and Herwartz (EPSL, 2014). Application to ancient cherts gives the following results: The δ18O-δ17O values of cherts vary systematically with age, from Archean to Proterozoic to Phanerozoic. The Archean cherts are incompatible with modern seawater under any temperature conditions. Instead they have equilibrated with water of δ18O= -10±3 (‰ vs SMOW) at 50 to 70°C. These data support a lighter ocean in the Archean by ~5‰. Proterozoic cherts equilibrated at 35-50°C with meteoric water of -8±3‰ and Phanerozoic cherts equilibrated with mixed meteoric water/ocean water at similar temperatures and higher δ18O values (-3±3‰). The δ18O values of lacustrine diatoms from the Valles Caldera, NM, vary by over 20‰ between glacial and interglacial times. The combined δ18O-δ17O values of interglacial diatoms give T= ~12°C, δ18Ometeoric water = -9‰. A glacial age diatom sample gives T=<10°C, δ18Ometeoric water = -20‰. These data could not be obtained from the

  10. δ18O and δD variations in Holocene massive ice in the Sabettayakha river mouth, northern Yamal Peninsula

    NASA Astrophysics Data System (ADS)

    Vasil'chuk, Yu. K.; Podborny, Ye. Ye.; Budantseva, N. A.; Vasil'chuk, A. C.; Sullina, A. N.; Chizhova, Ju. N.

    2016-10-01

    The conditions of formation of massive ice near the South Tambey gas-condensate field in northern Yamal Peninsula are studied. It is shown that massive ice bodies up to 4.5 m thick occur in the Holocene deposits of the high laida and the first terrace. Therefore, they cannot be the remains of glaciers; they are ground ice formations. All three types of massive ice have quite various isotopic compositions: the values of δD range from-107 to-199.7, and δ18O from-15.7 to-26.48‰. Such a significant differentiation in isotopic composition is a result of cryogenic fractionation in a freezing water-saturated sediment. The most negative isotope values are even lower in this Holocene massive ice than in the Late Pleistocene ice-wedge ice of Yamal Peninsula.

  11. Covariance of initial sup 87 Sr/ sup 86 Sr ratios,. delta. sup 18 O, and SiO sub 2 in continental flood basalt suites: The role of contamination and alteration

    SciTech Connect

    Harris, C. )

    1989-07-01

    When mutual positive correlations occur between {delta}{sup 18}O, {sup 87}Sr/{sup 86}Sr initial ratio (R{sub o}), and SiO{sub 2} in continental flood basalt suites, they are generally accepted as being due to crustal contamination. In continental flood basalt suites that have undergone coupled assimilation-fractional crystallization in which the contaminant is granitic continental crust, R{sub o} reflects the degree of contamination and will correlate positively with SiO{sub 2} which reflects the degree of differentiation. Posteruptive alteration of a suite having a range of SiO{sub 2} values should result in a positive correlation between SiO{sub 2} and {delta}{sup 18}O because the ability of a volcanic rock to concentrate {sup 18}O depends, in part, on silica content. Suites that have undergone assimilation-fractional crystallization followed by alteration after eruption may there for exhibit a positive correlation between {delta}{sup 18}O, SiO{sub 2}, and R{sub o}. The {delta}{sup 18}O data in such suites may consequently suggest erroneously high degrees of contamination.

  12. Towards a Better Understanding of the Oxygen Isotope Signature of Atmospheric CO2: Determining the 18O-Exchange Between CO2 and H2O in Leaves and Soil On-line with Laser-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gangi, L.; Rothfuss, Y.; Vereecken, H.; Brueggemann, N.

    2013-12-01

    The oxygen isotope signature of carbon dioxide (δ18O-CO2) is a powerful tool to disentangle CO2 fluxes in terrestrial ecosystems, as CO2 attains a contrasting 18O signature by the interaction with isotopically different soil and leaf water pools during soil respiration and photosynthesis, respectively. However, using the δ18O-CO2 signal to quantify plant-soil-atmosphere CO2 fluxes is still challenging due to a lack of knowledge concerning the magnitude and effect of individual fractionation processes during CO2 and H2O diffusion and during CO2-H2O isotopic exchange in soils and leaves, especially related to short-term changes in environmental conditions (non-steady state). This study addresses this research gap by combined on-line monitoring of the oxygen isotopic signature of CO2 and water vapor during gas exchange in soil and plant leaves with laser-based spectroscopy, using soil columns and plant chambers. In both experimental setups, the measured δ18O of water vapor was used to infer the δ18O of liquid water, and, together with the δ18O-CO2, the degree of oxygen isotopic equilibrium between the two species (θ). Gas exchange experiments with different functional plant types (C3 coniferous, C3 monocotyledonous, C3 dicotyledonous, C4) revealed that θ and the influence of the plant on the ambient δ18O-CO2 (CO18O-isoforcing) not only varied on a diurnal timescale but also when plants were exposed to limited water availability, elevated air temperature, and abrupt changes in light intensity (sunflecks). Maximum θ before treatments ranged between 0.7 and 0.8 for the C3 dicotyledonous (poplar) and C3 monocotyledonous (wheat) plants, and between 0.5 and 0.6 for the conifer (spruce) and C4 plant (maize) while maximum CO18O-isoforcing was highest in wheat (0.03 m s-1 ‰), similar in poplar and maize (0.02 m s-1 ‰), and lowest in spruce (0.01 m s-1 ‰). Multiple regression analysis showed that up to 97 % of temporal dynamics in CO18O-isoforcing could be

  13. Interpreting δD and δ18O isotopic signals of ambient water vapor in PNW coniferous forest using a high frequency CRDS analyzer

    NASA Astrophysics Data System (ADS)

    Allen, S. T.; Bond, B. J.; McDonnell, J. J.; Brooks, J. R.; Thomas, C. K.

    2010-12-01

    Wavelength-Scanned Cavity Ring-Down Spectroscopy provides real-time simultaneous measurement of stable isotopologues of water vapor in natural environments. Continuous, high-frequency sampling provides a new and exciting look at water cycle processes and creates many new possibilities for studying the vapor phase of the hydrologic cycle. However, as with any new tool, the first challenge is to understand the sources of variability in the signal. This includes disentangling potential instrument variability from environmental variability as well as the identification and quantification of environmental end members. We deployed a Picarro L-1102 Liquid / Vapor analyzer at the mouth of a small watershed in the H.J. Andrews Experimental Forest located in the West-Central Oregon Cascades range in November, 2009. The steeply-sloped watershed is covered by a closed-canopied, young-mature Douglas fir forest; it has been used for many previous ecological, hydrological, and meteorological studies. The data reveal very high diel variability in δD in and δ18O as well as δD to δ18O ratios and a strong deviation from the global meteoric water line. A hysteresis effect differs dramatically from one day to the next and confounds apparent trends. To interpret these results, we are conducting controlled tests of instrument performance and we propose a plan to partition individual vapor source contributions. Application of this vapor signature to ecological or hydrological studies requires knowledge of individual end-member contributions to the isotope measurements. We hypothesize that by determining end-member fluxes and in-situ fractionation factors paired with micrometeorological data, we can better understand processes driving these patterns. Combined with meteorological tower data, high frequency data allows the possibility of scaling up from continuous point measurements to ecosystem-scale processes. Previous studies in this watershed have demonstrated the ability to estimate

  14. The MMCO-EOT conundrum: Same benthic δ18O, different CO2

    NASA Astrophysics Data System (ADS)

    Stap, Lennert B.; Wal, Roderik S. W.; De Boer, Bas; Bintanja, Richard; Lourens, Lucas J.

    2016-09-01

    Knowledge on climate change during the Cenozoic largely stems from benthic δ18O records, which document combined effects of deep-sea temperature and ice volume. Information on CO2 is expanding but remains uncertain and intermittent. Attempts to reconcile δ18O, sea level, and CO2 by studying proxy data suffer from paucity of data and apparent inconsistencies among different records. One outstanding issue is the difference suggested by proxy CO2 data between the Eocene-Oligocene boundary (EOT) and the Middle-Miocene Climatic Optimum (MMCO), while similar levels of δ18O are shown during these times. This conundrum implies changing relations between δ18O, CO2, and temperature over time. Here we use a coupled climate-ice sheet model, forced by two different benthic δ18O records, to obtain continuous and mutually consistent records of δ18O, CO2, temperature, and sea level over the period 38 to 10 Myr ago. We show that the different CO2 levels between the EOT and MMCO can be explained neither by the standard configuration of our model nor by altering the uncertain ablation parametrization on the East Antarctic Ice Sheet. However, we offer an explanation for the MMCO-EOT conundrum by considering erosion and/or tectonic movement of Antarctica, letting the topography evolve over time. A decreasing height of the Antarctic continent leads to higher surface temperatures, reducing the CO2 needed to maintain the same ice volume. This also leads to an increasing contribution of ice volume to the δ18O signal. This result is, however, dependent on how the topographic changes are implemented in our ice sheet model.

  15. Large Volume 18O-depleted Rhyolitic Volcanism: the Bruneau-Jarbidge Volcanic Field, Idaho

    NASA Astrophysics Data System (ADS)

    Boroughs, S.; Wolff, J.; Bonnichsen, B.; Godchaux, M. M.; Larson, P. B.

    2003-12-01

    The Bruneau-Jarbidge (BJ) volcanic field is located in southern Idaho at the intersection of the western and eastern arms of the Snake River Plain. The BJ region is an oval structural basin of about 6000 km2, and is likely a system of nested caldera and collapse structures similar to, though larger than, the Yellowstone Volcanic Plateau. BJ rocks are high-temperature rhyolite tuffs, high-temperature rhyolite lavas, and volumetrically minor basalts. Exposed volumes of individual rhyolite units range up to greater than 500 km3. We have analyzed feldspar and, where present, quartz from 30 rhyolite units emplaced throughout the history of the BJ center. All, including the Cougar Point Tuff, are 18O depleted (δ 18OFSP = -1.3 to 3.7‰ ), while petrographically, temporally, and chemically similar lavas erupted along the nearby Owyhee Front have "normal" rhyolite magmatic δ 18O values of 7 - 9‰ . There is no evidence for significant modification of δ 18O values by post-eruptive alteration. No correlation exists between δ 18O and age, magmatic temperature, major element composition or trace element abundances among depleted BJ rhyolites. The BJ and WSRP rhyolites possess the geochemical characteristics (depressed Al, Ca, Eu, and Sr contents, high Ga/Al and K/Na) expected of liquids derived from shallow melting of calc-alkaline granitoids with residual plagioclase and orthopyroxene (Patino-Douce, Geology v.25 p.743-746, 1997). The classic Yellowstone low δ 18O rhyolites are post-caldera collapse lavas, but at BJ, both lavas and caldera-forming ignimbrites are strongly 18O-depleted. The total volume of low δ 18O rhyolite may be as high as 10,000 km3, requiring massive involvement of meteoric-hydrothermally altered crust in rhyolite petrogenesis. Regional hydrothermal modification of the crust under the thermal influence of the Yellowstone hotspot apparently preceded voluminous rhyolite generation at Bruneau-Jarbidge.

  16. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; McDermott, Frank; Mudelsee, Manfred; Werner, Martin; Frank, Norbert; Mangini, Augusto

    2016-09-01

    Speleothem δ18O records provide valuable information about past continental environmental and climatic conditions, although their interpretation is often not straightforward. Here we evaluate a compilation of late Holocene speleothem δ18O records using a Monte Carlo based Principal Component Analysis (MC-PCA) method that accounts for uncertainties in individual speleothem age models and for the variable temporal resolution of each δ18O record. The MC-PCA approach permits not only the identification of temporally coherent changes in speleothem δ18O; it also facilitates their graphical depiction and evaluation of their spatial coherency. The MC-PCA method was applied to 11 Holocene speleothem δ18O records that span most of the European continent (apart from the circum-Mediterranean region). We observe a common (shared) mode of speleothem δ18O variability that suggests millennial-scale coherency and cyclicity during the last 4.5 ka. These changes are likely caused by variability in atmospheric circulation akin to that associated with the North Atlantic Oscillation, reflecting meridionally shifted westerlies. We argue that these common large-scale variations in European speleothem δ18O records are in phase with changes in the North Atlantic Ocean circulation indicated by the vigour of the Iceland Scotland Overflow Water (ISOW), the strength of the subpolar gyre (SPG) and an ocean stacked North Atlantic ice rafted debris (IRD) index. Based on a recent modelling study, we conclude that these changes in the North Atlantic circulation history may be caused by wind stress on the ocean surface driven by shifted westerlies. However, the mechanisms that ultimately force the westerlies remain unclear.

  17. Seasonal variability of equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab, India.

    PubMed

    Saini, Komal; Singh, Parminder; Singh, Prabhjot; Bajwa, B S; Sahoo, B K

    2017-02-01

    A survey was conducted to estimate equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab state, India. Pin hole based twin cup dosimeters and direct progeny sensor techniques have been utilized for estimation of concentration level of radon, thoron and their progenies. Equilibrium factor calculated from radon, thoron and their progenies concentration has been found to vary from 0.15 to 0.80 and 0.008 to 0.101 with an average value of 0.44 and 0.036 for radon and thoron respectively. Equilibrium factor for radon has found to be highest in winter season and lowest in summer season whereas for thoron highest value is observed in winter and rainy season and lowest in summer. Unattached fractions of radon and thoron have been found to vary from 0.022 to 0.205 and 0.013 to 0.212 with an average value of 0.099 and 0.071 respectively. Unattached fractions have found to be highest in winter season and lowest in rainy and summer season.

  18. Pervasive and Persistent Large-Volume, low delta 18O Silicic Magma Generation at the Yellowstone Hotspot, 12.7-10.5 Ma: Ion Microprobe Analyses of Zircon in the Cougar Point Tuff

    NASA Astrophysics Data System (ADS)

    Cathey, H. E.; Nash, B. P.; Valley, J. W.; Kita, N.; Ushikubo, T.; Spicuzza, M.

    2007-12-01

    volumes at the time of eruption has been documented previously by polymodal assemblages of glass and pyroxene compositions in several units and is consistent with the zircon δ18O data. Temporal patterns of variation in δ18O over the sequence of eruptions are consistent with zircon core inheritance from unerupted residual magmas and/or remelting of solidified remains of earlier CPT magma reservoirs that were depleted in 18O by hydrothermal alteration. Oxygen isotopes in bulk quartz separates measured by laser fluorination range in δ18O from 1.3 to 4.5‰, and temporal variations in quartz track those of average δ18O in zircon rims in each unit, and thus are consistent with a comagmatic origin with zircon. From the fourth eruption in the sequence to the tenth, average δ18O in quartz (=3.4, sd=0.4) and zircon rims (=0.9, sd=0.5) does not change appreciably from one eruption to the next. Measured Delta (Qz-Zrc) values using δ18O in zircon rims range from 1.8-2.6, and most fractionations are consistent with predictions based on mineral thermometry. First order estimates of the averageδ18O of the total eruptive volume (i.e. 7000 km3) range from 2.4 to 3.4‰, making the Cougar Point Tuff the largest volume of low δ18O magma known.

  19. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for the low-δ18O magmatism of the Snake River Plain-Yellowstone hotspot and other low-δ18O large igneous provinces

    NASA Astrophysics Data System (ADS)

    Blum, Tyler B.; Kitajima, Kouki; Nakashima, Daisuke; Strickland, Ariel; Spicuzza, Michael J.; Valley, John W.

    2016-11-01

    The Snake River Plain-Yellowstone (SRP-Y) hotspot track represents the largest known low-δ18O igneous province; however, debate persists regarding the timing and distribution of meteoric hydrothermal alteration and subsequent melting/assimilation relative to hotspot magmatism. To further constrain alteration relations for SRP-Y low-δ18O magmatism, we present in situ δ18O and U-Pb analyses of zircon, and laser fluorination δ18O analyses of phenocrysts, from the Lake Owyhee volcanic field (LOVF) of east-central Oregon. U-Pb data place LOVF magmatism between 16.3 and 15.4 Ma, and contain no evidence for xenocrystic zircon. LOVF δ18O(Zrc) values demonstrate (1) both low-δ18O and high-δ18O caldera-forming and pre-/post-caldera magmas, (2) relative increases in δ18O between low-δ18O caldera-forming and post-caldera units, and (3) low-δ18O magmatism associated with extension of the Oregon-Idaho Graben. The new data, along with new compilations of (1) in situ zircon δ18O data for the SRP-Y, and (2) regional δ18O(WR) and δ18O(magma) patterns, further constrain the thermal and structural associations for hydrothermal alteration in the SRP-Y. Models for low-δ18O magmatism must be compatible with (1) δ18O(magma) trends within individual SRP-Y eruptive centers, (2) along axis trends in δ18O(magma), and (3) the high concentration of low-δ18O magmas relative to the surrounding regions. When considered with the structural and thermal evolution of the SRP-Y, these constraints support low-δ18O magma genesis originating from syn-hotspot meteoric hydrothermal alteration, driven by hotspot-derived thermal fluxes superimposed on extensional tectonics. This model is not restricted to continental hotspot settings and may apply to several other low-δ18O igneous provinces with similar thermal and structural associations.

  20. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Sanford, Robert A.; Johnson, Thomas M.; Lundstrom, Craig C.; Löffler, Frank E.

    2014-07-01

    We experimentally determined the magnitude of uranium isotopic fractionation induced by U(VI) reduction by metal reducing bacterial isolates. Our results indicate that microbial U(VI) reduction induces isotopic fractionation; heavier isotopes (i.e., 238U) partition into the solid U(IV) products. The magnitudes of isotopic fractionation (expressed as ε = 1000‰ * (α-1)) for 238U/235U were 0.68‰ ± 0.05‰ and 0.99‰ ± 0.12‰ for Geobacter sulfurreducens strain PCA and strain IFRC-N, respectively. The ε values for Anaeromyxobacter dehalogenans strain FRC-W, strain FRC-R5, a novel Shewanella isolate, and Desulfitobacterium sp. strain Viet1 were 0.72‰ ± 0.15‰, 0.99‰ ± 0.12‰, 0.96‰ ± 0.16‰ and 0.86‰ ± 0.06‰, respectively. Our results show that the maximum ε values of ∼1.0‰ were obtained with low biomass (∼107 cells/mL) and low electron donor concentrations (∼500 μM). These results provide an initial assessment of 238U/235U shifts induced by microbially-mediated U(VI) reduction, which is needed as 238U/235U data are increasingly applied as redox indicators in various geochemical settings.

  1. How much 18O-depleted rhyolite in the Snake River Plain?

    NASA Astrophysics Data System (ADS)

    Boroughs, S.; Bonnichsen, B.; Wolff, J.; Godchaux, M.; Larson, P.

    2006-12-01

    Oxygen isotope ratios were determined on quartz and feldspar phenocryst separates from 41 silicic units in the central Snake River Plain (CSRP), Owyhee-Humbolt (OH) region, and McDermitt caldera complex (MC), in southwestern Idaho. These rhyolites represent volcanism from a large scale, time transgressive, melting event that progressed from southern Oregon/northern Nevada to the Yellowstone Volcanic Plateau (YVP) from ~17 Ma to present. All CSRP/OH volcanic units erupted between ~14 Ma and 6 Ma have anomalously low δ18O values of less than 4‰ and represent a vast region of δ18O depleted rhyolites (>30,000 km2), from W113.5° to W117° and N42° to N43°. The units are dominantly densely welded ignimbrites and voluminous lava flows with minor non- welded deposits. The area of low δ18O rhyolites is bounded by rhyolites with more common signatures (6-11‰) in the ~17-16 Ma MC to the southwest, and by the 10.5-11.5 Ma Western Snake River Plain rhyolites to the northwest (7-10‰). Also, two significantly older units in the CSRP, the Rough Mountain and Jarbidge rhyolites, which both appear to be caldera infill, returned values of 7- 8‰. Samples from the MC are variable, from 6-11‰, but within the typical range for silicic magmas. We attribute the upper range of values (> 8.5‰) to either mild low temperature hydration/alteration after emplacement or the incorporation of a small component of high δ18O sedimentary material into some of the MC magmas. There seems to be little correlation between δ18O and geographic position within the region of depleted δ18O signatures, although the highest δ18O values, around 3.8‰ , are found in units at the eastern and western margins. Also, there is no significant correlation between eruptive style and magmatic δ18O values. It is generally accepted that δ18O values in fresh silicic igneous rocks below ~5.5‰ must be the result of high temperature interaction between meteoric water and the magma or source rock during

  2. Holocene tropical South American hydroclimate revealed from a decadally resolved lake sediment δ 18O record

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Abbott, Mark B.; Rodbell, Donald T.; Vuille, Mathias

    2011-10-01

    Oxygen isotope ratios of authigenic calcite (δ 18O cal) measured at annual to decadal resolution from Laguna Pumacocha document Andean precipitation variability during the last 11,200 years. Modern limnological data show that Pumacocha δ 18O cal reflects the average annual isotopic composition of the lake's surface waters (δ 18O lw), and that δ 18O lw tracks the isotopic composition of precipitation (δ 18O precip), which is largely controlled by the intensity of the South American summer monsoon (SASM). Based on these relationships we use down-core δ 18O cal measurements as a proxy for δ 18O precip that varies with the intensity of SASM precipitation. Pumacocha δ 18O cal increased rapidly between 11,200 and 10,300 yr B.P. from - 14.5‰ to - 10.5‰, reaching a maximum of - 10.3‰ by 9800 yr B.P. After 9800 yr B.P., δ 18O cal underwent a long-term decrease that tracked increasing Southern Hemisphere summer insolation, suggesting that enhanced SASM precipitation was linked to precessional forcing. Higher-frequency trends did not follow insolation and therefore represent other variability in the climate system. Millennial-scale trends from Pumacocha strongly resemble those from lower-resolution tropical Andean ice and lake core isotopic records, particularly the Huascaran ice core, and low elevation speleothems. These relationships suggest that tropical Andean isotopic records reflect variations in precipitation intensity related to precessional forcing rather than tropical temperatures. They also demonstrate a coherent pattern of SASM variability, although with differences between low elevation and Andean records during the late Glacial to Holocene transition and the late Holocene. Centennial and decadal SASM precipitation variability is also apparent. Reduced SASM rainfall occurred from 10,000-9200, 7000-5000, 1500-900 yr B.P. and during the last 100 years. Intensifications of the SASM occurred at 5000, 2200-1500, and 550-130 yr B.P. with the amplitude of

  3. Importance of a quality assurance scheme for factor VIII assays in quality monitoring of human plasma destined for fractionation into factor VIII concentrate.

    PubMed

    Gabra, G S; Prowse, C V; Boulton, F E

    1989-01-01

    A national quality assurance scheme has been established to monitor the validity of factor VIII assays performed by the various laboratories of the Scottish National Blood Transfusion Service engaged in collection and processing of donor plasma destined for fractionation. The results over the first 3-year period show that comparable assay values can be obtained by participating centres using a common standard, despite differences in equipment, methods or substrate chosen for the one-stage assay. The results also showed that chromogenic factor VIII assays correlated well with the one-stage method. Random factor VIII assays performed on plasma, harvested and frozen within 18 h from collection, were analysed to validate recently proposed Scottish specifications which stipulate that 70% of plasma donations destined for fractionation should contain at least 0.7 IU/ml. Plasma harvested and frozen between 8 and 18 h from collection did not meet the specified level in any of the regional centres. This nationally specified level was also not met by plasma harvested and frozen within 8 h from collection in spite of being achieved individually by three regional centres. Assays performed on large plasma pools at the Fractionation Centre suggested loss of some factor VIII during storage, transportation and thawing of plasma prior to bulk processing.

  4. Using 18O as a Tracer of Oxygen in the Photochemical Alteration of Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Stubbins, A.; Helms, J.; Dias, R. F.; Mopper, K.

    2006-12-01

    The biogeochemical cycling of dissolved organic matter (DOM) in natural waters is affected by numerous processes, including photochemical alteration. Photochemical processes result in the net oxidation and mineralization of DOM concomitant with dissolved oxygen consumption and production of dissolved inorganic carbon (DIC; principally CO2). The photochemical oxygen budget is not well constrained while DIC production accounts for nearly all the dissolved oxygen consumed, conflicting data suggests that more than half of the oxygen consumed is required to account for observed DOM oxidation and hydrogen peroxide production. An alternate source of oxygen is required to balance this budget; water itself may provide the answer. In order to determine the source of oxygen, a number of time series irradiations were performed using Great Dismal Swamp water (southeast Virginia) with 18O enrichments as either dissolved oxygen or water. Early results, upon irradiation in a UV solar simulator, show significant incorporation of 18O-enriched oxygen into high molecular weight (HMW) DOM from both sources. While the majority of the incorporated oxygen originated from the dissolved oxygen, at least 5 percent originated from water. Data will be presented showing the rate and degree of incorporation of 18O-enriched oxygen from both sources as well as the production of 18O-enriched carbon dioxide. The movement of 18O label will be discussed in relation to shifts in spectral qualities, including photobleaching and spectral slope, of the irradiated samples and selective incorporation as detailed by FT-ICRMS.

  5. Isotope parameters (δD, δ18O) and sources of freshwater input to Kara Sea

    NASA Astrophysics Data System (ADS)

    Dubinina, E. O.; Kossova, S. A.; Miroshnikov, A. Yu.; Fyaizullina, R. V.

    2017-01-01

    The isotope characteristics (δD, δ18O) of Kara Sea water were studied for quantitative estimation of freshwater runoff at stations located along transect from Yamal Peninsula to Blagopoluchiya Bay (Novaya Zemlya). Freshwater samples were studied for glaciers (Rose, Serp i Molot) and for Yenisei and Ob estuaries. As a whole, δD and δ18O are higher in glaciers than in river waters. isotope composition of estuarial water from Ob River is δD =-131.4 and δ18O =-17.6‰. Estuarial waters of Yenisei River are characterized by compositions close to those of Ob River (-134.4 and-17.7‰), as well as by isotopically "heavier" compositions (-120.7 and-15.8‰). Waters from studied section of Kara Sea can be product of mixing of freshwater (δD =-119.4, δ18O =-15.5) and seawater (S = 34.9, δD = +1.56, δ18O = +0.25) with a composition close to that of Barents Sea water. isotope parameters of water vary significantly with salinity in surface layer, and Kara Sea waters are desalinated along entire studied transect due to river runoff. concentration of freshwater is 5-10% in main part of water column, and <5% at a depth of >100 m. maximum contribution of freshwater (>65%) was recorded in surface layer of central part of sea.

  6. Clay aquitards as archives of holocene paleoclimate: delta18O and thermal profiling.

    PubMed

    Hendry, M Jim; Woodbury, A D

    2007-01-01

    Paleoclimatic conditions in the Holocene were reconstructed from a detailed vertical profile of pore water delta(18)O and a series of downhole thermal profiles at a thick, hydrogeologically simple, aquitard research site in the Northern Great Plains of Saskatchewan. Reconstructions were obtained using the theory of one-dimensional diffusive transport and an empirical Bayesian inversion technique. Inversion of the delta(18)O profile shows that input signal consists of a sudden increase of +6 per thousand (corresponding to a temperature increase of about 18 degrees C) at about 12,000 years before present (BP), after which no measurable change in delta(18)O is apparent to present day. This research shows, at this location, that there is no evidence of large amplitude temperature shifts in the Holocene and supports the commonly used assumption in ground water studies of constant atmospheric delta(18)O values throughout the Holocene. Inversion of the temperature profiles suggests the ground surface temperature increased primarily in the last half of the 20th century, with a peak temperature (about 3 degrees C) circa 1990. For both profiles, the ability to resolve historical variability decays rapidly with time. For the temperature profiles, the decay in resolution precluded the development of reliable estimates of climatic conditions prior to about 1950 and, in the case of the delta(18)O profile, it prevented the precise definition of climate changes (e.g., Hypsithermal and Little Ice Age) in the Holocene.

  7. Hydrogen and oxygen isotope fractionation between brucite and aqueous NaCl solutions from 250 to 450°C

    USGS Publications Warehouse

    Saccocia, Peter J.; Seewald, Jeffrey S.; Shanks, Wayne C.

    1998-01-01

    Hydrogen and oxygen isotope fractionation factors between brucite and aqueous NaCl solutions (1000lnαbr-sw) have been calibrated by experiment from 250 to 450°C at 0.5 Kb. For D/H fractionation, 1000lnα br-sw values are as follows: −32 ± 6‰ (250°C, 3.2 wt% NaCl), −21 ± 2‰ (350°C, 10.0 wt% NaCl), and −22 ± 2‰ (450°C, 3.2 wt% NaCl), indicating that brucite is depleted in D relative to coexisting aqueous NaCl solutions. These results are in good agreement with previous D/H fractionation factors determined in the brucite-water system, indicating that any effects of dissolved salt on D/H fractionation are relatively small, particularly in solutions with near seawater salinity. The maximum salt effect (+4‰) was observed in 10.0 wt% NaCl solutions at 350°C, suggesting that the addition of dissolved NaCl increases the amount of deuterium fractionated into mineral structures. For 18O/16O fractionation, 1000lnαbr-sw values in 3.0 wt% NaCl solutions are −6.0 ± 1.3‰, −5.6 ± 0.7‰ and −4.1 ± 0.2‰, at 250, 350, and 450°C, respectively, and −5.8 ± 0.6‰ in 10.0 wt % NaCl at 350°C. These data indicate that brucite is depleted in 18O relative to coexisting aqueous NaCl solutions and that the degree of depletion decreases slightly with increasing temperature and is not strongly dependent on salinity. We calculated 18O/16O brucite-water fractionation factors from available calibrations of the salt-effect on 18O/16O fractionation between coexisting phases. The resulting values were fit to the following equation that is valid from 250 to 450°C 1000ln αbr-w = 9.54 × 106T−2 − 3.53 × 104T−1 + 26.58 where T is temperature in Kelvins. These new data have been used to improve the prediction of 18O/16O fractionation factors in the talc-water and serpentine-water systems by modifying existing empirical bond-water models. The results of this analysis indicate that the δ18O composition of talc-brucite and serpentine

  8. Reconstructing seawater δ 18O from paired coral δ 18O and Sr/Ca ratios: Methods, error analysis and problems, with examples from Tahiti (French Polynesia) and Timor (Indonesia)

    NASA Astrophysics Data System (ADS)

    Yudawati Cahyarini, Sri; Pfeiffer, Miriam; Timm, Oliver; Dullo, Wolf-Christian; Schönberg, Dieter Garbe

    2008-06-01

    We compare several statistical routines that may be used to calculate δ 18O sw and SSS from paired coral Sr/Ca and δ 18O measurements. Typically, the δ 18O coral-SST relationship is estimated by linear regression of coral δ 18O vs. SST. If this method is applied, evidence should be given that at a particular site SST and SSS do not co-vary. In the tropical oceans, SST and δ 18O sw (SSS) often co-vary, and this will bias the estimate of the regression slope of δ 18O coral-SST. Using a stochastic model, we show that covariance leads to a bias in the coefficients of the univariate regression equations. As the slope of the δ 18O coral-SST relationship has known, we propose to insert this value for γ1 in the regression models. This requires that the constants of the regression equations are removed. To omit the constants, we propose to center the regression equations (i.e., to remove the mean values from the variables). The statistical error propagation is calculated to assess our ability to resolve past variations in δ 18O sw (SSS). At Tahiti, we find that the combined analytical uncertainties of coral δ 18O and Sr/Ca equal the amplitude of the seasonal cycle of δ 18O sw (SSS). Therefore, we cannot resolve the seasonal cycle of SSS at Tahiti. At Timor, the error of reconstructed δ 18O sw (SSS) is lower than the magnitude of seasonal variations of δ 18O sw (SSS), and the seasonal cycle of δ 18O sw (SSS) can be resolved.

  9. Minimization of sample requirement for delta18O in benzoic acid.

    PubMed

    Hagopian, William M; Jahren, A Hope

    2010-09-15

    The measurement of the oxygen stable isotope content in organic compounds has applications in many fields, ranging from paleoclimate reconstruction to forensics. Conventional High-Temperature Conversion (HTC) techniques require >20 microg of O for a single delta(18)O measurement. Here we describe a system that converts the CO produced by HTC into CO(2) via reduction within a Ni-furnace. This CO(2) is then concentrated cryogenically, and 'focused' into the isotope ratio mass spectrometry (IRMS) source using a low-flow He carrier gas (6-8 mL/min). We report analyses of benzoic acid (C(7)H(6)O(2)) reference materials that yielded precise delta(18)O measurement down to 1.3 microg of O, suggesting that our system could be used to decrease sample requirement for delta(18)O by more than an order of magnitude.

  10. Microwave-assisted 18O-labeling of proteins catalyzed by formic acid.

    PubMed

    Liu, Ning; Wu, Hanzhi; Liu, Hongxia; Chen, Guonan; Cai, Zongwei

    2010-11-01

    Oxygen exchange may occur at carboxyl groups catalyzed by acid. The reaction, however, takes at least several days at room temperature. The long-time exchanging reaction often prevents its application from protein analysis. In this study, an (18)O-labeling method utilizing microwave-assisted acid hydrolysis was developed. After being dissolved in (16)O/(18)O (1:1) water containing 2.5% formic acid, protein samples were exposed to microwave irradiation. LC-MS/MS analysis of the resulted peptide mixtures indicated that oxygen in the carboxyl groups from glutamic acid, aspartic acid, and the C-terminal residues could be efficiently exchanged with (18)O within less than 15 min. The rate of back exchange was so slow that no detectable back exchange could be found during the HPLC run.

  11. Pion-induced nucleon knockout reactions on 16O and 18O

    NASA Astrophysics Data System (ADS)

    Piasetzky, E.; Altman, A.; Lichtenstadt, J.; Yavin, A. I.; Ashery, D.; Bertl, W.; Felawka, L.; Walter, H. K.; Schlepütz, F. W.; Powers, K. J.; Winter, R. G.; Pluym, J. V. D.

    1982-12-01

    The (π+, π+p), (π-, π-p), and (π-, π-n) reactions on 16O and 18O were studied at 165 MeV by coincidence measurements of the outgoing particles. The cross sections for the (π-, π-n) reaction is larger on 18O than on 16O, whereas those for the (π+, π+p) and the (π-, π-p) reactions are smaller, most likely because of the coupling between the absorption and the scattering channels. NUCLEAR REACTIONS (π+/-, π+/-p) (π-, π-n) coin. Measurements on 16O18O E=165 MeV; deduced coupling between the absorption and the scattering channels.

  12. Latitudinal gradients in greenhouse seawater δ(18) O: evidence from Eocene sirenian tooth enamel.

    PubMed

    Clementz, Mark T; Sewall, Jacob O

    2011-04-22

    The Eocene greenhouse climate state has been linked to a more vigorous hydrologic cycle at mid- and high latitudes; similar information on precipitation levels at low latitudes is, however, limited. Oxygen isotopic fluxes track moisture fluxes and, thus, the δ(18)O values of ocean surface waters can provide insight into hydrologic cycle changes. The offset between tropical δ(18)O values from sampled Eocene sirenian tooth enamel and modern surface waters is greater than the expected 1.0 per mil increase due to increased continental ice volume. This increased offset could result from suppression of surface-water δ(18)O values by a tropical, annual moisture balance substantially wetter than that of today. Results from an atmospheric general circulation model support this interpretation and suggest that Eocene low latitudes were extremely wet.

  13. Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer

    USGS Publications Warehouse

    Hatzinger, P.B.; Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Heraty, L.J.; Borden, R.C.

    2009-01-01

    reported previously for denitrification. However, the magnitudes of the individual apparent in situ isotope fractionation effects for perchlorate and nitrate were appreciably smaller than those reported in homogeneous closed systems (0.2 to 0.6 times), even after adjustment for dilution. These results indicate that (1) isotope fractionation factor ratios (18O/37Cl, 18O/15N) derived from homogeneous laboratory systems (e.g. pure culture studies) can be used qualitatively to confirm the occurrence of in situ biodegradation of both perchlorate and nitrate, but (2) the magnitudes of the individual apparent values cannot be used quantitatively to estimate the in situ extent of biodegradation of either anion. ?? CSIRO 2009.

  14. Homogeneous /sup 18/O enrichment of the Marcy Anorthosite Massif, Adirondack Mountains, New York

    SciTech Connect

    Morrison, J.; Valley, J.W.

    1985-01-01

    The Marcy Anorthosite Massif in the Adirondack Mountains, New York, is a composite intrusion that was metamorphosed to granulite facies at approx. 1.1 Ga. The massif is dominantly anorthosite but ranges from anorthosite (1-10% mafics) to oxide-rich pyroxenite layers (up to 98% mafics). In the St Regis Quad (SRQ) systematic variations in the percentage of mafics (POM) roughly parallel the foliation and increase toward the contacts (Davis, 1971). In 47 SRQ samples studied the POM varies from 2-25%; garnet ranges from 0-11%, pyroxene from <1-16% and oxides from <1-8%. Percent phenocrysts varies between 1-80. The Port Kent-Westport Unit (PKW) and an associated hybrid unit show significantly greater textural variability. The POM Varies from 1-50%; garnet ranges from 0-18%, pyroxene from 0-15%, oxides from 0-3% and phenocrysts vary from 0-80%. A total of 28 unaltered plagioclase phenocrysts have been analyzed for delta/sup 18/O: in 13 SRQ samples delta/sup 18/O = 9.0-9.8 (x=9.4. sigma=0.2) and in 15 samples from the PKW and hybrid units values of delta/sup 18/O=8.5-10.5 (x=9.5.sigma0.5). No correlations exist between the modal parameters and delta/sup 18/O. The results from SRQ demonstrate an extreme homogeneity suggesting for the first time a pristine magmatic character which is supported by the virtual absence of metasedimentary inclusions. This contrasts with PKW where inclusions are common and delta/sup 18/O values are more heterogeneous. Further analyses will evaluate the possibility of an anomalous source region as a cause of the /sup 18/O enrichment in the anorthosite.

  15. French summer droughts since 1326 AD: a reconstruction based on tree ring cellulose δ18O

    NASA Astrophysics Data System (ADS)

    Labuhn, I.; Daux, V.; Girardclos, O.; Stievenard, M.; Pierre, M.; Masson-Delmotte, V.

    2015-11-01

    The reconstruction of droughts is essential for the understanding of past drought dynamics, and can help evaluate future drought scenarios in a changing climate. This article presents a reconstruction of summer droughts in France based on annually resolved, absolutely dated chronologies of oxygen isotope ratios (δ18O) in tree ring cellulose from Quercus spp. Samples were taken from living trees and timber wood from historic buildings at two sites: Fontainebleau (48° 23' N, 2° 40' E; 1326-2000 AD) and Angoulême (45° 44' N, 0° 18' E; 1360-2004 AD). Cellulose δ18O from these sites proved to be a good proxy of summer climate, as the trees were sensitive to temperature and moisture availability. However, offsets in average δ18O values between tree cohorts necessitated a correction before joining them to the final chronologies. Using the corrected δ18O chronologies, we developed models based on linear regression to reconstruct drought, expressed by the standardized precipitation evapotranspiration index (SPEI). The significant correlations between the SPEI and cellulose δ18O (r ≈ -0.70), as well as the verification of the models by independent data support the validity of these reconstructions. At both sites, recent decades are characterized by increasing drought. Fontainebleau displays dominantly wetter conditions during earlier centuries, whereas the current drought intensity is not unprecedented in the Angoulême record. While the δ18O chronologies at the two studied sites are highly correlated during the 19th and 20th century, there is a significant decrease in the correlation coefficient between 1550 and 1800 AD, which indicates either a weaker climate sensitivity of the tree ring proxies during this period, or a more heterogeneous climate in the north and the south of France. Future studies of tree ring isotope networks might reveal if the seasonality and spatial patterns of past droughts can explain this decoupling.

  16. Stable Oxygen (δ 18O) and Carbon (δ 13C) Isotopes in the Skeleton of Bleached and Recovering Corals From Hawaii

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.; Grottoli, A. G.

    2004-12-01

    Coral skeletal stable oxygen isotopes (δ 18O) reflect changes in seawater temperature and salinity, while stable carbon isotopes (δ 13C) reflect a combination of both metabolic (photosynthesis and feeding) and kinetic fractionation. Together, the two isotopic signatures may be used as a proxy for past bleaching events. During bleaching, increased seawater temperatures often contribute to a decline in zooxanthellae and/or chlorophyll concentrations, resulting in a decrease in photosynthesis. We experimentally investigated the effect of bleaching and subsequent recovery on the δ 13C and δ 18O values of coral skeleton. Fragments from two coral species (Montipora capitata and Porites compressa) from Kaneohe Bay, Hawaii were bleached in outdoor tanks by raising the seawater temperature to 30° C. Additional fragments from the same parent colonies were maintained at ambient seawater temperatures (27° C) in separate tanks as controls. After one month in the tanks, a subset of the fragments was frozen and all remaining fragments were placed back on the reef to recover. All coral fragments were analyzed for their skeletal δ 13C and δ 18O compositions at five time intervals: before, immediately after, 1.5, 4, and 8 months after bleaching. In addition, rates of photosynthesis, calcification, and heterotrophy were also measured. Immediately after bleaching, δ 18O decreased in bleached M. capitata relative to controls, reflecting their exposure to increased seawater temperatures. During recovery, δ 18O values in the treatment M. capitata were not different from the controls. In P. compressa, δ 18O did not significantly differ in bleached and control corals at any time during the experiment. Immediately after bleaching, δ 13C decreased in the bleached fragments of both species relative to controls reflecting decreased photosynthetic rates. However, during recovery δ 13C in both species was greater in bleached than control fragments despite photosynthesis remaining

  17. A high-resolution Sr/Ca and [delta][sup 18]O coral record from the Great Barrier Reef, Australia, and the 1982-1983 El Nino

    SciTech Connect

    McCulloch, M.T.; Gagan, M.K.; Mortimer, G.E.; Chivas, A.R. ); Isdale, P.J. )

    1994-06-01

    A high-resolution (near weekly) Sr/Ca and oxygen isotopic record is presented for a coral from the Pandora Reef in the Great Barrier Reef (GBR) of Australia during the period of 1978 to 1984. The records are well correlated except for periods of high rainfall when river runoff has significantly modified the [delta][sup 18]O value of seawater. Using the Sr/Ca temperature calibration of De Villiers et al., the Sr/Ca records exhibit seasonally controlled cyclical SST (sea surface temperature) variations of from [approximately] 21 to [approximately] 28[degrees]C. During the very strong El Nino of 1982-1983, the Sr/CA systematics indicate a sharp drop in the winter SST to [approximately] 18.5[degrees]C. This represents a temperature anomaly of -3[degrees]C which is approximately twice that given by the [delta][sup 18]O variations, suggesting an [approximately] x2 amplification of the anomaly by the Sr/Ca system, possibly due to the increasing dominance of inorganically controlled aragonite-seawater fractionation. The oxygen isotope systematics show the combined effects of both temperature and changing seawater [delta][sup 18]O values, the latter reflecting the influx of [sup 18]O-depleted runoff during periods of high rainfall. Due to the extremely low ([approximately] 10[sup [minus]3]) Sr and Ca contents of river runoff relative to seawater, it is possible to use the Sr/Ca thermometer to calculate temperatures independent of major floods and hence deconvolve the combined effects in the oxygen isotopic record of variable temperature and the [delta][sup 18]O value of seawater. Using this approach it is possible to quantitatively reproduce the volume of runoff from the Burdekin River during the periods of major flooding that occurred in early 1979 and 1981. The results of this study demonstrate that the combined use of high-resolution Sr/Ca and [delta][sup 18]O systematics in scleractinian corals is a powerful tool for providing quantitative constraints on past climate.

  18. ({sup 18}O,{sup 18}Ne) double charge-exchange with MAGNEX

    SciTech Connect

    Bondí, M.; Cappuzzello, F.; Nicolosi, D.; Tropea, S.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; De Napoli, M.; Foti, A.

    2014-05-09

    An experimental study concerning Double Gamow-Teller (DGT) modes in ({sup 18}O,{sup 18}Ne) Double Charge-Exchange reactions has been very recently performed at INFN-LNS laboratory in Catania. The experiment was performed using a {sup 40}Ca solid target and a {sup 18}O Cyclotron beam at 270 MeV incident energy. Charged ejectiles produced in the reaction were momentum analyzed and identified by MAGNEX spectrometer at very forward angles. Preliminary results are presented in the present paper.

  19. Enhancing the Accuracy of Carbonate δ18O and δ13C Measurements by SIMS

    NASA Astrophysics Data System (ADS)

    Orland, I. J.; Kozdon, R.; Linzmeier, B.; Wycech, J.; Sliwinski, M.; Kitajima, K.; Kita, N.; Valley, J. W.

    2015-12-01

    The precision and accuracy of carbonate δ18O & δ13C analysis by multicollector SIMS is well established if standards match samples in structure and major/minor element chemistry. However, low-T- and bio-carbonates used to construct paleoclimate archives can include complex internal structures and some samples analyzed at WiscSIMS (and other SIMS labs) have a consistent, sample-dependent offset between average SIMS δ18O measurements and bulk δ18O analyses by phosphoric-acid digestion. The offset is typically <1‰, but recent work has discovered samples where the offset is greater — up to 1.8‰ (average SIMS δ18O values < corresponding conventional measurements). Notably, δ13C offsets have not been observed even in samples with a δ18O offset. We conducted tests to characterize the δ18O offset in different low-T carbonate materials. Multiple potential causes were examined: perhaps the measured offset is real and conventional analyses include material that SIMS excludes (and vice versa); analytical errors and inter-lab (mis)calibration; depth-profiling effects; porosity; and the effects of variable minor element composition. One explanation implicates water and/or organic matter within carbonate that is ionized during SIMS analysis, but sometimes removed for bulk analysis. Two diagnostic tools help monitor such contaminants during SIMS analysis: 1) simultaneous measurement of [16O1H], and 2) secondary ion yield. Offsets of 0.3 to 1.8‰ in δ18O correlate to [16O1H] for 7 studies of Nautilus, foraminifera, pteropods and speleothems. Offsets were not observed in all foraminifera. For Nautilus, foraminifera, otoliths, and speleothems we also tested pre-treatment techniques (e.g. vacuum roasting, hydrogen peroxide), for which there is no agreed procedure in conventional bulk analyses. For SIMS analyses, pre-treatments had varied influence on the δ18O value, [16O1H], the concentration of "organic markers" like 12C14N and 31P, and mineralogy (of aragonite

  20. Isotopic effects in the ( π±, 2N) reactions on 16O and 18O

    NASA Astrophysics Data System (ADS)

    Altman, A.; Ashery, D.; Piasetzky, E.; Lichtenstadt, J.; Yavin, A. I.; Bertl, W.; Felawka, L.; Walter, H. K.; Powers, R. J.; Winter, R. G.; v. d. Pluym, J.

    1984-09-01

    The ( π+, 2p), ( π+, pn) and ( π-, pn) reactions on 16O and 18O were studied at 165 MeV. The cross section for the ( π+, 2p) reaction on 18O is larger than that for 16O be only 5% ± 3%, while the total π+ absorption cross section is larger by 17% ± 5%. This supports the assumption that two-nucleon absorption occurs mainly on nucleons in the same shell. It is further concluded that Δ++n → pp is not only absorption mechanism that couples strongly to the nucleon knock out reactions.

  1. Excitation Function for the 74Se(18O,p3n) Reaction

    SciTech Connect

    Gates, Jacklyn; Dragojevic, Irena; Dvorak, Jan; Ellison, Paul; Gregorich, Kenneth; Stavsetra, Liv; Nitsche, Heino

    2009-02-02

    The 74Se(18O,p3n)88gNb excitation function was measured and a maximum cross section of 495+-5 mb was observed at and 18O energy of 74.0 MeV. Experimental cross sections were compared to theoretical calculations using the computer code ALICE-91 and the values were found to be in good agreement. The half life of 88gNb was determined to be around 14.56+-0.11 min.

  2. Microwave Spectrum of a Silicon Monoxide Isotopomer: 28Si18O

    NASA Astrophysics Data System (ADS)

    Cho, Se-Hyung; Saito, Shuji

    1998-03-01

    The rotational transitions of 28Si18O in the ground vibrational state were observed by laboratory microwave spectroscopy for astronomical use. The SiO molecules were generated in a free-space absorption cell by dc-glow discharge in a mixture of tetra-methyl silane, Si(CH3)4, and 18O2. Ten rotational transitions were precisely measured in the 40-444 GHz region. The rotational and centrifugal distortion constants were determined by a least-squares analysis of measured line frequencies: B0=20176.4394(43) and D0=0.025809(32) MHz, with the 3 σ deviations in parentheses.

  3. Reaction-dependent spin population and evidence of breakup in {sup 18}O

    SciTech Connect

    Hojman, D.; Pacheco, A.J.; Testoni, J.E.; Davidson, J.; Davidson, M.; Cardona, M.A.; Fernandez-Niello, J.O.; Kreiner, A.J.; Arazi, A.; Capurro, O.A.; Marti, G.V.; Bazzacco, D.; Lenzi, S.M.; Lunardi, S.; Alvarez, C. Rossi; Ur, C.; Burlon, A.; Debray, M.E.; De Angelis, G.; De Poli, M.

    2006-04-15

    Angular distributions and angular correlations have been measured for the emission of one and two {alpha}-particles in the {sup 18}O+{sup 207,208}Pb,{sup 209}Bi reactions at several beam energies above the Coulomb barrier. The results rule out fusion evaporation as the main reaction mechanism for the channels involving {alpha}-particle emission and support the interpretation of the breakup of the {sup 18}O projectiles into at least {sup 14}C+{alpha} and {sup 10}Be+{sup 8}Be before fusion.

  4. Determination of the δ15N and δ18O of nitrate in solids; RSIL lab code 2897

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2897 is to determine the δ15N and δ18O of nitrate (NO3-) in solids. The NO3- fraction of the nitrogen species is dissolved by water (called leaching) and can be analyzed by the bacterial method covered in RSIL lab code 2900. After leaching, the δ15N and δ18O of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of NO3- to N2O, which follows the pathway shown in equation 1: NO3- → NO2- → NO → 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before δ15N values are reported.

  5. Using (18)O/(16)O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application.

    PubMed

    De Souza, Roger A; Martin, Manfred

    2008-05-07

    The use of an (18)O/(16)O exchange experiment as a means for probing surface space-charge layers in oxides is examined theoretically and experimentally. On the basis of a theoretical treatment, isotope penetration profiles are calculated for (18)O/(16)O exchange across a gas-solid interface and subsequent diffusion of the labelled isotope through an equilibrium space-charge layer depleted of mobile oxygen vacancies and into a homogeneous bulk phase. Profiles calculated for a range of conditions all have a characteristic shape: a sharp drop in isotope fraction close to the surface followed by a normal bulk diffusion profile. Experimental (18)O profiles in an exchanged (001) oriented single crystal of Fe-doped SrTiO(3) were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS). By extracting the space-charge potential from such profiles, we demonstrate that this method allows the spatially resolved characterization of space-charge layers at the surfaces of crystalline oxides under thermodynamically well-defined conditions.

  6. Method for determination of {sup 18}O/{sup 16}O and {sup 2}H/{sup 1}H ratios and {sup 3}H (tritium) concentrations of xylem waters and subsurface waters using time-series sampling

    SciTech Connect

    1999-11-09

    This application describes a method for the determination of {sup 18}O/{sup 16}O and {sup 2}H/{sup 1}H ratios and {sup 3}H concentrations of xylem and subsurface waters using time-series sampling, insulating sampling chambers, and combined {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H and {sup 3}H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen ({sup 18}O/{sup 16}O) and hydrogen ({sup 2}H/{sup 1}H and/or {sup 3}H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  7. Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling

    DOEpatents

    Smith, Brian; Menchaca, Leticia

    1999-01-01

    A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  8. 18O/16O in CO2 evolved from goethite during some unusually rapid solid state α-FeOOH to α-Fe2O3 phase transitions: Test of an exchange model for possible use in oxygen isotope analyses of goethite

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton J.

    2015-12-01

    The initial ∼60% of an isothermal vacuum dehydration of goethite can commonly be approximated by first order kinetics. Also, natural goethites contain small amounts of an Fe(CO3)OH component in apparent solid solution. The 18O/16O of CO2 evolved from the Fe(CO3)OH during isothermal vacuum dehydrations is related to the 18O/16O of the goethite by an apparent fractionation factor (αapp) that is, in turn, correlated with a first order rate constant, |m|. A kinetic exchange model predicts that αapp should decrease as |m| increases for a range of |m| that corresponds to relatively slow rates of dehydration. This pattern has been observed in published results. In contrast, for rapid rates of dehydration, αapp is predicted to increase with increasing |m|. Isothermal vacuum dehydrations of two natural goethites had unusually large values of |m| and provided serendipitous tests of this rapid-rate prediction. For these experiments, the measured values of αapp were consistent with patterns of variation predicted by the model. This allowed an estimate of the activation energy (E2) of a model parameter, K2, which is the rate constant for oxygen isotope exchange between CO2 and H2O during the solid-state goethite to hematite phase transition. The estimated value of E2 is only ∼9 kJ/mol. Heterogeneous catalysis tends to decrease the activation energies of gas reactions. Consequently, the inferred value of E2 suggests that goethite and/or hematite catalyze oxygen isotope exchange between CO2 and H2O during the solid-state phase change. Yield, δ13C, and δ18O values are routinely measured for increments of CO2 evolved from the Fe(CO3)OH component during isothermal vacuum dehydration of goethite. Model-predicted values of αapp can be combined with plateau δ18O values of the evolved CO2 to estimate the δ18O of the goethite with a less than optimal, but potentially useful, precision of about ±0.8‰. Therefore, a single analytical procedure (incremental dehydration

  9. The role of transforming growth factor β1 in fractional laser resurfacing with a carbon dioxide laser.

    PubMed

    Jiang, Xia; Ge, Hongmei; Zhou, Chuanqing; Chai, Xinyu; Deng, Hui

    2014-03-01

    The aim of this study was to investigate the role of transforming growth factor β1 in mechanisms of cutaneous remodeling induced by fractional carbon dioxide laser treatment. The dorsal skin of Kunming mice was exposed to a single-pass fractional CO2 laser treatment. Biopsies were taken at 1 h and at 1, 3, 7, 14, 21, 28, and 56 days after treatment. Transforming growth factor (TGF) β1 expression in skin samples was evaluated by ELISA, dermal thickness by hematoxylin-eosin staining, collagen and elastic fibers by Ponceau S and Victoria blue double staining, and types I and III collagens by ELISA. The level of TGF β1 in the laser-treated areas of skin was significantly increased compared with that in the control areas on days 1 (p < 0.05), 3 (p < 0.01), and 7 (p < 0.05) and then decreased by day 14 after treatment, at which time it had returned to the baseline level. Dermal thickness and the amount of type I collagen of the skin of the laser-treated areas had increased significantly (p < 0.05) compared with that in control areas on days 28 and 56. Fibroblast proliferation showed a positive correlation with TGF β1 expression during the early stages (r = 0.789, p < 0.01), and there was a negative correlation between the level of TGF β1 and type I collagen in the late stages, after laser treatment (r = -0.546, p < 0.05). TGF β1 appears to be an important factor in fractional laser resurfacing.

  10. δ18O and δ13C Values in Living and Holocene Brachiopods and the Relationship with Oceanographic Variability across Australia's Vast Southern Shelf

    NASA Astrophysics Data System (ADS)

    Dhillon, R.

    2015-12-01

    Carbon and oxygen isotopic compositions of brachiopods are commonly used to reconstruct secular changes in ocean chemistry through the Phanerozoic but few studies have focused on the variations that occur laterally and concurrently across a single vast depositional system. Previous studies have identified significant isotopic variability to occur within an individual stratigraphic layer and the scatter in values has been attributed to diagenesis, non-equilibrium fractionation effects, and variability in oceanography. In order to further investigate these hypotheses, this study evaluates the δ18O and δ13C values from 346 living and Holocene brachiopods collected from surficial sediments across the latitude-parallel southern Australian shelf, a lateral distance of ~3000 km. Modern oceanographic measurements were used to calculate the range in δ18O values of calcite precipitated in apparent equilibrium with ambient seawater. A total of 84% of δ18O values from brachiopod samples (n = 684) fall within the range of calculated equilibrium calcite and accurately record a combination of normal shelf water conditions, winter downwelling across the shelf, and local summer upwelling. Most δ18O outliers are attributed to seasonal upwelling (90 of 108 outliers) and imply that either upwelling occurred in an area that has not been well established as an upwelling zone, or it occurred in a known upwelling area but the intensity was greater than previously measured. The δ13C values of brachiopods increase with increasing depth, which is the opposite of what is reported elsewhere. This unusual δ13C trend is caused by deeper slope currents being sourced from surface water southwest of Tasmania, an area with relatively high δ13C of DIC. The δ13C values of living specimens are consistently lower by 0.5-1.0‰ than most dead specimens, which is attributed to the decrease in δ13C values in the carbon cycle due to combustion of isotopically light fossil fuels over the last 200

  11. Unveiling stomata 24/7: can we use carbonyl sulfide (COS) and oxygen isotopes (18O) to constrain estimates of nocturnal transpiration across different evolutionary plant forms?

    NASA Astrophysics Data System (ADS)

    Gimeno, Teresa E.; Ogee, Jerome; Bosc, Alexander; Genty, Bernard; Wohl, Steven; Wingate, Lisa

    2015-04-01

    Numerous studies have reported a continued flux of water through plants at night, suggesting that stomata are not fully closed. Growing evidence indicates that this nocturnal flux of transpiration might constitute an important fraction of total ecosystem water use in certain environments. However, because evaporative demand is usually low at night, nocturnal transpiration fluxes are generally an order of magnitude lower than rates measured during the day and perilously close to the measurement error of traditional gas-exchange porometers. Thus estimating rates of stomatal conductance in the dark (gnight) precisely poses a significant methodological challenge. As a result, we lack accurate field estimates of gnight and how it responds to different atmospheric drivers, indicating the need for a different measurement approach. In this presentation we propose a novel method to obtain detectable and robust estimates of gnight. We will demonstrate using mechanistic theory how independent tracers including the oxygen isotope composition of CO2 (δ18O) and carbonyl sulfide (COS) can be combined to obtain robust estimates of gnight. This is because COS and CO18O exchange within leaves are controlled by the light insensitive enzyme carbonic anhydrase. Thus, if plant stomata are open in the dark we will continue to observe COS and CO18O exchange. Using our theoretical model we will demonstrate that the exchange of these tracers can now be measured using advances in laser spectrometry techniques at a precision high enough to determine robust estimates of gnight. We will also present our novel experimental approach designed to measure simultaneously the exchange of CO18O and COS alongside the conventional technique that relies on measuring the total water flux from leaves in the dark. Using our theoretical approach we will additionally explore the feasibility of our proposed experimental design to detect variations in gnight during drought stress and across a variety of plant

  12. Review of Exculsive B to D(*,**)Lnu Decays: Branching Fractions, Form-Factors And |V(Cb|

    SciTech Connect

    Snyder, A.E.; /SLAC

    2007-04-02

    This paper reviews semileptonic decays of B-mesons to states containing charm mesons, i.e., D, D*, D** and possible non-resonant D{sup (*)}{eta}{pi} states as well. The paper covers measurement of branching fractions, form-factors and, most importantly, the magnitude of the CKM matrix element V{sub cb}. I will not attempt a comprehensive review, but will concentrate on reasonably fresh results and consider mostly exclusive measurements. I will also comment on the consistency of the results and what needs to be done to resolve the apparent conflicts.

  13. Chemical/physical separations of alternate petroleum distillates. I. Average instrumental response factors for well defined fossil fuel fractions. [Monoaromatics, diaromatics, triaromatics

    SciTech Connect

    Thomson, J.S.; Reynolds, J.W.; Treese, C.A.; Tang, S.Y.; Hirsch, D.E.

    1985-03-11

    Narrow heart-cut fractions of Cerro Negro and Wilmington crude oil acid- and base-free distillates were prepared on a preparative dinitroanilinopropylsilica (DNAP) column by a gradient solvent program. The fractions were characterized by synchronized scanning fluorimetry and gas chromatography/mass spectrometry. Average instrument response factors for ultraviolet spectroscopy and gas chromatography/flame ionization detection were determined on the heart-cut fractions. 3 figures, 4 tables.

  14. Volumetric Properties of the Mixture Trichloroethene C2HCl3 + C8H18O Octan-1-ol (VMSD1511, LB4853_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloroethene C2HCl3 + C8H18O Octan-1-ol (VMSD1511, LB4853_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  15. Volumetric Properties of the Mixture Trichloroethene C2HCl3 + C8H18O Octan-1-ol (VMSD1412, LB4860_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Trichloroethene C2HCl3 + C8H18O Octan-1-ol (VMSD1412, LB4860_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  16. Volumetric Properties of the Mixture Oxolan-2-one C4H6O2 + C8H18O Octan-1-ol (VMSD1511, LB4907_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Oxolan-2-one C4H6O2 + C8H18O Octan-1-ol (VMSD1511, LB4907_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  17. Value of DNA Ploidy and S-Phase Fraction as Prognostic Factors in Stage III Cutaneous Melanoma

    PubMed Central

    Martin, Ginette; Halwani, Fawaz; Shibata, Henry; Meterissian, Sarkis

    2000-01-01

    Objective To determine the prognostic value of flow cytometric analysis (S-phase fraction and DNA index) performed on lymph-node metastases of patients with stage III melanoma. Design A retrospective chart review with flow cytometric analysis of paraffin-embedded tissues. Setting A university teaching hospital. Patients Among 332 patients with cutaneous melanoma, 33 with stage III were identified. Distant metastases developed in 16 patients; 17 had no further recurrence. Charts were reviewed to obtain clinicopathologic parameters such as sex, age, location of the primary tumour, histologic features, presence or absence of ulceration, and Clark’s and Breslow’s levels. Intervention DNA ploidy and S-phase fraction were determined on the paraffin-embedded nodes. Main outcome measures The groups with or without recurrence were compared in terms of disease-free survival (DFS) and overall survival (OS). These survival parameters were correlated with DNA ploidy and S-phase fraction. Results By univariate analysis, clinicopathologic factors did not predict OS. A higher Clark’s level of invasion and more than 3 positive lymph nodes were associated with shorter DFS (p < 0.05). Tumour thickness and S-phase fraction did not correlate with either DFS or OS. Patients with diploid lymph-node metastases had an 87% 12-month survival compared with 41% for those with aneuploid tumours. Conclusions DNA ploidy may be used as a prognostic index in patients with lymph-node metastases. This could be particularly useful in the context of sentinel lymph-node mapping by which more patients are being identified with single microscopic lymph-node involvement. PMID:10714254

  18. A first Late Glacial and Early Holocene coupled 18O and 2H biomarker isotope record from Gemuendener Maar, Germany

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Bromm, Tobias; Hepp, Johannes; Benesch, Marianne; Sirocko, Frank; Glaser, Bruno; Zech, Roland

    2015-04-01

    During the last years, we developed a method for compound-specific d18O analyses of hemicellulose-derived sugars from plants, soils and sediment archives (Zech and Glaser, 2009; Zech et al., 2014). The coupling of respective d18O sugar results with d2H alkane results from paleosol and sediment climate archives proved to be a valuable innovative approach towards quantitative paleoclimate reconstruction (Hepp et al., 2014; Zech et al., 2013). Here we present a first coupled d18O sugar and d2H alkane biomarker record obtained for Late Glacial and Early Holocene sediments from the Gemuendener Maar in the Eifel, Germany. The d18O sugar biomarker record resembles the d18O ice core records of Greenland. The coupling with the d2H alkane biomarker results allows drawing further more quantitative paleocimate information in terms of (i) paleohumidity and (ii) d18O of paleoprecipitation.

  19. Following 18O uptake in scCO2–H2O mixtures with Raman spectroscopy

    SciTech Connect

    Windisch, Charles F.; Schaef, Herbert T.; Martin, Paul F.; Owen, Antionette T.; McGrail, B. Peter

    2012-03-01

    The kinetics of 18O/16O isotopic exchange in scCO2 containing liquid water was followed with Raman spectroscopy using a specially designed high-pressure optical cell. Characteristic bands from the C16O18O and C18O2 molecules were identified in the supercritical phase and measured in the spectra as a function of time after introducing liquid H218O into scC16O2. Temporal dependence indicated the isotopic exchange was diffusion-limited in our cell for both molecules, and that the chemical reactions within the liquid phase were comparatively rapid. However, the ratio of concentrations of the 18O-labeled CO2 molecules, C18O2/C16O18O, was much higher than expected in the supercritical phase, suggesting the role of an intermediate step, possibly desorption, in moderating the concentrations of these species in the liquid water phase.

  20. The. delta. sup 18 O record of Phanerozoic abiotic marine calcite cements

    SciTech Connect

    Lohmann, K.C.; Walker, J.C.G. )

    1989-04-01

    Monomineralic, abiotic marine cements formed in low-latitude Phanerozoic reefs provide the direction and amplitude of secular variation of {delta}{sup 13}C and {delta}{sup 18}O in marine calcite and defines two end member compositions - 580 to 360 my ({minus}7 to {minus}5{per thousand}{delta}{sup 18}O{sub PDB}) and 360 to present ({minus}3 to 0{per thousand}{delta}{sup 18}O{sub PDB}). Sampling of the Devono-Carboniferous transition (375-320 my) at several global sites reveals a rapid change in carbonate isotopic compositions. Bracketed within Fammenian to Early Visean-aged strata, a 7 to 15 my time interval, this shift corresponds to a 2% offset in mean {delta}{sup 13}C and 3-4% offset in {delta}{sup 18}O. The abruptness of such change, and its overall correlation with variations in {sup 87}Sr/{sup 86}Sr, {delta}{sup 34}S, {delta}{sup 13}C, and Li/Al ratios in marine sediments suggests a primary offset in marine water composition.

  1. Devils Hole, Nevada, δ18O record extended to the mid-Holocene

    USGS Publications Warehouse

    Winograd, Isaac J.; Landwehr, Jurate M.; Coplen, Tyler B.; Sharp, Warren D.; Riggs, Alan C.; Ludwig, Kenneth R.; Kolesar, Peter T.

    2006-01-01

    The mid-to-late Pleistocene Devils Hole δ18O record has been extended from 60,000 to 4500 yr ago. The new δ18O time series, in conjunction with the one previously published, is shown to be a proxy of Pacific Ocean sea surface temperature (SST) off the coast of California. During marine oxygen isotope stages (MIS) 2 and 6, the Devil Hole and SST time series exhibit a steady warming that began 5000 to > 10,000 yr prior to the last and penultimate deglaciations. Several possible proximate causes for this early warming are evaluated. The magnitude of the peak δ18O or SST during the last interglacial (LIG) is significantly greater (1 per mill and 2 to 3°C, respectively) than the peak value of these parameters for the Holocene; in contrast, benthic δ18O records of ice volume show only a few tenths per mill difference in the peak value for these interglacials. Statistical analysis provides an estimate of the large shared information (variation) between the Devils Hole and Eastern Pacific SST time series from ∼ 41 to ∼ 2°N and enforces the concept of a common forcing among all of these records. The extended Devils Hole record adds to evidence of the importance of uplands bordering the eastern Pacific as a source of archives for reconstructing Pacific climate variability.

  2. A foraminiferal δ18O record covering the last 2,200 years

    NASA Astrophysics Data System (ADS)

    Taricco, Carla; Alessio, Silvia; Rubinetti, Sara; Vivaldo, Gianna; Mancuso, Salvatore

    2016-06-01

    Thanks to the precise core dating and the high sedimentation rate of the drilling site (Gallipoli Terrace, Ionian Sea) we were able to measure a foraminiferal δ18O series covering the last 2,200 years with a time resolution shorter than 4 years. In order to support the quality of this data-set we link the δ18O values measured in the foraminifera shells to temperature and salinity measurements available for the last thirty years covered by the core. Moreover, we describe in detail the dating procedures based on the presence of volcanic markers along the core and on the measurement of 210Pb and 137Cs activity in the most recent sediment layers. The high time resolution allows for detecting a δ18O decennial-scale oscillation, together with centennial and multicentennial components. Due to the dependence of foraminiferal δ18O on environmental conditions, these oscillations can provide information about temperature and salinity variations in past millennia. The strategic location of the drilling area makes this record a unique tool for climate and oceanographic studies of the Central Mediterranean.

  3. Patterns of d18O in fish tissues in two Oregon Coast range streams

    EPA Science Inventory

    We are using stable isotopes of C, N, O and S (H planned) to study the ecology of coho salmon in streams of the Oregon Coast Range. As part of this work we have examined changes in d18O in coho salmon juveniles (from eggs to smolting) and sculpin (from 0.5 to 20 gm.). For fish...

  4. Investigating the past and recent δ18O-accumulation relationship seen in Greenland ice cores

    NASA Astrophysics Data System (ADS)

    Buchardt, S. L.; Clausen, H. B.; Vinther, B. M.; Dahl-Jensen, D.

    2012-12-01

    Decadal means of δ18O and accumulation rates from 52 ice core locations in Greenland are presented. The accumulation rates are derived from annual layers determined in the δ18O curve. Investigation of the δ18O-accumulation relationship across the ice divide reveals a significant Foehn effect with anticorrelation of δ18O and accumulation rate on the lee side of the divide in Southern Greenland, while no effect is seen in Central Greenland. Furthermore, the sensitivity of accumulation rate to changes in temperature is found to be smaller in Northern Greenland than in the central and southern parts. Four records in the data set contain sufficient recent data that the period of observed temperature rise from the 1990s and onwards can be investigated. All four records are from locations close to the ice divide in Northern Greenland and while three of them show increased temperatures, no conclusive statement can be made about the accumulation rate from these data.

  5. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: I. Patterns

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates frequently precipitate out of {sup 18}O and {sup 13}C equilibrium with ambient waters. Two patterns of isotopic disequilibrium are particularly common. Kinetic disequilibria, so designated because they apparently result from kinetic isotope effects during CO{sub 2} hydration and hydroxylation, involve simultaneous depletions of {sup 18}O and {sup 13}C as large as 4{per thousand} and 10 to 15{per thousand}, respectively. Rapid skeletogenesis favors strong kinetic effects, and approximately linear correlations between skeletal {delta}{sup 18}O and {delta}{sup 13}C are common in carbonates showing mainly the kinetic pattern. Metabolic effects involve additional positive or negative modulation of skeletal {delta}{sup 13}C, reflecting changes in the {delta}{sup 13}C of dissolved inorganic carbon, caused mainly by photosynthesis and respiration. Kinetic isotope disequilibria tend to be fairly consistent in rapidly growing parts of photosynthetic corals, and time dependent isotopic variations therefore reflect changes in environmental conditions. {delta}{sup 18}O variations from Galapagos corals yields meaningful clues regarding seawater temperature, while {delta}{sup 13}C variations reflect changes in photosynthesis, modulated by cloudiness.

  6. A foraminiferal δ18O record covering the last 2,200 years

    PubMed Central

    Taricco, Carla; Alessio, Silvia; Rubinetti, Sara; Vivaldo, Gianna; Mancuso, Salvatore

    2016-01-01

    Thanks to the precise core dating and the high sedimentation rate of the drilling site (Gallipoli Terrace, Ionian Sea) we were able to measure a foraminiferal δ18O series covering the last 2,200 years with a time resolution shorter than 4 years. In order to support the quality of this data-set we link the δ18O values measured in the foraminifera shells to temperature and salinity measurements available for the last thirty years covered by the core. Moreover, we describe in detail the dating procedures based on the presence of volcanic markers along the core and on the measurement of 210Pb and 137Cs activity in the most recent sediment layers. The high time resolution allows for detecting a δ18O decennial-scale oscillation, together with centennial and multicentennial components. Due to the dependence of foraminiferal δ18O on environmental conditions, these oscillations can provide information about temperature and salinity variations in past millennia. The strategic location of the drilling area makes this record a unique tool for climate and oceanographic studies of the Central Mediterranean. PMID:27328303

  7. The enigma of effective path length for (18) O enrichment in leaf water of conifers.

    PubMed

    Roden, John; Kahmen, Ansgar; Buchmann, Nina; Siegwolf, Rolf

    2015-12-01

    The Péclet correction is often used to predict leaf evaporative enrichment and requires an estimate of effective path length (L). Studies to estimate L in conifer needles have produced unexpected patterns based on Péclet theory and leaf anatomy. We exposed seedlings of six conifer species to different vapour pressure deficits (VPD) in controlled climate chambers to produce steady-state leaf water enrichment (in (18) O). We measured leaf gas exchange, stable oxygen isotopic composition (δ(18) O) of input and plant waters as well as leaf anatomical characteristics. Variation in bulk needle water δ(18) O was strongly related to VPD. Conifer needles had large amounts of water within the vascular strand that was potentially unenriched (up to 40%). Both standard Craig-Gordon and Péclet models failed to accurately predict conifer leaf water δ(18) O without taking into consideration the unenriched water in the vascular strand and variable L. Although L was linearly related to mesophyll thickness, large within-species variation prevented the development of generalizations that could allow a broader use of the Péclet effect in predictive models. Our results point to the importance of within needle water pools and isolating mechanisms that need further investigation in order to integrate Péclet corrections with 'two compartment' leaf water concepts.

  8. A foraminiferal δ(18)O record covering the last 2,200 years.

    PubMed

    Taricco, Carla; Alessio, Silvia; Rubinetti, Sara; Vivaldo, Gianna; Mancuso, Salvatore

    2016-06-21

    Thanks to the precise core dating and the high sedimentation rate of the drilling site (Gallipoli Terrace, Ionian Sea) we were able to measure a foraminiferal δ(18)O series covering the last 2,200 years with a time resolution shorter than 4 years. In order to support the quality of this data-set we link the δ(18)O values measured in the foraminifera shells to temperature and salinity measurements available for the last thirty years covered by the core. Moreover, we describe in detail the dating procedures based on the presence of volcanic markers along the core and on the measurement of (210)Pb and (137)Cs activity in the most recent sediment layers. The high time resolution allows for detecting a δ(18)O decennial-scale oscillation, together with centennial and multicentennial components. Due to the dependence of foraminiferal δ(18)O on environmental conditions, these oscillations can provide information about temperature and salinity variations in past millennia. The strategic location of the drilling area makes this record a unique tool for climate and oceanographic studies of the Central Mediterranean.

  9. Variations of 17O/ 16O and 18O/ 16O in meteoric waters

    NASA Astrophysics Data System (ADS)

    Luz, Boaz; Barkan, Eugeni

    2010-11-01

    The variations of δ 17O and δ 18O in recent meteoric waters and in ice cores have proven to be an important tool for investigating the present and past hydrologic cycle. In order to close significant information gaps in the present distribution of δ 17O and δ 18O of meteoric water, we have run precise measurements, with respect to VSMOW, on samples distributed globally from low to high latitudes. Based on the new and existing data, we present the Global Meteoric Water Line (GMWL) for δ 17O and δ 18O as: ln(δ17O+1)=0.528ln(δ18O+1)+0.000033(R2=0.99999) In addition to meteoric water, we carried out the first measurements of seawater from the Pacific and Atlantic oceans with respect to VSMOW. The obtained results show that the slope of the trend line ln(δ 17O + 1) vs. ln(δ 18O + 1) of seawater samples is 0.528, the same as for meteoric water, but the regression intercept is -5 per meg. Thus, the positive intercept in the GMWL indicates an excess of 17O in meteoric waters with respect to the ocean. An excess (or depletion) of 17O in water is defined as: 17O-excess=ln(δ17O+1)-0.528(δ18O+1) Most meteoric water samples have positive 17O-excess of varying magnitudes with an average of 37 per meg with respect to VSMOW. We explain how these positive values originate from evaporation of sea water into marine air, which is undersaturated in water vapor, and how subsequent increase of 17O-excess occurs when atmospheric vapor condenses to form liquid and solid precipitation. We also clarify the effect of excessive evaporation on 17O-excess. Finally, based on the new results on 17O-excess of seawater we recalculated the relationship of δ 17O vs. δ 18O in vapor diffusion in air as 18α diff = 1.0096.

  10. Assessing modern climatic controls on southern Sierra Nevada precipitation and speleothem δ18O

    NASA Astrophysics Data System (ADS)

    McCabe-Glynn, S. E.; Johnson, K. R.; Berkelhammer, M. B.

    2012-12-01

    Precipitation in the southwestern United States (SW US) is highly seasonal and exhibits inter-annual to inter-decadal variability. A 1154-year δ18O time series obtained from a southwestern Sierra Nevada Mountain stalagmite from Crystal Cave, CRC-3, (36.58°N; 118.56°W; 1540 m) reveals substantial decadal to multi-decadal variability closely linked to the Pacific Decadal Oscillation (PDO), and more specifically, to sea surface temperatures (SSTs) in the Kuroshio Extension region, which impact the atmospheric trajectory and isotopic composition of moisture reaching the study site. The instrumental portion of the CRC-3 δ18O time series suggests that more negative precipitation δ18O values are delivered from higher latitudes during positive phases of the PDO and/or when SSTs in the Kuroshio Extension region are anomalously cool, such as during La Niña events. In order to improve our understanding of the controls on speleothem δ18O in this region, we have conducted a detailed modern study of the climate, hydrology, and stable isotopic composition of meteoric waters (precipitation and drip water) at the cave. Here we present Crystal Cave drip logger results from 2010 to 2012, the isotopic composition of North American Deposition Program precipitation samples collected from 2001 to 2012 from several locations near our site including Ash Mountain (ASM), Sequoia National Park-Giant Forest (Ca75), and Yosemite National Park (Ca99), and isotopic composition of cave drip water and glass plate calcite. We also compare the δ18O values in the precipitation to satellite imagery, NCAR/NCEP data, and NOAA Hysplit Model backward trajectories between the sites. Results indicate that this site is particularly sensitive to "Pineapple Express" type storms, a persistent flow of atmospheric moisture and heavy rainfall extending from near the Hawaiian Islands to the coast of North America, which average about twice as much precipitation as other storms in the Sierra Nevada during

  11. VizieR Online Data Catalog: NGC 1333-IRAS 4A C18O, NO and O2 spectra (

    NASA Astrophysics Data System (ADS)

    Yildiz, U. A.; Acharyya, K.; Goldsmith, P. F.; van Dishoeck, E. F.; Melnick, G.; Snell, R.; Liseau, R.; Chen, J.-H.; Pagani, L.; Bergin, E.; Caselli, P.; Herbst, E.; Kristensen, L. E.; Visser, R.; Lis, D. C.; Gerin, M.

    2013-10-01

    Files contain the observations of O2, C18O 1- C18O 5-4, and NO toward NGC 1333 IRAS 4A low mass protostar. C18O 1-0 and 3-2 observations conducted in mapping mode, therefore they were convolved to 44-arcsec beam in order to compare with the Herschel-HIFI observations of molecular oxygen. (2 data files).

  12. Growth of 18O isotopically enriched ZnO nanorods by two novel VPT methods

    NASA Astrophysics Data System (ADS)

    Gray, Ciarán; Trefflich, Lukas; Röder, Robert; Ronning, Carsten; Henry, Martin O.; McGlynn, Enda

    2017-02-01

    We have developed two novel vapour phase transport methods to grow ZnO nanorod arrays isotopically enriched with 18O. Firstly, a three-step process used to grow natural and Zn-enriched ZnO nanorods has been further modified, by replacing the atmospheric O2 with enriched 18O2, in order to grow 18O-enriched ZnO nanorods using this vapour-solid method on chemical bath deposited buffer layers. In addition, 18O-enriched ZnO nanorods were successfully grown using 18O isotopically enriched ZnO source powders in a vapour-liquid-solid growth method. Scanning electron microscopy studies confirmed the success of both growth methods in terms of nanorod morphology, although in the case of the vapour-liquid-solid samples, the nanorods' c-axes were not vertically aligned due to the use of a non-epitaxial substrate. Raman and PL studies indicated clearly that O-enrichment was successful in both cases, although the results indicate that the enrichment is at a lower level in our samples compared to previous reports with the same nominal enrichment levels. The results of our studies also allow us to comment on both levels of enrichment achieved and on novel effects of the high temperature growth environment on the nanorod growth, as well as suggesting possible mechanisms for such effects. Very narrow photoluminescence line widths, far narrower than those reported previously in the literature for isotopically enriched bulk ZnO, are seen in both the vapour-solid and vapour-liquid-solid nanorod samples demonstrating their excellent optical quality and their potential for use in detailed optical studies of defects and impurities using low temperature photoluminescence.

  13. FT-IR spectra of 18O-, and 13C-enriched CO2 in the ν3 region: High accuracy frequency calibration and spectroscopic constants for 16O12C18O, 18O12C18O, and 16O13C16O

    NASA Astrophysics Data System (ADS)

    Elliott, Ben M.; Sung, Keeyoon; Miller, Charles E.

    2015-06-01

    In this report, we extend our Fourier transform infrared (FT-IR) spectroscopy measurements of CO2 in the ν3 region (2200-2450 cm-1, 65-75 THz) to the 18O-, and 13C-substituted isotopologues, using the JPL Bruker IFS-125HR Fourier Transform Spectrometer (JPL-FTS). High quality (S/N ∼ 2000) spectra were obtained separately for each of the 18O-, and 13C-isotopically enriched samples. The absolute wavenumber accuracies were better than 3 × 10-6 cm-1 (∼100 kHz) for strong, isolated transitions, calibrated against the highest accuracy reported CO and 16O12C16O (626) frequency measurements. The JPL-FTS performance and calibration procedure is shown to be reliable and consistent, achievable through vigorous maintenance of the optical alignment and regular monitoring of its instrumental line shape function. Effective spectroscopic constant fits of the 00011 ← 00001 fundamental bands for 16O12C18O (628), 18O12C18O (828), and 16O13C16O (636) were obtained with RMS residuals of 2.9 × 10-6 cm-1, 2.8 × 10-6 cm-1, and 2.9 × 10-6 cm-1, respectively. The observed bands encompassed 79 lines over the Jmax range of P67/R67, 47 lines over P70/R62, and 60 lines over P70/R70 for 628, 828, and 636, respectively. These results complement our recent work on the 17O-enriched isotopologues (Elliott et al., 2014), providing additional high-quality frequency measurements for atmospheric remote sensing applications.

  14. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    USGS Publications Warehouse

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  15. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    SciTech Connect

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. )

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  16. Temperature dependence of oxygen isotope fractionation in coccolith calcite: A culture and core top calibration of the genus Calcidiscus

    NASA Astrophysics Data System (ADS)

    Candelier, Yaël; Minoletti, Fabrice; Probert, Ian; Hermoso, Michaël

    2013-01-01

    species of this genus. This also indicates that our culture calibration may be applied to all Calcidiscus coccoliths found in the sediment. We compared the culture calibration to δ18O measured from near-monogeneric Calcidiscus fractions separated out from core top sediments. We found concordant 18O fractionation factors for the core top calibration with a good linear coefficient (r = 0.94). The near-monogeneric Calcidiscus assemblages seem, however, to record slightly heaviest δ18O values compared to the data of culture study. This discrepancy may be due to a possible seasonality effect on the production of Calcidiscus coccoliths. The uncertainty of the calibration is of similar magnitude to those of other proxies used for SST reconstruction, such as foraminiferal δ18O or the alkenone undersaturation index. This confirms that coccoliths can be used as a complementary or alternative substrate to foraminiferal shells for isotopic analyses. Comparing δ18O of coccoliths to these other SST proxies, or developing an interspecific comparison of coccolith geochemistry may give insights into the carbonate chemistry of seawater through key periods of the geological record.

  17. An assessment of the isotopic (2H/18O) integrity of water samples collected and stored by unattended precipitation totalizers

    NASA Astrophysics Data System (ADS)

    Terzer, Stefan; Wassenaar, Leonard I.; Douence, Cedric; Araguas-Araguas, Luis

    2016-04-01

    The IAEA-WMO Global Network of Isotopes in Precipitation (GNIP) provides worldwide δ18O and δ2H data for numerous hydrological and climatological studies. The traditional GNIP sample collection method relies on weather station operators to accumulate precipitation obtained from manual rain gauges. Over the past decades, widespread weather station automatization resulted in the increased use of unattended precipitation totalizers that accumulate and store the rainwater in the field for up to one month. Several low-tech measures were adopted to prevent in situ secondary evaporative isotopic enrichment (SEE) of totalized water samples (i.e. disequilibrium isotopic fractionation after precipitation is stored in the collection device). These include: (a) adding a 0.5-1 cm floating layer of paraffin oil to the totalizer bottle, (b) using an intake tube leading from the collection funnel and submerged to the bottom of the totalizer bottle, or (c) placing a table tennis ball in the funnel aiming to reduce evaporation of the collected water from the receiving bottle to the atmosphere. We assessed the isotopic integrity of stored rainwater samples for three totalizers under controlled settings: each aforementioned totalizer was filled with a 100 or 500 mL of isotopically known water and installed in the field with the intake funnels sheltered to prevent rainwater collection. Potential evapotranspiration (PET) was obtained from on-site meteorological recordings. Stored evaporative loss from each totalizer was evaluated on a monthly basis; gravimetrically and by analysing δ18O and δ2H of the stored water, for a period of 6 months and a cumulative PET of ˜500 mm. The gravimetric and isotope results revealed that for smaller water volumes (100 ml, corresponding to ca. 5 mm of monthly precipitation), negligible isotope enrichment (δ18O) was observed in the paraffin-oil based totalizer, whereas unacceptable evaporative isotope effects were observed for the ball

  18. Analysis of δ15N and δ18O to differentiate NO3- sources in runoff at two watersheds in the Catskill Mountains of New York

    USGS Publications Warehouse

    Burns, Douglas A.; Kendall, Carol

    2002-01-01

    To quantify the movement of atmospheric nitrogen deposition through two forested watersheds in the Catskill Mountains of New York, dual-isotope analysis (δ15N and δ18O) was used to differentiate NO3− derived from precipitation from NO3− derived by microbial nitrification and to quantify the contributions of these sources to NO3− in drainage waters. Samples of stream water, soil water, precipitation, snowmelt, and O-horizon soil were collected during the March and April snowmelt period of 1994 and throughout an 18-month period from August 1995 through February 1997. The mean δ18O-NO3− value of precipitation was +50.5‰, whereas the mean values for stream water and soil water were +17.7‰ and +23.6‰, respectively. The mean δ15N-NO3− of precipitation was −0.2‰, that of soil water was +1.4‰, and that of stream water was +2.3‰; these values showed greater overlap among the three different waters than did the δ18O-NO3− values, indicating that δ15N-NO3− was not as useful for source separation. Soil water δ18O-NO3− values decreased, and δ15N-NO3− values increased, from the O to the B and C horizons, but most of the differences among horizons were not statistically significant. Nitrate derived by nitrification in incubated soil samples had a wide range of δ15N-NO3− values, from +1.5‰ to +16.1‰, whereas δ18O-NO3− values ranged more narrowly, from +13.2‰ to +16.0‰. Values of δ18O-NO3− indicated that NO3− in stream water is mainly derived from nitrification. Only during a high-flow event that exceeded the annual flood was precipitation a major contributor to stream water NO3−. Values of δ18O-NO3− and δ15N-NO3− changed at differing rates as NO3− cycled through these watersheds because δ18O-NO3− values change sharply through the incorporation of oxygen from ambient water and gas during nitrification, whereas δ15N-NO3− values change only incrementally through fractionation during biocycling

  19. Controls on the Nitrogen and Oxygen Isotopic Composition (δ 15N, δ 18O, δ 17O) of Atmospheric Nitrate in Princeton, NJ

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Malcolm, E.; Kaiser, J.; Sigman, D. M.

    2004-12-01

    The oxygen isotopic composition of atmospheric nitrate reflects the oxidative mechanisms that convert NOx to HNO3, while the nitrogen isotopic composition of atmospheric nitrate may reflect different NOx source signatures and/or fractionations related to NOx chemistry [Michalski et al., 2003; Hastings et al., 2003; Freyer et al., 1993]. New analysis techniques are capable of determining the 15N/14N, 18O/16O and 17O/16O isotope ratios in samples at the nanomolar level [Sigman et al., 2001; Casciotti et al., 2002; see Kaiser et al., session H38]. This allows for the analysis of short-term variations in the isotopes of HNO3 with the potential to diagnose causal relationships by comparing the isotopic data with other features of atmospheric deposition. The 15N/14N, 18O/16O and 17O/16O of nitrate were analyzed from precipitation samples collected on an event-basis in Princeton, NJ between December 2002 and 2003. The nitrate concentration in Princeton rain ranges from 2.5 to 99.7 μ M (mean=21.1 μ M, n=61), similar to that found in other urban areas of New Jersey by the National Atmospheric Deposition Program. The isotopes of nitrate fall in the wide range reported for various environments with the δ 15N ranging from -4.0 to 9.5‰ (vs. air), and the δ 18O and δ 17O ranging from 57.2 to 90.5‰ and 50.7 to 77.8‰ (vs. VSMOW), respectively. The correlation between nitrate and sulfate concentration (R2=0.66) and the lack of a relationship between these major ions and the isotopes of nitrate supports the conclusion that below cloud scavenging is not the dominant control on the isotopic variations observed. Seasonal variations are observed in both the nitrogen and oxygen isotopes of nitrate. Overall the δ 15N is not correlated with either δ 18O or δ 17O, although both the δ 15N and δ 18O average lowest in the summer and highest in the winter. δ 18O is highly correlated with δ 17O of nitrate with anomalous enrichment in 17O relative to 18O (Δ 17O ranges from 19

  20. Fraction Reduction through Continued Fractions

    ERIC Educational Resources Information Center

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  1. First Principles Calculation on Equilibrium Si Isotope Fractionation Factors and its Implementation on Si Isotope Distributions in Earth Surface Environments

    NASA Astrophysics Data System (ADS)

    Liu, Y.; He, H. T.; Zhu, C.

    2014-12-01

    Several important equilibrium Si isotope fractionation factors are calculated here. We use a so-called volume-variable-cluster-model (VVCM) method for solids and the "water-droplet" method for aqueous species for isotope fractionation calculation at the same quantum chemistry level. The calculation results show that several silicate minerals, such as quartz, feldspar, kaolinite, etc., all enrich heavy Si isotopes relative to aqueous H4SiO4 and can be up to 3.3‰ at 25°C, different from most field observations. Meanwhile stable organosilicon complexes can enrich even lighter Si isotopes than aqueous H4SiO4. For explaining the difference between the calculation results and field observations, we calculate the kinetic isotope effect (KIE) associated with the formation of amorphous silica, and find that amorphous silica will enrich extremely light Si isotopes. From amorphous silica to crystalline quartz, the structural adjustment & transition needs getting rid of small amount of Si to re-organize the structure. Light Si isotopes will be preferentially lost and let the final crystalline quartz with a little bit more heavy Si isotopes. However, such late-stage Si heavy isotope enrichment cannot erase the total isotopic signal, crystalline quartz still inherit much light Si isotopic composition from amorphous quartz. That is the reason for the discrepancy between the calculation results and the field observations, because the formation of amorphous quartz is under a non-equilibrium process but theoretical calculations are for equilibrium isotope fractionations. With accurate equilibrium fractionation factors provided here, Si isotope distributions in earth surface environments including soil, groundwater and plants can be further interpreted. We find that δ30Si variations in soil are mainly driven by secondary minerals precipitation and adsorption. Also, bulk soil δ30Si maybe have a parabolic distribution with soil age, with a minimum value at where allophane is

  2. Coherency of European speleothem δ18O records linked to North Atlantic ocean circulation

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; McDermott, Frank

    2016-04-01

    Speleothem δ18O records can provide valuable information about past continental environmental and climatic conditions. In recent decades a European speleothem network has been assembled that allows us to reconstruct past climate variability in both space and time. In particular climate variability during the Holocene was investigated by these studies. The Holocene is thus an ideal period to apply sophisticated statistical methods to derive spatio-temporal pattern of common climate variability in the European speleothem record. Here we evaluate a compilation of 10 speleothem δ18O records covering the last 4.5 ka for their shared variability. The selected speleothem δ18O records must satisfy certain quality criteria to be included: (i) a robust age model; (ii) a temporal intra-sampling resolution of smaller than 30 years; and (iii) the record should be published. A Monte Carlo based Principal Component Analysis (MC-PCA) that accounts for uncertainties in individual speleothem age models and for the different and varying temporal resolutions of each speleothem δ18O record was used for this purpose. Our MC-PCA approach allows not only the identification of temporally coherent changes in δ18O records, but it also facilitates their depiction and evaluation spatially. The compiled speleothem δ18O records span almost the entire European continent (with the exception of the circum-Mediterranean region) ranging from the western Margin of the European continent (stalagmite CC-3, Ireland) to Northern Turkey (SO-1) and from Northern Italy (CC-26) to Norway (FM-3). For the MC-PCA analysis, the 4.5 ka period was sub-divided into eight 1 ka long time windows that overlap the subsequent time window by 500 years to allow a comparison of the temporal evolution of the common signal. In this study we only interpreted the 1st principal component (PC) that depict the spatio-temporal pattern with the highest explained variability of all speleothem δ18O records. Our MC-PCA results

  3. Down Core Oxygen Isotopic Measurements Of Diatom δ18O From The Guaymas Basin, Gulf Of California

    NASA Astrophysics Data System (ADS)

    Menicucci, A. J.; Spero, H. J.; Thunell, R.

    2015-12-01

    The Guaymas Basin (GB), Gulf of California (27º53'N, 111º40'W ), is an evaporative basin, with sea surface temperatures (SST) varying between ~30oC (summer) and ~15oC (winter). Productivity is controlled mostly by seasonal upwelling starting in fall (early November) and extending into spring. We are currently analyzing δ18Odiatom from a boxcore (BC-43) using microfluorination (Menicucci, et al. 2013). This boxcore was previously analyzed for UK '37 alkenones and 210Pb activity (Goni, et al. 2001). Residual BC-43 material was sampled at ~2cm intervals. Samples were cleaned to isolate diatoms from other sediments, then equilibrated in water with δ18Owater = +85‰ for 70 hours at 21oC prior to vacuum dehydroxylation and microfluorination. The latter equilibration was done to account for fractionation between covalently bound O and OH- groups during vacuum dehydroxylation, preserving the original δ18Odiatom value. We present δ18Odiatom data from BC-43 samples covering 27cm, equivalent to >225 years of sediment accumulation. δ18O data are converted to temperature (T) based on an existing calibration (Leclerc and Labeyrie 1987). Our data suggest δ18Odiatom values record a T range of 22-18oC, corresponding to the mixed layer depth and the chlorophyll maximum during the fall bloom. These T values are offset from SST data by a mean of 5oC for the same sample intervals. However, δ18Odiatom values from the most recent samples suggest a ~2oC increase in diatom T relative to SST during the last 35 years. This subsurface warming may be due to decreased fall upwelling, increased mixed layer and chlorophyll maximum depths, and/or the timing of the peak diatom bloom. Such correlations are being investigated and the latest results will be presented. Goni, M. A., et al. (2001). Oceanographic considerations for the application of the alkenone-based paleotemperature U-37(K ') index in the Gulf of California. Geochimica Et Cosmochimica Acta 65: 545-557. Leclerc, A. J. and L

  4. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.

    PubMed

    Einsiedl, Florian

    2009-01-01

    The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water

  5. Paleoclimatic reconstruction using the correlation in δ18O of hackberry carbonate and environmental water, North America

    USGS Publications Warehouse

    Jahren, A. Hope; Amundson, Ronald; Kendall, Carol; Wigand, Peter

    2001-01-01

    Celtis sp. (commonly known as “hackberry”) fruits were collected from 101 North American sites located in 13 states and one Canadian province between the years of 1979–1994. The biomineralized carbonate endocarp of the hackberry, which is a common botanical fossil found throughout the Quaternary sediments of the Great Plains, was analyzed for its δ18O value and plotted against the δ18O value of site environmental water to demonstrate the potential of the hackberry as a paleoclimate indicator. This correlation was reinforced by intensive studies on extracted tissue-water δ18O value and hackberry endocarp carbonate δ18O value from three trees in Sterling, Colorado. The observed correlation in the large data set between hackberry endocarp carbonate δ18O value and environmental water is [endocarp δ18O=38.56+0.69×environmental water δ18O] (R=0.88; R2=0.78; p value<0.0001). The relation of the hackberry carbonate to temperature in the Great Plains was the following: (average daily-maximum growing season temperature [°C])=6.33+0.67 (δ18O of endocarp carbonate) (R=0.73; R2=0.54; pvalue=0.0133). The δ18O value of early Holocene fossil hackberry carbonate in the Pintwater Cave, southern Nevada, suggested precipitation δ18O values more positive than today (∼−4‰ early Holocene vs ∼−9 to −10‰ today). This shift, combined with paleobotanical data, suggests an influx of summer monsoonal moisture to this region in the early Holocene. Alternatively, the more positive δ18O values could be viewed as suggestive of warmer temperatures, although the direct use of Great Plains hackberry/temperature relationships to the Great Basin is of debatable value.

  6. 18O Labeling of Chlorophyll d in Acaryochloris marina Reveals That Chlorophyll a and Molecular Oxygen Are Precursors*

    PubMed Central

    Schliep, Martin; Crossett, Ben; Willows, Robert D.; Chen, Min

    2010-01-01

    The cyanobacterium Acaryochloris marina was cultured in the presence of either H218O or 18O2, and the newly synthesized chlorophylls (Chl a and Chl d) were isolated using high performance liquid chromatography and analyzed by mass spectroscopy. In the presence of H218O, newly synthesized Chl a and d, both incorporated up to four isotopic 18O atoms. Time course H218O labeling experiments showed incorporation of isotopic 18O atoms originating from H218O into Chl a, with over 90% of Chl a 18O-labeled at 48 h. The incorporation of isotopic 18O atoms into Chl d upon incubation in H218O was slower compared with Chl a with ∼50% 18O-labeled Chl d at 115 h. The rapid turnover of newly synthesized Chl a suggested that Chl a is the direct biosynthetic precursor of Chl d. In the presence of 18O2 gas, one isotopic 18O atom was incorporated into Chl a with approximately the same kinetic incorporation rate observed in the H218O labeling experiment, reaching over 90% labeling intensity at 48 h. The incorporation of two isotopic 18O atoms derived from molecular oxygen (18O2) was observed in the extracted Chl d, and the percentage of double isotopic 18O-labeled Chl d increased in parallel with the decrease of non-isotopic-labeled Chl d. This clearly indicated that the oxygen atom in the C31-formyl group of Chl d is derived from dioxygen via an oxygenase-type reaction mechanism. PMID:20610399

  7. Paleoclimatic Inferences From a High Resolution Bristlecone Pine δ18O Chronology

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M.; Stott, L.

    2007-12-01

    This study presents a comprehensive high resolution 400-year chronology of tree-ring α cellulose δ18O values of Pinus longaeva (Bristlecone Pine) from the White Mountains of California. The δ18OVSMOW stratigraphy exhibits a distinctive bidecadal oscillation during the 20th century with peak excursions of 4‰. The cellulosic δ18O values appear to correlate both with growing season temperatures and the isotopic composition of regional precipitation. Because there is not a good instrumental record of δ18O in precipitation for this region, the latter statistic was estimated by calculating the percentage of each year's precipitation that had a subtropical origin by the use of daily NCEP Reanalysis data and a recently developed catalog of Pineapple Express storms. The subtropical influence on the region exhibits large interannual variability, ranging from years where no such storm occurs to years where close to 15% of the total water budget has a subtropical origin. Precipitation in this region falls predominately during the winter months and the growing season is restricted to late spring through early fall, so it can be stated that the average annual δ18O value integrates a distinct summer and winter signal. The δ18O variability during the instrumental period is dwarfed by a dramatic enrichment (~10‰) in cellulosic δ18O values between 1905 and 1855 AD. This mid 19th century isotopic shift correlates with major climatic changes across the Northern Hemisphere that have been documented in a wide-range of proxy records. Both the magnitude and direction of the Bristlecone Pine isotopic excursion suggest it is not likely the result of post-Little Ice Age warming but rather a major change in the dominant storm tracks striking this region. We hypothesize that the large isotopic shift in the mid-19th century is evidence for a change in mean storm trajectories brought about by a more southerly position of the mid-latitude jet and changes in the strength and zonality

  8. French summer droughts since 1326 CE: a reconstruction based on tree ring cellulose δ18O

    NASA Astrophysics Data System (ADS)

    Labuhn, Inga; Daux, Valérie; Girardclos, Olivier; Stievenard, Michel; Pierre, Monique; Masson-Delmotte, Valérie

    2016-05-01

    The reconstruction of droughts is essential for the understanding of past drought dynamics and can help evaluate future drought scenarios in a changing climate. This article presents a reconstruction of summer droughts in France based on annually resolved, absolutely dated chronologies of oxygen isotope ratios (δ18O) in tree ring cellulose from Quercus spp. Samples were taken from living trees and timber wood from historic buildings at two sites: Fontainebleau (48°23' N, 2°40' E; 1326-2000 CE) and Angoulême (45°44' N, 0°18' E; 1360-2004 CE). Cellulose δ18O from these sites proved to be a good proxy of summer climate, as the trees were sensitive to temperature and moisture availability. However, offsets in average δ18O values between tree cohorts necessitated a correction before joining them to the final chronologies. Using the corrected δ18O chronologies, we developed models based on linear regression to reconstruct drought, expressed by the standardized precipitation evapotranspiration index (SPEI). The significant correlations between the SPEI and cellulose δ18O (r ≈ -0.70), as well as the verification of the models by independent data support the validity of these reconstructions. At both sites, recent decades are characterized by increasing drought. Fontainebleau displays dominantly wetter conditions during earlier centuries, whereas the current drought intensity is not unprecedented in the Angoulême record. While the δ18O chronologies at the two studied sites are highly correlated during the 19th and 20th centuries, there is a significant decrease in the correlation coefficient between 1600 and 1800 CE, which indicates either a weaker climate sensitivity of the tree ring proxies during this period, or a more heterogeneous climate in the north and the south of France. Future studies of tree ring isotope networks might reveal if the seasonality and spatial patterns of past droughts can explain this decoupling. A regional drought reconstruction

  9. Identification of Highly Fractionated (18)O-Rich Silicate Grains in the Queen Alexandra Range 99177 CR3 Chondrite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.

    2015-01-01

    Carbonaceous chondrites contain a mixture of solar system condensates, presolar grains, and primitive organic matter. The CR3 chondrite QUE 99177 has undergone minimal al-teration [1], exemplified by abundant presolar silicates [2, 3] and anomalous organic matter [4]. Oxygen isotopic imaging studies of this meteorite have focused on finding submicrometer anomalous grains in fine-grained regions of thin sections. Here we present re-sults of an O isotopic survey of larger matrix grains.

  10. Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer's and Amyotrophic Lateral Sclerosis Brains

    PubMed Central

    Wang, Hongjie

    2016-01-01

    Multiple studies suggest that autophagy is strongly dysregulated in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), as evidenced by accumulation of numerous autophagosomes, lysosomes with discontinuous membranes, and aggregated proteins in the patients' brains. Transcription factor EB (TFEB) was recently discovered to be a master regulator of lysosome biogenesis and autophagy. To examine whether aberrant autophagy in AD and ALS is due to alterations in TFEB expression, we systematically quantified the levels of TFEB in these brains by immunoblotting. Interestingly, cytoplasmic fractions of AD brains showed increased levels of normalized (to tubulin) TFEB only at Braak stage IV (61%, p < 0.01). Most importantly, normalized (to lamin) TFEB levels in the nuclear fractions were consistently reduced starting from Braak stage IV (52%, p < 0.01), stage V (67%, p < 0.01), and stage VI (85%, p < 0.01) when compared to normal control (NC) brains. In the ALS brains also, nuclear TFEB levels were reduced by 62% (p < 0.001). These data suggest that nuclear TFEB is selectively lost in ALS as well as AD brains, in which TFEB reduction was Braak-stage-dependent. Taken together, the observed reductions in TFEB protein levels may be responsible for the widely reported autophagy defects in these disorders. PMID:27433468

  11. A high-resolution Sr/Ca and δ 18O coral record from the Great Barrier Reef, Australia, and the 1982-1983 El Niño

    NASA Astrophysics Data System (ADS)

    McCulloch, Malcolm T.; Gagan, Michael K.; Mortimer, Graham E.; Chivas, Allan R.; Isdale, Peter J.

    1994-06-01

    A high-resolution (near weekly) Sr/Ca and oxygen isotopic record is presented for a coral from the Pandora Reef in the Great Barrier Reef (GBR) of Australia during the period 1978 to 1984. The records are well correlated except for periods of high rainfall when river runoff has significantly modified the δ18O value of seawater. Using the Sr/Ca temperature calibration of DE VILLIERS et al. (1994), the Sr/Ca records exhibit seasonally controlled cyclical SST (sea surface temperature) variations of from ~21 to ~28δC. During the very strong El Niño of 1982-1983, the Sr/Ca systematics indicate a sharp drop in the winter SST to ~ 18.5δC. This represents a temperature anomaly of -3δC which is approximately twice that given by the δ18O variations, suggesting an ~×2 amplification of the anomaly by the Sr/Ca system, possibly due to the increasing dominance of inorganically controlled aragoniteseawater fractionation. The oxygen isotopic systematics show the combined effects of both temperature and changing seawater δ18O values, the latter reflecting the influx of 18O-depleted runoff during periods of high rainfall. Due to the extremely low (~10 -3) Sr and Ca contents of river run off relative to seawater, it is possible to use the Sr/Ca thermometer to calculate temperatures independent of major floods and hence deconvolve the combined effects in the oxygen isotopic record of variable temperature and the δ18O value of seawater. Using this approach it is possible to quantitatively reproduce the volume of runoff from the Burdekin River during the periods of major flooding that occurred in early 1979 and 1981. The results of this study demonstrate that the combined use of high-resolution Sr/Ca and δ18O systematics in scleractinian corals is a powerful tool for providing quantitative constraints on past climate.

  12. The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria

    USGS Publications Warehouse

    Mandernack, Kevin W.; Mills, Christopher T.; Johnson, Craig A.; Rahn, Thomas; Kinney, Chad

    2009-01-01

    In order to determine if the δ15N and δ18O values of N2O produced during co-oxidation of NH4+ by methanotrophic (methane oxidizing) bacteria can be isotopically distinguished from N2O produced either by autotrophic nitrifying or denitrifying bacteria, we conducted laboratory incubation experiments with pure cultures of methanotrophic bacteria that were provided NH4Cl as an oxidation substrate. The N2O produced during NH4+ oxidation by methanotrophic bacteria showed nitrogen isotope fractionation between NH4+ and N2O (εN2O–NH4+) of − 48 and − 55‰ for Methylomonas methanica and Methylosinus trichosporium, OB3b respectively. These large fractionations are similar to those previously measured for autotrophic nitrifying bacteria and consistent with N2O formation by multiple rate limiting steps that include NH4+oxidation by the methane monooxygenase enzyme and reduction of NO2− to N2O. Consequently, N2O formed by NH4+ oxidation via methanotrophic or autotrophic nitrifying bacteria might generally be characterized by lower δ15NN2O values than that formed by denitrificaiton, although this also depends on the variability of δ15N of available nitrogen sources (e.g., NH4+, NO3−, NO2−). Additional incubations with M. trichosporium OB3b at high and low CH4 conditions in waters of different δ18O values revealed that 19–27% of the oxygen in N2O was derived from O2 with the remainder from water. The biochemical mechanisms that could explain this amount of O2 incorporation are discussed. The δ18O of N2O formed under high CH4 conditions was ~ + 15‰ more positive than that formed under lower CH4 conditions. This enrichment resulted in part from the incorporation of O2 into N2O that was enriched in 18O due to an isotope fractionation effect of − 16.1 ± 2.0‰ and − 17.5 ± 5.4‰ associated with O2 consumption during the high and low methane concentration incubations, respectively. Therefore, N2O formed by NH4+

  13. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  14. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul F.; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  15. Dynamics of 16,18O-induced reactions using Ni, Ge and Mo targets

    NASA Astrophysics Data System (ADS)

    Rajni; Kaur, Gurvinder; Sharma, Manoj K.

    2016-11-01

    Dynamical cluster decay model (DCM) based on the collective clusterization approach is employed to explore the dynamics of various even-mass Zr isotopes formed in 16O-induced reactions. In reference to the measured fusion cross-section data, various decay modes contributing towards 86,88,90,92Zr∗ nuclei are investigated. Also, the role of deformations and orientation degree of freedom is analyzed by comparing results with spherical choice of fragmentation. In addition to this, the effect of entrance channel is explored for 92Zr∗ and 76Kr∗ nuclei formed in 16O and 18O-induced reactions. Besides this, the dynamics of relatively heavier mass Sn isotopes is exercised using 16O and 18O projectiles. The DCM calculated decay cross-sections find good agreement with available experimental data.

  16. ENSO flavors in a tree-ring δ18O record of Tectona grandis from Indonesia

    NASA Astrophysics Data System (ADS)

    Schollaen, K.; Karamperidou, C.; Krusic, P. J.; Cook, E. R.; Helle, G.

    2014-10-01

    Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900-2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics.

  17. ENSO flavors in a tree-ring δ18O record of Tectona grandis from Indonesia

    NASA Astrophysics Data System (ADS)

    Schollaen, K.; Karamperidou, C.; Krusic, P.; Cook, E.; Helle, G.

    2015-10-01

    Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900-2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics, as well as the potential of palaeoclimate proxy records from appropriately selected tropical regions for reconstructing past variability of. ENSO flavors.

  18. The δ18O record of phanerozoic abiotic marine calcite cements

    NASA Astrophysics Data System (ADS)

    Lohmann, Kyger C.; Walker, James C. G.

    Monomineralic, abiotic marine cements formed in low-latitude Phanerozoic reefs provide the direction and amplitude of secular variation of δ13C and δ18O in marine calcite and defines two end member compositions — 580 to 360 my (-7 to -5‰ δ18OPDB) and 360 to present (-3 to 0‰ δ18OPDB). Sampling of the Devono-Carboniferous transition (375-320 my) at several global sites reveals a rapid change in carbonate isotopic compositions. Bracketed within Fammenian to Early Visean-aged strata, a 7 to 15 my time interval, this shift corresponds to a 2‰ offset in mean δ13C and 3-4‰ offset in δ18O. The abruptness of such change, and its overall correlation with variations in 87Sr/86Sr, δ34S, δ13C, and Li/Al ratios in marine sediments suggests a primary offset in marine water composition.

  19. Pre-treatment Effects on Coral Skeletal δ 13C and δ 18O

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Gibb, O.; Wellington, G. M.

    2003-12-01

    Pre-treatment protocols for coral skeletal stable carbon (δ 13C) and oxygen (δ 18O) isotope analyses include no treatment, bleach (NaOH), hydrogen peroxide (H2O2), or vacuum roasting prior to analysis. Such pre-treatments are used to remove organic material prior to isotopic analyses. Researchers that do not pre-treat samples argue that such treatments result in non-linear shifts in coral skeletal δ 13C and δ 18O thus increasing the analytical error in the δ 13C and δ 18O values. Vacuum roasting does cause isotopic shifts and is no longer practiced. However, both no pre-treatment and pre-treatment (with either NaOH or H2O2) coral δ 13C and δ 18O values continue to be published in the literature. In all previous studies of the effects of NaOH and H2O2 pre-treatments on coral δ 13C and δ 18O, the samples sizes were typically small and the exact time interval being sampled and compared was not specifically controlled. Here, we evaluated the effects of NaOH and H2O2 pre-treatments on coral skeletal δ 13C and δ 18O in Pavona clavus and Pavona gigantea from Panama, and Porites compressa from Hawaii. In Panama, at least five coral fragments from five different colonies of each species were stained on November 1978 and April 1979 then collected in November 1979. In Hawaii, at least five coral fragments from five different colonies at 1.7 and 7 m depths were stained on 1 September and 21 November 1996 then collected 2 March 1997. For each fragment, a bulk skeletal sample was extracted representing the entire growth interval between the two stain lines yielding at least 24 mg of material. Sampling between the stain lines ensured that all of the fragments from a given site and species were sampled over the same time interval and avoided any potential contamination from the tissue layer. Eight milligram subsamples from each fragment were subjected to 24 hours of the following treatments: NaOH, H2O2, Milli-Q filtered water (control), or no pre-treatment (control

  20. Plio-Pleistocene ice volume, Antarctic climate, and the global delta18O record.

    PubMed

    Raymo, M E; Lisiecki, L E; Nisancioglu, Kerim H

    2006-07-28

    We propose that from approximately 3 to 1 million years ago, ice volume changes occurred in both the Northern and Southern Hemispheres, each controlled by local summer insolation. Because Earth's orbital precession is out of phase between hemispheres, 23,000-year changes in ice volume in each hemisphere cancel out in globally integrated proxies such as ocean delta18O or sea level, leaving the in-phase obliquity (41,000 years) component of insolation to dominate those records. Only a modest ice mass change in Antarctica is required to effectively cancel out a much larger northern ice volume signal. At the mid-Pleistocene transition, we propose that marine-based ice sheet margins replaced terrestrial ice margins around the perimeter of East Antarctica, resulting in a shift to in-phase behavior of northern and southern ice sheets as well as the strengthening of 23,000-year cyclicity in the marine delta18O record.

  1. Physical factors determining the fraction of stored energy recoverable from hydrothermal convection systems and conduction-dominated areas

    USGS Publications Warehouse

    Nathenson, Manuel

    1975-01-01

    This report contains background analyses for the estimates of Nathenson and Muffler (1975) of geothermal resources in hydrothermal convection systems and conduction-dominated areas. The first section discusses heat and fluid recharge potential of geothermal reservoirs. The second section analyzes the physical factors that determine the fraction of stored energy obtainable at the surface from a geothermal reservoir. Conversion of heat to electricity and the use of geothermal energy for direct-heating applications are discussed in the last two sections. Nathenson, Manuel, and Muffler, L.J.P., 1975, Geothermal resources in hydrothermal convection systems and conduction dominated areas, in White, D.E., and Williams, D.L., eds., Assessment of the Geothermal Resources of the United States--1975: U.S. Geological Survey Circular 726, p. 104-121, available at http://pubs.er.usgs.gov/usgspubs/cir/cir726

  2. Patient factors influencing the concentration of stromal vascular fraction (SVF) for adipose-derived stromal cell (ASC) therapy in dogs.

    PubMed

    Astor, Donniel E; Hoelzler, Michael G; Harman, Robert; Bastian, Richard P

    2013-07-01

    The objective of this study was to determine whether patient factors influence the concentration of the stromal vascular fraction (SVF) in fat for adipose-derived stromal cell (ASC) therapy in dogs. A total of 1265 dogs underwent adipose collection surgeries by veterinarians for processing by the Vet-Stem laboratory and data on cell counts and patient factors were collected. Body condition score (BCS) and breed size did not significantly affect the viable cells per gram (VCPG) of adipose tissue that represents the viable SVF. Age significantly affected the VCPG, with dogs in age quartile 1 having a significantly higher VCPG than those in quartile 2 (P = 0.003) and quartile 4 (P = 0.002). Adipose tissue collected at the falciform location had significantly fewer VCPG than tissue collected at the thoracic wall and inguinal locations (P < 0.001). When the interaction of gender and location was evaluated, there were significantly fewer VCPG in tissue collected at the falciform location than at the thoracic wall and inguinal locations in female spayed dogs (P < 0.001) and male neutered dogs (P < 0.001), but not in female intact dogs (P = 0.743) or male intact dogs (P = 0.208). It was concluded that specific patient factors should be taken into consideration in order to obtain the maximal yield of VCPG from an adipose collection procedure.

  3. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.

    PubMed

    Guo, Shuang; Qiu, Bai-Ling; Zhu, Chen-Qi; Yang, Ya-Ya Gao; Wu, Di; Liang, Qi-Hui; Han, Nan-Yin

    2016-09-15

    Gravitational field-flow fractionation (GrFFF) is a useful technique for separation and characterization for micrometer-sized particles. Elution behavior of micrometer-sized particles in GrFFF was researched in this study. Particles in GrFFF channel are subject to hydrodynamic lift forces (HLF), fluid inertial forces and gravity, which drive them to different velocities by carrier flow, resulting in a size-based separation. Effects of ionic strength, flow rate and viscosity as well as methanol were investigated using polystyrene latex beads as model particles. This study is devoted to experimental verification of the effect of every factor and their comprehensive function. All experiments were performed to show isolated influence of every variable factor. The orthogonal design test was used to evaluate various factors comprehensively. Results suggested that retention ratio of particles increases with increasing flow rate or the viscosity of carrier liquid by adjusting external forces acting on particles. In addition, retention ratio increases as ionic strength decreases because of decreased electrostatic repulsion between particles and channel accumulation wall. As far as methanol, there is no general trend due to the change of both density and viscosity. On the basis of orthogonal design test it was found that viscosity of carrier liquid plays a significant role in determining resolution of micrometer-sized particles in GrFFF.

  4. Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in hissing cockroaches Gromphadorhina portentosa.

    PubMed

    McCue, Marshall D

    2008-01-01

    Since DeNiro and Epstein's discovery that the (13)C and (15)N isotopic signatures of animals approximate those of their respective diets, the measurement of stable isotope signatures has become an important tool for ecologists studying the diets of wild animals. This study used Madagascar hissing cockroaches (Gromphadorhina portentosa) to examine several preexisting hypotheses about the relationship between the isotopic composition of an animal and its diet. Contrary to my predictions, the results revealed that the tissues of adult cockroaches raised for two generations on a diet of known isotopic composition did not demonstrate enrichment of heavy stable isotopes. Moreover, the (15)N signatures of cockroaches were neither influenced by periods of rapid growth (i.e., 300-fold increase in dry body mass over 120 d) nor by imposed periods of starvation lasting up to 80 d. The offspring born to mothers raised on known diets were enriched in (15)N. Diet-switching experiments showed that turnover times of (13)C were highly correlated with age and ranged from 9 to 10 d to 60 to 75 d in subadults and adults, respectively. Adults subjected to diet switches differed from the subadults in that the adults achieved equilibrated isotopic signatures that were shifted approximately 1.0 per thousand toward their respective original diets. Lipid fractions of adult cockroaches averaged 2.9 per thousand more depleted in (13)C than in lipid-free fractions, but no changes in (13)C were observed in aging adults. Exposure to reduced ambient temperature from 33 degrees C to 23 degrees C over 120 d did not influence isotopic signatures of tissues. Overall, the results of this study reveal that different endogenous and exogenous factors can influence the isotopic signatures of cockroaches. These findings reinforce the need to conduct controlled studies to further examine environmental factors that influence the relationships between the isotopic signatures of animals and their diets.

  5. Direct measurement of the boron isotope fractionation factor: Reducing the uncertainty in reconstructing ocean paleo-pH

    NASA Astrophysics Data System (ADS)

    Nir, Oded; Vengosh, Avner; Harkness, Jennifer S.; Dwyer, Gary S.; Lahav, Ori

    2015-03-01

    The boron isotopic composition of calcium carbonate skeletons is a promising proxy method for reconstructing paleo-ocean pH and atmospheric CO2 from the geological record. Although the boron isotope methodology has been used extensively over the past two decades to determine ancient ocean-pH, the actual value of the boron isotope fractionation factor (εB) between the two main dissolved boron species, 11B(OH)3 and 10B(OH)-4, has remained uncertain. Initially, εB values were theoretically computed from vibrational frequencies of boron species, resulting in a value of ∼ 19 ‰. Later, spectrophotometric pH measurements on artificial seawater suggested a higher value of ∼ 27 ‰. A few independent theoretical models also pointed to a higher εB value. Here we provide, for the first time, an independent empirical fractionation factor (εB = 26.0 ± 1.0 ‰ ; 25 °C), determined by direct measurements of B(OH)3 in seawater and other solutions. Boric acid was isolated by preferential passage through a reverse osmosis membrane under controlled pH conditions. We further demonstrate that applying the Pitzer ion-interaction approach, combined with ion-pairing calculations, results in a more accurate determination of species distribution in aquatic solutions of different chemical composition, relative to the traditional two-species boron-system approach. We show that using the revised approach reduces both the error in simulating ancient atmospheric CO2 (by up to 21%) and the overall uncertainty of applying boron isotopes for paleo-pH reconstruction. Combined, this revised methodology lays the foundation for a more accurate determination of ocean paleo-pH through time.

  6. Attached, unattached fraction of progeny concentrations and equilibrium factor for dose assessments from (222)Rn and (220)Rn.

    PubMed

    Singh, Parminder; Saini, Komal; Mishra, Rosaline; Sahoo, Bijay Kumar; Bajwa, Bikramjit Singh

    2016-08-01

    In this study, measurements of indoor radon ((222)Rn), thoron ((220)Rn) and their equilibrium equivalent concentration (EEC) were carried out in 96 dwellings from 22 different villages situated in Hamirpur district, Himachal Pradesh, India, by using LR-115 type II-based pinhole twin cup dosimeters and deposition-based progeny sensors (DRPS/DTPS). The annual average indoor (222)Rn and (220)Rn concentrations observed in these dwellings were 63.82 and 89.59 Bq/m(3), respectively, while the average EEC (attached + unattached) for (222)Rn and (220)Rn was 29.28 and 2.74 Bq/m(3). For (222)Rn (f Rn) and (220)Rn (f Tn), the average values of unattached fraction were 0.11 and 0.09, respectively. The equilibrium factors for radon (F Rn) and thoron (F Tn) varied from 0.12 to 0.77 with an average of 0.50, and from 0.01 to 0.34 with an average of 0.05, respectively. The annual inhalation dose due to mouth and nasal breathing was calculated using dose conversion factors and unattached fractions. The indoor annual effective doses for (222)Rn (AEDR) and (220)Rn (AEDT) were found to be 1.92 and 0.83 mSv a(-1), respectively. The values of (222)Rn/(220)Rn concentrations and annual effective doses obtained in the present study are within the safe limits as recommended by the International Commission on Radiological Protection for indoor dwelling exposure conditions.

  7. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: Insight from a climate transect study

    NASA Astrophysics Data System (ADS)

    Tuthorn, Mario; Zech, Michael; Ruppenthal, Marc; Oelmann, Yvonne; Kahmen, Ansgar; Valle, Héctor Francisco del; Wilcke, Wolfgang; Glaser, Bruno

    2014-02-01

    control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone. Although oxygen in hemicelluloses derives from water and thus ultimately from precipitation, the hemicellulose biomarkers arabinose, fucose and xylose do not simply reflect δ18Oprec but rather δ18Oleaf water. The correlation between measured δ18Ohemicellulose and modeled δ18Oleaf water is highly significant (r = 0.81, p < 0.001, n = 20). This finding can be attributed to the evaporative 18O enrichment of leaf water during transpiration. Model sensitivity tests using a Péclet-modified Craig-Gordon (PMCG) model corroborate that relative air humidity is a very rigorous climate parameter influencing δ18Oleaf water, whereas temperature is of minor importance. While oxygen exchange and degradation effects on δ18O values of hemicelluloses sugar biomarkers seem to be negligible (Zech et al., 2012), further effects that need to be considered when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the

  8. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Eagle, Robert A.; Thiagarajan, Nivedita; Gagnon, Alexander C.; Bauch, Henning; Halloran, Paul R.; Eiler, John M.

    2010-10-01

    Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C- 18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/ 16O (δ 18O) and 13C/ 12C (δ 13C) ratios are characterized by 13C- 18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.

  9. Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O

    NASA Astrophysics Data System (ADS)

    Cummins, Renata C.; Finnegan, Seth; Fike, David A.; Eiler, John M.; Fischer, Woodward W.

    2014-09-01

    Much of what we know about the history of Earth's climate derives from the chemistry of carbonate minerals in the sedimentary record. The oxygen isotopic compositions (δ18O) of calcitic marine fossils and cements have been widely used as a proxy for past seawater temperatures, but application of this proxy to deep geologic time is complicated by diagenetic alteration and uncertainties in the δ18O of seawater in the past. Carbonate clumped isotope thermometry provides an independent estimate of the temperature of the water from which a calcite phase precipitated, and allows direct calculation of the δ18O of the water. The clumped isotope composition of calcites is also highly sensitive to recrystallization and can help diagnose different modes of diagenetic alteration, enabling evaluation of preservation states and identification of the most pristine materials from within a sample set-critical information for assessing the quality of paleoproxy data generated from carbonates. We measured the clumped isotope composition of a large suite of calcitic fossils (primarily brachiopods and corals), sedimentary grains, and cements from Silurian (ca. 433 Ma) stratigraphic sections on the island of Gotland, Sweden. Substantial variability in clumped isotope temperatures suggests differential preservation with alteration largely tied to rock-buffered diagenesis, complicating the generation of a stratigraphically resolved climate history through these sections. Despite the generally high preservation quality of samples from these sections, micro-scale observations of calcite fabric and trace metal composition using electron backscatter diffraction and electron microprobe analysis suggest that only a subset of relatively pristine samples retain primary clumped isotope signatures. These samples indicate that Silurian tropical oceans were likely warm (33 ± 7 °C) and similar in oxygen isotopic composition to that estimated for a "modern" ice-free world (δ18OVSMOW of -1.1 ± 1

  10. Neglected role of hookah and opium in gastric carcinogenesis: a cohort study on risk factors and attributable fractions.

    PubMed

    Sadjadi, Alireza; Derakhshan, Mohammad H; Yazdanbod, Abbas; Boreiri, Majid; Parsaeian, Mahbubeh; Babaei, Masoud; Alimohammadian, Masoomeh; Samadi, Fatemeh; Etemadi, Arash; Pourfarzi, Farhad; Ahmadi, Emad; Delavari, Alireza; Islami, Farhad; Farzadfar, Farshad; Sotoudeh, Masoud; Nikmanesh, Arash; Alizadeh, Behrooz Z; de Bock, Geertruida H; Malekzadeh, Reza

    2014-01-01

    A recent study showed an association between hookah/opium use and gastric cancer but no study has investigated the relationship with gastric precancerous lesions. We examined the association between hookah/opium and gastric precancerous lesions and subsequent gastric cancer. In a population-based cohort study, 928 randomly selected, healthy, Helicobacter pylori-infected subjects in Ardabil Province, Iran, were followed for 10 years. The association between baseline precancerous lesions and lifestyle risk factors (including hookah/opium) was analyzed using logistic regression and presented as odds ratios (ORs) and 95% confidence intervals (CIs). We also calculated hazard ratios (HRs) and 95% CIs for the associations of lifestyle risk factors and endoscopic and histological parameters with incident gastric cancers using Cox regression models. Additionally, the proportion of cancers attributable to modifiable risk factors was calculated. During 9,096 person-years of follow-up, 36 new cases of gastric cancer were observed (incidence rate: 3.96/1,000 persons-years). Opium consumption was strongly associated with baseline antral (OR: 3.2; 95% CI: 1.2-9.1) and body intestinal metaplasia (OR: 7.3; 95% CI: 2.5-21.5). Opium (HR: 3.2; 95% CI: 1.4-7.7), hookah (HR: 3.4; 95% CI: 1.7-7.1) and cigarette use (HR: 3.2; 95% CI: 1.4-7.5), as well as high salt intake, family history of gastric cancer, gastric ulcer and histological atrophic gastritis and intestinal metaplasia of body were associated with higher risk of gastric cancer. The fraction of cancers attributable jointly to high salt, low fruit intake, smoking (including hookah) and opium was 93% (95% CI: 83-98). Hookah and opium use are risk factors for gastric cancer as well as for precancerous lesions. Hookah, opium, cigarette and high salt intake are important modifiable risk factors in this high-incidence gastric cancer area.

  11. Letter: Observation of the 16O/18O exchange during electrospray ionization.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2015-01-01

    Isotopic exchange approach coupled to high-resolution mass spectrometry has become the power analytical approach for a wide range of analytical and bioanalyticall applications. Considerable efforts have been dedicated to developing fast exchange techniques directly in the ionization source. But all such methods are limited to the hydrogen/deuterium exchange approaches. In this paper we demonstrate that certain types of oxygen atoms can also be exchanged for (18)O on the time scale of the ionization process. Using HIO(3) and NaIO(4) and by infusing the heavy water H(2)(18)O in the ESI source we have demonstrated that it is possible to obtain a high level of oxygen exchange. It was observed that the rate of this exchange depends to a large extent on the temperature of the desolvating capillary of the mass spectrometer. Several other species, such as peptides, oligonucleotides and low weight organic molecules, were subjected to in-ESI (16)O/(18)O exchange but the exchange was not observed.

  12. Reducing uncertainty in the climatic interpretations of speleothem δ18O

    NASA Astrophysics Data System (ADS)

    Jex, C. N.; Phipps, S. J.; Baker, A.; Bradley, C.

    2013-05-01

    We explore two principal areas of uncertainty associated with paleoclimate reconstructions from speleothem δ18O (δ18Ospel): potential non-stationarity in relationships between local climate and larger-scale atmospheric circulation, and routing of water through the karst aquifer. Using a δ18Ospel record from Turkey, the CSIRO Mk3L climate system model and the KarstFOR karst hydrology model, we confirm the stationarity of relationships between cool season precipitation and regional circulation dynamics associated with the North Sea-Caspian pattern since 1 ka. Stalagmite δ18O is predicted for the last 500 years, using precipitation and temperature output from the CSIRO Mk3L model and synthetic δ18O of precipitation as inputs for the KarstFOR model. Interannual variability in the δ18Ospel record is captured by KarstFOR, but we cannot reproduce the isotopically lighter conditions of the sixteenth to seventeenth centuries. We argue that forward models of paleoclimate proxies (such as KarstFOR) embedded within isotope-enabled general circulation models are now required.

  13. NanoSIMS50 analyses of Ar/18O2 plasma-treated Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Clément, F.; Lecoq, E.; Duday, D.; Belmonte, T.; Audinot, J.-N.; Lentzen, E.; Penny, C.; Cauchie, H.-M.; Choquet, P.

    2011-11-01

    Reactive oxygen species (ROS) can be produced by electrical discharges and can be transported in uncharged regions by gas flows, in the so-called afterglows. These species are well known to have bactericidal effects but interaction mechanisms that occur with living micro-organisms remain misunderstood. In order to better understand these interactions, new analysis approaches are necessary. High-lateral-resolution secondary ion mass spectrometry (NanoSIMS) is one of the most promising ways of retrieving additional information on bacteria plasma inactivation mechanisms by combining isotopic imaging of plasma-treated bacteria and the use of 18O2 as process gas. Indeed, this technology combines a lateral resolution of a few tens of nanometres that is sufficient to image the interior of bacteria, and a high mass resolution allowing detection of isotopes present in low quantities (a few ppm or lower) within the bacteria. The present paper deals with Ar-18O2 (2%) plasma treatment, through low-pressure microwave late afterglows, of Escherichia coli bacteria and their elemental and isotopic imaging by NanoSIMS. E. coli bacteria have been exposed to this reactive medium for varying treatment duration while keeping all other parameters unchanged. Our main goal is to determine whether the quantity of 18O fixed in treated bacteria and the NanoSIMS50 lateral resolution are sufficient to give additional information on E. coli bacteria-plasma interaction.

  14. Terahertz spectroscopy of N18O and isotopic invariant fit of several nitric oxide isotopologs

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Kobayashi, Kaori; Takahashi, Kazumasa; Tomaru, Kazuko; Matsushima, Fusakazu

    2015-04-01

    A tunable far-infrared laser sideband spectrometer was used to investigate a nitric oxide sample enriched in 18O between 0.99 and 4.75 THz. Regular, electric dipole transitions were recorded between 0.99 and 2.52 THz, while magnetic dipole transitions between the 2Π1/2 and 2Π3/2 spin-ladders were recorded between 3.71 and 4.75 THz. These data were combined with lower frequency data of N18 O (unlabeled atoms refer to 14 N and 16 O, respectively), with rotational data of NO, 15 NO, N17 O, and 15 N18 O, and with heterodyne infrared data of NO to be subjected to one isotopic invariant fit. Rotational, fine and hyperfine structure parameters were determined along with vibrational, rotational, and Born-Oppenheimer breakdown corrections. The resulting spectroscopic parameters permit prediction of rotational spectra suitable for the identification of various nitric oxide isotopologs especially in the interstellar medium by means of rotational spectroscopy.

  15. Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry

    NASA Astrophysics Data System (ADS)

    Thirumalai, Kaustubh; Quinn, Terrence M.; Marino, Gianluca

    2016-10-01

    Paired measurements of magnesium-to-calcium ratios (Mg/Ca) and the stable oxygen isotopic composition (δ18O) in foraminifera have significantly advanced our knowledge of the climate system by providing information on past temperature and seawater δ18O (δ18Osw, a proxy for salinity and ice volume). However, multiple sources of uncertainty exist in transferring these downcore geochemical data into quantitative paleoclimate reconstructions. Here we develop a computational toolkit entitled Paleo-Seawater Uncertainty Solver (PSU Solver) that performs bootstrap Monte Carlo simulations to constrain these various sources of uncertainty. PSU Solver calculates temperature and δ18Osw, and their respective confidence intervals using an iterative approach with user-defined errors, calibrations, and sea-level curves. Our probabilistic approach yields reduced uncertainty constraints compared to theoretical considerations and commonly used propagation exercises. We demonstrate the applicability of PSU Solver for published records covering three timescales: the late Holocene, the last deglaciation, and the last glacial period. We show that the influence of salinity on Mg/Ca can considerably alter the structure and amplitude of change in the resulting reconstruction and can impact the interpretation of paleoceanographic time series. We also highlight the sensitivity of the records to various inputs of sea-level curves, transfer functions, and uncertainty constraints. PSU Solver offers an expeditious yet rigorous approach to test the robustness of past climate variability inferred from paired Mg/Ca-δ18O measurements.

  16. Elemental and isotopic ( 29Si and 18O) tracing of glass alteration mechanisms

    NASA Astrophysics Data System (ADS)

    Valle, Nathalie; Verney-Carron, Aurélie; Sterpenich, Jérôme; Libourel, Guy; Deloule, Etienne; Jollivet, Patrick

    2010-06-01

    To better understand glass alteration mechanisms, especially alteration layers formation, leaching experiments of a borosilicate glass (SON68) doped with a different rare earth element (La, Ce, or Nd) with solutions rich in 29Si and 18O were carried out. The coupled analyses of glass, alteration products, and solution led to a complete elemental and isotopic ( 29Si and 18O) budget. They revealed different behaviours of elements that depend not only on their structural role in the glass, but also on their affinity for alteration products (gel, phyllosilicates, phosphates). However, analyses of both glass and solution are not sufficient to describe the real exchanges occurring between glass and solution. The use of 29Si and 18O tracers gives new insights on the formation of alteration layers. During alteration the phyllosilicates records the isotopic variations of the leaching solution. Their isotopic signatures highlight a mechanism of dissolution/precipitation, which implies equilibrium between the secondary phases and the solution. On the other hand the gel isotopic signature, that is intermediate between the glass and the solution, substantiates the hypothesis that the gel is formed by hydrolysis/condensation reactions. This mechanism can thus explain the influence of the gel formation conditions (alteration conditions, solution saturation) on the structure (reorganisation) and texture (porosity) of this layer and on its protective effect. These hydrolysis/condensation reactions are also certainly involved in the aluminosilicate glass alteration and in the formation of palagonite.

  17. Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China

    NASA Astrophysics Data System (ADS)

    Pu, Junbing; Wang, Aoyu; Shen, Licheng; Yin, Jianjun; Yuan, Daoxian; Zhao, Heping

    2016-04-01

    A prerequisite for using cave speleothems to reconstruct palaeoenvironmental conditions is an accurate understanding of specific factors controlling calcite growth, in particular the isotopic partitioning of oxygen (δ18O) and carbon (δ13C) which are the most commonly used proxies. An in situ monitoring study from April 2008 to September 2009 at Xueyu Cave, Chongqing, SW China, provides insight into the controls on calcite growth rates, drip water composition, cave air parameters and δ18O and δ13C isotopic values of modern calcite precipitation. Both cave air PCO2 and drip water hydrochemical characteristics show obvious seasonality driven by seasonal changes in the external environment. Calcite growth rates also display clear intra-annual variation, with the lowest values occurring during wet season and peak values during the dry season. Seasonal variations of calcite growth rate are primarily controlled by variations of cave air PCO2 and drip water rate. Seasonal δ18O-VPDB and δ13C-VPDB in modern calcite precipitates vary, with more negative values in the wet season than in the dry season. Strong positive correlation of δ18O-VPDB vs. δ13C-VPDB is due to simultaneous enrichment of both isotopes in the calcite. This correlation indicates that kinetic fractionation occurs between parent drip water and depositing calcite, likely caused by the variations of cave air PCO2 and drip rate influenced by seasonal cave ventilation. Kinetic fractionation amplifies the equilibrium fractionation value of calcite δ18O (by ∼1.5‰) and δ13C (by ∼1.7‰), which quantitatively reflects surface conditions during the cave ventilation season. These results indicate that the cave monitoring of growth rate and δ18O and δ13C of modern calcite precipitation are necessary in order to use a speleothem to reconstruct palaeoenvironment.

  18. Leaf water (18) O and (2) H enrichment along vertical canopy profiles in a broadleaved and a conifer forest tree.

    PubMed

    Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar

    2017-01-01

    Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ(2) H and δ(18) O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration.

  19. Factors affecting recall rate and false positive fraction in breast cancer screening with breast tomosynthesis - A statistical approach.

    PubMed

    Rosso, Aldana; Lång, Kristina; Petersson, Ingemar F; Zackrisson, Sophia

    2015-10-01

    In this study, we investigate which factors affect the false positive fraction (FPF) for digital breast tomosynthesis (DBT) compared to digital mammography (DM) in a screening population by using classification and regression trees (C&RT) and binary marginal generalized linear models. The data was obtained from the Malmö Breast Tomosynthesis Screening Trial, which aimed to compare the performance of DBT to DM in breast cancer screening. By using data from the first half of the study population (7500 women), a tree with the recall probability for different groups was calculated. The effect of age and breast density on the FPF was estimated using a binary marginal generalized linear model. Our results show that breast density and breast cancer were the main factors influencing recall. The FPF is mainly affected by breast density and increases with breast density for DBT and DM. In conclusion, the results obtained with C&RT are easy to interpret and similar to those obtained using binary marginal generalized linear models. The FPF is approximately 40% higher for DBT compared to DM for all breast density categories.

  20. An intuitive approach to understanding the attributable fraction of disease due to a risk factor: the case of smoking.

    PubMed

    Rosen, Laura

    2013-07-16

    The health damage from tobacco use has been studied intensively, yet quantifying the precise burden of disease and death due to smoking is a complex problem, and consequently open to manipulation by interested parties. The goals of this paper are to clearly communicate the concept of the attributable fraction (AF), i.e., the proportion of disease in a population which can be attributed to a risk factor, and to understand the relationship between the AF, the prevalence of exposure in a population, and the relative risk of disease given the exposure. The current approach to calculating the AF is summarized. An intuitive formula is proposed, with accompanying graphical illumination. For diseases caused by smoking, the AF of disease due to smoking increases with the prevalence of smoking and with the relative risk of disease due to smoking. The proposed method has the potential to help health professionals and decision makers understand the concept of the burden of disease due to smoking or other lifestyle, environmental, and occupational factors, in the context of public health importance. This will aid sound decision-making in public health policy.

  1. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    SciTech Connect

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  2. Unwinding protein specific for mRNA translation fractionated together with rabbit reticulocyte initiation factor 3 complex

    PubMed Central

    Ilan, Joseph; Ilan, Judith

    1977-01-01

    Experiments with a rabbit reticulocyte cell-free system dependent on the addition of initiation factor 3 (eIF-3) and mRNA were carried out. In this system, using ribosomal subunits, AUG(U)n can direct polyphenylalanine synthesis in the absence of eIF-3 at 3 mM MgCl2. Globin mRNA was not translated under similar conditions; its translation requires the addition of eIF-3. Moreover, the maximal rate of globin synthesis was achieved when the molar ratio of eIF-3 to ribosomes was approximately 1. This was taken to indicate that some ribosomal proteins were fractionated with eIF-3 and functioned in reconstitution of salt-washed ribosomes. In our system, almost all ribosomes were active, as evident from the fact that all were found in polysomes when analyzed at the time of linear incorporation, and the molar ratio of ribosomes to mRNA was maintained at 4:1. When AUG(U)n was hybridized with poly(A), it could not direct polyphenylalanine synthesis with or without eIF-3 and was a potent inhibitor of the translation of globin mRNA in the presence of eIF-3. When poly(A) containing 10% U was hybridized with AUG(U)n and added to the cell-free system, addition of eIF-3 promoted polyphenylalanine synthesis to about 80% of control. Moreover, eIF-3 was seen to shift significantly the melting temperature of globin and synthetic double-stranded RNA. These observations suggest that extraction of ribosomes with 0.5 M KCl may release a ribosomal protein that fractionates with eIF-3. This protein may function in unwinding or melting the secondary structure of mRNA and thus facilitate translation. PMID:267926

  3. Temperature dependence of oxygen isotope acid fractionation for modern and fossil tooth enamels.

    PubMed

    Passey, Benjamin H; Cerling, Thure E; Levin, Naomi E

    2007-01-01

    The oxygen isotope ratio of CO(2) liberated from structural carbonate in tooth enamel apatite was measured at phosphoric acid reaction temperatures of 25 degrees C, 60 degrees C and 90 degrees C, and it was found that apparent acid fractionation factors for pristine enamel, fossilized enamel, and calcite follow different temperature relationships. Using sealed vessel reactions normalized to alpha(25) = 1.01025 (the fractionation factor for calcite at 25 degrees C), the apparent fractionation factor at 90 degrees C (alpha*(90)) for pristine enamel ranged between 1.00771 and 1.00820, and between 1.00695 and 1.00772 for fossilized enamel. Apparent fractionation factors for common acid bath reactions are similar to those for sealed vessel reactions. A significant correlation exists between alpha*(90) and F(-) content, suggesting that change in the acid fractionation factor may be related to the replacement of OH(-) with F(-) during fossilization of bioapatite. These results have important implications for making accurate comparisons between modern and fossil tooth enamel delta(18)O values, and for the uniformity of isotope data produced in different laboratories using different acid reaction temperatures.

  4. Isotopologue fractionation during N(2)O production by fungal denitrification.

    PubMed

    Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H

    2008-12-01

    Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for

  5. Method for selective recovery of PET-usable quantities of [.sup.18 F] fluoride and [.sup.13 N] nitrate/nitrite from a single irradiation of low-enriched [.sup.18 O] water

    DOEpatents

    Ferrieri, Richard A.; Schlyer, David J.; Shea, Colleen

    1995-06-13

    A process for simultaneously producing PET-usable quantities of [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- for radiotracer synthesis is disclosed. The process includes producing [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [.sup.18 F]F.sup.- simultaneously by exposing a low-enriched (20%-30%) [.sup.18 O]H.sub.2 O target to proton irradiation, sequentially isolating the [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [.sup.18 F]F.sup.- from the [.sup.18 O]H.sub.2 O target, and reducing the [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- to [.sup.13 N]NH.sub.3. The [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- products are then conveyed to a laboratory for radiotracer applications. The process employs an anion exchange resin for isolation of the isotopes from the [.sup.18 O]H.sub.2 O, and sequential elution of [.sup.13 N]NO.sub.2.sup.- /NO.sub.3.sup.- and [ .sup.18 F]F.sup.- fractions. Also the apparatus is disclosed for simultaneously producing PET-usable quantities of [.sup.13 N]NH.sub.3 and [.sup.18 F]F.sup.- from a single irradiation of a single low-enriched [.sup.18 O]H.sub.2 O target.

  6. The δ(18) O and δ(2) H of water in the leaf growth-and-differentiation zone of grasses is close to source water in both humid and dry atmospheres.

    PubMed

    Liu, Hai Tao; Schäufele, Rudi; Gong, Xiao Ying; Schnyder, Hans

    2017-04-03

    The oxygen and hydrogen isotope composition of water in the leaf growth-and-differentiation zone, LGDZ, (δ(18) OLGDZ , δ(2) HLGDZ ) of grasses influences the isotopic composition of leaf cellulose (oxygen) and wax (hydrogen) - important for understanding (paleo)environmental and physiological information contained in these biological archives - but is presently unknown. This work determined δ(18) OLGDZ and δ(2) HLGDZ , (18) O- and (2) H-enrichment of LGDZ (∆(18) OLGDZ and ∆(2) HLGDZ ), and the (18) O- and (2) H-enrichment of leaf blade water (∆(18) OLW, ∆(2) HLW ) in two C3 and three C4 grasses grown at high and low vapor pressure deficit (VPD). The proportion of unenriched water (px ) in the LGDZ ranged from 0.9 to 1.0 for (18) O and 1.0 to 1.2 for (2) H. VPD had no effect on the proportion of (18) O- and (2) H-enriched water in the LGDZ, and species effects were small or nonsignificant. Deuterium discrimination caused depletion of (2) H in LGDZ water, increasing (apparent) px -values > 1.0 in some cases. The isotopic composition of water in the LGDZ was close to that of source water, independent of VPD and much less enriched than previously supposed, but similar to reported xylem water in trees. The well-constrained px will be useful in future investigations of oxygen and hydrogen isotopic fractionation during cellulose and wax synthesis, respectively.

  7. Isoscapes of δ18O and δ2H reveal climatic forcings on Alaska and Yukon precipitation

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Lawson, Daniel E.; Stephen, Haroon; Sloat, Alison R.; Patterson, William P.

    2016-08-01

    Spatially extensive Arctic stable isotope data are sparse, inhibiting the climatic understanding required to interpret paleoclimate proxy records. To fill this need, we constrained the climatic and physiographic controls on δ18O and δD values of stream waters across Alaska and the Yukon to derive interpolated isoscape maps. δ18O is strongly correlated to winter temperature parameters and similarity of the surface water line (δ2H = 8.0 × δ18O + 6.4) to the Global Meteoric Water Line suggests stream waters are a proxy for meteoric precipitation. We observe extreme orographic δ18O decreases and a trans-Alaskan continental gradient of -8.3‰ 1000 km-1. Continental gradients are high in coastal zones and low in the interior. Localized δ18O increases indicate inland air mass penetration via topographic lows. Using observed δ18O/temperature gradients, we show that δ18O decreases in a ˜24 ka permafrost ice wedge relative to the late Holocene indicate mean annual and coldest quarter temperature reductions of 8.9 ± 1.7°C and 17.2 ± 3.2°C, respectively.

  8. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    so that the CO2 concentration at the outlet was 400 ppm and varied between 0.6 and 1.5 L min-1. CO2 and H2O concentrations in air were monitored with an IRGA and air was sampled at the outlet with flasks. We found that the effect on Δ47 of the residual CO2 for the C3 species sunflower and ivy was proportional to the effect on δ18O of the residual CO2. The difference in Δ47 between the in- and outgoing CO2 was between -0.07 and 0.49‰ varying with the CO2 concentration in the chloroplasts relative to the bulk air (Cc/Ca). The Cc/Ca depends on conductance and photosynthetic activity, and was different for the two species and was manipulated with the light intensity. For the C4 species maize, a Δ47 value of -0.08±0.02‰ was observed. The slightly negative effect on Δ47may be related to its lower Cc/Ca ratio and possibly a lower carbonic anhydrase activity causing incomplete exchange with leaf water. We will discuss these results in light of the suggested fractionation processes and discuss the implication for the global Δ47 value of atmospheric CO2. References Affek H. P. and Eiler J. M., GCA 70, 1-12 (2006). Affek H. P., Xu X. and Eiler J. M., GCA 71, 5033-5043 (2007). Eiler J. M. and Schauble E., GCA 68, 4767-4777 (2004).

  9. Archean high δ18O Mg-diorite: crustal-derived melt hybridized with enriched mafic accumulated rocks

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Guo, Jing-Hui

    2016-04-01

    The genesis of Mg-diorite or sanukitoids has significances to understand the crustal growth and tectonic style in Archean. The chemical compositions of minerals and rocks, whole-rock Sm-Nd isotope, zircon SIMS U-Pb ages and Hf-O isotopes of Zhulagou (ZLG) Mg-diorite and their mafic enclaves (Yinshan Block, North China Craton) were studied to place constraints on their sources and genesis, and therefore provide information about dynamic processes. The ~2520 Ma ZLG diorites have intermediate SiO2 (59.4-65.5 wt.%), high Mg# (49-52), Cr (90.4-438 ppm), Ni (15.0-95.9 ppm), Sr (436-882 ppm) and Ba (237-1206 ppm) contents with fractionated rare earth elements (REE, LaN/YbN = 9.1-40.5) and depleted high field-strength element (HFSE, e.g. Nb, Ta and Ti). These geochemical signatures are similar to those Archean high-Mg diorites and sanukitoids. However, they are sodic with low K2O/Na2O (0.14-0.49) ratios, exhibiting an affinity with Archean trondhjemite-tonalite-granodiorite (TTG). Abundant coeval amphibole-bearing mafic enclaves (~2525 Ma) are enclosed within the ZLG diorites. They display low SiO2 (46.5-50.3 wt.%) contents but high concentrations of MgO (9.0-14.5 wt.%), Cr (647-1946 ppm) and Ni (197-280 ppm). They are enriched in K2O (0.64-3.43 wt.%) and large ion lithophile element (LILE), depleted in Nb, Ta and Ti. Combined with their concave REE patterns and prominent negative Eu anomaly, we suggest that they are cumulates of the melt which probably derived from subduction-related Archean metasomatized mantle source. Mineral trace element modelling results, similar ɛNd(t) (+0.6 to +2.3) and δ18O(Zrc) values (~8.6-9.0 ‰) of the diorites and mafic enclaves, strongly reflect that they had experienced intense interaction and hybridization. Evolved whole-rock Nd isotopes (TDM = 2.80-2.70 Ga), variable zircon ɛHf (t) (-1.6 to +6.0) and high δ18O (~9.0 ‰) values of the diorites indicate that they most likely originated from melting of an older continental crust (≥ 2

  10. East China Sea δ18O Record Detects Millennial-Scale Changes in the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Gleeman, E.; Clemens, S. C.; Lawman, A. E.; Kubota, Y.; Holbourn, A. E.; Martin, A.

    2015-12-01

    The East Asian Summer Monsoon (EASM) brings heavy summer rainfall to some of Asia's most densely-populated areas, impacting agricultural production and water resources. Sediment cores were recovered from International Ocean Drilling Program Site U1429 in the East China Sea (31° 37.04' N, 128° 59.50' E, 732 mbsl). This location receives runoff from the Yangtze River, which serves as a major drainage system for monsoon-induced precipitation. Hence, the δ18O record of planktonic foraminifera at Site U1429 reflects changes in regional, monsoon-driven salinity. The top 100 meters of core at Site U1429 were sampled at a preliminary resolution of 15 cm and processed to isolate the planktonic foraminifer Globigerinoides ruber for δ18O mass spectrometry analyses. Abrupt, millennial-scale regional climate variability in the EASM and its linkage to orbital forcings have been reconstructed using stratigraphic analysis of δ18O. The sub-orbital scale structure of the δ18O record over the past 400 kyr matches the structures of both the composite speleothem δ18O from eastern China (Sanbao and Hulu caves) and the planktonic δ18O record from northern South China Sea Site 1146. The similarities between these δ18O records indicate a strong regional response to monsoon forcing. Removal of the temperature component of the δ18O signal by using Mg/Ca (G. ruber) paleothermometry will provide a record of changes in the δ18O composition of seawater in response to Yangtze River runoff.

  11. Tempered fractional calculus

    SciTech Connect

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  12. Ca isotope stratigraphy across the Cenomanian-Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor

    NASA Astrophysics Data System (ADS)

    Du Vivier, Alice D. C.; Jacobson, Andrew D.; Lehn, Gregory O.; Selby, David; Hurtgen, Matthew T.; Sageman, Bradley B.

    2015-04-01

    The Ca isotope composition of marine carbonate rocks offers potential to reconstruct drivers of environmental change in the geologic past. This study reports new, high-precision Ca isotope records (δ44/40Ca; 2σSD = ± 0.04 ‰) for three sections spanning a major perturbation to the Cretaceous ocean-climate system known as Ocean Anoxic Event 2 (OAE 2): central Colorado, USA (Portland #1 core), southeastern France (Pont d'Issole), and Hokkaido, Japan (Oyubari, Yezo Group). In addition, we generated new data for selected samples from Eastbourne, England (English Chalk), where a previous Ca isotope study was completed using different methodology (Blättler et al., 2011). Strata of the Yezo Group contain little carbonate (∼1 wt.% on average) and accordingly did not yield a clear δ44/40Ca signal. The Portland core and the Pont d'Issole section display comparable δ44/40Ca values, which increase by ∼ 0.10- 0.15 ‰ at the onset of OAE 2 and then decrease to near-initial values across the event. The Eastbourne δ44/40Ca values are higher than previously reported. They are also higher than the δ44/40Ca values for the Portland core and the Pont d'Issole section but define a similar pattern. According to a numerical model of the marine Ca cycle, elevated hydrothermal inputs have little impact on seawater δ44/40Ca values. Elevated riverine (chemical weathering) inputs produce a transient negative isotope excursion, which significantly differs from the positive isotope excursions observed in the Portland, Pont d'Issole, and Eastbourne records. A decrease in the magnitude of the carbonate fractionation factor provides the best explanation for a positive shift in δ44/40Ca values, especially given the rapid nature of the excursion. Because a decrease in the fractionation factor corresponds to an increase in the Ca/CO3 ratio of seawater, we tentatively attribute the positive Ca isotope excursion to transient ocean acidification, i.e., a reduction in the concentration of

  13. Quantitative Proteomic Approach for MicroRNA Target Prediction Based on 18O/16O Labeling

    PubMed Central

    Ma, Xuepo; Zhu, Ying; Huang, Yufei; Tegeler, Tony; Gao, Shou-Jiang; Zhang, Jianqiu

    2015-01-01

    MOTIVATION Among many large-scale proteomic quantification methods, 18O/16O labeling requires neither specific amino acid in peptides nor label incorporation through several cell cycles, as in metabolic labeling; it does not cause significant elution time shifts between heavy- and light-labeled peptides, and its dynamic range of quantification is larger than that of tandem mass spectrometry-based quantification methods. These properties offer 18O/16O labeling the maximum flexibility in application. However, 18O/16O labeling introduces large quantification variations due to varying labeling efficiency. There lacks a processing pipeline that warrants the reliable identification of differentially expressed proteins (DEPs). This motivates us to develop a quantitative proteomic approach based on 18O/16O labeling and apply it on Kaposi sarcoma-associated herpesvirus (KSHV) microRNA (miR) target prediction. KSHV is a human pathogenic γ-herpesvirus strongly associated with the development of B-cell proliferative disorders, including primary effusion lymphoma. Recent studies suggest that miRs have evolved a highly complex network of interactions with the cellular and viral transcriptomes, and relatively few KSHV miR targets have been characterized at the functional level. While the new miR target prediction method, photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP), allows the identification of thousands of miR targets, the link between miRs and their targets still cannot be determined. We propose to apply the developed proteomic approach to establish such links. METHOD We integrate several 18O/16O data processing algorithms that we published recently and identify the messenger RNAs of downregulated proteins as potential targets in KSHV miR-transfected human embryonic kidney 293T cells. Various statistical tests are employed for picking DEPs, and we select the best test by examining the enrichment of PAR-CLIP-reported targets with

  14. Seasonal 18O variations and groundwater recharge for three landscape types in central Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    O'Driscoll, M. A.; DeWalle, D. R.; McGuire, K. J.; Gburek, W. J.

    2005-03-01

    Seasonal 18O variations in precipitation, soil water, snowmelt, spring flow and stream baseflow were analyzed to characterize seasonal dynamics of groundwater recharge in three central Pennsylvania catchments. The catchments represented three common landscape types: Valley and Ridge-shale (Mahantango Creek), Valley and Ridge-carbonate (Buffalo Run), and Appalachian Plateau-sandstone (Benner Run). Samples were collected on a biweekly basis from May 18, 1999 to May 9, 2000. Precipitation, soil water, and baseflow isotopic composition data indicated that a seasonal recharge bias existed for these catchments, most recharge occurred in the fall, winter, and spring months. An altitude effect of -0.16 to -0.32‰/100 m change in elevation was discernible in precipitation, soil water, and stream baseflow isotopic compositions. Soils effectively damped seasonal variations of recharge 18O composition after depths of 1.62-2.85 m. The greatest damping of the annual isotopic composition signal occurred in the shallow soil layers (0-15 cm). In these and similar landscapes with thick soils the annual isotopic composition signal may be completely damped prior to reaching the stream as baseflow. Isotopic variations measured in stream baseflow are more likely to be caused by the shallow flowpath water relatively close to the streams. Baseflow stable isotope variations found on the basins studied suggested that residence times for subsurface waters to reach channels were much longer than the annual seasonal cycle of 18O in precipitation. Damping depths were similar for the three different catchments but it is not certain how spatially variable damping depths were within each catchment. This information would be useful in determining areas within catchments that contribute to short term isotopic composition fluctuations within streams ('new water'). Predictive models that determine isotopic damping depth from meteorological, soil and vegetation/land-use data can help develop a better

  15. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    NASA Astrophysics Data System (ADS)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  16. Reconstructing climate processes driving variability in precipitation sources from mid to late Holocene speleothem δ18O records from the Southwest US

    NASA Astrophysics Data System (ADS)

    Wong, C. I.; Nusbaumer, J. M.; Banner, J.

    2015-12-01

    Independent co-variation of speleothem δ18O values and other moisture-sensitive speleothem proxies (e.g., growth rate, trace element concentrations) in recently published Holocene stalagmite records from Texas and New Mexico suggest a decoupling between precipitation amounts and precipitation sources over the southwest US. There is, however, limited understanding of the relation between precipitation sources and precipitation amounts and the climate processes governing variability in the region's precipitation sources. To address this, we use source water tags to track precipitation derived from Pacific and Atlantic Oceans during a simulation of modern (1975-2013) climate. We find distinct patterns in the spatial distribution of the fraction of Pacific-derived winter precipitation are associated with unique atmospheric states. High pressure ridging reflected by 500 hPa geopotential heights result in weaker zonal winds and stronger northerly winds over the western US. Under these conditions, Pacific-derived moisture propagates further to the east, and Atlantic-derived moisture is suppressed over southern US. Conversely, 500 hPa geopotential heights that are latitudinally streamline result in strong zonal winds across the entire US. Under these conditions, the fraction of West Pacific-derived precipitation is limited to higher latitudes, and the fraction of far East Pacific- and Atlantic-derived precipitation is enhanced across the Southwest and Southern US, respectively. Further analysis of this data set will assess the teleconnections that link the distinct atmospheric conditions over the US with the state of the ocean and atmosphere over the Pacific and Atlantic Oceans. The results will be applied to reconstructing variability in the climate dynamics governing moisture transport to the southwest US during the mid to late Holocene as reflected by speleothem δ18O records in the region.

  17. Tertiary delta 18O record and glacio-eustatic sea-level fluctuations.

    USGS Publications Warehouse

    Matthews, R.K.; Poore, R.Z.

    1980-01-01

    Previous interpretation of the Tertiary delta 18O record of planktic and benthic foraminifers has emphasized comparison to the modern ocean, assumed an ice-free world prior to middle Miocene time, and thereby calculated surprisingly cool temperatures for the tropical sea surface. We propose an alternative interpretation, which compares Tertiary data to average late Pleistocene, assumes constant tropical sea-surface temperature, and thereby estimates global ice volume. This approach suggests that Earth has had a significant ice budget (and therefore glacio-eustatic sea-level fluctuations) at least since Eocene and perhaps even throughout much of Cretaceous time. -Authors

  18. sup 18 O( sup 3 He, p ) sup 20 F reaction

    SciTech Connect

    Chowdhury, M.S.; Zaman, M.A.; Sen Gupta, H.M. )

    1992-12-01

    The {sup 18}O({sup 3}He,{ital p}){sup 20}F reaction has been studied at 18 MeV. Energy levels are measured up to {ital E}{sub {ital x}}{similar to}8.5 MeV and several new levels are observed. Angular distributions are measured for many of the levels and distorted wave Born approximation analyses are carried out. The {ital L} assignments are made and {ital J}{sup {pi}} limits are obtained.

  19. High-frequency observations of δ2H and δ18O in storm rainfall

    NASA Astrophysics Data System (ADS)

    Stoecker, F.; Klaus, J.; Pangle, L. A.; Garland, C.; McDonnell, J. J.

    2012-12-01

    Stable isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O) are indispensable tools for investigation of the hydrologic cycle. Recent technological advances with laser spectroscopy now enable high-frequency measurement of key water cycle components. While the controls on rainfall isotope composition have been known generally for some time, our understanding of the effect of inter- and intra-storm processes on fine scale rainfall isotope composition is poorly understood. Here we present a new approach to observe inter- and intra-storm isotope variability in precipitation in high-frequency. We investigate the temporal development of δ2H and δ18O within and between discrete rainstorm. δ2H and δ18O in precipitation was measured from November 2011 to February 2012 in Corvallis, OR using a flow-cell combined with a Liquid Water Isotope Analyzer (LWIA-24d, Los Gatos Research, Inc.). The average sample frequency was 15 samples per hour, resulting in more than 3100 samples during the observation period. 27 separate rainstorms were identified in the dataset based on minimum inter-event time, minimum precipitation depth, and minimum number of isotope measurements. Event meteoric water lines were developed for each event. We observed short-term isotopic patterns (e.g., V-shaped trends), high-rate changes (5.3‰/h) and large absolute changes in isotopic composition (20‰) on intra-event scale. V-shaped trends appeared to be related to individual storm fronts detected by air temperature, cloud heights (NEXRAD radar echo tops) and cloud trajectories (Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)). Despite this, we could detect no linear correlation between event-based isotopic variables (slope, δ2H-intercept, δ2H, δ18O) and the event meteoric water line. Furthermore, the composite event meteoric water line (i.e. the local meteoric water line) showed a wider spread for heavy isotopes than for light isotopes, caused presumably by different

  20. Source identification of different size fraction of PM10 using factor analysis at residential cum commercial area of Nagpur city.

    PubMed

    Pipalatkar, P P; Gajghate, D G; Khaparde, V V

    2012-02-01

    Particulate size distribution of PM(10) and associated trace metal concentrations has been carried out in residential cum commercial area of Mahal at Nagpur city. Sampling for size fraction of particulate matter was performed during winter season using eight-stage cascade impactor with a pre-separator and toxic metals were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The average concentration of PM(10) and fine particulate matter (effective cut of aerodynamic diameter ≤2.2 μm) was found to be 300 and 136.7 μg/m(3), respectively which was exceeding limit of Central Pollution Control Board. Maximum mass concentration of 41 μg/m(3) in size range of 9.0-10.0 μm and minimum mass concentration of 19 μg/m(3) in size range 2.2-3.3 μm was observed. Metals (Sr, Ni and Zn) were found to large proportions in below 0.7 μm particle size and could therefore pass directly into the alveoli region of human respiratory system. Factor analysis results indicated combustion and vehicular emission as the dominant source in fine mode and resuspended dust was dominant in medium mode while crustal along with vehicular source was major in coarse mode of particulate matter.

  1. Dynamic changes of carbon isotope apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V

    2017-05-01

    To identify predominant metabolic pathway for cellulose methanization new equations that take into account dynamics of 13C are added to the basic model of cellulose methanization. The correct stoichiometry of hydrolysis, acidogenesis, acetogenesis and methanogenesis steps including biomass is considered. Using experimental data by Laukenmann et al. [Identification of methanogenic pathway in anaerobic digesters using stable carbon isotopes. Eng. Life Sci. 2010;10:1-6], who reported about the importance of ace`tate oxidation during mesophilic cellulose methanization, the model confirmed that, at high biomass concentration of acetate oxidizers, the carbon isotope fractionation factor amounts to about 1.085. The same model, suggested firstly for cellulose degradation, was used to describe, secondly, changes in, and in methane and carbon dioxide during mesophylic acetate methanization measured by Grossin-Debattista [Fractionnements isotopiques (13C/12C) engendres par la methanogenese: apports pour la comprehension des processus de biodegradation lors de la digestion anaerobie [doctoral thesis]. 2011. Bordeaux: Universite Bordeaux-1;2011. Available from: http://ori-oai.u-bordeaux1.fr/pdf/2011/GROSSIN-DEBATTISTA_JULIEN_2011.pdf . French].The model showed that under various ammonium concentrations, at dominating acetoclastic methanogenesis, the value decreases over time to a low level (1.016), while at dominating syntrophic acetate oxidation, coupled with hydrogenotrophic methanogenesis, slightly increases, reaching 1.060 at the end of incubation.

  2. Compound- and enzyme-specific phosphodiester hydrolysis mechanisms revealed by δ18O of dissolved inorganic phosphate: Implications for marine P cycling

    NASA Astrophysics Data System (ADS)

    Liang, Yuhong; Blake, Ruth E.

    2009-07-01

    We have studied the oxygen isotope signature of inorganic phosphate (P i) generated by hydrolysis of nucleic acid phosphodiester (P-diester) compounds by cell-free enzymes (Deoxyribonuclease 1, Phosphodiesterase 1, Alkaline phosphatase) and microbial cultures at natural isotopic abundances. We demonstrate that the diesterase-catalyzed hydrolytic step leads to incorporation of at least one water O into released P i for a total of two O atoms from water incorporated into P i released from P-diesters. In the presence of Phosphodiesterase 1, 16O is preferentially incorporated into nucleotides released from DNA; whereas 18O is preferentially incorporated into nucleotides released from RNA. A strong consistency between predicted O-isotope regeneration signatures based on results of cell-free enzyme experiments and measured isotopic signatures from independent experiments with E. coli cultures was observed and confirms proposed models for phosphoester hydrolysis. Results from these studies made at natural 18O abundance levels provide a new tool, enzyme-specific O-isotope fractionation, for investigations of organophosphate metabolism and phosphorus cycling pathways in natural aquatic systems.

  3. Seasonal variations in δ13C and δ18O of atmospheric CO2 measured in the urban boundary layer over Vancouver, Canada in relation to fuel emissions.

    NASA Astrophysics Data System (ADS)

    Lee, J.; Christen, A.; Ketler, R.; Nesic, Z.; Schwendenmann, L.; Semmens, C.

    2014-12-01

    Recent advances in techniques to measure carbon dioxide (CO2) in urban plumes show potential for validating and monitoring emission inventories at regional to urban scale. A major challenge remains the attribution of elevated CO2 in urban plumes to different fuel and biogenic sources. Stable isotopes are a promising source of additional information. Here, we report a full year of measurements of CO2 mixing ratios, δ13C and δ18O in CO2 in the urban boundary layer over Vancouver, Canada. The goal of the work is to link seasonally changing isotopic composition to dominant fuel sources and put the urban enhancement into the context of regional background concentrations. Atmospheric composition in the urban atmosphere was measured continuously using a tunable diode laser absorption system (TGA 200, Campbell Scientific, Logan, UT, USA). In addition, end member signatures were determined by means of bag samples from representative fuel emission sources (gasoline, diesel, natural gas). While δ13C depends on the fuel type and origin (for Vancouver in 2013/14: δ13C gasoline 27.2‰; diesel -28.8‰; natural gas -41.6‰), δ18O is fractionated in catalytic converters (d18O gasoline vehicles -12.5‰; diesel -18.6‰; natural gas -22.7‰) and exhibits higher variability between samples. Additional signatures were determined for human, soil and plant respiration. During the study year, monthly mean mixing ratios in the urban atmosphere ranged between 410.5 (Jul) and 425.7 ppm (Dec), which was on average 18 ppm elevated above the regional background. As expected, mean monthly δ13C was lower in winter than summer with seasonally changing intercepts between -33.6‰ (JJF) and -27.7‰ (MJJ). Making the simple assumption that natural gas and gasoline are the only major fuel sources, natural gas would contribute ~45% to emissions in winter and ~3% in early summer, which is lower than the downscaled Local Emissions Inventory (57% in winter and 20% in summer). Mean δ18O showed

  4. Fractionation of Nitrogen and Oxygen Isotopes During Microbial Nitrate Reduction

    NASA Astrophysics Data System (ADS)

    Lehmann, M. F.; Bernasconi, S. M.; Reichert, P.; Barbieri, A.; McKenzie, J. A.

    2001-12-01

    Lakes represent an important continental sink of fixed nitrogen. Besides the burial of particulate nitrogen, fixed nitrogen is eliminated from lakes by emission of N2 and N2O to the atmosphere during dissimilative nitrate reduction within suboxic and anoxic waters or sediments. The understanding and quantification of this efficient nitrogen removal process in eutrophic lakes is crucial for nitrogen budget modelling and the application and evaluation of lake restoration measures. In order to use natural abundance N and O isotope ratios as tracers for microbial nitrate reduction and to obtain quantitative estimates on its intensity, it is crucial to constrain the associated isotope fractionation. This is the first report of nitrogen and oxygen isotope effects associated with microbial nitrate reduction in lacustrine environments. Nitrate reduction in suboxic and anoxic waters of the southern basin of Lake Lugano (Switzerland) is demonstrated by a progressive nitrate depletion coupled to increasing δ 15N and δ 18O values for residual nitrate. 15N and 18O enrichment factors (ɛ ) were estimated using a closed-system (Rayleigh-distillation) model and a dynamic reaction-diffusion model. Calculated enrichment factors ɛ ranged between -11.2 and -22‰ for 15N and between -6.6 and -11.3‰ for 18O with both nitrogen and oxygen isotope fractionation being greatest during times with the highest nitrate reduction rates. The closed-system model neglects vertical diffusive mixing and does not distinguish between sedimentary and water-column nitrate reduction. Therefore, it tends to underestimate the intrinsic isotope effect of microbial nitrate reduction. Based upon results from earlier studies that indicate that nitrate reduction in sediments displays a highly reduced N-isotope effect (Brandes and Devol, 1997), model-derived enrichment factors could be used to discern the relative importance of nitrate reduction in the water column and in the sediment. Sedimentary nitrate

  5. A Review of Climatic Controls on δ18o in Precipitation over the Tibetan Plateau: Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Yao, T.; Masson-Delmotte, V.; Gao, J.; Risi, C. M.

    2014-12-01

    Located at the convergence of air masses between the westerlies and monsoon, the Tibetan Plateau (TP) undergoes complex water cycle processes, which need to be documented and understood through a combination of variant methodologies. The stable oxygen isotope ratio (δ18O) in precipitation is an integrated tracer of the atmospheric processes and has been used worldwide. Since the 1990s, an intensive effort has been dedicated to studying precipitation isotopic composition at more than 20 stations in the TP. Based on these observations, we establish a database of precipitation δ18O and use different models to evaluate the climatic drivers of present-day precipitation δ18O over the TP. The spatial and temporal patterns of precipitation δ18O and their relationships with temperature and precipitation reveal three distinct domains, respectively associated with the influence of the westerlies (Northern TP), Indian monsoon (Southern TP) and transition in between. The seasonal patterns of precipitation δ18O are diverse in different domains. High-resolution atmospheric models equipped with stable isotopes capture the spatial and temporal patterns of precipitation δ18O and their relationships with moisture transport from the westerlies and Indian monsoon. Only in the westerlies domain are atmospheric models able to represent qualitatively and quantitatively the relationships between climate and precipitation δ18O. More significant temperature effect exists when either the westerlies or Indian monsoon is the sole dominant atmospheric process. The observed and simulated altitude-δ18O relationships strongly depend on the season and the domain (monsoon or westerlies). Our results have crucial implications for the interpretation of the abundant stable isotope information derived from natural climatic archives over the TP such as ice cores, lake sediments or tree rings, and for the application of atmospheric simulations to quantifying paleo-climate and paleo

  6. The potential origins and palaeoenvironmental implications of high temporal resolution δ 18O heterogeneity in coral skeletons

    NASA Astrophysics Data System (ADS)

    Allison, Nicola; Finch, Adrian A.; EIMF

    2010-10-01

    δ 18O was determined at high spatial resolution (beam diameter ˜30 μm) by secondary ion mass spectrometry (SIMS) across 1-2 year sections of 2 modern Porites lobata coral skeletons from Hawaii. We observe large (>2‰) cyclical δ 18O variations that typically cover skeletal distances equivalent to periods of ˜20-30 days. These variations do not reflect seawater temperature or composition and we conclude that skeletal δ 18O is principally controlled by other processes. Calcification site pH in one coral record was estimated from previous SIMS measurements of skeletal δ 11B. We model predicted skeletal δ 18O as a function of calcification site pH, DIC residence time at the site and DIC source (reflecting the inputs of seawater and molecular CO 2 to the site). We assume that oxygen isotopic equilibration proceeds at the rates observed in seawater and that only the aqueous carbonate ion is incorporated into the precipitating aragonite. We reproduce successfully the observed skeletal δ 18O range by assuming that DIC is rapidly utilised at the calcification site (within 1 h) and that ˜80% of the skeletal carbonate is derived from seawater. If carbonic anhydrase catalyses the reversible hydration of CO 2 at the calcification site, then oxygen isotopic equilibration times may be substantially reduced and a larger proportion of the skeletal carbonate could be derived from molecular CO 2. Seasonal skeletal δ 18O variations are most pronounced in the skeleton deposited from late autumn to winter (and coincide with the high density skeletal bands) and are dampened in skeleton deposited from spring to summer. We observed no annual pattern in sea surface temperature or photosynthetically active radiation variability which could potentially correlate with the coral δ 18O. At present we are unable to resolve an environmental cue to drive seasonal patterns of short term skeletal δ 18O heterogeneity.

  7. Biosynthetic experiments with tall plants under field conditions. 18O2 incorporation into humulone from Humulus lupulus.

    PubMed

    Hecht, Stefan; Kammhuber, Klaus; Reiner, Josef; Bacher, Adelbert; Eisenreich, Wolfgang

    2004-04-01

    Five segments of a large hop plant (Humulus lupulus var. Hallertauer Magnum) carrying several cones were enclosed in sealed glass vessels that were gassed with (18)O(2). After 14 days, the segments were harvested and humulone and cohumulone were analysed by NMR spectroscopy and mass spectroscopy. The oxygen atoms in position 6 of humulone and cohumulone showed 9% (18)O enrichment, respectively. It follows that the C-6 hydroxy groups were introduced by oxygenase catalysis.

  8. A δ18O isoscape for the shallow groundwater in the Baltic Artesian Basin

    NASA Astrophysics Data System (ADS)

    Raidla, Valle; Kern, Zoltan; Pärn, Joonas; Babre, Alise; Erg, Katrin; Ivask, Jüri; Kalvāns, Andis; Kohán, Balázs; Lelgus, Mati; Martma, Tõnu; Mokrik, Robert; Popovs, Konrāds; Vaikmäe, Rein

    2016-11-01

    The study presents a shallow groundwater isoscape for the Baltic region, which covers the major part of the Baltic Artesian Basin (BAB). BAB is an important palaeogroundwater reservoir, but prior to this study, little has been known about the spatial variability of δD and δ18O values in modern precipitation input across the region. To overcome this limitation, we hypothesized that the isotopic composition of shallow groundwater in the BAB could be used as a proxy for the mean weighted annual isotopic composition of local precipitation. However, the results of the study reveal many clear discrepancies between the isotopic composition of precipitation and shallow groundwater in the area. The isotopic composition of shallow groundwater is mostly biased towards isotopically depleted wintertime precipitation. We propose that the formation of shallow groundwater in the BAB area could be largely affected by variations in soil structure and land cover. The derived isoscape based on δ18O values of shallow groundwater in the BAB area is characterised by high spatial resolution and can therefore serve as a fairly reliable reference basis for further hydrogeological, ecological and forensic applications.

  9. Contribution of 19F resonances on 18O( p, α)15N reaction rate

    NASA Astrophysics Data System (ADS)

    Benmeslem, Meriem; Chafa, Azzedine; Barhoumi, Slimane; Tribeche, Mouloud

    2014-08-01

    The 18O( p, α)15N reaction influences the isotopes production such as 19F, 18O, and 15N which can be used to test the models of stellar evolution. 19F is synthesized in both asymptotic giant branch (AGB) and metal-rich Wolf-Rayet (WR) stars. Using R-matrix theory we allow new values of resonances parameters in 19F. We show that the most important contribution to the differential and total cross section at low energies, comes from the levels in 19F situated at resonances energies E R =151, 680 and 840 keV with spin and parity 1/2+. The total width of the 680 keV resonance is badly known. So, we have focused on this broad resonance corresponding to the 8.65 MeV level in 19F. We delimit the temperature range in which each resonance contribution to the total reaction rate occurs by analyzing the ratio ( N A < σν> i / N A < σν>). This allowed us to show that the 680 and 840 keV broad resonances strongly dominate the reaction rate over the stellar temperature range T 9=0.02-0.06 and T 9=0.5-5. Finally, these results were compared to NACRE and Iliadis astrophysical compilations.

  10. TEMPERED FRACTIONAL CALCULUS

    PubMed Central

    MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA

    2014-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690

  11. Low 18O-contents in Arctic Neogloboquadrina pachyderma shells: A proxy of brine formation rate?

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, C.; de Vernal, A.

    2006-12-01

    In the Arctic Ocean, the cold water foraminifera Neogloboquadrina pachyderma (Np), left as right coiled, likely forms its shell along the pycnocline between the cold, dilute, surface water and the warmer, saline North Atlantic Water (NAW), due to salinity conditions in the surface water mass below optimum values for the species (~ 35 psu;[1]). However, δ18O-values in Np shell still present negative offsets with isotopic equilibrium conditions for a calcite precipitated at mid-pycnocline depth. This offset ranges from 1 (Arctic seas) to 3 per mil (Canada Basin, East Siberian Sea), although temperature gradients along the pycnocline still result in predictable isotopic shifts from small (juvenile?) to large (mature?) shells [2]. The precise mechanism responsible for the 18O offset is not known, but it seems linked to rate of sea-ice formation or to its seasonal duration (e.g., [3]). The freezing of low 18O-content sea-surface waters rejects isotopically-light brines that sink to the pycnocline. We hypothesize that Np-shell growth occurs in such high- salinity/low-δ18O water droplets or thin layers sinking to the pycnocline. In vitro experiments [4] have indeed shown that formation of new shell-chambers could still occurs in salinities of up to 58 psu, and that some specimens could survive 82 psu for at least a week. Thus, in this hypothesis, isotopic offsets in Np would relate to the rate of brine formation. In the modern Arctic Ocean, mixing of these brines into NAW and export of surface water and sea ice into the North Atlantic would contribute maintaining steady-state conditions, thus resulting in an asymptotic offset value near 2.5/-3 per mil in Np shells. From this viewpoint, the greater offsets in the western Arctic and East Siberian Sea areas (up to 3 per mil), compared with the eastern Arctic Ocean (appr. 1 per mil), would reflect a difference in sea-ice formation rates along the shelves. Such isotopic offsets maintained in the Chukchi Sea during most of

  12. 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall.

    PubMed

    Lekshmy, P R; Midhun, M; Ramesh, R; Jani, R A

    2014-07-11

    Oxygen isotopic variations in rainfall proxies such as tree rings and cave calcites from South and East Asia have been used to reconstruct past monsoon variability, mainly through the amount effect: the observed (18)O depletion of rain with increasing amount, manifested as a negative correlation of the monthly amount of tropical rain with its δ(18)O, both measured at the same station. This relation exhibits a significant spatial variability, and at some sites (especially North-East and peninsular India), the rainfall proxies are not interpretable by this effect. We show here that relatively higher (18)O-depletion in monsoon rain is not related necessarily to its amount, but rather, to large scale organized convection. Presenting δ(18)O analyses of ~654 samples of daily rain collected during summer 2012 across 9 stations in Kerala, southern India, we demonstrate that although the cross correlations between the amounts of rainfall in different stations is insignificant, the δ(18)O values of rain exhibit highly coherent variations (significant at P = 0.05). Significantly more (18)O-depletion in the rain is caused by clouds only during events with a large spatial extent of clouds observable over in the south eastern Arabian Sea.

  13. New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.

    2016-05-01

    We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.

  14. An experimental study on isotope fractionation in a mesoporous silica-water system with implications for vadose-zone hydrology

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Horita, Juske

    2016-07-01

    Soil water dynamics within a thick vadose (unsaturated) zone is a key component in the hydrologic cycle in arid regions. In isotopic studies of soil water, the isotopic composition of adsorbed/pore-condensed water within soils has been assumed to be identical to that of bulk liquid water. To test this critical assumption, we have conducted laboratory experiments on equilibrium isotope fractionation between adsorbed/condensed water in mesoporous silica (average pore diameter 15 nm) and the vapor at relative pressures p/po = 0.3-1.0 along the adsorption-desorption isotherm at 30 °C. The isotope fractionation factors between condensed water in the silica pores and the vapor, α(2H) and α(18O), are smaller than those between liquid and vapor of bulk water (1.074 and 1.0088, respectively, at 30 °C). The α(2H) and α(18O) values progressively decrease from 1.064 and 1.0083 at p/po = 1 to 1.024 and 1.0044 at p/po = 0.27 for hydrogen and oxygen isotopes, respectively, establishing trends very similar to the isotherm curves. Empirical formulas relating α(2H) and α(18O) to the proportions of filled pores (f) are developed. Our experimental results challenge the long-held assumption that the equilibrium isotope fractionation factors for the soil water-vapor are identical to those of liquid water-vapor system with potential implications for arid-zone and global water cycles, including paleoclimate proxies in arid regions.

  15. Plasma proteome response to severe burn injury revealed by 18O-labeled "universal" reference-based quantitative proteomics.

    PubMed

    Qian, Wei-Jun; Petritis, Brianne O; Kaushal, Amit; Finnerty, Celeste C; Jeschke, Marc G; Monroe, Matthew E; Moore, Ronald J; Schepmoes, Athena A; Xiao, Wenzhong; Moldawer, Lyle L; Davis, Ronald W; Tompkins, Ronald G; Herndon, David N; Camp, David G; Smith, Richard D

    2010-09-03

    A burn injury represents one of the most severe forms of human trauma and is responsible for significant mortality worldwide. Here, we present the first quantitative proteomics investigation of the blood plasma proteome response to severe burn injury by comparing the plasma protein concentrations of 10 healthy control subjects with those of 15 severe burn patients at two time-points following the injury. The overall analytical strategy for this work integrated immunoaffinity depletion of the 12 most abundant plasma proteins with cysteinyl-peptide enrichment-based fractionation prior to LC-MS analyses of individual patient samples. Incorporation of an 18O-labeled "universal" reference among the sample sets enabled precise relative quantification across samples. In total, 313 plasma proteins confidently identified with two or more unique peptides were quantified. Following statistical analysis, 110 proteins exhibited significant abundance changes in response to the burn injury. The observed changes in protein concentrations suggest significant inflammatory and hypermetabolic response to the injury, which is supported by the fact that many of the identified proteins are associated with acute phase response signaling, the complement system, and coagulation system pathways. The regulation of approximately 35 proteins observed in this study is in agreement with previous results reported for inflammatory or burn response, but approximately 50 potentially novel proteins previously not known to be associated with burn response or inflammation are also found. Elucidating proteins involved in the response to severe burn injury may reveal novel targets for therapeutic interventions as well as potential predictive biomarkers for patient outcomes such as multiple organ failure.

  16. Isotopic fractionation factor and hydrogenic potential in 2-hydroxy-1,1,1,5,5,5-hexafluoro-2-penten-4-one

    SciTech Connect

    Kreevoy, M.M.; Ridl, B.A.

    1981-04-02

    The title compound (enol-hexafluoroacetylacetone) has an isotopic fractionation factor of 0.6 +- 0.1. This, and much other information about this compound, can be rationalized if the enolic hydrogen bridges between the two oxygens and is governed by a double minimum potential function with a central maximum of approx. 3000 cm/sup -1/ (8 kcal/mol)(eq 10).

  17. Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco

    2014-06-01

    The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in

  18. A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, p53, nuclear factor-kappaB, COX-1, and COX-2.

    PubMed

    Yeoh, Ann S J; Gibson, Rachel J; Yeoh, Eric E K; Bowen, Joanne M; Stringer, Andrea M; Giam, Kar A; Keefe, Dorothy M K

    2007-08-01

    Radiation-induced mucositis is a common and serious side effect of radiotherapy. Molecular mechanisms of mucosal injury, however, are still poorly understood and extremely difficult to study in humans. A novel Dark Agouti rat model using fractionated radiotherapy to induce mucositis has been developed to investigate the occurrence of alimentary mucosal injury. Twenty-four Dark Agouti rats were randomly assigned to receive either fractionated radiotherapy or no radiotherapy. The irradiated rats received a fractionated course of abdominal radiotherapy at 45 Gy/18 fractions/6 weeks treating thrice weekly (i.e., at a radiation dose of 2.5 Gy per fraction). After each week of radiation, a group of irradiated rats was killed. Histomorphology and mucin distribution in the alimentary tract was investigated. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to examine apoptosis in the colon and jejunum, and intestinal morphometry was used to assess villus length, crypt length, and mitotic crypt count. Immunohistochemistry of p53, nuclear factor-kappaB, cyclooxygenase (COX)-1, and COX-2 was also done. The fractionated radiotherapy course induced alimentary mucositis from week 1, with more severe injury seen in the small intestine. The hallmark appearance of apoptosis was present in the crypts of the small and large intestine. In the jejunum and colon, goblet cell disorganization and degeneration was obvious and crypt mitotic counts were severely depleted throughout the treatment. Expression of p53, nuclear factor-kappaB, COX-1, and COX-2 was increased in the irradiated intestinal sections. Fractionated radiation-induced alimentary mucositis has been effectively documented in the Dark Agouti rat for the first time. Further studies investigating the molecular mechanisms underlying radiation-induced mucositis are planned to ultimately achieve anti-mucotoxic-targeted therapies.

  19. 18O proteomics reveal increased Human Apolipoprotein CIII in Hispanic HIV-1 positive women with HAART that use cocaine

    PubMed Central

    Zenón, Frances; Jorge, Inmaculada; Cruz, Ailed; Suarez, Erick; Segarra, Annabell C.; Vázquez, Jesús; Meléndez, Loyda M.; Serrano, Horacio

    2016-01-01

    Purpose Drug abuse is a major risk factor in the development and progression of HIV-1. This study defines the alterations in the plasma proteome of HIV-1 infected women that use cocaine. Experimental Design Plasma samples from 12 HIV-seropositive Hispanic women under antiretroviral therapy were selected for this study. Six sample pairs were matched between non-drug users and cocaine users. After IgG and albumin depletion, SDS-PAGE, and in-gel digestion, peptides from non-drug users and cocaine users were labeled with 16O and 18O respectively and subjected to LC-MS/MS and quantitation using Proteome Discover and QuiXoT softwares and validated by ELISA. Results A total of 1,015 proteins were identified at 1% FDR. Statistical analyses revealed 13 proteins with significant changes between the two groups, cocaine and non-cocaine users (p<0.05). The great majority pertained to protection defense function and the rest pertained to transport, homeostatic, regulation, and binding of ligands. Apolipoprotein CIII was increased in plasma of HIV+ Hispanic women positive for cocaine compared to HIV+ non-drug users (p<0.05). Conclusions and clinical relevance Increased human Apolipoprotein CIII warrants that these patients be carefully monitored to avoid the increased risk of cardiovascular events associated with HIV, HAART and cocaine use. PMID:26255783

  20. Evidence of the chemical reaction of (18)O-labelled nitrite with CO2 in aqueous buffer of neutral pH and the formation of (18)OCO by isotope ratio mass spectrometry.

    PubMed

    Tsikas, Dimitrios; Böhmer, Anke; Gros, Gerolf; Endeward, Volker

    2016-05-01

    Inorganic nitrite (NO2(-), ON-O(-) ←→ (-)O-NO) is the autoxidation product of nitric oxide (NO). Nitrite can also be formed from inorganic nitrate (ONO2(-)), the major oxidation product of NO in erythrocytes, by the catalytic action of bacterial nitrate reductase in gut and oral microflora. Nitrite can be reduced to NO by certain cellular proteins and enzymes, as well as in the gastric juice under acidic conditions. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to convert nitrite to NO. Renal CA isoforms are involved in the reabsorption of nitrite and may, therefore, play an important role in NO homeostasis. Yet, the mechanisms underlying the action of CA on nitrite are incompletely understood. The nitrate/nitrite system is regarded as a reservoir of NO. We have recently shown that nitrite reacts chemically with carbon dioxide (CO2), the regular substrate of CA. The present communication reports a stable isotope ratio mass spectrometry (IRMS) study on the reaction of NO2(-) and CO2 performed in 50 mM HEPES buffer of pH 7.4 at 37 °C. By using (18)O-labelled nitrite ((18)ON-O(-)/(-18)O-NO) and CO2 we observed formation of (18)O-labelled CO2. This finding is an unequivocal evidence of the chemical reaction of (18)ON-O(-)/(-18)O-NO with CO2. The reaction is rapid and involves nucleophilic attack of the negatively charged nitrite via one of its oxygen atoms on the partially positively charged CO2 molecule to form the putative intermediate (18)ON-O-CO2(-)/(-)O2C-(18)O-NO. The by far largest fraction of this intermediate decomposes back to (18)ON-O(-)/(-18)O-NO and CO2. A very small fraction of the intermediate, however, rearranges and finally decomposes to form (18)OCO and nitrite. This reaction is slower in the presence of an isolated erythrocytic CA isoform II. In summary, NO2(-), CO2 and CA are ubiquitous. The chemical reaction of NO2(-) with CO2 and its modulation by CA isoforms may play important roles in the transport of

  1. Hydrochemistry and 18O/16O and 2H/1H Ratios of Ugandan Waters

    NASA Astrophysics Data System (ADS)

    Gebremichael, M. G.; Jasechko, S.

    2013-12-01

    Today, 70% of the 35 million people living in Uganda have access to an improved water source, ranking Uganda 148 out of 179 nations reporting in 2010 (Millennium Development Goals Indicators). 80% of Ugandans rely on groundwater as their primary drinking water source, collecting at springs or from shallow wells. Similarly, 80% of Ugandans rely upon agriculture - usually rain fed - as their primary income source. Despite lack of access to protected water sources faced by 10 million Ugandans, and the importance of the blue economy to Uganda's continued development, a country-wide investigation of the chemistry and the stable oxygen and hydrogen isotope compositions of waters has yet to be completed. Here we present 250 analyses of 18O/16O, 2H/1H and dissolved ion concentrations of Ugandan lakes, rivers, groundwaters and springs collected during July, 2013. We use the new data to characterize regional scale groundwater recharge sources, advection pathways and interactions with surface waters. Large lakes - Albert, Edward and Victoria - show increases in 18O/16O and 2H/1H ratios consistent with open water evaporation, and are shown to be distinct from nearby groundwaters, suggesting minimal recharge from large lakes to the subsurface. Salinities of eastern Ugandan groundwaters are elevated relative to samples collected from the central and western regions, suggesting that longer groundwater residence times and enhanced water-rock interactions characterize these waters. Springs from western Uganda show a shift in 18O/16O to higher values as a result of hydrothermal water-rock exchanges. Dissolved ion and noble gas concentrations show potential for use in assessing geothermal energy resources, perhaps aiding the Ugandan Ministry for Energy, Minerals and Development to meet their goal of increasing renewable energy from 4% (current) to 61% of total use by 2017 (Nyakabwa-Atwoki, 2013). Millennium Development Goals Indicators. mdgs.un.org/unsd/mdg/data.aspx Nyakabwa

  2. Tracking Cats: Problems with Placing Feline Carnivores on δ18O, δD Isoscapes

    PubMed Central

    Pietsch, Stephanie J.; Hobson, Keith A.; Wassenaar, Leonard I.; Tütken, Thomas

    2011-01-01

    Background Several felids are endangered and threatened by the illegal wildlife trade. Establishing geographic origin of tissues of endangered species is thus crucial for wildlife crime investigations and effective conservation strategies. As shown in other species, stable isotope analysis of hydrogen and oxygen in hair (δDh, δ18Oh) can be used as a tool for provenance determination. However, reliably predicting the spatial distribution of δDh and δ18Oh requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid hair. Methodology/Findings We used coupled δDh and δ18Oh measurements from the North American bobcat (Lynx rufus) and puma (Puma concolor) with precipitation-based assignment isoscapes to test the feasibility of isotopic geo-location of felidae. Hairs of felid and rabbit museum specimens from 75 sites across the United States and Canada were analyzed. Bobcat and puma lacked a significant correlation between H/O isotopes in hair and local waters, and also exhibited an isotopic decoupling of δ18Oh and δDh. Conversely, strong δD and δ18O coupling was found for key prey, eastern cottontail rabbit (Sylvilagus floridanus; hair) and white-tailed deer (Odocoileus virginianus; collagen, bone phosphate). Conclusions/Significance Puma and bobcat hairs do not adhere to expected pattern of H and O isotopic variation predicted by precipitation isoscapes for North America. Thus, using bulk hair, felids cannot be placed on δ18O and δD isoscapes for use in forensic investigations. The effective application of isotopes to trace the provenance of feline carnivores is likely compromised by major controls of their diet, physiology and metabolism on hair δ18O and δD related to body water budgets. Controlled feeding experiments, combined with single amino acid isotope analysis of diets and hair, are needed to reveal mechanisms and physiological traits explaining why felid hair does

  3. Possible isotopic fractionation effects in sputtered minerals

    NASA Technical Reports Server (NTRS)

    Haff, P. K.; Watson, C. C.; Tombrello, T. A.

    1980-01-01

    A model which makes definite predictions for the fractionation of isotopes in sputtered material is discussed. The fractionation patterns are nonlinear, and the pattern for a particular set of isotopes depends on the chemical matrix within which those isotopes are contained. Calculations are presented for all nonmonoisotopic elements contained in the minerals perovskite, anorthite, ackermanite, enstatite, and troilite. All isotopes are fractionated at the level of approximately 4-6 deg/o per atomic mass unit. Oxygen is always positively fractionated (heavier isotopes sputtered preferentially), and heavier elements are generally negatively fractioned (light isotopes sputtered preferentially). The value of Delta (O-18:O-16) is always less by about 1.8 deg/o than a linear extrapolation based upon the calculated delta (O-17:O-16) value would suggest. The phenomenon of both negative and positive fractionation patterns from a single target mineral are used to make an experimental test of the proposed model.

  4. 18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry

    SciTech Connect

    Kim, Jong Seo; Fillmore, Thomas L.; Liu, Tao; Robinson, Errol W.; Hossain, Mahmud; Champion, Boyd L.; Moore, Ronald J.; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2011-10-11

    Selected reaction monitoring-mass spectrometry (SRM-MS) is an emerging technology for high throughput targeted protein quantification and verification in biological and biomarker discovery studies; however, the cost associated with the use of stable isotope labeled synthetic peptides as internal standards is prohibitive for quantitatively screening large numbers of candidate proteins as often required in the pre-verification phase of biomarker discovery. Herein we present the proof-of-concept experiments of using an 18O-labeled 'universal' reference as comprehensive internal standards for quantitative SRM-MS analysis. With an 18O-labeled whole proteome sample as reference, every peptide of interest will have its own corresponding heavy isotope labeled internal standard, thus providing an ideal approach for quantitative screening of a large number of candidates using SRM-MS. Our results showed that the 18O incorporation efficiency using a recently improved protocol was >99.5% for most peptides investigated, a level comparable to 13C/15N labeled synthetic peptides in terms of heavy isotope incorporation. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into mouse plasma with an 18O-labeled mouse plasma reference. A dynamic range of four orders of magnitude in relative concentration was obtained with high reproducibility (i.e., coefficient of variance <10%) based on the 16O/18O peak area ratios. Absolute and relative quantification of C-reactive protein and prostate-specific antigen were demonstrated by coupling an 18O-labeled reference with standard additions of protein standards. Collectively, our results demonstrated that the use of 18O-labeled reference provides a convenient and effective strategy for quantitative SRM screening of large number of candidate proteins.

  5. LED-based Fourier transform spectroscopy of 16O12C18O and 12C18O2 in the 11,260-11,430 cm-1 range

    NASA Astrophysics Data System (ADS)

    Serdyukov, V. I.; Sinitsa, L. N.; Lugovskoi, A. A.; Borkov, Yu. G.; Tashkun, S. A.; Perevalov, V. I.

    2016-07-01

    The absorption spectrum of the 16O12C18O and 12C18O2 carbon dioxide isotopologues has been recorded in the 11,260- 11,430 cm-1 spectral range using Bruker IFS 125 HR Fourier transform spectrometer with resolution 0.05 cm-1 at temperature 297 K and path length 24 m. The 18O enriched sample of carbon dioxide at total pressure 96.5 mbar was used for these purposes. The spectrometer used LED emitter as a light source. This gave possibility to reach the minimal detectable absorption coefficient αmin~1.4×10-7 cm-1 using 23,328 scans. In the recorded spectrum we have assigned the 00051-00001 band for both 16O12C18O and 12C18O2 isotopologues using the predictions performed within the framework of the method of effective operators. The line positions and intensities of the observed bands are found. The comparison of the observed and predicted line positions and intensities is performed confirming good accuracy of the predictions. The spectroscopic parameters for the observed bands are determined.

  6. Two-neutron stripping in ({sup 18}O, {sup 16}O) and (t,p) reactions

    SciTech Connect

    Cavallaro, M.; Agodi, A.; Carbone, D.; Cunsolo, A.; Bondì, M.; Cappuzzello, F.; Nicolosi, D.; Tropea, S.; Borello-Lewin, T.; Rodrigues, M. R. D.; De Napoli, M.; Garcia, V. N.

    2014-11-11

    The {sup 12}C({sup 18}O,{sup 16}O){sup 14}C reactions has been investigated at 84 MeV incident energy. The charged ejectiles produced in the reaction have been momentum analyzed and identified by the MAGNEX magnetic spectrometer. Q-value spectra have been extracted with an energy resolution of 160 keV (Full Width at Half Maximum) and several known bound and resonant states of {sup 14}C have been identified up to 15 MeV. In particular, excited states with dominant 2p - 4h configuration are the most populated. The absolute values of the cross sections have been extracted showing a striking similarity with those measured for the same transitions by (t,p) reactions. This indicates that the effect of the {sup 16}O core is negligible in the reaction mechanism.

  7. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite

    PubMed Central

    Eagle, Robert A.; Schauble, Edwin A.; Tripati, Aradhna K.; Tütken, Thomas; Hulbert, Richard C.; Eiler, John M.

    2010-01-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures. PMID:20498092

  8. The First Detailed 2H and 18O Isoscapes of Freshwater in Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, W.; Hoogewerff, J.; Kemp, H. F.; Frew, D.

    2012-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwater quality by the Scottish Environmental Protection Agency (SEPA) fulfils the legislative requirements but new scientific methods involving stable isotope analysis present an opportunity for delivering on current and nascent government policies [1] and gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and the aforementioned functions. In brief, 2H and 18O isoscapes of Scottish freshwater could be used to support fundamental and applied research in: • Climate change - These first ever isoscapes will provide a baseline against which future environmental impact can be assessed due to changes in the characteristic isotope composition of freshwater lochs and reservoirs. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish berries and Scottish Whisky. During 2011, freshwater samples were collected with the support of SEPA from more than 80 freshwater lochs and reservoirs across Scotland. Here we present the result of the 2H and 18O stable isotope analyses of these water samples together with the first isoscapes generated based on these data. [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland's National Food and Drink Policy (2009); Scottish Planning Policy Environmental Report (2009); Scottish Planning Policy (SPP) 15 Planning for Rural Development (2005); National Planning Policy Guideline (NPPG) 14: Natural Heritage (1999).

  9. An explanation for the 18O excess in Noelaerhabdaceae coccolith calcite

    NASA Astrophysics Data System (ADS)

    Hermoso, M.; Minoletti, F.; Aloisi, G.; Bonifacie, M.; McClelland, H. L. O.; Labourdette, N.; Renforth, P.; Chaduteau, C.; Rickaby, R. E. M.

    2016-09-01

    Coccoliths have dominated the sedimentary archive in the pelagic environment since the Jurassic. The biominerals produced by the coccolithophores are ideally placed to infer sea surface temperatures from their oxygen isotopic composition, as calcification in this photosynthetic algal group only occurs in the sunlit surface waters. In the present study, we dissect the isotopic mechanisms contributing to the "vital effect", which overprints the oceanic temperatures recorded in coccolith calcite. Applying the passive diffusion model of carbon acquisition by the marine phytoplankton widely used in biogeochemical and palaeoceanographic studies, our results suggest that the oxygen isotope offsets from inorganic calcite in fast dividing species Emiliania huxleyi and Gephyrocapsa oceanica originates from the legacy of assimilated 18O-rich CO2 that induces transient isotopic disequilibrium to the internal dissolved inorganic carbon (DIC) pool. The extent to which this intracellular isotopic disequilibrium is recorded in coccolith calcite (1.5 to +3‰ over a 10 to 25 °C temperature range) is set by the degree of isotopic re-equilibration between CO2 and water molecules before intracellular mineralisation. We show that the extent of re-equilibration is, in turn, set by temperature through both physiological (dynamics of the utilisation of the DIC pool) and thermodynamic (completeness of the re-equilibration of the relative 18O-rich CO2 influx) processes. At the highest temperature, less ambient aqueous CO2 is present for algal growth, and the consequence of carbon limitation is exacerbation of the oxygen isotope vital effect, obliterating the temperature signal. This culture dataset further demonstrates that the vital effect is variable for a given species/morphotype, and depends on the intricate relationship between the environment and the physiology of biomineralising algae.

  10. Historical droughts in northern Vietnam captured by variability in speleothem δ18O

    NASA Astrophysics Data System (ADS)

    Hardt, B. F.; McGee, D.; Burns, S. J.; Hieu, N.; Hieu, D. T.

    2015-12-01

    Speleothem records overlapping with the historical period offer valuable comparisons of documentary evidence with speleothem proxy data. These records provide opportunities to 'ground-truth' the paleo-record, fill in gaps in the historical record, and more confidently extent the paleo-record into deeper time. Here we present isotopic results from a stalagmite collected in northern Vietnam spanning 1200 to 1950 CE, a period with a rich historical record in Vietnam. This sample adds significantly to the relatively sparse paleoclimate record from Southeast Asia. The record includes several multi-decadal positive excursions of ≥1 per mille in calcite δ18O. A preliminary age model, based on six U/Th ages, suggests possible correspondence to noted droughts from the historical record, including the Angkor Droughts, the Ming Dynasty Drought, the Strange Parallels Drought, and the Victorian Holocaust Drought. As modeling studies indicate a strong correlation between rainfall δ18O and both the intensity of summer monsoon winds and summer rainfall over northern Vietnam (e.g., Liu et al., 2014), these excursions are consistent with a decrease in regional precipitation. The Vietnam record shows an overall negative trend during the Little Ice Age. The study site is located well south of the westerly wind belt, ruling out a shift between monsoonal and mid-latitude circulation systems as a likely explanation for the northern Vietnam record. We explore the correspondence between our record and other proxy data from Southeast Asia and suggest possible implications of the differences between Vietnamese and Chinese speleothem records during the Little Ice Age. References cited: Liu Z., Wen X., Brady E. C., Otto-Bliesner B., Yu G., Lu H., Cheng H., Wang Y., Zheng W., Ding Y., Edwards R. L., Cheng J., Liu W. and Yang H. (2014) Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews 83, 115-128.

  11. Controlling factors of Ca isotope fractionation in scleractinian corals evaluated by temperature, pH and light controlled culture experiments

    NASA Astrophysics Data System (ADS)

    Inoue, Mayuri; Gussone, Nikolaus; Koga, Yasuko; Iwase, Akihiro; Suzuki, Atsushi; Sakai, Kazuhiko; Kawahata, Hodaka

    2015-10-01

    In this study, the 44Ca/40Ca ratios of Porites australiensis grown under three different culture experiments composed of temperature, pH and light controlled culture experiments are measured. The temperature dependent isotope fractionation of 0.02‰/°C deduced from this study is similar to inorganic aragonite, but the degree of isotope fractionation is about +0.4‰ offset in corals. These observations agree with earlier results on different coral species, suggesting Ca isotope fractionation during Ca transmembrane transport in corals. While in cultured corals a significant temperature dependence of δ44Ca is observed, the relationships between calcium isotope fractionation and pH as well as light intensity are negligible. Therefore variation of δ44Ca in Porites corals is mainly controlled by temperature. A combination of δ44Ca and Sr/Ca of corals in temperature controlled experiments cannot be explained by Rayleigh type fractionation directly from a fluid, which is seawater-like in terms of δ44Ca and Sr/Ca. Through coral-specific biomineralization processes, overall mean δ44Ca of scleractinian corals including previous studies are different from biogenic aragonites secreted by sclerosponges and pteropods, but are comparable with those of bivalves as well as calcitic coccolithophores and foraminifers. These findings are important for better understanding biomineralization in corals and in order to constrain the Ca isotopic composition of oceanic Ca sinks in response to climate changes and associated with shifts of calcite and aragonite seas.

  12. Comparing α-cellulose δ13C and δ18O to regional climate at Big Thicket National Preserve, Texas

    NASA Astrophysics Data System (ADS)

    Lewis, D. B.; Finkelstein, D. B.; Mora, C. I.; Grissino-Mayer, H. D.; Perfect, E.

    2009-12-01

    Few studies have investigated the relationship between tree-ring δ13C, δ18O, and regional climate in the southeastern U.S. In other regions, tree ring δ13C and δ18O have proven useful for analyzing temporal changes in precipitation, temperature, drought, and relative humidity. The purpose of this study was to characterize the relationships of regional climate with seasonally-resolved tree-ring cellulose δ13C and δ18O records from longleaf pine (Pinus palustris Mill.) trees at Big Thicket National Preserve (BTNP), Texas. BTNP is a semi-tropical area along the southeastern Texas Gulf Coast with a MAP of 1300 mm. Increment cores were collected from living trees in the Big Sandy Creek Unit (BSC) of BTNP, and four trees were randomly selected for isotopic analysis. The latewood (LW) portions of annual rings were removed in small slivers using a scalpel, and α-cellulose was extracted for a 26-year period (1982-2007). The δ13C series were compared to δ18O series from the same tree, and correlations ranged from 0.64 (BSC 005) to 0.18 (BSC 010). Single tree LW δ13C and δ18O chronologies were compared to regional climate records (Region 8, Upper Coast). Three of the four LW δ18O series were significantly correlated to fall (August-October) precipitation and the Palmer z-index, a measure of short-term (monthly) drought. BSC 010 δ18O exhibited no relationship with either climate parameter. Two of the δ13C series were correlated to fall precipitation and z-index. BSC 010 and BSC 015 were not significantly correlated. Averaging the four individual LW δ18O series into a single chronology resulted in significant correlations with fall precipitation (r = -0.60, p = 0.002) and z-index (r = -0.58, p = 0.002). Both relationships were slightly improved by removing BSC 010 from the chronology. The average δ13C chronology was also correlated to fall precipitation (r = -0.59, p = 0.001) and z-index (r = -0.57, p = 0.003). Neither isotope chronology was correlated to

  13. Biochemical assessment of growth factors and circulation of blood components contained in the different fractions obtained by centrifugation of venous blood.

    PubMed

    Corigiano, M; Ciobanu, G; Baldoni, E; Pompa, G

    2014-01-01

    The aim of this study was to evaluate a biochemical marker with different elements of a normal blood serum and centrifuged blood serum after a different rotation system. For this technique, we used five fractions of a blood Concentrated Growth Factors system (bCGF) and a particular device for the different rotation program. Blood samples were collected from 10 volunteers aged between 35 and 55 in the Operative Unit of the “Sapienza” University of Rome with only a fraction of different biochemical elements. Through an individual blood phase separator tube of venous blood, active factions of serum and 4 fractions of red buffy coat were taken. The biochemical markers with 14 elements were examined at times: P1-11 minutes, P2-12minutes, P3-15 minutes. Exclusively biological materials which are normally applied in the regeneration techniques for different defects and lesions were used with this technique. After specific rotation programs, a different result was obtained for each cycle: P1, P2, P3. In test tubes obtained by separated blood, we observed a higher concentration of proteins, ions, and other antigens compared to normal blood plasma. Examining the biochemical results of different elements, we observed an increase (P≤0,01). Since each person’s DNA is different, we could not have the same results in 5 fractions of blood concentration, we did, however, find a good increase in only a fraction of proteins, immunoglobulin and different ions. We obtained five fractions after centrifugation, and we had an increase in different biochemical elements compared to normal blood (P≤0,01) which is significant at different times. These biochemical elements were stimulated by different growth factors, which are used by the immune system, and they induced the formation of hard and soft tissues and good regeneration.

  14. P6Mo18O73 heteropolyanion and its four-copper complex: theoretical and experimental investigation.

    PubMed

    Zhang, Fu-Qiang; Zhang, Xian-Ming; Fang, Rui-Qin; Wu, Hai-Shun

    2010-09-21

    The non-classical KP(6)Mo(18)O(73) heteropolyanion has been studied by the density functional theory (DFT) method, and the calculated geometry compares well with the experimental one. In fully oxidized [KP(6)Mo(18)O(73)](7-) state, the d(xy)-orbitals centered at eight "belt" Mo sites in the lower part of the "basket" are the major contributors to the LUMO and LUMO+1, while the LUMO+2 orbital is mostly focused on the two polar parts. In contrast, the HOMOs indicates that the coordination of the KP(6)Mo(18) heteropolyanion to metal ions favorably occurs at the oxygen atoms from four external phosphates and two molybdates of the handle of the "basket". Compared with Wells-Dawson [P(2)Mo(18)O(62)](6-), the HOMO-LUMO gap in fully oxidized [KP(6)Mo(18)O(73)](7-) is much smaller, indicating much easier reduction that is consistent with the cyclic voltammogram. Both frontier orbitals and Mulliken analysis indicate that two of three blue electrons in [KP(6)Mo(18)O(73)](10-) (KP(6)Mo(18)-3e) have spin alpha while third blue electron has spin beta, in agreement with magnetic data. The four-copper complex of the non-classical KP(6)Mo(18)-3e heteropolyanion has been synthesized and structurally characterized; its structure supports the theoretical results such as reactivity and basicity of external oxygen sites.

  15. Sources of nitrate in the Arno River waters: Constraints from d15N and d18O

    USGS Publications Warehouse

    Nisi, Barbara; Vaselli, Orlando; Buccianti, Antonella; Silva, Steven R.

    2005-01-01

    Running waters in anthropogenically affected areas are susceptible to nitrate contamination. Source identification is a fundamental step for the development of effective remediation. Previous studies pointed to pollution by nitrogen-bearing contaminants in the Arno Basin. In this paper, eleven surface water samples have been analysed for main and trace components and 15N/14N and 18O/16O ratios, with the aim of identifying for the first time the origin of nitrate in the Arno River Basin so that further investigations can appropriately be designed. d18O(NO3)and d15N(NO3) values have allowed to hypothesise the main sources of nitrate, as follows: i) mineralized fertilizer, ii) soil-organic nitrogen, iii) manure and septic waste. The anomalously high d15N and d18O values in the Chiana (d15N=24.9‰ and d18O=15.5‰) and Usciana tributaries (d15N=30.1‰ and d18O=7.2‰) show a low probability of belonging to the same population as that of the other samples and can be related to denitrification process of nitrate from animal waste/sewage and/or an industrial process (e.g. tanneries).

  16. Towards A Modern Calibration Of The 238U/235U Paleoredox Proxy: Apparent Uranium Isotope Fractionation Factor During U(VI)-U(IV) Reduction In The Black Sea

    NASA Astrophysics Data System (ADS)

    Rolison, J. M.; Stirling, C. H.; Middag, R.; Rijkenberg, M. J. A.; De Baar, H. J. W.

    2015-12-01

    The isotopic compositions of redox-sensitive metals, including uranium (U), in marine sediments have recently emerged as powerful diagnostic tracers of the redox state of the ancient ocean-atmosphere system. Interpretation of sedimentary isotopic information requires a thorough understating of the environmental controls on isotopic fractionation in modern anoxic environments before being applied to the paleo-record. In this study, the relationship between ocean anoxia and the isotopic fractionation of U was investigated in the water column and sediments of the Black Sea. The Black Sea is the world's largest anoxic basin and significant removal of U from the water column and high U accumulation rates in modern underlying sediments have been documented. Removal of U from the water column occurs during the redox transition of soluble U(VI) to relatively insoluble U(IV). The primary results of this study are two-fold. First, significant 238U/235U fractionation was observed in the water column of the Black Sea, suggesting the reduction of U induces 238U/235U fractionation with the preferential removal of 238U from the aqueous phase. Second, the 238U/235U of underlying sediments is related to the water column through the isotope fractionation factor of the reduction reaction but is influenced by mass transport processes. These results provide important constraints on the use of 238U/235U as a proxy of the redox state of ancient oceans.

  17. Assessing multi-site δ18O-climate calibrations of the coralline alga Clathromorphum across the high-latitude Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Ng, Jessica Y.; Williams, Branwen; Thompson, Diane M.; Mayne, Chloe; Halfar, Jochen; Edinger, Evan; Johnson, Kathleen

    2016-12-01

    An increased number of climate proxy records and more refined interpretation of proxy data are crucial to improve projections of future climate at high latitudes, where internal feedbacks amplify warming and established high-resolution climate archives are especially sparse. Encrusting coralline algae are being developed as a mid- to high-latitude marine climate archive. These long-lived algae form a solid high-Mg calcite skeleton with annual growth bands similar to those of trees and tropical corals. The oxygen isotope ratio of the algal skeleton (δ18Oalg) records local environmental and climatic factors, notably sea surface temperature and seawater δ18O. Here we assess the δ18Oalg-climate relationship in diverse environments across the algal habitat range utilizing two species of coralline algae from the genus Clathromorphum. Clathromorphum is widely distributed from the cold-temperate North Atlantic and Pacific to the Arctic Ocean and has recently yielded numerous climate reconstructions of up to 650 years in length. In this study, we calibrate δ18Oalg of four specimens to gridded temperature and salinity data, the latter a proxy for seawater δ18O. These specimens were collected from a variety of algal growth environments across the high-latitude Northern Hemisphere: two specimens from the Aleutian Archipelago, one from the Canadian Arctic, and one from the Gulf of Maine. Low winter temperatures and insolation restrict the months when algae record local climate in the δ18O of their skeletons; we therefore determine these response seasons by correlating monthly temperature and salinity anomalies with annual δ18Oalg anomalies at each site. We then average gridded data over months that correlate significantly (95% confidence interval) for regression with δ18Oalg. While the timing and nature of the climate signal vary across sites, we find significant relationships between δ18Oalg and either temperature or salinity averaged over the response season at three

  18. Intra-shell d18O in Cultured Benthic Foraminiferan Amphistegina lobifera and the Influence of Seawater Carbonate Chemistry and Temperature on this Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.; Zilberman, T.; Segev, E.

    2006-12-01

    Using secondary ion mass spectrometry (SIMS) we looked at the natural variability in the oxygen isotope ratio of the shallow water, symbionts bearing foraminiferan A. lobifera. Live foraminifera were collected in June 2005 in the Gulf of Eilat, Israel. Vertical section exposing the knob area of this species represents the growth history of this species from December 2004 to June 2005. SIMS profile at a resolution of ~ 2 weeks yielded δ^1^8O changes of ~ 1.5 ‰, (from -0.1 ‰ to 1.45 ‰) that are compatible with the known temperature changes for the Gulf of Eilat for this period (20 to 25° C). Natural variability between primary and secondary calcite at the knob area were obtained on horizontal section of the upper knob area. The primary calcite is on average 2 ‰ more negative then the secondary calcite that represents the bulk of the skeleton (more then 95 % by weight). The δ^1^8O in the margin keel area of A. lobifera is also lower compared to the bulk secondary calcite. Specimens that were cultured in the laboratory at a constant temperature and inorganic carbon but at different pH have increased their CaCO3 weight by roughly a factor of 8. Single specimen from each pH (ranging between 7.9 and 8.5) was investigated with the SIMS at the knob area. While there is some variability within each specimen (perhaps related to the primary calcite), the general trend was a decrease in δ^1^8O with increasing pH (or CO32^- concentration), in agreement with previous studies on planktonic foraminifera. Specimens cultured in laboratory at a constant pH, but different temperature were also analysed in the knob area. The temperature range is between 21 and 33° C (experiments at 21, 24, 27 and 33° C). While there is also some variability within each specimen, the trend was a decrease in δ^1^8O with increasing temperature. The decrease measured is 2.7 ± 0.7 ‰ for the entire temperature range, which is completely in agreement with the theoretical value (-0.2 ‰ per

  19. Growth Rates, Stable Oxygen Isotopes (18O), and Strontium (Sr/Ca) Composition in Two Species of Pacific Sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with 18O Calibration and Application to Paleoceanography

    SciTech Connect

    Grottoli, A.; Adkins, J; Panero, W; Reaman, D; Moots, K

    2010-01-01

    The isotopic and elemental composition of sclerosponge skeletons is used to reconstruct paleoceanographic records. Yet few studies have systematically examined the natural variability in sclerosponge skeletal {delta}{sup 18}O, growth, and Sr/Ca, and how that may influence the interpretation of sclerosponge proxy records. Here, we analyzed short records in seven specimens of Acanthocheatetes wellsi (high-Mg calcite, 21 mol% Mg) from Palau, four A. wellsi (high-Mg calcite, 21 mol% Mg) from Saipan, and three Astrosclera willeyana (aragonite) sclerosponges from Saipan, as well as one long record in an A. wellsi specimen from Palau spanning 1945-2001.5. In Saipan, species-specific and mineralogical effects appear to have a negligible effect on sclerosponge {delta}{sup 18}O, facilitating the direct comparison of {delta}{sup 18}O records between species at a given location. At both sites, A. wellsi {delta}{sup 18}O and growth rates were sensitive to environmental conditions, but Sr/Ca was not sensitive to the same conditions. High-resolution {delta}{sup 18}O analyses confirmed this finding as both A. wellsi and A. willeyana deposited their skeleton in accordance with the trends in isotopic equilibrium with seawater, though with a 0.27{per_thousand} offset in the case of A. willeyana. In the high-Mg-calcite species A. wellsi, Mg may be interfering with Sr incorporation into the skeleton. On multidecadal timescales, A. wellsi sclerosponge {delta}{sup 18}O in Palau tracked the Southern Oscillation Index variability post-1977, but not pre-1977, coincident with the switch in the Pacific Decadal Oscillation (PDO) at {approx}1976. This suggests that water mass circulation in the region is influenced by El Nino-Southern Oscillation variability during positive PDO phases, but not during negative ones.

  20. Equilibrium Iron Isotope Fractionation Factors of Minerals: Reevaluation from the Data of Nuclear Inelastic Resonant X-ray Scattering and Mossbauer Spectroscopy

    SciTech Connect

    Polyakov, Dr. V. B.; Clayton, R. N.; Horita, Juske; Mineev, S. D.

    2007-01-01

    We have critically reevaluated equilibrium iron isotope fractionation factors for oxide and sulfide minerals using recently acquired data obtained by Moessbauer spectroscopy and inelastic nuclear resonant X-ray scattering (INRXS) synchrotron radiation. Good agreement was observed in the iron {beta}-factors of metallic iron ({alpha}-Fe) and hematite calculated using both Moessbauer- and INRXS-derived data, which supports the validity and reliability of the calculations. Based on this excellent agreement, we suggest the use of the present data on the iron {beta}-factors of hematite as a reference. The previous Moessbauer-derived iron {beta}-factor for magnetite has been modified significantly based on the Fe-sublattice density of states obtained from the INRXS experiments. This resolves the disagreement between naturally observed iron isotope fractionation factors for mineral pairs involving magnetite and those obtained from the calculated {beta}-factors. The correctness of iron {beta}-factor for pyrite has been corroborated by the good agreement with experimental data of sulfur isotope geothermometers of pyrite-galena and pyrite-sphalerite. A good correlation between the potential energy of the cation site, the oxidation state of iron and the iron {beta}-factor value has been established. Specifically, ferric compounds, which have a higher potential energy of iron than ferrous compounds, have higher {beta}-factors. A similar dependence of b-factors on the oxidation state and potential energy could be extended to other transition metals. Extremely low values of INRXS-derived iron {beta}-factors for troilite and Fe{sub 3}S significantly widen the range of iron b-factors for covalently bonded compounds.

  1. A high-resolution peak fractionation approach for streamlined screening of nuclear-factor-E2-related factor-2 activators in Salvia miltiorrhiza.

    PubMed

    Zhang, Hui; Luo, Li-Ping; Song, Hui-Peng; Hao, Hai-Ping; Zhou, Ping; Qi, Lian-Wen; Li, Ping; Chen, Jun

    2014-01-24

    Generation of a high-purity fraction library for efficiently screening active compounds from natural products is challenging because of their chemical diversity and complex matrices. In this work, a strategy combining high-resolution peak fractionation (HRPF) with a cell-based assay was proposed for target screening of bioactive constituents from natural products. In this approach, peak fractionation was conducted under chromatographic conditions optimized for high-resolution separation of the natural product extract. The HRPF approach was automatically performed according to the predefinition of certain peaks based on their retention times from a reference chromatographic profile. The corresponding HRPF database was collected with a parallel mass spectrometer to ensure purity and characterize the structures of compounds in the various fractions. Using this approach, a set of 75 peak fractions on the microgram scale was generated from 4mg of the extract of Salvia miltiorrhiza. After screening by an ARE-luciferase reporter gene assay, 20 diterpene quinones were selected and identified, and 16 of these compounds were reported to possess novel Nrf2 activation activity. Compared with conventional fixed-time interval fractionation, the HRPF approach could significantly improve the efficiency of bioactive compound discovery and facilitate the uncovering of minor active components.

  2. Simple purification of recovered [18O]H2O by UV, ozone, and solid-phase extraction methods.

    PubMed

    Moon, Woo Yeon; Oh, Seung Jun; Cheon, Jun Hong; Chae, Won Seok; Lim, Sung Jae; Cho, Si Man; Moon, Dae Hyuk

    2007-06-01

    We have developed three methods for removing organic impurities as well as a solid-phase extraction (SPE) method for removing metallic and ionic impurities from recovered [18O]H2O. Preliminary experiments with [16O]H2O were used to determine the optimal purification conditions. These showed that UV irradiation rapidly (<4 h) eliminated low boiling point impurities such as acetonitrile and acetone with only a slight loss of mass. A combination of UV irradiation and purging with ozone removed high boiling point impurities such as ethanol and methanol more quickly than UV irradiation alone. UV irradiation followed by a SPE with [18O]H2O removed all organic and inorganic impurities. The purified [18O]H2O gave a saturation yield of 128.62+/-15.6 mCi/microA for [18F]fluoride and a 49.8+/-12.7% radiochemical yield for [18F]fluorodeoxyglucose.

  3. Stable oxygen isotopes (delta18(O)) in Austrocedrus chilensis tree rings reflect climate variability in northwestern Patagonia, Argentina.

    PubMed

    Roig, F A; Siegwolf, R; Boninsegna, J A

    2006-11-01

    The stable oxygen isotope (delta (18)O) composition of Austrocedrus chilensis (D. Don) Endl. (Cupressaceae) tree rings potentially provide retrospective views of changes in environment and climate in the semi-arid lands of Patagonia. We report the development of the first annually resolved delta (18)O tree-ring chronology obtained from natural forests of the foothills of the northwestern Patagonian Andes. The isotope record spans between 1890 and 1994 AD. We explore the probable links between this record and the climate of the region. Air temperatures during summer conditions are significantly, but not strongly, inversely correlated with annual delta (18)O values from Austrocedrus tree rings. The strongest correlations are between the southern oscillation index (SOI) and the tree rings. The existence of millennial-age Austrocedrus trees in northern Patagonia provides interesting possibilities for examining these climate-related isotopic signals over most of the last 1,000 years.

  4. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records

    NASA Astrophysics Data System (ADS)

    Liu, Jianbao; Chen, Jianhui; Zhang, Xiaojian; Chen, Fahu

    2016-04-01

    Monsoon precipitation over China exhibits large spatial differences. It has been found that a significantly enhanced East Asian summer monsoon (EASM) is characterized by increased rainfall in northern China and by reduced rainfall in southern China, and this relationship occurs on different time scales during the Holocene. This study presents results from a diverse range of proxy paleoclimatic records from northern China where precipitation variability is traditionally considered as an EASM proxy. Our aim is to evaluate the evolution of the EASM during the Holocene and to compare it with all of the published stalagmite δ18O records from the Asian Monsoon region in order to explore the potential mechanism(s) controlling the Chinese stalagmite δ18O. We found that the intensity of the EASM during the Holocene recorded by the traditional EASM proxy of moisture (or precipitation) records from northern China are significantly different from the Chinese stalagmite δ18O records. The EASM maximum occurred during the mid-Holocene, challenging the prevailing view of an early Holocene EASM maximum mainly inferred from stalagmite δ18O records in eastern China. In addition, all of the well-dated Holocene stalagmite δ18O records, covering a broad geographical region, exhibit a remarkably similar trend of variation and are statistically well-correlated on different time scales, thus indicating a common signal. However, in contrast with the clear consistency in the δ18O values in all of the cave records, both instrumental and paleoclimatic records exhibit significant spatial variations in rainfall on decadal-to- centennial time scales over eastern China. In addition, both paleoclimatic records and modeling results suggest that Holocene East Asian summer monsoon precipitation reached a maximum at different periods in different regions of China. Thus the stalagmite δ18O records from the EASM region should not be regarded as a reliable indicator of the strength of the East

  5. Southern Tibetan Plateau ice core δ18O reflects abrupt shifts in atmospheric circulation in the late 1970s

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Risi, Camille; Masson-Delmotte, Valerie; He, You; Xu, Baiqing

    2016-01-01

    Ice cores from the Tibetan Plateau provide high-resolution records of changes in the snow and ice isotopic composition. In the monsoon sector of southern Tibetan Plateau, their climatic interpretation has been controversial. Here, we present a new high-resolution δ18O record obtained from 2206 measurements performed at 2-3 cm depth resolution along a 55.1 m depth ice core retrieved from the Noijinkansang glacier (NK, 5950 m a.s.l.) that spans the period from 1864 to 2006 AD. The data are characterized by high δ18O values in the nineteenth century, 1910s and 1960s, followed by a drop in the late 1970s and a recent increasing trend. The comparison with regional meteorological data and with a simulation performed with the LMDZiso general circulation model leads to the attribution of the abrupt shift in the late 1970s predominantly to changes in regional atmospheric circulation, together with the impact of atmospheric temperature change. Correlation analyses suggest that the large-scale modes of variability (PDO and ENSO, i.e. Pacific Decadal Oscillation and El Nino-Southern Oscillation) play important roles in modulating NK δ18O changes. The NK δ18O minimum at the end of the 1970s coincides with a PDO phase shift, an inflexion point of the zonal index (representing the overall intensity of the surface westerly anomalies over middle latitudes) as well as ENSO, implying interdecadal modulation of the influence of the PDO/ENSO on the Indian monsoon on southern TP precipitation δ18O. While convective activity above North India controls the intra-seasonal variability of precipitation δ18O in southern TP, other processes associated with changes in large-scale atmospheric circulation act at the inter-annual scale.

  6. A novel methodological approach for δ(18)O analysis of sugars using gas chromatography-pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Zech, Michael; Saurer, Matthias; Tuthorn, Mario; Rinne, Katja; Werner, Roland A; Siegwolf, Rolf; Glaser, Bruno; Juchelka, Dieter

    2013-01-01

    Although the instrumental coupling of gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) for compound-specific δ(18)O analysis has been commercially available for more than a decade, this method has been hardly applied so far. Here we present the first GC-Py-IRMS δ(18)O results for trimethylsilyl-derivatives of plant sap-relevant sugars and a polyalcohol (glucose, fructose, sucrose, raffinose and pinitol). Particularly, we focus on sucrose, which is assimilated in leaves and which is the most important transport sugar in plants and hence of utmost relevance in plant physiology and paleoclimate studies. Replication measurements of sucrose standards and concentration series indicate that the GC-Py-IRMS δ(18)O measurements are not stable over time and that they are amount (area) dependent. We, therefore, suggest running sample batch replication measurements in alternation with standard concentration series of reference material. This allows for carrying out (i) a drift correction, (ii) a calibration against reference material and (iii) an amount (area) correction. Tests with (18)O-enriched water do not provide any evidence for oxygen isotope exchange reactions affecting sucrose and raffinose. We present the first application of GC-Py-IRMS δ(18)O analysis for sucrose from needle extract (soluble carbohydrate) samples. The obtained δ(18)Osucrose/ Vienna Standard Mean Ocean Water (VSMOW) values are more positive and vary in a wider range (32.1-40.1 ‰) than the δ(18)Obulk/ VSMOW values (24.6-27.2 ‰). Furthermore, they are shown to depend on the climate parameters maximum day temperature, relative air humidity and cloud cover. These findings suggest that δ(18)Osucrose of the investigated needles very sensitively reflects the climatically controlled evaporative (18)O enrichment of leaf water and thus highlights the great potential of GC-Py-IRMS δ(18)Osucrose analysis for plant physiology and paleoclimate studies.

  7. Measurement of Whole-Body CO2 Production in Birds Using Real-Time Laser-Derived Measurements of Hydrogen (δ(2)H) and Oxygen (δ(18)O) Isotope Concentrations in Water Vapor from Breath.

    PubMed

    Mitchell, G W; Guglielmo, C G; Hobson, K A

    2015-01-01

    The doubly labeled water (DLW) method is commonly used to measure energy expenditure in free-living wildlife and humans. However, DLW studies involving animals typically require three blood samples, which can affect behavior and well-being. Moreover, measurement of H (δ(2)H) and O (δ(18)O) isotope concentrations in H2O derived from blood using conventional isotope ratio mass spectrometry is technically demanding, time-consuming, and often expensive. A novel technique that would avoid these constraints is the real-time measurement of δ(2)H and δ(18)O in the H2O vapor of exhaled breath using cavity ring-down (CRD) spectrometry, provided that δ(2)H and δ(18)O from body H2O and breath were well correlated. Here, we conducted a validation study with CRD spectrometry involving five zebra finches (Taeniopygia guttata), five brown-headed cowbirds (Molothrus ater), and five European starlings (Sturnus vulgaris), where we compared δ(2)H, δ(18)O, and rCO2 (rate of CO2 production) estimates from breath with those from blood. Isotope concentrations from blood were validated by comparing dilution-space estimates with measurements of total body water (TBW) obtained from quantitative magnetic resonance. Isotope dilution-space estimates from δ(2)H and δ(18)O values in the blood were similar to and strongly correlated with TBW measurements (R(2) = 0.99). The (2)H and (18)O (ppm) in breath and blood were also highly correlated (R(2) = 0.99 and 0.98, respectively); however, isotope concentrations in breath were always less enriched than those in blood and slightly higher than expected, given assumed fractionation values between blood and breath. Overall, rCO2 measurements from breath were strongly correlated with those from the blood (R(2) = 0.90). We suggest that this technique will find wide application in studies of animal and human energetics in the field and laboratory. We also provide suggestions for ways this technique could be further improved.

  8. The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Savage, Paul S.; Moynier, Frédéric

    2014-10-01

    due to intensive impact-induced shearing stress, or the ultimate destruction of the Shallowater parent body. Analysis of separated enstatite meteorite mineral phases show that the magnetic phase (Fe metal) is systematically enriched in the heavier Fe isotopes when compared to non-magnetic phases (Fe hosted in troilite), which agrees with previous experimental observations and theoretical calculations. The difference between magnetic and non-magnetic phases from enstatite achondrites provides an equilibrium metal-sulfide Fe isotopic fractionation factor of Δ56Femetal-troilite = δ56Femetal - δ56Fetroilite of 0.129 ± 0.060‰ (2 SE) at 1060 ± 80 K, which confirms the predictions of previous theoretical calculations.

  9. Gas Emissions in Planck Cold Dust Clumps—A Survey of the J = 1-0 Transitions of 12CO, 13CO, and C18O

    NASA Astrophysics Data System (ADS)

    Wu, Yuefang; Liu, Tie; Meng, Fanyi; Li, Di; Qin, Sheng-Li; Ju, Bing-Gang

    2012-09-01

    A survey toward 674 Planck cold clumps of the Early Cold Core Catalogue (ECC) in the J = 1-0 transitions of 12CO, 13CO, and C18O has been carried out using the Purple Mountain Observatory 13.7 m telescope. Six hundred seventy-three clumps were detected with 12CO and 13CO emission, and 68% of the sample has C18O emission. Additional velocity components were also identified. A close consistency of the three line peak velocities was revealed for the first time. Kinematic distances are given for all the velocity components, and half of the clumps are located within 0.5 and 1.5 kpc. Excitation temperatures range from 4 to 27 K, slightly larger than those of Td . Line width analysis shows that the majority of ECC clumps are low-mass clumps. Column densities N_{H_{2}} span from 1020 to 4.5 × 1022 cm-2 with an average value of (4.4 ± 3.6) × 1021 cm-2. N_{H_{2}} cumulative fraction distribution deviates from the lognormal distribution, which is attributed to optical depth. The average abundance ratio of the 13CO to C18O in these clumps is 7.0 ± 3.8, higher than the terrestrial value. Dust and gas are well coupled in 95% of the clumps. Blue profile asymmetry, red profile asymmetry, and total line asymmetry were found in less than 10% of the clumps, generally indicating that star formation is not yet developed. Ten clumps were mapped. Twelve velocity components and 22 cores were obtained. Their morphologies include extended diffuse, dense, isolated, cometary, and filament, of which the last is the majority. Twenty cores are starless, and only seven cores seem to be in a gravitationally bound state. Planck cold clumps are the most quiescent among the samples of weak red IRAS, infrared dark clouds, UC H II candidates, extended green objects, and methanol maser sources, suggesting that Planck cold clumps have expanded the horizon of cold astronomy.

  10. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: international collaborative study report.

    PubMed

    Thomas, Freddy; Jamin, Eric

    2009-09-01

    An international collaborative study of isotopic methods applied to control the authenticity of vinegar was organized in order to support the recognition of these procedures as official methods. The determination of the 2H/1H ratio of the methyl site of acetic acid by SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and the determination of the 13C/12C ratio, by IRMS (isotope ratio mass spectrometry) provide complementary information to characterize the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid. Both methods use the same initial steps to recover pure acetic acid from vinegar. In the case of wine vinegar, the determination of the 18O/16O ratio of water by IRMS allows to differentiate wine vinegar from vinegars made from dried grapes. The same set of vinegar samples was used to validate these three determinations. The precision parameters of the method for measuring delta13C (carbon isotopic deviation) were found to be similar to the values previously obtained for similar methods applied to wine ethanol or sugars extracted from fruit juices: the average repeatability (r) was 0.45 per thousand, and the average reproducibility (R) was 0.91 per thousand. As expected from previous in-house study of the uncertainties, the precision parameters of the method for measuring the 2H/1H ratio of the methyl site were found to be slightly higher than the values previously obtained for similar methods applied to wine ethanol or fermentation ethanol in fruit juices: the average repeatability was 1.34 ppm, and the average reproducibility was 1.62 ppm. This precision is still significantly smaller than the differences between various acetic acid sources (delta13C and delta18O) and allows a satisfactory discrimination of vinegar types. The precision parameters of the method for measuring delta18O were found to be similar to the values previously obtained for other methods applied to wine and

  11. Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250°C by in situ microanalysis of experimental products and application to zoned low δ30Si quartz overgrowths

    DOE PAGES

    Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; ...

    2015-12-01

    The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up tomore » 235 μm thick were precipitated in silica–H2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα30Si(Qtz–fluid) = (0.15 ± 0.03) * 106/T2 and 1000lnα18O(Qtz–fluid) = (2.91 ± 0.04) * 106/T2 when extended to zero fractionation at infinite temperature. Values of δ30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ18O and δ30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.« less

  12. Fractional randomness

    NASA Astrophysics Data System (ADS)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  13. Neotropical eocene coastal floras and [sup 18]O/[sup 16]O-estimated warmer vs. cooler equatorial waters

    SciTech Connect

    Graham, A. )

    1994-03-01

    The history of the earth's sea-surface temperature (SST) in equatorial regions during the Tertiary is unsettled because of uncertainty as to the presence and extent of glaciers during the Paleogene. The [sup 16]O trapped in glaciers and subsequently released back to the ocean basins as meltwater during interglacials affects the [sup 18]O/[sup 16]O ratio of sea water, one of the variables that must be known for oxygen isotope paleotemperature analysis of calcareous fossils. Estimates of SST range from [approximately]18 to 20 C, assuming an ice-free earth, to [approximately]28 C assuming glaciers were present in the Paleogene. Low latitude SST presently averages 28C, so the former estimate gives a value 8 to 10 C cooler than present, while the latter gives a value as warm or slightly warmer than present. The figures are important for interpreting terrestrial vegetational history because the temperature differential between low and high latitudes is a major factor in determining global climates through the control of poleward transfer of heat. The middle( ) to late Eocene Gatuncillo Formation palynoflora of Panama was deposited at the ocean-continental interface at [approximately]9[degrees]N latitude. The individual components and paleocommunities are distinctly tropical and similar to the present vegetation along the Atlantic coast of southern Central America. This is consistent with data emerging from other recently studied tropical coastal biotas and represents a contribution from paleobiology toward eventually resolving the problem of Eocene equatorial marine environments. Collectively, the evidence is beginning to favor a model of Eocene SST near present values. 50 refs., 1 fig., 2 tabs.

  14. Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

    PubMed Central

    Starkey, Jonathan M.; Zhao, Yingxin; Sadygov, Rovshan G.; Haidacher, Sigmund J.; LeJeune, Wanda S.; Dey, Nilay; Luxon, Bruce A.; Kane, Maureen A.; Napoli, Joseph L.; Denner, Larry; Tilton, Ronald G.

    2010-01-01

    Background Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes. Methodology/Principal Findings Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, 18O- and 16O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change ≥1.5 and p≤0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARβ/δ mRNA. Conclusions/Significance Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in

  15. γ -ray spectroscopy of fission fragments produced in 208Pb(18O ,f )

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Moin Shaikh, Md.; Sharma, H. P.; Chakraborty, S.; Palit, R.; Pillay, R. G.; Nanal, V.; Saha, S.; Sethi, J.; Biswas, D. C.

    2015-08-01

    Prompt gamma-ray spectroscopy of fission fragments produced in the heavy-ion induced fusion-fission reaction 208Pb(18O,f ) at E =90 MeV has been performed. The relative isotopic yields of the fission fragments and the fragment mass distribution have been studied. Structures in the mass distribution have been discussed in the light of earlier results. Relative yields of several odd-A isotopes of Mo, Ru, Pd, and Cd and the odd-A isotones with N =62 and 64 have been studied along with the yields of the neighboring even-Z , even-N fragments and correlated to nuclear structural effects. The average total neutron multiplicity during fission has been measured to be 5.48 ±0.59 . The level schemes of the two neutron-rich nuclei 110Pd and 116Cd have been studied from γ -ray triple coincidence data. A large number of transitions, previously reported only from β -decay studies, have been observed in 110Pd for the first time. The yrast band in 116Cd has been extended up to spin (16+). In addition, a rotational sequence built upon an excited 5- state in 116Cd has been observed up to (13-). The level schemes have been discussed in the context of existing results, both experimental and theoretical, in the literature.

  16. The ({sup 18}O, {sup 16}O) reaction as a probe for nuclear spectroscopy

    SciTech Connect

    Cappuzzello, F.; Bondì, M.; Nicolosi, D.; Tropea, S.; Agodi, A.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; Borello-Lewin, T.; Rodrigues, M. R. D.; De Napoli, M.; Linares, R.

    2014-11-11

    The response of nuclei to the ({sup 18}O, {sup 16}O) two-neutron transfer reaction at 84 MeV incident energy has been systematically studied at the Catania INFN-LNS laboratory. The experiments were performed using several solid targets from light ({sup 9}Be, {sup 11}B, {sup 12,13}C, {sup 16}O, {sup 28}Si) to heavy ones ({sup 58,64}Ni, {sup 120}Sn, {sup 208}Pb). The {sup 16}O ejectiles were detected at forward angles by the MAGNEX magnetic spectrometer. Exploiting the large momentum acceptance (−10%, +14%) and solid angle (50 msr) of the spectrometer, energy spectra were obtained with a relevant yield up to about 20 MeV excitation energy. The application of the powerful trajectory reconstruction technique did allow to get energy spectra with energy resolution of about 150 keV and angular distributions with angular resolution better than 0.3°. A common feature observed with light nuclei is the appearance of unknown resonant structures at high excitation energy. The strong population of these latter together with the measured width can reveal the excitation of a collective mode connected with the transfer of a pair.

  17. Oxygen determination in materials by 18O(p,αγ)15N nuclear reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Sunitha, Y.; Reddy, G. L. N.; Sukumar, A. A.; Ramana, J. V.; Sarkar, A.; Verma, Rakesh

    2016-07-01

    The paper presents a proton induced γ-ray emission method based on 18O(p,αγ)15N nuclear reaction to determine bulk oxygen in materials. The determination involves the measurement of 5.27 MeV γ-rays emitted following the de-excitation of 15N nuclei. A description of the energetics of the reaction is given to provide an insight into the origin of 5.27 MeV γ-rays. In addition, thick target γ-ray yields and the limits of detection are measured to ascertain the analytical potential of the reaction. The thick-target γ-ray yields are measured with a high purity germanium detector and a bismuth germanate detector at 0° as well as 90° angles in 3.0-4.2 MeV proton energy region. The best limit of detection of about 1.3 at.% is achieved at 4.2 MeV proton energy for measurements at 0° as well 90° angles with the bismuth germanate detector while the uncertainty in quantitative analysis is <8%. The reaction has a probing depth of several tens of microns. Interferences can arise from fluorine due to the occurrence of 19F(p,αγ)16O reaction that emits 6-7 MeV γ-rays. The analytical potential of the methodology is demonstrated by determining oxygen in several oxide as well as non-oxide materials.

  18. A New Look at 29Al and 27Mg from the 18O + 14C Reaction

    NASA Astrophysics Data System (ADS)

    Tabor, Samuel; Dungan, Rutger; Volya, Alexander; Tripathi, Vandana; Abromeit, Brittany; Caussyn, David; Kravvaris, Konstantinos; Lubna, Rebeka; Tai, Pei-Luan

    2016-09-01

    It was possible to compare moderately high-spin states in a nearby pair of odd proton and odd neutron s-d shell nuclei by observing proton-gamma-gamma or alpha-gamma-gamma coincidences, respectively, following the fusion of long-lived radioactive 14C with neutron-rich 18O at a beam energy of 40 MeV using the FSU gamma detector array with digital data acquisition. Eight new states were seen in 29Al, all of which decay directly or indirectly to the 9/2 + level, the highest previously known spin in 29Al. Some of the new states form a very likely yrast M1 decay sequence from (15/2 +) down to the 5/2 + ground state. The new states are relatively well described by pure s-d shell model calculations using the USDA interaction. By contrast the 4 new states found in 27Mg are divided between positive and negative parities reaching up to (13/2 +) and (11/2-). Radiative decays of neutron unbound states in 27Mg will be discussed. Supported in part by NSF Grant No. 1401574.

  19. Method for selective recovery of PET-usable quantities of [{sup 18}F] fluoride and [{sup 13}N] nitrate/nitrite from a single irradiation of low-enriched [{sup 18}O] water

    DOEpatents

    Ferrieri, R.A.; Schlyer, D.J.; Shea, C.

    1995-06-13

    A process for simultaneously producing PET-usable quantities of [{sup 13}N]NH{sub 3} and [{sup 18}F]F{sup {minus}} for radiotracer synthesis is disclosed. The process includes producing [{sup 13}N]NO{sub 2}{sup {minus}}/NO{sub 3}{sup {minus}}and [{sup 18}F]F{sup {minus}} simultaneously by exposing a low-enriched (20%-30%) [{sup 18}O]H{sub 2}O target to proton irradiation, sequentially isolating the [{sup 13}N]NO{sub 2}{sup {minus}}/NO{sub 3}{sup {minus}} and [{sup 18}F]F{sup {minus}} from the [{sup 18}O]H{sub 2}O target, and reducing the [{sup 13}N]NO{sub 2}{sup {minus}}/NO{sub 3}{sup {minus}} to [{sup 13}N]NH{sub 3}. The [{sup 13}N]NH{sub 3} and [{sup 18}F]F{sup {minus}} products are then conveyed to a laboratory for radiotracer applications. The process employs an anion exchange resin for isolation of the isotopes from the [{sup 18}O]H{sub 2}O, and sequential elution of [{sup 13}N]NO{sub 2}{sup {minus}}/NO{sub 3}{sup {minus}} and [{sup 18}F]F{sup {minus}} fractions. Also the apparatus is disclosed for simultaneously producing PET-usable quantities of [{sup 13}N]NH{sub 3} and [{sup 18}F]F{sup {minus}} from a single irradiation of a single low-enriched [{sup 18}O]H{sub 2}O target. 2 figs.

  20. Complete Measurement of Stable Isotopes in N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O) Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Gupta, M.

    2014-12-01

    Nitrate contamination in water is a worldwide environmental problem and source apportionment is critical to managing nitrate pollution. Fractionation caused by physical, chemical and biological processes alters the isotope ratios of nitrates (15N/14N, 18O/16O and 17O/16O) and biochemical nitrification and denitrification impart different intramolecular site preference (15N14NO vs. 14N15NO). Additionally, atmospheric nitrate is anomalously enriched in 17O compared to other nitrate sources. The anomaly (Δ17O) is conserved during fractionation processes, providing a tracer of atmospheric nitrate. All of these effects can be used to apportion nitrate in soil. Current technology for measuring nitrate isotopes is complicated and costly - it involves conversion of nitrate to nitrous oxide (N2O), purification, preconcentration and measurement by isotope ratio mass spectrometer (IRMS). Site specific measurements require a custom IRMS. There is a pressing need to make this measurement simpler and more accessible. Los Gatos Research has developed a next generation mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to quantify all stable isotope ratios of N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O). We present the latest performance data demonstrating the precision and accuracy of the OA-ICOS based measurement. At an N2O concentration of 322 ppb, the analyzer quantifies [N2O], δ15N, δ15Na, δ15Nb, and δ18O with a precision of ±0.05 ppb, ±0.4 ‰, ±0.45 ‰, and ±0.6 ‰, and ±0.8 ‰ respectively (1σ, 100s; 1σ, 1000s for δ18O). Measurements of gas standards demonstrate accuracy better than ±1 ‰ for isotope ratios over a wide dynamic range (200 - 100,000 ppb). The measurement of δ17O requires a higher concentration (1 - 50 ppm), easily obtainable through conversion of nitrates in water. For 10 ppm of N2O, the instrument achieves a δ17O precision of ±0.05 ‰ (1σ, 1000s). This performance is sufficient to quantify atmospheric

  1. An Appetite for Fractions

    ERIC Educational Resources Information Center

    Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane

    2012-01-01

    This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…

  2. Influence of Changing Atmospheric Circulation on Precipitation δ 18O-Temperature Relations in Canada during the Holocene

    NASA Astrophysics Data System (ADS)

    Edwards, Thomas W. D.; Wolfe, Brent B.; Macdonald, Glen M.

    1996-11-01

    Postglacial precipitation δ 18O history has been reconstructed for two regions of Canada. Long-term shifts in the oxygen-isotope composition of annual precipitation (δ 18O p) in southern Ontario appear to have occurred with a consistent isotope-temperature relation throughout the past 11,500 14C yr. The modern isotope-temperature relation in central Canada near present boreal treeline evidently became established between 5000 and 4000 years ago, although the relation during the last glacial maximum and deglaciation may also have been similar to present. In the early Holocene, however, unusually high δ 18O papparently persisted, in spite of low temperature locally, probably associated with high zonal index. A rudimentary sensitivity analysis suggests that a small reduction in distillation of moisture in Pacific air masses traversing the western Cordillera, perhaps accompanied by a higher summer:winter precipitation ratio, could have been responsible for the observed effect. Equivalent isotope-temperature "anomalies" apparently occurred elsewhere in western North America in response to changing early-Holocene atmospheric circulation patterns, suggesting that a time-slice map of δ 18O pfor North America during this period might provide a useful target for testing and validation of atmospheric general circulation model simulations using isotopic water tracers.

  3. delta13C and delta18O trends across overstory environments in whole foliage and cellulose of three Pinus species.

    PubMed

    Powers, Matthew D; Pregitzer, Kurt S; Palik, Brian J

    2008-09-01

    Stable isotope ratios of carbon (delta(13)C) and oxygen (delta(18)O) are increasingly used to investigate environmental influences on plant physiology. Cellulose is often isolated for isotopic studies, but some authors have questioned the value of this process. We studied trends in delta(13)C and delta(18)O of whole foliage and holocellulose from seedlings of three Pinus species across three overstory environments to evaluate the benefits of holocellulose extraction in the context of a traditional ecological experiment. Both tissue types showed increasing delta(13)C from closed-canopy controls to thinned plots to 0.3 ha canopy gaps, and no change in delta(18)O between overstory environments. delta(13)C of P. resinosa and P. strobus was greater than delta(13)C of P. banksiana in whole foliage and holocellulose samples, and there were no differences in delta(18)O associated with species in either tissue type. Our results suggest whole foliage and holocellulose provide similar information about isotopic trends across broad environmental gradients and between species, but holocellulose may be better suited for studying differences in stable isotope composition between multiple species across several treatments.

  4. First Experimental Measurement of the {sup 18}O(p,{alpha}){sup 15}N Reaction at Astrophysical Energies

    SciTech Connect

    La Cognata, M.; Sergi, M. L.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Kiss, G.; Lamia, L.; Pizzone, R. G.; Romano, S.; Mukhamedzhanov, A.; Goldberg, V.; Tribble, R.; Coc, A.; Hammache, F.; Sereville, N. de; Tumino, A.

    2010-11-24

    The {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N reactions are of primary importance in several as-trophysical scenarios, including nucleosynthesis inside Asymptotic Giant Branch stars and oxygen and nitrogen isotopic ratios in meteorite grains. They are also key reactions to understand exotic systems such as R-Coronae Borealis stars and novae. Thus, the measurement of their cross sections in the low energy region can be crucial to reduce the nuclear uncertainty on theoretical predictions, because the resonance parameters are poorly determined. The Trojan Horse Method, in its newly developed form particularly suited to investigate low-energy resonances, has been applied to the {sup 2}H({sup 18}O,{alpha}{sup 15}N)n and {sup 2}H({sup 17}O,{alpha}{sup 14}N)n reactions to deduce the {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N cross sections at low energies. Resonances in the {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N excitation functions have been studied and the resonance parameters deduced.

  5. Improved online δ18O measurements of nitrogen- and sulfur-bearing organic materials and a proposed analytical protocol

    USGS Publications Warehouse

    Qi, H.; Coplen, T.B.; Wassenaar, L.I.

    2011-01-01

    It is well known that N2 in the ion source of a mass spectrometer interferes with the CO background during the δ18O measurement of carbon monoxide. A similar problem arises with the high-temperature conversion (HTC) analysis of nitrogenous O-bearing samples (e.g. nitrates and keratins) to CO for δ18O measurement, where the sample introduces a significant N2 peak before the CO peak, making determination of accurate oxygen isotope ratios difficult. Although using a gas chromatography (GC) column longer than that commonly provided by manufacturers (0.6 m) can improve the efficiency of separation of CO and N2 and using a valve to divert nitrogen and prevent it from entering the ion source of a mass spectrometer improved measurement results, biased δ18O values could still be obtained. A careful evaluation of the performance of the GC separation column was carried out. With optimal GC columns, the δ18O reproducibility of human hair keratins and other keratin materials was better than ±0.15 ‰ (n = 5; for the internal analytical reproducibility), and better than ±0.10 ‰ (n = 4; for the external analytical reproducibility).

  6. Improved online δ18O measurements of nitrogen- and sulfur-bearing organic materials and a proposed analytical protocol.

    PubMed

    Qi, Haiping; Coplen, Tyler B; Wassenaar, Leonard I

    2011-07-30

    It is well known that N(2) in the ion source of a mass spectrometer interferes with the CO background during the δ(18)O measurement of carbon monoxide. A similar problem arises with the high-temperature conversion (HTC) analysis of nitrogenous O-bearing samples (e.g. nitrates and keratins) to CO for δ(18)O measurement, where the sample introduces a significant N(2) peak before the CO peak, making determination of accurate oxygen isotope ratios difficult. Although using a gas chromatography (GC) column longer than that commonly provided by manufacturers (0.6 m) can improve the efficiency of separation of CO and N(2) and using a valve to divert nitrogen and prevent it from entering the ion source of a mass spectrometer improved measurement results, biased δ(18)O values could still be obtained. A careful evaluation of the performance of the GC separation column was carried out. With optimal GC columns, the δ(18)O reproducibility of human hair keratins and other keratin materials was better than ± 0.15 ‰ (n=5; for the internal analytical reproducibility), and better than ± 0.10 ‰ (n=4; for the external analytical reproducibility).

  7. A model of the 4000-year paleohydrology (δ18O) record from Lake Salpetén, Guatemala

    NASA Astrophysics Data System (ADS)

    Rosenmeier, Michael F.; Brenner, Mark; Hodell, David A.; Martin, Jonathan B.; Curtis, Jason H.; Binford, Michael W.

    2016-03-01

    A simple mass-balance model provides insights into the influence of catchment vegetation changes and climate variability on the hydrologic and stable oxygen isotope (δ18O) evolution of Lake Salpetén, in the Maya Lowlands of northern Guatemala. Model simulations for the last 4000 years incorporate pollen-inferred changes in vegetation cover and account for 75% of the variance observed in the biogenic carbonate δ18O record from a long lake sediment core. Vegetation-driven hydrologic changes, however, failed to capture the full range of late Holocene sediment core δ18O variability. The model requires incorporation of additional shifts in catchment vegetation cover, inclusion of regional precipitation changes, or likely both, to explain the fluctuations observed in the lake core oxygen isotope record. Climatic interpretation of the model results suggests that there was relatively greater moisture availability between about 2400 and 1800 years ago, but increased δ18O values centered at ~ 3300, 2900, 500, and 200 calendar years before present (cal yr BP) indicate abrupt precipitation decreases. There is evidence for protracted aridity between 1500 and 800 cal yr BP.

  8. Pathways for nitrate release from an alpine watershed: determination using d15N and d18O

    USGS Publications Warehouse

    Campbell, Donald H.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Tonnessen, Kathy A.

    2002-01-01

    [1] Snowpack, snowmelt, precipitation, surface water, and groundwater samples from the Loch Vale watershed in Colorado were analyzed for ??15N and ??18O of nitrate to determine the processes controlling the release of atmospherically deposited nitrogen from alpine and subalpine ecosystems. Although overlap was found between the ??15N(NO3) values for all water types (-4 to +6???), the ??18O(NO3) values for surface water and groundwater (+10 to +30???) were usually distinct from snowpack, snowmelt, and rainfall values (+40 to +70???). During snowmelt, ??18O(NO3) indicated that about half of the nitrate in stream water was the product of microbial nitrification; at other times that amount was greater than half. Springs emerging from talus deposits had high nitrate concentrations and a seasonal pattern in ??18O(NO3) that was similar to the pattern in the streams, indicating that shallow groundwater in talus deposits is a likely source of stream water nitrate. Only a few samples of surface water and groundwater collected during early snowmelt and large summer rain events had isotopic compositions that indicated most of the nitrate came directly from atmospheric deposition with no biological assimilation and release. This study demonstrates the value of the nitrate double-isotope technique for determining nitrogen-cycling processes and sources of nitrate in small, undisturbed watersheds that are enriched with inorganic nitrogen.

  9. Integrated platform with a combination of online digestion and (18)O labeling for proteome quantification via an immobilized trypsin microreactor.

    PubMed

    Zhang, Shen; Yuan, Huiming; Zhao, Baofeng; Zhou, Yuan; Jiang, Hao; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2015-08-07

    A novel automated integrated platform for quantitative proteome analysis was established with a combination of online digestion of proteins and in situ(18)O labeling by an immobilized enzyme reactor (IMER); digests were captured and desalted by a C18 trap column, and peptides were analyzed by nanoRPLC-ESI-MS/MS. Bovine serum albumin (BSA) was used to evaluate the performance of the developed platform. Compared with traditional offline methods, not only the digestion and labeling time was shortened from 36 h to just 1 h, but also the labeling efficiency was improved from 95% to 99%. Furthermore, the back-exchange from (18)O to (16)O could also be efficiently avoided by the use of IMER. The platform was further evaluated by the quantitative analysis of 100 ng (18)O and (16)O online labeled yeast sample with a mixing ratio of 1 : 1, and the results showed significantly improved sensitivity and reproducibility, as well as improved quantitative accuracy than offline method. With these advantages, the integrated platform was finally applied to the quantitative profiling of 100 ng proteins extracted from two mouse hepatocarcinoma ascites syngeneic cell lines with high and low lymph node metastases rates, and ten differentially expressed proteins were successfully found, most of which were related to tumorigenesis and tumor metastasis. All these results demonstrate that the developed integrated platform can provide a new way for high efficiency (18)O labeling and the quantitative analysis of trace amounts of sample with high accuracy and high reproducibility.

  10. Storage Stability of Keratinocyte Growth Factor-2 in Lyophilized Formulations: Effects of Formulation Physical Properties and Protein Fraction at the Solid-Air Interface

    PubMed Central

    Devineni, Dilip; Gonschorek, Christoph; Cicerone, Marcus T; Xu, Yemin; Carpenter, John F.; Randolph, Theodore W.

    2014-01-01

    Lyophilized formulations of keratinocyte growth factor-2 (KGF-2) were prepared with a range of disaccharide (sucrose or trehalose) and hydroxyethyl starch (HES) mass ratios. Protein degradation was assessed as a function of time of storage of the dried formulations at 40, 50 and 60 °C. Lyophilized and stored samples were rehydrated, and protein degradation was quantified by measuring loss of monomeric protein with size exclusion chromatography and by determining chemical degradation in the soluble fraction with reverse-phase chromatography. The secondary structure of the protein in the lyophilized formulations was studied with infrared spectroscopy. The magnitudes of degradation were compared the key physical properties of the formulations including retention of protein native secondary structure, glass transition temperature (Tg), inverse mean square displacements −1 for hydrogen atoms (fast β relaxation), and the relaxation time τβ, which correlates with relaxation due to fast Johari-Goldstein motions in the glass[1]. In addition, specific surface areas of the lyophilized formulations were determined by Brunauer-Emmet-Teller analysis of krypton adsorption isotherms and used to estimate the fraction of the KGF-2 molecules residing at the solid-air interface. KGF-2 degradation rates were highest in formulations wherein the protein’s structure was most perturbed, and wherein β relaxations were fastest, but the dominant factor governing KGF-2 degradation in freeze-dried formulations was the fraction of the protein found at the glass solid-air interface. PMID:24859390

  11. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  12. Gallotannin-rich Caesalpinia spinosa fraction decreases the primary tumor and factors associated with poor prognosis in a murine breast cancer model

    PubMed Central

    2013-01-01

    Background Several treatment alternatives are available for primary breast cancer, although those for metastatic disease or inflammation associated with tumor progression are ineffective. Therefore, there is a great need for new therapeutic alternatives capable of generating an immune response against residual tumor cells, thus contributing to eradication of micrometastases and cancer stem cells. The use of complex natural products is an excellent therapeutic alternative widely used by Chinese, Hindu, Egyptian, and ancestral Latin-American Indian populations. Methods The present study evaluated cytotoxic, antitumor, and tumor progression activities of a gallotannin-rich fraction derived from Caesalpinia spinosa (P2Et). The parameters evaluated in vitro were mitochondrial membrane depolarization, phosphatidylserine externalization, caspase 3 activation, DNA fragmentation, and clonogenic activity. The parameters evaluated in vivo were tumor growth, leukocyte number, metastatic cell number, and cytokine production by flow cytometry. Results The in vitro results showed that the P2Et fraction induced apoptosis with mitochondrial membrane potential loss, phosphatidylserine externalization, caspase 3 activation, DNA fragmentation, and decreased clonogenic capacity of 4T1 cells. In vivo, the P2Et fraction induced primary tumor reduction in terms of diameter and weight in BALB/c mice transplanted with 4T1 cells and decreased numbers of metastatic cells, mainly in the spleen. Furthermore, decreases in the number of peripheral blood leukocytes (leukemoid reaction) and interleukin 6 (IL-6) serum levels were found, which are events associated with a poor prognosis. The P2Et fraction exerts its activity on the primary tumor, reduces cell migration to distant organs, and decreases IL-6 serum levels, implying tumor microenvironment mechanisms. Conclusions Overall, the P2Et fraction lessens risk factors associated with tumor progression and diminishes primary tumor size, showing

  13. Gap reversal at filling factors 3+1/3 and 3+1/5: towards novel topological order in the fractional quantum Hall regime.

    PubMed

    Kleinbaum, Ethan; Kumar, Ashwani; Pfeiffer, L N; West, K W; Csáthy, G A

    2015-02-20

    In the region of the second Landau level several theories predict fractional quantum Hall states with novel topological order. We report the opening of an energy gap at the filling factor ν=3+1/3, firmly establishing the ground state as a fractional quantum Hall state. This and other odd-denominator states unexpectedly break particle-hole symmetry. Specifically, we find that the relative magnitudes of the energy gaps of the ν=3+1/3 and 3+1/5 states from the upper spin branch are reversed when compared to the ν=2+1/3 and 2+1/5 counterpart states in the lower spin branch. Our findings raise the possibility that at least one of the former states is of an unusual topological order.

  14. Probabilistic Stack of 180 Plio-Pleistocene Benthic δ18O Records Constructed Using Profile Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Lisiecki, L. E.; Ahn, S.; Khider, D.; Lawrence, C.

    2015-12-01

    Stratigraphic alignment is the primary way in which long marine climate records are placed on a common age model. We previously presented a probabilistic pairwise alignment algorithm, HMM-Match, which uses hidden Markov models to estimate alignment uncertainty and apply it to the alignment of benthic δ18O records to the "LR04" global benthic stack of Lisiecki and Raymo (2005) (Lin et al., 2014). However, since the LR04 stack is deterministic, the algorithm does not account for uncertainty in the stack. Here we address this limitation by developing a probabilistic stack, HMM-Stack. In this model the stack is a probabilistic inhomogeneous hidden Markov model, a.k.a. profile HMM. The HMM-stack is represented by a probabilistic model that "emits" each of the input records (Durbin et al., 1998). The unknown parameters of this model are learned from a set of input records using the expectation maximization (EM) algorithm. Because the multiple alignment of these records is unknown and uncertain, the expected contribution of each input point to each point in the stack is determined probabilistically. For each time step in the HMM-stack, δ18O values are described by a Gaussian probability distribution. Available δ18O records (N=180) are employed to estimate the mean and variance of δ18O at each time point. The mean of HMM-Stack follows the predicted pattern of glacial cycles with increased amplitude after the Pliocene-Pleistocene boundary and also larger and longer cycles after the mid-Pleistocene transition. Furthermore, the δ18O variance increases with age, producing a substantial loss in the signal-to-noise ratio. Not surprisingly, uncertainty in alignment and thus estimated age also increase substantially in the older portion of the stack.

  15. How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes

    PubMed Central

    Cabrera-Bosquet, Llorenç; Sánchez, Ciro; Araus, José Luis

    2009-01-01

    Background and Aims Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Δ18O despite the potential relevance of this trait in C4 crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C3 cereals, but little is known of the usefulness of this measure in C4 cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Δ13C and Δ18O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize. Methods A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Δ13C were determined in leaves and kernels. In addition, Δ18O was measured in kernels. Key Results Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink–source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Δ18O, whilst Δ13C did not explain a significant percentage of such variation. Conclusions Ash content in leaves and kernels proved a useful alternative or complementary criterion to Δ18O in kernels for assessing yield performance in maize grown under drought conditions. PMID:19773272

  16. Diagenetic overprinting of the sphaerosiderite palaeoclimate proxy: are records of pedogenic groundwater δ18O values preserved?

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzkes, Brian J.

    2004-01-01

    Meteoric sphaerosiderite lines (MSLs), defined by invariant ??18O and variable ??13C values, are obtained from ancient wetland palaeosol sphaerosiderites (millimetre-scale FeCO3 nodules), and are a stable isotope proxy record of terrestrial meteoric isotopic compositions. The palaeoclimatic utility of sphaerosiderite has been well tested; however, diagenetically altered horizons that do not yield simple MSLs have been encountered. Well-preserved sphaerosiderites typically exhibit smooth exteriors, spherulitic crystalline microstructures and relatively pure (> 95 mol% FeCO3) compositions. Diagenetically altered sphaerosiderites typically exhibit corroded margins, replacement textures and increased crystal lattice substitution of Ca2+, Mg2+ and Mn2+ for Fe2+. Examples of diagenetically altered Cretaceous sphaerosiderite-bearing palaeosols from the Dakota Formation (Kansas), the Swan River Formation (Saskatchewan) and the Success S2 Formation (Saskatchewan) were examined in this study to determine the extent to which original, early diagenetic ??18O and ??13C values are preserved. All three units contain poikilotopic calcite cements with significantly different ??18O and ??13C values from the co-occurring sphaerosiderites. The complete isolation of all carbonate phases is necessary to ensure that inadvertent physical mixing does not affect the isotopic analyses. The Dakota and Swan River samples ultimately yield distinct MSLs for the sphaerosiderites, and MCLs (meteoric calcite lines) for the calcite cements. The Success S2 sample yields a covariant ??18O vs. ??13C trend resulting from precipitation in pore fluids that were mixtures between meteoric and modified marine phreatic waters. The calcite cements in the Success S2 Formation yield meteoric ??18O and ??13C values. A stable isotope mass balance model was used to produce hyperbolic fluid mixing trends between meteoric and modified marine end-member compositions. Modelled hyperbolic fluid mixing curves for the

  17. A new derivatization method for δ18O analysis of individual carbohydrates with GC-Pyrolysis-IRMS

    NASA Astrophysics Data System (ADS)

    Lehmann, M. M.; Siegwolf, R. T.; Saurer, M.; Blees, J.; Fischer, M.; Zech, M.

    2015-12-01

    Compound specific isotope analysis (CSIA) with gas chromatography coupled to an isotope ratio mass spectrometer (GC-Pyr-IRMS) is nowadays a powerful tool that is widely used by a broad spectrum of research fields to investigate the isotopic signature of diverse metabolites. While many CSIA methods for carbon, hydrogen, and nitrogen isotopes are known, CSIA methods for the analysis of oxygen isotopes (δ18O) are still not widely established. Especially, reliable and precise methods for the δ18O analyses of individual carbohydrates are scarce, which is caused by the highly sensitive nature of the sugars. However, carbohydrates are important components of living organisms, source for many biochemical reactions, and can be found in all organisms, in soils, sediments, and in air. Thus, a method, allowing the investigation of the 18O/16O ratio in carbohydrates will enhance the scope of research using isotopes. We developed a new and easy to handle derivatization method to determine δ18O in carbohydrates with GC-Pyr-IRMS that consists of a catalyzed one-pot reaction in acetonitrile, resulting in complete methylation of all sugar hydroxyl groups within 24 hours, with silver oxide as the proton acceptor and methyl iodide as the methyl group carrier. Results derived from standard material show unrivalled δ18O precision ranging from about 0.2 to 1.1 ‰ for different individual carbohydrates of different classes and a generally very good accuracy, with a narrow range of 0.2 ‰ around the reference value, despite of high area variations. We applied this method on real samples, demonstrating that the method can commonly be used for analyzing honey samples, and for the analyses of more complex carbohydrate mixtures from plant leaves, including glucose, fructose, pinitol, and sucrose. Our new method may be used for food, beverage, and medical applications, as well as for biogeochemical and paleoclimatic sciences.

  18. Stable isotope time-series in mammalian teeth: In situ δ18O from the innermost enamel layer

    NASA Astrophysics Data System (ADS)

    Blumenthal, Scott A.; Cerling, Thure E.; Chritz, Kendra L.; Bromage, Timothy G.; Kozdon, Reinhard; Valley, John W.

    2014-01-01

    Stable carbon and oxygen isotope ratios in mammalian tooth enamel are commonly used to understand the diets and environments of modern and fossil animals. Isotope variation during the period of enamel formation can be recovered by intra-tooth microsampling along the direction of growth. However, conventional sampling of the enamel surface provides highly time-averaged records in part due to amelogenesis. We use backscattered electron imaging in the scanning electron microscope (BSE-SEM) to evaluate enamel mineralization in developing teeth from one rodent and two ungulates. Gray levels from BSE-SEM images suggest that the innermost enamel layer, <20 μm from the enamel-dentine junction, is highly mineralized early in enamel maturation and therefore may record a less attenuated isotopic signal than other layers. We sampled the right maxillary incisor from a woodrat subjected to an experimentally induced water-switch during the period of tooth development, and demonstrate that secondary ion mass spectrometry (SIMS) can be used to obtain δ18O values with 4-5-μm spots from mammalian tooth enamel. We also demonstrate that SIMS can be used to discretely sample the innermost enamel layer, which is too narrow for conventional microdrilling or laser ablation. An abrupt δ18O switch of 16.0‰ was captured in breath CO2, a proxy for body water, while a laser ablation enamel surface intra-tooth profile of the left incisor captured a δ18O range of 12.1‰. The innermost enamel profile captured a δ18O range of 15.7‰, which approaches the full magnitude of δ18O variation in the input signal. This approach will likely be most beneficial in taxa such as large mammalian herbivores, whose teeth are characterized by less rapid mineralization and therefore greater attenuation of the enamel isotope signal.

  19. Clumped Isotope Verification of δ18O-Based Freshwater Mussel Shell Growth Chronology for a High-Resolution Climate and River Discharge Record

    NASA Astrophysics Data System (ADS)

    VanPlantinga, A.; Grossman, E. L.; Passey, B. H.; Randklev, C.

    2015-12-01

    Isotope profiles in freshwater mussel shells can be used to reconstruct climate, water source, and river discharge, but problems arise from variable water temperature and δ18O. To resolve this complexity and expand the application of isotope sclerochronology to the study of past river systems, we measured δ18O and Δ47 in two common freshwater mussel species from the Brazos River in Texas. To compare the environmental record with the shell record and develop a sclerochronology, weekly water temperature and δ18O data were collected from the Brazos River near College Station from January 2012 to August 2013. The river data reveal complex, irregular patterns for predicted aragonite δ18O. Comparing δ18O profiles from micromilled transects (70-200 µm increments) of coeval shell growth within and between shells yielded consistent patterns. Shell δ18O can be accurately matched to predicted δ18O, providing a chronology of shell growth. However, without a water temperature and δ18O record, interpreting a sclerochronology would be impossible. Shell Δ47 can potentially provide a seasonal chronology to verify the δ18O sclerochronology, which would be invaluable for the use of δ18O sclerochronology in historical and ancient shells. For Δ47 analyses, samples were taken at 0.5 mm resolution in presumed seasonal dark and light growth bands. Clumped temperatures range between 21 and 35 ± 4˚C (Henkes et al., 2013) and track the river temperature record, supporting the interpreted shell δ18O chronology. Shell Δ47-calculated water δ18O values range from -1.2 to 1.5 ± 0.9‰ and match river δ18O. High-resolution shell δ18O profiles combined with Δ47 temperatures can reconstruct a weekly history of water δ18O, and with the observed river discharge vs. water δ18O relation, produce a qualitative record of river discharge. These analytical techniques applied to a historical Brazos River mussel shell collected prior to dam construction reveal weekly records of

  20. Posttraumatic Stress Disorder After High-Dose-Rate Brachytherapy for Cervical Cancer With 2 Fractions in 1 Application Under Spinal/Epidural Anesthesia: Incidence and Risk Factors

    SciTech Connect

    Kirchheiner, Kathrin; Czajka-Pepl, Agnieszka; Scharbert, Gisela; Wetzel, Léonore; Sturdza, Alina; Dörr, Wolfgang; Pötter, Richard

    2014-06-01

    Purpose: To investigate the psychological consequences of high-dose-rate brachytherapy with 2 fractions in 1 application under spinal/epidural anesthesia in the treatment of locally advanced cervical cancer. Methods and Materials: In 50 patients with locally advanced cervical cancer, validated questionnaires were used for prospective assessment of acute and posttraumatic stress disorder (ASD/PTSD) (Impact of Event Scale–Revision), anxiety/depression (Hospital Anxiety and Depression Scale), quality of life (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30/Cervical Cancer 24), physical functioning (World Health Organization performance status), and pain (visual analogue scale), before and during treatment and 1 week and 3 months after treatment. Qualitative interviews were recorded in open format for content analysis. Results: Symptoms of ASD occurred in 30% of patients 1 week after treatment; and of PTSD in 41% 3 months after treatment in association with this specific brachytherapy procedure. Pretreatment predictive variables explain 82% of the variance of PTSD symptoms. Helpful experiences were the support of the treatment team, psychological support, and a positive attitude. Stressful factors were pain, organizational problems during treatment, and immobility between brachytherapy fractions. Conclusions: The specific brachytherapy procedure, as performed in the investigated mono-institutional setting with 2 fractions in 1 application under spinal/epidural anesthesia, bears a considerable risk of traumatization. The source of stress seems to be not the brachytherapy application itself but the maintenance of the applicator under epidural anesthesia in the time between fractions. Patients at risk may be identified before treatment, to offer targeted psycho-social support. The patients' open reports regarding helpful experiences are an encouraging feedback for the treatment team; the reported stressful factors

  1. 18O Spatial Patterns of Vein Xylem Water, Leaf Water, and Dry Matter in Cotton Leaves

    PubMed Central

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-01-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves. PMID:12376664

  2. Experimental Energy Levels of HD18O and D_218O

    NASA Astrophysics Data System (ADS)

    Mikhailenko, S. N.; Naumenko, O. V.; Tashkun, S. A.; Liu, A.-W.; Hu, S.-M.

    2010-06-01

    Extended sets of experimental energy levels of HD18O and D_218O have been obtained as the result of the analysis of recent high-resolution spectra and previously reported data. Spectra of the enriched by deuterium and oxygen-18 water samples were recorded with a Bruker IFS 120HR spectrometer at room temperature in the 1000 - 9200 cm-1 range a,b for this purpose. The RITZ code h was used for analysis of the rotation-vibration transitions and the energy levels determination. New energy levels as well as comparison with previous experimental and theoretical studies will be presented. This work was supported by Grant nos. 06-03-39014 and 10-05-91176 of RFBR (Russia) and by Grant nos. 20903085 and 10574124 of NSFC (China). Work of SNM and SAT was also partly supported by CRDF (USA) Grant RUG1-2954-TO-09 and by RFBR. Grant 09-05-92508. A.-W. Liu et al., J. Mol. Spectrosc. 237, 149-162 (2006). H.-Y. Ni et al., Mol. Phys. 106, 1793-1801 (2008). J. Bellet et al., J. Mol. Spectrosc. 47, 388-402 (1973). J.W.C. Johns, J. Opt. Soc. Am. B2, 1340-1354 (1985). R.A. Toth, J. Mol. Spectrosc. 162, 41-54 (1993). W.F. Wang et al., J. Mol. Spectrosc. 176, 226-228 (1996). R.A. Toth, J. Mol. Structure, 742, 49-68 (2005). S.N. Mikhailenko et al., JQSRT, 110, 597-608 (2009). A. Liu et al., JQSRT, 110, 1781-1800 (2009). O.V. Naumenko et al., JQSRT, 111, 36-44 (2010).

  3. A Fractional Factorial Design Approach to Examining the Relative Importance of Five Factors in the Definition of Disability.

    ERIC Educational Resources Information Center

    Ortiz, Elizabeth T.

    Programs which provide income maintenance to disabled persons of working age are experiencing rapidly growing enrollments and rising costs. Changes in the definition of disability are thought to be a contributing factor. A review of existing income programs for the work-disabled indicated that social and economic factors were used increasingly in…

  4. Tracking photosynthetic sulfide oxidation in a meromictic lake using sulfate δ34S and δ18O

    NASA Astrophysics Data System (ADS)

    Gilhooly, W. P.; Reinhard, C.; Lyons, T. W.; Glass, J. B.

    2012-12-01

    Phototrophic sulfur bacteria oxidize sulfide and fix carbon dioxide in the presence of sunlight without producing oxygen. Environmental conditions in the Paleo- and Mesoproterozoic, when atmospheric oxygen concentrations were at low levels and portions of the oceans were anoxic and sulfidic (euxinic), were conducive to widespread carbon fixation by anoxygenic photosynthesis. This pathway may have helped sustain euxinic conditions in the Proterozoic water column. With limited organic biomarker and geochemical evidence for widespread production of anoxygenic phototrophs, however, additional proxies are needed to fingerprint paleoecological and biogeochemical signals associated with photic zone euxinia. Paired δ34S and δ18O from ancient sulfates (gypsum, barite, or CAS) may offer an added constraint on the history and ecological dominance of photosynthetic S-oxidation. Sulfate-oxygen can fractionate during sulfate reduction, but the extent of isotopic enrichment is controlled either by kinetic isotope effects imparted during intracellular enzymatic steps or equilibrium oxygen exchange with ambient water. An improved understanding of these processes can be gained from modern natural environments. Mahoney Lake is a density-stratified lake located within the White Lake Basin of British Columbia. The euxinic water column supports a dense plate of purple sulfur bacteria (Amoebobacter purpureus) that thrives where free sulfide intercepts the photic zone at ~7 m water depth. We analyzed the isotopic composition of sulfate (δ34SSO4 and δ18OSO4), sulfide (δ34SH2S), and water (δ18OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within this meromictic lake. Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (δ34SSO4-H2S = 51‰) and within pore waters along the oxic margin (δ34SSO4-H2S >50‰) are consistent with sulfate reduction in both the sediments and the anoxic

  5. Stable isotopes (δ 18O and δ 13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Correa, Matthias López; Montagna, Paolo; Vendrell-Simón, Begoña; McCulloch, Malcolm; Taviani, Marco

    2010-03-01

    ' vital effect. The intercept of the δ 13C/δ 18O correlation line with the δ 13C DIC-composition permits recognition of δ 18O equilibrium values of aragonite and thus reconstruction of water temperatures despite strong disequilibrium precipitation. Since the environmental parameters ( T, S and δ 18O sw) are stable, the entire isotopic signal of the coral must be driven by biological fractionation and might reflect growth speed variations, potentially related to pH variations and changes in the saturation state of the calcifying fluid or seasonally varying nutrient availability. Laser ablation tracks show a trace element composition dependent to microstructural zones (fibrous aragonite vs. centres of calcification). The parabolic relation of the classical temperature proxies Mg/Ca and U/Ca point to trace element vital effects, rendering them unreliable in L. pertusa. The P/Ca ratio shows similar values as Desmophyllum dianthus, for which a linear dependence with seawater phosphate (DIP) has been previously demonstrated. Consequently L. pertusa might be an additional nutrient recorder at bathyal depths. From the same site we also analysed the stable isotopic composition of the Last Glacial pectinid bivalve Pseudamussium peslutrae, which has been radiocarbon-dated (AMS- 14C) at 26.3 ka 14C yr BP. The isotope values of the shell calcite document a strongly differing glacial temperature-salinity regime preceding the Holocene coral growth above a prominent hiatus.

  6. Measurement of the B0 to pi l nu Form Factor Shape and Branching Fraction, and Determination of |Vub| with a Loose Neutrino Reconstruction Technique

    SciTech Connect

    Cote, D

    2006-09-26

    The authors report the results of a study of the exclusive charmless semileptonic B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu} decay undertaken with approximately 227 million B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector. The analysis uses events in which the signal B mesons are reconstructed with a novel loose neutrino reconstruction technique. We obtain partial branching fractions in 12 bins of q{sup 2}, the {ell}{sup +}{nu} invariant mass squared, from which we extract the f{sup +}(q{sup 2}) form factor shape and the total branching fraction: {Beta}(B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu}) = 1.44 {+-} 0.08{sub stat} {+-} 0.10{sub syst} x 10{sup -4}. Based on a recent theoretical calculation of the form factor, we find the magnitude of the CKM matrix element |V{sub ub}| to be (4.1 {+-} 0.2{sub stat} {+-} 0.2{sub syst{sub -0.4}{sup +0.6}}FF) x 10{sup -3}, where the last uncertainty is due to the normalization of the form factor.

  7. 2H and 18O depletion of water close to organic surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Auerswald, Karl; Schnyder, Hans

    2016-06-01

    Hydrophilic surfaces influence the structure of water close to them and may thus affect the isotope composition of water. Such an effect should be relevant and detectable for materials with large surface areas and low water contents. The relationship between the volumetric solid : water ratio and the isotopic fractionation between adsorbed water and unconfined water was investigated for the materials silage, hay, organic soil (litter), filter paper, cotton, casein and flour. Each of these materials was equilibrated via the gas phase with unconfined water of known isotopic composition to quantify the isotopic difference between adsorbed water and unconfined water. Across all materials, isotopic fractionation was significant (p<0.05) and negative (on average -0.91 ± 0.22 ‰ for 18/16O and -20.6 ± 2.4 ‰ for 2/1H at an average solid : water ratio of 0.9). The observed isotopic fractionation was not caused by solutes, volatiles or old water because the fractionation did not disappear for washed or oven-dried silage, the isotopic fractionation was also found in filter paper and cotton, and the fractionation was independent of the isotopic composition of the unconfined water. Isotopic fractionation became linearly more negative with increasing volumetric solid : water ratio and even exceeded -4 ‰ for 18/16O and -44 ‰ for 2/1H. This fractionation behaviour could be modelled by assuming two water layers: a thin layer that is in direct contact and influenced by the surface of the solid and a second layer of varying thickness depending on the total moisture content that is in equilibrium with the surrounding vapour. When we applied the model to soil water under grassland, the soil water extracted from 7 and 20 cm depth was significantly closer to local meteoric water than without correction for the surface effect. This study has major implications for the interpretation of the isotopic composition of water extracted from organic matter, especially when the volumetric

  8. Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    PubMed Central

    Darnaude, Audrey M.; Sturrock, Anna; Trueman, Clive N.; Mouillot, David; EIMF; Campana, Steven E.; Hunter, Ewan

    2014-01-01

    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified. PMID:25279667

  9. Listening in on the past: what can otolith δ18O values really tell us about the environmental history of fishes?

    PubMed

    Darnaude, Audrey M; Sturrock, Anna; Trueman, Clive N; Mouillot, David; Campana, Steven E; Hunter, Ewan

    2014-01-01

    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values did not fully match [ corrected]. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified.

  10. Assimilation of High 18O/16O Crust by Shergottite-Nakhlite-Chassigny (SNC) Magmas on Mars

    NASA Astrophysics Data System (ADS)

    Day, J. M.; Taylor, L. A.; Valley, J. W.; Spicuzza, M. J.

    2005-12-01

    There is significant geochemical evidence for assimilation of crustal material into sub-aerial, mantle-derived, terrestrial basaltic magmas. Some of the most powerful constraints on crustal assimilation come from oxygen isotope studies, because supracrustal rocks often have distinct 18O/16O ratios resulting from interaction with Earth's hydrosphere. From a planetary perspective, studies of carbonate concretions from meteorite ALH84001 have yielded evidence for low-temperature crustal interaction at or near the surface of its putative parent body, Mars. This finding raises the possibility that crustal assimilation processes may be tracked using oxygen isotopes in combination with geochemical data of other reputed martian (SNC) meteorites. The whole-rock oxygen isotope ratios (Laser fluorination δ18O = +4.21 to +5.85‰ VSMOW) of SNC meteorites, correlate with aspects of their incompatible element chemistry. Some of the oxygen isotope variability may be explained by post-magmatic alteration on Mars or Earth; however, it appears, based on petrographic and geochemical observations, that a number of SNC meteorites, especially Shergottites, retain the original whole-rock oxygen isotope values of their magmas prior to crystallisation. Correlations between oxygen isotopes and incompatible element geochemistry are consistent with assimilation of a high-18O/16O, incompatible-element rich, oxidizing crustal component by hot, mantle-derived magmas (δ18O = ~~4.2‰). A crustal component has previously been recognized from Sr-Nd-Os isotope systematics and oxygen fugacity measurements of SNC meteorites. Oxygen isotope evidence from SNC meteorites suggests high-18O/16O crustal contaminants on Mars result from low temperature (< 300°C) interaction with martian hydrosphere. The extent of apparent crustal contamination tracked by oxygen isotopes in SNC meteorites implies that the majority of martian crust may have undergone such interactions. Evidence for assimilation of

  11. Isotopic (18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies

    NASA Astrophysics Data System (ADS)

    Welker, J. M.

    2000-06-01

    A portion of the precipitation samples collected and stored by the National Atmospheric Deposition Program (NADP) are shown to be useful for analysis of isotopes in precipitation. The potential problems with evaporation are small based on deuterium excess analyses and comparisons with the Global Meteroic Water Line. Presented here are the 18O values of precipitation collected from nine NADP sites during 1989, 1990 and 1991. The trends in the isotopic (18O) characteristics of recent precipitation are in agreement with findings from previous International Atomic Energy Agency (IAEA) sites in the USA. The findings are also in agreement with several major isotope-environment relationships, further supporting the use of these samples for a modern global data base on the isotopes in precipitation being developed by IAEA, called GNIP (Global Network for Isotopes in Precipitation) and for use by research groups in the hydrological modelling, palaeoclimate and ecological communities.As expected, the average 18O values of precipitation that is derived from the Gulf of Mexico (-3) and from the Pacific North-west are isotopically distinct (-7). In addition, using the NADP network, isotopic depletion in the 18O values of precipitation in the range of 8 was observed from coastal to inland locations either in the Pacific North-west or along the east side of the Rocky Mountains, from Texas to Eastern Montana. In central USA, especially at high elevation, there is a strong seasonal variation in the 18O values of precipitation, differing by almost 25 between January and August, whereas at coastal locations the seasonal variation in the 18O values of precipitation was minimal. Comparisons between the average 18

  12. 280-year Long Sr/Ca and δ 18O Records From Flinders Reef, Western Coral Sea

    NASA Astrophysics Data System (ADS)

    Calvo, E.; Marshall, J. F.; Pelejero, C.; McCulloch, M. T.; Lough, J.; Gagan, M. K.

    2003-12-01

    The combination of parallel Sr/Ca and δ 18O records in corals allows reconstruction of past changes in sea surface temperature (SST) and seawater δ 18O composition (McCulloch et al., 1994). The latter provides climatic information related to changes in the hydrologic cycle and can be interpreted as a salinity proxy. Since the δ 18O signal is affected by both SST and seawater isotopic composition, a salinity record can be obtained by removing the temperature signal using a parallel Sr/Ca record, a proxy for SST, obtained from the same coral. Low resolution (5-year intervals) Sr/Ca and δ 18O analyses, going back to 1710 AD, have been performed on a Porites coral core collected from Flinders Reef, an offshore reef on the Queensland Plateau (17° S, 149° E), 250 km from the north-east coast of Australia. For the last 280 years, the preliminary Sr/Ca-SST record shows an increasing long-term trend towards the warm temperatures recorded during 1990, when the coral was collected. An increasing trend towards more negative δ 18O values (warmer and/or less saline conditions) is also observed in the isotopic record, which also reflects the 20th century warming. Despite this general common trend, interdecadal variability differences between both records suggest that temperature alone cannot explain the δ 18O changes observed in this site of the Coral Sea. A freshening of surface waters after 1870 has recently been reported from coral cores collected from the inshore region in the Great Barrier Reef and interpreted as indicating a weakening in trade winds and ocean circulation (Hendy, 2002). In the Flinders coral, however, an apparent freshening occurs in the early 1800s, followed by a subsequent transition to more saline conditions during the first half of the 20th century. Our data will be compared to that from the GBR and elsewhere in the SW Pacific (Quinn, 1998). Hendy, E. J. et al. Science 295, 1511-1514 (2002) McCulloch, M.T. et al. Geochimica at Cosmochimica Acta

  13. Hydrogen and Oxygen Stable Isotope Fractionation in Body Fluid Compartments of Dairy Cattle According to Season, Farm, Breed, and Reproductive Stage

    PubMed Central

    Abeni, Fabio; Petrera, Francesca; Capelletti, Maurizio; Dal Prà, Aldo; Bontempo, Luana; Tonon, Agostino; Camin, Federica

    2015-01-01

    Environmental temperature affects water turnover and isotope fractionation by causing water evaporation from the body in mammals. This may lead to rearrangement of the water stable isotope equilibrium in body fluids. We propose an approach to detect possible variations in the isotope ratio in different body fluids on the basis of different homoeothermic adaptations in varying reproductive stages. Three different reproductive stages (pregnant heifer, primiparous lactating cow, and pluriparous lactating cow) of two dairy cattle breeds (Italian Friesian and Modenese) were studied in winter and summer. Blood plasma, urine, faecal water, and milk were sampled and the isotope ratios of H (2H/1H) and O (18O/16O) were determined. Deuterium excess and isotope-fractionation factors were calculated for each passage from plasma to faeces, urine and milk. The effects of the season, reproductive stages and breed on δ2H and δ18O were significant in all the fluids, with few exceptions. Deuterium excess was affected by season in all the analysed fluids. The correlations between water isotope measurements in bovine body fluids ranged between 0.6936 (urine-milk) and 0.7848 (urine-plasma) for δ2H, and between 0.8705 (urine-milk) and 0.9602 (plasma-milk) for δ18O. The increase in both isotopic δ values in all body fluids during summer is representative of a condition in which fractionation took place as a consequence of a different ratio between ingested and excreted water, which leads to an increased presence of the heavy isotopes. The different body water turnover between adult lactating cattle and non-lactating heifers was confirmed by the higher isotopic δ for the latter, with a shift in the isotopic equilibrium towards values more distant from those of drinking water. PMID:25996911

  14. Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Jingmin; Ehlers, Todd A.; Werner, Martin; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko

    2017-01-01

    The Himalaya-Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O (δO18p) over the Himalaya-Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼ 2.0- 4.0 °C lower across the Himalaya and Tibet, and >5.0 °C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200-600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4 ‰ /km larger during the MH and 0.2 ‰ /km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70°E-110°E and 10°N-30°N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of

  15. Geochemical disparity of d13C and d18O in gryphaeidae oysters

    NASA Astrophysics Data System (ADS)

    Videt, B.; Bentaleb, I.; Néraudeau, D.

    2003-04-01

    Several geochemical analyses of stable isotopes have been made on the group of the oysters in the past. However the majority of the studies are often focused on the sole family of Ostreidea which constituted a minority in the oyster diversity during Mesozoic times. The purpose of this study is to improve knowledge of the modality of isotopic signal record in the group of Gryphaeidae, notable for its abundance and its omnipresence within the Mesozoic outcropts. In this way, a high resolution isotopic study was carried out on the genera Pycnodonte and Ceratostreon. Each microgrowth increment was sampled with the aim of following the variations of the isotopic ratios during ontogenis. It was then possible to reveal a cyclicity of the signal for these two genera which is ascribable to a saisonnality. With end to test the validity of our results, the studies were lead on individuals coming from two lineage of Cenomanian and Campanian Gryphaeidae. For each period the individuals were obviously collected in the same thin layer, and thus subjected to same the environmental conditions during their life. The respective signal of Ceratostreon flabellatum and Pycnodonte biauriculata of upper Cenomanian are compared and then respectively confronted with Ceratostreon pliciferum and Pycnodonte vesicularis of final Campanian. Thus it is possible to observe a systematic shift of about of 1 per mil for δ13C -relative to PDB- between the two genera. More surprising, range of values of δ18O is strongly exaggerated for Ceratostreon genus. Also, these values could not be directly translated into term of palaeotemperature. An observation of the isotopic curves reveals a progressive shift of about of +0.5 ppm during ontogenesis of the two Ceratostreon species. The previous works showsthat the fossil oysters have a good aptitude to record fluctuation of the environmental conditions. But this study shows too that the previous results are not generalizable. At beyond this study warns

  16. Isotopic tracing (D, 18O and 29Si) to understand the alteration on historic glass

    NASA Astrophysics Data System (ADS)

    Verney-Carron, Aurélie; Saheb, Mandana; Valle, Nathalie; Mangin, Denis; Remusat, Laurent; Loisel, Claudine

    2015-04-01

    In order to better preserve historic glasses, e.g. stained glass windows, the understanding of their alteration mechanisms and of what controls the kinetics corresponding to each process is required. The ancient stained glasses are characterized by thick alteration layers, continuous or as pits, that are cracked or lost. Therefore, if a passivating role of the alteration layer has been proved on some other kinds of glass (such as basaltic or nuclear glass) in aqueous medium, the issue can be addressed for low durable stained glass weathered in varying atmospheric conditions. The mechanism of alteration layer formation was first investigated by performing dynamic and static experiments on model medieval glasses altered with a solution doped in 29Si at different concentrations (or saturation degrees). Solid analyses were carried out by SIMS and solution by HR-ICP-MS. Medieval stained glass has mainly a potash-lime-silica composition with a low content in alumina. The alkaline and alkaline-earth elements have thus a modifier role in the glassy network. This structural difference compared to boro- or alumino-silicate glasses could induce differences in the alteration mechanisms. However, the analysis of the Si isotopic signature of the gel layer highlighted that diffusion, but also hydrolysis/condensation reactions, are also involved in the gel layer formation process, leading to a structural and textural reorganization. The second objective was to determine the kinetic role of the alteration layer, and especially to trace the circulation of water once the altered layer is formed. For that, ancient glasses were exposed to simulated rainfall events / drying periods cycles during 3 months by using a solution doped in D and 18O. NanoSIMS analyses have shown that the transport in the alteration layer is mainly driven by diffusion in the porosity despite the presence of cracks that could have been preferential ways of circulation. This demonstrates also a potential

  17. Statistical optimization of the growth factors for Chaetoceros neogracile using fractional factorial design and central composite design.

    PubMed

    Jeong, Sung-Eun; Park, Jae-Kweon; Kim, Jeong-Dong; Chang, In-Jeong; Hong, Seong-Joo; Kang, Sung-Ho; Lee, Choul-Gyun

    2008-12-01

    Statistical experimental designs; involving (i) a fractional factorial design (FFD) and (ii) a central composite design (CCD) were applied to optimize the culture medium constituents for production of a unique antifreeze protein by the Antartic microalgae Chaetoceros neogracile. The results of the FFD suggested that NaCl, KCl, MgCl2, and Na2SiO3 were significant variables that highly influenced the growth rate and biomass production. The optimum culture medium for the production of an antifreeze protein from C. neogracile was found to be Kalleampersandrsquor;s artificial seawater, pH of 7.0ampersandplusmn;0.5, consisting of 28.566 g/l of NaCl, 3.887 g/l of MgCl2, 1.787 g/l of MgSO4, 1.308 g/l of CaSO4, 0.832 g/l of K2SO4, 0.124 g/l of CaCO3, 0.103 g/l of KBr, 0.0288 g/l of SrSO4, and 0.0282 g/l of H3BO3. The antifreeze activity significantly increased after cells were treated with cold shock (at -5oC) for 14 h. To the best of our knowledge, this is the first report demonstrating an antifreeze-like protein of C. neogracile.

  18. K, Rb, Sr, Ba, U and Th geochemistry of the Lapland Granulites (Fennoscandia). LILE fractionation controlling factors

    NASA Astrophysics Data System (ADS)

    Barbey, P.; Cuney, M.

    1982-12-01

    The LILE geochemical patterns of the three main lithological units (graywacke-shale metasedimentary sequence, tholeiitic metaigneous rocks and migmatitic rocks) of the Lapland Granulite belt are described. K, Ba, Sr and Th concentrations in metasediments are nearly similar to average continental crust, whereas Rb and U are unevenly impoverished. In particular graphitic metashales and calcsilicate rocks are not significantly depleted in uranium. Tholeiitic metaigneous rocks comprises metavolcanics which present K/Rb ratios similar to metasediments, and metaplutonics with LILE abundances close to those of the low-K-tholeiites. Migmatites show wide range in LILE content. Metatexites and diatexites have higher K, Rb, Th and U concentrations and similar K/Rb ratios with respect to equivalent unmobilized rocks. Potassic pegmatoïds are strongly enriched K, Rb, Ba and Th but moderately in Sr and U. Plagioclasic pegmatoids and ferromagnesian restites are rich in Sr and poor in other LIL elements. A comparative review of the LILE geochemistry between Lapland granulites and equivalent lithological units taken from non metamorphosed to high grade terrains suggest that fractionation processes are not systematic but controlled by original lithology and mineralogy, mineral — fluid equilibria during progressive (or retrogressive) metamorphism and mineral-melt-fluid equilibria during anatexis. Moreover, statistical analysis on K-Rb distribution patterns in these various rock types shows that there is no metamorphic trend characteristic of granulite facies terrains as previously suggested.

  19. Reconstructing relative humidity from plant δ18O and δD as deuterium deviations from the global meteoric water line.

    EPA Science Inventory

    Cellulose δ18O and δD in preserved plant material can provide insights on climates and hydrological cycling in the distant past. However, most studies of plant cellulose have used only one isotope, most commonly δ18O, resulting in difficulties partitioning variation between chang...

  20. Oxide formation on NbAl{sub 3} and TiAl due to ion implantation of {sup 18}O

    SciTech Connect

    Hanrahan, R.J. Jr.; Verink, E.D. Jr.; Withrow, S.P.; Ristolainen, E.O.

    1993-12-31

    Surface modification by ion implantation of {sup 18}O ions was investigated as a technique for altering the high-temperature oxidation of aluminide intermetallic compounds and related alloys. Specimens of NbAl{sub 3} and TiAl were implanted to a dose of 1 {times} 10{sup 18} ions/cm{sup 2} at 168 keV. Doses and accelerating energies were calculated to obtain near-stoichiometric concentrations of oxygen. Use of {sup 18}O allowed the implanted oxygen profiles to be measured using secondary ion mass spectroscopy (SIMS). The near surface oxides formed were studied using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy. Specimens were also examined using x-ray diffraction and SEM. This paper presents results for specimens examined in the as-implanted state. The oxide formed due to implantation is a layer containing a mixture of Nb or Ti and amorphous Al oxides.

  1. High Resolution deglacial monsoon δ18O record from a new stalagmite from the Kailash Cave, Central India

    NASA Astrophysics Data System (ADS)

    Allu C, Narayana; Pawan K, Gautam; Shraddha, Band; Madhusudan G, Yadava; Rengaswamy, Ramesh; Shen, Chuan-Chou

    2016-04-01

    High resolution δ18O and δ13C data from absolutely dated stalagmites have been useful for reconstructing the Asian monsoon variability (e.g., Yadava et al., 2004; Laskar et al., 2013; Allu et al., 2014; Lone et al., 2014; Sinha et al., 2015). However, many studies lack high resolution spatial and temporal records leaving significant gaps which need to be filled for a vivid understanding of monsoonal variability. We report here the first high resolution stalagmite δ18O isotope results during the last deglacial obtained from the Kailash cave located from the core monsoon region. The length of stalagmite was 480 mm, with an average diameter of 120 mm. The sample was cut for continuous micro milling at 400μm intervals along the growth axis (using new wave research micro-mill-101288) for the analyses of stable oxygen and carbon isotopes using a Delta V plus IRMS at the Physical Research Laboratory, Ahmedabad. The physical appearance of the sample section reveals very fine, straight and clear laminations from the top to 310 mm from below, which have thick laminae. U-Th dates obtained from a Thermo Fisher NEPTUNE multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), National Taiwan University, Taiwan (Shen et al., 2012) showed the record spanned ~2400 years from ~14.6 ka to ~12.2 ka. Linear Age-Depth model constructed from dates suggests that the sample grew for ~2.400 years from ~14.6 ka to ~12.2 ka with varying resolutions from ~6 months to ~8 years. Hendy's test from 8 distinct layers shows poor correlation between δ18O and δ13C suggesting the isotopic equilibrium conditions at the time of crystallization. δ18O and δ13C results appear to be cyclic in nature varying in the range from +0.37‰ to -6.07‰ and -1.59‰ to -10.59‰ respectively. Enriched δ18O in top portion represents poor monsoon during the onset of Younger Drayas. Later, the δ18O signals

  2. Mesospheric Observations and Modeling of the Zeeman Split 233.9 GHz O-18O-16 line

    NASA Technical Reports Server (NTRS)

    Sandor, Brad J.; Clancy, R. Todd

    1997-01-01

    Observations made from Kitt Peak, AZ, of the 233.9 GHz emission line of O-18O-16 in the upper stratosphere and lower mesosphere are reported. A good model fit to the line is obtained by incorporation of pressure and temperature broadening effects, as well as a Zeeman splitting algorithm that uses a standard geomagnetic field model and a paramagnetic Hamiltonian description of the molecular energy states. These observations are used, along with the well known O-18O-16 mixing ratio, to establish absolute calibration for observations of other chemical species from Kitt Peak. Repeated measurements show no change in this absolute calibration between observation dates. The wide magnetic splitting (+/-1.8 MHz) exhibited by this line with only six Zeeman components provides a unique test of middle atmosphere Zeeman effect model calculations, supporting the use Of 02 lines by microwave atmospheric sounders to measure pressure and temperature.

  3. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors.

    PubMed

    Jeppesen, Dennis Kjølhede; Nawrocki, Arkadiusz; Jensen, Steffen Grann; Thorsen, Kasper; Whitehead, Bradley; Howard, Kenneth A; Dyrskjøt, Lars; Ørntoft, Torben Falck; Larsen, Martin R; Ostenfeld, Marie Stampe

    2014-03-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13- to 16-fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial-mesenchymal transition, including increased abundance of vimentin and hepatoma-derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process.

  4. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico