Science.gov

Sample records for 18o isotopic labeling

  1. A Novel Method for Relative Quantitation of N-Glycans by Isotopic Labeling Using 18O-Water

    PubMed Central

    Tao, Shujuan; Orlando, Ron

    2014-01-01

    Quantitation is an essential aspect of comprehensive glycomics study. Here, a novel isotopic-labeling method is described for N-glycan quantitation using 18O-water. The incorporation of the 18O-labeling into the reducing end of N-glycans is simply and efficiently achieved during peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase F release. This process provides a 2-Da mass difference compared with the N-glycans released in 16O-water. A mathematical calculation method was also developed to determine the 18O/16O ratios from isotopic peaks. Application of this method to several standard glycoprotein mixtures and human serum demonstrated that this method can facilitate the relative quantitation of N-glycans over a linear dynamic range of two orders, with high accuracy and reproducibility. PMID:25365792

  2. Multi-isotope labelling (13C, 18O, 2H) for studying organic matter cycling within plant-soil systems

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Abiven, S.; Schmidt, M. W. I.; Siegwolf, R. T. W.

    2012-04-01

    Carbon cycling has become of major interest for the understanding and mitigation of global climatic change. Terrestrial ecosystems have a large carbon sequestration potential, but many processes and fluxes of organic matter (OM) cycling within the plant-soil system are not yet well understood [1]. The dynamics of OM cycling within the plant soil-system are determined by environmental parameters, as well as chemical quality of OM input. A well-known technique to study OM dynamics is to label OM inputs with stable isotopes (e.g 13C). Changes in OM quality in the plant and in the soil can be assessed by compound specific isotopic analysis [2]. These techniques give a precise insight of the OM composition, but are laborious and expensive. Here we suggest a new multi-isotope labelling technique using stable 13C in combination with stable 18O and 2H isotopes, which provides information on OM quality by simple bulk material analysis. The method is based on the creation of an isotopic van Krevelen diagram, which is used to describe different compound groups by plotting the atomic ratios of O/C vs. H/C [3]. We could show that new assimilates can be labelled with 13C, 18O and 2H by adding the stable isotopes (continuously) in the gaseous phase (CO2 and water vapour) to the plants atmosphere. The label has been traced within the bulk material of different compartments of the plant-soil system (e.g. leaves, stems, roots, bulk soil). Our first results showed that after 2, 8 and 14 days of labelling the 18O/13C(new) ratio was notably different in leaf, stem and root tissue (0.0024, 0.0011 and 0.0007, respectively), suggesting a change in OM quality towards more C-rich compounds. d2H analysis will follow and an isotopic van Krevelen diagram will be produced (18O/13C(new) vs. 2H/13C(new)) to describe the changes in OM quality. The new multi-isotope labelling approach represent a powerful tool to address open questions in plant and soil research such as the allocation of organic

  3. Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

    PubMed Central

    Starkey, Jonathan M.; Zhao, Yingxin; Sadygov, Rovshan G.; Haidacher, Sigmund J.; LeJeune, Wanda S.; Dey, Nilay; Luxon, Bruce A.; Kane, Maureen A.; Napoli, Joseph L.; Denner, Larry; Tilton, Ronald G.

    2010-01-01

    Background Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes. Methodology/Principal Findings Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, 18O- and 16O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change ≥1.5 and p≤0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARβ/δ mRNA. Conclusions/Significance Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in

  4. Protease- and Acid-catalyzed Labeling Workflows Employing 18O-enriched Water

    PubMed Central

    Klingler, Diana; Hardt, Markus

    2013-01-01

    Stable isotopes are essential tools in biological mass spectrometry. Historically, 18O-stable isotopes have been extensively used to study the catalytic mechanisms of proteolytic enzymes1-3. With the advent of mass spectrometry-based proteomics, the enzymatically-catalyzed incorporation of 18O-atoms from stable isotopically enriched water has become a popular method to quantitatively compare protein expression levels (reviewed by Fenselau and Yao4, Miyagi and Rao5 and Ye et al.6). 18O-labeling constitutes a simple and low-cost alternative to chemical (e.g. iTRAQ, ICAT) and metabolic (e.g. SILAC) labeling techniques7. Depending on the protease utilized, 18O-labeling can result in the incorporation of up to two 18O-atoms in the C-terminal carboxyl group of the cleavage product3. The labeling reaction can be subdivided into two independent processes, the peptide bond cleavage and the carboxyl oxygen exchange reaction8. In our PALeO (protease-assisted labeling employing 18O-enriched water) adaptation of enzymatic 18O-labeling, we utilized 50% 18O-enriched water to yield distinctive isotope signatures. In combination with high-resolution matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), the characteristic isotope envelopes can be used to identify cleavage products with a high level of specificity. We previously have used the PALeO-methodology to detect and characterize endogenous proteases9 and monitor proteolytic reactions10-11. Since PALeO encodes the very essence of the proteolytic cleavage reaction, the experimental setup is simple and biochemical enrichment steps of cleavage products can be circumvented. The PALeO-method can easily be extended to (i) time course experiments that monitor the dynamics of proteolytic cleavage reactions and (ii) the analysis of proteolysis in complex biological samples that represent physiological conditions. PALeO-TimeCourse experiments help identifying rate-limiting processing

  5. Evidence of the chemical reaction of (18)O-labelled nitrite with CO2 in aqueous buffer of neutral pH and the formation of (18)OCO by isotope ratio mass spectrometry.

    PubMed

    Tsikas, Dimitrios; Böhmer, Anke; Gros, Gerolf; Endeward, Volker

    2016-05-01

    Inorganic nitrite (NO2(-), ON-O(-) ←→ (-)O-NO) is the autoxidation product of nitric oxide (NO). Nitrite can also be formed from inorganic nitrate (ONO2(-)), the major oxidation product of NO in erythrocytes, by the catalytic action of bacterial nitrate reductase in gut and oral microflora. Nitrite can be reduced to NO by certain cellular proteins and enzymes, as well as in the gastric juice under acidic conditions. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to convert nitrite to NO. Renal CA isoforms are involved in the reabsorption of nitrite and may, therefore, play an important role in NO homeostasis. Yet, the mechanisms underlying the action of CA on nitrite are incompletely understood. The nitrate/nitrite system is regarded as a reservoir of NO. We have recently shown that nitrite reacts chemically with carbon dioxide (CO2), the regular substrate of CA. The present communication reports a stable isotope ratio mass spectrometry (IRMS) study on the reaction of NO2(-) and CO2 performed in 50 mM HEPES buffer of pH 7.4 at 37 °C. By using (18)O-labelled nitrite ((18)ON-O(-)/(-18)O-NO) and CO2 we observed formation of (18)O-labelled CO2. This finding is an unequivocal evidence of the chemical reaction of (18)ON-O(-)/(-18)O-NO with CO2. The reaction is rapid and involves nucleophilic attack of the negatively charged nitrite via one of its oxygen atoms on the partially positively charged CO2 molecule to form the putative intermediate (18)ON-O-CO2(-)/(-)O2C-(18)O-NO. The by far largest fraction of this intermediate decomposes back to (18)ON-O(-)/(-18)O-NO and CO2. A very small fraction of the intermediate, however, rearranges and finally decomposes to form (18)OCO and nitrite. This reaction is slower in the presence of an isolated erythrocytic CA isoform II. In summary, NO2(-), CO2 and CA are ubiquitous. The chemical reaction of NO2(-) with CO2 and its modulation by CA isoforms may play important roles in the transport of

  6. A Method to Determine 18O Kinetic Isotope Effects in the Hydrolysis of Nucleotide Triphosphates

    PubMed Central

    Du, Xinlin; Ferguson, Kurt; Sprang, Stephen R.

    2007-01-01

    A method to determine 18O kinetic isotope effects (KIE) in the hydrolysis of GTP is described that is generally applicable to reactions involving other nucleotide triphosphates. Internal competition, wherein the substrate of the reaction is a mixture of 18O-labeled and unlabeled nucleotides, is employed and the change in relative abundance of the two species in the course of the reaction is used to calculate KIE. The nucleotide labeled with 18O at sites of mechanistic interest also contains 13C at all carbon positions, while the 16O-nucleotide is depleted of 13C. The relative abundance of the labeled and unlabeled substrates or products is reflected in the carbon isotope ratio (13C/12C) in GTP or GDP, which is determined by use of a liquid chromatography-coupled isotope ratio mass spectrometer (LC-coupled IRMS). The LC is coupled to the IRMS by an Isolink™ interface (ThermoFinnigan). Carbon isotope ratios can be determined with accuracy and precision greater than 0.04%, and are consistent over an order of magnitude in sample amount. KIE values for Ras/NF1333-catalyzed hydrolysis of [β18O3,13C]GTP were determined by change in the isotope ratio of GTP or GDP or the ratio of the isotope ratio of GDP to that of GTP. KIE values computed in the three ways agree within 0.1%, although the method using the ratio of isotope ratios of GDP and GTP gives superior precision (< 0.1%). A single KIE measurement can be conducted in 25 minutes with less than 5 μg nucleotide reaction product. PMID:17963711

  7. 18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry

    SciTech Connect

    Kim, Jong Seo; Fillmore, Thomas L.; Liu, Tao; Robinson, Errol W.; Hossain, Mahmud; Champion, Boyd L.; Moore, Ronald J.; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2011-10-11

    Selected reaction monitoring-mass spectrometry (SRM-MS) is an emerging technology for high throughput targeted protein quantification and verification in biological and biomarker discovery studies; however, the cost associated with the use of stable isotope labeled synthetic peptides as internal standards is prohibitive for quantitatively screening large numbers of candidate proteins as often required in the pre-verification phase of biomarker discovery. Herein we present the proof-of-concept experiments of using an 18O-labeled 'universal' reference as comprehensive internal standards for quantitative SRM-MS analysis. With an 18O-labeled whole proteome sample as reference, every peptide of interest will have its own corresponding heavy isotope labeled internal standard, thus providing an ideal approach for quantitative screening of a large number of candidates using SRM-MS. Our results showed that the 18O incorporation efficiency using a recently improved protocol was >99.5% for most peptides investigated, a level comparable to 13C/15N labeled synthetic peptides in terms of heavy isotope incorporation. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into mouse plasma with an 18O-labeled mouse plasma reference. A dynamic range of four orders of magnitude in relative concentration was obtained with high reproducibility (i.e., coefficient of variance <10%) based on the 16O/18O peak area ratios. Absolute and relative quantification of C-reactive protein and prostate-specific antigen were demonstrated by coupling an 18O-labeled reference with standard additions of protein standards. Collectively, our results demonstrated that the use of 18O-labeled reference provides a convenient and effective strategy for quantitative SRM screening of large number of candidate proteins.

  8. 18O-labeled proteome reference as global internal standards for targeted quantification by selected reaction monitoring-mass spectrometry.

    PubMed

    Kim, Jong-Seo; Fillmore, Thomas L; Liu, Tao; Robinson, Errol; Hossain, Mahmud; Champion, Boyd L; Moore, Ronald J; Camp, David G; Smith, Richard D; Qian, Wei-Jun

    2011-12-01

    Selected reaction monitoring (SRM)-MS is an emerging technology for high throughput targeted protein quantification and verification in biomarker discovery studies; however, the cost associated with the application of stable isotope-labeled synthetic peptides as internal standards can be prohibitive for screening a large number of candidate proteins as often required in the preverification phase of discovery studies. Herein we present a proof of concept study using an (18)O-labeled proteome reference as global internal standards (GIS) for SRM-based relative quantification. The (18)O-labeled proteome reference (or GIS) can be readily prepared and contains a heavy isotope ((18)O)-labeled internal standard for every possible tryptic peptide. Our results showed that the percentage of heavy isotope ((18)O) incorporation applying an improved protocol was >99.5% for most peptides investigated. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into the labeled mouse plasma reference. Reliable quantification was observed with high reproducibility (i.e. coefficient of variance <10%) for analyte concentrations that were set at 100-fold higher or lower than those of the GIS based on the light ((16)O)/heavy ((18)O) peak area ratios. The utility of (18)O-labeled GIS was further illustrated by accurate relative quantification of 45 major human plasma proteins. Moreover, quantification of the concentrations of C-reactive protein and prostate-specific antigen was illustrated by coupling the GIS with standard additions of purified protein standards. Collectively, our results demonstrated that the use of (18)O-labeled proteome reference as GIS provides a convenient, low cost, and effective strategy for relative quantification of a large number of candidate proteins in biological or clinical samples using SRM.

  9. Robust MS quantification method for phospho-peptides using 18O/16O labeling

    PubMed Central

    Andersen, Claus A; Gotta, Stefano; Magnoni, Letizia; Raggiaschi, Roberto; Kremer, Andreas; Terstappen, Georg C

    2009-01-01

    Background Quantitative measurements of specific protein phosphorylation sites, as presented here, can be used to investigate signal transduction pathways, which is an important aspect of cell dynamics. The presented method quantitatively compares peptide abundances from experiments using 18O/16O labeling starting from elaborated MS spectra. It was originally developed to study signaling cascades activated by amyloid-β treatment of neurons used as a cellular model system with relevance to Alzheimer's disease, but is generally applicable. Results The presented method assesses, in complete cell lysates, the degree of phosphorylation of specific peptide residues from MS spectra using 18O/16O labeling. The abundance of each observed phospho-peptide from two cell states was estimated from three overlapping isotope contours. The influence of peptide-specific labeling efficiency was removed by performing a label swapped experiment and assuming that the labeling efficiency was unchanged upon label swapping. Different degrees of phosphorylation were reported using the fold change measure which was extended with a confidence interval found to reflect the quality of the underlying spectra. Furthermore a new way of method assessment using simulated data is presented. Using simulated data generated in a manner mimicking real data it was possible to show the method's robustness both with increasing noise levels and with decreasing labeling efficiency. Conclusion The fold change error assessable on simulated data was on average 0.16 (median 0.10) with an error-to-signal ratio and labeling efficiency distributions similar to the ones found in the experimentally observed spectra. Applied to experimentally observed spectra a very good match was found to the model (<10% error for 85% of spectra) with a high degree of robustness, as assessed by data removal. This new method can thus be used for quantitative signal cascade analysis of total cell extracts in a high throughput mode

  10. Use of 18O-labelled leucine and phenylalanine to measure protein turnover in muscle cell cultures and possible futile cycling during aminoacylation.

    PubMed Central

    Fuller, J C; Nissen, S L; Huiatt, T W

    1993-01-01

    Amino acids labelled with 18(O) on both carboxy oxygen atoms have the potential for use as non-recyclable tracers to measure protein turnover. During protein synthesis one of the labelled oxygen atoms is removed, and thus release of the mono-labelled amino acid could be used to determine proteolysis. Primary cultures of embryonic-chick skeletal-muscle cells were used to test the use of 18(O2)-labelled Leu to measure proteolysis. For 9-day cultures, prelabelled on days 2-8 with medium containing one-half the Leu as [18O2]Leu and one-half as [2H3]Leu, release of [18(O)]Leu was less than 50% that of [2H]Leu over 24 h, suggesting a loss of the 18O label by a mechanism other than protein synthesis. Medium containing [18(O2)]Leu, [2H3]Leu, [18O2]Phe and [13C]Phe was then incubated with 9-day cultures to compare the rate of loss of the 18(O)-label from Leu and Phe with the rate of uptake of the non-carboxy-oxygen-labelled amino acids. Results for Leu demonstrated an 81% loss of the 18(O) label compared with a 33% decrease in [2H]Leu over 12 h. Loss of the 18(O) label was four times as great for Leu as for Phe. Loss of the 18(O) label was not decreased by addition of cycloheximide or by addition of a 3-fold excess of Ile, Val and Tyr; thus the loss of label was not due to protein synthesis alone or to misbinding to incorrect tRNAs. Infusion of the isotopes into pigs showed that the 18(O) label of Leu was not lost during transamination to alpha-ketoisocaproate (alpha-oxoisohexanoate). The most probable explanation is that the 18(O) label is lost as a result of the enzymic deacylation of tRNA, that this process is substantially faster for Leu than for Phe, and that this represents a potentially costly futile cycle for Leu. Images Scheme 2 PMID:8373357

  11. Dentine oxygen isotopes (δ (18)O) as a proxy for odontocete distributions and movements.

    PubMed

    Matthews, Cory J D; Longstaffe, Fred J; Ferguson, Steven H

    2016-07-01

    Spatial variation in marine oxygen isotope ratios (δ (18)O) resulting from differential evaporation rates and precipitation inputs is potentially useful for characterizing marine mammal distributions and tracking movements across δ (18)O gradients. Dentine hydroxyapatite contains carbonate and phosphate that precipitate in oxygen isotopic equilibrium with body water, which in odontocetes closely tracks the isotopic composition of ambient water. To test whether dentine oxygen isotope composition reliably records that of ambient water and can therefore serve as a proxy for odontocete distribution and movement patterns, we measured δ (18)O values of dentine structural carbonate (δ (18) OSC) and phosphate (δ (18) OP) of seven odontocete species (n = 55 individuals) from regional marine water bodies spanning a surface water δ (18)O range of several per mil. Mean dentine δ (18) OSC (range +21.2 to +25.5‰ VSMOW) and δ (18) OP (+16.7 to +20.3‰) values were strongly correlated with marine surface water δ (18)O values, with lower dentine δ (18) OSC and δ (18) OP values in high-latitude regions (Arctic and Eastern North Pacific) and higher values in the Gulf of California, Gulf of Mexico, and Mediterranean Sea. Correlations between dentine δ (18) OSC and δ (18) OP values with marine surface water δ (18)O values indicate that sequential δ (18)O measurements along dentine, which grows incrementally and archives intra- and interannual isotopic composition over the lifetime of the animal, would be useful for characterizing residency within and movements among water bodies with strong δ (18)O gradients, particularly between polar and lower latitudes, or between oceans and marginal basins. PMID:27547302

  12. Dentine oxygen isotopes (δ (18)O) as a proxy for odontocete distributions and movements.

    PubMed

    Matthews, Cory J D; Longstaffe, Fred J; Ferguson, Steven H

    2016-07-01

    Spatial variation in marine oxygen isotope ratios (δ (18)O) resulting from differential evaporation rates and precipitation inputs is potentially useful for characterizing marine mammal distributions and tracking movements across δ (18)O gradients. Dentine hydroxyapatite contains carbonate and phosphate that precipitate in oxygen isotopic equilibrium with body water, which in odontocetes closely tracks the isotopic composition of ambient water. To test whether dentine oxygen isotope composition reliably records that of ambient water and can therefore serve as a proxy for odontocete distribution and movement patterns, we measured δ (18)O values of dentine structural carbonate (δ (18) OSC) and phosphate (δ (18) OP) of seven odontocete species (n = 55 individuals) from regional marine water bodies spanning a surface water δ (18)O range of several per mil. Mean dentine δ (18) OSC (range +21.2 to +25.5‰ VSMOW) and δ (18) OP (+16.7 to +20.3‰) values were strongly correlated with marine surface water δ (18)O values, with lower dentine δ (18) OSC and δ (18) OP values in high-latitude regions (Arctic and Eastern North Pacific) and higher values in the Gulf of California, Gulf of Mexico, and Mediterranean Sea. Correlations between dentine δ (18) OSC and δ (18) OP values with marine surface water δ (18)O values indicate that sequential δ (18)O measurements along dentine, which grows incrementally and archives intra- and interannual isotopic composition over the lifetime of the animal, would be useful for characterizing residency within and movements among water bodies with strong δ (18)O gradients, particularly between polar and lower latitudes, or between oceans and marginal basins.

  13. Characterization of Growing Bacterial Populations in McMurdo Dry Valley Soils through Stable Isotope Probing with 18O-water

    PubMed Central

    Schwartz, Egbert; Buelow, Heather N.; Gooseff, Michael N.; Barrett, John E.; Okie, Jordan G.; Takacs-Vesbach, Cristina D.; Van Horn, David J.

    2014-01-01

    Soil microbial communities of the McMurdo Dry Valleys, Antarctica (MDV) contain representatives from at least fourteen bacterial phyla. However, given low rates of microbial activity, it is unclear whether this richness represents functioning rather than dormant members of the community. We used stable isotope probing (SIP) with 18O-water to determine if microbial populations grow in MDV soils. Changes in the microbial community were characterized in soils amended with H2 18O and H2 18O-organic matter. Sequencing the 16S rRNA genes of the heavy and light fractions of the bacterial community DNA show that DNA of microbial populations was labeled with 18O-water, indicating these microorganisms grew in the MDV soils. Significant differences existed in the community composition of the heavy and light fractions of the H2 18O and H2 18O-organic matter amended samples (Anosim P<0.05 of weighted Unifrac distance). Control samples and the light DNA fraction of the H2 18O amended samples were dominated by representatives of the phyla Deinococcus-Thermus, Proteobacteria, Planctomyces, Gemmatimonadetes, Actinobacteria and Acidobacteria, whereas Proteobacteria were more prevalent in the heavy DNA fractions from the H2 18O-water and the H2 18O-water-organic matter treatments. Our results indicate that SIP with H2 18O can be used to distinguish active bacterial populations even in this low organic matter environment. PMID:24785369

  14. The mechanism of haem catabolism. Bilirubin formation in living rats by [18O]oxygen labelling.

    PubMed Central

    Brown, S B; King, R F

    1978-01-01

    1. The pathway of haem breakdown in living rats was studied by using 18O in the oxygen that the animals consumed. By cannulation of the common bile duct and collection of bile, labelled bilirubin was isolated and its mass spectrum determined. One set of results was obtained for a rat to which haemoglobin had been intravenously administered and another set obtained for a rat that was not given exogenous haem. Isomerization of bilirubin IXalpha to the XIIIalpha and IIIalpha isomers did not occur to any significant extent. The 18O-labelling pattern obtained in the bilirubin was consistent with a Two-Molecule Mechanism, whereby the terminal lactam oxygen atoms of bilirubin are derived from different oxygen molecules. The consequences of this mechanism are discussed in terms of the possible intermediates of the catabolic pathway. 2. 18O-labelled bilirubin appeared in the bile in less than 10 min after exposure of the animals to labelled oxygen. This result suggests that all of the chemical transformations involving production of biliverdin, reduction to bilirubin and conjugation of the bilirubin are fast processes. 3. The quantitative recovery of label obtained in the experiments suggests that there is little or no exchange of newly synthesized bilirubin with existing bilirubin pools in the animal. PMID:637844

  15. Statistical Model to Analyze Quantitative Proteomics Data Obtained by 18O/16O Labeling and Linear Ion Trap Mass Spectrometry

    PubMed Central

    Jorge, Inmaculada; Navarro, Pedro; Martínez-Acedo, Pablo; Núñez, Estefanía; Serrano, Horacio; Alfranca, Arántzazu; Redondo, Juan Miguel; Vázquez, Jesús

    2009-01-01

    Statistical models for the analysis of protein expression changes by stable isotope labeling are still poorly developed, particularly for data obtained by 16O/18O labeling. Besides large scale test experiments to validate the null hypothesis are lacking. Although the study of mechanisms underlying biological actions promoted by vascular endothelial growth factor (VEGF) on endothelial cells is of considerable interest, quantitative proteomics studies on this subject are scarce and have been performed after exposing cells to the factor for long periods of time. In this work we present the largest quantitative proteomics study to date on the short term effects of VEGF on human umbilical vein endothelial cells by 18O/16O labeling. Current statistical models based on normality and variance homogeneity were found unsuitable to describe the null hypothesis in a large scale test experiment performed on these cells, producing false expression changes. A random effects model was developed including four different sources of variance at the spectrum-fitting, scan, peptide, and protein levels. With the new model the number of outliers at scan and peptide levels was negligible in three large scale experiments, and only one false protein expression change was observed in the test experiment among more than 1000 proteins. The new model allowed the detection of significant protein expression changes upon VEGF stimulation for 4 and 8 h. The consistency of the changes observed at 4 h was confirmed by a replica at a smaller scale and further validated by Western blot analysis of some proteins. Most of the observed changes have not been described previously and are consistent with a pattern of protein expression that dynamically changes over time following the evolution of the angiogenic response. With this statistical model the 18O labeling approach emerges as a very promising and robust alternative to perform quantitative proteomics studies at a depth of several thousand proteins

  16. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    PubMed Central

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  17. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: I. Patterns

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates frequently precipitate out of {sup 18}O and {sup 13}C equilibrium with ambient waters. Two patterns of isotopic disequilibrium are particularly common. Kinetic disequilibria, so designated because they apparently result from kinetic isotope effects during CO{sub 2} hydration and hydroxylation, involve simultaneous depletions of {sup 18}O and {sup 13}C as large as 4{per thousand} and 10 to 15{per thousand}, respectively. Rapid skeletogenesis favors strong kinetic effects, and approximately linear correlations between skeletal {delta}{sup 18}O and {delta}{sup 13}C are common in carbonates showing mainly the kinetic pattern. Metabolic effects involve additional positive or negative modulation of skeletal {delta}{sup 13}C, reflecting changes in the {delta}{sup 13}C of dissolved inorganic carbon, caused mainly by photosynthesis and respiration. Kinetic isotope disequilibria tend to be fairly consistent in rapidly growing parts of photosynthetic corals, and time dependent isotopic variations therefore reflect changes in environmental conditions. {delta}{sup 18}O variations from Galapagos corals yields meaningful clues regarding seawater temperature, while {delta}{sup 13}C variations reflect changes in photosynthesis, modulated by cloudiness.

  18. Dilution space ratio of 2H and 18O of doubly labeled water method in humans.

    PubMed

    Sagayama, Hiroyuki; Yamada, Yosuke; Racine, Natalie M; Shriver, Timothy C; Schoeller, Dale A

    2016-06-01

    Variation of the dilution space ratio (Nd/No) between deuterium ((2)H) and oxygen-18 ((18)O) impacts the calculation of total energy expenditure (TEE) by doubly labeled water (DLW). Our aim was to examine the physiological and methodological sources of variation of Nd/No in humans. We analyzed data from 2,297 humans (0.25-89 yr old). This included the variables Nd/No, total body water, TEE, body mass index (BMI), and percent body fat (%fat). To differentiate between physiologic and methodologic sources of variation, the urine samples from 54 subjects were divided and blinded and analyzed separately, and repeated DLW dosing was performed in an additional 55 participants after 6 mo. Sex, BMI, and %fat did not significantly affect Nd/No, for which the interindividual SD was 0.017. The measurement error from the duplicate urine sample sets was 0.010, and intraindividual SD of Nd/No in repeats experiments was 0.013. An additional SD of 0.008 was contributed by calibration of the DLW dose water. The variation of measured Nd/No in humans was distributed within a small range and measurement error accounted for 68% of this variation. There was no evidence that Nd/No differed with respect to sex, BMI, and age between 1 and 80 yr, and thus use of a constant value is suggested to minimize the effect of stable isotope analysis error on calculation of TEE in the DLW studies in humans. Based on a review of 103 publications, the average dilution space ratio is 1.036 for individuals between 1 and 80 yr of age. PMID:26989221

  19. The Study of the Groundwater by Using the 34S and 18O of the Sulphates-S18O4 Isotopes

    NASA Astrophysics Data System (ADS)

    Awad, Sadek

    The stable isotope of the sulphur atom (34S) and the 18O of the sulphates (S18O4) give information about the type of the mineralisation of the groundwater existing during the water seepage. The decrease of the concentrations in dissolved SO42- (meq/L) versus the increase of δ18O (‰ vs. SMOW) of the sulphates (S18O42-) confirms a partial reduction of the dissolved sulphates in the water. The Under-saturated waters versus the gypsum do not cause the precipitations of the sulphates. The study of δ34S (‰ CD) vs. Cl- (mg/L) indicates high variations in δ34S (‰ CD) for weak difference in the Cl- (mg/L) content, this is due to the reduction of the dissolved sulphates. Concerning the Jurassic water in Lebanon, an oxidation of the sulphide can take place.

  20. Separating soil and leaf water 18O isotopic signals in plant stem cellulose

    NASA Astrophysics Data System (ADS)

    Sternberg, Leonel da Silveira Lobo; Anderson, William T.; Morrison, Kanema

    2003-07-01

    The oxygen-18 signal of soil and leaf water are both recorded in heterotrophically synthesized plant stem cellulose. Presently, these signals can only be teased apart with modeling and assumptions on the nature of the isotopic enrichment of leaf water. A method by which these two signals are chemically separated and analyzed is tested here. Heterotrophically synthesized cellulose from germinating seeds having a mixture of isotopic signals from the reserve carbohydrate (starch) and that of the water during cellulose synthesis was hydrolyzed and the resulting glucose converted to glucose phenylosazone. The analysis of the 18O/ 16O ratios of cellulose and of glucose phenylosazone were used to calculate the oxygen isotope ratio of the oxygen attached to the second carbon of the glucose moieties of the cellulose molecule. The calculated δ 18O value of this oxygen was highly correlated with that of the water available for cellulose synthesis showing a nearly one-to-one relationship (slope = 1.027) and leading to the conclusion that it completely exchanges with water during heterotrophic cellulose synthesis. Once this method is refined so as to increase precision, it will be possible to derive the δ 18O values of soil water available to plants from the oxygen isotope analysis of stem cellulose and its derivative.

  1. ISOTOPIC RATIOS OF {sup 18}O/{sup 17}O IN THE GALACTIC CENTRAL REGION

    SciTech Connect

    Zhang, J. S.; Sun, L. L.; Riquelme, D.; Henkel, C.; Lu, D. R.; Zhang, Y.; Wang, J. Z.; Li, J.; Wang, M.

    2015-08-15

    The {sup 18}O/{sup 17}O isotopic ratio of oxygen is a crucial measure of the secular enrichment of the interstellar medium by ejecta from high-mass versus intermediate-mass stars. So far, however, there is a lack of data, particularly from the Galactic center (GC) region. Therefore, we have mapped typical molecular clouds in this region in the J = 1–0 lines of C{sup 18}O and C{sup 17}O with the Delingha 13.7 m telescope (DLH). Complementary pointed observations toward selected positions throughout the GC region were obtained with the IRAM 30 m and Mopra 22 m telescopes. C{sup 18}O/C{sup 17}O abundance ratios reflecting the {sup 18}O/{sup 17}O isotope ratios were obtained from integrated intensity ratios of C{sup 18}O and C{sup 17}O. For the first time, C{sup 18}O/C{sup 17}O abundance ratios are determined for Sgr C (V ∼ −58 km s{sup −1}), Sgr D (V ∼ 80 km s{sup −1}), and the 1.°3 complex (V ∼ 80 km s{sup −1}). Through our mapping observations, abundance ratios are also obtained for Sgr A (∼0 and ∼50 km s{sup −1} component) and Sgr B2 (∼60 km s{sup −1}), which are consistent with the results from previous single-point observations. Our frequency-corrected abundance ratios of the GC clouds range from 2.58 ± 0.07 (Sgr D, V ∼ 80 km s{sup −1}, DLH) to 3.54 ± 0.12 (Sgr A, ∼50 km s{sup −1}). In addition, strong narrow components (line width less than 5 km s{sup −1}) from the foreground clouds are detected toward Sgr D (−18 km s{sup −1}), the 1.°3 complex (−18 km s{sup −1}), and M+5.3−0.3 (22 km s{sup −1}), with a larger abundance ratio around 4.0. Our results show a clear trend of lower C{sup 18}O/C{sup 17}O abundance ratios toward the GC region relative to molecular clouds in the Galactic disk. Furthermore, even inside the GC region, ratios appear not to be uniform. The low GC values are consistent with an inside-out formation scenario for our Galaxy.

  2. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Eagle, Robert A.; Thiagarajan, Nivedita; Gagnon, Alexander C.; Bauch, Henning; Halloran, Paul R.; Eiler, John M.

    2010-10-01

    Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C- 18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/ 16O (δ 18O) and 13C/ 12C (δ 13C) ratios are characterized by 13C- 18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.

  3. Tracing atmospheric moisture from precipitation δ18O to climate proxy using an isotope enabled land surface model

    NASA Astrophysics Data System (ADS)

    Kanner, L.; Buenning, N. H.; Stott, L. D.; Timmermann, A.

    2013-12-01

    A paleoclimate interpretation of a terrestrial hydrologic proxy such as the δ18O of tree cellulose or speleothem calcite may be biased or misinterpreted if the isotopic composition of the soil water from which the proxy originated undergoes isotopic exchange or fractionation. In this study, we use a global isotope-enabled land surface model (IsoLSM) to investigate how the δ18O of precipitation may be altered in a soil column due to evaporation and vertical moisture flux. In order to assess how precipitation and evaporation contribute the soil water isotopic variability, we compare seasonal and interannual changes in simulated xylem water δ18O within a control simulation and in a suite of experiments where the effect of precipitation δ18O, water vapor δ18O, and ground water evaporation are independently removed. The simulations, carried out for 1979 to 2004, reveal that in semi-arid regions, such as the southwest United States, the seasonal cycle in xylem water δ18O is strongly affected by evaporative loss during the dry season and this can constitute as much as 50% of the interannual δ18O variance. Additional simulations, including soil water tagging experiments, indicate that upward fluxes of soil water occur during drier periods. For soil water δ18O profiles that are isotopically more depleted in 18O at depth, this imparts a low isotopic signature to xylem water δ18O during such dry intervals. Hence, without taking into account moisture flux processes, an isotopic proxy could be misinterpreted as wet conditions (due to decreased evaporative enrichment) for low δ18O years when instead drier conditions are equally as likely. Using IsoLSM simulated xylem water and leaf water δ18O, offline calculations of cellulose δ18O compare well with observations in diverse climatic regimes. Thus, the driving mechanisms on soil water δ18O identified in this study, and in particular the important role of evaporation on seasonal and interannual timescales, may

  4. Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O

    NASA Astrophysics Data System (ADS)

    Cummins, Renata C.; Finnegan, Seth; Fike, David A.; Eiler, John M.; Fischer, Woodward W.

    2014-09-01

    Much of what we know about the history of Earth’s climate derives from the chemistry of carbonate minerals in the sedimentary record. The oxygen isotopic compositions (δ18O) of calcitic marine fossils and cements have been widely used as a proxy for past seawater temperatures, but application of this proxy to deep geologic time is complicated by diagenetic alteration and uncertainties in the δ18O of seawater in the past. Carbonate clumped isotope thermometry provides an independent estimate of the temperature of the water from which a calcite phase precipitated, and allows direct calculation of the δ18O of the water. The clumped isotope composition of calcites is also highly sensitive to recrystallization and can help diagnose different modes of diagenetic alteration, enabling evaluation of preservation states and identification of the most pristine materials from within a sample set-critical information for assessing the quality of paleoproxy data generated from carbonates. We measured the clumped isotope composition of a large suite of calcitic fossils (primarily brachiopods and corals), sedimentary grains, and cements from Silurian (ca. 433 Ma) stratigraphic sections on the island of Gotland, Sweden. Substantial variability in clumped isotope temperatures suggests differential preservation with alteration largely tied to rock-buffered diagenesis, complicating the generation of a stratigraphically resolved climate history through these sections. Despite the generally high preservation quality of samples from these sections, micro-scale observations of calcite fabric and trace metal composition using electron backscatter diffraction and electron microprobe analysis suggest that only a subset of relatively pristine samples retain primary clumped isotope signatures. These samples indicate that Silurian tropical oceans were likely warm (33 ± 7 °C) and similar in oxygen isotopic composition to that estimated for a “modern” ice-free world (δ18OVSMOW of -1

  5. Mechanisms linking metabolism of Helicobacter pylori to (18)O and (13)C-isotopes of human breath CO2.

    PubMed

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-06-03

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 ((18)O) and carbon-13 ((13)C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of (18)O/(16)O and (13)C/(12)C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of (18)O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of (18)O in breath CO2 were manifested in individuals without the infections. In contrast, the (13)C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to (13)C-enriched glucose uptake, whereas a distinguishable change of breath (13)C/(12)C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the (18)O and (13)C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath (12)C(18)O(16)O and (13)C(16)O(16)O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen's physiology along with isotope-specific non-invasive diagnosis of the infection.

  6. Stable isotope ( 18O) investigations on the processes controlling fluoride contamination of groundwater

    NASA Astrophysics Data System (ADS)

    Datta, P. S.; Deb, D. L.; Tyagi, S. K.

    1996-10-01

    Groundwater is being used extensively in the Delhi area for both irrigation and raw water requirement. Fluoride contamination in groundwater is therefore a matter of concern for the planners and managers of water resources. Stable isotope ( 18O) and fluoride signatures in groundwater have been discussed, in this context, to characterise the sources and controlling processes of fluoride contamination. The study indicates that almost 50% of the area is affected by fluoride contamination beyond the maximum permissible limit. The wide range (0.10-16.5 ppm) in fluoride concentration suggests contributions from both point and non-point sources. Very high fluoride levels in groundwater are mostly found in the vicinity of brick kilns. Significant quantities of evaporated (isotopically enriched) rainfall, irrigation water and surface runoff water from surrounding farmland also percolate along with fluoride salts from the soils to the groundwater system. The process of adsorption and dispersion of fluoride species in the soil as well as lateral mixing of groundwater along specific flow-paths control the groundwater fluoride and 18O composition. The groundwater system has more than two isotopically distinct non-point source origins, causing spatial and temporal variations in fluoride concentration. Issues related to harmful effects of excessive use of high-fluoride groundwater and management options have also been discussed.

  7. Compound specific 13C- and 18O-isotope analysis of organic aerosols

    NASA Astrophysics Data System (ADS)

    Blees, Jan; Saurer, Matthias; Siegwolf, Rolf T. W.; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    . Elements other than carbon may provide valuable additional information. Here we report on the development of methods for the analysis of stable carbon and oxygen isotope ratios of organic compounds in aerosols, through GC-combustion-irMS and GC-pyrolysis-irMS. We apply these analyses to environmental aerosol samples and samples of smog-chamber experiments, with the aim of identifying isotopic signatures of sources and pathways. We will pay special attention to derivatisation techniques - notably alternatives to the often-used trimethylsilyl derivatives in GC-pyrolysis-irMS for δ18O analysis - and to compound separation and identification. We present initial data of combined δ13C and δ18O studies on (secondary) organic aerosol samples, and their added value for source apportionment studies.

  8. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates are built largely from CO{sub 2}, which diffuses across the skeletogenic membrane and reacts to form HCO{sub 3}{sup {minus}}. Kinetic discrimination against the heavy isotopes {sup 18}O and {sup 13}C during CO{sub 2} hydration and hydroxylation apparently causes most of the isotopic disequilibrium observed in biological carbonates. These kinetic isotope effects are expressed when the extracytosolic calcifying solution is thin and alkaline, and HCO{sub 3}{sup {minus}} precipitates fairly rapidly as CaCO{sub 3}. In vitro simulation of the calcifying environment produced heavy isotope depletions qualitatively similar to, but somewhat more extreme than, those seen in biological carbonates. Isotopic equilibration during biological calcification occurs through CO{sub 2} exchange across the calcifying membrane and by admixture ambient waters (containing HCO{sub 3}{sup {minus}}) into the calcifying fluids. Both mechanisms tend to produce linear correlations between skeletal {delta}{sup 13}C and {delta}{sup 18}O.

  9. Glycolate metabolism in low and high CO sub 2 -grown chlorella pyrenoidosa and Pavlova lutheri as determined by sup 18 O-labeling

    SciTech Connect

    de Veau, E.J.; Burris, J.E. )

    1989-11-01

    Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring {sup 18}O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from {sup 18}O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO{sub 2}-grown cells than in air-grown cells when both were assayed under the same O{sub 2} and CO{sub 2} concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O{sub 2} levels and inhibited by high CO{sub 2} levels. Glycolate synthesis in 1.5% CO{sub 2}-grown Chlorella, when exposed to a 0.035% CO{sub 2} atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O{sub 2} concentration was increased from 21 to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O{sub 2} concentration was lowered to 2% or the CO{sub 2}-concentration was raised to 1.5%. Glycolate excretion was also sensitive to O{sub 2} and CO{sub 2} concentrations in 1.5% CO{sub 2}-grown cells and the glycolate that was excreted was {sup 18}O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory {sup 18}O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media.

  10. Glycolate Metabolism in Low and High CO2-Grown Chlorella pyrenoidosa and Pavlova lutheri as Determined by 18O-Labeling 1

    PubMed Central

    de Veau, Edward J.; Burris, John E.

    1989-01-01

    Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring 18O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO2-grown cells than in air-grown cells when both were assayed under the same O2 and CO2 concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O2 levels and inhibited by high CO2 levels. Glycolate synthesis in 1.5% CO2-grown Chlorella, when exposed to a 0.035% CO2 atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O2 concentration was increased from 21% to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O2 concentration was lowered to 2% or the CO2 concentration was raised to 1.5%. Glycolate excretion was also sensitive to O2 and CO2 concentrations in 1.5% CO2-grown cells and the glycolate that was excreted was 18O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory 18O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media. PMID:16667116

  11. Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2

    PubMed Central

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B.; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-01-01

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 (18O) and carbon-13 (13C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of 18O/16O and 13C/12C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of 18O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of 18O in breath CO2 were manifested in individuals without the infections. In contrast, the 13C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to 13C-enriched glucose uptake, whereas a distinguishable change of breath 13C/12C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the 18O and 13C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath 12C18O16O and 13C16O16O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen’s physiology along with isotope-specific non-invasive diagnosis of the infection. PMID:26039789

  12. Effect of (2)H and (18)O water isotopes in kinesin-1 gliding assay.

    PubMed

    Maloney, Andy; Herskowitz, Lawrence J; Koch, Steven J

    2014-01-01

    We show for the first time the effects of heavy-hydrogen water ((2)H2O) and heavy-oxygen water (H2 (18)O) on the gliding speed of microtubules on kinesin-1 coated surfaces. Increased fractions of isotopic waters used in the motility solution decreased the gliding speed of microtubules by a maximum of 21% for heavy-hydrogen and 5% for heavy-oxygen water. We also show that gliding microtubule speed returns to its original speed after being treated with heavy-hydrogen water. We discuss possible interpretations of these results and the importance for future studies of water effects on kinesin and microtubules. We also discuss the implication for using heavy waters in biomolecular devices incorporating molecular motors. PMID:24711961

  13. Stable oxygen isotopes (delta18(O)) in Austrocedrus chilensis tree rings reflect climate variability in northwestern Patagonia, Argentina.

    PubMed

    Roig, F A; Siegwolf, R; Boninsegna, J A

    2006-11-01

    The stable oxygen isotope (delta (18)O) composition of Austrocedrus chilensis (D. Don) Endl. (Cupressaceae) tree rings potentially provide retrospective views of changes in environment and climate in the semi-arid lands of Patagonia. We report the development of the first annually resolved delta (18)O tree-ring chronology obtained from natural forests of the foothills of the northwestern Patagonian Andes. The isotope record spans between 1890 and 1994 AD. We explore the probable links between this record and the climate of the region. Air temperatures during summer conditions are significantly, but not strongly, inversely correlated with annual delta (18)O values from Austrocedrus tree rings. The strongest correlations are between the southern oscillation index (SOI) and the tree rings. The existence of millennial-age Austrocedrus trees in northern Patagonia provides interesting possibilities for examining these climate-related isotopic signals over most of the last 1,000 years.

  14. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 1: Implementation and verification

    NASA Astrophysics Data System (ADS)

    Roche, D. M.

    2013-03-01

    A new 18O stable water isotope scheme is developed for three components of the iLOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-)water budget in our climate system. Following the implementation, verification of the existence of usual δ18O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ18O-salinity relationship. Advantages and caveats of the approach taken are outlined.

  15. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  16. Stable isotopic studies on chitin. III. The D/H and 18O/ 16O ratios in arthropod chitin

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; DeNiro, Michael J.

    1986-07-01

    Stable hydrogen and oxygen isotope ratios are presented for carbon-bound hydrogen and for oxygen in chitin-derived substrates from 57 arthropod species collected in 50 different locations or grown under controlled conditions in the laboratory. No systematic isotopic differences were found among Insecta, Crustacea, and Merostomata. The determination of infra- and interindividual isotopic variabilities in a lobster and among individuals of crustacean populations yielded small variances of about ±3 per mil for δD values and ±0.3 per mil for δ 18O values. Molting stage and sex of crustaceans showed no systematic effects on isotopic composition. The δD and δ 18O values of ambient water showed only weak correlations with the respective δ values of chitin-derived substrates. Positive correlation was observed between δD values and trophic level. No temperature effects on δ 18O and δD values from marine crustaceans were found that exceed the natural isotopic noise level. Taken together, these observations indicate that reconstruction of water isotopic composition from arthropod chitin δD and δ 18O values will require specific information about the habits and habitats of the species involved in the analysis.

  17. Oxygen isotope effects of enzyme-catalyzed organophosphorus hydrolysis reactions: implications for interpretation of dissolved PO4 δ18O values in natural waters

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2002-12-01

    The geochemical cycling of P in Earth surface environments is controlled largely by biota. It has been recently demonstrated that intracellular cycling of P in microbial cultures and biological turnover of P in natural waters leads to temperature-dependent O isotope equilibrium between dissolved inorganic PO4 (Pi) and ambient water, and that the δ18O of Pi can be a useful tracer of biological reactions and P cycling in aquatic systems/sediments. Oxygen isotope exchange between Pi and water during biological turnover of P is catalyzed by enzymes at low-temperature. Phosphoenzymes play a crucial role in the intracellular functions of all living organisms and also have important extracellular functions in aquatic ecosystems such as regeneration of Pi from organophosphorus compounds (e.g., phosphoesters). Laboratory experiments indicate that extracellular enzyme reactions may result in incomplete Pi turnover and non-equilibrium Pi-water O isotope exchange. Determination of the O isotope effects of phosphoenzyme-catalyzed reactions is fundamental to the understanding of mechanisms of PO4-water O isotope exchange, pathways of biogeochemical P cycling, and interpretation of PO4 δ18O values from natural systems. Here we report on the O isotope fractionation between enzymatically-released Pi and water, in cell-free abiotic systems. Alkaline phosphatase (Apase) is a non-specific phosphohydrolase commonly found in fresh and marine coastal waters that catalyzes the hydrolysis of Pi from phosphomonoesters. We examined the O isotope effects of Apase derived from both microbial and eukaryotic sources and acting on different phosphomonoester substrates (e.g., α-D-Glucose 1-Phosphate, β-Glycerophosphate, AMP) in 18O-labeled waters. Oxygen isotope ratios of Pi released by Apase indicate that only 1 of the 4 O atoms in PO4 is incorporated from water with little or no apparent O isotopic fractionation at the site of incorporation. This observation is consistent with

  18. Validation of the doubly-labeled water (H/sup 3/H/sup 18/O) method for measuring water flux and energy metabolism in tenebrionid beetles

    SciTech Connect

    Cooper, P.D.

    1981-01-01

    Doubly-labeled water (H/sup 3/H/sup 18/O) has been used to determine water flux and energy metabolism in a variety of vertebrates. This study examines the applicability of this technique to arthropods. The theory of the technique depends upon the assumption that doubly-labeled water introduced into the animal's body water equilibrates with water and carbon dioxide by the action of carbonic anhydrase. Tritium (/sup 3/H) is lost from the animal only with water while oxygen-18 is lost with both water and carbon dioxide. The difference bwtween the rates of loss of the two isotopes is proportional to CO/sub 2/ loss rate. Validation of the use of tritiated water for measuring water flux was accomplished by comparing gravimetric measurements of water gain with flux rates determined by loss of tritiated water. At room humidity, an overestimate for influx calculated from labeled water calculations was found, averaging 12 mg H/sub 2/O (g.d)/sup -1/. Comparison of CO/sub 2/ loss rate determined isotopically with rates of CO/sub 2/ loss determined by standard metabolic rates also yielded overestimates for the isotopic technique, overestimates ranging between 20 and 30%. The relevance of this for studies using labeled water for studying water fluxes and free metabolism of free-ranging arthropods is discussed.

  19. Stable Isotope (18O, 2H) and Arsenic Distribution in the Shallow Aquifers in Araihazar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Datta, S.; Stute, M.; Dhar, R.; Hoque, M. A.; Rahman, M. W.; Ahmed, K. M.; Schlosser, P.; van Geen, A.

    2005-12-01

    Recent estimates indicate that in Bangladesh alone, an estimated 50 million people have been exposed to Arsenic levels that exceed the WHO guideline of 10 μgL-1 for drinking water by up to two orders of magnitude. There is still debate on what processes control the spatial heterogeneity of dissolved As concentrations. One recent suggestion has been that surface waters enriched in labile organic matter and transferred to greater depths by irrigation pumping may be an important factor. We have monitored for a year the oxygen and hydrogen isotopic composition of precipitation in Dhaka, Bangladesh, and of surface waters and groundwaters in a 25 km2 study area in Araihazar, 20 km east of Dhaka. The data show a large spatial and temporal heterogeneity, with δ18O covering a range of up to 12 ‰. The isotopic composition of precipitation falls on the global meteoric water line (GMWL), while most surface waters collected from rivers, ponds and irrigated rice fields plot below and to the right of the meteoric water line, suggesting that evaporation is an important mechanism in this system. Surface waters show a strong evaporative enrichment during the dry season of up to 10 ‰ in δ18O and then show increased mixing with precipitation during the wet season. The groundwater isotopic composition obtained at 6 multi level well sites covers the range between the GMWL and moderately evaporated surface waters. These data indicate that some groundwaters are recharged directly by precipitation while others show evidence of recharge from evaporated surface waters during the wet and at the beginning of the dry season. For several well nests, the sources of groundwater vary in a systematic way as a function of depth. Highly evaporated irrigation water from rice fields in the dry season does not seem to contribute much to groundwater recharge. The degree of evaporation expressed as deuterium excess does not correlate with As concentrations in the groundwater samples. This finding

  20. Oxygen isotope fractionation in the ocean surface and 18O/16O of atmospheric O2

    NASA Astrophysics Data System (ADS)

    Luz, Boaz; Barkan, Eugeni

    2011-12-01

    We have recently published a new evaluation of Earth's Dole effect, which was based, in part, on measurements of δO2/Ar, δ17O and δ18O of dissolved argon and oxygen in the ocean surface. In calculations of the oxygen isotope effect due to photosynthesis and respiration (ɛup), gross O2 production (G) was an important factor. However, our estimates of G were based on an approximate equation, and in a recent publication it has been suggested that G obtained with this equation could be underestimated by about 33%. If true, such underestimation of G might lead to different ɛup values. To test this possibility, we have used a new rigorous equation with relevant information on isotopic composition of photosynthetic O2 and recalculated ɛup. Given the uncertainties, the new values do not differ from the previous ones, and therefore, the implications of the strong fractionation in the upper ocean (˜25‰) to the global Dole effect remain as in our original publication.

  1. Metal-catalyzed phosphodiester cleavage: secondary 18O isotope effects as an indicator of mechanism.

    PubMed

    Rawlings, Jill; Cleland, W Wallace; Hengge, Alvan C

    2006-12-27

    Information about the transition states of metal-catalyzed hydrolysis reactions of model phosphate compounds has been obtained through determination of isotope effects (IEs) on the hydrolysis reactions. Metal complexation has been found to significantly alter the transition state of the reaction from the alkaline hydrolysis reaction, and the transition state is quite dependent on the particular metal ion used. For the diester, ethyl p-nitrophenyl phosphate, the nonbridge 18O effect for the hydrolysis reactions catalyzed by Co(III) 1,5,9-triazacyclononane and Eu(III) were 1.0006 and 1.0016, respectively, indicative of a slightly associative transition state and little net change in bonding to the nonbridge oxygen. The reaction catalyzed by Zn(II) 1,4,7,10-tetraazacyclododecane had an 18O nonbridge IE of 1.0108, showing the reaction differs significantly from the reaction of the noncomplexed diester and resembles the reactions of triesters. Reaction with Co(III) 1,4,7,10-tetraazacyclododecane showed an inverse effect of 0.9948 reflecting the effects of bonding of the diester to the Co(III). Lanthanide-catalyzed hydrolysis has been observed to have unusually large 15N effects. To further investigate this effect, the 15N effect on the reaction catalyzed by Ce(IV) bis-Tris propane solutions at pH 8 was determined to be 1.0012. The 15N effects were also measured for the reaction of the monoester p-nitrophenyl phosphate by Ce(IV) bis-Tris propane (1.0014) and Eu(III) bis-Tris propane (1.0012). These smaller effects at pH 8 indicate that a smaller negative charge develops on the nitrogen during the hydrolysis reaction.

  2. Isolating relative humidity: dual isotopes d18O and dD as deuterium deviations from the global meteoric water line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose d18O and dD can provide insights on climates and hydrological cycling in the distant past and how these factors differ spatially. However, most studies of plant cellulose have used only one isotope, most commonly d18O, resulting in difficulties partitioning variation in d18O of precipitati...

  3. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    PubMed Central

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-01-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  4. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    NASA Astrophysics Data System (ADS)

    Brienen, Roel J. W.; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  5. Isotopic Water Analyzer for Highly Precise Measurements of δ2H, δ18O, and δ17O

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Fortson, S.; Snaith, S.; Gupta, M.

    2012-12-01

    Measurements of the stable isotope ratios (δ2H, δ18O and δ17O) of both liquid water and water vapor are widely used in hydrology, atmospheric sciences, and biogeochemistry to determine the migration of water through an ecosystem. Previously, discrete samples were collected (or condensed) and transported to an isotope ratio mass spectrometer for characterization. Due to the expense and labor associated with such sampling, isotope studies were generally limited in scope and in temporal resolution. We report on the continued development of a field-portable Isotopic Water Analyzer that exploits cavity-enhanced absorption spectrometry (e.g. Off-Axis ICOS) to accurately and rapidly quantify δ2H, δ18O and δ17O of both liquid water and water vapor. The instrument is thermally-controlled to better than ±8 mK and is capable of measuring over 90 liquid samples/day with δ2H, δ18O and δ17O precisions exceeding ±0.2 ‰, ±0.05 ‰, and ±0.06 ‰ respectively. Subsequent averaging yields δ2H, δ18O and δ17O precisions exceeding ±0.077 ‰, ±0.023 ‰, and ±0.03 ‰ respectively with over 22 samples/day. The accuracy of the liquid analyzer was confirmed over a very wide dynamic range (δ2H = -455 to +671 ‰ with comparable δ18O and δ17O values) by direct comparison to isotope ratio mass spectrometry. Moreover, the ability to directly measure 17O-excess, vapor samples, and unnatural waters (e.g. plant water, soil water, urine, blood, saliva…) will also be presented.

  6. 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds

    NASA Astrophysics Data System (ADS)

    Williard, Karl W. J.; DeWalle, David R.; Edwards, Pamela J.; Sharpe, William E.

    2001-10-01

    The δ18O values of atmospheric nitrate deposition, microbe-produced nitrate, and stream nitrate were measured to determine the dominant source of stream nitrate in 27 mid-Appalachian headwater forested watersheds (12-771 ha) with varying bedrock geologies, land disturbance histories, and stand ages. The 12 monthly composite nitrate δ18O values of wet deposition and throughfall exhibited similar pronounced seasonal trends, with relatively depleted δ18O values during the summer. Wet deposition and throughfall nitrate δ18O values were not significantly different between northern (Leading Ridge, PA) and southern (Fernow, WV) regional sampling sites, indicating that δ18O values were spatially similar across the study area. Atmospheric nitrate δ18O values were significantly greater than microbe-produced nitrate δ18O values, allowing the two sources of stream nitrate to be separated. During four baseflow and three stormflow sampling periods, microbe-produced nitrate was the dominant (>70%) source of nitrate in the study streams. This result does not mean atmospheric nitrogen deposition should be discounted as a source of forested stream nitrate, because atmospheric deposition is the primary external contributor to the long-term soil nitrogen pool that ultimately drives soil nitrate production rates. Stream nitrate δ18O values were greater during stormflow periods compared to baseflow periods, indicating greater contributions of atmospheric nitrate during storm events. Neither microbe-produced nitrate δ18O values from incubated forest soil samples nor stream nitrate δ18O values showed strong relationships with land disturbance history or stand age. However, watersheds dominated by Pottsville/Allegheny bedrock and associated extremely acid soils had greater summer stream nitrate δ18O values than watersheds containing predominantly Catskill/Chemung/Pocono and Mauch Chunk/Greenbrier bedrock. Inhibited microbial nitrate production by low soil pH could account for

  7. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 1: Implementation and verification

    NASA Astrophysics Data System (ADS)

    Roche, D. M.

    2013-09-01

    A new 18O stable water isotope scheme is developed for three components of the iLOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-) water budget in our climate system. Following the implementation, verification of the existence of usual δ18O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ18O -salinity relationship. Advantages and caveats of the approach taken are outlined. The isotopic fields simulated are shown to reproduce most expected oxygen-18-climate relationships with the notable exception of the isotopic composition in Antarctica.

  8. Stable isotope time-series in mammalian teeth: In situ δ18O from the innermost enamel layer

    NASA Astrophysics Data System (ADS)

    Blumenthal, Scott A.; Cerling, Thure E.; Chritz, Kendra L.; Bromage, Timothy G.; Kozdon, Reinhard; Valley, John W.

    2014-01-01

    Stable carbon and oxygen isotope ratios in mammalian tooth enamel are commonly used to understand the diets and environments of modern and fossil animals. Isotope variation during the period of enamel formation can be recovered by intra-tooth microsampling along the direction of growth. However, conventional sampling of the enamel surface provides highly time-averaged records in part due to amelogenesis. We use backscattered electron imaging in the scanning electron microscope (BSE-SEM) to evaluate enamel mineralization in developing teeth from one rodent and two ungulates. Gray levels from BSE-SEM images suggest that the innermost enamel layer, <20 μm from the enamel-dentine junction, is highly mineralized early in enamel maturation and therefore may record a less attenuated isotopic signal than other layers. We sampled the right maxillary incisor from a woodrat subjected to an experimentally induced water-switch during the period of tooth development, and demonstrate that secondary ion mass spectrometry (SIMS) can be used to obtain δ18O values with 4-5-μm spots from mammalian tooth enamel. We also demonstrate that SIMS can be used to discretely sample the innermost enamel layer, which is too narrow for conventional microdrilling or laser ablation. An abrupt δ18O switch of 16.0‰ was captured in breath CO2, a proxy for body water, while a laser ablation enamel surface intra-tooth profile of the left incisor captured a δ18O range of 12.1‰. The innermost enamel profile captured a δ18O range of 15.7‰, which approaches the full magnitude of δ18O variation in the input signal. This approach will likely be most beneficial in taxa such as large mammalian herbivores, whose teeth are characterized by less rapid mineralization and therefore greater attenuation of the enamel isotope signal.

  9. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  10. Highly enriched multiply-labeled stable isotopic compounds as atmospheric tracers

    DOEpatents

    Goldblatt, M.; McInteer, B.B.

    1974-01-29

    Compounds multiply-labeled with stable isotopes and highly enriched in these isotopes are readily capable of detection in tracer experiments involving high dilutions. Thus, for example, /sup 13/C/sup 18/O/sub 2/ provides a useful tracer for following atmospheric pol lution produced as a result of fossil fuel burning. (Official Gazette)

  11. Use of oxygen-18 isotopic labeling to assay photorespiration in terrestrial plants and algae

    SciTech Connect

    de Veau, E.J.

    1988-01-01

    A new method was devised to quantify photorespiration. The assay utilized {sup 18}O{sub 2} to isotopically label intermediates of the glycolate pathway, specifically glycolate, glycine, and serine, for various time periods. The pathway intermediates were isolated and analyzed on a mass spectrometer to determine molecular percent {sup 18}O-enrichment. Rates of glycolate synthesis were determined from: {sup 18}O-labeling kinetics of the intermediates, derived rate equations, and non-linear regression techniques. The method was adapted to measure photorespiratory rates in both terrestrial plants and algae. Test plants are Triticum aestivum, Zea mays L., Pavlova lutheri and Chlorella pyrenoidosa.

  12. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna.

  13. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna. PMID:26110629

  14. A novel methodological approach for δ(18)O analysis of sugars using gas chromatography-pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Zech, Michael; Saurer, Matthias; Tuthorn, Mario; Rinne, Katja; Werner, Roland A; Siegwolf, Rolf; Glaser, Bruno; Juchelka, Dieter

    2013-01-01

    Although the instrumental coupling of gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) for compound-specific δ(18)O analysis has been commercially available for more than a decade, this method has been hardly applied so far. Here we present the first GC-Py-IRMS δ(18)O results for trimethylsilyl-derivatives of plant sap-relevant sugars and a polyalcohol (glucose, fructose, sucrose, raffinose and pinitol). Particularly, we focus on sucrose, which is assimilated in leaves and which is the most important transport sugar in plants and hence of utmost relevance in plant physiology and paleoclimate studies. Replication measurements of sucrose standards and concentration series indicate that the GC-Py-IRMS δ(18)O measurements are not stable over time and that they are amount (area) dependent. We, therefore, suggest running sample batch replication measurements in alternation with standard concentration series of reference material. This allows for carrying out (i) a drift correction, (ii) a calibration against reference material and (iii) an amount (area) correction. Tests with (18)O-enriched water do not provide any evidence for oxygen isotope exchange reactions affecting sucrose and raffinose. We present the first application of GC-Py-IRMS δ(18)O analysis for sucrose from needle extract (soluble carbohydrate) samples. The obtained δ(18)Osucrose/ Vienna Standard Mean Ocean Water (VSMOW) values are more positive and vary in a wider range (32.1-40.1 ‰) than the δ(18)Obulk/ VSMOW values (24.6-27.2 ‰). Furthermore, they are shown to depend on the climate parameters maximum day temperature, relative air humidity and cloud cover. These findings suggest that δ(18)Osucrose of the investigated needles very sensitively reflects the climatically controlled evaporative (18)O enrichment of leaf water and thus highlights the great potential of GC-Py-IRMS δ(18)Osucrose analysis for plant physiology and paleoclimate studies. PMID:24313371

  15. Correction of MS data for naturally occurring isotopes in isotope labelling experiments.

    PubMed

    Millard, Pierre; Letisse, Fabien; Sokol, Serguei; Portais, Jean-Charles

    2014-01-01

    Mass spectrometry (MS) in combination with isotope labelling experiments is widely used for investigations of metabolism and other biological processes. Quantitative applications-e.g., (13)C metabolic flux analysis-require correction of raw MS data (isotopic clusters) for the contribution of all naturally abundant isotopes. This chapter describes how to perform such correction using the software IsoCor. This flexible, user-friendly software can be used to exploit any isotopic tracer, from well-known ((13)C, (15)N, (18)O, etc.) to unusual ((57)Fe, (77)Se, etc.) isotopes. It also provides options-e.g., correction for the isotopic purity of the tracer-to improve the accuracy of quantitative isotopic studies, and allows automated correction of large datasets that can be collected with modern MS methods.

  16. Specific coupling between the 13-keto carbonyl and chlorin skeletal vibrational modes of synthetic 13 1- 18O-(un)labelled metallochlorophyll derivatives

    NASA Astrophysics Data System (ADS)

    Morishita, Hidetada; Tamiaki, Hitoshi

    2009-03-01

    Metal complexes of methyl 13 1- 18O-labelled pyropheophorbide- a1-M- 18O (M = Zn, Cu and Ni) were prepared by metallation of the 18O-labelled free base ( 1- 18O) and 18O-labelling of unlabelled nickel complex ( 1-Ni). The FT-IR spectra of 1-Zn and 1-Zn- 18O in CH 2Cl 2 showed that the 13-keto carbonyl stretching vibration mode moved to about a 30-cm -1 lower wavenumber by 18O-labelling of the 13 1-oxo moiety. In 1-Cu- 18O and 1-Ni- 18O, the 13-C dbnd 18O stretching modes were close to the highest-energy wavenumber mode of chlorin skeletal C-C/C-N vibrations at around 1650 cm -1 and they were coupled in CH 2Cl 2 to give two split IR bands (Fermi resonance). A similar coupling was observed in the resonance Raman scattering of 1-Ni- 18O in the solid state. The hydrogen-bonded 13-C dbnd 16O vibration mode of 1-Ni similarly coupled with the skeletal C-C/C-N mode in CCl 4 containing 1% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol, while such a coupling was not observed in a neat CCl 4 solution of 1-Ni possessing the 13-C dbnd 16O free from any interaction. The skeletal C-C/C-N band selectively coupled with the 13-C dbnd O, not with the 3-C dbnd O, when the difference in their peak maxima was less than 20 cm -1.

  17. Continuous Arctic Ocean Water Vapor Isotope Ratio (δ18O and δ2H) Measurements During a Summer Icebreaker Expedition

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Welker, J. M.

    2015-12-01

    Warming in the Arctic is reducing sea ice, which may result in changes to the water cycle through increased atmospheric humidity. Here we present the first continuous record of water vapor isotope ratio (δ18O, δ2H, d-excess) measurements from the sub-Arctic and Arctic Ocean during ship transit through both open water and sea ice. As water vapor isotopes were collected across a spectrum of sea ice conditions, the influence of sea ice and availability of open water moisture sources on Arctic Ocean water vapor isotope values (particularly d-excess) is examined. Isotope values reveal characteristics about water availability at vapor sources, as influenced by presence of sea ice (e.g., ice covered arid or open water humid sources), and air parcel trajectory. Higher d-excess values were generally associated with more northern Arctic, ice covered, and arid vapor sources. Conversely, lower d-excess values were related to more southern, open water, and humid vapor sources. Additionally, water vapor isotopes while sea ice was present were generally characterized by more depleted δ18O and δ2H and higher d-excess values, relative to open water values. These water vapor isotope values also present information about potential shifts in moisture sources in an increasingly ice free Arctic Ocean. Understanding these shifts is important to learning about both modern and past patterns of Arctic atmospheric water movement and distribution.

  18. On the use of stable oxygen isotope18O) measurements for tracking avian movements in North America

    PubMed Central

    Hobson, Keith A; Koehler, Geoff

    2015-01-01

    Tracking migratory animals has benefitted using measurements of naturally occurring stable isotopes of hydrogen (δ2H) in keratinous tissues such as hair and feathers to link animal origins to continental patterns or isoscapes of δ2H in precipitation. However, for most taxa, much less information exists on the use of stable oxygen isotope ratios (δ18O) despite the fact that δ2H and δ18O are strongly linked in environmental waters through the meteoric relationship and the possibility of using both isotopes to infer greater information on origins and climatic conditions where tissues are grown. A fundamental requirement of using stable isotopes to assign individuals and populations to origins is the development of a rescaling function linking environmental food web signals to the tissue of interest and for birds, this has not been carried out. Here, we derived the relationship between H and O isotopes in known source feathers of 104 individuals representing 11 species of insectivorous passerines sampled across the strong precipitation isoscape of North America. We determined again a strong expected relationship between feather δ2H (δ2Hf) and long-term amount-weighted precipitation δ2H (δ2Hp; r2 = 0.77), but the corresponding relationship between δ18Of and δ18Op was poor (r2 = 0.32) for the same samples. This suggests that δ2H measurements are currently more useful for assignment of insectivorous songbirds to precipitation isoscapes but does not preclude other uses of the δ18Of data. Currently, mechanisms responsible for the decoupling of H and O isotopes in food webs is poorly known, and we advocate a much broader sampling of both isotopes in the same keratinous tissues across precipitation isotope gradients and across taxa to resolve this issue and to increase the power of using water isotopes to track migratory animals. PMID:25691999

  19. Isotopic tracing (D, 18O and 29Si) to understand the alteration on historic glass

    NASA Astrophysics Data System (ADS)

    Verney-Carron, Aurélie; Saheb, Mandana; Valle, Nathalie; Mangin, Denis; Remusat, Laurent; Loisel, Claudine

    2015-04-01

    In order to better preserve historic glasses, e.g. stained glass windows, the understanding of their alteration mechanisms and of what controls the kinetics corresponding to each process is required. The ancient stained glasses are characterized by thick alteration layers, continuous or as pits, that are cracked or lost. Therefore, if a passivating role of the alteration layer has been proved on some other kinds of glass (such as basaltic or nuclear glass) in aqueous medium, the issue can be addressed for low durable stained glass weathered in varying atmospheric conditions. The mechanism of alteration layer formation was first investigated by performing dynamic and static experiments on model medieval glasses altered with a solution doped in 29Si at different concentrations (or saturation degrees). Solid analyses were carried out by SIMS and solution by HR-ICP-MS. Medieval stained glass has mainly a potash-lime-silica composition with a low content in alumina. The alkaline and alkaline-earth elements have thus a modifier role in the glassy network. This structural difference compared to boro- or alumino-silicate glasses could induce differences in the alteration mechanisms. However, the analysis of the Si isotopic signature of the gel layer highlighted that diffusion, but also hydrolysis/condensation reactions, are also involved in the gel layer formation process, leading to a structural and textural reorganization. The second objective was to determine the kinetic role of the alteration layer, and especially to trace the circulation of water once the altered layer is formed. For that, ancient glasses were exposed to simulated rainfall events / drying periods cycles during 3 months by using a solution doped in D and 18O. NanoSIMS analyses have shown that the transport in the alteration layer is mainly driven by diffusion in the porosity despite the presence of cracks that could have been preferential ways of circulation. This demonstrates also a potential

  20. Evaluation of a High Intensity Focused Ultrasound-Immobilized Trypsin Digestion and 18 O-Labeling Method for Quantitative Proteomics

    SciTech Connect

    Lopez-Ferrer, Daniel; Hixson, Kim K.; Smallwood, Heather S.; Squier, Thomas C.; Petritis, Konstantinos; Smith, Richard D.

    2009-08-01

    A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultra-rapid digestion and thorough 18O labeling for quantitative protein comparisons. The reproducible and highly efficient method provided effective digestions in <1 min and minimized the amount of enzyme required compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from bacteria Shewanella oneidensis, and mouse plasma, as well as for the labeling of complex protein mixtures, which validated the application of this method for differential proteomic measurements. This approach is simple, reproducible, cost effective, and rapid, and thus well-suited for automation.

  1. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    SciTech Connect

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  2. Isotopic analyses (/sup 18/O, /sup 13/C, /sup 14/C) of two meromictic lakes in the Canadian Arctic Archipelago

    SciTech Connect

    Page, P.; Ouellet, M.; Hillaire-Marcel, C.; Dickman, M.

    1984-05-01

    Meromictic Lakes Garrow and Sophia in the Canadian Arctic Archipelago were sampled to establish the origin and age of their water by isotopic studies. /sup 18/O values reflect the permanent stratification of the water in both lakes. The mixolimnia contain waters with an isotopic signal between -13.16 and -21.98%, coherent with the values for precipitation in these high latitudes. In the chemoclines, the delta/sup 18/O values increase to -10% concomitantly with a rise in chloride content to 42 g.liter/sup -1/. In the monimolimnia, hypersaline waters (up to 2.5 times the salinity of seawater) show negative delta/sup 18/O values (ca. -.08%). These waters result from brine production during permafrost growth in the watershed, according to a Rayleigh process. /sup 14/C dating of total inorganic carbon in the Lake Garrow monimolimnion gave an age of 2580 +/- 260 years BP. In Lake Sophia, the deep waters exhibit recent /sup 14/C activity that suggests recent infiltration of seawater into the lake basin.

  3. Directly Measured Clumped Isotope Temperatures From Known And Proposed Paleozoic Glacial Intervals Suggest That Oceans Were Depleted in 18O

    NASA Astrophysics Data System (ADS)

    Petrizzo, D. A.; Runnegar, B.; Ivany, L.; Young, E. D.

    2011-12-01

    Oceans enriched in 13C are thought to result from atmospheric CO2 drawdown and concomitant global cooling resulting from increased burial of organic matter. We investigated ocean temperatures during two times when the oceans were exceptionally heavy in 13C, the Lau Event of the late Silurian and the Late Paleozoic Ice Age (LPIA), using both δ18O and "directly measured" clumped isotope (Δ47) temperatures. We report a tropical ocean temperature of 16 ± 3°C at the peak of the Lau Event, confirm seasonality at a high-latitude LPIA site, and raise the possibility that some degradation of 13C-18O bonds may be widespread in apparently unaltered carbonates that have seen temperatures higher than 100-150°C. Silurian conodonts from Gotland, Sweden, are almost unaltered (CAI ~ 0) indicating burial temperatures of <50°C. We measured atrypid brachiopod calcite from the peak of the late Silurian Lau event, the largest positive carbon isotope excursion (+8%) since the Cambrian, and obtained Δ47 = 0.687 ± 0.014, giving a low latitude water temperature of 16 ± 3°C. This is significantly cooler than tropical temperatures reported from pentamerid brachiopod calcite of the early Silurian greenhouse period (35°C, Came et al., 2007) and those derived from rugose corals during the Hirnantian (Ordovician) positive carbon isotope excursion (+5%) and accompanying glaciation (27-32°C, Finnegan et al., 2010). We also measured Δ47 in two shells of the Australian Permian bivalve Eurydesma, a circumpolar genus associated with cold water indicators. Ivany and Runnegar (2010) found high-amplitude annual cycles in δ18O in one of these specimens but the calculated temperatures seemed too warm for the periglacial conditions indicated by approximately coeval dropstones and glendonites unless Permian ocean water δ18O was lighter than ~ -3%. Our Δ47 results also give unrealistically warm winter (~12°C) and summer (~23°C) temperatures for this high-latitude site, raising the possibility

  4. Seawater intrusion into groundwater aquifer through a coastal lake - complex interaction characterised by water isotopes (2)H and (18)O.

    PubMed

    Gemitzi, Alexandra; Stefanopoulos, Kyriakos; Schmidt, Marie; Richnow, Hans H

    2014-01-01

    The present study investigates the complex interactions among surface waters, groundwaters and a coastal lake in northeastern Greece, using their stable isotopic composition (δ(18)O, δ(2)H) in combination with hydrogeological and hydrochemical data. Seasonal and spatial trends of water isotopes were studied and revealed that all water bodies in the study area interact. It was also shown that the aquifer's increased salinity is not due to fossil water from past geological periods, but is attributed to brackish lake water intrusion into the aquifer induced by the extensive groundwater pumping for irrigation purposes. Quantification of the contribution of the lake to the aquifer was achieved using the simple dilution formula. The isotopic signatures of the seawater and the groundwaters are considerably different, so there is a very little possibility of direct seawater intrusion into the aquifer.

  5. Using environmental isotopes 2H and 18O for identification of infiltration processes in floodplain ecosystems of the River Elbe.

    PubMed

    Böhnke, R; Geyer, S; Kowski, P

    2002-03-01

    We examined a floodplain area in the middle section of the river Elbe Valley with regard to hydrogeological and hydrological processes using isotopic methods. Over two years, river water and groundwater have been analysed for temporal and spatial chemical and isotopic (delta2H and delta18O) changes. By these methods we assessed the flow dynamics of the river-groundwater infiltration system. At low and mean river stages there is a general hydraulic gradient from the higher areas at the margin of the valley towards the floodplain. During floods river water infiltrates into the adjacent aquifer not primarily through the river banks but first through surface water inflow from north to south, via depressions and gullies from the back of the floodplain. The early stage of river water infiltration is characterized by a sharp decrease in conductivity and in concentrations of SO4(2-) and Cl- in the hydraulically connected shallow aquifer. delta2H and delta18O values show a similar tendency. We observed a significant minimum in stable isotope ratios during the flood in March 1999. Using a simple mixing equation it was calculated that the groundwater in the upper, shallow aquifer consists of around 70% river water in the transition zone (well 13) during flooding.

  6. An assessment of the isotopic (2H/18O) integrity of water samples collected and stored by unattended precipitation totalizers

    NASA Astrophysics Data System (ADS)

    Terzer, Stefan; Wassenaar, Leonard I.; Douence, Cedric; Araguas-Araguas, Luis

    2016-04-01

    The IAEA-WMO Global Network of Isotopes in Precipitation (GNIP) provides worldwide δ18O and δ2H data for numerous hydrological and climatological studies. The traditional GNIP sample collection method relies on weather station operators to accumulate precipitation obtained from manual rain gauges. Over the past decades, widespread weather station automatization resulted in the increased use of unattended precipitation totalizers that accumulate and store the rainwater in the field for up to one month. Several low-tech measures were adopted to prevent in situ secondary evaporative isotopic enrichment (SEE) of totalized water samples (i.e. disequilibrium isotopic fractionation after precipitation is stored in the collection device). These include: (a) adding a 0.5-1 cm floating layer of paraffin oil to the totalizer bottle, (b) using an intake tube leading from the collection funnel and submerged to the bottom of the totalizer bottle, or (c) placing a table tennis ball in the funnel aiming to reduce evaporation of the collected water from the receiving bottle to the atmosphere. We assessed the isotopic integrity of stored rainwater samples for three totalizers under controlled settings: each aforementioned totalizer was filled with a 100 or 500 mL of isotopically known water and installed in the field with the intake funnels sheltered to prevent rainwater collection. Potential evapotranspiration (PET) was obtained from on-site meteorological recordings. Stored evaporative loss from each totalizer was evaluated on a monthly basis; gravimetrically and by analysing δ18O and δ2H of the stored water, for a period of 6 months and a cumulative PET of ˜500 mm. The gravimetric and isotope results revealed that for smaller water volumes (100 ml, corresponding to ca. 5 mm of monthly precipitation), negligible isotope enrichment (δ18O) was observed in the paraffin-oil based totalizer, whereas unacceptable evaporative isotope effects were observed for the ball

  7. Water - Isotope - Map (δ 18O, δ 2H, 3H) of Austria: Applications, Extremes and Trends

    NASA Astrophysics Data System (ADS)

    Wyhlidal, Stefan; Kralik, Martin; Benischke, Ralf; Leis, Albrecht; Philippitsch, Rudolf

    2016-04-01

    The isotopic ratios of oxygen and hydrogen in water (2H/1H and 18O/16O) are important tools to characterise waters and their cycles. This starts in the atmosphere as rain or snow and continues in surface water and ends in shallow groundwater as well as in deep groundwater. Tritium formed by natural cosmic radiation in the upper atmosphere and in the last century by tests of thermonuclear bombs in the atmosphere, is characterised by its radioactive decay with a half-life of 12.32 years and is an ideal age-marker during the last 60 years. To determine the origin and mean age of waters in many projects concerning water supply, engineering and scientific projects in the last 45 years on more than 1,350 sites, more than 40,000 isotope measurements were performed in Austria. The median value of all sites of oxygen-18 is δ 18O -10.7 ‰ and for hydrogen-2 δ 2H -75 ‰. As the fractionation is mainly temperature dependent the lowest negative values are observed in winter precipitation (oxygen-18 as low as δ 18O -23 ‰) and in springs in the mountain regions (δ 18O -15.1 ‰). In contrast the highest values were observed in summer precipitation (up to δ 18O - 0.5 ‰) and in shallow lakes in the Seewinkel (up to δ 18O + 5 ‰). The isotopic ratios of the Austrian waters are also influenced by the origin of the evaporated water masses. Therefore the precipitation in the region south of the main Alpine crest (East-Tyrol, Carinthia and South-East Styria) is approximately 1 ‰ higher in δ 18O-values than sites at the same altitude in the northern part. This is most probably caused by the stronger influence of precipitation from the mediterranean area. The median value of all 1,120 sampling sites of decay corrected (2015) tritium measurements is 6.2 tritium units (TU). This is somewhat smaller than the median value of all precipitation stations with 7.2 TU. This can be explained by the fact that in most cases in groundwater the median value has been reduced by decay

  8. Clumped Isotope Verification of δ18O-Based Freshwater Mussel Shell Growth Chronology for a High-Resolution Climate and River Discharge Record

    NASA Astrophysics Data System (ADS)

    VanPlantinga, A.; Grossman, E. L.; Passey, B. H.; Randklev, C.

    2015-12-01

    Isotope profiles in freshwater mussel shells can be used to reconstruct climate, water source, and river discharge, but problems arise from variable water temperature and δ18O. To resolve this complexity and expand the application of isotope sclerochronology to the study of past river systems, we measured δ18O and Δ47 in two common freshwater mussel species from the Brazos River in Texas. To compare the environmental record with the shell record and develop a sclerochronology, weekly water temperature and δ18O data were collected from the Brazos River near College Station from January 2012 to August 2013. The river data reveal complex, irregular patterns for predicted aragonite δ18O. Comparing δ18O profiles from micromilled transects (70-200 µm increments) of coeval shell growth within and between shells yielded consistent patterns. Shell δ18O can be accurately matched to predicted δ18O, providing a chronology of shell growth. However, without a water temperature and δ18O record, interpreting a sclerochronology would be impossible. Shell Δ47 can potentially provide a seasonal chronology to verify the δ18O sclerochronology, which would be invaluable for the use of δ18O sclerochronology in historical and ancient shells. For Δ47 analyses, samples were taken at 0.5 mm resolution in presumed seasonal dark and light growth bands. Clumped temperatures range between 21 and 35 ± 4˚C (Henkes et al., 2013) and track the river temperature record, supporting the interpreted shell δ18O chronology. Shell Δ47-calculated water δ18O values range from -1.2 to 1.5 ± 0.9‰ and match river δ18O. High-resolution shell δ18O profiles combined with Δ47 temperatures can reconstruct a weekly history of water δ18O, and with the observed river discharge vs. water δ18O relation, produce a qualitative record of river discharge. These analytical techniques applied to a historical Brazos River mussel shell collected prior to dam construction reveal weekly records of

  9. Growth Rates, Stable Oxygen Isotopes (18O), and Strontium (Sr/Ca) Composition in Two Species of Pacific Sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with 18O Calibration and Application to Paleoceanography

    SciTech Connect

    Grottoli, A.; Adkins, J; Panero, W; Reaman, D; Moots, K

    2010-01-01

    The isotopic and elemental composition of sclerosponge skeletons is used to reconstruct paleoceanographic records. Yet few studies have systematically examined the natural variability in sclerosponge skeletal {delta}{sup 18}O, growth, and Sr/Ca, and how that may influence the interpretation of sclerosponge proxy records. Here, we analyzed short records in seven specimens of Acanthocheatetes wellsi (high-Mg calcite, 21 mol% Mg) from Palau, four A. wellsi (high-Mg calcite, 21 mol% Mg) from Saipan, and three Astrosclera willeyana (aragonite) sclerosponges from Saipan, as well as one long record in an A. wellsi specimen from Palau spanning 1945-2001.5. In Saipan, species-specific and mineralogical effects appear to have a negligible effect on sclerosponge {delta}{sup 18}O, facilitating the direct comparison of {delta}{sup 18}O records between species at a given location. At both sites, A. wellsi {delta}{sup 18}O and growth rates were sensitive to environmental conditions, but Sr/Ca was not sensitive to the same conditions. High-resolution {delta}{sup 18}O analyses confirmed this finding as both A. wellsi and A. willeyana deposited their skeleton in accordance with the trends in isotopic equilibrium with seawater, though with a 0.27{per_thousand} offset in the case of A. willeyana. In the high-Mg-calcite species A. wellsi, Mg may be interfering with Sr incorporation into the skeleton. On multidecadal timescales, A. wellsi sclerosponge {delta}{sup 18}O in Palau tracked the Southern Oscillation Index variability post-1977, but not pre-1977, coincident with the switch in the Pacific Decadal Oscillation (PDO) at {approx}1976. This suggests that water mass circulation in the region is influenced by El Nino-Southern Oscillation variability during positive PDO phases, but not during negative ones.

  10. Novel /sup 18/O kinetic isotope effect in an. cap alpha. -chymotrypsin catalyzed transesterification

    SciTech Connect

    Wang, C.L.A.; Trout, C.M.; Calvo, K.C.; Klapper, M.H.; Wong, L.K.

    1980-01-30

    Reactions were started by injecting the nitrophenyl ester into a stoppered vial immersed in a constant-temperature bath (4/sup 0/C) containing a mixture of /sup 16/O plus /sup 18/O-ethanol, ..cap alpha..-chymotrypsin, and buffer. As the reaction proceeded, samples were withdrawn and injected into a gas chromatograph connected to a quadrupole mass spectrometer controlled by a data acquisition and processing system. The intensities from individual ions were displayed as a function of time to yield chromatographic peaks. Relative /sup 18/O enrichments were computed from the ratios of the peak areas, and the apparent KIE was then calculated from the ratio of enrichments in alcohol and ester. The values of the plateau KIE were less than or equal to 0.90 for all experiments. The apparent first-order rate constant can also be calculated from the magnitude of the initial burst and the slope of the zero-order absorbence increase. This apparent rate constant varies linearly with the ethanol concentration permitting calculation of the second-order rate associated with the formation of the ethyl ester product. 2 figures, 1 table.

  11. The use of δ(2)H and δ(18)O isotopic analyses combined with chemometrics as a traceability tool for the geographical origin of bell peppers.

    PubMed

    de Rijke, E; Schoorl, J C; Cerli, C; Vonhof, H B; Verdegaal, S J A; Vivó-Truyols, G; Lopatka, M; Dekter, R; Bakker, D; Sjerps, M J; Ebskamp, M; de Koster, C G

    2016-08-01

    Two approaches were investigated to discriminate between bell peppers of different geographic origins. Firstly, δ(18)O fruit water and corresponding source water were analyzed and correlated to the regional GNIP (Global Network of Isotopes in Precipitation) values. The water and GNIP data showed good correlation with the pepper data, with constant isotope fractionation of about -4. Secondly, compound-specific stable hydrogen isotope data was used for classification. Using n-alkane fingerprinting data, both linear discriminant analysis (LDA) and a likelihood-based classification, using the kernel-density smoothed data, were developed to discriminate between peppers from different origins. Both methods were evaluated using the δ(2)H values and n-alkanes relative composition as variables. Misclassification rates were calculated using a Monte-Carlo 5-fold cross-validation procedure. Comparable overall classification performance was achieved, however, the two methods showed sensitivity to different samples. The combined values of δ(2)H IRMS, and complimentary information regarding the relative abundance of four main alkanes in bell pepper fruit water, has proven effective for geographic origin discrimination. Evaluation of the rarity of observing particular ranges for these characteristics could be used to make quantitative assertions regarding geographic origin of bell peppers and, therefore, have a role in verifying compliance with labeling of geographical origin.

  12. The use of δ(2)H and δ(18)O isotopic analyses combined with chemometrics as a traceability tool for the geographical origin of bell peppers.

    PubMed

    de Rijke, E; Schoorl, J C; Cerli, C; Vonhof, H B; Verdegaal, S J A; Vivó-Truyols, G; Lopatka, M; Dekter, R; Bakker, D; Sjerps, M J; Ebskamp, M; de Koster, C G

    2016-08-01

    Two approaches were investigated to discriminate between bell peppers of different geographic origins. Firstly, δ(18)O fruit water and corresponding source water were analyzed and correlated to the regional GNIP (Global Network of Isotopes in Precipitation) values. The water and GNIP data showed good correlation with the pepper data, with constant isotope fractionation of about -4. Secondly, compound-specific stable hydrogen isotope data was used for classification. Using n-alkane fingerprinting data, both linear discriminant analysis (LDA) and a likelihood-based classification, using the kernel-density smoothed data, were developed to discriminate between peppers from different origins. Both methods were evaluated using the δ(2)H values and n-alkanes relative composition as variables. Misclassification rates were calculated using a Monte-Carlo 5-fold cross-validation procedure. Comparable overall classification performance was achieved, however, the two methods showed sensitivity to different samples. The combined values of δ(2)H IRMS, and complimentary information regarding the relative abundance of four main alkanes in bell pepper fruit water, has proven effective for geographic origin discrimination. Evaluation of the rarity of observing particular ranges for these characteristics could be used to make quantitative assertions regarding geographic origin of bell peppers and, therefore, have a role in verifying compliance with labeling of geographical origin. PMID:26988484

  13. Isotopic18O, δD and deuterium excess) records from the TALDICE ice core (East Antarctica) (Invited)

    NASA Astrophysics Data System (ADS)

    Stenni, B.; Buiron, D.; Masson-Delmotte, V.; Bonazza, M.; Braida, M.; Chappellaz, J.; Frezzotti, M.; Falourd, S.; Minster, B.; Selmo, E.

    2010-12-01

    Paleotemperature reconstructions from Antarctic ice cores rely mainly on δD and δ18O records and the main key factors controlling the observed distribution of δD and δ18O in Antarctic surface snow are mainly related to the condensation temperature of the precipitation and the origin of moisture. The deuterium excess, d = δD - 8*δ18O, contains information about climate conditions prevailing in the source regions of precipitation and can be used as an integrated tracer of past hydrological cycle changes. In the framework of the TALos Dome Ice CorE (TALDICE) project, a deep ice core (1620 m) has been drilled at Talos Dome, a peripheral dome of East Antarctica facing the Ross Sea, about 550 km north of Taylor Dome and 1100 km East from the EPICA Dome C drilling site. The TALDICE coring site (159°11'E 72°49'S; 2315 m; T -41°C; www.taldice.org) is located near the dome summit and is characterised by an annual snow accumulation rate of 80 mm water equivalent. Backtrajectory analyses suggest that Talos Dome is mainly influenced by air masses arriving both from the Pacific (Ross Sea) and Indian Ocean sectors. A preliminary dating based on an ice flow model and an inverse method suggests for the upper 1580 m an age of about 300,000 years BP. The full TALDICE δ18O record obtained from the bag samples as well as δD and deuterium excess data are presented here. The δ18O and δD measurements were carried out in Italy and France on a continuous basis of 1 m. These new records will be compared to the ones obtained from the EDC ice core as well as with other East Antarctic ice core records. In particular, we will focus on the whole isotopic profiles, in good agreement with other inland deep ice cores, and on the last deglaciation, showing climatic changes at Talos Dome in phase with the Antarctic plateau and suggesting that the bipolar see saw with Greenland temperature is also valid for this new coastal site facing the Ross Sea sector.

  14. Determining Carbonate Concretion Formation Temperatures and Pore Water δ18O Values Using the Clumped Isotope Approach

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Corsetti, F. A.; Tripati, A. K.

    2010-12-01

    The porosity/permeability of siliciclastic strata is affected by post-depositional cementation, but determining at what depth and under what conditions cementation occurs is difficult with standard techniques. The oxygen isotopic composition of solid phase carbonate cements (δ18Ocarb) can be related to temperature (and by extension depth) of formation, and thus has been widely used in diagenetic studies. However, δ18Ocarb paleothermometry requires the prediction or assumption of pore water δ18O (δ18Opw), a parameter that is poorly constrained in past diagenetic environments (for convenience δ18Opw is usually assumed to be 0‰ VSMOW). Here, we use clumped isotope thermometry (CIT)—a fluid δ18O-independent temperature proxy—to avoid the often ambiguous yet necessary δ18Opw assumption applied to δ18Ocarb paleothermometery and reevaluate the temperature of carbonate concretion formation in the Miocene Monterey Formation (dolomite) and the Cretaceous Holz Shale (calcite) of southern California. CIT analysis of Monterey Formation concretions produced slightly increased temperatures of formation versus traditional δ18Ocarb paleothermometry, whereas the Holz Shale concretions produced significantly decreased temperatures. Inputting the CIT-derived temperature into the associated δ18Ocarb-temperature equation allows the calculation of the ancient δ18Opw. Calculated δ18Opw values range from ~ -8 to +2‰ VSMOW, significantly different from coeval seawater. δ18Opw less than 0‰ can be generated by a number of processes including the influx of non-marine fluids and/or hydrate formation, whereas δ18Opw greater than 0‰ can be produced by silicate diagenesis, influx of evaporative brines, or hydrate dissolution. These data demonstrate that pore water modifying diagenetic processes were operating in past environments and emphasize that the formation temperatures of diagenetic carbonates should be calculated using a fluid δ18O-independent approach, such as

  15. Stable isotope labeling methods for DNA.

    PubMed

    Nelissen, Frank H T; Tessari, Marco; Wijmenga, Sybren S; Heus, Hans A

    2016-08-01

    NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis. PMID:27573183

  16. Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration

    USGS Publications Warehouse

    Böhlke, J.K.; Mroczkowski, S.J.; Coplen, T.B.

    2003-01-01

    Despite a rapidly growing literature on analytical methods and field applications of O isotope-ratio measurements of NO3- in environmental studies, there is evidence that the reported data may not be comparable because reference materials with widely varying ?? 18O values have not been readily available. To address this problem, we prepared large quantities of two nitrate salts with contrasting O isotopic compositions for distribution as reference materials for O isotope-ratio measurements: USGS34 (KNO3) with low ??18O and USGS35 (NaNO3) with high ??18O and 'mass-independent' ??17O. The procedure used to produce USGS34 involved equilibration of HNO3 with 18O-depleted meteoric water. Nitric acid equilibration is proposed as a simple method for producing laboratory NO3- reference materials with a range of ??18O values and normal (mass-dependent) 18O: 17O:16O variation. Preliminary data indicate that the equilibrium O isotope-fractionation factor (??) between [NO 3-] and H2O decreases with increasing temperature from 1.0215 at 22??C to 1.0131 at 100??C. USGS35 was purified from the nitrate ore deposits of the Atacama Desert in Chile and has a high 17O:18O ratio owing to its atmospheric origin. These new reference materials, combined with previously distributed NO3- isotopic reference materials IAEA-N3 (=IAEA-NO-3) and USGS32, can be used to calibrate local laboratory reference materials for determining offset values, scale factors, and mass-independent effects on N and O isotope-ratio measurements in a wide variety of environmental NO 3- samples. Preliminary analyses yield the following results (normalized with respect to VSMOW and SLAP, with reproducibilities of ??0.2-0.3???, 1??): IAEA-N3 has ??18O = +25.6??? and ??17O = +13.2??? USGS32 has ?? 18O = +25.7??? USGS34 has ??18O = -27. 9??? and ??17O = -14.8??? and USGS35 has ?? 18O = +57.5??? and ??17O = +51.5???.

  17. Factors Influencing the Stable Oxygen and Hydrogen Isotopic Composition (δ 18O and δ D) of a Subarctic Freshwater Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wooller, M. J.

    2005-12-01

    Previous studies have shown that the stable oxygen and hydrogen isotopic compositions (δ 18O and δD) in various animal tissues can be used to examine past climates and animal migration pattern. Little attention has been paid to the relative roles of diet and water influencing the overall δ 18O and δD of animal tissues in freshwater ecosystems. It is unclear whether different trophic levels in a freshwater lake ecosystem have an identical relationship to the water that surrounds them. The δ18O and δD values of animal tissues may be controlled by numerous different factors, including metabolic and biosynthetic isotopic fractionation and variations of δ 18O and δD in the food available. We began to examine these issues by analyzing the δ 18O and δD throughout a freshwater aquatic ecosystem at Smith Lake in Alaska. We collected samples representing primary producers and consumers (primary and secondary). Samples included green algae, various aquatic plants, such as Nuphar variegatum (water lily), Polygonum amphibium (water smartweed), Carex utriculata (sedge), Utricularia vulgaris (common bladderwort), Typha latifolia (common cattail), and a range of aquatic invertebrates, including Chironomus. sp (midge), Zygoptera (damselfly), Anisoptera (dragonfly), Dytiscidae (diving beetle) and Euhirudinea (leeches). The δ 18O and δD of Smith Lake water were ~-13.5e and -129.0e, respectively, and we present the δ 18O and δD of the rest of the ecosystem relative to these data. For instance, the δ 18O of chironomus sp. was ~12.1, which is greater than the of the lake water. Preliminary results suggest the extent of the fractionation between δ 18O of chironomids vs. lake water δ 18O is consistent with previous studies. Our data provide an insight into the range of variations that could be expected within a single freshwater ecosystem.

  18. 13C and 18O isotopic signatures of CO uptake and release by soil

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Pathirana, Supun L.; Röckmann, Thomas

    2014-05-01

    CO is important for atmospheric chemistry, is a pollutant, and it has been recognized as an important indirect greenhouse gas. Soil uptake is globally one of the main sinks for atmospheric CO. Isotopic measurements can help constraining the global and regional CO budget, but the isotopic signature of the various components of the CO cycle are not all well known. In this study we performed soil chamber experiments in order to determine the isotopic signature of the exchange of CO between soil and atmosphere. We found that the uptake of CO by soil is associated with a small positive fractionation (the lighter CO is taken up faster). In our experiments, even when soil uptake dominated the net flux, a concurrent emission of CO from soil was always present. We were able to determine separately the isotopic effects of the two fluxes, uptake and emission. The isotopic composition of the emitted CO is depleted in 13C compared to atmospheric CO, and compatible with a source from plant and soil organic matter oxidation.

  19. Targeting erythrocyte carbonic anhydrase and 18O-isotope of breath CO2 for sorting out type 1 and type 2 diabetes

    PubMed Central

    Ghosh, Chiranjit; Mandal, Santanu; Banik, Gourab D.; Maity, Abhijit; Mukhopadhyay, Prabuddha; Ghosh, Shibendu; Pradhan, Manik

    2016-01-01

    The inability to envisage the acute onset and progression of type 1 diabetes (T1D) has been a major clinical stumbling block and an important area of biomedical research over the last few decades. Therefore there is a pressing need to develop a new and an effective strategy for early detection of T1D and to precisely distinguish T1D from type 2 diabetes (T2D). Here we describe the precise role of the enzymatic activity of carbonic anhydrase (CA) in erythrocytes in the pathogenesis of T1D and T2D. We show that CA activities are markedly altered during metabolism of T1D and T2D and this facilitates to the oxygen-18 (18O) isotopic fractionations of breath CO2. In our observations, T1D exhibited considerable depletions of 18O-isotopes of CO2, whereas T2D manifested isotopic enrichments of 18O in breath CO2, thus unveiling a missing link of breath18O-isotopic fractionations in T1D and T2D. Our findings suggest that the alterations in erythrocytes CA activities may be the initial step of altered metabolism of T1D and T2D, and breath 18O-isotope regulated by the CA activity is a potential diagnostic biomarker that can selectively and precisely distinguish T1D from T2D and thus may open a potential unifying strategy for treating these diseases. PMID:27767104

  20. Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes ( δ18O, δ13C)

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander; Harzhauser, Mathias; Müllegger, Stefan; Piller, Werner E.

    2010-07-01

    Stable isotope ( δ18O and δ13C) ratios were measured in successive aragonitic shell sequences of ammonoids (class Cephalopoda) to determine whether their depth distributions changed within ontogeny and whether stable isotope values differ in various morphological groups (e.g. Leiostraca vs. Trachyostraca). We concentrate mainly on δ18O for temperature results and added δ13C data to obtain information on the ontogenetic history, for which full spiral measurements were undertaken for the first time. To obtain valid stable isotope data from ammonoid shells, we measured ontogenetic sequences (full shell) within different genera. Data sets from the Jurassic ( Cadoceras) and Cretaceous ( Hypacanthoplites, Nowakites) were chosen due to the pure primary aragonitic shell preservation. The study was designed to extract better information on the habitat and life cycle of fossil cephalopods (e.g. ammonoids) in comparison with recent cephalopods (e.g. Nautilus, Spirula, Sepia) possessing equivalent or comparable hard parts. The data from three genera suggest different modes of life in at least two morphological groups. We detected and established two main groups with different ontogenetic strategies based on the δ18O data. The wcw-type (warm-cool-warm type) of Cadoceras resembles strategies in Nautilus and Sepia, which migrate from shallow into deeper environments and back in ontogeny ( wc-type, warm-cool-type), and the cw-type (cool-warm type) of Hypacanthoplites resembling the first two migration phases of Spirula ( cwc-type), which migrates from deeper into shallower and back again into deeper habitats. The main (three) phases revealed by both δ18O and δ13C data sets most probably reflect diet changes in juvenile to mid-aged individuals, followed by a habitat change for spawning adults. In Cadoceras the temperatures range from 21.2 °C for juveniles down to 12.1 °C for mid-aged individuals and back up 16.9 °C in adults. The cw- type strategy of Hypacanthoplites

  1. The stable isotopic composition of a phosphorite deposit: δ13C, δ34S, and δ18O

    USGS Publications Warehouse

    Piper, D.Z.; Kolodny, Y.

    1987-01-01

    The stable isotopes of carbon and sulfur in a major marine sedimentary phosphate deposit from the northwestern United States (the Phosphoria Formation of Permian age) characterize the chemical properties of the depositional environment. The δ34S and δ13C analyses suggest deposition under conditions of variable redox from a solution the acidity of which was controlled by reaction with carbonate rocks and exchange with seawater. The δ18O concentration of apetite indicates phosphatization in a shallow sea, during three glacial and intervening interglacial stages. These data tend to corroborate the interpretation of field studies by others, that the apatite formed on a continental shelf in an area of intense oceanic upwelling during several episodes of sea level change. 

  2. EFFECT OF RAPID SHALLOW BREATHING ON THE DISTRIBUTION OF 18-O-LABELED OZONE REACTION PRODUCT IN THE RESPIRATORY TRACT OF THE RAT

    EPA Science Inventory

    We examined the effect of breathing pattern on ozone reaction product content within the respiratory tract. Thirty-four anesthetized, maleWistar rats were exposed to oxygen-18 (18O)-labeled ozone at 1.0 ppm for 2 h using a dual-chamber, negative-pressure ventilation system. Fre...

  3. δ 18O(PO 43-) and δ 18O(CO 32-) from belemnite guards from Eastern Europe: implications for palaeoceanographic reconstructions and for the preservation of pristine isotopic values

    NASA Astrophysics Data System (ADS)

    Longinelli, Antonio; Wierzbowski, Hubert; Di Matteo, Antonella

    2003-04-01

    The oxygen isotopic composition of coexisting carbonate and phosphate from belemnite rostra was measured according to well established techniques in 42 samples of Early and Middle Jurassic age and in five samples of oyster shells. Most of the samples come from various locations in the Western Carpathians of Slovakia and Ukraine, and from central Poland. Three samples come from the Isle of Skye. The phosphate content of belemnite rostra, though variable, is systematically very low: consistently lower than about 0.3%. However, this phosphate concentration is close to that found in shells of modern marine organisms including pelecypods, gastropods and Sepia cuttlebones which, in some way, could be considered the modern belemnite counterpart. The measured oxygen isotopic composition of carbonate is within the normal range of values obtained from these fossils ranging from about -1.3 to about +0.6‰ (PDB-1) with the exception of three samples; the δ 13C values range from about -0.8 to about +2.8‰ (PDB-1). With the single exception of one sample from the Isle of Skye, the oxygen isotopic composition of phosphate from belemnite rostra ranges from +19.8 to +24.9‰ (V-SMOW), 22 of the samples measured showing δ 18O values equal to or heavier than +23.0‰. In contrast, the oyster values are considerably lighter, in the case of both carbonate and phosphate. 18O-enriched values can hardly be related to diagenetic processes that normally cause an oxygen isotope shift towards light values. If deposition temperatures are calculated from the heavily enriched values by means of the equation of Longinelli and Nuti [Earth Planet. Sci. Lett. 19 (1973) 373-376] and assuming the δ 18O of Jurassic ocean water to be equal to -1‰ taking into account the lack of ice caps during the Jurassic, the obtained temperatures range from about 8°C to about zero. These temperatures are obviously unreliable when Mesozoic palaeoceanographic conditions and palaeoclimate are taken into account

  4. Isotopic enhancements of 17O and 18O from solar wind particles in the lunar regolith.

    PubMed

    Ireland, Trevor R; Holden, Peter; Norman, Marc D; Clarke, Jodi

    2006-04-01

    Differences in isotopic abundances between meteorites and rocks on Earth leave unclear the true composition of the gas out of which the Solar System formed. The Sun should have preserved in its outer layers the original composition, and recent work has indicated that the solar wind is enriched in 16O, relative to Earth, Mars and bulk meteorites. This suggests that self-shielding of CO due to photo-dissociation, which is a well understood process in molecular clouds, also led to evolution in the isotopic abundances in the early Solar System. Here we report measurements of oxygen isotopic abundances in lunar grains that were recently exposed to the solar wind. We find that 16O is underabundant, opposite to an earlier finding based on studies of ancient metal grains. Our result, however, is more difficult to understand within the context of current models, because there is no clear way to make 16O more abundant in Solar System rocks than in the Sun.

  5. Measurement of Whole-Body CO2 Production in Birds Using Real-Time Laser-Derived Measurements of Hydrogen (δ(2)H) and Oxygen (δ(18)O) Isotope Concentrations in Water Vapor from Breath.

    PubMed

    Mitchell, G W; Guglielmo, C G; Hobson, K A

    2015-01-01

    The doubly labeled water (DLW) method is commonly used to measure energy expenditure in free-living wildlife and humans. However, DLW studies involving animals typically require three blood samples, which can affect behavior and well-being. Moreover, measurement of H (δ(2)H) and O (δ(18)O) isotope concentrations in H2O derived from blood using conventional isotope ratio mass spectrometry is technically demanding, time-consuming, and often expensive. A novel technique that would avoid these constraints is the real-time measurement of δ(2)H and δ(18)O in the H2O vapor of exhaled breath using cavity ring-down (CRD) spectrometry, provided that δ(2)H and δ(18)O from body H2O and breath were well correlated. Here, we conducted a validation study with CRD spectrometry involving five zebra finches (Taeniopygia guttata), five brown-headed cowbirds (Molothrus ater), and five European starlings (Sturnus vulgaris), where we compared δ(2)H, δ(18)O, and rCO2 (rate of CO2 production) estimates from breath with those from blood. Isotope concentrations from blood were validated by comparing dilution-space estimates with measurements of total body water (TBW) obtained from quantitative magnetic resonance. Isotope dilution-space estimates from δ(2)H and δ(18)O values in the blood were similar to and strongly correlated with TBW measurements (R(2) = 0.99). The (2)H and (18)O (ppm) in breath and blood were also highly correlated (R(2) = 0.99 and 0.98, respectively); however, isotope concentrations in breath were always less enriched than those in blood and slightly higher than expected, given assumed fractionation values between blood and breath. Overall, rCO2 measurements from breath were strongly correlated with those from the blood (R(2) = 0.90). We suggest that this technique will find wide application in studies of animal and human energetics in the field and laboratory. We also provide suggestions for ways this technique could be further improved.

  6. North American precipitation isotope18O) zones revealed in time series modeling across Canada and northern United States

    NASA Astrophysics Data System (ADS)

    Delavau, C.; Chun, K. P.; Stadnyk, T.; Birks, S. J.; Welker, J. M.

    2015-02-01

    Delineating spatial patterns of precipitation isotopes ("isoscapes") is becoming increasingly important to understand the processes governing the modern water isotope cycle and their application to migration forensics, climate proxy interpretation, and ecohydrology of terrestrial systems. However, the extent to which these patterns can be empirically predicted across Canada and the northern United States has not been fully articulated, in part due to a lack of time series precipitation isotope data for major regions of North America. In this study, we use multiple linear regressions of CNIP, GNIP, and USNIP observations alongside climatological variables, teleconnection indices, and geographic indicators to create empirical models that predict the δ18O of monthly precipitation (δ18Oppt) across Canada and the northern United States. Five regionalization approaches are used to separate the study domain into isotope zones to explore the effect of spatial grouping on model performance. Stepwise regression-derived parameterizations quantified by permutation testing indicate the significance of precipitable water content and latitude as predictor variables. Within the Canadian Arctic and eastern portion of the study domain, models from all regionalizations capture the interannual and intraannual variability of δ18Oppt. The Pacific coast and northwestern portions of the study domain show less agreement between models and poorer model performance, resulting in higher uncertainty in simulations throughout these regions. Long-term annual average δ18Oppt isoscapes are generated, highlighting the uncertainty in the regionalization approach as it compounds over time. Additionally, monthly time series simulations are presented at various locations, and model structure uncertainty and 90% bootstrapped prediction bounds are detailed for these predictions.

  7. Stable Isotope Values of the Mesoamerican Monsoon: δ18O and δ2H Values Reveal Climate Controls on Summer Rainfall Amount

    NASA Astrophysics Data System (ADS)

    Bernal, J. P.; Lachniet, M. S.; Rosales Lagarde, L.; Morales Puente, P.; Cienfuegos, E.

    2014-12-01

    Paleoclimate reconstructions using δ18O as a proxy for the isotopic composition of rainfall are based upon the mostly untested assumption that either rainfall amount or equilibration temperature are the main drivers modulating the isotopic composition of pluvial precipitation. Whilst a broad correlation between geographical location and driving mechanisms has been long recognized (i.e. amount effect is pervasive in tropical areas), further tests are required to determine the effect that different sources of moisture might impose on the isotopic composition of precipitation, particularly in areas where contributions from different ocean-basins might be significant, such as south Mexico. Here, we present the δ18O and δ2H composition of summer rainfall collected throughout south, central and western Mexico, particularly from Veracruz, Puebla, Guerrero, Morelos, Mexico City, Jalisco, Michoacán and Querétaro states. The geographical and temporal extent of our sampling (2004, 2005, 2007, 2008, 2011) results in a large dataset comprising more than 600 samples and represents the base data to understand the atmospheric mechanisms modulating the isotopic composition of rainfall in Mexico. Our data span a range of 30‰ in δ18O, from high values nearest the Gulf of Mexico coast and during weak rainfall events, to lowest values in high-altitude central Mexico and during heavy rainfall events associated with tropical cyclones. Values on the Pacific Coast are intermediate, and likely reflect a contribution of both Gulf of Mexico and Pacific sources. Our data define a meteoric water line of δ2H = 7.92 × δ18O + 9.48, which indicate that most precipitation values formed close to isotopic equilibrium with water vapor. The two primary physiographic variables controlling δ18O values are distance from the Gulf of Mexico and altitude, which together explain about 70% of the variation in spatial δ18O values.

  8. Effect of 2H and 18O water isotopes in kinesin-1 gliding assay

    PubMed Central

    Herskowitz, Lawrence J.; Koch, Steven J.

    2014-01-01

    We show for the first time the effects of heavy-hydrogen water (2H2O) and heavy-oxygen water (H218O) on the gliding speed of microtubules on kinesin-1 coated surfaces. Increased fractions of isotopic waters used in the motility solution decreased the gliding speed of microtubules by a maximum of 21% for heavy-hydrogen and 5% for heavy-oxygen water. We also show that gliding microtubule speed returns to its original speed after being treated with heavy-hydrogen water. We discuss possible interpretations of these results and the importance for future studies of water effects on kinesin and microtubules. We also discuss the implication for using heavy waters in biomolecular devices incorporating molecular motors. PMID:24711961

  9. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  10. Synthesis of isotopically labeled P-site substrates for the ribosomal peptidyl transferase reaction

    PubMed Central

    Zhong, Minghong

    2010-01-01

    Isotopomers of the ribosomal P-site substrate, the trinucleotide peptide conjugate CCA-pcb,1 have been designed and synthesized in 26–350020steps. These include individual isotopic substitution at the α-proton, carbonyl carbon, and carbonyl oxygen of the amino acid, the O2' and O3' of the adenosine, and a remote label in the N3 and N4 of both cytidines. These isotopomers were synthesized by coupling cytidylyl-(3'5')-cytidine phosphoramidite isotopomers, as the common synthetic intermediates, with isotopically substituted A-Phe-cap-biotin (A-pcb). The isotopic enrichment is higher than 99% for 1-13C (Phe), 2-2H (Phe), and 3,4-15N2 (cytidine), 93% for 2'/3'- 18O (adenosine), and 64% for 1-18O (Phe). A new synthesis of highly enriched [1-18O2] phenylalanine has been developed. The synthesis of [3'-18O] adenosine was improved by Lewis acid aided regioselective ring opening of the epoxide and by an economical SN2-SN2 method with high isotopic enrichment (93%). Such substrates are valuable for studies of the ribosomal peptidyl transferase reaction by complete kinetic isotope effect analysis and of other biological processes catalyzed by nucleic acid related enzymes, including polymerases, reverse transcriptases, ligases, nucleases, and ribozymes. PMID:18081346

  11. Plasma proteome response to severe burn injury revealed by 18O-labeled "universal" reference-based quantitative proteomics.

    PubMed

    Qian, Wei-Jun; Petritis, Brianne O; Kaushal, Amit; Finnerty, Celeste C; Jeschke, Marc G; Monroe, Matthew E; Moore, Ronald J; Schepmoes, Athena A; Xiao, Wenzhong; Moldawer, Lyle L; Davis, Ronald W; Tompkins, Ronald G; Herndon, David N; Camp, David G; Smith, Richard D

    2010-09-01

    A burn injury represents one of the most severe forms of human trauma and is responsible for significant mortality worldwide. Here, we present the first quantitative proteomics investigation of the blood plasma proteome response to severe burn injury by comparing the plasma protein concentrations of 10 healthy control subjects with those of 15 severe burn patients at two time-points following the injury. The overall analytical strategy for this work integrated immunoaffinity depletion of the 12 most abundant plasma proteins with cysteinyl-peptide enrichment-based fractionation prior to LC-MS analyses of individual patient samples. Incorporation of an 18O-labeled "universal" reference among the sample sets enabled precise relative quantification across samples. In total, 313 plasma proteins confidently identified with two or more unique peptides were quantified. Following statistical analysis, 110 proteins exhibited significant abundance changes in response to the burn injury. The observed changes in protein concentrations suggest significant inflammatory and hypermetabolic response to the injury, which is supported by the fact that many of the identified proteins are associated with acute phase response signaling, the complement system, and coagulation system pathways. The regulation of approximately 35 proteins observed in this study is in agreement with previous results reported for inflammatory or burn response, but approximately 50 potentially novel proteins previously not known to be associated with burn response or inflammation are also found. Elucidating proteins involved in the response to severe burn injury may reveal novel targets for therapeutic interventions as well as potential predictive biomarkers for patient outcomes such as multiple organ failure.

  12. Down Core Oxygen Isotopic Measurements Of Diatom δ18O From The Guaymas Basin, Gulf Of California

    NASA Astrophysics Data System (ADS)

    Menicucci, A. J.; Spero, H. J.; Thunell, R.

    2015-12-01

    The Guaymas Basin (GB), Gulf of California (27º53'N, 111º40'W ), is an evaporative basin, with sea surface temperatures (SST) varying between ~30oC (summer) and ~15oC (winter). Productivity is controlled mostly by seasonal upwelling starting in fall (early November) and extending into spring. We are currently analyzing δ18Odiatom from a boxcore (BC-43) using microfluorination (Menicucci, et al. 2013). This boxcore was previously analyzed for UK '37 alkenones and 210Pb activity (Goni, et al. 2001). Residual BC-43 material was sampled at ~2cm intervals. Samples were cleaned to isolate diatoms from other sediments, then equilibrated in water with δ18Owater = +85‰ for 70 hours at 21oC prior to vacuum dehydroxylation and microfluorination. The latter equilibration was done to account for fractionation between covalently bound O and OH- groups during vacuum dehydroxylation, preserving the original δ18Odiatom value. We present δ18Odiatom data from BC-43 samples covering 27cm, equivalent to >225 years of sediment accumulation. δ18O data are converted to temperature (T) based on an existing calibration (Leclerc and Labeyrie 1987). Our data suggest δ18Odiatom values record a T range of 22-18oC, corresponding to the mixed layer depth and the chlorophyll maximum during the fall bloom. These T values are offset from SST data by a mean of 5oC for the same sample intervals. However, δ18Odiatom values from the most recent samples suggest a ~2oC increase in diatom T relative to SST during the last 35 years. This subsurface warming may be due to decreased fall upwelling, increased mixed layer and chlorophyll maximum depths, and/or the timing of the peak diatom bloom. Such correlations are being investigated and the latest results will be presented. Goni, M. A., et al. (2001). Oceanographic considerations for the application of the alkenone-based paleotemperature U-37(K ') index in the Gulf of California. Geochimica Et Cosmochimica Acta 65: 545-557. Leclerc, A. J. and L

  13. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  14. Application of (15)N- (18)O double stable isotope tracer technique in an agricultural nonpoint polluted river of the Yangtze Delta Region.

    PubMed

    Liang, X Q; Nie, Z Y; He, M M; Guo, R; Zhu, C Y; Chen, Y X; Stephan, Küppers

    2013-10-01

    One strategy to combat nitrate (NO3-N) contamination in rivers is to understand its sources. NO3-N sources in the East Tiaoxi River of the Yangtze Delta Region were investigated by applying a (15)N-(18)O dual isotope approach. Water samples were collected from the main channel and from the tributaries. Results show that high total N and NO3-N are present in both the main channel and the major tributaries, and NO3-N was one of the most important N forms in water. Analysis of isotopic compositions (δ (18)O, δD) of water suggests that the river water mainly originated from three tributaries during the sampling period. There was a wide range of δ (15)N-NO3 (-1.4 to 12.4 ‰) and a narrow range of δ (18)O-NO3 (3.7 to 9.0 ‰) in the main channel waters. The δ (15)N and δ (18)O-NO3 values in the upper, middle, and lower channels along the river were shifted as 8.2, 3.5, and 9.5 ‰, and 9.0, 4.2, and 6.0 ‰, respectively. In the tributary South Tiao, the δ (15)N and δ (18)O-NO3 values were as high as 9.5 and 7.0 ‰, while in the tributaries Mid Tiao and North Tiao, NO3-N in most of the samples had relatively low δ (15)N and δ (18)O-NO3 values from 2.3 to 7.5 ‰ and 4.7 to 7.0 ‰, separately. Our results also suggest that the dual isotope approach can help us develop the best management practice for relieving NO3-N pollution in the rivers at the tributary scale.

  15. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  16. Biscayne aquifer drinking water (USGS45): a new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Lorenz, Jennifer M.; Tarbox, Lauren V.; Buck, Bryan; Qi, Haiping; Coplen, Tyler B.

    2014-01-01

    RATIONALE As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from drinking water collected from the Biscayne aquifer in Ft. Lauderdale, Florida. METHODS This isotopic reference water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available by the case of 144 glass ampoules containing either 4 mL or 5 mL of water in each ampoule. RESULTS The δ2H and δ18O values of this reference material are –10.3 ± 0.4 ‰ and –2.238 ± 0.011 ‰, respectively, relative to VSMOW, on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. CONCLUSIONS This isotopic reference material, designated as USGS45, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. 

  17. Analysis of stable isotope ratios (δ18O and δ2H) in precipitation of the Verde River watershed, Arizona 2013 through 2014

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.

    2016-01-01

    Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.

  18. Analysis of stable isotope ratios (δ18O and δ2H) in precipitation of the Verde River watershed, Arizona 2013 through 2014

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.

    2016-04-25

    Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.

  19. Impact of Bolivian paleolake evaporation on the δ18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): diatom-inferred δ18O values and hydro-isotopic modeling

    NASA Astrophysics Data System (ADS)

    Quesada, Benjamin; Sylvestre, Florence; Vimeux, Françoise; Black, Jessica; Paillès, Christine; Sonzogni, Corinne; Alexandre, Anne; Blard, Pierre-Henri; Tonetto, Alain; Mazur, Jean-Charles; Bruneton, Hélène

    2015-07-01

    During the last deglaciation, the Bolivian Altiplano (15-23°S, 66-70°W) was occupied by paleolake Tauca covering, at least, ˜51,000 km2 at its maximum highstand between 16.5 and 15 ka. Twenty-five hundred years later, after a massive regression, a new transgressive phase, produced paleolake Coipasa, smaller than Tauca and restricted to the southern part of the basin. These paleolakes were overlooked at the west by the Sajama ice cap. The latter provides a continuous record of the oxygen isotopic composition of paleo-precipitation for the last 25 ka. Contemporaneously to the end of paleolake Tauca, around 14.3 ka, the Sajama ice cap recorded a significant increase in ice oxygen isotopic composition (δ18Oice). This paper examines to what extent the disappearance of Lake Tauca contributed to precipitation on the Sajama summit and this specific isotopic variation. The water δ18O values of paleolakes Tauca and Coipasa (δ18Olake) were quantitatively reconstructed from 18.5 to 11.7 ka based on diatom isotopic composition (δ18Odiatoms) and ostracod isotopic composition (δ18Ocarbonates) retrieved in lacustrine sediments. At a centennial time scale, a strong trend appears: abrupt decreases of δ18Olake during lake fillings are immediately followed by abrupt increases of δ18Olake during lake level stable phases. The highest variation occurred at ˜15.8 ka with a δ18Olake decrease of about ˜10‰, concomitant with the Lake Tauca highstand, followed ˜400 years later by a 7‰ increase in δ18Olake. A simple hydro-isotopic modeling approach reproduces consistently this rapid "decrease-increase" feature. Moreover, it suggests that this unexpected re-increase in δ18Olake after filling phases can be partly explained by an equilibration of isotopic fluxes during the lake steady-state. Based on isotopic calculations during lake evaporation and a simple water stable isotopes balance between potential moisture sources at Sajama (advection versus lake evaporation), we show

  20. USGS46 Greenland ice core water – A new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping; Tarbox, Lauren V.; Lorenz, Jennifer M.; Buck, Bryan

    2015-01-01

    Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were −235.8 ± 0.7‰ and −29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, −428 and −55.5‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.

  1. Landscape hydrology and scaling of nitrate 15N and 18O isotope composition in a semi-arid agroecosystem

    NASA Astrophysics Data System (ADS)

    Kelley, C. J.; Martin, R. A.; Keller, C. K.; Orr, C. H.; Huggins, D. R.; Evans, R. D.

    2014-12-01

    Understanding how pore- to hillslope-scale processes combine to control nutrient export at larger scales is a fundamental challenge in today's agroecosystems as the carbon and contamination footprints of production agriculture come under increasing scrutiny. At the Cook Agronomy Farm (CAF) Long-Term Agricultural Research (LTAR) station near Pullman, WA we are using in-field observations to track how local-scale hydrological routing and biogeochemical processing interact to control landscape-scale water and nutrient exports. Previous research at the CAF has shown that conservative tracers and reactive nutrient quantities (NO3-,and DOC concentrations, DOM quality) in landscape-scale drainage can be explained by straightforward mixing of waters from variably contributing areas. Nitrate stable isotope composition in subsurface drain effluent indicate that most leached nitrate originates from reduced nitrogen fertilizer applied to the CAF in the autumn, which undergoes nitrification and subsequent leaching. This occurs over a timespan of weeks to months. However, water samples from contributing areas exhibit nitrate d15N and d18O significantly greater than subsurface drain effluent at all locations, and time-series consistent with the occurrence of denitrification at some locations. Possible explanations include pore-scale processing of nitrogen that does not affect the other tracers (like EC, DOM quality, and DOC concentration), and landscape-scale transport pathways that bypass our field instruments. Through this work we are contributing to a broader understand of how global change and local factors and management practices interact to affect the fate of fertilizer N, which is a cross-cutting research theme of the national LTAR network.

  2. Characterization of biodegradation intermediates of nonionic surfactants by MALDI-MS. 2. Oxidative biodegradation profiles of uniform octylphenol polyethoxylate in 18O-labeled water.

    PubMed

    Sato, Hiroaki; Shibata, Atsushi; Wang, Yang; Yoshikawa, Hiromichi; Tamura, Hiroto

    2003-01-01

    This paper reports the characterization of the biodegradation intermediates of octylphenol octaethoxylate (OP(8)EO) by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The biodegradation test study was carried out in a pure culture (Pseudomonas putida S-5) under aerobic conditions using OP(8)EO as the sole carbon source and (18)O-labeled water as an incubation medium. In the MALDI-MS spectra of biodegraded samples, a series of OP(n)EO molecules with n = 2-8 EO units and their corresponding carboxylic acid products (OP(n)EC) were observed. The use of purified OP(8)EO enabled one to distinguish the shortened OPEO molecules as biodegradation intermediates. Furthermore, the formation of OP(8)EC (the oxidized product of OP(8)EO) supported the notion that terminal oxidation is a step in the biodegradation process. When biodegradation study was carried out in (18)O-labeled water, incorporation of (18)O atoms into the carboxyl group was observed for OPEC, while no incorporation was observed for the shortened OPEO products. These results could provide some rationale to the biodegradation mechanism of alkylphenol polyethoxylates. PMID:12523845

  3. Quasiclassical trajectory studies of 18O(3P) + NO2 isotope exchange and reaction to O2 + NO on D0 and D1 potentials

    NASA Astrophysics Data System (ADS)

    Fu, Bina; Zhang, Dong H.; Bowman, Joel M.

    2013-07-01

    We report quasiclassical trajectory calculations for the bimolecular reaction 18O(3P) + NO2 on the recent potential energy surfaces of the ground (D0) and first excited (D1) states of NO3 [B. Fu, J. M. Bowman, H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory. Comput. 9, 893 (2013)], 10.1021/ct3009792. The branching ratio of isotope exchange versus O2 + NO formation, as well as the product angular distributions and energy and rovibrational state distributions are presented. The calculations are done at the collision energy of relevance to recent crossed beam experiments [K. A. Mar, A. L. Van Wyngarden, C.-W. Liang, Y. T. Lee, J. J. Lin, and K. A. Boering, J. Chem. Phys. 137, 044302 (2012)], 10.1063/1.4736567. Very good agreement is achieved between the current calculations and these experiments for the branching ratio and final translational energy and angular distributions of isotope exchange products 16O(3P) + NO2 and O2 + NO formation products. The reactant 18O atom results in 18O16O but not N18O for the O2 + NO formation product channel, consistent with the experiment. In addition, the detailed vibrational and rotational state information of diatomic molecules calculated currently for the 34O2 + NO formation channel on D0 and D1 states are in qualitative agreement with the previous experimental and theoretical results of the photodissociation of NO3 and are consistent with older thermal bimolecular kinetics measurements.

  4. Stereospecific Multiple Isotopic Labeling of Benzyl Alcohol

    PubMed Central

    Roston, Daniel; Kohen, Amnon

    2015-01-01

    Isotopically labeled enzymatic substrates and biological metabolites are useful for many mechanistic analyses, particularly the study of kinetic and equilibrium isotope effects, determining the stereospecificity of enzymes, and resolving metabolic pathways. Here we present the 1-pot synthesis, purification, and kinetic analysis of 7R-[2H]-phenyl-[14C]-benzyl alcohol. The procedure involves a chemoenzymatic synthesis that couples formate dehydrogenase to alcohol dehydrogenase with a catalytic amount of nicotinamide cofactor. The reaction goes to completion overnight, and the measurement of a competitive kinetic isotope effect on the enzymatic oxidation of the purified product identified no 1H contamination. This measurement is very sensitive to such isotopic contamination and verified the high level of isotopic and enantiomeric purity yielded by the new synthetic procedure. PMID:24327376

  5. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber experiment

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Mayr, Christoph; Tuthorn, Mario; Leiber-Sauheitl, Katharina; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of cellulose is a valuable proxy in paleoclimate research. However, its application to sedimentary archives is challenging due to extraction and purification of cellulose. Here we present compound-specific δ18O results of hemicellulose-derived sugar biomarkers determined using gas chromatography-pyrolysis-isotope ratio mass spectrometry, which is a method that overcomes the above-mentioned analytical challenges. The biomarkers were extracted from stem material of different plants (Eucalyptus globulus, Vicia faba and Brassica oleracea) grown in climate chamber experiments under different climatic conditions. The δ18O values of arabinose and xylose range from 31.4‰ to 45.9‰ and from 28.7‰ to 40.8‰, respectively, and correlate highly significantly with each other (R = 0.91, p < 0.001). Furthermore, δ18Ohemicellulose (mean of arabinose and xylose) correlate highly significantly with δ18Oleaf water (R = 0.66, p < 0.001) and significantly with modeled δ18Ocellulose (R = 0.42, p < 0.038), as well as with relative air humidity (R = -0.79, p < 0.001) and temperature (R = -0.66, p < 0.001). These findings confirm that the hemicellulose-derived sugar biomarkers, like cellulose, reflect the oxygen isotopic composition of plant source water altered by climatically controlled evapotranspirative 18O enrichment of leaf water. While relative air humidity controls most rigorously the evapotranspirative 18O enrichment, the direct temperature effect is less important. However, temperature can indirectly exert influence via plant physiological reactions, namely by influencing the transpiration rate which affects δ18Oleaf water due to the Péclet effect. In a companion paper (Tuthorn et al., this issue) we demonstrate the applicability of the hemicellulose-derived sugar biomarker δ18O method to soils and provide evidence from a climate transect study confirming that relative air humidity exerts the dominant control on evapotranspirative 18O

  6. Stable isotope18O and δ2H) data for precipitation, stream water, and groundwater in Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Torres-Sanchez, Angel; Rosario-Torres, Manuel

    2014-01-01

    , hurricanes, and cold fronts, although frequent low-intensity orographic showers occur throughout the year in the mountains. The stable isotope signatures of rainfall (δ2H and δ18O) are broadly correlated with the weather type that produced the rainfall (Scholl and others, 2009; Scholl and Murphy, 2014).

  7. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOx/CeO2

    SciTech Connect

    Kwak, Ja Hun; Szanyi, Janos

    2014-12-23

    Pulsing 15N18O onto an annealed 1% Mn16Ox/Ce16O2 catalyst resulted in very fast oxygen isotope exchange and 15N2 formation at 295 K. In the 1st 15N18O pulse, due to the presence of large number of surface oxygen defects, extensive 15N218O and 15N2 formations were observed. In subsequent pulses oxygen isotope exchange dominated as a result of highly labile oxygen in the oxide. We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  8. Determination of delta2H and delta18O in saline oil-associated waters: the question of simple vacuum distillation of water samples prior to isotopic analyses.

    PubMed

    Porowski, Adam; Kowski, Peter

    2008-06-01

    The paper deals with analytical and procedural aspects of delta18O and delta2H determination in saline oil-associated waters. The main objective of the study was to show experimentally the qualitative and quantitative applicability of the simple vacuum distillation of saline oil-associated waters while routine procedures of water isotopic analyses are applied. Additionally, two standard off-line techniques of delta2H determination in water - the zinc and the chromium method - have been compared. Each time a typical isotope salt effect has been tracked on the Dead Sea water. The results clearly show that application of the simple vacuum distillation improve the accuracy and reproducibility of delta2H determinations, especially in chromium off-line technique which appeared to be more sensitive to water salinity. The simple vacuum distillation does not improve the quality of delta18O determinations in the range of water salinities studied. Its application to high concentrated brines (for example, Dead Sea water) decreases the time of equilibration but still propagate the isotopic error connected with low water activity (in the case of 18O/16O ratio) and the incomplete water extraction from the remaining salts (in the case of 2H/1H ratio); in consequence, its time-consuming application seems to be baseless.

  9. Long-Term Precipitation Isotope Ratios (δ18O, δ2H, d-excess) in the Northeast US Reflect Atlantic Ocean Warming and Shifts in Moisture Sources

    NASA Astrophysics Data System (ADS)

    Puntsag, T.; Welker, J. M.; Mitchell, M. J.; Klein, E. S.; Campbell, J. L.; Likens, G.

    2014-12-01

    The global water cycle is exhibiting dramatic changes as global temperatures increase resulting in increases in: drought extremes, flooding, alterations in storm track patterns with protracted winter storms, and greater precipitation variability. The mechanisms driving these changes can be difficult to assess, but the spatial and temporal patterns of precipitation water isotopes18O, δ2H, d-excess) provide a means to help understand these water cycle changes. However, extended temporal records of isotope ratios in precipitation are infrequent, especially in the US. In our study we analyzed precipitation isotope ratio data from the Hubbard Brook Experimental Forest in New Hampshire that has the longest US precipitation isotope record, to determine: 1) the monthly composited averages and trends from 1967 to 2012 (45 years); ; 2) the relationships between abiotic properties such as local temperatures, precipitation type, storm tracks and isotope ratio changes; and 3) the influence of regional shifts in moisture sources and/or changes in N Atlantic Ocean water conditions on isotope values. The seasonal variability of Hubbard Brook precipitation isotope ratios is consistent with other studies, as average δ18O values are ~ -15‰ in January and ~ -5 ‰ in July. However, over the 45 year record there is a depletion trend in the δ 18O values (becoming isotopically lighter with a greater proportion of 16O), which coupled with less change in δ 2H leads to increases in d-excess values from ~ -10‰ around 1970 to greater than 10‰ in 2009. These changes occurred during a period of warming as opposed to cooling local temperatures indicating other processes besides temperature are controlling long-term water isotope traits in this region. We have evidence that these changes in precipitation isotope traits are controlled in large part by an increases in moisture being sourced from a warming N Atlantic Ocean that is providing evaporated, isotopically

  10. The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Tellenbach, C.; Möst, M.; Spaak, P.; van Hardenbroek, M.; Wooller, M. J.; Heiri, O.

    2015-06-01

    The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: -1.6 ± 0.4 ‰; δ18O: -0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to -1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at

  11. Gluconeogenesis from labeled carbon: estimating isotope dilution

    SciTech Connect

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.

  12. sup 18 O/ sup 16 O and sup 13 C/ sup 12 C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater

    SciTech Connect

    Wadleigh, M.A. ); Veizer, J. Ruhr Univ., Bochum )

    1992-01-01

    Three hundred and eleven articulate brachiopods, with extensive geographic coverage, spanning the Cambrian to Silurian stratigraphic interval, were analyzed for oxygen and carbon isotopic composition. Cambrian samples have {delta}{sup 18}O {le} {minus}7{per thousand}, Ordovician samples {le} {minus}2.4{per thousand}, and Silurian samples {le} {minus}1.9{per thousand}, confirming the previously established trend towards lighter isotopic compositions with increasing age throughout the Lower Paleozoic. Forty-nine best preserved' Ordovician and Silurian samples were identified based on scanning electron microscopy and trace element analysis. They were found to bracket the isotopic compositions of over 85% of specimens from these stratigraphic intervals supporting widespread preservation of the isotopic signal. Some latest Ordovician and Lower Ludlovian samples associated with shale sequences are apparently enriched' in {sup 18}O. These are interpreted as an environmental phenomenon, perhaps related to water temperature and glaciation. A number of Silurian samples of varying genera and stratigraphic levels are highly enriched in {sup 13}C, up to +6{per thousand}. Some are shale related, but some are associated with carbonate-bearing basins. These are also thought to represent near-original' compositions, but a single environmental cause is unknown. The present data show that luminescence is not a decisive criterion for evaluating the degree of brachiopod preservation. Whole-shell values were isotopically similar to their nonluminescent portions for both oxygen and carbon.

  13. 18O /16O and 13C /12C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater

    NASA Astrophysics Data System (ADS)

    Wadleigh, Moire A.; Veizer, Ján

    1992-01-01

    Three hundred and eleven articulate brachiopods, with extensive geographic coverage, spanning the Cambrian to Silurian stratigraphic interval, were analyzed for oxygen and carbon isotopic composition. Cambrian samples have δ18O ≤ -7%., Ordovician samples ≤ -2.4‰, and Silurian samples ≤ -1.9‰, confirming the previously established trend towards lighter isotopic compositions with increasing age throughout the Lower Paleozoic. Forty-nine "best preserved" Ordovician and Silurian samples were identified based on scanning electron microscopy and trace element analysis. They were found to bracket the isotopic compositions of over 85% of specimens from these stratigraphic intervals supporting widespread preservation of the isotopic signal. Some latest Ordovician and Lower Ludlovian samples associated with shale sequences are apparently "enriched" in 18O. These are interpreted as an environmental phenomenon, perhaps related to water temperature and glaciation. A number of Silurian samples of varying genera and stratigraphic levels are highly enriched in 13C, up to +6‰. Some are shale related, but some are associated with carbonate-bearing basins. These are also thought to represent "near-original" compositions, but a single environmental cause is unknown. The present data show that luminescence is not a decisive criterion for evaluating the degree of brachiopod preservation. Whole-shell values were isotopically similar to their nonluminescent portions for both oxygen and carbon.

  14. The non-statistical dynamics of the 18O + 32O2 isotope exchange reaction at two energies

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, Annalise L.; Mar, Kathleen A.; Quach, Jim; Nguyen, Anh P. Q.; Wiegel, Aaron A.; Lin, Shi-Ying; Lendvay, Gyorgy; Guo, Hua; Lin, Jim J.; Lee, Yuan T.; Boering, Kristie A.

    2014-08-01

    The dynamics of the 18O(3P) + 32O2 isotope exchange reaction were studied using crossed atomic and molecular beams at collision energies (Ecoll) of 5.7 and 7.3 kcal/mol, and experimental results were compared with quantum statistical (QS) and quasi-classical trajectory (QCT) calculations on the O3(X1A') potential energy surface (PES) of Babikov et al. [D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lesard, and R. Schinke, J. Chem. Phys. 118, 6298 (2003)]. In both QS and QCT calculations, agreement with experiment was markedly improved by performing calculations with the experimental distribution of collision energies instead of fixed at the average collision energy. At both collision energies, the scattering displayed a forward bias, with a smaller bias at the lower Ecoll. Comparisons with the QS calculations suggest that 34O2 is produced with a non-statistical rovibrational distribution that is hotter than predicted, and the discrepancy is larger at the lower Ecoll. If this underprediction of rovibrational excitation by the QS method is not due to PES errors and/or to non-adiabatic effects not included in the calculations, then this collision energy dependence is opposite to what might be expected based on collision complex lifetime arguments and opposite to that measured for the forward bias. While the QCT calculations captured the experimental product vibrational energy distribution better than the QS method, the QCT results underpredicted rotationally excited products, overpredicted forward-bias and predicted a trend in the strength of forward-bias with collision energy opposite to that measured, indicating that it does not completely capture the dynamic behavior measured in the experiment. Thus, these results further underscore the need for improvement in theoretical treatments of dynamics on the O3(X1A') PES and perhaps of the PES itself in order to better understand and predict non-statistical effects in this reaction and in the formation

  15. What can Δ 15N and Δ 18O isotopes tell us about sources, transport, and fate of nitrate in the Mississippi River Basin?

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.

    2003-12-01

    Water and nutrients, primarily nitrate (NO3) in Mississippi River discharge, affect the size and severity of the Gulf of Mexico hypoxic (depleted dissolved oxygen) zone. Approximately 120 water samples were collected from 16 sites on small streams and 6 sites on large rivers within the Mississippi River Basin in 1997-98 to see if NO3 sources and transformations can be identified using the stable isotopic ratios Δ 15N and Δ 18O. Results from Lagrangian sampling at the large river sites indicate that nitrate mass decreases slightly, while Δ 15N and Δ 18O isotope ratios are unchanged in the 1500 river kilometers between the Upper Mississippi-Ohio River confluence and the Gulf of Mexico. Results also show that Δ 15N and Δ 18O values from small streams draining lands dominated by row crops or livestock tended to be distinct from those dominated by urban or undeveloped land. Mean Δ 15N values at the 16 sites on small streams were most strongly correlated (Pearson's r) with manure production rate (0.64), percent residential land use (-0.45), and urea use rate (0.43). The best multiple linear regression (MLR) model for mean Δ 15N values (r2=0.69) used manure production rate and ammonium nitrate use rate as explanatory variables. Mean Δ 18O values were most strongly correlated with percent wetlands (0.72), mean NO3 concentration (-0.71), and percent residential land use (0.58). The best MLR model for mean Δ 18O values (r2=0.85) used percent residential land use, percent wetlands, and ammonium nitrate use rate as explanatory variables. Mean NO3 concentrations were most strongly correlated with percent row-crops land use (0.84), nitrogen-fertilizer use rate (0.74), and hog-manure production rate (0.66). The best MLR model for mean NO3 concentration (r2=0.85) used percent row-crops land use and percent grain-crops land use as explanatory variables. MLR equations developed from the 16 smaller streams were used to predict mean Δ 15N and Δ 18O values and NO3

  16. Can tree-ring isotopes18O and δ13C) improve our understanding of hydroclimate variability in the Columbia River Basin?

    NASA Astrophysics Data System (ADS)

    Csank, A. Z.; Wise, E.; McAfee, S. A.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean has a strong impact on hydroclimate in the Pacific Northwest. Shifts between zonal and meridional flow are a key influence on drought and pluvial regimes in both the PNW and the western United States as a whole. Circulation-dependent variability in the isotopic composition of precipitation can be recorded and potentially reconstructed using δ18O records derived from tree-rings. Here we present isotopic records of δ18O and δ13C from ponderosa pine (Pinus ponderosa) for the period 1950-2013 from six sites located in the lee of the Cascades in eastern Washington. Because of the orientation of the Cascades, zonal flow will result in an intensified rain shadow whereas meridional flow allows moisture to penetrate at a lower elevation leading to a lower rainout effect. This means zonal flow results in drier conditions in eastern Washington and the converse for meridional flow. We hypothesized that more depleted precipitation δ18O values will occur with periods of more zonal flow across the PNW and will be recorded by trees at our sites. Results show a strong relationship between our δ18O chronologies and winter precipitation (R = -0.50; p<0.001). δ13C chronologies from the same trees showed a relationship to prior fall/winter (pOct-pDec) precipitation (R = -0.46; p<0.005) suggesting a possible link to antecedent moisture conditions. With a focus on years with clear zonal and meridional flow regimes, we regressed the tree-ring δ18O anomaly against the instrumental record of total precipitation and compared the residual series to records of storm track for the period 1978-2008, and we found a detectable signal where the most depleted δ18O was generally associated with zonal flow and the most enriched δ18O with meridional flow. However, there are still some years where the relationship is unclear. Further work is aimed at understanding these anomalous years and extending our record beyond the instrumental

  17. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    NASA Astrophysics Data System (ADS)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  18. The distribution of radioactive ( 3H, 14C) and stable ( 2H, 18O) isotopes in precipitation, surface and groundwaters of NW Yugoslavia

    NASA Astrophysics Data System (ADS)

    Horvatinčić, Nada; Krajcar-Bronić, Ines; Pezdič, Jože; Srdoč, Dušan; Obelić, Bogomil

    1986-11-01

    The isotopic measurements ( 2H, 3H, 18O) of precipitiation in Zagreb (since 1976) and Ljubljana (since 1981) in NW Yugoslavia show seasonal variations typical of the Northern hemisphere. Continuous measurements of tritium concentration in the Sava River ca 10 km upstream from Zagreb have been performed since 1976. Data show a smooth line without periodical changes, but a steady decrease is obvious. The sampling place is situated ca 30 km downstream from the Kr\\vsko Nuclear Power Plant. No change in tritium concentration due to the operation of the power plant has been observed. A comprehensive program of monitoring of the 14C activity in air CO 2 as well as in vegetables, cereals and tree-rings in the surroundings of the Nuclear Power Plant Kr\\vsko has been carried out since 1984. The measurement of 2H and 18O in karst springs of the Korana River catchmet area (Plitvice National Park) gave a meteoric water line equal to δ2H = 7.9 δ18O + 8.5, which is typical of the NW part of Yugoslavia. A fairly constant concentration of 2H and 18O in spring water indicates a thorough mixing of water in the karst aquifers. The mean residence time (MRT) of karst water was determined by measuring monthly tritium activity of spring water. The MRT is very short, ranging between 1 and 4 years on average.

  19. Use of 2H and 18O stable isotopes to investigate water sources for different ages of Populus euphratica along the lower Heihe River

    USGS Publications Warehouse

    Shubao Liu,; Yaning Chen,; Yapeng Chen,; Friedman, Jonathan M.; Gonghuan Fan,; Hati, Jarre Heng A.

    2015-01-01

    Investigation of the water sources used by trees of different ages is essential to formulate a conservation strategy for the riparian tree, P. euphratica. This study addressed the contributions of different potential water sources to P. euphratica based on levels of stable oxygen and hydrogen isotopes18O, δ2H) in the xylem of different aged P. euphratica, as well as in soil water and groundwater along the lower Heihe River. We found significant differences in δ18O values in the xylem of different aged P. euphratica. Specifically, the δ18O values of young, mature and over-mature forests were −5.368(±0.252) ‰, −6.033(± 0.185) ‰ and −6.924 (± 0.166) ‰, respectively, reflecting the reliance of older trees on deeper sources of water with a δ18O value closer to that of groundwater. Different aged P. euphratica used different water sources, with young forests rarely using groundwater (mean <15 %) and instead primarily relying on soil water from a depth of 0–50 cm (mean >45 %), and mature and over-mature forests using water from deeper than 100 cm derived primarily from groundwater.

  20. Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precision delta18O determination in CO2 gas.

    PubMed

    Werner, R A; Rothe, M; Brand, W A

    2001-01-01

    The determination of delta18O values in CO2 at a precision level of +/-0.02 per thousand (delta-notation) has always been a challenging, if not impossible, analytical task. Here, we demonstrate that beyond the usually assumed major cause of uncertainty - water contamination - there are other, hitherto underestimated sources of contamination and processes which can alter the oxygen isotope composition of CO2. Active surfaces in the preparation line with which CO2 comes into contact, as well as traces of air in the sample, can alter the apparent delta18O value both temporarily and permanently. We investigated the effects of different surface materials including electropolished stainless steel, Duran glass, gold and quartz, the latter both untreated and silanized. CO2 frozen with liquid nitrogen showed a transient alteration of the 18O/16O ratio on all surfaces tested. The time to recover from the alteration as well as the size of the alteration varied with surface type. Quartz that had been ultrasonically cleaned for several hours with high purity water (0.05 microS) exhibited the smallest effect on the measured oxygen isotopic composition of CO2 before and after freezing. However, quartz proved to be mechanically unstable with time when subjected to repeated large temperature changes during operation. After several days of operation the gas released from the freezing step contained progressively increasing trace amounts of O2 probably originating from inclusions within the quartz, which precludes the use of quartz for cryogenically trapping CO2. Stainless steel or gold proved to be suitable materials after proper pre-treatment. To ensure a high trapping efficiency of CO2 from a flow of gas, a cold trap design was chosen comprising a thin wall 1/4" outer tube and a 1/8" inner tube, made respectively from electropolished stainless steel and gold. Due to a considerable 18O specific isotope effect during the release of CO2 from the cold surface, the thawing time had to

  1. Multi-isotope ((15)N, (18)O and (13)C) indicators of sources and fate of nitrate in the upper stream of Chaobai River, Beijing, China.

    PubMed

    Li, Cai; Jiang, Yongbin; Guo, Xinyue; Cao, Yang; Ji, Hongbing

    2014-11-01

    Dual isotopes of nitrate ((15)N and (18)O) and carbon isotopes of dissolved inorganic carbon ((13)C) together with water chemistry were used to identify the sources and fate of nitrate in the upper stream of Chaobai River, north China. The results show that NO3(-) concentrations ranges from 0.03 mmol L(-1) to 0.80 mmol L(-1). Sampling sites from watershed with dominant forest land had higher NO3(-) concentrations and lower δ(15)N-NO3(-) (<10‰) in the wet season than in the dry season, while those from watershed with more anthropogenic activities had lower NO3(-) concentrations and higher δ(15)N-NO3(-) (>10‰) in the wet season. Compositions of isotopes and chemistry indicated that NO3(-) originated mainly from soil N, sewage and livestock wastes and atmospheric nitrogen. Furthermore, the mixing model suggested that soil N was the major NO3(-) source in the wet season, while the sewage and livestock wastes contributed the most in the dry season. Compared to rivers, the Miyun Reservoir had a higher contribution of atmospheric N and the N input from the upper rivers exerted significant influence over the reservoir. Mineralization and nitrification played an important role in N biogeochemistry based on the isotopes ((15)N and (18)O and (13)C) and chemical data. There appeared to be no significant denitrification in the watershed according to the three isotopes and chemical ions. The combined use of (15)N, (18)O and (13)C proved to be useful for further identification of the sources and fate of nitrate in watersheds with dominant forest land in the wet season. PMID:25283837

  2. Nitrogen isotopes as indicators of streamflow generation processes in a headwater forested catchment: Focusing on atmospheric NO3- contribution using δ 18O signature

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Sebestyen, S. D.; Doctor, D. H.; Wankel, S. D.; Shanley, J. B.; Kendall, C.; Boyer, E. W.

    2003-12-01

    To quantify the contributions of atmospheric nitrogen deposition and mechanisms of nitrate discharge to stream, nitrogen chemistry and isotopes (δ 15N and δ 18O of NO3-) of streamwater were studied as part of an ongoing study of nutrient dynamics at the Sleepers River Research Watershed in Vermont, USA. We employed novel analytical procedures for high throughput of NO3- isotopic measurements. The denitrifier method for measurement of δ 15N and δ 18O of NO3- requires a smaller volume of water samples than previously applied methods, thus it enables fine resolution analysis of isotopes for stream, well, and soil water samples. Samples were collected throughout the spring 2003 snowmelt. Snowmelt runoff was initiated in the middle of March and peaked at the end of the month. Then, the runoff rate decreased gradually through April and May, and responded to several storm events. The highest concentration of NO3- in the stream was observed at the beginning of snowmelt (the end of March), and thereafter it declined continuously. The temporal course of NO3- discharge process during snowmelt period was divided into four phases based on changes in the relationship between runoff rate and NO3- concentration. During the earliest phase (very low runoff rate and highest NO3- concentration) isotope signatures, especially δ 18O of NO3-, indicated higher contribution of the atmospherically derived NO3-, meaning that the direct discharge from snow pack was the dominant source of NO3- to the stream. This also suggested that streamwater consisted only of a small volume of groundwater discharge and melt water of the in-stream snow pack and/or stream-covering snow pack. The δ 15N and δ 18O isotope compositions of NO3- during the middle phase of snowmelt indicated that the contribution of the NO3- generated by nitrifiers in soil increased gradually accompanied with increase of groundwater level. These detailed descriptions in the changes of NO3- discharge during snowmelt events

  3. Stable Oxygen (δ 18O) and Carbon (δ 13C) Isotopes in the Skeleton of Bleached and Recovering Corals From Hawaii

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.; Grottoli, A. G.

    2004-12-01

    Coral skeletal stable oxygen isotopes18O) reflect changes in seawater temperature and salinity, while stable carbon isotopes (δ 13C) reflect a combination of both metabolic (photosynthesis and feeding) and kinetic fractionation. Together, the two isotopic signatures may be used as a proxy for past bleaching events. During bleaching, increased seawater temperatures often contribute to a decline in zooxanthellae and/or chlorophyll concentrations, resulting in a decrease in photosynthesis. We experimentally investigated the effect of bleaching and subsequent recovery on the δ 13C and δ 18O values of coral skeleton. Fragments from two coral species (Montipora capitata and Porites compressa) from Kaneohe Bay, Hawaii were bleached in outdoor tanks by raising the seawater temperature to 30° C. Additional fragments from the same parent colonies were maintained at ambient seawater temperatures (27° C) in separate tanks as controls. After one month in the tanks, a subset of the fragments was frozen and all remaining fragments were placed back on the reef to recover. All coral fragments were analyzed for their skeletal δ 13C and δ 18O compositions at five time intervals: before, immediately after, 1.5, 4, and 8 months after bleaching. In addition, rates of photosynthesis, calcification, and heterotrophy were also measured. Immediately after bleaching, δ 18O decreased in bleached M. capitata relative to controls, reflecting their exposure to increased seawater temperatures. During recovery, δ 18O values in the treatment M. capitata were not different from the controls. In P. compressa, δ 18O did not significantly differ in bleached and control corals at any time during the experiment. Immediately after bleaching, δ 13C decreased in the bleached fragments of both species relative to controls reflecting decreased photosynthetic rates. However, during recovery δ 13C in both species was greater in bleached than control fragments despite photosynthesis remaining

  4. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  5. General statistical framework for quantitative proteomics by stable isotope labeling.

    PubMed

    Navarro, Pedro; Trevisan-Herraz, Marco; Bonzon-Kulichenko, Elena; Núñez, Estefanía; Martínez-Acedo, Pablo; Pérez-Hernández, Daniel; Jorge, Inmaculada; Mesa, Raquel; Calvo, Enrique; Carrascal, Montserrat; Hernáez, María Luisa; García, Fernando; Bárcena, José Antonio; Ashman, Keith; Abian, Joaquín; Gil, Concha; Redondo, Juan Miguel; Vázquez, Jesús

    2014-03-01

    The combination of stable isotope labeling (SIL) with mass spectrometry (MS) allows comparison of the abundance of thousands of proteins in complex mixtures. However, interpretation of the large data sets generated by these techniques remains a challenge because appropriate statistical standards are lacking. Here, we present a generally applicable model that accurately explains the behavior of data obtained using current SIL approaches, including (18)O, iTRAQ, and SILAC labeling, and different MS instruments. The model decomposes the total technical variance into the spectral, peptide, and protein variance components, and its general validity was demonstrated by confronting 48 experimental distributions against 18 different null hypotheses. In addition to its general applicability, the performance of the algorithm was at least similar than that of other existing methods. The model also provides a general framework to integrate quantitative and error information fully, allowing a comparative analysis of the results obtained from different SIL experiments. The model was applied to the global analysis of protein alterations induced by low H₂O₂ concentrations in yeast, demonstrating the increased statistical power that may be achieved by rigorous data integration. Our results highlight the importance of establishing an adequate and validated statistical framework for the analysis of high-throughput data.

  6. Archaean fluid-assisted crustal cannibalism recorded by low δ18O and negative ɛHf(T) isotopic signatures of West Greenland granite zircon

    NASA Astrophysics Data System (ADS)

    Hiess, Joe; Bennett, Vickie C.; Nutman, Allen P.; Williams, Ian S.

    2011-06-01

    The role of fluids during Archaean intra-crustal magmatism has been investigated via integrated SHRIMP U-Pb, δ18O and LA-MC-ICPMS 176Hf isotopic zircon analysis. Six rock samples studied are all from the Nuuk region (southern West Greenland) including two ~3.69 Ga granitic and trondhjemitic gneisses, a 3.64 Ga granitic augen gneiss, a 2.82 Ga granodioritic Ikkattoq gneiss, a migmatite with late Neoarchaean neosome and a homogeneous granite of the 2.56 Ga Qôrqut Granite Complex (QGC). All zircon grains were thoroughly imaged to facilitate analysis of magmatic growth domains. Within the zircon analysed, there is no evidence for metamictization. Initial ɛHf zircon values ( n = 63) are largely sub-chondritic, indicating the granitic host magmas were generated by the remelting of older, un-radiogenic crustal components. Zircon from some granite samples displays more than one 207Pb/206Pb age, and correlated with 176Hf/177Hf compositions can trace multiple phases of remelting or recrystallization during the Archaean. Model ages calculated using Lu/Hf arrays for each sample indicate that the crustal parental rocks to the granites, granodiorites and trondhjemites segregated from a chondrite-like reservoir at an earlier time during the Archaean, corresponding to known formation periods of more primitive tonalite-trondhjemite-granodiorite (TTG) gneisses. Zircon from the ~3.69 Ga granite, the migmatite and QGC granite contains Eoarchaean cores with chondritic 176Hf/177Hf and mantle-like δ18O compositions. The age and geochemical signatures from these inherited components are identical to those of surrounding tonalitic gneisses, further suggesting genesis of these granites by remelting of broadly tonalitic protoliths. Zircon oxygen isotopic compositions ( n = 62) over nine age populations (six igneous and three inherited) have weighted mean or mean δ18O values ranging from 5.8 ± 0.6 to 3.7 ± 0.5‰. The 3.64 Ga granitic augen gneiss sample displays the highest δ18O with

  7. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  8. Prediction of plant vulnerability to salinity increase in a coastal ecosystem by stable isotopic composition (δ18O) of plant stem water: a model study

    USGS Publications Warehouse

    Zhai, Lu; Jiang, Jiang; DeAngelis, Don; Sternberg, Leonel d.S.L

    2016-01-01

    Sea level rise and the subsequent intrusion of saline seawater can result in an increase in soil salinity, and potentially cause coastal salinity-intolerant vegetation (for example, hardwood hammocks or pines) to be replaced by salinity-tolerant vegetation (for example, mangroves or salt marshes). Although the vegetation shifts can be easily monitored by satellite imagery, it is hard to predict a particular area or even a particular tree that is vulnerable to such a shift. To find an appropriate indicator for the potential vegetation shift, we incorporated stable isotope 18O abundance as a tracer in various hydrologic components (for example, vadose zone, water table) in a previously published model describing ecosystem shifts between hammock and mangrove communities in southern Florida. Our simulations showed that (1) there was a linear relationship between salinity and the δ18O value in the water table, whereas this relationship was curvilinear in the vadose zone; (2) hammock trees with higher probability of being replaced by mangroves had higher δ18O values of plant stem water, and this difference could be detected 2 years before the trees reached a tipping point, beyond which future replacement became certain; and (3) individuals that were eventually replaced by mangroves from the hammock tree population with a 50% replacement probability had higher stem water δ18O values 3 years before their replacement became certain compared to those from the same population which were not replaced. Overall, these simulation results suggest that it is promising to track the yearly δ18O values of plant stem water in hammock forests to predict impending salinity stress and mortality.

  9. Determination of energy expenditure during heavy exercise, normal daily activity, and sleep using the doubly-labelled-water (/sup 2/H/sub 2/ 18O) method

    SciTech Connect

    Stein, T.P.; Hoyt, R.W.; Settle, R.G.; O'Toole, M.; Hiller, W.D.

    1987-03-01

    Energy expenditure of four subjects was measured by the doubly-labelled-water (/sup 2/H/sub 2/ 18O) method to determine if energy expenditure could be determined over short periods. Three subjects were studied while they performed 8 h of heavy exercise in a laboratory environment. Urine and blood samples were taken before and after exercise. Estimated energy expended during 8 h of high-intensity exercise for three subjects was 757 +/- 118 kcal/h by the doubly-labelled-water method using urine and a two-point calculation, which compared favorably with 735 +/- 82 kcal/h obtained by respiratory gas exchange. For the fourth subject, daytime, nighttime, and daily energy expenditure was calculated by both the two-pair method and decay-curve analysis of urine and saliva samples collected in the morning and at night. Daytime and nighttime energy expenditures differed significantly (p less than 0.05).

  10. Proton tunnelling in the hydrogen bonds of the benzoic acid dimer: (18)O substitution and isotope effects of the heavy atom framework.

    PubMed

    Frantsuzov, I; Johnson, M R; Trommsdorff, H P; Horsewill, A J

    2014-07-17

    Field-cycling (1)H NMR relaxometry has been used to measure the rate of concerted double proton transfer in the hydrogen bonds of (16)O and (18)O isotopologues of benzoic acid dimers. The experiments have been conducted in the solid state at low temperature 13.3 ≤ T ≤ 80 K where the dynamics are dominated by incoherent proton tunnelling. The low temperature tunnelling rate in the (16)O isotopologue is observed to be approximately 15% faster than in the (18)O isotopologue. The difference is attributed to an isotope effect of the heavy atom framework of the benzoic acid dimer resulting from displacements of the oxygen atoms that accompany the proton transfer. Sources of systematic uncertainty have been minimized in the design of the experimental protocols and the experiments are critically appraised in formally assigning the measured differences to an effect of mass on the tunnelling dynamics.

  11. Coordinated Isotopic and Mineral Characterization of Highly Fractionated 18O-Rich Silicates in the Queen Alexandra Range 99177 CR3 Chondrite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.

    2016-01-01

    Carbonaceous chondrites contain a mixture of solar system condensates, pre-solar grains, and primitive organic matter. Each of these materials record conditions and processes in different regions of the solar nebula, on the meteorite parent body, and beyond the solar system. Oxygen isotopic studies of meteorite components can trace interactions of distinct oxygen isotopic reservoirs in the early solar system and secondary alteration processes. The O isotopic compositions of the earliest solar system condensates fall along a carbonaceous chondrite anhydrous mineral (CCAM) line of slope approximately 1 in a plot of delta 17O against delta 18O. This trend is attributed to mixing of material from 16O-poor and 16O-rich reservoirs. Secondary processing can induce mass-dependent fractionation of the O isotopes, shifting these compositions along a line of slope approximately 0.52. Substantial mass-dependent fractionation of O isotopes has been observed in secondary minerals in CAIs, calcite, and FUN inclusions. These fractionations were caused by significant thermal or aqueous alteration. We recently reported the identification of four silicate grains with extremely fractionated O isotopic ratios (delta 18O equals 37 - 55 per mille) in the minimally altered CR3 chondrite QUE 99177. TEM analysis of one grain indicates it is a nebular condensate that did not experience substantial alteration. The history of these grains is thus distinct from those of the aforementioned fractionated materials. To constrain the origin of the silicate grains, we conducted further Mg and Fe isotopic studies and TEM analyses of two grains.

  12. Autonomous Instrumentation for Fast, Continuous and Accurate Isotopic Measurements of Water Vapor (δ18O, δ 2H, H2O) in the Field

    NASA Astrophysics Data System (ADS)

    Liem, J. S.; Dong, F.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Stable isotopes of water vapor are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of δ18O and δ2H are critical to advance the understanding of water-cycle dynamics worldwide. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent development and field deployment of a novel Water Vapor Isotope Measurement System (WVIMS) capable of simultaneous in situ measurements of δ18O and δ2H and water mixing ratio (H2O) with high precision, accuracy and speed (up to 10 Hz measurement rate). The WVIMS consists of an Analyzer (Water Vapor Isotope Analyzer), based on cavity enhanced laser absorption spectroscopy, and a Standard Source (Water Vapor Isotope Standard Source), based on quantitative evaporation of a liquid water standard (with known isotopic content), and operates in a dual-inlet configuration. The WVIMS automatically controls the entire sample and data collection, data analysis and calibration process to allow for continuous, autonomous unattended long-term operation. The WVIMS has been demonstrated for accurate (i.e. fully calibrated) measurements ranging from 500 ppmv (typical of arctic environments) to over 30,000 ppmv (typical of tropical environments) in air. Dual-inlet operation, which involves regular calibration with isotopic water vapor reference standards, essentially eliminates measurement drift, ensures data reliability, and allows operation over an extremely wide ambient temperature range (5-45C). This presentation will include recent measurements recorded using the WVIMS in plant growth chambers and in arctic environments. The availability of this new instrumentation provides new opportunities for detailed continuous

  13. Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systematics in an oceanic crustal section: Evidence from the Samial ophiolite

    SciTech Connect

    McCulloch, M.T.; Gregory, R.T.; Wasserburg, G.J.; Taylor, H.P. Jr.

    1981-04-10

    The Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systems have been used to distinguish between the effects of seafloor hydrothermal alteration and primary magmatic isotopic variations. The Sm-Nd isotopic system is essentially unaffected by seawater alteration, while the Rb-Sr and /sup 18/O//sup 16/O systems are sensitive to hydrothermal interactions with seawater. Sm-Nd mineral isochrons from the cumulate gabbros of the Samail ophiolite have an initial /sup 143/Nd//sup 144/Nd ratio of e/sub Nd/ = 7.8 +- 0.3, which clearly substantiates the oceanic affinity of this complex. The initial /sup 143/Nd//sup 144/Nd ratios for the harzburgite, plagiogranite, sheeted diabase dikes, and basalt units have a limited range in e/sub Nd/ of from 7.5 to 8.6, indicating that all the lithologies have distinctive oceanic affinities, although there is also some evidence for small isotopic heterogeneities in the magma reservoirs. The Sm-Nd mineral isochrons give crystallization ages of 128 +- 20 m.y. and 150 +- 40 m.y. from Ibra and 100 +- 20 m.y. from Wadi Fizh, which is approximately 300 km NW of Ibra. These crystallization ages are interpreted as the time of formation of the oceanic crust. The /sup 87/Sr//sup 86/Sr initial ratios on the same rocks have an extremely large range of from 0.7030 to 0.7065 and the d/sup 18/O values vary from 2.6 to 12.7. These large variations clearly demonstrate hydrothermal interaction of oceanic crust with seawater.

  14. Lower to middle Miocene isotope ( sup 87 Sr/ sup 86 Sr,. delta. sup 18 O,. delta. sup 13 C) standard sections, DSDP site 608

    SciTech Connect

    Miller, K.G.; Feigenson, M.D. ); Wright, J.D. )

    1990-05-01

    Isotopes changes ({sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O, {delta}{sup 13}C) have been correlated to the geologic time scale primarily by biostratigraphy. Biostratigraphic correlations suffer from problems of diachrony and taxonomy. Magnetostratigraphy provides a facies-independent correlation tool, but there are few Tertiary sections with unambiguous magnetostratigraphy. The authors previously developed an isotope standard for the Oligocene at the only location with a pristine magnetochronology, Site 522. They extend this approach to Site 608 in the northeastern North Atlantic, which contains a relatively straightforward Miocene magnetochronology. They establish Miocene oxygen isotope Chronozones MI1 through MI6 at Sites 522 and 608, which are directly tied to the geomagnetic polarity time scale (GPTS). The integration of stable isotopes, Sr isotopes, biostratigraphy, and magnetostratigraphy at site 608 provides a standard section with which other Sr isotope and oxygen isotope records can be correlated. For example, using oxygen isotopes to correlate, the Sr isotope record from Site 608 compares well with previously published records from Sites 516 and 590. The firm ties of the Oligocene to middle Miocene isotope records with the GPTS allows them to establish the nature of the change in Sr isotopes between 38 and 8 Ma. There were moderately high rates of {sup 87}Sr/{sup 86}Sr change during the Oligocene ({approximately}0.000030/m.y.), yielding stratigraphic resolution of {plus minus}1.0 m.y. The rate of change of {sup 87}Sr/{sup 86}Sr increased during the early Miocene. They estimate that the rate of change between 23 and 15 Ma was greater than 0.000060/m.y. Given their ability to reproduce Sr isotope measurements ({plus minus}0.000020 to {plus minus}0.000030), temporal resolution is better than {plus minus}0.5 my. for the early to early middle Oliocene.

  15. Oxygen isotopes in Indian Plate eclogites (Kaghan Valley, Pakistan): Negative δ18O values from a high latitude protolith reset by Himalayan metamorphism

    NASA Astrophysics Data System (ADS)

    Rehman, Hafiz Ur; Tanaka, Ryoji; O'Brien, Patrick J.; Kobayashi, Katsura; Tsujimori, Tatsuki; Nakamura, Eizo; Yamamoto, Hiroshi; Khan, Tahseenullah; Kaneko, Yoshiyuki

    2014-11-01

    Oxygen isotope compositions are reported for the first time for the Himalayan metabasites of the Kaghan Valley, Pakistan in this study. The highest metamorphic grades are recorded in the north of the valley, near the India-Asia collision boundary, in the form of high-pressure (HP: Group I) and ultrahigh-pressure (UHP: Group II) eclogites. The rocks show a step-wise decrease in grade from the UHP to HP eclogites and amphibolites. The protoliths of these metabasites were the Permian Panjal Trap basalts (ca. 267 ± 2.4 Ma), which were emplaced along the northern margin of India when it was part of Gondwana. After the break-up of Gondwana, India drifted northward, subducted beneath Asia and underwent UHP metamorphism during the Eocene (ca. 45 ± 1.2 Ma). At the regional scale, amphibolites, Group I and II eclogites yielded δ18O values of + 5.84 and + 5.91‰, + 1.66 to + 4.24‰, and - 2.25 to + 0.76‰, respectively, relative to VSMOW. On a more local scale, within a single eclogite body, the δ18O values were the lowest (- 2.25 to- 1.44‰) in the central, the best preserved (least retrograded) parts, and show a systematic increase outward into more retrograded rocks, reaching up to + 0.12‰. These values are significantly lower than the typical mantle values for basalts of + 5.7 ± 0.3‰. The unusually low or negative δ18O values in Group II eclogites potentially resulted from hydrothermal alteration of the protoliths by interactions with meteoric water when the Indian plate was at southern high latitudes (~ 60°S). The stepwise increase in δ18O values, among different eclogite bodies in general and at single outcrop-scales in particular, reflects differing degrees of resetting of the oxygen isotope compositions during exhumation-related retrogression.

  16. Eocene-Oligocene proto-Cascades topography revealed by clumped (Δ47) and oxygen isotope18O) geochemistry (Chumstick Basin, WA, USA)

    NASA Astrophysics Data System (ADS)

    Methner, Katharina; Fiebig, Jens; Wacker, Ulrike; Umhoefer, Paul; Chamberlain, C. Page; Mulch, Andreas

    2016-03-01

    The topography of the present-day Washington Cascades impacts atmospheric circulation and precipitation patterns in the Pacific Northwest, introducing a pronounced orographic rain shadow in the lee of the mountain range. The temporal development of Cascade topography, however, remains largely unconstrained for the early Cenozoic. Based on coupled carbonate clumped isotope (Δ47) and oxygen isotope18O) measurements we reconstruct δ18O values of Eocene groundwater (δ18Owater) in the Chumstick basin (central Washington), today located in the Cascade rain shadow. Δ47 (paleo)thermometry indicates a systematic change in basin burial temperatures from 110°C to 70°C depending on burial depth in the basin. These data are in good agreement with low-T thermochronological and vitrinite reflectance data, and further constrain the basin burial and exhumation history. In concert with field observations, microstructural analysis, and δ18O values of the analyzed carbonates, we suggest that the Δ47 temperatures and δ18O values reflect open-system carbonate cement recrystallization in meteoric-derived groundwaters during early burial diagenesis. Assuming open-system behavior, reconstructed mean δ18Owater values of ~ -7‰ (middle Eocene) to -9‰ (late Eocene/early Oligocene) are consistent with a low-elevation origin of the corresponding meteoric waters that permeated the sandstone/conglomerate members of the Eocene sedimentary units. In light of the paleogeographic setting of the Chumstick basin, the reconstructed δ18Owater values agree well with Pacific-derived moisture that did not experience strong rainout. The absence of a rain shadow effect therefore permits only moderate Eocene/Oligocene elevations at least for the southern part of the Washington proto-Cascades.

  17. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  18. Localization of groundwater infiltration in the combined sewers of Brussels by stable isotopes measurements (δ18O, δD) by Cavity Ring Down Spectroscopy.

    NASA Astrophysics Data System (ADS)

    De Bondt, Kevin; Claeys, Philippe

    2014-05-01

    In the last 20 years research has been conducted to quantify the infiltration of groundwater into the sewers. This groundwater, called parasitic water, increases the volume of waste-water to be treated and consequently the cost of this treatment. Moreover, in the case of combined sewer systems, the parasitic water also limits the sewer capacity and indirectly increases the risks of combined sewer overflows and floods. The infiltration of groundwater occurs trough cracks, sewer collapses and from direct connections with old springs. Different methods quantify the intrusion of parasitic water. Among these, the use of the stable isotopes of water (δ18O & δD) shows good result in catchments or cities close to Mountainous regions (example from Lyon, Zurich), where isotopic signals vary significantly because of continental and altitude effects. However many cities, such as Brussels, are located in more oceanic settings and theoretically offer less potential for the application of the stable isotopes method. In the case of Brussels, river-water from the Meuse is used to produce domestic-water. The catchment of this river extends into the Ardennes, which are affected by slightly different climatic conditions. δ18O & δD analyzes of groundwater from the main aquifer (Ledo-Paniselian-Brusselian) and domestic-water from the Callois reservoir fed by the Meuse River show sufficient isotopic differences in the south of Brussels, but only during the summer. The discrimination potential is better with δD than with δ18O. The improvement of δD measurements (precision, costs,...) brought by Cavity Ring Down Spectroscopy largely contributes to the potential of using stable isotopes method to trace water in Brussels. The first campaigns in the sewers also show a little enrichment (in heavy isotopes) of the waste-water in comparison with the reservoir waters and tap waters. This increases the potential of the method but constrains the sampling to pure waste-water in sewer segments

  19. Use of Isotope Ratio Mass Spectrometry (IRMS) Determination ((18)O/(16)O) to Assess the Local Origin of Fish and Asparagus in Western Switzerland.

    PubMed

    Rossier, Joël S; Maury, Valérie; de Voogd, Blaise; Pfammatter, Elmar

    2014-10-01

    Here we present the use of isotope ratio mass spectrometry (IRMS) for the detection of mislabelling of food produced in Switzerland. The system is based on the analysis of the oxygen isotope distribution in water (δ(18)O). Depending on the location on the earth, lake or groundwater has a specific isotopic distribution, which can serve as a fingerprint in order to verify whether a product has grown by means of the corresponding water. This report presents specifically the IRMS technique and the results obtained in the origin detection of fish grown in selected Swiss lakes as well as asparagus grown in Valais ground. Strengths and limitations of the method are presented for both cited products; on one hand, the technique is relatively universal for any product which contains significant water but on the other hand, it necessitates a rather heavy workload to build up a database of water δ(18)O values of products of different origins. This analytical tool is part of the concept of combating fraud currently in use in Switzerland. PMID:25437160

  20. Stable isotope (2H, 17O, 18O) and hydro chemical patterns of precipitation collected in weekly resolution at Hannover, Germany

    NASA Astrophysics Data System (ADS)

    Koeniger, Paul; Himmelsbach, Thomas

    2016-04-01

    Long-term observations of stable isotopes18O and δ2H) in precipitation were initiated in May 2008 at the Federal Institute of Geosciences and Natural Resources (BGR) in Hannover, Germany. In 2014 all precipitation samples were re-analyzed because a purchase of a new laser spectrometer (Picarro L2140-i) now allowed measurements of δ17O and a calculation of the 17O-excess parameter. Starting in October 2015 a routine analysis of hydro chemical parameters was added whenever enough sample aliquot was available (major ions, trace elements). A discussion of the stable isotope data of the seven year series of weekly precipitation samples (n = 370) will be presented. Beneath general patterns (seasonality and trends) we also focus on importance of amount weighing procedures, corrections for minor rain amounts, aspects of sample storage and re-analyzes, as well as impacts through changes in analytical equipment (IRMS, CRD spectroscopy) which is visible from the data. For stable isotopes a Thermo Fisher delta plus IRMS (Gasbench and H-Device) was used until 2011 and from 2012 on a Picarro L2120-i water vapor analyzer with long-term accuracies for quality check samples better than 0.2‰ and 0.8‰ for δ18O and δ2H, respectively.

  1. Triple isotope (δD, δ17O, δ18O) study on precipitation, drip water and speleothem fluid inclusions for a Western Central European cave (NW Switzerland)

    NASA Astrophysics Data System (ADS)

    Affolter, Stéphane; Häuselmann, Anamaria D.; Fleitmann, Dominik; Häuselmann, Philipp; Leuenberger, Markus

    2015-11-01

    Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of 17Oexcess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17Oexcess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD, δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD, δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17Oexcess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ˜ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8-10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems

  2. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    PubMed

    Berman, Elena S F; Levin, Naomi E; Landais, Amaelle; Li, Shuning; Owano, Thomas

    2013-11-01

    Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant (17)O isotope in addition to (2)H and (18)O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements δ(18)O, δ(17)O, and (17)O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard Greenland Ice Sheet Precipitation (GISP) demonstrate the precision and accuracy of OA-ICOS: δ(18)OVSMOW-SLAP = -24.74 ± 0.07‰ (1σ) and δ(17)OVSMOW-SLAP = -13.12 ± 0.05‰ (1σ). For comparison, the International Atomic Energy Agency (IAEA) value for δ(18)OVSMOW-SLAP is -24.76 ± 0.09‰ (1σ) and an average of previously reported values for δ(17)OVSMOW-SLAP is -13.12 ± 0.06‰ (1σ). Multiple (26) high-precision measurements of GISP provide a (17)O-excessVSMOW-SLAP of 23 ± 10 per meg (1σ); an average of previously reported values for (17)O-excessVSMOW-SLAP is 22 ± 11 per meg (1σ). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in δ(18)O, δ(17)O, and (17)O-excess. The ability to measure accurately δ(18)O, δ(17)O, and (17)O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of δ(17)O and (17)O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others. PMID:24032448

  3. Unveiling stomata 24/7: can we use carbonyl sulfide (COS) and oxygen isotopes (18O) to constrain estimates of nocturnal transpiration across different evolutionary plant forms?

    NASA Astrophysics Data System (ADS)

    Gimeno, Teresa E.; Ogee, Jerome; Bosc, Alexander; Genty, Bernard; Wohl, Steven; Wingate, Lisa

    2015-04-01

    Numerous studies have reported a continued flux of water through plants at night, suggesting that stomata are not fully closed. Growing evidence indicates that this nocturnal flux of transpiration might constitute an important fraction of total ecosystem water use in certain environments. However, because evaporative demand is usually low at night, nocturnal transpiration fluxes are generally an order of magnitude lower than rates measured during the day and perilously close to the measurement error of traditional gas-exchange porometers. Thus estimating rates of stomatal conductance in the dark (gnight) precisely poses a significant methodological challenge. As a result, we lack accurate field estimates of gnight and how it responds to different atmospheric drivers, indicating the need for a different measurement approach. In this presentation we propose a novel method to obtain detectable and robust estimates of gnight. We will demonstrate using mechanistic theory how independent tracers including the oxygen isotope composition of CO2 (δ18O) and carbonyl sulfide (COS) can be combined to obtain robust estimates of gnight. This is because COS and CO18O exchange within leaves are controlled by the light insensitive enzyme carbonic anhydrase. Thus, if plant stomata are open in the dark we will continue to observe COS and CO18O exchange. Using our theoretical model we will demonstrate that the exchange of these tracers can now be measured using advances in laser spectrometry techniques at a precision high enough to determine robust estimates of gnight. We will also present our novel experimental approach designed to measure simultaneously the exchange of CO18O and COS alongside the conventional technique that relies on measuring the total water flux from leaves in the dark. Using our theoretical approach we will additionally explore the feasibility of our proposed experimental design to detect variations in gnight during drought stress and across a variety of plant

  4. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: Insight from a climate transect study

    NASA Astrophysics Data System (ADS)

    Tuthorn, Mario; Zech, Michael; Ruppenthal, Marc; Oelmann, Yvonne; Kahmen, Ansgar; Valle, Héctor Francisco del; Wilcke, Wolfgang; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = -0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (˜10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant

  5. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: Insight from a climate transect study

    NASA Astrophysics Data System (ADS)

    Tuthorn, Mario; Zech, Michael; Ruppenthal, Marc; Oelmann, Yvonne; Kahmen, Ansgar; Valle, Héctor Francisco del; Wilcke, Wolfgang; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = -0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (˜10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant

  6. The mechanism of haem catabolism. A study of haem breakdown in spleen microsomal fraction and in a model system by 18O labelling and metal substitution.

    PubMed Central

    King, R F; Brown, S B

    1978-01-01

    The mechanism of bile-pigment formation from haem breakdown was studied by using 18O labelling of the molecular oxygen required for macrocyclic ring cleavage. For haem degradation by the spleen microsomal haem oxygenase system, mass spectrometry of the product bilirubin revealed that cleavage occurred by the Two-Molecule Mechanism, i.e. the terminal lactam oxygen atoms in bilirubin were derived from two different oxygen molecules. Similarly, degradation of myoglobin by coupled oxidation with ascorbate and oxygen proceeded via the Two-Molecule Mechanism. Cobalt and manganese complexes of protoporphyrin IX were not degraded by either the haem oxygenase system or the coupled oxidation system. This result suggests that the iron atom possesses unique properties in facilitating porphyrin breakdown. PMID:697745

  7. Comparing three methods of NEE-flux partitioning from the same grassland ecosystem: the 13C, 18O isotope approach and using simulated Ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Siegwolf, R.; Bantelmann, E.; Saurer, M.; Eugster, W.; Buchmann, N.

    2007-12-01

    As a change in the global climate occurs with increasing temperatures, the Carbon exchange processes of terrestrial ecosystems will change as well. However, it is difficult to quantify the degree to what ecosystem respiration will change relative to the CO2 uptake by photosynthesis. To estimate the carbon sequestration potential of terrestrial vegetation cover it is essential to know both fluxes: ecosystem respiration and the carbon uptake by the vegetation cover. Therefore the net ecosystem exchange of CO2 (NEE) was measured with the eddy covariance method and separated into assimilation and respiration flux. We applied three different approaches, 1) the conventional method, applying the nighttime relationship between soil temperature and NEE for calculating the respiration flux during the day, 2) the use of stable carbon and 3) oxygen isotopes. We compared the results of the three partitioning exercises for a temperate grassland ecosystem in the pre-Alps of Switzerland for four days in June 2004. The assimilation flux derived with the conventional NEE partitioning approach, was best represented at low PAR and low temperatures, in the morning between 5 and 9 am. With increasing temperature and PAR the assimilation for the whole canopy was underestimated. For partitioning NEE via 18O approach, correlations of temperature and radiation with assimilation and respiration flux were significantly higher for the partitioning approach with 18O than for the 13C NEE partitioning. A sensitivity analysis showed the importance of an accurate determination of the equilibrium term θ between CO2 and leaf water δ18O for the NEE partitioning with 18O. For using 13C to partition NEE, the correct magnitude of the 13C fractionation and for the respiration term is essential. The analysis of the data showed that for low light and low morning temperatures the conventional method delivers reasonably good results. When the temperatures exceeded 21°C the isotope approach provided the

  8. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.

    PubMed

    Qin, Weijie; Song, Zifeng; Fan, Chao; Zhang, Wanjun; Cai, Yun; Zhang, Yangjun; Qian, Xiaohong

    2012-04-01

    In recent years, quantitative proteomic research attracts great attention because of the urgent needs in biological and clinical research, such as biomarker discovery and verification. Currently, mass spectrometry (MS) based bottom up strategy has become the method of choice for proteomic quantification. In this strategy, the amount of proteins is determined by quantifying the corresponding proteolytic peptides of the proteins, therefore highly efficient and complete protein digestion is crucial for achieving accurate quantification results. However, the digestion efficiency and completeness obtained using conventional free protease digestion is not satisfactory for highly complex proteomic samples. In this work, we developed a new type of immobilized trypsin using hairy noncross-linked polymer chains hybrid magnetic nanoparticle as the matrix aiming at ultra fast, highly efficient proteomic digestion and facile (18)O labeling for absolution protein quantification. The hybrid nanoparticle is synthesized by in situ growth of hairy polymer chains from the magnetic nanoparticle surface using surface initiated atom transfer radical polymerization technique. The flexible noncross-linked polymer chains not only provide large amount of binding sites but also work as scaffolds to support three-dimensional trypsin immobilization which leads to increased loading amount and improved accessibility of the immobilized trypsin. For complex proteomic samples, obviously increased digestion efficiency and completeness was demonstrated by 27.2% and 40.8% increase in the number of identified proteins and peptides as well as remarkably reduced undigested proteins residues compared with that obtained using conventional free trypsin digestion. The successful application in absolute protein quantification of enolase from Thermoanaerobacter tengcongensis protein extracts using (18)O labeling and MRM strategy further demonstrated the potential of this hybrid nanoparticle immobilized trypsin

  9. The suitability of the dual isotope approach (δ13C and δ18O) in tree ring studies

    NASA Astrophysics Data System (ADS)

    Siegwolf, Rolf; Saurer, Matthias

    2016-04-01

    The use of stable isotopes, complementary to tree ring width data in tree ring research has proven to be a powerful tool in studying the impact of environmental parameters on tree physiology and growth. These three proxies are thus instrumental for climate reconstruction and improve the understanding of underlying causes of growth changes. In various cases, however, their use suggests non-plausible interpretations. Often the use of one isotope alone does not allow the detection of such "erroneous isotope responses". A careful analysis of these deviating results shows that either the validity of the carbon isotope discrimination concept is no longer true (Farquhar et al. 1982) or the assumptions for the leaf water enrichment model (Cernusak et al., 2003) are violated and thus both fractionation models are not applicable. In this presentation we discuss such cases when the known fractionation concepts fail and do not allow a correct interpretation of the isotope data. With the help of the dual isotope approach (Scheidegger et al.; 2000) it is demonstrated, how to detect and uncover the causes for such anomalous isotope data. The fractionation concepts and their combinations before the background of CO2 and H2O gas exchange are briefly explained and the specific use of the dual isotope approach for tree ring data analyses and interpretations are demonstrated. References: Cernusak, L. A., Arthur, D. J., Pate, J. S. and Farquhar, G. D.: Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globules, Plant Physiol., 131, 1544-1554, 2003. Farquhar, G. D., O'Leary, M. H. and Berry, J. A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121-137, 1982. Scheidegger, Y., Saurer, M., Bahn, M. and Siegwolf, R.: Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model

  10. Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany)

    NASA Astrophysics Data System (ADS)

    Kluge, T.; Affek, H. P.; Marx, T.; Aeschbach-Hertig, W.; Riechelmann, D. F. C.; Scholz, D.; Riechelmann, S.; Immenhauser, A.; Richter, D. K.; Fohlmeister, J.; Wackerbarth, A.; Mangini, A.; Spötl, C.

    2012-07-01

    The geochemical signature of many speleothems used for reconstruction of past continental climates is affected by kinetic isotope fractionation. This limits quantitative paleoclimate reconstruction and, in cases where the kinetic fractionation varies with time, also affects relative paleoclimate interpretations. In carbonate archive research, clumped isotope thermometry is typically used as proxy for absolute temperatures. In the case of speleothems, however, clumped isotopes provide a sensitive indicator for disequilibrium effects. The extent of kinetic fractionation co-varies in Δ47 and δ18O so that it can be used to account for disequilibrium in δ18O and to extract the past drip-water composition. Here we apply this approach to stalagmites from Bunker Cave (Germany) and calculate drip-water δ18Ow values for the Eemian, Marine Isotope Stage (MIS) 3, and the Holocene, relying on independent temperature estimates and accounting for disequilibrium. Applying the co-variation method to modern calcite precipitates yields drip-water δ18Ow values in agreement with modern cave drip-water δ18Ow of -7.9 ± 0.3‰, despite large and variable disequilibrium effects in both calcite δ18Oc and Δ47. Reconstructed paleo-drip-water δ18Ow values are lower during colder periods (e.g., MIS 3: -8.5 ± 0.4‰ and the early Holocene at 11 kyr: -9.3 ± 0.1‰) and show higher values during warmer climatic periods (e.g., the Eemian: -7.5 ± 0.2‰ and the Holocene Climatic Optimum: -7.2 ± 0.3‰). This new approach offers a unique possibility for quantitative climate reconstruction including the assessment of past hydrological conditions while accounting for disequilibrium effects.

  11. Environmental isotopes (18O, 2H, and 87Sr/86Sr) as a tool in groundwater investigations in the Keta Basin, Ghana

    NASA Astrophysics Data System (ADS)

    Jørgensen, Niels; Banoeng-Yakubo, Bruce

    2001-03-01

    Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes

  12. Environmental isotopes (18O, 2H, and 87Sr/86Sr) as a tool in groundwater investigations in the Keta Basin, Ghana

    NASA Astrophysics Data System (ADS)

    Jørgensen, Niels; Banoeng-Yakubo, Bruce

    2001-03-01

    Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes

  13. A reassessment of isotopic equilibrium (Δ47 and δ18O) in the Laghetto Basso pool carbonates

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Drysdale, R.; Blamart, D.; Genty, D.; Zanchetta, G.

    2013-12-01

    To the best of our current knowledge, the overwhelming majority of modern speleothems have Δ47 values which differ significantly from those predicted for thermodynamic equilibrium. The extent to which these differences may vary temporally and spatially is still an open issue, precluding a straightforward application of clumped isotopes paleothermometry to speleothem records. Here we report on the recent results of a reassessment of isotopic equilibrium in the Laghetto Basso pool carbonates (Antro del Corchia cave, NW Italy), which offer excellent a priori conditions for equilibrium carbonate precipitation and provide a continuous or quasi-continuous isotopic record of the past million years.

  14. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  15. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters.

  16. Comparison between IRMS and CRDS methods in the determination of isotopic ratios 2H/1H and 18O/16O in water

    NASA Astrophysics Data System (ADS)

    Santos, T. H. R.; Zucchi, M. R.; Lemaire, T.; Azevedo, A. E. G.

    2013-05-01

    Traditionally, the method used for measuring the isotope ratios is the Isotope Ratio Mass Spectrometers (IRMS). A new method has been used to determine the isotopic abundances, the Cavity Ring-Down Spectroscopy (CRDS). It consists of a technique of direct absorption, of high sensitivity, which is based on measuring the absorption ratio, as a function of time, of the light confined in a high finesse optical cavity, instead of the magnitude of light beam absorption. The values of 18O/16O and D/H ratios are determined with respect to international standards VSMOW, GISP and SLAP from the International Atomic Energy Agency (IAEA). In this work, the IRMS and CRDS techniques are compared, verifying that the CRDS technique is promising and has some advantages compared to IRMS. It uses a smaller amount of sample, the isotope measurements are made simultaneously from the steam, reducing the analysis time. It also shows good reproducibility and accuracy, and it does not require a preliminary sample preparation.

  17. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters. PMID:25941866

  18. Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany)

    NASA Astrophysics Data System (ADS)

    Kluge, T.; Affek, H. P.; Marx, T.; Aeschbach-Hertig, W.; Riechelmann, D. F. C.; Scholz, D.; Riechelmann, S.; Immenhauser, A.; Richter, D. K.; Fohlmeister, J.; Wackerbarth, A.; Mangini, A.; Spötl, C.

    2013-02-01

    The geochemical signature of many speleothems used for reconstruction of past continental climates is affected by kinetic isotope fractionation. This limits quantitative paleoclimate reconstruction and, in cases where the kinetic fractionation varies with time, also affects relative paleoclimate interpretations. In carbonate archive research, clumped isotope thermometry is typically used as proxy for absolute temperatures. In the case of speleothems, however, clumped isotopes provide a sensitive indicator for disequilibrium effects. The extent of kinetic fractionation co-varies in Δ47 and δ18O so that it can be used to account for disequilibrium in δ18O and to extract the past drip-water composition. Here we apply this approach to stalagmites from Bunker Cave (Germany) and calculate drip-water δ18Ow values for the Eemian, MIS3, and the Holocene, relying on independent temperature estimates and accounting for disequilibrium. Applying the co-variation method to modern calcite precipitates yields drip-water δ18Ow values in agreement with modern cave drip-water δ18Ow of -7.9 ± 0.3‰, despite large and variable disequilibrium effects in both calcite δ18Oc and Δ47. Reconstructed paleo-drip-water δ18Ow values are lower during colder periods (e.g., MIS3: -8.6 ± 0.4‰ and the early Holocene at 11 ka: -9.7 ± 0.2‰) and show higher values during warmer climatic periods (e.g., the Eemian: -7.6 ± 0.2‰ and the Holocene Climatic Optimum: -7.2 ± 0.3‰). This new approach offers a unique possibility for quantitative climate reconstruction including the assessment of past hydrological conditions while accounting for disequilibrium effects.

  19. Quantification of competing H3PO4 versus HPO3 + H2O neutral losses from regioselective 18O-labeled phosphopeptides.

    PubMed

    Cui, Li; Yapici, Ipek; Borhan, Babak; Reid, Gavin E

    2014-01-01

    Abundant neutral losses of 98 Da are often observed upon ion trap CID-MS/MS of protonated phosphopeptide ions. Two competing fragmentation pathways are involved in this process, namely, the direct loss of H3PO4 from the phosphorylated residue and the combined losses of HPO3 and H2O from the phosphorylation site and from an additional site within the peptide, respectively. These competing pathways produce product ions with different structures but the same m/z values, potentially limiting the utility of CID-MS(3) for phosphorylation site localization. To quantify the relative contributions of these pathways and to determine the conditions under which each pathway predominates, we have examined the ion trap CID-MS/MS fragmentation of a series of regioselective (18)O-phosphate ester labeled phosphopeptides prepared using novel solution-phase amino acid synthesis and solid-phase peptide synthesis methodologies. By comparing the intensity of the -100 Da (-H3PO3 (18)O) versus -98 Da (-[HPO3 + H2O]) neutral loss product ions formed upon MS/MS, quantification of the two pathways was achieved. Factors that affect the extent of formation of the competing neutral losses were investigated, with the combined loss pathway predominantly occurring under conditions of limited proton mobility, and with increased combined losses observed for phosphothreonine compared with phosphoserine-containing peptides. The combined loss pathway was found to be less dominant under ion activation conditions associated with HCD-MS/MS. Finally, the contribution of carboxylic acid functional groups and backbone amide bonds to the water loss in the combined loss fragmentation pathway was determined via methyl esterification and by examination of a phosphopeptide lacking side-chain hydroxyl groups.

  20. Quantification of Competing H3PO4 Versus HPO3 + H2O Neutral Losses from Regioselective 18O-Labeled Phosphopeptides

    NASA Astrophysics Data System (ADS)

    Cui, Li; Yapici, Ipek; Borhan, Babak; Reid, Gavin E.

    2014-01-01

    Abundant neutral losses of 98 Da are often observed upon ion trap CID-MS/MS of protonated phosphopeptide ions. Two competing fragmentation pathways are involved in this process, namely, the direct loss of H3PO4 from the phosphorylated residue and the combined losses of HPO3 and H2O from the phosphorylation site and from an additional site within the peptide, respectively. These competing pathways produce product ions with different structures but the same m/z values, potentially limiting the utility of CID-MS3 for phosphorylation site localization. To quantify the relative contributions of these pathways and to determine the conditions under which each pathway predominates, we have examined the ion trap CID-MS/MS fragmentation of a series of regioselective 18O-phosphate ester labeled phosphopeptides prepared using novel solution-phase amino acid synthesis and solid-phase peptide synthesis methodologies. By comparing the intensity of the -100 Da (-H3PO3 18O) versus -98 Da (-[HPO3 + H2O]) neutral loss product ions formed upon MS/MS, quantification of the two pathways was achieved. Factors that affect the extent of formation of the competing neutral losses were investigated, with the combined loss pathway predominantly occurring under conditions of limited proton mobility, and with increased combined losses observed for phosphothreonine compared with phosphoserine-containing peptides. The combined loss pathway was found to be less dominant under ion activation conditions associated with HCD-MS/MS. Finally, the contribution of carboxylic acid functional groups and backbone amide bonds to the water loss in the combined loss fragmentation pathway was determined via methyl esterification and by examination of a phosphopeptide lacking side-chain hydroxyl groups.

  1. Oxygen isotopes of Pacific seawater, 0-40 kyr, based on d18O and Mg/Ca of benthic and planktic foraminifera: relation to deglacial sealevel rise.

    NASA Astrophysics Data System (ADS)

    Mix, A. C.; Klinkhammer, G. P.

    2007-12-01

    Combining high resolution (~200 year sample resolution) oxygen and carbon isotope measurements and Mg/Ca analyses in planktic (G. ruber and N. dutertrei) and benthic foraminifera (Uvigerina sp.; use of infaunal benthics minimizes likely CO3= effects) from the mid-depth eastern Pacific provides for detailed estimates of changing d18O of seawater over the past 40 kyr at ODP Site 1242. The key to this analysis is improved precision of the Mg/Ca analyses based on a new generation of high precision flow-through time-resolved analysis (FT-TRA) (e.g., average internal precision for Mg/Ca is now +/-0.005 benthic, and +/-0.015 planktic). This method is relatively insensitive to mild dissolution of heterogeneous shells, and thus requires no corrections for preservation. The change in seawater d18O (at 1364 m depth) between the Holocene and Last Glacial Maximum is 1.2 +/- 0.04 permil when averaged over the stages, consistent with pore-water diffusion estimates; however, millennial scale events (which the pore-water data cannot detect) bring the total range up to about 1.6 permil. Are such short-term events related to sealevel change, or do they reflect changing watermasses? Measurements of d13C data (C. wuellerstorfi), sensitive to modern subsurface watermass gradients, are not highly correlated to short- term changes in d18Oseawater suggesting a transient response to ice volume changes. Glacial weakening of AAIW (salty, high d18O, high d13C) relative to north Pacific watermasses (fresher, lower d18O, low d13C) suggest that the benthic d18Oseawater may underestimate total local changes related to ice volume (with a caveat regarding proper scaling of benthic Mg/Ca to temperature). Benthic d18Oseawater falls through the deglaciation in steps, starting at 18 cal ka, with maximum rates of change at 14-15 ka, and with secondary rapid steps at 16-17 ka and 10-11 kar. Planktic foraminifera yield smaller glacial-interglacial d18Oseawater values, with Holocene-to-LGM stage- average

  2. Intra-shell d18O in Cultured Benthic Foraminiferan Amphistegina lobifera and the Influence of Seawater Carbonate Chemistry and Temperature on this Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.; Zilberman, T.; Segev, E.

    2006-12-01

    Using secondary ion mass spectrometry (SIMS) we looked at the natural variability in the oxygen isotope ratio of the shallow water, symbionts bearing foraminiferan A. lobifera. Live foraminifera were collected in June 2005 in the Gulf of Eilat, Israel. Vertical section exposing the knob area of this species represents the growth history of this species from December 2004 to June 2005. SIMS profile at a resolution of ~ 2 weeks yielded δ^1^8O changes of ~ 1.5 ‰, (from -0.1 ‰ to 1.45 ‰) that are compatible with the known temperature changes for the Gulf of Eilat for this period (20 to 25° C). Natural variability between primary and secondary calcite at the knob area were obtained on horizontal section of the upper knob area. The primary calcite is on average 2 ‰ more negative then the secondary calcite that represents the bulk of the skeleton (more then 95 % by weight). The δ^1^8O in the margin keel area of A. lobifera is also lower compared to the bulk secondary calcite. Specimens that were cultured in the laboratory at a constant temperature and inorganic carbon but at different pH have increased their CaCO3 weight by roughly a factor of 8. Single specimen from each pH (ranging between 7.9 and 8.5) was investigated with the SIMS at the knob area. While there is some variability within each specimen (perhaps related to the primary calcite), the general trend was a decrease in δ^1^8O with increasing pH (or CO32^- concentration), in agreement with previous studies on planktonic foraminifera. Specimens cultured in laboratory at a constant pH, but different temperature were also analysed in the knob area. The temperature range is between 21 and 33° C (experiments at 21, 24, 27 and 33° C). While there is also some variability within each specimen, the trend was a decrease in δ^1^8O with increasing temperature. The decrease measured is 2.7 ± 0.7 ‰ for the entire temperature range, which is completely in agreement with the theoretical value (-0.2 ‰ per

  3. Trends in nitrate concentrations and determination of its origin using stable isotopes (18O and 15N) in groundwater of the Western Central Valley, Costa Rica.

    PubMed

    Reynolds-Vargas, Jenny; Fraile-Merino, Julio; Hirata, Ricardo

    2006-08-01

    A study was conducted to evaluate long-term trends in nitrate concentrations and to try to identify the origin of nitrate using stable isotopes (15N(NO3-) and 18O(NO3-)) in the aquifers of the western Central Valley, Costa Rica, where more than 1 million people depend on groundwater to satisfy their daily needs. Data from 20 sites periodically sampled for 4 to 17 years indicate an increasing trend in nitrate concentrations at five sites, which in a period ranging from 10 to 40 years, will exceed recommended maximum concentrations. Results of isotopic analysis indicate a correspondence between land use patterns and the isotopic signature of nitrate in groundwater and suggest that urbanization processes without adequate waste disposal systems, followed by coffee fertilization practices, are threatening water quality in the region. We conclude that groundwater management in this area is not sustainable, and that land use substitution processes from agricultural activity to residential occupation that do not have proper sewage disposal systems may cause a significant increment in the nitrate contaminant load. PMID:16989507

  4. Coupling δ2H and δ18O biomarker results yields information on relative humidity and isotopic composition of precipitation - a climate transect validation study

    NASA Astrophysics Data System (ADS)

    Tuthorn, M.; Zech, R.; Ruppenthal, M.; Oelmann, Y.; Kahmen, A.; del Valle, H. F.; Eglinton, T.; Rozanski, K.; Zech, M.

    2015-06-01

    The hydrogen isotopic composition (δ2H) of leaf waxes, especially of n-alkanes (δ2Hn-alkanes), is increasingly used for paleohydrological and paleoclimate reconstructions. However, it is challenging to disentangle past changes in the isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf water, which are both recorded in leaf wax δ2H values. In order to overcome this limitation, Zech M. et al. (2013) proposed a coupled δ2Hn-alkanes-δ18Osugar biomarker approach. This coupled approach allows for calculating (i) biomarker-based "reconstructed" δ2Hδ18O values of leaf water (δ2Hδ18Oleaf water), (ii) biomarker-based reconstructed deuterium excess (d-excess) of leaf water, which mainly reflects evapotranspirative enrichment and which can be used to reconstruct relative air humidity (RH) and (iii) biomarker-based reconstructed δ2Hδ18Oprecipitation values. Here we present a climate transect validation study by coupling new results from δ2H analyses of n-alkanes and fatty acids in topsoils along a climate transect in Argentina with previously measured δ18O results obtained for plant-derived sugars. Accordingly, both the reconstructed RH and δ2Hδ18Oprecipitation values correlate highly significantly with actual RH and δ2Hδ18Oprecipitation values. We conclude that compared to single δ2Hn-alkane or δ18Osugar records, the proposed coupled δ2Hn-alkane-δ18Osugar biomarker approach will allow more robust δ2Hδ18Oprecipitation reconstructions in future paleoclimate research. Additionally, the proposed coupled δ2Hn-alkane-δ18Osugar biomarker approach allows for the establishment of a "paleohygrometer", more specifically, the reconstruction of mean summer daytime RH changes/history.

  5. USE OF OXYGEN-18 ISOTOPE LABELING FOR MEASUREMENT OF OXIDATIVE STRESS

    EPA Science Inventory

    Oxygen-18 (18-O) labeling provides a sensitive means for quantifying oxygen
    binding that occurs during in vivo oxidations. Oxidants (ozone, nitrogen
    oxides, hydrogen peroxide, etc.) are first synthesized using 18-O, then cells
    or tissues are exposed to the labeled ...

  6. Towards a Better Understanding of the Oxygen Isotope Signature of Atmospheric CO2: Determining the 18O-Exchange Between CO2 and H2O in Leaves and Soil On-line with Laser-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gangi, L.; Rothfuss, Y.; Vereecken, H.; Brueggemann, N.

    2013-12-01

    The oxygen isotope signature of carbon dioxide (δ18O-CO2) is a powerful tool to disentangle CO2 fluxes in terrestrial ecosystems, as CO2 attains a contrasting 18O signature by the interaction with isotopically different soil and leaf water pools during soil respiration and photosynthesis, respectively. However, using the δ18O-CO2 signal to quantify plant-soil-atmosphere CO2 fluxes is still challenging due to a lack of knowledge concerning the magnitude and effect of individual fractionation processes during CO2 and H2O diffusion and during CO2-H2O isotopic exchange in soils and leaves, especially related to short-term changes in environmental conditions (non-steady state). This study addresses this research gap by combined on-line monitoring of the oxygen isotopic signature of CO2 and water vapor during gas exchange in soil and plant leaves with laser-based spectroscopy, using soil columns and plant chambers. In both experimental setups, the measured δ18O of water vapor was used to infer the δ18O of liquid water, and, together with the δ18O-CO2, the degree of oxygen isotopic equilibrium between the two species (θ). Gas exchange experiments with different functional plant types (C3 coniferous, C3 monocotyledonous, C3 dicotyledonous, C4) revealed that θ and the influence of the plant on the ambient δ18O-CO2 (CO18O-isoforcing) not only varied on a diurnal timescale but also when plants were exposed to limited water availability, elevated air temperature, and abrupt changes in light intensity (sunflecks). Maximum θ before treatments ranged between 0.7 and 0.8 for the C3 dicotyledonous (poplar) and C3 monocotyledonous (wheat) plants, and between 0.5 and 0.6 for the conifer (spruce) and C4 plant (maize) while maximum CO18O-isoforcing was highest in wheat (0.03 m s-1 ‰), similar in poplar and maize (0.02 m s-1 ‰), and lowest in spruce (0.01 m s-1 ‰). Multiple regression analysis showed that up to 97 % of temporal dynamics in CO18O-isoforcing could be

  7. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.

    PubMed

    Zhang, Tianqi O; Grechko, Maksim; Moran, Sean D; Zanni, Martin T

    2016-01-01

    This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for (13)C/(18)O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform (13)C or (13)C/(15)N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2-2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2-10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.

  8. Distortion of homeostatic signaling proteins by simulated microgravity in rat hypothalamus: A(16) O/(18) O-labeled comparative integrated proteomic approach.

    PubMed

    Iqbal, Javed; Li, Wang; Hasan, Murtaza; Juan Li, Yu; Ullah, Kaleem; Yun, Wang; Awan, Umer; Qing, Hong; Deng, Yulin

    2014-02-01

    Microgravity generates oxidative stress in central nervous system, causing distortion of various vital signaling cascades involved in many homeostatic functions. Here, we performed comparative (16) O/(18) O labeled integrated proteomic strategy to observe the differential expression of signaling proteins involved in homeostasis. In this study, rat-tail suspension model is employed to induce simulated microgravity in CNS. By wide proteomic analysis, total of 35 and 97 significantly differentially expressed proteins were found by HPLC/ESI-TOF and HPLC-Q-TOF analysis, respectively. Among the total of 132 proteins quantified, 25 proteins were found related to various signaling cascades. Protein Thy-1, 14-3-3 gamma, 14-3-3 epsilon, 14-3-3 theta, 14-3-3 eta, and 14-3-3 beta/alpha proteins, calmodulin and calcium/calmodulin-dependent protein kinase type-II subunit beta were found upregulated under the influence of simulated microgravity. These proteins are found involved in disrupting homeostatic pathways like sleep/wake cycle, drinking behavior, hypothalamic-pituitary-adrenocortical regulation and fight and/or flee actions under stress. Furthermore, MS results for protein Thy-1 were verified by Western blot analysis showing the quantification accuracy of MS instruments. Results presented here will serve as means to understand the mechanism of action of microgravity and further reference for future detailed study of consequences of microgravity on astronauts and their possible countermeasures.

  9. Field calibration of stable isotopes18O) in coccoliths : Toward an accurate carbonate record-based reconstruction of the photic zone temperature

    NASA Astrophysics Data System (ADS)

    Candelier, Y.; Minoletti, F.; Hermoso, M.; Probert, I.

    2010-12-01

    Oxygen-isotopes from biogenic carbonates have been widely used to estimate SSTs during the Cenozoic. The full potential of coccolithophores for reconstructing past temperatures is still unexploited owing to two major issues: their minute size that prevents their isotopic analyzes at the specific level as done for foraminifera, and the large range of interspecific isotopic offsets (~ 5‰) ascribed to the vital effect (Ziveri et al., 2003). To test the suitability of applying in vitro data for the truly pelagic natural record, we established new coccolithophorid δ18O-temperature calibrations from sediments that we compared to empirical thermodependance equations from previous culture experiments. In this respect, we focused on two foremost coccolithophore species: Calcidicus leptoporus and Gephyrocapsa oceanica. We successfully obtained monospecific fractions of those taxa by applying a microfiltering protocol (Minoletti et al., 2009) on Holocene sediments for which the temperature of the photic zone water has been directly measured. For G. oceanica, the constant offset (δcGo-δceq) of ~ +1.5‰ with respect to equilibrium is in a good agreement with previous culture experiments (~ +1.6‰; Ziveri et al., 2003). Conversely, for C. leptoporus, although the relation between temperature and oxygen-isotopic fractionation is also well-behaved between 16 and 27°C, we found a significant discrepancy with previous cultures (-2.8‰; Dudley et al., 1986). This difference could be the result of growing conditions in the lab that may not mimate the natural environment (seawater chemistry such as pH, nutrient level, cell concentration, …). We generated new isotopic results of preliminary temperature-controlled experiments for C. leptoporus in constrained conditions close to the natural environment. We measured an isotopic offset comparable to the one from our sedimentologic study. Hence, we suggest a new correction of -1.2‰ for C. leptoporus, which may be more

  10. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation. PMID:26747642

  11. Stable isotope dimethyl labelling for quantitative proteomics and beyond.

    PubMed

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-10-28

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644970

  12. A conifer-friendly high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.

    2012-12-01

    Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.

  13. Fractionation of Oxygen Isotopes by Thermal Ionization Mass Spectrometry Inferred from Simultaneous Measurement of (17)O/(16)O and (18)O/(16)O Ratios and Implications for the (182)Hf-(182)W Systematics.

    PubMed

    Trinquier, Anne

    2016-06-01

    Accurate (182)Hf-(182)W chronology of early planetary differentiation relies on highly precise and accurate tungsten isotope measurements. WO3(-) analysis by negative thermal ionization mass spectrometry requires W(17)O(16)O2(-), W(17)O2(16)O(-), W(18)O(16)O2(-), W(17)O3(-), W(17)O(18)O(16)O(-), and W(18)O2(16)O(-) isotopologue interference corrections on W(16)O3(-) species ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ; Touboul et al. Nature 2015 , 520 , 530 ; Touboul et al. Int. J. Mass Spectrom. 2012 , 309 , 109 ). In addition, low ion beam intensity counting statistics combined with Faraday cup detection noise limit the precision on the determination of (18)O/(16)O and (17)O/(16)O relative abundances. Mass dependent variability of (18)O/(16)O over the course of an analysis and between different analyses calls for oxide interference correction on a per integration basis, based on the in-run monitoring of the (18)O/(16)O ratio ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). Yet, the (17)O/(16)O variation is normally not being monitored and, instead, inferred from the measured (18)O/(16)O variation, assuming a δ(17)O-δ(18)O Terrestrial Fractionation Line ( Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). The purpose of the present study is to verify the validity of this assumption. Using high resistivity amplifiers, (238)U(17)O2 and (238)U(18)O2 ion beams down to 1.6 fA have been monitored simultaneously with (235,238)U(16)O2 species in a uranium certified reference material. This leads to a characterization of O isotope fractionation by thermal ionization mass spectrometry in variable loading and running conditions (additive-to-sample ratio, PO2 pressure, presence of ionized metal and oxide species). Proper determination of O

  14. Fractionation of Oxygen Isotopes by Thermal Ionization Mass Spectrometry Inferred from Simultaneous Measurement of (17)O/(16)O and (18)O/(16)O Ratios and Implications for the (182)Hf-(182)W Systematics.

    PubMed

    Trinquier, Anne

    2016-06-01

    Accurate (182)Hf-(182)W chronology of early planetary differentiation relies on highly precise and accurate tungsten isotope measurements. WO3(-) analysis by negative thermal ionization mass spectrometry requires W(17)O(16)O2(-), W(17)O2(16)O(-), W(18)O(16)O2(-), W(17)O3(-), W(17)O(18)O(16)O(-), and W(18)O2(16)O(-) isotopologue interference corrections on W(16)O3(-) species ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ; Touboul et al. Nature 2015 , 520 , 530 ; Touboul et al. Int. J. Mass Spectrom. 2012 , 309 , 109 ). In addition, low ion beam intensity counting statistics combined with Faraday cup detection noise limit the precision on the determination of (18)O/(16)O and (17)O/(16)O relative abundances. Mass dependent variability of (18)O/(16)O over the course of an analysis and between different analyses calls for oxide interference correction on a per integration basis, based on the in-run monitoring of the (18)O/(16)O ratio ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). Yet, the (17)O/(16)O variation is normally not being monitored and, instead, inferred from the measured (18)O/(16)O variation, assuming a δ(17)O-δ(18)O Terrestrial Fractionation Line ( Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). The purpose of the present study is to verify the validity of this assumption. Using high resistivity amplifiers, (238)U(17)O2 and (238)U(18)O2 ion beams down to 1.6 fA have been monitored simultaneously with (235,238)U(16)O2 species in a uranium certified reference material. This leads to a characterization of O isotope fractionation by thermal ionization mass spectrometry in variable loading and running conditions (additive-to-sample ratio, PO2 pressure, presence of ionized metal and oxide species). Proper determination of O

  15. Analysis of proteome dynamics in mice by isotopic labeling.

    PubMed

    Price, John C; Ghaemmaghami, Sina

    2014-01-01

    Recent advances in mass spectrometry and in vivo isotopic labeling have enabled proteome-wide analyses of protein turnover in complex organisms. Here, we describe a protocol for analyzing protein turnover rates in mouse tissues by comprehensive (15)N labeling. The procedure involves the complete isotopic labeling of blue green algae (Spirulina platensis) with (15)N and utilizing it as a source of dietary nitrogen for mice. We outline a detailed protocol for in-house production of (15)N-labeled algae, labeling of mice, and analysis of isotope incorporation kinetics by mass spectrometry. The methodology can be adapted to analyze proteome dynamics in most murine tissues and may be particularly useful in the analysis of proteostatic disruptions in mouse models of disease. PMID:24791984

  16. Stereoselective synthesis of stable-isotope-labeled amino acids

    SciTech Connect

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  17. The Po river water from the Alps to the Adriatic Sea (Italy): new insights from geochemical and isotopic (δ(18)O-δD) data.

    PubMed

    Marchina, Chiara; Bianchini, Gianluca; Natali, Claudio; Pennisi, Maddalena; Colombani, Nicolò; Tassinari, Renzo; Knoeller, Kay

    2015-04-01

    Although the Po river is the most important fluvial system of Northern Italy, the systematic geochemical and isotopic investigations of its water are rare and were never reported for the whole basin. The present contribution aims to fill this knowledge gap, reporting a comprehensive data set including oxygen and hydrogen stable isotopes as well as major and trace element concentration of dissolved species for 54 Po river water samples, mainly collected in different hydrological conditions (peak discharge in April, drought in August) at increasing distance from the source, i.e., from the upper part of the catchment to the terminal (deltaic) part of the river at the confluence with the Adriatic Sea. The isotopic compositions demonstrate that the predominant part of the runoff derives from the Alpine sector of the catchment through important tributaries such as the Dora Baltea, Ticino, Adda, and Tanaro rivers, whereas the contribution from the Apennines tributaries is less important. The geochemical and isotopic compositions show that the Po river water attains a homogeneous composition at ca. 100 km from the source. The average composition is characterized by δ(18)O -9.8‰, δD -66.2‰, total dissolved solid (TDS) 268 mg/L, and chloride 17 mg/L and by a general Ca-HCO3 hydrochemical facies, which is maintained for most of the river stream, only varying in the terminal part where the river is diverted in a complex deltaic system affected by more significant evaporation and mixing with saline water evidenced by higher TDS and chloride content (up to 8198 and 4197 mg/L, respectively). Geochemical and isotopic maps have been drawn to visualize spatial gradients, which reflect the evolution of the river water composition at progressive distance from the source; more detailed maps were focused on the deltaic part in order to visualize the processes occurring in the transitional zone toward the Adriatic Sea. The data also highlight anthropogenic contributions, mainly

  18. An isotope (18O, 15N, and 2H) technique to investigate the metal ion interactions between the phosphoryl group and amino acid side chains by electrospray ionization mass spectrometry.

    PubMed

    Gao, Xiang; Hu, Xiaomei; Zhu, Jun; Zeng, Zhiping; Han, Daxiong; Tang, Guo; Huang, Xiantong; Xu, Pengxiang; Zhao, Yufen

    2011-04-01

    Cationic metal ion-coordinated N-diisopropyloxyphosphoryl dipeptides (DIPP-dipeptides) were analyzed by electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)). Two novel rearrangement reactions with hydroxyl oxygen or carbonyl oxygen migrations were observed in ESI-MS/MS of the metallic adducts of DIPP-dipeptides, but not for the corresponding protonated DIPP-dipeptides. The possible oxygen migration mechanisms were elucidated through a combination of MS/MS experiments, isotope ((18)O, (15)N, and (2)H) labeling, accurate mass measurements, and density functional theory (DFT) calculations at the B3LYP/6-31 G(d) level. It was found that lithium and sodium cations catalyze the carbonyl oxygen migration more efficiently than does potassium and participation through a cyclic phosphoryl intermediate. In addition, dipeptides having a C-terminal hydroxyl or aromatic amino acid residue show a more favorable rearrangement through carbonyl oxygen migration, which may be due to metal cation stabilization by the donation of lone pair of the hydroxyl oxygen or aromatic π-electrons of the C-terminal amino acid residue, respectively. It was further shown that the metal ions, namely lithium, sodium, and potassium cations, could play a novel directing role for the migration of hydroxyl or carbonyl oxygen in the gas phase. This discovery suggests that interactions between phosphorylated biomolecules and proteins might involve the assistance of metal ions to coordinate the phosphoryl oxygen and protein side chains to achieve molecular recognition.

  19. Online Determination of 18O Fractionation Between CO2 and Soil-Water during Soil Dessication by a Novel Mid-Infrared CO2 Isotope Analyzer Coupled to an Dynamic Chamber Incubation System

    NASA Astrophysics Data System (ADS)

    Nowak, A.

    2015-12-01

    The stable oxygen isotope composition of CO2 is an important tracer for quantifying gas interactions between soils and atmosphere. Soils impact atmospheric 18O-CO2 signatures by CO2-H2O equilibration during diffusion of CO2 through the soil column. However, recent research has revealed that also catalytic reactions by carbonic anhydrase, an enzyme used by microorganisms for triggering the conversion of CO2 and water to bicarbonate and protons, is an important factor influencing the oxygen isotopic signature of CO2. In order to study the importance of biotic and abiotic factors for 18O-CO2, we used a novel mid infrared 18O/13C-CO2 analyser coupled to a dynamic chamber system, which allowed us to measure online 18O and 13C of a continuous CO2 stream percolating through soil samples while drying out from fully water saturated to air dry. Our results indicate that changes in CO2- 18O signatures peak at certain soil moistures levels, which is most probably catalysed by the activity of certain microbial groups under optimum growth conditions. More analyses with different soil types and depths, combined with molecular analyses are planned in order to understand the importance of microbial processes and dynamics for influencing soil-CO2 interactions.

  20. [Progress in stable isotope labeled quantitative proteomics methods].

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  1. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    PubMed

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J

    2016-02-01

    Determination of the (182)W/(184)W ratio to a precision of ± 5 ppm (2σ) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2σ, 1-3 μg loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2σm) for loads between 3000 and 50 ng.

  2. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Liuzhu; Ma, Teng; Du, Yao; Xiao, Cong; Chen, Xinming; Liu, Cunfu; Wang, Yanxin

    2016-05-01

    Geothermal energy is abundant in Guangdong Province of China, however, majority of it is still unexploited. To take full advantage of this energy, it is essential to know the information of geothermal system. Here, physical parameters such as pH and temperature, major ion (Na+, Ca2 +, Mg2 +, Cl-, SO42 - and HCO3-), trace elements (Br-, Sr2 +, Li+ and B3 +) and stable isotopes (2H, 18O and 37Cl) in geothermal water, non-geothermal water (river water, cold groundwater) and seawater were used to identify the origin and evolution of geothermal water in coastal plain of Southwest of Guangdong. Two separate groups of geothermal water have been identified in study area. Group A, located in inland of study area, is characterized by Na+ and HCO3-. Group B, located in coastal area, is characterized by Na+ and Cl-. The relationships of components vs. Cl for different water samples clearly suggest the hydrochemical differences caused by mixing with seawater and water-rock interactions. It's evident that water-rock interactions under high temperature make a significant contribution to hydrochemistry of geothermal water for both Group A and Group B. Besides, seawater also plays an important role during geothermal water evolution for Group B. Mixing ratios of seawater with geothermal water for Group B are calculated by Cl and Br binary diagram, the estimated results show that about < 1% to < 35% of seawater has mixed into geothermal water, and seawater might get into the geothermal system by deep faults. Molar Na/Cl ratios also support these two processes. Geothermal and non-geothermal water samples plot around GMWL in the δ2H vs. δ18O diagram, indicating that these samples have a predominant origin from meteoric water. Most of geothermal water samples display δ37Cl values between those of the non-geothermal water and seawater samples, further reveals three sources of elements supply for geothermal water, including atmospheric deposition, bedrocks and seawater, which show a

  3. Clumped Isotopes, trace elements, and δ18O of stromatolites from the Laney Member of the Green River Formation (Eocene): Implications for paleoenvironments during the Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Corsetti, F. A.; Miller, H. M.; Asangba, A. E.; Johannessen, K. C.; Wang, D. T.; Petryshyn, V. A.; Tripati, A.; Shapiro, R. S.

    2013-12-01

    The Green River Formation, a large lacustrine deposit located across parts of Utah, Colorado, and Wyoming, was deposited during the Eocene Climatic Optimum (~50 Ma), a period of sustained high temperatures and high atmospheric CO2 levels that may provide a geologic analog for future climate scenarios. Large variations in basin hydrology, water chemistry, and paleotemperatures occurring on time scales of tens of thousands of years or longer have been documented in the sedimentary record. Here, we use stromatolites to investigate much finer-scale resolution of paleoenvironmental changes in the Green River Formation and paleo-Lake Gosiute. We studied the lower LaClede Bed, the base of the Laney Member of the Green River Formation, comprised of cyclic layers of oil shale and carbonate. The lower LaClede Bed represents the filling of the lake following an extended period of closure during deposition of the underlying Wilkins Peak Member. To characterize fluctuations in water chemistry and lake level at greater temporal resolution, we conducted micro-stratigraphic and chemostratigraphic analyses on 24 distinct mm-scale laminae in a single 10 cm carbonate stromatolite bed, including δ13C, δ18O, and trace elemental analyses (Mg, Mn, Fe, Si, K, Na, Al, Sr). Sub-cm-scale correlations between petrographic analyses, elemental composition, and carbonate δ13C and δ18O suggest that this stromatolite records both hydrologically-closed and -open periods in the history of Lake Gosiute. During periods of apparent basin closure, we used two models to investigate lake volume change: 1) a Rayleigh distillation model of water evaporation to estimate lake depth variations and 2) a conservative ion model based on Na incorporation into the stromatolites. In both models, lake depth fluctuated by up to 8 m; this represents up to 40km of shoreline change in Lake Gosiute during the deposition of this stromatolite layer. Interestingly, the modern Great Salt Lake experienced similar

  4. Interpreting δD and δ18O isotopic signals of ambient water vapor in PNW coniferous forest using a high frequency CRDS analyzer

    NASA Astrophysics Data System (ADS)

    Allen, S. T.; Bond, B. J.; McDonnell, J. J.; Brooks, J. R.; Thomas, C. K.

    2010-12-01

    Wavelength-Scanned Cavity Ring-Down Spectroscopy provides real-time simultaneous measurement of stable isotopologues of water vapor in natural environments. Continuous, high-frequency sampling provides a new and exciting look at water cycle processes and creates many new possibilities for studying the vapor phase of the hydrologic cycle. However, as with any new tool, the first challenge is to understand the sources of variability in the signal. This includes disentangling potential instrument variability from environmental variability as well as the identification and quantification of environmental end members. We deployed a Picarro L-1102 Liquid / Vapor analyzer at the mouth of a small watershed in the H.J. Andrews Experimental Forest located in the West-Central Oregon Cascades range in November, 2009. The steeply-sloped watershed is covered by a closed-canopied, young-mature Douglas fir forest; it has been used for many previous ecological, hydrological, and meteorological studies. The data reveal very high diel variability in δD in and δ18O as well as δD to δ18O ratios and a strong deviation from the global meteoric water line. A hysteresis effect differs dramatically from one day to the next and confounds apparent trends. To interpret these results, we are conducting controlled tests of instrument performance and we propose a plan to partition individual vapor source contributions. Application of this vapor signature to ecological or hydrological studies requires knowledge of individual end-member contributions to the isotope measurements. We hypothesize that by determining end-member fluxes and in-situ fractionation factors paired with micrometeorological data, we can better understand processes driving these patterns. Combined with meteorological tower data, high frequency data allows the possibility of scaling up from continuous point measurements to ecosystem-scale processes. Previous studies in this watershed have demonstrated the ability to estimate

  5. Oxygen isotopes in synthetic goethite and a model for the apparent pH dependence of goethite-water 18O/ 16O fractionation

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton J.

    2007-03-01

    Goethite synthesis experiments indicate that, in addition to temperature, pH can affect the measured value of the 18O/ 16O fractionation factor between goethite and water ( αG-W). A simple model was developed which expresses αG-W in terms of kinetic parameters associated with the growth of goethite from aqueous solution. The model predicts that, at a particular temperature, the range of pH over which αG-W changes as pH changes is expected to be comparatively small (˜3 pH "units") relative to the range of pH values over which goethite can crystallize (pH from ˜1 to 14). Outside the range of sensitivity to pH, αG-W is predicted to be effectively constant (for constant temperature) at either a low-pH αG-W value or a high-pH αG-W value. It also indicates that the values of αG-W at high pH will be disequilibrium values. Values of αG-W for goethite crystallized at low pH may approach, but probably do not attain, equilibrium values. For goethite synthesized at values of pH from ˜1 to 2, data from two different laboratories define the following equation for the temperature dependence of 1000 ln αG-W ( T in degrees Kelvin) 1000lnα={1.66×106}/{T2}-12.6 Over the range of temperatures from 0 to 120°C, values of 1000 ln αG-W from Eq. (IV) differ by ⩽0.1‰from those of a published equation [Yapp C.J., 1990. Oxygen isotopes in iron (III) oxides. 1. Mineral-water fractionation factors. Chem. Geol.85, 329-335]. Therefore, interpretations of data from natural goethites using the older equation are not changed by use of Eq. (IV). Data from a synthetic goethite suggest that the temperature dependence of 1000 ln αG-W at low pH as expressed in Eq. (IV) may be valid for values of pH up to at least 6. This result and the model prediction of an insensitivity of αG-W to pH over a larger range of pH values could explain the observation that Eq. (IV) yields values of αG-W which mimic most 18O/ 16O fractionations measured to date in natural goethites.

  6. A new mechanistic model of δ18O-N2O formation by denitrification

    NASA Astrophysics Data System (ADS)

    Snider, David M.; Venkiteswaran, Jason J.; Schiff, Sherry L.; Spoelstra, John

    2013-07-01

    Anaerobic incubations of flooded and non-flooded agricultural soils and stream sediment were conducted with 18O-labelled water to investigate the stable isotope ratios (δ15N and δ18O) of nitrous oxide (N2O) produced from denitrification. The rates of N2O production and δ15N- and δ18O-N2O values were measured. The amount of oxygen exchange (O-exchange) with water, and the nitrogen and oxygen isotope effects (ɛ) were calculated. The net 15N isotope effect (NO3- → N2O) for denitrification in this study varied from -30‰ to -9‰. The net 18O isotope effect ranged between +32‰ and +60‰ and was negatively correlated to the total fraction of O-exchange, which varied between 0.40 and 0.94. This manuscript describes a new, comprehensive set of mathematical expressions that can be used to model δ18O values of N2O formed by denitrification and calculate the magnitude of O-exchange and the net 18O isotope effect for denitrification. This mathematical approach is compared to another method of approximating O-exchange (Snider et al., 2009), and we show that this older method provides a minimum estimate of O-exchange. Using this mechanistic model, we discuss how N2O consumption, open/closed systems, and variations in the N2O:N2 ratio can influence the observed δ18O-N2O. The net 18O isotope effect for denitrification in this study was partially controlled by the fractions of O-exchange and N2O reduction, which were likely influenced by the actively denitrifying microbial community and the soil moisture. We conclude that δ18O-N2O values are, in many cases, useful tracers of N2O production because they are often higher than the majority of nitrification-derived δ18O-N2O values. The usefulness of δ18O values to apportion sources must be determined on a case-by-case basis.

  7. Temporal variation of oxygen isotope ratios (δ18O) in drinking water: implications for specifying location of origin with human scalp hair.

    PubMed

    Kennedy, Casey D; Bowen, Gabriel J; Ehleringer, James R

    2011-05-20

    Previous work suggests that δ(18)O values of human hair can be used to constrain the region-of-origin of unknown individuals, but robust assessments of uncertainties in this method are lacking. Here we assess one source of uncertainty - temporal variation in the δ(18)O value of drinking water - using a monthly tap water survey of δ(18)O to develop geospatial models (i.e., maps) of the intra-annual variation (seasonality) in tap water δ(18)O for the contiguous USA. Temporal variation in tap water δ(18)O was correlated with water-supply type, and was related to geographic patterns of precipitation δ(18)O seasonality and water residence time. The maps were applied in a Bayesian framework to identify the geographic origin of an unidentified woman found in Utah, based on measured δ(18)O of scalp hair. The results are robust in specifying parts of the western USA as the most likely region-of-origin. Incorporation of tap water δ(18)O seasonality in the analysis reduces the precision of geographic assignments, but other sources of uncertainty (e.g., spatial interpolation uncertainty) have an equal or larger effect.

  8. Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted 31P NMR and mass spectrometry

    PubMed Central

    Nemutlu, Emirhan; Zhang, Song; Gupta, Anu; Juranic, Nenad O.; Macura, Slobodan I.; Terzic, Andre; Jahangir, Arshad

    2012-01-01

    Next-generation screening of disease-related metabolomic phenotypes requires monitoring of both metabolite levels and turnover rates. Stable isotope 18O-assisted 31P nuclear magnetic resonance (NMR) and mass spectrometry uniquely allows simultaneous measurement of phosphometabolite levels and turnover rates in tissue and blood samples. The 18O labeling procedure is based on the incorporation of one 18O into Pi from [18O]H2O with each act of ATP hydrolysis and the distribution of 18O-labeled phosphoryls among phosphate-carrying molecules. This enables simultaneous recording of ATP synthesis and utilization, phosphotransfer fluxes through adenylate kinase, creatine kinase, and glycolytic pathways, as well as mitochondrial substrate shuttle, urea and Krebs cycle activity, glycogen turnover, and intracellular energetic communication. Application of expanded 18O-labeling procedures has revealed significant differences in the dynamics of G-6-P[18O] (glycolysis), G-3-P[18O] (substrate shuttle), and G-1-P[18O] (glycogenolysis) between human and rat atrial myocardium. In human atria, the turnover of G-3-P[18O], which defects are associated with the sudden death syndrome, was significantly higher indicating a greater importance of substrate shuttling to mitochondria. Phosphometabolomic profiling of transgenic hearts deficient in adenylate kinase (AK1−/−), which altered levels and mutations are associated to human diseases, revealed a stress-induced shift in metabolomic profile with increased CrP[18O] and decreased G-1-P[18O] metabolic dynamics. The metabolomic profile of creatine kinase M-CK/ScCKmit−/−-deficient hearts is characterized by a higher G-6-[18O]P turnover rate, G-6-P levels, glycolytic capacity, γ/β-phosphoryl of GTP[18O] turnover, as well as β-[18O]ATP and β-[18O]ADP turnover, indicating altered glycolytic, guanine nucleotide, and adenylate kinase metabolic flux. Thus, 18O-assisted gas chromatography-mass spectrometry and 31P NMR provide a suitable

  9. Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin.

    PubMed

    Mandal, Kalyaneswar; Dhayalan, Balamurugan; Avital-Shmilovici, Michal; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    As a part of a program aimed towards the study of the dynamics of human insulin-protein dimer formation using two-dimensional infrared spectroscopy, we used total chemical synthesis to prepare stable isotope labeled [(1-(13) C=(18) O)Phe(B24) )] human insulin, via [(1-(13) C=(18) O)Phe(B24) )] ester insulin as a key intermediate product that facilitates folding of the synthetic protein molecule (see preceding article). Here, we describe the crystal structure of the synthetic isotope-labeled ester insulin intermediate and the product synthetic human insulin. Additionally, we present our observations on hexamer formation with these two proteins in the absence of phenol derivatives and/or Zn metal ions. We also describe and discuss the fractional crystallization of quasi-racemic protein mixtures containing each of these two synthetic proteins.

  10. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as (13)C with (15)N, (18)O or (2)H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation(1-4). From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage(5-7). The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing (13)C and (15)N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous (13)C and (15)N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%(13)C and 6.7 atom%(15)N uniform plant label, or material that is differentially labeled by up to 1.29 atom%(13)C and 0.56 atom%(15)N in its metabolic and structural components (hot water extractable and hot water

  11. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  12. Selected scientific topics of the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds.

    PubMed

    Atzrodt, Jens; Derdau, Volker

    2013-01-01

    This micro-review describes hot topics and new trends in isotope science discussed at the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds from a personal perspective.

  13. Stable isotopes18O and δ 13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Correa, Matthias López; Montagna, Paolo; Vendrell-Simón, Begoña; McCulloch, Malcolm; Taviani, Marco

    2010-03-01

    The aragonitic skeletons of bathyal cold-water corals have a high potential as geochemical in situ archives for paleoceanography. Oxygen isotopes and stable carbon isotopes18O and δ 13C) have been analyzed, as well as trace and minor element compositions (e.g. Mg/Ca, Sr/Ca, U/Ca, B/Ca and P/Ca) in Lophelia pertusa, one of the most important frame-builders at the Santa Maria di Leuca (SML) deep-water coral hotspot in the Central Mediterranean. The Apulian Bank is swept by strong currents of the Adriatic Deep Water Outflow. The temperature of 13.9 °C is the highest temperature recorded for L. pertusa and provides an important end-member of environmental conditions for geochemical analyses on living Atlantic and Mediterranean cold-water corals. Temperature and salinity (38.77 PSU) are stable throughout the year, and thus virtually no changes should be observed in the stable oxygen isotope signal—if the coral precipitates its skeleton in equilibrium with seawater. We measured various marine properties, such as the seawater oxygen isotope composition (δ 18O sw), stable carbon isotope composition (δ 13C DIC) of dissolved inorganic carbon (DIC), and dissolved inorganic nutrient concentrations (PO 4, NO 3, NO 2, NH 3 and SiO 2). Bottom water at the coral sites shows a mean oxygen isotope composition of 1.47‰ δ 18O sw-VSMOW, and δ 13C DIC showed a mean of 1.1‰ VPDB. A section of a living L. pertusa with a thick theca calcification was probed with a Merchantek MicroMill at a high spatial sampling resolution with 10 samples per 1 mm. This reduced the signal-smoothing inherent to conventional sampling. The δ 18O ag of coral aragonite ranges between -2.0‰ and +2.8‰ VPDB and the δ 13C ag ranges between -7.77‰ and +1.47‰ VPDB. The Gaussian data distribution for both parameters, including heavy equilibrium values, suggests the completeness of the captured isotopic variability. The strict linear correlation of δ 13C and δ 18O displays a strong 'kinetic

  14. Possible non-equilibrium oxygen isotope effects in mantle nodules, an alternative to the Kyser-O'Neil-Carmichael18O/16O geothermometer

    NASA Astrophysics Data System (ADS)

    Gregory, Robert T.; Taylor, Hugh P.; Kyser, T. Kurtis; O'Neil, James R.; Carmichael, Ian S. E.

    1986-03-01

    Kyser, O'Neil, and Carmichael (1981, 1982) measured the δ 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Using Ca-Mg-Fe element-partition geothermometric data, they proposed an empirical18O/16O geothermometer: T(°C)=1,151-173 Δ-68 Δ 2, where Δ is the per mil pyroxene-olivine fractionation. However, this geothermometer has an unusual “crossover” at 1,150 °C, and in contrast to what might be expected during closed-system equilibrium exchange, the most abundant mineral in the nodules (olivine) shows a much greater range in δ 18O (+4.4 to +7.5) than the much less abundant pyroxene (all 50 pyroxene analyses from spinel peridotites lie within the interval +5.3 to +6.5). On δ 18O-olivine vs. δ 18O-pyroxene diagrams, the mantle nodules exhibit data arrays that cut across the Δ 18O=zero line. These arrays strongly resemble the non-equilibrium quartzfeldspar and feldspar-pyroxene δ 18O arrays that we now know are diagnostic of hydrothermally altered plutonic igneous rocks. Thus, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena, casting doubt on their empirical geothermometer. The peridotite nodules appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2, magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels, in agreement with available exchange-rate and diffusion measurements on these minerals. This accounts for the correlation between Δ 18O pyroxene-olivine and the whole-rock δ 18O of the peridotites, which is a major difficulty with the equilibrium interpretation.

  15. Effective isotope labeling of proteins in a mammalian expression system.

    PubMed

    Sastry, Mallika; Bewley, Carole A; Kwong, Peter D

    2015-01-01

    Isotope labeling of biologically interesting proteins is a prerequisite for structural and dynamics studies by NMR spectroscopy. Many of these proteins require mammalian cofactors, chaperons, or posttranslational modifications such as myristoylation, glypiation, disulfide bond formation, or N- or O-linked glycosylation; and mammalian cells have the necessary machinery to produce them in their functional forms. Here, we describe recent advances in mammalian expression, including an efficient adenoviral vector-based system, for the production of isotopically labeled proteins. This system enables expression of mammalian proteins and their complexes, including proteins that require posttranslational modifications. We describe a roadmap to produce isotopically labeled (15)N and (13)C posttranslationally modified proteins, such as the outer domain of HIV-1 gp120, which has four disulfide bonds and 15 potential sites of N-linked glycosylation. These methods should allow NMR spectroscopic analysis of the structure and function of posttranslationally modified and secreted, cytoplasmic, or membrane-bound proteins.

  16. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    DOEpatents

    Hooker, Jacob Matthew; Schonberger, Matthias; Schieferstein, Hanno; Fowler, Joanna S.

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  17. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = < 30 (MDL) to 740 μg/L, I = 1 to 538 μg/L). The Cl/Br molar ratios were higher (171 to 574) at the recharge wetland, indicating meteoric sources, and had a tighter and lower range (33 to 320) at the down-gradient sites. The Cl/I molar ratios of waters throughout the site had a wide range (32 to 26,000). Lowest values occurred at the upgradient shore of P1 (32 to 43) due to low Cl concentrations and the center of P1 (196 to 213) where pore water of weathered till underlying 1.2 m of organic-rich sediment and silty clay soil is enriched in I to ~500 µg/L. Stable isotopes of water showed that evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  18. Accurate determination of protein methionine oxidation by stable isotope labeling and LC-MS analysis.

    PubMed

    Liu, Hongcheng; Ponniah, Gomathinayagam; Neill, Alyssa; Patel, Rekha; Andrien, Bruce

    2013-12-17

    Methionine (Met) oxidation is a major modification of proteins, which converts Met to Met sulfoxide as the common product. It is challenging to determine the level of Met sulfoxide, because it can be generated during sample preparation and analysis as an artifact. To determine the level of Met sulfoxide in proteins accurately, an isotope labeling and LC-MS peptide mapping method was developed. Met residues in proteins were fully oxidized using hydrogen peroxide enriched with (18)O atoms before sample preparation. Therefore, it was impossible to generate Met sulfoxide as an artifact during sample preparation. The molecular weight difference of 2 Da between Met sulfoxide with the (16)O atom and Met sulfoxide with the (18)O atom was used to differentiate and calculate the level of Met sulfoxide in the sample originally. Using a recombinant monoclonal antibody as a model protein, much lower levels of Met sulfoxide were detected for the two susceptible Met residues with this new method compared to a typical peptide mapping procedure. The results demonstrated efficient elimination of the analytical artifact during LC-MS peptide mapping for the measurement of Met sulfoxide. This method can thus be used when accurate determination of the level of Met sulfoxide is critical.

  19. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    PubMed Central

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-01-01

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated. PMID:24854363

  20. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard E.

    2012-10-01

    Interpretations of the primary paleoceanographic information recorded in stable oxygen isotope values (δ18O) of biogenic CaCO3 can be obscured by disequilibrium effects. CaCO3 is often depleted in 18O relative to the δ18O values expected for precipitation in thermodynamic equilibrium with ambient seawater as a result of vital effects. Vital effects in δ18O have been explained in terms of the influence of fluid pH on the overall δ18O of the sum of dissolved inorganic carbon (DIC) species (often referred to as "pH model") and in terms of 18O depletion as a result of the kinetic effects associated with CO2 hydration (CO2 + H2O ↔ H2CO3 ↔ HCO3- + H+) and CO2 hydroxylation (CO2 + OH- ↔ HCO3-) in the calcification sites (so-called "kinetic model"). This study addresses the potential role of an enzyme, carbonic anhydrase (CA), that catalyzes inter-conversion of CO2 and HCO3- in relation to the underlying mechanism of vital effects. We performed quantitative inorganic carbonate precipitation experiments in order to examine the changes in 18O equilibration rate as a function of CA concentration. Experiments were performed at pH 8.3 and 8.9. These pH values are comparable to the average surface ocean pH and elevated pH levels observed in the calcification sites of some coral and foraminiferal species, respectively. The rate of uncatalyzed 18O exchange in the CO2-H2O system is governed by the pH-dependent DIC speciation and the kinetic rate constant for CO2 hydration and hydroxylation, which can be summarized by a simple mathematical expression. The results from control experiments (no CA addition) are in agreement with this expression. The results from control experiments also suggest that the most recently published kinetic rate constant for CO2 hydroxylation has been overestimated. When CA is present, the 18O equilibration process is greatly enhanced at both pH levels due to the catalysis of CO2 hydration by the enzyme. For example, the time required for 18O

  1. The non-statistical dynamics of the {sup 18}O + {sup 32}O{sub 2} isotope exchange reaction at two energies

    SciTech Connect

    Van Wyngarden, Annalise L.; Mar, Kathleen A.; Wiegel, Aaron A.; Quach, Jim; Nguyen, Anh P. Q.; Lin, Shi-Ying; Lendvay, Gyorgy; Guo, Hua; Lin, Jim J.; Lee, Yuan T.; Boering, Kristie A.

    2014-08-14

    The dynamics of the {sup 18}O({sup 3}P) + {sup 32}O{sub 2} isotope exchange reaction were studied using crossed atomic and molecular beams at collision energies (E{sub coll}) of 5.7 and 7.3 kcal/mol, and experimental results were compared with quantum statistical (QS) and quasi-classical trajectory (QCT) calculations on the O{sub 3}(X{sup 1}A’) potential energy surface (PES) of Babikov et al. [D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lesard, and R. Schinke, J. Chem. Phys. 118, 6298 (2003)]. In both QS and QCT calculations, agreement with experiment was markedly improved by performing calculations with the experimental distribution of collision energies instead of fixed at the average collision energy. At both collision energies, the scattering displayed a forward bias, with a smaller bias at the lower E{sub coll}. Comparisons with the QS calculations suggest that {sup 34}O{sub 2} is produced with a non-statistical rovibrational distribution that is hotter than predicted, and the discrepancy is larger at the lower E{sub coll}. If this underprediction of rovibrational excitation by the QS method is not due to PES errors and/or to non-adiabatic effects not included in the calculations, then this collision energy dependence is opposite to what might be expected based on collision complex lifetime arguments and opposite to that measured for the forward bias. While the QCT calculations captured the experimental product vibrational energy distribution better than the QS method, the QCT results underpredicted rotationally excited products, overpredicted forward-bias and predicted a trend in the strength of forward-bias with collision energy opposite to that measured, indicating that it does not completely capture the dynamic behavior measured in the experiment. Thus, these results further underscore the need for improvement in theoretical treatments of dynamics on the O{sub 3}(X{sup 1}A’) PES and perhaps of the PES itself in order to better

  2. Complete Measurement of Stable Isotopes in N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O) Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Gupta, M.

    2014-12-01

    Nitrate contamination in water is a worldwide environmental problem and source apportionment is critical to managing nitrate pollution. Fractionation caused by physical, chemical and biological processes alters the isotope ratios of nitrates (15N/14N, 18O/16O and 17O/16O) and biochemical nitrification and denitrification impart different intramolecular site preference (15N14NO vs. 14N15NO). Additionally, atmospheric nitrate is anomalously enriched in 17O compared to other nitrate sources. The anomaly (Δ17O) is conserved during fractionation processes, providing a tracer of atmospheric nitrate. All of these effects can be used to apportion nitrate in soil. Current technology for measuring nitrate isotopes is complicated and costly - it involves conversion of nitrate to nitrous oxide (N2O), purification, preconcentration and measurement by isotope ratio mass spectrometer (IRMS). Site specific measurements require a custom IRMS. There is a pressing need to make this measurement simpler and more accessible. Los Gatos Research has developed a next generation mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to quantify all stable isotope ratios of N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O). We present the latest performance data demonstrating the precision and accuracy of the OA-ICOS based measurement. At an N2O concentration of 322 ppb, the analyzer quantifies [N2O], δ15N, δ15Na, δ15Nb, and δ18O with a precision of ±0.05 ppb, ±0.4 ‰, ±0.45 ‰, and ±0.6 ‰, and ±0.8 ‰ respectively (1σ, 100s; 1σ, 1000s for δ18O). Measurements of gas standards demonstrate accuracy better than ±1 ‰ for isotope ratios over a wide dynamic range (200 - 100,000 ppb). The measurement of δ17O requires a higher concentration (1 - 50 ppm), easily obtainable through conversion of nitrates in water. For 10 ppm of N2O, the instrument achieves a δ17O precision of ±0.05 ‰ (1σ, 1000s). This performance is sufficient to quantify atmospheric

  3. Heavy isotope production by multinucleon transfer reactions with /sup 254/Es. [101 MeV /sup 16/O, 98 MeV /sup 18/O, 127 MeV /sup 22/Ne

    SciTech Connect

    Schaedel, M.; Bruechle, W.; Bruegger, M.; Gaeggeler, H.; Moody, K.J.; Schardt, D.; Suemmerer, K.; Hulet, E.K.; Douran, A.D.; Dougan, R.J.

    1985-01-01

    Fast automated on-line and quasi-on-line radiochemical techniques were applied to search for new isotopes, to measure their decay characteristics, and to study the cross sections of the heaviest, most neutron-rich actinide isotopes in reactions of /sup 16,18/O and /sup 22/Ne projectiles with /sup 254/Es as a target. The measured yields for isotopes up to Lr-260 are three or more orders of magnitude higher than in any other reaction used so far. A comparison with data for similar transfers from /sup 248/Cm targets is made. Transfer cross sections are extrapolated for the production of unknown, neutron-rich isotopes of elements 101 through 105, and the unique potential of /sup 254/Es as a target to make these exoctic nuclei accessible is demonstrated. 18 refs., 2 figs., 1 tab.

  4. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite

    USGS Publications Warehouse

    Revesz, Kinga M.; Landwehr, Jurate M.

    2002-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 ± 20 µg) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 °C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was ≤0.1 and ≤0.2 per mill or ‰, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for δ18O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows

  5. Radiogenic and stable isotopes of mid-Miocene silicic volcanism in eastern Oregon: Evidence for variable and high Sr / low δ18O domains west of the terrane-cratonic lithosphere transition

    NASA Astrophysics Data System (ADS)

    Jenkins, E. N.; Streck, M. J.; Ramos, F. C.; Bindeman, I. N.

    2013-12-01

    Widespread mid-Miocene rhyolite volcanism of eastern Oregon mostly coeval with flood basalts of the Columbia River Basalt Province allows for mapping crustal domains using radiogenic and stable isotopes. Rhyolites are thought to be derived in large part by partial melting of the crust and thus yield direct information on the composition of the crust. Silicic volcanism is expressed in the form of numerous domes and tuffs exposed over a wide area (~300 km in N-S dimension and ~100 km in E-W dimension) west of the craton boundary, which runs parallel but mostly east of the Oregon-Idaho state border as delineated by geophysical characteristics and isotopic transitions. Here, we mainly focus on initial 87Sr/86Sr ratios and δ18O obtained from mid-Miocene silicic volcanic centers in eastern Oregon. Our data, in combination with data from the literature, indicate variable 87Sr/86Sr mostly along longitudinal sections, yet more similar ratios in latitudinal directions. Except for rare examples on the west side, dispersion of 87Sr/86Sr ratios among both silicic and basaltic rocks occurs eastward of 118.6°W. For example, rhyolites in the Owyhee region between 117.10°W and 117.25°W retain 87Sr/86Sr ratios ranging from 0.70413 to 0.70566. The most radiogenic Sri ratio of 0.70787 in our study is obtained on a plagioclase separate from Buchanan Dome complex located near the western boundary of our study area. Feldspar separates and fresh groundmass of samples from adjacent centers yield similar 87Sr/86Sr ratios. δ18O values for feldspars range from below 2‰ to above 9‰. In addition, there is a crude trend of rhyolites having lower δ18O and more radiogenic 87Sr/86Sr ratios. With one exception, all samples with 87Sr/86Sr above 0.7050 are depleted in 18O18O <5.5‰), while rhyolites with 87Sr/86Sr below 0.7045 are enriched in 18O18O >6‰). The most depleted oxygen ratios (<2‰) come from rhyolites ~80 km west of the cratonic margin reflecting remelting or

  6. Stable Isotopes18O and δ2H) Help to Delineate Flow Paths and the Importance of Different Climate Patterns in Watersheds of the Luquillo Mountains, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Shanley, J. B.; Scatena, F. N.

    2009-12-01

    Precipitation isotopic signatures can help determine the relative importance of different rainfall regimes in the interactions between water, soils, and ecosystems in watersheds. The tropical forest in the Luquillo Mountains of Puerto Rico can receive over 5000 mm of precipitation per year. Recent modeling studies indicate that global climate change or local land use changes may lead to a decline in precipitation amounts. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade-wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems, with the remainder from fronts, troughs, and isolated thunderstorms. Trade-wind orographic precipitation usually occurs as frequent, low-intensity and low-volume rain events, whereas easterly waves and low-pressure systems have higher volume and more intense rainfall. To help determine the importance of different precipitation types in the forest water cycle, monthly precipitation samples from a network of rain and cloud water collectors and stream samples from two watersheds were collected and analyzed for δ18O and δ2H. Weekly throughfall and rain samples were also collected at one site during five periods of different rainfall intensity to determine whether isotopic fractionation occurs when rain falls through the forest canopy. Seasonal rainfall sources have distinct isotopic signatures, partly due to differences in cloud height associated with the seasonal climate patterns. Monthly precipitation samples during the dry season had average isotopic values of -1.5‰ δ18O and +2.3‰ δ2H, associated with the weather pattern of trade-wind showers and fronts. Rainy season precipitation, from easterly waves and low pressure systems, had average monthly values of -3.7‰ δ18O and -16‰ δ2H. Precipitation during months with significant low pressure systems had average values of -5.9‰ δ18O and -36‰ δ2H. Isotopic composition of stream water at higher

  7. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, Carol; Paytan, Adina

    2009-01-01

    Nitrate (NO-3 concentrations and dual isotopic composition (??15N and ??18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO-3 within this California estuary. We found the isotopic composition of NO-3 was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end-member mixing model to calculate the relative contribution of these two NO-3 sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season when NO-3 concentrations were low. Although multiple linear regression generally yielded good fits to the observed data, deviations from conservative mixing were still evident. After consideration of potential alternative sources, we concluded that deviations from two end-member mixing were most likely derived from interactions with marsh sediments in regions of the Slough where high rates of NO-3 uptake and nitrification result in NO-3 with low ?? 15N and high ??18O values. A simple steady state dual isotope model is used to illustrate the impact of cycling processes in an estuarine setting which may play a primary role in controlling NO -3 isotopic composition when and where cycling rates and water residence times are high. This work expands our understanding of nitrogen and oxygen isotopes as biogeochemical tools for investigating NO -3 sources and cycling in estuaries, emphasizing the role that cycling processes may play in altering isotopic composition. Copyright 2009 by the American Geophysical Union.

  8. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Kendall, Carol; Paytan, Adina

    2009-03-01

    Nitrate (NO3-) concentrations and dual isotopic composition (δ15N and δ18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO3- within this California estuary. We found the isotopic composition of NO3- was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end-member mixing model to calculate the relative contribution of these two NO3- sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season when NO3- concentrations were low. Although multiple linear regression generally yielded good fits to the observed data, deviations from conservative mixing were still evident. After consideration of potential alternative sources, we concluded that deviations from two end-member mixing were most likely derived from interactions with marsh sediments in regions of the Slough where high rates of NO3- uptake and nitrification result in NO3- with low δ15N and high δ18O values. A simple steady state dual isotope model is used to illustrate the impact of cycling processes in an estuarine setting which may play a primary role in controlling NO3- isotopic composition when and where cycling rates and water residence times are high. This work expands our understanding of nitrogen and oxygen isotopes as biogeochemical tools for investigating NO3- sources and cycling in estuaries, emphasizing the role that cycling processes may play in altering isotopic composition.

  9. Adaptation of the doubly labeled water method for subjects consuming isotopically enriched water.

    PubMed

    Gretebeck, R J; Schoeller, D A; Socki, R A; Davis-Street, J; Gibson, E K; Schulz, L O; Lane, H W

    1997-02-01

    The use of doubly labeled water (DLW) to measure energy expenditure is subject to error if the background abundance of the oxygen and hydrogen isotope tracers changes during the test period. This study evaluated the accuracy and precision of different methods by which such background isotope changes can be corrected, including a modified method that allows prediction of the baseline that would be achieved if subjects were to consume water from a given source indefinitely. Subjects in this study were eight women (4 test subjects and 4 control subjects) who consumed for 28 days water enriched to resemble drinking water aboard the United States space shuttle. Test subjects and control subjects were given a DLW dose on days 1 and 15, respectively. The change to an enriched water source produced a bias in expenditure calculations that exceeded 2.9 MJ/day (35%), relative to calculations from intake-balance. The proposed correction based on the predicted final abundance of 18O and deuterium after equilibration to the new water source eliminated this bias, as did the traditional use of a control group. This new modified correction method is advantageous under field conditions when subject numbers are limited.

  10. The value of stable Isotope (18O) and electrical conductivity (EC) as tracers for submarine Groundwater exfiltration and density-driven flow infiltration into the aquifer.

    NASA Astrophysics Data System (ADS)

    Müller, Sascha; Engesgaard, Peter; Duque, Carlos; Jessen, Søren; Sonnenborg, Torben; Stau, Joakim; Neilson, Bethany

    2015-04-01

    Saltwater intrusion (SWI) into a freshwater aquifer is a dynamic process due to e.g. natural changes in sea levels (tides) and recharge. Coastal lagoons, on the other hand, are often controlled water bodies where the water level and salinity are managed by the operation of a sluice connecting the lagoon to the ocean. This study describes the seasonal dynamics of the saltwater/freshwater interface and submarine groundwater discharge (SGD) patterns at a coastal lagoon on the West coast of Denmark. Here the salinity of the lagoon is high in the summer period, where recharge is low (favoring SWI) and vice versa in the winter time. SGD was measured over four seasons in 2012 along two transects. 18O and electrical conductivity (EC) were measured at the same time to a depth of 3.5 m with a sample interval of 0.25 m. In September 2014 a transect with 12 piezometers (screening depth between 1.5 and 15 m below surface) and one profile well (with measurements every 1 m down to 15 m) was established across the saltwater/freshwater interface at one of the transects. 18O and EC were measured and each piezometer was equipped with a CTD-diver measuring pressure head, temperature, and EC in the period switching from summer to winter conditions. Although 18O and EC is relatively well correlated (correlation coefficient of 0.8) the use of both tracers are recommend for this type of environment. Salinity (or EC) in the lagoon changes seasonally, whereas 18O in both lagoon water and groundwater is relatively stable within each end- member, suggesting that 18O is the tracer to prefer. However, on the other hand EC is an easy and in-expensive (continuous) measurement allowing a much better resolution in both space and time. The combination of both tracers can improve the explanation of the origin of water with more certainty. Both tracers show a seasonal interplay between freshwater discharge into the lagoon and a density- driven recycling with opposing flow into the aquifer. 18O and EC

  11. Isotopic labeling for the understanding of the alteration of limestone used in built cultural heritage

    NASA Astrophysics Data System (ADS)

    Saheb, Mandana; Chabas, Anne; Mertz, Jean-Didier; Rozenbaum, Olivier; Verney-Carron, Aurélie

    2015-04-01

    This project belongs to a specific work aiming at developing isotopic tools to better understand the alteration of materials used in the built cultural heritage. It is focused on the study of the alteration of limestone used in the facades of historic buildings subject to atmospheric polluted environment. Actually in the elevated parts of the buildings, water as rainfall (runoff or wet deposition) or in vapor form (condensation or dry deposition) is the main agent of alteration. Thus, the rock/water interactions need to be well understood to propose adapted solution to better preserve the buildings. To identify the water transfer within the porous limestone and locate the reaction preferential sites, two isotopic tracers (D and 18O) are used to monitor the alteration solution (D) and locate the zones containing the secondary phases (18O). The Saint-Maximin limestone used in many monuments in the suburbs of Paris (France) as a building and restoration stone has been specifically studied. Pristine materials, stones from monuments (monuments in the Paris area) and samples altered in laboratory constitute the analytical corpus to compare different stages of alteration. In a first step the stones are characterized at different scales to identify the alteration pattern (SEM-EDS, Raman microspectrometry, XRD, rugosimetry) and study the water transfers (X-ray tomography, mercury porosimetry, imbibition kinetics). The samples are then altered in the laboratory by realistic and controlled wet or dry deposition using isotopically labeled solutions to locate the reaction zones by SIMS. The multiscale characterization of the alteration pattern has allowed proposing alteration mechanisms linked to the properties of the stones and their location inside the building. Moreover, the location of the reactive zones inside the materials determined by the isotopic experiments helps examining the role of the evolution of porosity and formation of alteration products within the material

  12. Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin.

    PubMed

    Sonar, S; Lee, C P; Coleman, M; Patel, N; Liu, X; Marti, T; Khorana, H G; RajBhandary, U L; Rothschild, K J

    1994-08-01

    Insight into integral membrane proteins function is presently limited by the difficulty of producing three-dimensional crystals. In addition, X-ray structures of proteins normally do not provide information about the protonation state and structural changes of individual residues. We report here the first use of site-directed isotope labelling and Fourier transform infrared (FTIR) difference spectroscopy to detect structural changes at the level of single residues in an integral membrane protein. Two site-directed isotope labeled (SDIL) tyrosine analogues of bacteriorhodopsin were produced which exhibit normal activity. FTIR spectroscopy shows that out of 11 tyrosines, only Tyr 185 is structurally active during the early photocycle and may be part of a proton wire.

  13. Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis.

    PubMed

    Allen, Doug K

    2016-02-01

    Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations and long metabolic steady states such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other metabolically more dynamic tissues such as leaves in greater detail using novel methods in mass spectrometry, isotope labeling strategies, and transient labeling-based flux analyses. Such studies are necessary for a systems level description of plant function that more closely represents biological reality, and provides insights into the genes that will need to be modified as natural resources become ever more limited and environments change. PMID:26613198

  14. Neutron capture radiography: a technique for isotopic labelling and analytical imaging with a few stable isotopes.

    PubMed

    Thellier, Michel; Ripoll, Camille

    2006-06-19

    NCR (neutron capture radiography) may be used successfully for the imaging of one of the stable isotopes of a few chemical elements (especially 6Li and 10B, possibly also 14N, 17O, and others) and for labelling experiments using these stable isotopes. Other physical techniques compete with NCR. However, NCR can remain extremely useful in a certain number of cases, because it is usually more easily done and is less expensive than the other techniques.

  15. The oxygen-hafnium isotope paradox in the early post Columbia River Basalt silicic volcanism: Evidence for complex batch assembly of upper crustal, lower crustal and low-δ18O silicic magmas

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Ellis, B. S.; Schmitt, A. K.; Fisher, C. M.; Vervoort, J. D.

    2013-12-01

    Eruptions of the Columbia River flood basalts were immediately followed by large eruptions of silicic magmas; some may have been coeval, others genetically-linked to the CRB. Among the most voluminous of these eruptions was the Jarbidge Rhyolite, which comprises ~500 km3 of lava erupted from 16.1-15.0 Ma in northern Nevada. Activity at Jarbidge was followed at 15.0 Ma by a series of rhyolitic ignimbrites and lavas in the J-P Desert of Idaho ~50 km NW of the Jarbidge Rhyolite center. To constrain magmatic origins and upper crustal magma storage conditions of these two silicic magmatic systems, we conducted bulk and high spatial resolution analysis of whole rocks and minerals (quartz, feldspar, and zircon). Bulk quartz and plagioclase δ18O values of the J-P Desert units are only moderately lower than mantle values, with δ18O-quartz of 5.0-5.5‰ and plagioclase δ18O of ~3.9-5.8‰, along with slightly unradiogenic Nd and Hf whole rock values (average ɛHf and ɛNd of -13.1 and -10.0, respectively), while quartz from the Jarbidge Rhyolite has normal δ18O (+8.4‰), but very unradiogenic ɛHf-ɛNd (ɛHf = -34.7, ɛNd = -24.0), fingerprinting Archean upper crust. SIMS analysis of J-P Desert zircons reveals considerably diverse δ18O values, ranging from -0.6‰ to +6.5‰ in a single unit. The same zircon spots yielded U-Pb SIMS ages which generally agree with the 40Ar/39Ar eruption ages, with no evidence of inheritance of pre-Miocene zircons. Combined with LA-MC-ICP-MS analysis of Hf isotopes overlapping the earlier SIMS spots, these zircons show a clear near-linear correlation between ɛHf and δ18O values observed in individual zircons. This relationship suggests variable mixing of two distinct silicic magmas prior to eruption of the J-P Desert rhyolites. One of these, characterized by extremely low ɛHf values and normal δ18O values, is likely a mantle magma strongly contaminated with shallow Archean crust, represented by the Jarbidge Rhyolite. The other is

  16. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  17. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event.

  18. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event. PMID:23588853

  19. A theoretical study of soft mode behavior and ferroelectric phase transition in 18O-isotope exchanged SrTiO3: evidence of phase coexistence at the quantum critical point

    NASA Astrophysics Data System (ADS)

    Mkam Tchouobiap, S. E.

    2014-02-01

    Motivated by recent experiments, the dynamics of the ferroelectric soft mode and the ferroelectric phase transition mechanism in 18O isotope exchanged systems SrTi(16O1-x18Ox)3 (abbreviated as STO18-x) are reinvestigated as a function of the 18O isotope exchange rate x, within a quasiharmonic model (QHM) for quantum ferroelectric modes in double-Morse local potential with mean-field approximation interactions between modes. The approach was realized within the framework of the variational principle method at finite temperature through the quantum mean-field approximation and by taking into account the effect of isotope replacement through the predominant mass effect, the cell volume effect, homogeneity of the composition throughout the material and the concentration-dependent ferroelectric mode distortion effect. The dynamics of the lowest-frequency soft phonon mode clearly presents an increased softening phenomenon with increasing x and a complete one at the corresponding phase transition temperature Tc, demonstrating the perfect soft-mode-type quantum ferroelectric phase transition for x ⩾ xc. Also, a ferroelectric-paraelectric phase coexistence state has been found near the quantum critical point xc and its origin is discussed. The ferroelectric phase transition mechanism is analyzed and its nature discussed, where a second-order phase transition close to the tricritical point is predicted. In addition, the effect of quantum fluctuations on the soft mode dynamics is discussed which reveals its reduction with increasing x and the crossover of the soft mode dynamics from the quantum to the classic one at the full 18O exchange limit x = 1, for which the origin seems to lie in the new homogeneity associated with the direct reduction of quantum fluctuations effects on the soft mode behavior. Within the QHM, consistent agreement with some of the previous experimental results and theoretical predictions of quantum ferroelectricity throughout the full range of x are

  20. Plan of study to determine if the isotopic ratios [delta]15 N and [delta]18 O can reveal the sources of nitrate discharged by the Mississippi River into the Gulf of Mexico

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Goolsby, Donald A.; Boyer, Laurie L.

    1997-01-01

    Nitrate and other nutrients discharged from the Mississippi River basin are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse effect on aquatic life and commercial fisheries. Commercial fertilizers are the dominant source of nitrogen input to the Mississippi basin. Other nitrogen sources include animal waste, fixation of atmospheric nitrogen by legumes, precipitation, domestic and industrial effluent, and the soil. The inputs of nitrogen from most of these sources to the Mississippi basin can be estimated and the outputs in surface water can be measured. However, nitrogen from each source is affected differently by physical, chemical, and biological processes that control nitrogen cycling in terrestrial and aquatic systems. Hence, the relative contributions from the various sources of nitrogen to nitrate load in the Mississippi River are unknown because the different sources may not contribute proportionally to their inputs in the basin. It may be possible to determine the relative contributions of the major sources of nitrate in river water using the stable isotopic ratios d15N and d18O of the nitrate ion. A few researchers have used the d15N and/or d18O isotope ratios to determine sources of nitrate in ground water, headwater catchments, and small rivers, but little is known about the isotopic composition of nitrate in larger rivers. The objective of this study is to measure the isotopic composition of nitrate and suspended organic matter in the Mississippi River and its major tributaries, in discharge to the Gulf of Mexico, and in streamflow from smaller watersheds that have distinct sources of nitrogen (row crops, animal wastes, and urban effluents) or are minimally impacted by man (undeveloped). Samples from seven sites on the Mississippi River and its tributaries and from 17 sites in smaller watersheds within the Mississippi River basin will be analyzed for d15N and

  1. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  2. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    PubMed

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques.

  3. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    PubMed

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. PMID:24462892

  4. A novel dual-isotope labelling method for distinguishing between soil sources of N2O.

    PubMed

    Wrage, N; van Groenigen, J W; Oenema, O; Baggs, E M

    2005-01-01

    We present a novel 18O-15N-enrichment method for the distinction between nitrous oxide (N2O) from nitrification, nitrifier denitrification and denitrification based on a method with single- and double-15N-labelled ammonium nitrate. We added a new treatment with 18O-labelled water to quantify N2O from nitrifier denitrification. The theory behind this is that ammonia oxidisers use oxygen (O2) from soil air for the oxidation of ammonia (NH3), but use H2O for the oxidation of the resulting hydroxylamine (NH2OH) to nitrite (NO2-). Thus, N2O from nitrification would therefore be expected to reflect the 18O signature of soil O2, whereas the 18O signature of N2O from nitrifier denitrification would reflect that of both soil O2 and H2O. It was assumed that (a) there would be no preferential removal of 18O or 16O during nitrifier denitrification or denitrification, (b) the 18O signature of the applied 18O-labelled water would remain constant over the experimental period, and (c) any O exchange between H(2)18O and NO3- would be negligible under the chosen experimental conditions. These assumptions were tested and validated for a silt loam soil at 50% water-filled pore space (WFPS) following application of 400 mg N kg-1 dry soil. We compared the results of our new method with those of a conventional inhibition method using 0.02% v/v acetylene (C2H2) and 80% v/v O2 in helium. Both the 18O-15N-enrichment and inhibitor methods identified nitrifier denitrification to be a major source of N2O, accounting for 44 and 40%, respectively, of N2O production over 24 h. However, compared to our 18O-15N-method, the inhibitor method overestimated the contribution from nitrification at the expense of denitrification, probably due to incomplete inhibition of nitrifier denitrification and denitrification by large concentrations of O2 and a negative effect of C2H2 on denitrification. We consider our new 18O-15N-enrichment method to be more reliable than the use of inhibitors; it enables the

  5. Diffusivity fractionations of H2(16)O/H2(17)O and H2(16)O/H2(18)O in air and their implications for isotope hydrology.

    PubMed

    Barkan, Eugeni; Luz, Boaz

    2007-01-01

    We have determined the isotope effects of (17)O and (18)O substitution of (16)O in H(2)O on molecular diffusivities of water vapor in air by the use of evaporation experiments. The derived diffusion fractionation coefficients (17)alpha(diff) and (18)alpha(diff) are 1.0146 +/- 0.0002 and 1.0283 +/- 0.0003, respectively. We also determined, for the first time, the ratio ln((17)alpha(diff))/ln((18)alpha(diff)) as 0.5185 +/- 0.0002. This ratio, which is in excellent agreement with the theoretical value of 0.5184, is significantly smaller than the ratio in vapor-liquid equilibrium (0.529). We show how this new experimental information gives rise to (17)O excess in meteoric water, and how it can be applied in isotope hydrology.

  6. Isotopic Labeling of Red Cabbage Anthocyanins with Atmospheric 13-CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopic labeling of plants provides a unique opportunity for understanding metabolic processes. A significant challenge of isotopic labeling during plant growth is that isotopes must be administered without disrupting plant development and at sufficient levels for mass spectral analysis. We describ...

  7. Experimental design principles for isotopically instationary 13C labeling experiments.

    PubMed

    Nöh, Katharina; Wiechert, Wolfgang

    2006-06-01

    13C metabolic flux analysis (MFA) is a well-established tool in Metabolic Engineering that found numerous applications in recent years. However, one strong limitation of the current method is the requirement of an-at least approximate-isotopic stationary state at sampling time. This requirement leads to a principle lower limit for the duration of a 13C labeling experiment. A new methodological development is based on repeated sampling during the instationary transient of the 13C labeling dynamics. The statistical and computational treatment of such instationary experiments is a completely new terrain. The computational effort is very high because large differential equations have to be solved and, moreover, the intracellular pool sizes play a significant role. For this reason, the present contribution works out principles and strategies for the experimental design of instationary experiments based on a simple example network. Hereby, the potential of isotopically instationary experiments is investigated in detail. Various statistical results on instationary flux identifiability are presented and possible pitfalls of experimental design are discussed. Finally, a framework for almost optimal experimental design of isotopically instationary experiments is proposed which provides a practical guideline for the analysis of large-scale networks.

  8. Determination of wine authenticity and geographical origin by measuring non-exchangeable hydrogen stable isotopes in wine ethanol with EIM-IRMS® methodology in combination with δ18O values obtained from wine water.

    NASA Astrophysics Data System (ADS)

    Smajlovic, Ivan; Glavanovic, Mirko; Sparks, Kimberlee L.; Sparks, Jed P.; Jovic, Slobodan

    2014-05-01

    Wine consumption has grown significantly in the last two decades, with the United States being the leading consumer of wine in the world. It is also the second largest wine producer and importer after the European Union, which consists of 27 European countries. The world has seen a significant increase in production from new world countries, especially the United States, Australia and Chile, and wine imports have grown significantly with this globalization. The quality and authenticity of products have become critical concerns. With the amount of wine being imported the need for verifying wine authenticity and understanding procedures used in wine making has become more important than ever. Understanding the origin of consumed wine in rapidly expanding global economy has become fundamental in order to control quality and protect consumers. In our previous scientific work we have shown that EIM-IRMS®, Ethanol Isotope Measurement - Isotope Ratio Mass Spectrometry (EIM-IRMS®), is capable of providing unique molecular fingerprint that cannot be reproduced or counterfeited. Today we know that δ18O value from the wine water is one of the most important parameters which can give information about wine geographical origin. Earlier we have suggested that grape juice or grape pulp is a closed biochemical system in which all chemical compounds stand in dynamic equilibrium and are in direct connection with each other. Taking that into consideration we have concluded that if system is genuine and if no water, or no sugar has been added to the grape must or grape juice prior to alcoholic fermentation, then ethanol which is made in process of alcoholic fermentation will have specific δD value of non-exchangeable hydrogen stable isotopes which will be in range from -205 to -215 ‰ vs. V-SMOW. In this work we will show that this value, which we named δDn (non-exchangeable hydrogen stable isotopes in ethanol), is very important because it can support or refute conclusions

  9. Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways.

    PubMed

    Webster, Christopher R; Heymsfield, Andrew J

    2003-12-01

    Water isotope ratios have been measured by laser absorption spectroscopy in and out of cirrus clouds formed in situ and convectively generated in anvils over subtropical regions. Water vapor in the tropical and subtropical upper troposphere shows a wide range of isotopic depletion not observed previously. The range suggests that dehydration of upper tropospheric air occurs both by convective dehydration and by gradual dehydration mechanisms. Twenty-five percent of upper tropospheric water sampled is in ice particles whose isotopic signatures are used to identify those grown in situ from those lofted from below.

  10. Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways.

    PubMed

    Webster, Christopher R; Heymsfield, Andrew J

    2003-12-01

    Water isotope ratios have been measured by laser absorption spectroscopy in and out of cirrus clouds formed in situ and convectively generated in anvils over subtropical regions. Water vapor in the tropical and subtropical upper troposphere shows a wide range of isotopic depletion not observed previously. The range suggests that dehydration of upper tropospheric air occurs both by convective dehydration and by gradual dehydration mechanisms. Twenty-five percent of upper tropospheric water sampled is in ice particles whose isotopic signatures are used to identify those grown in situ from those lofted from below. PMID:14657493

  11. Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments

    PubMed Central

    Drylewicz, Julia; Elemans, Marjet; Zhang, Yan; Kelly, Elizabeth; Reljic, Rajko; Tesselaar, Kiki; de Boer, Rob J.; Macallan, Derek C.; Borghans, José A. M.; Asquith, Becca

    2015-01-01

    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated 2H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique. PMID:26437372

  12. Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments.

    PubMed

    Ahmed, Raya; Westera, Liset; Drylewicz, Julia; Elemans, Marjet; Zhang, Yan; Kelly, Elizabeth; Reljic, Rajko; Tesselaar, Kiki; de Boer, Rob J; Macallan, Derek C; Borghans, José A M; Asquith, Becca

    2015-10-01

    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated (2)H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique. PMID:26437372

  13. Latest Paleocene benthic extinction event on the southern Tethyan shelf (Egypt): Foraminiferal stable isotopic (δ13C, δ18O) records

    NASA Astrophysics Data System (ADS)

    Schmitz, B.; Speijer, R. P.; Aubry, M.-P.

    1996-04-01

    The dramatic global extinction of 35% 50% of benthic foraminifera species in the deep sea in the latest Paleocene and associated negative excursions in δ13C and δ18O may be related to spreading of warm, saline bottom water from subtropical Tethyan shallow regions over the sea floor worldwide. Our study of neritic sections in Egypt shows that in the southern shallow Tethys, a prominent long-term change in bottom-water chemistry, sedimentation, and benthic foraminifera fauna was initiated at the time when the deep-sea benthic extinction event (BEE) took place. Bottom-water δ13C values on the Tethyan shelf show a sudden 3.0‰ negative shift at this event; however, contrary to the deep sea, in which the δ13C excursion was of short duration, Tethyan δ13C values did not fully return to preboundary values, but remained depressed by ˜1.5‰ for at least 1 m.y. The δ13C values at the Egyptian shelf during the BEE are much lower than would be expected if this was a source region for global deep water. The δ18O values indicate no significant change in bottom-water salinity or temperature at the BEE. The long-lasting environmental changes that began on the Egyptian shelf at the BEE may be related to, for example, gateway reorganization along the Tethyan seaway. Paleogeographic changes possibly also triggered a change in the loci of global deep-water formation; however, these loci must be sought in another part of the Tethys.

  14. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  15. Comparison between IRMS and CRDS methods in the determination of isotopic ratios {sup 2}H/{sup 1}H and {sup 18}O/{sup 16}O in water

    SciTech Connect

    Santos, T. H. R.; Zucchi, M. R.; Lemaire, T.; Azevedo, A. E. G.

    2013-05-06

    Traditionally, the method used for measuring the isotope ratios is the Isotope Ratio Mass Spectrometers (IRMS). A new method has been used to determine the isotopic abundances, the Cavity Ring-Down Spectroscopy (CRDS). It consists of a technique of direct absorption, of high sensitivity, which is based on measuring the absorption ratio, as a function of time, of the light confined in a high finesse optical cavity, instead of the magnitude of light beam absorption. The values of {sup 18}O/{sup 16}O and D/H ratios are determined with respect to international standards VSMOW, GISP and SLAP from the International Atomic Energy Agency (IAEA). In this work, the IRMS and CRDS techniques are compared, verifying that the CRDS technique is promising and has some advantages compared to IRMS. It uses a smaller amount of sample, the isotope measurements are made simultaneously from the steam, reducing the analysis time. It also shows good reproducibility and accuracy, and it does not require a preliminary sample preparation.

  16. Production of isotopically-labeled standards from a uniformly labeled precursor for quantitative volatile metabolomic studies

    PubMed Central

    Gómez-Cortés, Pilar; Brenna, J. Thomas; Sacks, Gavin L.

    2012-01-01

    Optimal accuracy and precision in small molecule profiling by mass spectrometry generally requires isotopically labeled standards chemically representative of all compounds of interest. However, preparation of mixed standards from commercially available pure compounds is often prohibitively expensive and time consuming, and many labeled compounds are not available in pure form. We used a single prototype uniformly labeled [U-13C]-compound to generate [U-13C]-volatile standards for use in subsequent experimental profiling studies. [U-13C]-α-linolenic acid (C18:3n-3, ALA) was thermally oxidized to produce labeled lipid degradation volatiles which were subsequently characterized qualitatively and quantitatively. Twenty-five [U-13C]-labeled volatiles were identified by headspace solid-phase microextraction-gas chromatography-time of flight-mass spectrometry (HS-SPME-GC-TOF-MS) by comparison of spectra with unlabeled volatiles. Using 250 μL starting sample, labeled volatiles were quantified by a reverse isotope dilution procedure. Using the [U-13C]-labeled standards, limits of detection comparable to or better than previous HS-SPME reports were achieved, 0.010–1.04 ng/g. The performance of the [U-13C]-volatile standards was evaluated using a commodity soybean oil (CSO) oxidized at 60°C from 0 to 15 d. Relative responses of n-decane, an unlabeled internal standard otherwise absent from the mixture, and [U-13C]-oxidation products changed by up to 8-fold as the CSO matrix was oxidized, demonstrating that reliance on a single standard in volatile profiling studies yields inaccurate results due to changing matrix effects. The [U-13C]-standard mixture was used to quantify 25 volatiles in oxidized CSO and low-ALA soybean oil with an average relative standard deviation of 8.5%. Extension of this approach to other labeled substrates, e.g., [U-13C]-sugars and amino acids, for profiling studies should be feasible and can dramatically improve quantitative results compared to

  17. O-18/O-16 and Si-30/Si-28 studies of some Apollo 15, 16, and 17 samples. [oxygen and silicon isotope ratios

    NASA Technical Reports Server (NTRS)

    Taylor, H. P., Jr.; Epstein, S.

    1973-01-01

    A study of lunar rock samples from eight sites on the near side of the moon showed oxygen isotope abundance variations much smaller than those in meteorites and earth material. The grain-surface coatings of the lunar fines were found to be generally depleted in oxygen relative to silicon. The lunar soils, on the other hand, were somewhat richer in both O18 and Si30 than the lunar crystalline rock.

  18. Variations in [sup 18]O/[sup 16]O ratios of kaolinites within a lateritic profile: Their significance for laterite genesis and isotope paleoclimatology

    SciTech Connect

    Giral, S.; Girard, J.P.; Savin, S.M. . Dept. of Geological Sciences); Nahon, D.B. )

    1992-01-01

    The authors have made an integrated study of the field occurrence, petrology, mineralogy and crystallography, and oxygen isotope geochemistry of an active lateritic profile from about 60 km north of Manaus (Amazonia, Brazil). The parent rock is an arkosic sandstone. The delta O-18 values of kaolinites from the profile are far from uniform. The total range is about 2.4 per mil (18.7 to 21.1 per mil). The calculated delta O-18 value of kaolinite in isotopic equilibrium with local average precipitation and mean annual temperature is 19.6 per mil, within the range of the measured values. Kaolinite of each of several textural occurrences also shows significant isotopic variation both vertically and within a given horizon. Different size fractions of kaolinite of a single textural occurrence within a single horizon also exhibit differences in delta O-18 values. At depths below a few meters, they expect the temperature and the delta O-18 values of the soil water profile to be relatively uniform at any time. If this is so, the variations in delta O-18 values of the kaolinites would suggest that the formation of different populations occurred at different times. They cannot yet distinguish between variations of conditions that were seasonal and variations that occurred on scales of many years. However, it is most important to resolve the causes of these variations before using the delta O-18 values of soil clays for purposes of paleoclimatic reconstruction.

  19. Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, off-axis integrated cavity output spectroscopy.

    PubMed

    Berman, Elena S F; Fortson, Susan L; Snaith, Steven P; Gupta, Manish; Baer, Douglas S; Chery, Isabelle; Blanc, Stephane; Melanson, Edward L; Thomson, Peter J; Speakman, John R

    2012-11-20

    The stable isotopes of hydrogen (δ(2)H) and oxygen (δ(18)O) in human urine are measured during studies of total energy expenditure by the doubly labeled water method, measurement of total body water, and measurement of insulin resistance by glucose disposal among other applications. An ultrasensitive laser absorption spectrometer based on off-axis integrated cavity output spectroscopy was demonstrated for simple and inexpensive measurement of stable isotopes in natural isotopic abundance and isotopically enriched human urine. Preparation of urine for analysis was simple and rapid (approximately 25 samples per hour), requiring no decolorizing or distillation steps. Analysis schemes were demonstrated to address sample-to-sample memory while still allowing analysis of 45 natural or 30 enriched urine samples per day. The instrument was linear over a wide range of water isotopes (δ(2)H = -454 to +1702 ‰ and δ(18)O = -58.3 to +265 ‰). Measurements of human urine were precise to better than 0.65 ‰ 1σ for δ(2)H and 0.09 ‰ 1σ for δ(18)O for natural urines, 1.1 ‰ 1σ for δ(2)H and 0.13 ‰ 1σ for δ(18)O for low enriched urines, and 1.0 ‰ 1σ for δ(2)H and 0.08 ‰ 1σ for δ(18)O for high enriched urines. Furthermore, the accuracy of the isotope measurements of human urines was verified to better than ±0.81 ‰ in δ(2)H and ±0.13 ‰ in δ(18)O (average deviation) against three independent isotope-ratio mass spectrometry laboratories. The ability to immediately and inexpensively measure the stable isotopes of water in human urine is expected to increase the number and variety of experiments which can be undertaken.

  20. Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, off-axis integrated cavity output spectroscopy.

    PubMed

    Berman, Elena S F; Fortson, Susan L; Snaith, Steven P; Gupta, Manish; Baer, Douglas S; Chery, Isabelle; Blanc, Stephane; Melanson, Edward L; Thomson, Peter J; Speakman, John R

    2012-11-20

    The stable isotopes of hydrogen (δ(2)H) and oxygen (δ(18)O) in human urine are measured during studies of total energy expenditure by the doubly labeled water method, measurement of total body water, and measurement of insulin resistance by glucose disposal among other applications. An ultrasensitive laser absorption spectrometer based on off-axis integrated cavity output spectroscopy was demonstrated for simple and inexpensive measurement of stable isotopes in natural isotopic abundance and isotopically enriched human urine. Preparation of urine for analysis was simple and rapid (approximately 25 samples per hour), requiring no decolorizing or distillation steps. Analysis schemes were demonstrated to address sample-to-sample memory while still allowing analysis of 45 natural or 30 enriched urine samples per day. The instrument was linear over a wide range of water isotopes (δ(2)H = -454 to +1702 ‰ and δ(18)O = -58.3 to +265 ‰). Measurements of human urine were precise to better than 0.65 ‰ 1σ for δ(2)H and 0.09 ‰ 1σ for δ(18)O for natural urines, 1.1 ‰ 1σ for δ(2)H and 0.13 ‰ 1σ for δ(18)O for low enriched urines, and 1.0 ‰ 1σ for δ(2)H and 0.08 ‰ 1σ for δ(18)O for high enriched urines. Furthermore, the accuracy of the isotope measurements of human urines was verified to better than ±0.81 ‰ in δ(2)H and ±0.13 ‰ in δ(18)O (average deviation) against three independent isotope-ratio mass spectrometry laboratories. The ability to immediately and inexpensively measure the stable isotopes of water in human urine is expected to increase the number and variety of experiments which can be undertaken. PMID:23075099

  1. Optimal isotope labelling for NMR protein structure determinations.

    PubMed

    Kainosho, Masatsune; Torizawa, Takuya; Iwashita, Yuki; Terauchi, Tsutomu; Mei Ono, Akira; Güntert, Peter

    2006-03-01

    Nuclear-magnetic-resonance spectroscopy can determine the three-dimensional structure of proteins in solution. However, its potential has been limited by the difficulty of interpreting NMR spectra in the presence of broadened and overlapping resonance lines and low signal-to-noise ratios. Here we present stereo-array isotope labelling (SAIL), a technique that can overcome many of these problems by applying a complete stereospecific and regiospecific pattern of stable isotopes that is optimal with regard to the quality and information content of the resulting NMR spectra. SAIL uses exclusively chemically and enzymatically synthesized amino acids for cell-free protein expression. We demonstrate for the 17-kDa protein calmodulin and the 41-kDa maltodextrin-binding protein that SAIL offers sharpened lines, spectral simplification without loss of information, and the ability to rapidly collect the structural restraints required to solve a high-quality solution structure for proteins twice as large as commonly solved by NMR. It thus makes a large class of proteins newly accessible to detailed solution structure determination.

  2. Using phylogenetic probes for quantification of stable isotope labeling and microbial community analysis

    SciTech Connect

    Brodie, Eoin L; DeSantis, Todd Z; Karaoz, Ulas; Andersen, Gary L

    2014-12-09

    Herein is described methods for a high-sensitivity means to measure the incorporation of stable isotope labeled substrates into RNA following stable isotope probing experiments (SIP). RNA is hybridized to a set of probes such as phylogenetic microarrays and isotope incorporation is quantified such as by secondary ion mass spectrometer imaging (NanoSIMS).

  3. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics

    SciTech Connect

    Qian, Weijun; Petritis, Brianne O.; Nicora, Carrie D.; Smith, Richard D.

    2011-07-01

    Stable isotope labeling based on relative peptide/protein abundance measurements is commonly applied for quantitative proteomics. Recently, trypsin-catalyzed oxygen-18 labeling has grown in popularity due to its simplicity, cost-effectiveness, and its ability to universally label peptides with high sample recovery. In (18)O labeling, both C-terminal carboxyl group atoms of tryptic peptides can be enzymatically exchanged with (18)O, thus providing the labeled peptide with a 4 Da mass shift from the (16)O-labeled sample. Peptide (18)O labeling is ideally suited for generating a labeled "universal" reference sample used for obtaining accurate and reproducible quantitative measurements across large number of samples in quantitative discovery proteomics.

  4. Water-Isotopes (2H, 3H, 18O) to trace the source and timing of recharge in a fractured granite aquifer in Western Kenya, Africa

    NASA Astrophysics Data System (ADS)

    Kralik, Martin; Whylidal, Stefan; Asunah, Francis; Sültenfuß, Jürgen

    2014-05-01

    The Vihiga District in West Kenya North-West of Lake Victoria is one of the most densely populated areas in Kenya with 1033 person per square kilometer. To find the most suitable location of an own well for a Primary School in this district, springs, school wells and creeks were sampled in the surroundings to get information about the hydrological cycle in the area. The Waluka Primary school (0.02134°N, 34.64311°E) is situated on the northern slope of the Maragoli Hills 20 km to the North-West of the Nyanzan provincial capital of Kisumu at the eastern shore of Lake Victoria. The hilly relief varies between 1535 - 1675m. The yearly precipitation is between 1200-1600 mm/a (23°C mean temperature) with biannual rainy seasons in which the long rains are generally from March to May as the Inter-Tropical Convergence Zone (ITCZ) moves northwards, and the short rains are typically from October to December as the ITCZ retreats southwards. A lateritic soil covers a thin alteration zone above the Precambrian Maragoli-Granite (Saggerson, 1952). Water circulates either in the thin alteration zone or in fault zones cutting through the Precambrian granite. From discharge measurements of two springs and a creek at the end of the dry season (February 2012) a minimum discharge of ca. 10-20 L/s km2 (300-600 mm) can be estimated. The water is of the alkaline sulfate-nitrate type with low mineralization (70-150 μ S/cm, 25°C) and a low pH of about 5 to 6. The delta oxygen-18 and deuterium value ranges between -2.84 to -1.98 oand -8.5 to - 3.9 o(VSMOW). The deuterium excess ranges from 11.7-14.2 oThe water of one spring and well close to the school have a tritium content of 1.42 - 1.62 TU. All groundwater has a low arsenium, fluorine and uranium content, which had only a short soil passage. The relatively elevated, but not problematic content in nitrate (10 - 16 mg/L) probaly reflects the intensive agricultural activities in this area. As the mean δ 18O values during the rainy

  5. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ(15)N and δ(18)O values and an isotope mixing model.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Sun, Feixiang; Sun, Jichao; Liu, Jingtao; Ouyang, Zhiyun

    2015-12-01

    Nitrate contamination in surface water has become an environmental problem widespread concern. In this study, environmental isotopes (δ(15)N-NO3 (-) and δ(18)O-NO3 (-)) and the chemical compositions of water samples from an urban river in Chongqing, China, were analyzed to evaluate the primary sources of nitrate pollution. A Bayesian isotope mixing model was applied to estimate the relative contributions of five potential NO3 (-) sources to river pollution (sewage/manure, soil N, NH4 (+) in fertilizer and precipitation, NO3 (-) fertilizer, and NO3 (-) in precipitation). The results show that the urban river was affected by NO3 (-) pollution from multiple sources. The major sources of NO3 (-) pollution in the dry season were sewage/manure (38-50 %) and soil N (22-26 %); in the wet season, the major sources of NO3 (-) pollution were sewage/manure (30-37 %), soil N (16-25 %), and precipitation (14-24 %). The higher contribution of N to the river water by precipitation indicates that atmospheric N deposition has become an important source of pollution in surface water in China. We conclude that domestic sewage is still the main contributor to NO3 (-) pollution in urban rivers in China. The discharge of domestic sewage into rivers should be prohibited as a priority measure to prevent NO3 (-) contamination.

  6. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ(15)N and δ(18)O values and an isotope mixing model.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Sun, Feixiang; Sun, Jichao; Liu, Jingtao; Ouyang, Zhiyun

    2015-12-01

    Nitrate contamination in surface water has become an environmental problem widespread concern. In this study, environmental isotopes (δ(15)N-NO3 (-) and δ(18)O-NO3 (-)) and the chemical compositions of water samples from an urban river in Chongqing, China, were analyzed to evaluate the primary sources of nitrate pollution. A Bayesian isotope mixing model was applied to estimate the relative contributions of five potential NO3 (-) sources to river pollution (sewage/manure, soil N, NH4 (+) in fertilizer and precipitation, NO3 (-) fertilizer, and NO3 (-) in precipitation). The results show that the urban river was affected by NO3 (-) pollution from multiple sources. The major sources of NO3 (-) pollution in the dry season were sewage/manure (38-50 %) and soil N (22-26 %); in the wet season, the major sources of NO3 (-) pollution were sewage/manure (30-37 %), soil N (16-25 %), and precipitation (14-24 %). The higher contribution of N to the river water by precipitation indicates that atmospheric N deposition has become an important source of pollution in surface water in China. We conclude that domestic sewage is still the main contributor to NO3 (-) pollution in urban rivers in China. The discharge of domestic sewage into rivers should be prohibited as a priority measure to prevent NO3 (-) contamination. PMID:26527336

  7. Conifers, Angiosperm Trees, and Lianas: Growth, Whole-Plant Water and Nitrogen Use Efficiency, and Stable Isotope Composition (δ13C and δ18O) of Seedlings Grown in a Tropical Environment1[W][OA

    PubMed Central

    Cernusak, Lucas A.; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L.

    2008-01-01

    Seedlings of several species of gymnosperm trees, angiosperm trees, and angiosperm lianas were grown under tropical field conditions in the Republic of Panama; physiological processes controlling plant C and water fluxes were assessed across this functionally diverse range of species. Relative growth rate, r, was primarily controlled by the ratio of leaf area to plant mass, of which specific leaf area was a key component. Instantaneous photosynthesis, when expressed on a leaf-mass basis, explained 69% of variation in r (P < 0.0001, n = 94). Mean r of angiosperms was significantly higher than that of the gymnosperms; within angiosperms, mean r of lianas was higher than that of trees. Whole-plant nitrogen use efficiency was also significantly higher in angiosperm than in gymnosperm species, and was primarily controlled by the rate of photosynthesis for a given amount of leaf nitrogen. Whole-plant water use efficiency, TEc, varied significantly among species, and was primarily controlled by ci/ca, the ratio of intercellular to ambient CO2 partial pressures during photosynthesis. Instantaneous measurements of ci/ca explained 51% of variation in TEc (P < 0.0001, n = 94). Whole-plant 13C discrimination also varied significantly as a function of ci/ca (R2 = 0.57, P < 0.0001, n = 94), and was, accordingly, a good predictor of TEc. The 18O enrichment of stem dry matter was primarily controlled by the predicted 18O enrichment of evaporative sites within leaves (R2 = 0.61, P < 0.0001, n = 94), with some residual variation explained by mean transpiration rate. Measurements of carbon and oxygen stable isotope ratios could provide a useful means of parameterizing physiological models of tropical forest trees. PMID:18599645

  8. Molecular and cluster structures in 18O

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Dorsch, T.; Bohlen, H. G.; Krücken, R.; Faestermann, T.; Hertenberger, R.; Kokalova, Tz.; Mahgoub, M.; Milin, M.; Wheldon, C.; Wirth, H.-F.

    2010-01-01

    We have studied the multi-nucleon transfer reaction 12C ( 7Li ,p) at E lab = 44 MeV, populating states in the oxygen isotope 18O . The experiments were performed at the Tandem accelerator of the Maier-Leibniz Laboratory in Munich using the high-resolution Q3D magnetic spectrograph. States were populated up to an excitation energy of 21.2MeV with an overall energy resolution of 45keV, and 30 new states of 18O have been identified. The structure of the rotational bands observed is discussed in terms of cluster bands with the underlying cluster structures: 14C ⊗ α and 12C ⊗ 2 n ⊗ α . Because of the broken intrinsic reflection symmetry in these structures the corresponding rotational bands appear as parity doublets.

  9. Chemical and isotopic ( 87Sr/ 86Sr, δ 18O, δD) constraints to the formation processes of Red-Sea brines

    NASA Astrophysics Data System (ADS)

    Pierret, M. C.; Clauer, N.; Bosch, D.; Blanc, G.; France-Lanord, C.

    2001-04-01

    About twenty deeps filled with hot brines and/or metalliferous sediments, are located along the Red-Sea axis. These brines present a well-suited framework to study the hydrothermal activity in such a young ocean. The present study outlines the results of a geochemical approach combining major-, trace-element and isotopic (oxygen, hydrogen, strontium) analyses of brines in six of the deeps, to evaluate different processes of brine formation and to compare the evolution of each deep. Important heterogeneities in temperature, salinity, hydrographic structure and chemistry are recorded, each brine having its own characteristics. The intensity of hydrothermal circulation varies among the deeps and ranges from being strong (Atlantis II and Nereus) to weak (Port-Soudan) and even to negligible (Valdivia and Suakin) and it varies along the entire Red-Sea axis. These observations do not favour a unique formational model for all of the brines. For example, the brines of the Suakin deep appear to have been formed by an old sea water which dissolved evaporite beds, without significant fluid circulation and hydrothermal input, while others such as Atlantis II or Nereus Deeps appear to be dominated by hydrothermal influences. A striking feature is the absence of a relationship between the position of the deeps along the axis and their evolutionary maturity.

  10. Isotope labeling of eukaryotic membrane proteins in yeast for solid-state NMR.

    PubMed

    Fan, Ying; Emami, Sanaz; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S

    2015-01-01

    Solid-state NMR (ssNMR) is a rapidly developing technique for exploring structure and dynamics of membrane proteins, but its progress is hampered by its low sensitivity. Despite the latest technological advances, routine ssNMR experiments still require several milligrams of isotopically labeled protein. While production of bacterial membrane proteins on this scale is usually feasible, obtaining such quantities of eukaryotic membrane proteins is often impossible or extremely costly. We have demonstrated that, by using isotopic labeling in yeast Pichia pastoris, one can inexpensively produce milligram quantities of doubly labeled functional samples, which yield multidimensional ssNMR spectra of high resolution suitable for detailed structural investigation. This was achieved by combining protocols of economical isotope labeling of soluble proteins previously used for solution NMR with protocols of expression of eukaryotic membrane proteins successfully employed for other methods. We review two cases of such isotope labeling, of fungal rhodopsin from Leptosphaeria maculans and human aquaporin-1. PMID:26577733

  11. Isotope labeling of eukaryotic membrane proteins in yeast for solid-state NMR.

    PubMed

    Fan, Ying; Emami, Sanaz; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S

    2015-01-01

    Solid-state NMR (ssNMR) is a rapidly developing technique for exploring structure and dynamics of membrane proteins, but its progress is hampered by its low sensitivity. Despite the latest technological advances, routine ssNMR experiments still require several milligrams of isotopically labeled protein. While production of bacterial membrane proteins on this scale is usually feasible, obtaining such quantities of eukaryotic membrane proteins is often impossible or extremely costly. We have demonstrated that, by using isotopic labeling in yeast Pichia pastoris, one can inexpensively produce milligram quantities of doubly labeled functional samples, which yield multidimensional ssNMR spectra of high resolution suitable for detailed structural investigation. This was achieved by combining protocols of economical isotope labeling of soluble proteins previously used for solution NMR with protocols of expression of eukaryotic membrane proteins successfully employed for other methods. We review two cases of such isotope labeling, of fungal rhodopsin from Leptosphaeria maculans and human aquaporin-1.

  12. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    SciTech Connect

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  13. NMR studies of two spliced leader RNAs using isotope labeling

    SciTech Connect

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  14. Survey of groundwater isotopic composition (δ2H and δ18O) from the southwestern Edwards Aquifer and regionally associated aquifers

    NASA Astrophysics Data System (ADS)

    West, J. B.; Shallock, J. R.; Cooper, R.

    2009-12-01

    Aquifers are an important source of water for growing human populations, while they also support numerous critical ecosystem functions, including supplying water to springs and rivers necessary for terrestrial and aquatic ecosystems and the sometimes endangered species that are part of them. As human populations increase and the climate changes, demands on aquifer resources will continue to increase. To support these growing populations, urban areas in particular seek to develop additional water resources with, in some cases, not well-understood impacts on interconnected aquifers as well as the terrestrial and aquatic ecosystems that depend on spring-fed surface water. In addition, large-scale changes to terrestrial systems (e.g., removal of woody vegetation) can be motivated by a desire to enhance aquifer recharge, but an understanding of the effect of those efforts on the regional water cycle is hampered, in part, by a lack of detailed understanding of the interactions of various features below ground. It is critical therefore to understand the relationships between waters found in different formations, as well as among surface and ground waters to improve our understanding of the consequences of increasing human demands and the impacts of climate change. We have conducted a survey of wells in south central Texas that access major and minor aquifers, including the karst-type Edwards (BFZ) aquifer and several regional minor aquifers. The primary objective of this survey was to establish baseline information from which to develop further targeted research using event-based sampling and a range of additional data on precipitation, geology, and other spatially explicit information. We sampled multiple wells in an area west of San Antonio, TX that access the primary major and minor aquifers in the region. The isotopic compositions of water taken from these wells at various locations and depths were similar, suggesting that these aquifers experience significant mixing

  15. Isotopic labeling affects 1,25-dihydroxyvitamin D metabolism

    SciTech Connect

    Halloran, B.P.; Bikle, D.D.; Castro, M.E.; Gee, E.

    1989-02-07

    Isotope substitution can change the biochemical properties of vitamin D. To determine the effect of substituting 3H for 1H on the metabolism of 1,25(OH)2D3, we measured the metabolic clearance rate and renal metabolism of unlabeled and 3H-labeled 1,25(OH)2D3. Substitution of 3H for 1H on carbons 26 and 27 (1,25(OH)2(26,27(n)-3H)D3) or on carbons 23 and 24 (1,25(OH)2(23,24(n)-3H)D3) reduced the in vivo metabolic clearance rate of 1,25(OH)2D3 by 36% and 37%, respectively, and reduced the in vitro renal catabolism of 1,25(OH)2D3 by 11% and 54%, respectively. Substitutions of 3H for 1H on carbons 23 and 24 as opposed to carbons 26 and 27 reduced conversion of (3H)1,25(OH)2D3 to (3H)1,24,25(OH)2D3 by 25% and to putative 24-oxo-1,23,25-dihydroxyvitamin D3 by 1600%. These results indicate that substitution of 3H for 1H on carbons 26 and 27 or on carbons 23 and 24 can reduce the metabolic clearance rate and in vitro metabolism of 1,25(OH)2D3 and quantitatively alter the pattern of metabolic products produced.

  16. Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos.

    PubMed

    McDougall, Melissa Q; Choi, Jaewoo; Stevens, Jan F; Truong, Lisa; Tanguay, Robert L; Traber, Maret G

    2016-08-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E-) or with added α-tocopherol (E+, 500mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E- and E+ embryos. The E- compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E- compared with E+ embryos at 24, 48, 72, and 120hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E- at all time-points. Additionally, H2(18)O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E- compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E- embryos. PMID:26774753

  17. Application of {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C isotopes to diagenesis correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani field, Tunisia

    SciTech Connect

    Mearns, E.W.; McBride, J.J.; Bramwell, M.

    1996-12-31

    Oil is produced primarily from open fracture porosity in Upper Cretaceous chalk in the Sidi El Kilani oil field. Strontium Stratigraphy analyses of primary, unaltered matrix chalk has confirmed a Campanian to Maastrichtian age and has allowed dating of the reservoir with a resolution of {+-}1 Ma. This has facilitated reservoir correlation and has indicated where section is missing in certain wells due to faulting. {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C analyses suggest an early generation of fracture fill calcite cement may have formed by redistribution of CaCO{sub 3} from underlying carbonate sequences at temperatures in the region 35-55{degrees}C. Calcite cemented fractures tend to be healed and are not productive. Strontium Isotope Residual Salt Analyses (SrRSA) conducted on core, provide information on the formation water chemistry and reservoir connectivity at the time of oil filling. These data suggest that the NW-SE trending fault system that bisects the field is sealed across much of the fault plane. The main oil pool lies SW of the fault. A later generation of dolomite and barite cements, associated with productive open fractures, have Sr-O-C composition consistent with precipitation from fluids circulating at the time of hydrocarbon charge at temperatures close to current reservoir conditions of 70-75{degrees}C. Predicting the distribution of dolomite cemented open fractures has thus helped guide the development strategy of the field.

  18. Application of [sup 87]Sr/[sup 86]Sr, [delta][sup 18]O and [delta][sup 13]C isotopes to diagenesis correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani field, Tunisia

    SciTech Connect

    Mearns, E.W.; McBride, J.J. ); Bramwell, M.

    1996-01-01

    Oil is produced primarily from open fracture porosity in Upper Cretaceous chalk in the Sidi El Kilani oil field. Strontium Stratigraphy analyses of primary, unaltered matrix chalk has confirmed a Campanian to Maastrichtian age and has allowed dating of the reservoir with a resolution of [+-]1 Ma. This has facilitated reservoir correlation and has indicated where section is missing in certain wells due to faulting. [sup 87]Sr/[sup 86]Sr, [delta][sup 18]O and [delta][sup 13]C analyses suggest an early generation of fracture fill calcite cement may have formed by redistribution of CaCO[sub 3] from underlying carbonate sequences at temperatures in the region 35-55[degrees]C. Calcite cemented fractures tend to be healed and are not productive. Strontium Isotope Residual Salt Analyses (SrRSA) conducted on core, provide information on the formation water chemistry and reservoir connectivity at the time of oil filling. These data suggest that the NW-SE trending fault system that bisects the field is sealed across much of the fault plane. The main oil pool lies SW of the fault. A later generation of dolomite and barite cements, associated with productive open fractures, have Sr-O-C composition consistent with precipitation from fluids circulating at the time of hydrocarbon charge at temperatures close to current reservoir conditions of 70-75[degrees]C. Predicting the distribution of dolomite cemented open fractures has thus helped guide the development strategy of the field.

  19. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics.

    PubMed

    Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A

    2014-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover. PMID:24952180

  20. Kinetic isotope effects significantly influence intracellular metabolite 13C labeling patterns and flux determination

    PubMed Central

    Wasylenko, Thomas M.; Stephanopoulos, Gregory

    2014-01-01

    Rigorous mathematical modeling of carbon-labeling experiments allows estimation of fluxes through the pathways of central carbon metabolism, yielding powerful information for basic scientific studies as well as for a wide range of applications. However, the mathematical models that have been developed for flux determination from 13C labeling data have commonly neglected the influence of kinetic isotope effects on the distribution of 13C label in intracellular metabolites, as these effects have often been assumed to be inconsequential. We have used measurements of the 13C isotope effects on the pyruvate dehydrogenase enzyme from the literature to model isotopic fractionation at the pyruvate node and quantify the modeling errors expected to result from the assumption that isotope effects are negligible. We show that under some conditions kinetic isotope effects have a significant impact on the 13C labeling patterns of intracellular metabolites, and the errors associated with neglecting isotope effects in 13C-metabolic flux analysis models can be comparable in size to measurement errors associated with GC–MS. Thus, kinetic isotope effects must be considered in any rigorous assessment of errors in 13C labeling data, goodness-of-fit between model and data, confidence intervals of estimated metabolic fluxes, and statistical significance of differences between estimated metabolic flux distributions. PMID:23828762

  1. Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    NASA Astrophysics Data System (ADS)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-10-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C and δ18O to disentangle the potential times needed to transfer carbohydrates produced by photosynthesis down to trunk, roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. We have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consecutive days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Other non-biological causes like diffusion fractionation and advection induced by gas withdrawn from the measurement chamber complicate data interpretation on this step of C transfer path. Nevertheless, it was possible to identify the speed of carbohydrates' translocation from the point of assimilation to the trunk breast height because leaf-imprinted enrichment of δ18O in soluble sugars was less modified along the downward transport and was well related to environmental parameters potentially linked to stomatal conductance. The speed of carbohydrates translocation from the site of assimilation to the trunk

  2. Application of stable isotope-labeled compounds in metabolism and in metabolism-mediated toxicity studies.

    PubMed

    Mutlib, Abdul E

    2008-09-01

    Stable isotope-labeled compounds have been synthesized and utilized by scientists from various areas of biomedical research during the last several decades. Compounds labeled with stable isotopes, such as deuterium and carbon-13, have been used effectively by drug metabolism scientists and toxicologists to gain better understanding of drugs' disposition and their potential role in target organ toxicities. The combination of stable isotope-labeling techniques with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, which allows rapid acquisition and interpretation of data, has promoted greater use of these stable isotope-labeled compounds in absorption, distribution, metabolism, and excretion (ADME) studies. Examples of the use of stable isotope-labeled compounds in elucidating structures of metabolites and delineating complex metabolic pathways are presented in this review. The application of labeled compounds in mechanistic toxicity studies will be discussed by providing an example of how strategic placement of a deuterium atom in a drug molecule mitigated specific-specific renal toxicity. Other examples from the literature demonstrating the application of stable isotope-labeled compounds in understanding metabolism-mediated toxicities are presented. Furthermore, an example of how a stable isotope-labeled compound was utilized to better understand some of the gene changes in toxicogenomic studies is discussed. The interpretation of large sets of data produced from toxicogenomics studies can be a challenge. One approach that could be used to simplify interpretation of the data, especially from studies designed to link gene changes with the formation of reactive metabolites thought to be responsible for toxicities, is through the use of stable isotope-labeled compounds. This is a relatively unexplored territory and needs to be further investigated. The employment of analytical techniques, especially mass spectrometry and NMR, used in conjunction

  3. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture.

    PubMed

    Snyder, Nathaniel W; Tombline, Gregory; Worth, Andrew J; Parry, Robert C; Silvers, Jacob A; Gillespie, Kevin P; Basu, Sankha S; Millen, Jonathan; Goldfarb, David S; Blair, Ian A

    2015-04-01

    Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and β-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the "gold standard" for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope-labeled metabolites such as acyl-CoA thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell medium with commercially available [(13)C3(15)N1]-pantothenic acid, mammalian cells exclusively incorporated [(13)C3(15)N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope-labeled CoA and acyl-CoAs from [(13)C3(15)N1]-pantothenate using stable isotope labeling by essential nutrients in cell culture (SILEC) in Pan6-deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof of concept for generating other labeled metabolites in yeast mutants.

  4. In vivo uniform (15)N-isotope labelling of plants: using the greenhouse for structural proteomics.

    PubMed

    Ippel, Johannes H; Pouvreau, Laurice; Kroef, Toos; Gruppen, Harry; Versteeg, Geurt; van den Putten, Peter; Struik, Paul C; van Mierlo, Carlo P M

    2004-01-01

    Isotope labelling of proteins is important for progress in the field of structural proteomics. It enables the utilisation of the power of nuclear magnetic resonance spectroscopy (NMR) for the characterisation of the three-dimensional structures and corresponding dynamical features of proteins. The usual approach to obtain isotopically labelled protein molecules is by expressing the corresponding gene in bacterial or yeast host organisms, which grow on isotope-enriched media. This method has several drawbacks. Here, we demonstrate that it is possible to fully label a plant with (15)N-isotopes. The advantage of in vivo labelling of higher organisms is that all constituting proteins are labelled and become available as functional, post-translationally modified, correctly folded proteins. A hydroponics set-up was used to create the first example of a uniformly (15)N-labelled (> 98%) plant species, the potato plant (Solanum tuberosum L., cv. Elkana). Two plants were grown at low costs using potassium-[(15)N]-nitrate as the sole nitrogen source. At harvest time, a total of 3.6 kg of potato tubers and 1.6 kg of foliage, stolons and roots were collected, all of which were fully (15)N-labelled. Gram quantities of soluble (15)N-labelled proteins (composed mainly of the glycoprotein patatin and Kunitz-type protease inhibitors) were isolated from the tubers. NMR results on the complete proteome of potato sap and on an isolated protease inhibitor illustrate the success of the labelling procedure. The presented method of isotope labelling is easily modified to label other plants. Its envisioned impact in the field of structural proteomics of plants is discussed.

  5. Efficient and selective isotopic labeling of hemes to facilitate the study of multiheme proteins

    SciTech Connect

    Fonseca, Bruno M.; Tien, Ming; Rivera, Mario; Shi, Liang; Louro, Ricardo O.

    2012-04-02

    Specific isotopic labeling of hemes provides a unique opportunity to characterize the structure and function of heme-proteins. Unfortunately, present day methods do not allow efficient labeling in high yields of multiheme cytochromes c, which are of great biotechnological interest. Here, a method for production of recombinant multiheme cytochromes c in Escherichia coli with isotopically labeled hemes is reported. A small tetraheme cytochrome of 12 kDa from Shewanella oneidensis MR-1 was used to demonstrate the method, achieving a production of 4 mg of pure protein per liter. This method achieves, in a single step, efficient expression and incorporation of hemes isotopically labeled in specific atom positions adequate for spectroscopic characterization of these complex heme proteins. It is, furthermore, of general application to heme proteins opening new possibilities in the characterization of this important class of proteins.

  6. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks

    PubMed Central

    Chokkathukalam, Achuthanunni; Kim, Dong-Hyun; Barrett, Michael P; Breitling, Rainer; Creek, Darren J

    2014-01-01

    The rapid emergence of metabolomics has enabled system-wide measurements of metabolites in various organisms. However, advances in the mechanistic understanding of metabolic networks remain limited, as most metabolomics studies cannot routinely provide accurate metabolite identification, absolute quantification and flux measurement. Stable isotope labeling offers opportunities to overcome these limitations. Here we describe some current approaches to stable isotope-labeled metabolomics and provide examples of the significant impact that these studies have had on our understanding of cellular metabolism. Furthermore, we discuss recently developed software solutions for the analysis of stable isotope-labeled metabolomics data and propose the bioinformatics solutions that will pave the way for the broader application and optimal interpretation of system-scale labeling studies in metabolomics. PMID:24568354

  7. Open system sulphate reduction in a diagenetic environment - Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada

    NASA Astrophysics Data System (ADS)

    Magnall, J. M.; Gleeson, S. A.; Stern, R. A.; Newton, R. J.; Poulton, S. W.; Paradis, S.

    2016-05-01

    Highly positive δ34S values in sulphide minerals are a common feature of shale hosted massive sulphide deposits (SHMS). Often this is attributed to near quantitative consumption of seawater sulphate, and for Paleozoic strata of the Selwyn Basin (Canada), this is thought to occur during bacterial sulphate reduction (BSR) in a restricted, euxinic water column. In this study, we focus on drill-core samples of sulphide and barite mineralisation from two Late Devonian SHMS deposits (Tom and Jason, Macmillan Pass, Selwyn Basin), to evaluate this euxinic basin model. The paragenetic relationship between barite, pyrite and hydrothermal base metal sulphides has been determined using transmitted and reflected light microscopy, and backscatter electron imaging. This petrographic framework provides the context for in-situ isotopic microanalysis (secondary ion mass spectrometry; SIMS) of barite and pyrite. These data are supplemented by analyses of δ34S values for bulk rock pyrite (n = 37) from drill-core samples of un-mineralised (barren), siliceous mudstone, to provide a means by which to evaluate the mass balance of sulphur in the host rock. Three generations of barite have been identified, all of which pre-date hydrothermal input. Isotopically, the three generations of barite have overlapping distributions of δ34S and δ18O values (+22.5‰ to +33.0‰ and +16.4‰ to +18.3‰, respectively) and are consistent with an origin from modified Late Devonian seawater. Radiolarian tests, enriched in barium, are abundant within the siliceous mudstones, providing evidence that primary barium enrichment was associated with biologic activity. We therefore propose that barite formed following remobilisation of productivity-derived barium within the sediment, and precipitated within diagenetic pore fluids close to the sediment water interface. Two generations of pyrite are texturally associated with barite: framboidal pyrite (py-I), which has negative δ34S values (-23‰ to -28

  8. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr

    NASA Astrophysics Data System (ADS)

    Pinti, D. L.; Castro, M. C.; Shouakar-Stash, O.; Tremblay, A.; Garduño, V. H.; Hall, C. M.; Hélie, J.-F.; Ghaleb, B.

    2013-01-01

    Isotopes of noble gases, CO2, H2O and Sr were measured in 10 geothermal wells and 8 hot springs, fumaroles and mud volcanoes at Los Azufres, the second most important geothermal field in Mexico. The aim of this study is to provide additional information on fluid circulation in the field and surrounding areas (Araró hot springs), as well as on physical processes such as boiling, steam separation and invasion of re-injected brines following over 25 years of geothermal fluid exploitation. Mantle helium dominates in fluids from the northern production zone of Marítaro, with measured 3He/4He ratios up to 7 Ra (where Ra is the atmospheric ratio of 1.386 × 10- 6). 3He/4He ratios are positively correlated with 87Sr/86Sr ratios and with δD and δ18O. These relationships suggest that Los Azufres fluids represent a mixing between primary magmatic 3He-rich fluids and groundwater currently discharging at Araró hot springs and enriched in radiogenic 4He acquired from Miocene andesites. Unusually high He ratios together with radiogenic Sr isotopic ratios suggest that thermal waters acquired mantle He from deep-seated parent magmas and radiogenic Sr possibly during their uprising through the metamorphic basement. 40Ar/36Ar ratios of 366 to 429 measured in two wells indicate either mantle-derived argon or a radiogenic 40Ar in situ component, suggesting the local presence of an older crustal fluid component in the northern part of the field. Ne, Kr and Xe are entirely of atmospheric origin, but processes of boiling, steam separation and re-injection of used brines have led to fractionation of their elemental abundances. Comparison with previous studies suggests that the boiling zone in the northern production zone is currently extending further north (Marítaro hot springs). In the southwestern productive zone, re-injected brines might account for more than 90% of the exploited fluids.

  9. Relative quantification of biomarkers using mixed-isotope labeling coupled with MS

    PubMed Central

    Chapman, Heidi M; Schutt, Katherine L; Dieter, Emily M; Lamos, Shane M

    2013-01-01

    The identification and quantification of important biomarkers is a critical first step in the elucidation of biological systems. Biomarkers take many forms as cellular responses to stimuli and can be manifested during transcription, translation, and/or metabolic processing. Increasingly, researchers have relied upon mixed-isotope labeling (MIL) coupled with MS to perform relative quantification of biomarkers between two or more biological samples. MIL effectively tags biomarkers of interest for ease of identification and quantification within the mass spectrometer by using isotopic labels that introduce a heavy and light form of the tag. In addition to MIL coupled with MS, a number of other approaches have been used to quantify biomarkers including protein gel staining, enzymatic labeling, metabolic labeling, and several label-free approaches that generate quantitative data from the MS signal response. This review focuses on MIL techniques coupled with MS for the quantification of protein and small-molecule biomarkers. PMID:23157360

  10. Constraining Historical NOx Concentrations Using Variations in Atmospheric 18O18O: A Status Report

    NASA Astrophysics Data System (ADS)

    Yeung, L. Y.; Young, E. D.; Ash, J. L.; Boering, K. A.; Sowers, T. A.

    2013-12-01

    Historical concentrations of nitrogen oxides, ozone, and other short-lived tropospheric oxidants are not well known. The best observational constraints come from starch-paper measurements (i.e., via the Schönbein method) made in Europe during the late 1800s; they suggest that tropospheric ozone increased several-fold during the 20th century, but uncertainties in those measurements and other paleo-oxidant indicators have limited the accuracy of observations available for validating long-term chemistry-climate models. Isotopic bond ordering in molecular oxygen could be exploited as a new constraint on past oxidant concentrations: Rare isotopes in O2 are re-arranged through O(3P) + O2 isotope exchange reactions in the atmosphere, resulting in relative proportions of 18O18O that depend on temperature, O2 residence time, and O(3P) concentration. Increased tropospheric O(3P) concentrations, arising from increasing emissions and photolysis of nitrogen oxides, likely altered the relative proportions of 18O18O near the surface. In this sense, the isotopic bond ordering in tropospheric O2 (i.e., Δ36) records information about the concentrations of O(3P) and its principal tropospheric source, NO2. I will present recent progress towards this application, including improved constraints on the global budget from measurements of stratospheric air, biological isotopic fractionation, and an experimental photochemical calibration of Δ36. Preliminary measurements of air from the Antarctic firn indicate a decrease in Δ36 of 0.1‰ over the past century. If the tropospheric residence time of O2 has remained unchanged, the data suggest that global surface O(3P) concentrations have increased ~50% during this time period. This result may be consistent with Schönbein-method measurements if large increases in NOx emissions occurred mainly over continental regions, with limited increases over the oceans. Extending this record further into the past could test predictions about NOx

  11. Stable isotope-labelled feed nutrients to assess nutrient-specific feed passage kinetics in ruminants.

    PubMed

    Warner, Daniel; Dijkstra, Jan; Hendriks, Wouter H; Pellikaan, Wilbert F

    2014-03-30

    Knowledge of digesta passage kinetics in ruminants is essential to predict nutrient supply to the animal in relation to optimal animal performance, environmental pollution and animal health. Fractional passage rates (FPR) of feed are widely used in modern feed evaluation systems and mechanistic rumen models, but data on nutrient-specific FPR are scarce. Such models generally rely on conventional external marker techniques, which do not always describe digesta passage kinetics in a satisfactory manner. Here the use of stable isotope-labelled dietary nutrients as a promising novel tool to assess nutrient-specific passage kinetics is discussed. Some major limitations of this technique include a potential marker migration, a poor isotope distribution in the labelled feed and a differential disappearance rate of isotopes upon microbial fermentation in non-steady state conditions. Such limitations can often be circumvented by using intrinsically stable isotope-labelled plant material. Data are limited but indicate that external particulate markers overestimate rumen FPR of plant fibre compared with the internal stable isotope markers. Stable isotopes undergo the same digestive mechanism as the labelled feed components and are thus of particular interest to specifically measure passage kinetics of digestible dietary nutrients.

  12. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  13. Isotopic labeling of mammalian G protein-coupled receptors (GPCRs) heterologously expressed in Caenorhabditis elegans*

    PubMed Central

    Salom, David; Cao, Pengxiu; Yuan, Yiyuan; Miyagi, Masaru; Feng, Zhaoyang; Palczewski, Krzysztof

    2015-01-01

    High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack posttranslational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with 15N,13C by providing them with isotopically labeled bacteria. 2H labeling also was achieved by growing C. elegans in presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the ‘test’ GPCR to demonstrate the viability of this approach. Although the worms’ cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization. PMID:25461480

  14. Quantitative microbial ecology through stable isotope probing.

    PubMed

    Hungate, Bruce A; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; McHugh, Theresa A; Marks, Jane C; Morrissey, Ember M; Price, Lance B

    2015-11-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.

  15. Investigation of spatio-temporal variability of water uptake in a groundwater-dependent ecosystem using a stable isotope approach (δ18O, δ2H): Pfyn Forest, Switzerland

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Masini, J.; Goldscheider, N.; Gobat, J. M.; Hunkeler, D.

    2012-04-01

    This work consists of an eco-hydrogeological study of the Pfyn Forest (46o17'35''N; 7o31'59''E, z = 550 m) which is a 6 km long alluvial zone in the upper Rhône valley, near Sierre (Wallis, Switzerland). From a hydrological point of view, the Rhône has a glacio-nival regime type in this area. Between low-flow and high-flow periods, groundwater levels strongly vary (about 8 m) near the main river-aquifer interaction zone in the most upgradient part of the site. In contrast, the downstream part of Pfyn is characterized by a low groundwater level fluctuation of about 1 or 2 m. From an ecological point of view, the riverine fringe at Pfyn presents a broadly recognized natural value but faces many threats due to human activities (derivation channel located upstream, gravel pits). Phytocoenosis vary from dry environments associations (with Scots pines, feather grass) upstream to active floodplain associations (with poplars, alders, willows) and likely dependent on groundwater, downstream. Between these two end-members, a transition mixed forest occurs. In the context of a potential hydrologic alteration due to global climatic change in a close future, this ecosystem should face modifications of the various water source (rainwater, groundwater) proportion and availability. In order to constrain the meteorological, hydrological, pedological and ecological factors governing water uptakes by trees, isotopic characterizations (δ18O, δ2H) of each water compartment (precipitations, groundwater, river, soil, xylem) coupled with the evaluation of the water balance, has been carried out. The investigation focused on 3 different sites located along a transect through the alluvial valley between April 2010 and February 2011, with a twice-monthly resolution. The data permit to obtain three major findings: - At first, an overview of both δ18O and δ2H data shows that rainwater, groundwater, soil water and plant water are usually located on the regional meteoric water line. For

  16. The role of soil processes in δ18O terrestrial climate proxies

    NASA Astrophysics Data System (ADS)

    Kanner, Lisa C.; Buenning, Nikolaus H.; Stott, Lowell D.; Timmermann, Axel; Noone, David

    2014-03-01

    A paleoclimate interpretation of a terrestrial hydrologic proxy such as the δ18O of tree cellulose or speleothem calcite may be biased or misinterpreted if the isotopic composition of the soil water from which the proxy originated undergoes isotopic exchange or fractionation. In this study, we use a global isotope-enabled land surface model to investigate how the δ18O of precipitation may be altered in a soil column due to evaporation and vertical moisture transport. In order to assess how precipitation and evaporation contribute to the soil water isotopic variability, we compare seasonal and interannual changes in simulated xylem water δ18O within a control simulation and in a suite of sensitivity experiments where the effects of precipitation δ18O, water vapor δ18O, and soil water evaporation are independently removed. The simulations, carried out for the period 1979 to 2004, reveal that in semiarid regions, such as the southwest United States, the seasonal cycle in xylem water δ18O is strongly affected by evaporative loss during the dry season and evaporation can also constitute as much as 50% of the interannual δ18O variance. Additional simulations, including soil water tagging experiments, indicate that upward fluxes of soil water occur during drier periods. For soil water δ18O profiles that are isotopically more depleted in 18O at depth, this imparts a low isotopic signature to xylem water δ18O during such dry intervals. Hence, without taking into account vertical moisture transport in the soils, low δ18O years could be misinterpreted as wet conditions (due to decreased evaporative enrichment) when instead drier conditions are equally as likely.

  17. Efficient isotopic tryptophan labeling of membrane proteins by an indole controlled process conduct.

    PubMed

    Berger, Christian; Berndt, Sandra; Pichert, Annelie; Theisgen, Stephan; Huster, Daniel

    2013-06-01

    A protocol for the efficient isotopic labeling of large G protein-coupled receptors with tryptophan in Escherichia coli as expression host was developed that sufficiently suppressed the naturally occurring L-tryptophan indole lyase, which cleaves tryptophan into indole, pyruvate, and ammonia resulting in scrambling of the isotopic label in the protein. Indole produced by the tryptophanase is naturally used as messenger for cell-cell communication. Detailed analysis of different process conducts led to the optimal expression strategy, which mimicked cell-cell communication by the addition of indole during expression. Discrete concentrations of indole and (15) N2 -L-tryptophan at dedicated time points in the fermentation drastically increased the isotopic labeling efficiency. Isotope scrambling was only observed in glutamine, asparagine, and arginine side chains but not in the backbone. This strategy allows producing specifically tryptophan labeled membrane proteins at high concentrations avoiding the disadvantages of the often low yields of auxotrophic E. coli strains. In the fermentation process carried out according to this protocol, we produced ∼15 mg of tryptophan labeled neuropeptide Y receptor type 2 per liter medium.

  18. Identification of RNA sequence isomer by isotope labeling and LC-MS/MS.

    PubMed

    Li, Siwei; Limbach, Patrick A

    2014-11-01

    Recently, we developed a method for modified ribonucleic acid (RNA) analysis based on the comparative analysis of RNA digests (CARD). Within this CARD approach, sequence or modification differences between two samples are identified through differential isotopic labeling of two samples. Components present in both samples will each be labeled, yielding doublets in the CARD mass spectrum. Components unique to only one sample should be detected as singlets. A limitation of the prior singlet identification strategy occurs when the two samples contain components of unique sequence but identical base composition. At the first stage of mass spectrometry, these sequence isomers cannot be differentiated and would appear as doublets rather than singlets. However, underlying sequence differences should be detectable by collision-induced dissociation tandem mass spectrometry (CID MS/MS), as y-type product ions will retain the original enzymatically incorporated isotope label. Here, we determine appropriate instrumental conditions that enable CID MS/MS of isotopically labeled ribonuclease T1 (RNase T1) digestion products such that the original isotope label is maintained in the product ion mass spectrum. Next, we demonstrate how y-type product ions can be used to differentiate singlets and doublets from isomer sequences. We were then able to extend the utility of this approach by using CID MS/MS for the confirmation of an expected RNase T1 digestion product within the CARD analysis of an Escherichia coli mutant strain even in the presence of interfering and overlapping digestion products from other transfer RNAs.

  19. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    PubMed

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.

  20. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  1. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins. PMID:25929326

  2. Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...

  3. Characterization of the N2O isotopic composition (15N, 18O and N2O isotopomers) emitted from incubated Amazon forest soils. Implications for the global N2O isotope budget

    NASA Astrophysics Data System (ADS)

    Pérez, T.; García, D.; Trumbore, S.; Tyler, S.; de Camargo, P.; Moreira, M.; Piccolo, M.; Park, S.; Boering, K.; Cerri, C.

    2003-04-01

    Tropical rain forest soils are the largest natural source of N2O to the atmosphere. Uncertainty in the signature of this source limits the utility of isotopes in constraining the global N2O budget. Differentiating the relative contribution of nitrification and denitrification to the emitted N2O using stable isotopes has been difficult due to the lack of enrichment factors values for each process measured in situ. We have devised a method for measuring enrichment factors using soil incubation experiments. We selected three Amazon rain forest soils: (1) Clay and (2) Sandy from Santarem, Pará State, and (3) Sandy from Nova Vida Farm, Rondonia State, Brazil. The enrichment factor values for nitrification and denitrification are: -97.8±4.2 and -9.9±3.8 per mil for clay Santarem soil, -86.8±4.3 and -45.2±4.5 per mil for sandy Santarem soil and-112.6±3.8 and -10.4±3.5 per mil for Nova Vida Farm soils, respectively. Our results show that enrichment factors for both processes differ with soil texture and location. The enrichment factors for nitrification are significantly smaller than the range reported in the literature (-66 to -42 per mil). Also, the enrichment factors for the Santarem soils (clay and sandy) differ significantly implying that soil texture (which will affect the soil air filled pore space at a given water content) is influencing the bacteria isotopic discrimination. However, the enrichment factors for the Santarem clay sand Nova Vida sandy soils do not differ by much. This suggests that the enrichment factors not only can be affected by texture but also by the microbial fauna present in these soils. We also determined the measurement of the N2O positional dependence. N2O is a linear molecule with two nitrogen atoms. The 15N isotope can be located in either the central nitrogen (alpha position) or in the terminal nitrogen (beta position). The isotopomer site preference (15N alpha - 15N beta) can be used to differentiate processes of production and

  4. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    EPA Science Inventory

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  5. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    SciTech Connect

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-12-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.

  6. Late-Glacial to Late-holocene Shifts in Global Precipitation Delta(sup 18)O

    NASA Technical Reports Server (NTRS)

    Jasechko, S.; Lechler, A.; Pausata, F.S.R.; Fawcett, P.J.; Gleeson, T.; Cendon, D.I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; Welker, J. M.; Werner, M.; Yoshimura, K.

    2015-01-01

    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta(sup 18)O. Here we present a synthesis of 86 globally distributed groundwater (n 59), cave calcite (n 15) and ice core (n 12) isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5000 years). We show that precipitation delta(sup 18)O changes from the late-glacial to the late-Holocene range from -7.1% (delta(sup 18)O(late-Holocene) > delta(sup 18)O(late-glacial) to +1.7% (delta(sup 18)O(late-glacial) > delta(sup 18)O(late-Holocene), with the majority (77) of records having lower late-glacial delta(sup 18)O than late-Holocene delta(sup 18)O values. High-magnitude, negative precipitation delta(sup 18)O shifts are common at high latitudes, high altitudes and continental interiors.

  7. Kinetic isotope effect of the {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study

    SciTech Connect

    Sun, Zhigang Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-07

    The O + O{sub 2} isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the {sup 18}O + {sup 32}O{sub 2} and {sup 16}O + {sup 36}O{sub 2} reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the “reef” structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

  8. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides.

    PubMed

    MacCoss, Michael J; Wu, Christine C; Matthews, Dwight E; Yates, John R

    2005-12-01

    Stable isotope-enriched molecules are used as internal standards and as tracers of in vivo substrate metabolism. The accurate conversion of measured ratios in the mass spectrometer to mole ratios is complicated because a polyatomic molecule containing enriched atoms will result in a combinatorial distribution of isotopomers depending on the enrichment and number of "labeled" atoms. This effect could potentially cause a large error in the mole ratio measurement depending on which isotope peak or peaks were used to determine the ratio. We report a computational method that predicts isotope distributions over a range of enrichments and compares the predicted distributions to experimental peptide isotope distributions obtained by Fourier transform ion cyclotron resonance mass spectrometry. Our approach is accurate with measured enrichments within 1.5% of expected isotope distributions. The method is also precise with 4.9, 2.0, and 0.8% relative standard deviations for peptides containing 59, 79, and 99 atom % excess (15)N, respectively. The approach is automated making isotope enrichment calculations possible for thousands of peptides in a single muLC-FTICR-MS experiment.

  9. Expeditious syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, and its metabolites.

    PubMed

    Lin, Ronghui; Weaner, Larry E; Hoerr, David C; Salter, Rhys; Gong, Yong

    2013-01-01

    Syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, that is, N-(benzo[b]thien-3-ylmethyl)-sulfamide and its metabolites are described. [(13)C(15)N]Benzo[b]thiophene-3-carbonitrile was first prepared by coupling of 3-bromo-benzo[b]thiophene with [(13)C(15)N]-copper cyanide. The resultant [(13)C(15)N]benzo[b]thiophene-3-carbonitrile was reduced with lithium aluminum deuteride to give [(13)CD2(15)N]benzo[b]thiophen-3-yl-methylamine; which was then coupled with sulfamide to afford [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide, the stable isotope-labeled compound with four stable isotope atoms. Direct oxidation of [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide with hydrogen peroxide and peracetic acid gave the stable isotope-labeled sulfoxide and sulfone metabolites. On the other hand, radioactive (14)C-labeled N-(benzo[b]thien-3-ylmethyl)-sulfamide was prepared conveniently by sequential coupling of 3-bromo-benzo[b]thiophene with [(14)C]-copper cyanide, reduction of the carbonitrile to carboxaldehyde, and reductive amination with sulfamide.

  10. Isotopic labelling studies on far-infrared spectra of nickel-histamine complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    2000-11-01

    Nickel-histamine (hm) complexes type [Ni(hm)Cl 2] and [Ni(hm) 3] X2 (Where X=Cl, Br, I, ClO 4) were investigated in the far-infrared region. Metal isotope labelling and deuteration effects were employed for observed band assignments. Metal-ligand vibrations were discussed and correlated with the structures of the complexes.

  11. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  12. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    SciTech Connect

    Serianni, A.S.

    1994-12-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds.

  13. Implementation of a New Isotopic Tool (18O/16O in dissolved O2) for the Management of Oxygen in the Grand River, an Impacted Watershed in S. Ontario

    NASA Astrophysics Data System (ADS)

    Jamieson, T. S.; Schiff, S. L.; Taylor, W. D.

    2004-05-01

    Oxygen (O2) is essential for supporting life in aquatic ecosystems, and mediates the geochemistry of the aquatic environment. Recent analytical development now permits rapid analysis of the 18O/16O ratio of dissolved oxygen (DO) in water. The 18O/16O ratio provides insight into the main processes controlling DO concentrations in rivers: gas exchange, photosynthesis and respiration. Previously, this information was only available using indirect methods that involved laborious point scale measurements that are not amenable to routine sampling. The focus of this study is the Grand River, a Canadian Heritage River that drains into Lake Erie. The receives organic and nutrient inputs from sewage treatment plants, non-point agricultural sources, and serves as a source of drinking water and supports a significant recreational fishery. Dissolved oxygen concentrations in the Grand River can cycle from 2 mg/l to 14 mg/l in the summer during a 24 hour period. The concurrent shift in 18O/16O is greater than 10 permil on a diel basis. Rigorous sampling regimes are needed in dynamic systems that experience large fluxes in O2. Diurnal curves were analyzed for DO and 18O/16O in DO during different seasons. Gas exchange is an important constraint on the diurnal flux of DO. Currently, gas exchange coefficients for the Grand River are typically obtained using empirical estimates based on results from other rivers. Analysis of 18O/16O offers a new method to allow for the direct determination of the gas exchange coefficient for DO in rivers with diurnal cycles.

  14. Synthesis of stable isotope labelled internal standards for drug-drug interaction (DDI) studies.

    PubMed

    Atzrodt, J; Blankenstein, J; Brasseur, D; Calvo-Vicente, S; Denoux, M; Derdau, V; Lavisse, M; Perard, S; Roy, S; Sandvoss, M; Schofield, J; Zimmermann, J

    2012-09-15

    The syntheses of stable isotope labelled internal standards of important CYP-isoform selective probes, like testosterone 1, diclofenac 3, midazolam 5, and dextromethorphan 7, as well as their corresponding hydroxylated metabolites 6β-hydroxytestosterone 2, 4'-hydroxydiclofenac 4, 1'-hydroxymidazolam 6 and dextrorphan 8 are reported. Microwave-enhanced H/D-exchange reactions applying either acid, base, or homogeneous and heterogeneous transition metal catalysis, or combinations thereof proved to be highly efficient for direct deuterium labelling of the above mentioned probes. Compared to conventional stepwise synthetic approaches, the combination of H/D exchange and biotransformation provides the potential for considerable time- and cost savings, in particular for the synthesis of the stable isotope labelled internal standards of 4'-hydroxydiclofenac 4 and 1'-hydroxymidazolam 6. PMID:22890009

  15. Synthesis of stable isotope labelled internal standards for drug-drug interaction (DDI) studies.

    PubMed

    Atzrodt, J; Blankenstein, J; Brasseur, D; Calvo-Vicente, S; Denoux, M; Derdau, V; Lavisse, M; Perard, S; Roy, S; Sandvoss, M; Schofield, J; Zimmermann, J

    2012-09-15

    The syntheses of stable isotope labelled internal standards of important CYP-isoform selective probes, like testosterone 1, diclofenac 3, midazolam 5, and dextromethorphan 7, as well as their corresponding hydroxylated metabolites 6β-hydroxytestosterone 2, 4'-hydroxydiclofenac 4, 1'-hydroxymidazolam 6 and dextrorphan 8 are reported. Microwave-enhanced H/D-exchange reactions applying either acid, base, or homogeneous and heterogeneous transition metal catalysis, or combinations thereof proved to be highly efficient for direct deuterium labelling of the above mentioned probes. Compared to conventional stepwise synthetic approaches, the combination of H/D exchange and biotransformation provides the potential for considerable time- and cost savings, in particular for the synthesis of the stable isotope labelled internal standards of 4'-hydroxydiclofenac 4 and 1'-hydroxymidazolam 6.

  16. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-02-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2 / N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in previous studies, pointing to a reduction in CO emissions from traffic. The 13C in CO2 reflects the isotopic composition of the fuel. 18O in CO2 is slightly depleted compared to the 18O in atmospheric O2, and shows significant variability. In contrast, the δ13C values of CO show that significant fractionation takes place during CO destruction in the catalytic converter. 13C in CO is enriched by 3‰ compared to the 13C in the fuel burnt, while the 18O content is similar to that of atmospheric O2. We compute a fractionation constant of (-2.7 ± 0.7)‰ for 13C during CO destruction. The N2O : CO2 average ratio of (1.8 ± 0.2) × 10-2 ppb:ppm is significantly lower than in past studies, showing a reduction in N2O emissions likely related to improvements in the catalytic converter technology. We also observed small CH4 emissions, with an average CH4 : CO2 ratio of (4.6 ± 0.2) × 10-2 ppb:ppm. The O2 : CO2 ratios of (-1.47 ± 0.01) ppm:ppm are very close to the expected, theoretically calculated values of O2 depletion per CO2 enhancement.

  17. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    PubMed

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy.

  18. Isotope labeling pattern study of central carbon metabolites using GC/MS.

    PubMed

    Jung, Joon-Young; Oh, Min-Kyu

    2015-01-01

    Determination of fluxes by (13)C tracer experiments depends on monitoring the (13)C labeling pattern of metabolites during isotope experiments. In metabolome-based (13)C metabolic flux analysis, liquid chromatography combined with mass spectrometry or tandem mass spectrometry (LC/MS or LC/MS/MS, respectively) has been mainly used as an analytical platform for isotope pattern studies of central carbon metabolites. However, gas chromatography with mass spectrometry (GC/MS) has several advantages over LC/MS, such as high sensitivity, low cost, ease of operation, and availability of mass spectra databases for comparison. In this study, analysis of isotope pattern for central carbon metabolites using GC/MS was demonstrated. First, a proper set of mass ions for central carbon metabolites was selected based on carbon backbone information and structural isomers of mass fragment ions. A total of 34 mass fragment ions was selected and used for the quantification of 25 central carbon metabolites. Then, to quantify isotope fractions, a natural mass isotopomer library for selected mass fragment ions was constructed and subtracted from isotopomer mass spectra data. The results revealed a surprisingly high abundance of partially labeled (13)C intermediates, such as 56.4% of fructose 6-phosphate and 47.6% of dihydroxyacetone phosphate at isotopic steady state, which were generated in the pentose phosphate pathway. Finally, dynamic changes of isotope fragments of central metabolites were monitored with a U-(13)C glucose stimulus response experiment in Kluyveromyces marxianus. With a comprehensive study of isotope patterns of central carbon metabolites using GC/MS, 25 central carbon metabolites and their isotopic fractions were successfully quantified. Dynamic and precise acquisition of isotope pattern can then be used in combination with proper kinetic models to calculate metabolic fluxes.

  19. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13C and 15N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13C15N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39K, 23Na and 40Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  20. Preparation of stable isotope-labeled peripheral cannabinoid receptor CB2 by bacterial fermentation

    PubMed Central

    Berger, Christian; Ho, Jenny T.C.; Kimura, Tomohiro; Hess, Sonja; Gawrisch, Klaus; Yeliseev, Alexei

    2010-01-01

    We developed a bacterial fermentation protocol for production of a stable isotope-labeled cannabinoid receptor CB2 for subsequent structural studies of this protein by nuclear magnetic resonance spectroscopy. The human peripheral cannabinoid receptor was expressed in Escherichia coli as a fusion with maltose binding protein and two affinity tags. The fermentation was performed in defined media comprised of mineral salts, glucose and 15N2-L-tryptophan to afford incorporation of the labeled amino acid into the protein. Medium, growth and expression conditions were optimized so that the fermentation process produced about 2 mg of purified, labeled CB2 per liter of culture medium. By performing a mass spectroscopic characterization of the purified CB2, we determined that one of the two 15N atoms in tryptophan was incorporated into the recombinant protein. NMR analysis of 15N chemical shifts strongly suggests that the 15N atoms are located in Trp-indole rings. Importantly, analysis of the peptides derived from the CNBr cleavage of the purified protein confirmed a minimum of 95% incorporation of the labeled tryptophan into the CB2 sequence. The labeled CB2, purified and reconstituted into liposomes at a protein-to-lipid molar ratio of 1:500, was functional as confirmed by activation of cognate G proteins in an in vitro coupled assay. To our knowledge, this is the first reported production of a biologically active, stable isotope-labeled G protein-coupled receptor by bacterial fermentation. PMID:20044006

  1. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  2. Mechanistic Insights into Catalytic Ethanol Steam Reforming Using Isotope-Labeled Reactants.

    PubMed

    Crowley, Stephen; Castaldi, Marco J

    2016-08-26

    The low-temperature ethanol steam reforming (ESR) reaction mechanism over a supported Rh/Pt catalyst has been investigated using isotope-labeled EtOH and H2 O. Through strategic isotope labeling, all nonhydrogen atoms were distinct from one another, and allowed an unprecedented level of understanding of the dominant reaction pathways. All combinations of isotope- and non-isotope-labeled atoms were detected in the products, thus there are multiple pathways involved in H2 , CO, CO2 , CH4 , C2 H4 , and C2 H6 product formation. Both the recombination of C species on the surface of the catalyst and preservation of the C-C bond within ethanol are responsible for C2 product formation. Ethylene is not detected until conversion drops below 100 % at t=1.25 h. Also, quantitatively, 57 % of the observed ethylene is formed directly through ethanol dehydration. Finally there is clear evidence to show that oxygen in the SiO2 -ZrO2 support constitutes 10 % of the CO formed during the reaction. PMID:27487203

  3. Comparative pharmacokinetics of unlabeled and deuterium-labeled terbutaline: demonstration of a small isotope effect

    SciTech Connect

    Borgstroem, L.L.; Lindberg, C.; Joensson, S.S.; Svensson, K.

    1988-11-01

    An equimolar mixture of terbutaline and (/sup 2/H6)terbutaline was given as an oral solution to six healthy volunteers (three men and three women). Frequent blood samples were collected during a 24-h period and the plasma concentrations of unlabeled and deuterium-labeled terbutaline were measured by GC-MS. The overall geometric mean plasma concentration ratio of terbutaline to (/sup 2/H6)terbutaline (isotope ratio) was 1.04 and differed significantly from unity. The difference can be explained by a difference in lipophilicity between the analogues, affecting their absorption. No trend in isotope ratio over the experimental time was observed. For unknown reasons, the isotope ratio was higher for women (1.07) than for men (1.00). Deuterium-labeled terbutaline can be used, intravenously or orally, as an absolute reference in bioavailability studies on terbutaline. If deuterium-labeled terbutaline is given orally in a single-day relative bioavailability study, a correlation should be made for the observed isotope effect.

  4. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  5. Simplified quantitative glycomics using the stable isotope label Girard's reagent p by electrospray ionization mass spectrometry.

    PubMed

    Wang, Chengjian; Wu, Zhiyu; Yuan, Jiangbei; Wang, Bo; Zhang, Ping; Zhang, Ying; Wang, Zhongfu; Huang, Linjuan

    2014-02-01

    Fast, sensitive, and simple methods for quantitative analysis of disparities in glycan expression between different biological samples are essential for studies of protein glycosylation patterns (glycomics) and the search for disease glycan biomarkers. Relative quantitation of glycans based on stable isotope labeling combined with mass spectrometric detection represents an emerging and promising technique. However, this technique is undermined by the complexity of mass spectra of isotope-labeled glycans caused by the presence of multiple metal ion adduct signals, which result in a decrease of detection sensitivity and an increase of difficulties in data interpretation. Herein we report a simplified quantitative glycomics strategy, which features nonreductive isotopic labeling of reducing glycans with either nondeuterated (d0-) or deuterated (d5-) Girard's reagent P (GP) without salts introduced and simplified mass spectrometric profiles of d0- and d5-GP derivatives of neutral glycans as molecular ions without complex metal ion adducts, allowing rapid and sensitive quantitative comparison between different glycan samples. We have obtained optimized GP-labeling conditions and good quantitation linearity, reproducibility, and accuracy of data by the method. Its excellent applicability was validated by comparatively quantitative analysis of the neutral N-glycans released from bovine and porcine immunoglobulin G as well as of those from mouse and rat sera. Additionally, we have revealed the potential of this strategy for the high-sensitivity analysis of sialylated glycans as GP derivatives, which involves neutralization of the carboxyl group of sialic acid by chemical derivatization.

  6. Isotopic labeling of mouse interferon by incorporation of radioactive amino acids during synthesis

    SciTech Connect

    DeMaeyer-Guignard, J.; Cachard, A.; DeMaeyer, E.

    1982-07-30

    Mouse interferon produced by C-243 cells induced with Newcastle disease virus was isotopically labeled by adding either (/sup 35/S)methionine or a /sup 14/C-labeled amino acid mixture to the culture medium. A method combining butyric acid and theophylline treatment and resulting in high interferon yields was used. Following purification by two-step affinity chromatography on poly(U) and antibody columns, the resulting material was analyzed on SDS-PAGE. The migration pattern of radioactivity and interferon coincided well and autoradiography revealed three major bands at migration distances corresponding, respectively, to 35, 28, and 22 K. Interferon represented 3.8% of all (/sup 35/S)methionine-labeled proteins and 2.6% of all /sup 14/C-amino acid-labeled proteins released into the medium.

  7. Radiogenic Nd isotope labeling of the northern NE Atlantic during MIS 2

    NASA Astrophysics Data System (ADS)

    Roberts, Natalie L.; Piotrowski, Alexander M.

    2015-08-01

    Paleoceanographic reconstructions rely on chemical proxies which are controlled by physical, chemical, and biological marine parameters. The accurate interpretation of proxy records relies on the integrity of proxy-environmental relationships through time, and under changing conditions. In this study we closely examine paleo controls on authigenic Nd isotope records from five cores in the northern NE Atlantic, approximating a depth-transect, allowing spatial and temporal relationships to be reconstructed. We compare our Nd isotope records with other paleocirculation proxies, and consider the sedimentalogical controls on Nd isotope signals, by comparing ice-rafted detritus lithology and counts, detrital sediment chemistry and redox sensitive element concentrations measured on foraminifera authigenic coatings. With this suite of geochemical and sedimentalogical data we show that Nd isotope records in the northern NE Atlantic were labeled by radiogenic sediments, however this modification did not occur in the pore-waters of each core, but instead likely reflects changes in the Nd isotopic composition of deep-waters caused by the input of ice-rafted sediment during Heinrich events and the last glacial maximum. This study has implications for understanding how localized changes in the Nd isotope signal can set a watermass end-member composition, decoupling chemical proxy-circulation relationships locally, but providing a signal which can be potentially traced along the deep-water flowpath. Such scenarios must be considered in future interpretations of glacial Nd isotope records taken from within the ice-rafted detritus belt and downstream along watermass flowpaths.

  8. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling

    NASA Astrophysics Data System (ADS)

    Wang, Shengnan; Suzuki, Satoru; Hibino, Hiroki

    2014-10-01

    Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of 12C-lattice and surface deposition of 13C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like 13C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new way to investigate multiple grain structures in CVD graphene with a simple spectroscopic technique.Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of 12C-lattice and surface deposition of 13C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like 13C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new

  9. Climatological significance of δ18O in north Tibetan ice cores

    NASA Astrophysics Data System (ADS)

    Yao, Tandong; Thompson, Lonnie G.; Mosley-Thompson, Ellen; Zhihong, Yang; Xingping, Zhang; Lin, Ping-Nan

    1996-12-01

    Oxygen isotopic ratios (δ18O) of precipitation samples collected over several years at three meteorological stations on the northern Tibetan Plateau were used to conduct the first investigation of the relationship between δ18O and contemporaneous air temperatures (Ta). Inferring past temperatures from δ18O measured in recently acquired Tibetan ice cores necessitates establishing whether a δ18O-Ta relationship exists. For each station a strong temporal relationship is found between δ18O and Ta, particularly for monthly averages which remove synoptic-scale influences such as changes in condensation level, condensation temperature, and moisture sources. Moisture source is identified as a major factor in the spatial distribution of δ18O, but air temperature determines the temporal fluctuations of δ18O at individual sites on the northern Tibetan Plateau. The 30-year records of annually averaged δ18O from three different ice coring sites are not correlated significantly with contemporaneous air temperature records from their closest meteorological station (150 to 200 km). However, since 1960 the three air temperature records reveal a modest warming trend, while the three contemporaneous δ18O records show a modest 18O enrichment.

  10. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives.

    PubMed

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Asquith, Becca; Macallan, Derek

    2016-06-30

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  11. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives

    PubMed Central

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Macallan, Derek

    2016-01-01

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  12. Determination of Phytochelatins in Rice by Stable Isotope Labeling Coupled with Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Ping; Cai, Wen-Jing; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-01

    A highly sensitive method was developed for the detection of phytochelatins (PCs) in rice by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (IL-LC-ESI-MS/MS) analysis. A pair of isotope-labeling reagents [ω-bromoacetonylquinolinium bromide (BQB) and BQB-d(7)] were used to label PCs in plant sample and standard PCs, respectively, and then combined prior to LC/MS analysis. The heavy labeled standards were used as the internal standards for quantitation to minimize the matrix and ion suppression effects in MS analysis. In addition, the ionization efficiency of PCs was greatly enhanced through the introduction of a permanent charged moiety of quaternary ammonium of BQB into PCs. The detection sensitivities of PCs upon BQB labeling improved by 14-750-fold, and therefore, PCs can be quantitated using only 5 mg of plant tissue. Furthermore, under cadmium (Cd) stress, we found that the contents of PCs in rice dramatically increased with the increased concentrations and treatment time of Cd. It was worth noting that PC5 was first identified and quantitated in rice tissues under Cd stress in the current study. Taken together, this IL-LC-ESI-MS/MS method demonstrated to be a promising strategy in detection of PCs in plants with high sensitivity and reliability. PMID:26073168

  13. Determination of Phytochelatins in Rice by Stable Isotope Labeling Coupled with Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Ping; Cai, Wen-Jing; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-01

    A highly sensitive method was developed for the detection of phytochelatins (PCs) in rice by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (IL-LC-ESI-MS/MS) analysis. A pair of isotope-labeling reagents [ω-bromoacetonylquinolinium bromide (BQB) and BQB-d(7)] were used to label PCs in plant sample and standard PCs, respectively, and then combined prior to LC/MS analysis. The heavy labeled standards were used as the internal standards for quantitation to minimize the matrix and ion suppression effects in MS analysis. In addition, the ionization efficiency of PCs was greatly enhanced through the introduction of a permanent charged moiety of quaternary ammonium of BQB into PCs. The detection sensitivities of PCs upon BQB labeling improved by 14-750-fold, and therefore, PCs can be quantitated using only 5 mg of plant tissue. Furthermore, under cadmium (Cd) stress, we found that the contents of PCs in rice dramatically increased with the increased concentrations and treatment time of Cd. It was worth noting that PC5 was first identified and quantitated in rice tissues under Cd stress in the current study. Taken together, this IL-LC-ESI-MS/MS method demonstrated to be a promising strategy in detection of PCs in plants with high sensitivity and reliability.

  14. Synthesis of an Isotopically Labeled Naphthalene Derivative That Supports a Long-Lived Nuclear Singlet State

    PubMed Central

    2015-01-01

    The synthesis of an octa-alkoxy substituted isotopically labeled naphthalene derivative, shown to have excellent properties in singlet NMR experiments, is described. This highly substituted naphthalene system, which incorporates an adjacent 13C spin pair, is readily accessed from a commercially available 13C2-labeled building block via sequential thermal alkynyl- and arylcyclobutenone rearrangements. The synthetic route incorporates a simple desymmetrization approach leading to a small difference in the chemical shifts of the 13C spin pair, a design constraint crucial for accessing nuclear singlet order. PMID:25898076

  15. 18O-Tracer Metabolomics Reveals Protein Turnover and CDP-Choline Cycle Activity in Differentiating 3T3-L1 Pre-Adipocytes.

    PubMed

    Kirkwood, Jay S; Miranda, Cristobal L; Bobe, Gerd; Maier, Claudia S; Stevens, Jan F

    2016-01-01

    The differentiation of precursor cells into mature adipocytes (adipogenesis) has been an area of increased focus, spurred by a rise in obesity rates. Though our understanding of adipogenesis and its regulation at the cellular level is growing, many questions remain, especially regarding the regulation of the metabolome. The 3T3-L1 cell line is the most well characterized cellular model of adipogenesis. Using a time course metabolomics approach, we show that the 3T3-L1 preadipocyte metabolome is greatly altered during the first 48 hours of differentiation, where cells go through about two rounds of cell division, a process known as mitotic clonal expansion. Short-chain peptides were among several small molecules that were increased during mitotic clonal expansion. Additional indicators of protein turnover were also increased, including bilirubin, a degradation product of heme-containing proteins, and 3-methylhistidine, a post-translationally modified amino acid that is not reutilized for protein synthesis. To study the origin of the peptides, we treated differentiating preadipocytes with 18O labeled water and found that 18O was incorporated into the short chain peptides, confirming them, at least in part, as products of hydrolysis. Inhibitors of the proteasome or matrix metalloproteinases affected the peptide levels during differentiation, but inhibitors of autophagy or peptidases did not. 18O was also incorporated into several choline metabolites including cytidine 5'-diphosphocholine (CDP-choline), glycerophosphocholine, and several phosphatidylcholine species, indicative of phosphatidylcholine synthesis/degradation and of flux through the CDP-choline cycle, a hallmark of proliferating cells. 18O-Tracer metabolomics further showed metabolic labeling of glutamate, suggestive of glutaminolysis, also characteristic of proliferating cells. Together, these results highlight the utility of 18O isotope labeling in combination with metabolomics to uncover changes in

  16. 18O-Tracer Metabolomics Reveals Protein Turnover and CDP-Choline Cycle Activity in Differentiating 3T3-L1 Pre-Adipocytes

    PubMed Central

    Kirkwood, Jay S.; Miranda, Cristobal L.; Bobe, Gerd; Maier, Claudia S.; Stevens, Jan F.

    2016-01-01

    The differentiation of precursor cells into mature adipocytes (adipogenesis) has been an area of increased focus, spurred by a rise in obesity rates. Though our understanding of adipogenesis and its regulation at the cellular level is growing, many questions remain, especially regarding the regulation of the metabolome. The 3T3-L1 cell line is the most well characterized cellular model of adipogenesis. Using a time course metabolomics approach, we show that the 3T3-L1 preadipocyte metabolome is greatly altered during the first 48 hours of differentiation, where cells go through about two rounds of cell division, a process known as mitotic clonal expansion. Short-chain peptides were among several small molecules that were increased during mitotic clonal expansion. Additional indicators of protein turnover were also increased, including bilirubin, a degradation product of heme-containing proteins, and 3-methylhistidine, a post-translationally modified amino acid that is not reutilized for protein synthesis. To study the origin of the peptides, we treated differentiating preadipocytes with 18O labeled water and found that 18O was incorporated into the short chain peptides, confirming them, at least in part, as products of hydrolysis. Inhibitors of the proteasome or matrix metalloproteinases affected the peptide levels during differentiation, but inhibitors of autophagy or peptidases did not. 18O was also incorporated into several choline metabolites including cytidine 5'-diphosphocholine (CDP-choline), glycerophosphocholine, and several phosphatidylcholine species, indicative of phosphatidylcholine synthesis/degradation and of flux through the CDP-choline cycle, a hallmark of proliferating cells. 18O-Tracer metabolomics further showed metabolic labeling of glutamate, suggestive of glutaminolysis, also characteristic of proliferating cells. Together, these results highlight the utility of 18O isotope labeling in combination with metabolomics to uncover changes in

  17. Experiments for a systematic comparison between stable-isotope-(deuterium) labeling and radio-((14)C) labeling for the elucidation of the in vitro metabolic pattern of pharmaceutical drugs.

    PubMed

    Grunwald, Helge; Hargreaves, Patrick; Gebhardt, Klaus; Klauer, Dominique; Serafyn, Arnaud; Schmitt-Hoffmann, Anne; Schleimer, Michael; Schlotterbeck, Goetz; Wind, Mathias

    2013-11-01

    A systematic comparison between two labeling approaches for the investigation of the in vitro metabolic pattern of pharmaceutical drugs was performed by examining the use of (i) radiolabeled drugs analyzed with LC-MS-offline radiodetection and (ii) stable-isotope labeled drugs, used in a defined mixture with the unlabeled drug and analyzed by LC-MS with recognition of the specific isotopic pattern. (14)C was used for the radioisotope-approach and deuterium for the stable-isotope approach. Olanzapine, diclofenac and ketoconazole were chosen as model drugs, as they are commercially available in their non-, radio- and stable-isotope labeled forms. For all three model drugs, liver microsome- and hepatocyte-incubations (both from rat) were performed with various concentrations and incubation times for both, the radio- and the stable-isotope approaches. The metabolic pattern, including structure elucidation of all detected metabolites, was performed independently for all individual compounds and incubations. Subsequently, the metabolic patterns of the radio-, and the stable-isotope approaches were compared. In conclusion, all metabolites found with the radioisotope approach could also be found with the stable-isotope approach. Although the stable-isotope approach does not provide a quantitative result, it can be considered to be a highly suited analytical alternative for early in vitro metabolism investigations, especially when radiolabeled drug analogues are not yet available and quantitative results are not yet necessary.

  18. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase†

    PubMed Central

    Luk, Louis Y. P.; Ruiz‐Pernía, J. Javier; Adesina, Aduragbemi S.; Loveridge, E. Joel

    2015-01-01

    Abstract Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N‐terminal segment containing heavy isotopes (2H, 13C, 15N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C‐terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N‐terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C‐terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C‐terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis. PMID:26079622

  19. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    PubMed

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  20. Using (18)O/(16)O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application.

    PubMed

    De Souza, Roger A; Martin, Manfred

    2008-05-01

    The use of an (18)O/(16)O exchange experiment as a means for probing surface space-charge layers in oxides is examined theoretically and experimentally. On the basis of a theoretical treatment, isotope penetration profiles are calculated for (18)O/(16)O exchange across a gas-solid interface and subsequent diffusion of the labelled isotope through an equilibrium space-charge layer depleted of mobile oxygen vacancies and into a homogeneous bulk phase. Profiles calculated for a range of conditions all have a characteristic shape: a sharp drop in isotope fraction close to the surface followed by a normal bulk diffusion profile. Experimental (18)O profiles in an exchanged (001) oriented single crystal of Fe-doped SrTiO(3) were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS). By extracting the space-charge potential from such profiles, we demonstrate that this method allows the spatially resolved characterization of space-charge layers at the surfaces of crystalline oxides under thermodynamically well-defined conditions.

  1. An economical method for (15)N/(13)C isotopic labeling of proteins expressed in Pichia pastoris.

    PubMed

    Rodriguez, E; Krishna, N R

    2001-07-01

    We report a new and cost-effective approach to prepare (15)N/(13)C labeled proteins for NMR using the Pichia pastoris expression system. Four protocols (P1 to P4) were defined and compared using recombinant Ovine interferon-tau (rOvIFN-tau). Our results demonstrate that in order to get full incorporation of (15)N and (13)C, the isotopes are not totally required during the initial growth phase of P. pastoris culture. The addition of small amounts of (15)N and (13)C compounds 6 h prior to the methanol induction phase is sufficient to obtain 99% incorporation of heavy isotopes into the protein. Our optimized protocol P4 is two-thirds less costly than the classical method using (15)N and (13)C isotopes during the entire growth phase.

  2. Seasonal variation in natural abundance of 2H and 18O in urine samples from rural Nigeria

    PubMed Central

    Dugas, Lara R.; Brieger, William; Tayo, Bamidele O.; Alabi, Tunrayo; Schoeller, Dale A.; Luke, Amy

    2015-01-01

    The doubly labeled water (DLW) method is used to measure free-living energy expenditure in humans. Inherent to this technique is the assumption that natural abundances of stable isotopes 2H and 18O in body water remain constant over the course of the measurement period and after elimination of the loading dose of DLW will return to the same predose level. To determine variability in the natural abundances of 2H and 18O in humans living in a region with seasonal shifts in rain patterns and sources of drinking water, over the course of 12 mo we collected weekly urine samples from four individuals living in southwest Nigeria as well as samples of their drinking water. From ongoing regional studies of hypertension, obesity, and energy expenditure, we estimated average water turnover rate, urine volumes, and sodium and potassium excretion. Results suggest that 2H and 18O in urine, mean concentrations of urinary sodium and potassium, urine volume, and total body turnover differed significantly from dry to rainy season. Additionally, seasonal weather variables (mean monthly maximum temperatures, total monthly rainfall, and minimum relative humidity) were all significantly associated with natural abundances in urine. No seasonal difference was observed in drinking water samples. Findings suggest that natural abundances in urine may not remain constant as assumed, and studies incorporating DLW measurements across the transition of seasons should interpret results with caution unless appropriate doses of the tracers are used. PMID:25977450

  3. Seasonal variation in natural abundance of 2H and 18O in urine samples from rural Nigeria.

    PubMed

    Harbison, Justin E; Dugas, Lara R; Brieger, William; Tayo, Bamidele O; Alabi, Tunrayo; Schoeller, Dale A; Luke, Amy

    2015-07-01

    The doubly labeled water (DLW) method is used to measure free-living energy expenditure in humans. Inherent to this technique is the assumption that natural abundances of stable isotopes (2)H and (18)O in body water remain constant over the course of the measurement period and after elimination of the loading dose of DLW will return to the same predose level. To determine variability in the natural abundances of (2)H and (18)O in humans living in a region with seasonal shifts in rain patterns and sources of drinking water, over the course of 12 mo we collected weekly urine samples from four individuals living in southwest Nigeria as well as samples of their drinking water. From ongoing regional studies of hypertension, obesity, and energy expenditure, we estimated average water turnover rate, urine volumes, and sodium and potassium excretion. Results suggest that (2)H and (18)O in urine, mean concentrations of urinary sodium and potassium, urine volume, and total body turnover differed significantly from dry to rainy season. Additionally, seasonal weather variables (mean monthly maximum temperatures, total monthly rainfall, and minimum relative humidity) were all significantly associated with natural abundances in urine. No seasonal difference was observed in drinking water samples. Findings suggest that natural abundances in urine may not remain constant as assumed, and studies incorporating DLW measurements across the transition of seasons should interpret results with caution unless appropriate doses of the tracers are used.

  4. A ‘hidden’ 18O-enriched reservoir in the sub-arc mantle

    PubMed Central

    Liu, Chuan-Zhou; Wu, Fu-Yuan; Chung, Sun-Lin; Li, Qiu-Li; Sun, Wei-Dong; Ji, Wei-Qiang

    2014-01-01

    Plate subduction continuously transports crustal materials with high-δ18O values down to the mantle wedge, where mantle peridotites are expected to achieve the high-δ18O features. Elevated δ18O values relative to the upper mantle value have been reported for magmas from some subduction zones. However, peridotites with δ18O values significantly higher than the well-defined upper mantle values have never been observed from modern subduction zones. Here we present in-situ oxygen isotope data of olivine crystals in Sailipu mantle xenoliths from South Tibet, which have been subjected to a long history of Tethyan subduction before the India-Asia collision. Our data identify for the first time a metasomatized mantle that, interpreted as the sub-arc lithospheric mantle, shows anomalously enriched oxygen isotopes18O = +8.03 ± 0.28 ‰). Such a high-δ18O mantle commonly does not contribute significantly to typical island arc basalts. However, partial melting or contamination of such a high-δ18O mantle is feasible to account for the high-δ18O signatures in arc basalts. PMID:24577190

  5. Enhanced sample multiplexing for nitrotyrosine-modified proteins using combined precursor isotopic labeling and isobaric tagging.

    PubMed

    Robinson, Renã A S; Evans, Adam R

    2012-06-01

    Current strategies for identification and quantification of 3-nitrotyrosine (3NT) post-translationally modified proteins (PTM) generally rely on biotin/avidin enrichment. Quantitative approaches have been demonstrated which employ isotopic labeling or isobaric tagging in order to quantify differences in the relative abundances of 3NT-modified proteins in two or potentially eight samples, respectively. Here, we present a novel strategy which uses combined precursor isotopic labeling and isobaric tagging (cPILOT) to increase the multiplexing capability of quantifying 3NT-modified proteins to 12 or 16 samples using commercially available tandem mass tags (TMT) or isobaric tags for relative and absolute quantification (iTRAQ), respectively. This strategy employs "light" and "heavy" labeled acetyl groups to block both N-termini and lysine residues of tryptic peptides. Next, 3NT is reduced to 3-aminotyrosine (3AT) using sodium dithionite followed by derivatization of light and heavy labeled 3AT-peptides with either TMT or iTRAQ multiplex reagents. We demonstrate the proof-of-principle utility of cPILOT with in vitro nitrated bovine serum albumin (BSA) and mouse splenic proteins using TMT(0), TMT(6), and iTRAQ(8) reagents and discuss limitations of the strategy. PMID:22509719

  6. Independent valine and leucine isotope labeling in Escherichia coli protein overexpression systems.

    PubMed

    Lichtenecker, Roman J; Weinhäupl, Katharina; Reuther, Lukas; Schörghuber, Julia; Schmid, Walther; Konrat, Robert

    2013-11-01

    The addition of labeled α-ketoisovalerate to the growth medium of a protein-expressing host organism has evolved into a versatile tool to achieve concomitant incorporation of specific isotopes into valine- and leucine- residues. The resulting target proteins represent excellent probes for protein NMR analysis. However, as the sidechain resonances of these residues emerge in a narrow spectral range, signal overlap represents a severe limitation in the case of high-molecular-weight NMR probes. We present a protocol to eliminate leucine labeling by supplying the medium with unlabeled α-ketoisocaproate. The resulting spectra of a model protein exclusively feature valine signals of increased intensity, confirming the method to be a first example of independent valine and leucine labeling employing α-ketoacid precursor compounds.

  7. 18O/16O in CO2 evolved from goethite during some unusually rapid solid state α-FeOOH to α-Fe2O3 phase transitions: Test of an exchange model for possible use in oxygen isotope analyses of goethite

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton J.

    2015-12-01

    The initial ∼60% of an isothermal vacuum dehydration of goethite can commonly be approximated by first order kinetics. Also, natural goethites contain small amounts of an Fe(CO3)OH component in apparent solid solution. The 18O/16O of CO2 evolved from the Fe(CO3)OH during isothermal vacuum dehydrations is related to the 18O/16O of the goethite by an apparent fractionation factor (αapp) that is, in turn, correlated with a first order rate constant, |m|. A kinetic exchange model predicts that αapp should decrease as |m| increases for a range of |m| that corresponds to relatively slow rates of dehydration. This pattern has been observed in published results. In contrast, for rapid rates of dehydration, αapp is predicted to increase with increasing |m|. Isothermal vacuum dehydrations of two natural goethites had unusually large values of |m| and provided serendipitous tests of this rapid-rate prediction. For these experiments, the measured values of αapp were consistent with patterns of variation predicted by the model. This allowed an estimate of the activation energy (E2) of a model parameter, K2, which is the rate constant for oxygen isotope exchange between CO2 and H2O during the solid-state goethite to hematite phase transition. The estimated value of E2 is only ∼9 kJ/mol. Heterogeneous catalysis tends to decrease the activation energies of gas reactions. Consequently, the inferred value of E2 suggests that goethite and/or hematite catalyze oxygen isotope exchange between CO2 and H2O during the solid-state phase change. Yield, δ13C, and δ18O values are routinely measured for increments of CO2 evolved from the Fe(CO3)OH component during isothermal vacuum dehydration of goethite. Model-predicted values of αapp can be combined with plateau δ18O values of the evolved CO2 to estimate the δ18O of the goethite with a less than optimal, but potentially useful, precision of about ±0.8‰. Therefore, a single analytical procedure (incremental dehydration

  8. Comparison of Acetate Turnover in Methanogenic and Sulfate-Reducing Sediments by Radiolabeling and Stable Isotope Labeling and by Use of Specific Inhibitors: Evidence for Isotopic Exchange

    PubMed Central

    de Graaf, W.; Wellsbury, P.; Parkes, R. J.; Cappenberg, T. E.

    1996-01-01

    Acetate turnover in the methanogenic freshwater anoxic sediments of Lake Vechten, The Netherlands, and in anoxic sediments from the Tamar Estuary, United Kingdom, and the Grosser Jasmunder Bodden, Germany, the latter two dominated by sulfate reduction, was determined. Stable isotopes and radioisotopes, inhibitors (chloroform and fluoroacetate), and methane flux were used to provide independent estimates of acetate turnover. Pore water acetate pool sizes were determined by gas chromatography with a flame ionization detector, and stable isotope-labeled acetate was determined by gas chromatography-mass spectrometry. The appearance of acetates with a different isotope labeling pattern from that initially added demonstrated that isotopic exchange occurred during methanogenic acetate metabolism. The predominant exchange processes were (i) D-H exchange in the methyl group and (ii) (sup13)C-(sup12)C exchange at the carboxyl carbon. These exchanges are most probably caused by the activity of the enzyme complex carbon monoxide dehydrogenase and subsequent methyl group dehydrogenation by tetrahydromethanopterine or a related enzyme. The methyl carbon was not subject to exchange during transformation to methane, and hence acetate with the methyl carbon labeled will provide the most reliable estimate of acetate turnover to methane. Acetate turnover rate estimates with these labels were consistent with independent estimates of acetate turnover (acetate accumulation after inhibition and methane flux). Turnover rates from either radioisotope- or stable isotope-labeled methyl carbon isotopes are, however, dependent on accurate determination of the acetate pool size. The additions of large amounts of stable isotope-labeled acetate elevate the acetate pool size, stimulating acetate consumption and causing deviation from steady-state kinetics. This can, however, be overcome by the application of a non-steady-state model. Isotopic exchange in sediments dominated by sulfate reduction

  9. 13C18O in Earth's Atmosphere: a New Proxy for Constraining CO Budget

    NASA Astrophysics Data System (ADS)

    Guo, W.; Eiler, J. M.

    2005-12-01

    Despite its low average mixing ratio (70-100 ppbv), carbon monoxide plays an important role in atmospheric chemistry. It is the major sink of OH radicals, and thus strongly influences the oxidizing capacity of the atmosphere, and the lifetimes of many other atmospheric trace gases (e.g., methane, NHMCs and HCFCs). At present, the budget of atmospheric CO is constrained by its mixing ratio, δ13C, δ18O, δ17O values, inventory analysis and inverse modeling. However, the major sources of CO (CH4-oxidation, NMHC-oxidation, biomass burning, anthropogenic emissions and the ocean) vary in flux and isotopic composition, and some overlap one another in isotopic composition. Therefore, its atmospheric budget cannot be rigorously defined by inversion of the existing isotopic and concentration records. Here we introduce measurements of the abundance anomaly of the 13C18O isotopologue of carbon monoxide as an additional constraint on its atmospheric budget. We define the 13C18O anomaly as the deviation of its actual abundance from its expected statistical abundance,Δ13C18O=(([13C18O]actual/[12C16O]actual)/([13C18O]stati stical /[12C16O]statistical)-1)×1000. Abundances of 13C18O are measured by quantitatively oxidizing CO to CO2 over the Schutze reagent, and then measuring mass 47 (mainly 13C18O16O) in the product CO2, which is proportional to the abundance of 13C18O in the starting CO. External precision of Δ13C18O for repeated measurements of pure CO averages 0.03‰(one standard deviation). We expect Δ13C18O in atmospheric carbon monoxide to be sensitive to: mixing between CO of different isotopic compositions, thermodynamic fractionations, diffusion, and kinetic isotope effects accompanying chemical reactions. We have investigated the thermodynamic fractionation of Δ13C18O by performing measurements on carbon monoxide samples catalytically equilibrated at high temperatures (300-1000°C). Measured Δ13C18O values, ranging from ~0.08‰ to ~0.47‰, vary as a function

  10. What drives the millennial and orbital variations of δ18O atm?

    NASA Astrophysics Data System (ADS)

    Landais, A.; Dreyfus, G.; Capron, E.; Masson-Delmotte, V.; Sanchez-Goñi, M. F.; Desprat, S.; Hoffmann, G.; Jouzel, J.; Leuenberger, M.; Johnsen, S.

    2010-01-01

    The isotopic composition of atmospheric oxygen ( δ18O atm) is a complex marker that integrates changes in global sea-level, water cycle, and biosphere productivity. A strong signature of orbital precession has been identified leading to the use of low-resolution measurements of δ18O atm to date ice core records. However, the drivers of these δ18O atm variations are still poorly known. Here, we combine records of millennial and orbital scale variations on the NorthGRIP, Vostok, and EPICA Dome C (EDC) ice cores to explore the origin of δ18O atm variations. We show that, superimposed on the dominant precession signal, millennial δ18O atm variations record systematic decreases during warm phases of the Dansgaard-Oeschger events and systematic increases during the cold phases. We show that at both timescales δ18O atm is strongly related to the monsoon activity itself influenced by precessional and millennial shifts in InterTropical Convergence Zone (ITCZ). Then, we show that despite its simplicity, the Dole effect defined as the difference between δ18O atm and δ18O of global sea-level enables one to remove the obliquity signal within the δ18O atm record and is a good indicator of hydrological cycle and biosphere productivity. Finally, we compare the δ18O atm records to past changes in atmospheric composition recorded in ice cores and conclude that δ18O atm responds much more than CH 4 to precession signal, in contrast with earlier views. Similarities observed at orbital timescales between CO 2 and δ18O atm reveal a stronger coupling than previously thought between the carbon and the oxygen cycles.

  11. Positional isotope exchange studies on enzyme using NMR spectroscopy

    SciTech Connect

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, /sup 18/O-..beta..,..gamma..-ATP and /sup 18/O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field /sup 31/P NMR, we were able to differentiate between /sup 18/O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with /sup 18/O-..beta..,..gamma..-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the /sup 18/O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN/sub 1//sub P/) type of mechanism

  12. Hydrolysis of phosphotriesters: determination of transition states in parallel reactions by heavy-atom isotope effects.

    PubMed

    Anderson, M A; Shim, H; Raushel, F M; Cleland, W W

    2001-09-26

    The remote label method was used to measure primary and secondary (18)O isotope effects in the alkaline hydrolysis of O,O-diethylphosphorylcholine iodide (DEPC) and the primary (18)O effect in the alkaline hydrolysis of O,O-diethyl-m-nitrobenzyl phosphate (DEmNBP). Both the leaving group of interest (choline or m-nitrobenzyl alcohol) and ethanol can be ejected during hydrolysis due to the similarity of their pK values. The heavy-atom isotope effects were measured by isotope ratio mass spectrometry. Parallel reaction and incomplete labeling corrections were made for both systems. DEPC has a primary (18)O isotope effect of 1.041 +/- 0.003 and a secondary (18)O isotope effect of 1.033 +/- 0.002. The primary (18)O isotope effect for DEmNBP was 1.052 +/- 0.003. These large effects suggest a highly associative transition state in which the nucleophile approaches very close to the phosphorus atom to eject the leaving group. The large values are also indicative of a large compression, or general movement, on the reaction coordinate.

  13. New monitoring approach for metabolic dynamics in microbial ecosystems using stable-isotope-labeling technologies.

    PubMed

    Date, Yasuhiro; Nakanishi, Yumiko; Fukuda, Shinji; Kato, Tamotsu; Tsuneda, Satoshi; Ohno, Hiroshi; Kikuchi, Jun

    2010-07-01

    We have developed a new approach for monitoring the metabolic dynamics in microbial ecosystems using a combination of DNA fingerprinting and metabolome analysis based on stable-isotope-labeling technologies. Stable-isotope probing of DNA (DNA-SIP) has been used previously for the evaluation of cross-feeding in microbial communities. For the development and validation of our monitoring approach, fecal microbiota were analyzed with stable-isotope-labeled glucose used as the sole carbon source. In order to link the metabolic information and the microbial variability, we performed metabolic-microbial correlation analysis based on nuclear magnetic resonance (NMR) profiles and denaturing gradient gel electrophoresis (DGGE) fingerprints, which successfully identified the glucose-utilizing bacteria and their related extracellular metabolites. Moreover, our approach revealed information regarding the carbon flux, in that the "first" wave of extracellular metabolites secreted by the glucose-utilizing bacteria were incorporated into the "secondary" group of substrate-utilizing bacteria, and that this "secondary" group further produced their own secondary metabolized substrates. Thus, this approach is a powerful tool for monitoring the metabolic dynamics in microbial ecosystems and allows for the tracking of the carbon flux within a microbial community.

  14. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.

    PubMed

    Wang, Shengnan; Suzuki, Satoru; Hibino, Hiroki

    2014-11-21

    Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of (12)C-lattice and surface deposition of (13)C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like (13)C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new way to investigate multiple grain structures in CVD graphene with a simple spectroscopic technique. PMID:25303722

  15. Chemical imaging of biological materials by NanoSIMS using isotopic and elemental labels

    SciTech Connect

    Weber, P K; Fallon, S J; Pett-Ridge, J; Ghosal, S; Hutcheon, I D

    2006-04-10

    The NanoSIMS 50 combines unprecedented spatial resolution (as good as 50 nm) with ultra-high sensitivity (minimum detection limit of {approx}200 atoms). The NanoSIMS 50 incorporates an array of detectors, enabling simultaneous collection of 5 species originating from the same sputtered volume of a sample. The primary ion beam (Cs{sup +} or O{sup -}) can be scanned across the sample to produce quantitative secondary ion images. This capability for multiple isotope imaging with high spatial resolution provides a novel new approach to the study of biological materials. Studies can be made of sub-regions of tissues, mammalian cells, and bacteria. Major, minor and trace element distributions can be mapped on a submicron scale, growth and metabolism can be tracked using stable isotope labels, and biogenic origin can be determined based on composition. We have applied this technique extensively to mammalian and prokaryotic cells and bacterial spores. The NanoSIMS technology enables the researcher to interrogate the fate of molecules of interest within cells and organs through elemental and isotopic labeling. Biological applications at LLNL will be discussed.

  16. PCR and non-isotopic labeling techniques for plant virus detection.

    PubMed

    Fenby, N S; Scott, N W; Slater, A; Elliott, M C

    1995-07-01

    PCR technology permits the detection of viruses at levels several orders of magnitude lower than is possible by other methods. This high sensitivity facilitates detection of virus sequences during the early stages of infection of plants and in soil and vector samples. Early detection of beet necrotic yellow vein virus (BNYVV) in Beta vulgaris is an important part of the strategy for prevention of the spread of rhizomania, a commercially significant disease of sugar beet. A diagnostic test for BNYVV has been developed. This test involves amplification of the viral genome by PCR coupled with non-isotopic labeling and detection of specific sequences. The PCR amplification of BNYVV sequences has been optimized with respect to primer design, sample preparation and reaction conditions. Several non-isotopic labeling strategies for signal amplification have been compared. Hybridization with digoxigenin-labelled cDNA permits the most sensitive detection of PCR products and is the most appropriate method for routine diagnosis. These observations are discussed in the context of the application of PCR for detecting a wide range of viruses. PMID:7580844

  17. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation.

    PubMed

    Yeung, Laurence Y; Affek, Hagit P; Hoag, Katherine J; Guo, Weifu; Wiegel, Aaron A; Atlas, Elliot L; Schauffler, Sue M; Okumura, Mitchio; Boering, Kristie A; Eiler, John M

    2009-07-14

    The stratospheric CO(2) oxygen isotope budget is thought to be governed primarily by the O((1)D)+CO(2) isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO(2) isotopologue (16)O(13)C(18)O, in concert with (18)O and (17)O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric (16)O(13)C(18)O, observed as proportions in the polar vortex that are higher than in any naturally derived CO(2) sample to date. We show, through photochemical experiments, that lower (16)O(13)C(18)O proportions observed in the midlatitudes are determined primarily by the O((1)D)+CO(2) isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher (16)O(13)C(18)O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O((1)D)+CO(2). We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO(2) or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric (16)O(13)C(18)O enrichments may impose additional isotopic constraints on biosphere-atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change.

  18. Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling

    PubMed Central

    2011-01-01

    Background Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (Mus domesticus), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with 15N and then mating them to unlabeled, vasectomized males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that isotopic labeling is a powerful means to study reproductive proteins. Results We identified 69 male-derived proteins from the female reproductive tract following copulation. More than a third of all spectra detected mapped to just seven genes known to be structurally important in the formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly more rapidly than other proteins that we previously identified directly from dissection of the male reproductive tract. Conclusion Our study attempts to comprehensively identify the proteins transferred from males to females during mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female reproductive tract. PMID:21663664

  19. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    PubMed

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  20. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks.

    PubMed

    Nargund, Shilpa; Sriram, Ganesh

    2013-01-27

    Metabolic fluxes are powerful indicators of cell physiology and can be estimated by isotope-assisted metabolic flux analysis (MFA). The complexity of the compartmented metabolic networks of plants has constrained the application of isotope-assisted MFA to them, principally because of poor identifiability of fluxes from the measured isotope labeling patterns. However, flux identifiability can be significantly improved by a priori design of isotope labeling experiments (ILEs). This computational design involves evaluating the effect of different isotope label and isotopomer measurement combinations on flux identifiability, and thereby identifying optimal labels and measurements toward evaluating the fluxes of interest with the highest confidence. This article reports ILE designs for two major, compartmented plant metabolic pathways - the pentose phosphate pathway (PPP) and γ-aminobutyric acid (GABA) shunt. Together, these pathways represent common motifs in plant metabolism including duplication of pathways in different subcellular compartments, reversible reactions and cyclic carbon flow. To compare various ILE designs, we employed statistical A- and D-optimality criteria. Our computations showed that 1,2-(13)C Glc is a powerful and robust label for the plant PPPs, given currently popular isotopomer measurement techniques (single quadrupole mass spectrometry [MS] and 2-D nuclear magnetic resonance [NMR]). Further analysis revealed that this label can estimate several PPP fluxes better than the popular label 1-(13)C Glc. Furthermore, the concurrent measurement of the isotopomers of hexose and pentose moieties synthesized exclusively in the cytosol or the plastid compartments (measurable through intracellular glucose or sucrose, starch, RNA ribose and histidine) considerably improves the identifiability of PPP fluxes in the individual compartments. Additionally, MS-derived isotopomer measurements outperform NMR-derived measurements in identifying PPP fluxes. The

  1. Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis.

    PubMed

    Rauniyar, Navin; McClatchy, Daniel B; Yates, John R

    2013-06-15

    Metabolic labeling of rodent proteins with ¹⁵N, a heavy stable isotope of nitrogen, provides an efficient way for relative quantitation of differentially expressed proteins. Here we describe a protocol for metabolic labeling of rats with an ¹⁵N-enriched spirulina diet. As a case study, we also demonstrate the application of ¹⁵N-enriched tissue as a common internal standard in quantitative analysis of differentially expressed proteins in neurodevelopment in rats at two different time points, postnatal day 1 and 45. We briefly discuss the bioinformatics tools, ProLucid and Census, which can easily be used in a sequential manner to identify and quantitate relative protein levels on a proteomic scale. PMID:23523555

  2. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGES

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; Want, Elizabeth J.; Smith, Colin; O'Maille, Paul; NordstrÖm, Anders; Morita, Hirotoshi; Qin, Chuan; Uritboonthai, Wilasinee; et al

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  3. Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene

    NASA Astrophysics Data System (ADS)

    Costa, Sara D.; Weis, Johan Ek; Frank, Otakar; Fridrichová, Michaela; Kalbac, Martin

    2016-06-01

    In this report important Raman modes for the evaluation of strain in graphene (the 2D and 2D‧) are analyzed. The isotope labeling is used to disentangle contribution of individual graphene layers of graphene bilayer to the studied Raman modes. It is shown that for Bernal-stacked bilayers, the 2D and the 2D‧ Raman modes have three distinct components that can be assigned to processes originating solely from the top graphene layer, bottom graphene layer, and from a combination of processes originating both from the top and bottom layers. The reported results thus enable addressing the properties of individual graphene layers in graphene bilayer by Raman spectroscopy.

  4. A data processing pipeline for mammalian proteome dynamics studies using stable isotope metabolic labeling.

    PubMed

    Guan, Shenheng; Price, John C; Prusiner, Stanley B; Ghaemmaghami, Sina; Burlingame, Alma L

    2011-12-01

    In a recent study, in vivo metabolic labeling using (15)N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508-14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for (15)N metabolic labeling. These fulfill the following functions: (1) cross-extraction of (15)N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide (15)N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow. PMID:21937731

  5. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    PubMed

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative. PMID:17844744

  6. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    SciTech Connect

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. )

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  7. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    NASA Astrophysics Data System (ADS)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  8. Effects of (18)O isotopic substitution on the rotational spectra and potential splitting in the OH-OH2 complex: improved measurements for (16)OH-(16)OH2 and (18)OH-(18)OH2, new measurements for the mixed isotopic forms, and ab initio calculations of the (2)A'-(2)A" energy separation.

    PubMed

    Brauer, Carolyn S; Sedo, Galen; Dahlke, Erin; Wu, Shenghai; Grumstrup, Erik M; Leopold, Kenneth R; Marshall, Mark D; Leung, Helen O; Truhlar, Donald G

    2008-09-14

    Rotational spectra have been observed for (16)OH-(16)OH(2), (16)OH-(18)OH(2), (18)OH-(16)OH(2), and (18)OH-(18)OH(2) with complete resolution of the nuclear magnetic hyperfine structure from the OH and water protons. Transition frequencies have been analyzed for each isotopic form using the model of Marshall and Lester [J. Chem. Phys. 121, 3019 (2004)], which accounts for partial quenching of the OH orbital angular momentum and the decoupling of the electronic spin from the OH molecular axis. The analysis accounts for both the ground ((2)A(')) and first electronically excited ((2)A(")) states of the system, which correspond roughly to occupancy by the odd electron in the p(y) and p(x) orbitals, respectively (where p(y) is in the mirror plane of the complex and p(x) is perpendicular to p(y) and the OH bond axis). The spectroscopic measurements yield a parameter, rho, which is equal to the vibrationally averaged (2)A(')-(2)A(") energy separation that would be obtained if spin-orbit coupling and rotation were absent. For the parent species, rho = -146.560 27(9) cm(-1). (18)O substitution on the water increases /rho/ by 0.105 29(10) cm(-1), while substitution on the OH decreases /rho/ by 0.068 64(11) cm(-1). In the OH-OH(2) complex, the observed value of rho implies an energy spacing between the rotationless levels of the (2)A(') and (2)A(") states of 203.76 cm(-1). Ab initio calculations have been performed with quadratic configuration interaction with single and double excitations (QCISD), as well as multireference configuration interaction (MRCI), both with and without the inclusion of spin-orbit coupling. The MRCI calculations with spin-orbit coupling perform the best, giving a value of 171 cm(-1) for the (2)A(')-(2)A(") energy spacing at the equilibrium geometry. Calculations along the large-amplitude bending coordinates of the OH and OH(2) moieties within the complex are presented and are shown to be consistent with a vibrational averaging effect as the main

  9. Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

    PubMed Central

    Verastegui, Y.; Cheng, J.; Engel, K.; Kolczynski, D.; Mortimer, S.; Lavigne, J.; Montalibet, J.; Romantsov, T.; Hall, M.; McConkey, B. J.; Rose, D. R.; Tomashek, J. J.; Scott, B. R.

    2014-01-01

    ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. PMID:25028422

  10. Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes.

    PubMed

    Hassan, Chopie; Kester, Michel G D; Oudgenoeg, Gideon; de Ru, Arnoud H; Janssen, George M C; Drijfhout, Jan W; Spaapen, Robbert M; Jiménez, Connie R; Heemskerk, Mirjam H M; Falkenburg, J H Frederik; van Veelen, Peter A

    2014-09-23

    Knowledge of the accurate copy number of HLA class I presented ligands is important in fundamental and clinical immunology. Currently, the best copy number determinations are based on mass spectrometry, employing single reaction monitoring (SRM) in combination with a known amount of isotopically labeled peptide. The major drawback of this approach is that the losses during sample pretreatment, i.e. immunopurification and filtration steps, are not well defined and must, therefore, be estimated. In addition, such losses can vary for individual peptides. Therefore, we developed a new approach in which isotopically labeled peptide-MHC monomers (hpMHC) are prepared and added directly after cell lysis, i.e. before the usual sample processing. Using this approach, all losses during sample processing can be accounted for and allows accurate determination of specific MHC class I-presented ligands. Our study pinpoints the immunopurification step as the origin of the rather extreme losses during sample pretreatment and offers a solution to account for these losses. Obviously, this has important implications for accurate HLA-ligand quantitation. The strategy presented here can be used to obtain a reliable view of epitope copy number and thus allows improvement of vaccine design and strategies for immunotherapy.

  11. Free amino acid quantification by LC-MS/MS using derivatization generated isotope-labelled standards.

    PubMed

    Johnson, David W

    2011-05-15

    The further development of derivatizing reagents for plasma amino acid quantification by tandem mass spectrometry is described. The succinimide ester of 4-methylpiperazineacetic acid (MPAS), the iTRAQ reagent, was systematically modified to improve tandem mass spectrometer (MS/MS) product ion intensity. 4-Methylpiperazinebutyryl succinimide (MPBS) and dimethylaminobutyryl succinimide (DMABS) afforded one to two orders of magnitude greater MS/MS product ion signal intensity than the MPAS derivative for simple amino acids. CD(3) analogues of the modified derivatizing reagents were evaluated for preparation of amino acid isotope-labelled quantifying standards. Acceptable accuracy and precision was obtained with d(3)-DMABS as the amino acid standards derivatizing reagent. The product ion spectra of the DMABS amino acid derivatives are diagnostic for structural isomers including valine/norvaline, alanine/sarcosine and leucine/isoleucine. Improved analytical sensitivity and specificity afforded by these derivatives may help to establish liquid chromatography tandem mass spectrometry (LC-MS/MS) with derivatization generated isotope-labelled standards a viable alternative to amino acids analysers.

  12. Application of {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C Isotopes to diagenesis, correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani Field Tunisia

    SciTech Connect

    Mearns, E.W.; Mcbride, J.J.; Bramwell, M.

    1995-08-01

    Strontium Stratigraphy Analysis of the primary matrix chalk of the Abiod Formation reservoir in the Sidi El Kilani Field indicate a Campanian to Maastrichtian age (Upper Cretaceous). A resolution of {+-}1Ma has been achieved and results suggest that there are no major stratigraphic breaks in the studied sequences. Sr-O-C isotope data from early fracture-filling calcite cements suggest they may have formed by the redistribution of CaCO{sub 3} from underlying carbonate sequences and may have precipitated at temperatures in the region of 35-55{degrees}C. The {sup 87}Sr/{sup 86}Sr isotope ratios of formation waters determined by residual salt analysis (SrRSA) suggest that the chemical evolution of waters during reservoir filling was controlled by the influx of basinal waters as opposed to in situ water-rock interaction. Late, fracture-filling dolomite and barite cements have Sr-O-C isotope characteristics consistent with precipitation from these migrating basinal fluids at temperatures similar to current reservoir conditions (70-75{degrees}C). Sr RSA results suggest that the reservoir section in two of the wells may have been in direct lateral communication at the time of oil emplacement. These wells however are separated by a strike-slip fault. The SrRSA results therefore suggest that the fault is a partial barrier which has restricted pressure equilibration in the relatively short timescale of oil production, but which may have allowed homogenization of Sr isotope ratios in formation water.

  13. Peak metamorphic temperatures from Raman Spectroscopy on Carbonaceous Matter (RSCM) and δ18O and δ13C (carb) isotope composition of a major mélange zone in the South Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Jakob, Johannes; Beyssac, Olivier; Boulvais, Philippe; Andersen, Torgeir B.

    2016-04-01

    A mélange in southern Norway comprises a matrix of garnet, mica- and black carbonaceous schists and phyllites of abyssal origin, interlayered with originally coarser grained siliciclastic metasediments, serpentinite conglomerates and sandstones, solitary metaperidotites and thin slivers of gneisses. Several models for the formation of the mélange have been suggested, including formation as a) an ophiolitic mélange formed during ophiolite obduction, b) an unconformable post-obduction transgressive sequence or c) a mélange formed during hyperextension along the pre-Caledonian margin of Baltica. In the past, the mélange has therefore not been treated as one single tectonic unit, but has been assigned to various tectonic positions with both outboard Iapetus and inboard Baltican origins. In this study we argue that the mélange occupies a tectonostratigraphic position below major Baltican basement nappe-complexes previously assigned to the Middle Allochthon. Furthermore, we present new consistent results on the peak metamorphic temperatures (T ˜ 500° C), based on RSCM, and a characteristic δ18Ocarb isotope composition (11-15.5 ‰ SMOW), both consistent for more than 250 km along strike of the mélange. δ13Ccarb values fall within three clusters around 1, - 2 , and - 7 ‰ (PDB), respectively. The stable isotope investigation presented here was carried out in order to explore if pre-Caledonian isotope signatures in various generations of carbonate veins and the early Ordovician fossils at Otta, could have been preserved through a later Caledonian metamorphic overprint. The results presented here however, suggest that re-equilibration of the carbonates took place in the Silurian, most likely coeval with peak metamorphism of ˜ 500° C at ˜ 420 Ma, and the main fabric development close to the base of the nappe-stack. Re-equilibration of the carbonates was assisted by the presence a pervasive static fluid, allowing for oxygen isotope exchange with the surrounding

  14. Purification and stable isotope labeling of the calcium- and integrin-binding protein 1 for structural and functional NMR studies.

    PubMed

    Huang, Hao; Vogel, Hans J

    2013-01-01

    The Calcium- and Integrin-Binding protein 1 (CIB1) has been identified as an important regulatory Ca(2+)-binding protein that is involved in various cellular functions. Nuclear Magnetic Resonance (NMR) spectroscopy provides a powerful approach to study the structure, dynamics, and interactions of CIB1 and related proteins. Multidimensional NMR spectroscopy combined with various selective isotope labeling strategies has proven to be successful in the structure determination of CIB1. Moreover, the same approach allowed the detection of conformational changes when the protein binds different metal ions, and it facilitated the study of the interaction of CIB1 with the cytoplasmic domain of the human integrin αIIb subunit. In this protocol, we describe the purification and isotope labeling strategies for productive NMR studies of CIB1. The same isotope labeling strategies can be implemented to study numerous related regulatory calcium-binding proteins.

  15. A conceptual model for interpreting δ18O and δD biomarker records from terrestrial archives

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Tuthorn, Mario; Detsch, Florian; Rozanski, Kazimierz; Zech, Roland; Zöller, Ludwig; Zech, Wolfgang; Glaser, Bruno

    2013-04-01

    The natural abundances of stable oxygen (18O/16O) and hydrogen isotopes (D/H) are valuable proxies for reconstructing paleoclimate history on global as well as on regional scale. While stable isotope analyses of sedimentary leaf wax-derived n-alkanes enables establishing δD biomarker records, we recently developed a method based on compound-specific δ18O analyses of hemicellulose sugars (Zech and Glaser, 2009), which now additionally allows establishing δ18O biomarker records from soil/sedimentary organic matter of terrestrial archives. Here we present a conceptual model for interpreting combined δ18O and δD biomarker records (Zech et al., submitted). Based on this model, we suggest that both δ18O and δD biomarker records primarily reflect the isotopic composition of paleoprecipitation modified by evaporative isotope enrichment of leaf water during transpiration. Considering biosynthetic fractionation factors allows reconstructing from combined δ18O and δD biomarker records the leaf water isotopic composition and the deuterium excess of the leaf water. The deuterium excess may serve as proxy for evaporative enrichment and allows reconstructing relative humidity using a Craig-Gordon model. Furthermore, the model allows calculating δ18O of the plant source water (δ18Osource water), which can be assumed to primarily reflect δ18O of paleoprecipitation. Hence, paleoclimatic conclusions in terms of temperature can be drawn in high latitude study areas and precipitation amount can be reconstructed in monsoon regions. Zech, M., Glaser, B., 2009. Compound-specific δ18O analyses of neutral sugars in soils using GC-Py-IRMS: problems, possible solutions and a first application. Rapid Commun. Mass Spectrom. 23, 3522-3532. Zech et al., 2013. A 220 ka terrestrial δ18O and deuterium excess biomarker record from an eolian permafrost paleosol sequence, NE-Siberia. Submitted to Chemical Geology.

  16. Formation of Hydroxymethyl DNA Adducts in Rats Orally Exposed to Stable Isotope Labeled Methanol

    PubMed Central

    Lu, Kun; Gul, Husamettin; Upton, Patricia B.; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Methanol is a large volume industrial chemical and widely used solvent and fuel additive. Methanol’s well known toxicity and use in a wide spectrum of applications has raised long-standing environmental issues over its safety, including its carcinogenicity. Methanol has not been listed as a carcinogen by any regulatory agency; however, there are debates about its carcinogenic potential. Formaldehyde, a metabolite of methanol, has been proposed to be responsible for the carcinogenesis of methanol. Formaldehyde is a known carcinogen and actively targets DNA and protein, causing diverse DNA and protein damage. However, formaldehyde-induced DNA adducts arising from the metabolism of methanol have not been reported previously, largely due to the absence of suitable DNA biomarkers and the inability to differentiate what was due to methanol compared with the substantial background of endogenous formaldehyde. Recently, we developed a unique approach combining highly sensitive liquid chromatography-mass spectrometry methods and exposure to stable isotope labeled chemicals to simultaneously quantify formaldehyde-specific endogenous and exogenous DNA adducts. In this study, rats were exposed daily to 500 or 2000 mg/kg [13CD4]-methanol by gavage for 5 days. Our data demonstrate that labeled formaldehyde arising from [13CD4]-methanol induced hydroxymethyl DNA adducts in multiple tissues in a dose-dependent manner. The results also demonstrated that the number of exogenous DNA adducts was lower than the number of endogenous hydroxymethyl DNA adducts in all tissues of rats administered 500 mg/kg per day for 5 days, a lethal dose to humans, even after incorporating an average factor of 4 for reduced metabolism due to isotope effects of deuterium-labeled methanol into account. PMID:22157354

  17. Stable isotope-labeled RNA phosphoramidites to facilitate dynamics by NMR.

    PubMed

    Wunderlich, Christoph H; Juen, Michael A; LeBlanc, Regan M; Longhini, Andrew P; Dayie, T Kwaku; Kreutz, Christoph

    2015-01-01

    Given that Ribonucleic acids (RNAs) are a central hub of various cellular processes, methods to synthesize these RNAs for biophysical studies are much needed. Here, we showcase the applicability of 6-(13)C-pyrimidine phosphoramidites to introduce isolated (13)C-(1)H spin pairs into RNAs up to 40 nucleotides long. The method allows the incorporation of 6-(13)C-uridine and -cytidine residues at any desired position within a target RNA. By site-specific positioning of the (13)C-label using RNA solid phase synthesis, these stable isotope-labeling patterns are especially well suited to resolve resonance assignment ambiguities. Of even greater importance, the labeling pattern affords accurate quantification of important functional transitions of biologically relevant RNAs (e.g., riboswitch aptamer domains, viral RNAs, or ribozymes) in the μs- to ms time regime and beyond without complications of one bond carbon scalar couplings. We outline the chemical synthesis of the 6-(13)C-pyrimidine building blocks and their use in RNA solid phase synthesis and demonstrate their utility in Carr Purcell Meiboom Gill relaxation dispersion, ZZ exchange, and chemical exchange saturation transfer NMR experiments. PMID:26577742

  18. Quantitative Analysis of rRNA Modifications Using Stable Isotope Labeling and Mass Spectrometry

    PubMed Central

    2015-01-01

    Post-transcriptional RNA modifications that are introduced during the multistep ribosome biogenesis process are essential for protein synthesis. The current lack of a comprehensive method for a fast quantitative analysis of rRNA modifications significantly limits our understanding of how individual modification steps are coordinated during biogenesis inside the cell. Here, an LC-MS approach has been developed and successfully applied for quantitative monitoring of 29 out of 36 modified residues in the 16S and 23S rRNA from Escherichia coli. An isotope labeling strategy is described for efficient identification of ribose and base methylations, and a novel metabolic labeling approach is presented to allow identification of MS-silent pseudouridine modifications. The method was used to measure relative abundances of modified residues in incomplete ribosomal subunits compared to a mature 15N-labeled rRNA standard, and a number of modifications in both 16S and 23S rRNA were present in substoichiometric amounts in the preribosomal particles. The RNA modification levels correlate well with previously obtained profiles for the ribosomal proteins, suggesting that RNA is modified in a schedule comparable to the association of the ribosomal proteins. Importantly, this study establishes an efficient workflow for a global monitoring of ribosomal modifications that will contribute to a better understanding of mechanisms of RNA modifications and their impact on intracellular processes in the future. PMID:24422502

  19. The evaluation of new and isotopically labeled isoindoline nitroxides and an azaphenalene nitroxide for EPR oximetry

    PubMed Central

    Khan, Nadeem; Blinco, James P.; Bottle, Steven E.; Hosokawa, Kazuyuki; Swartz, Harold M.; Micallef, Aaron S.

    2011-01-01

    Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogues (2H12- and/or 2H12-15N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O2 concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O2 sensitivity. Labeling the nitroxides with 15N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation. PMID:21665499

  20. In-Gel Stable-Isotope Labeling (ISIL): a strategy for mass spectrometry-based relative quantification.

    PubMed

    Asara, John M; Zhang, Xiang; Zheng, Bin; Christofk, Heather H; Wu, Ning; Cantley, Lewis C

    2006-01-01

    Most proteomics approaches for relative quantification of protein expression use a combination of stable-isotope labeling and mass spectrometry. Traditionally, researchers have used difference gel electrophoresis (DIGE) from stained 1D and 2D gels for relative quantification. While differences in protein staining intensity can often be visualized, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. A method is presented for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using In-gel Stable-Isotope Labeling (ISIL). Proteins extracted from any source (tissue, cell line, immunoprecipitate, etc.), treated under two experimental conditions, are resolved in separate lanes by gel electrophoresis. The regions of interest (visualized by staining) are reacted separately with light versus heavy isotope-labeled reagents, and the gel slices are then mixed and digested with proteases. The resulting peptides are then analyzed by LC-MS to determine relative abundance of light/heavy isotope pairs and analyzed by LC-MS/MS for identification of sequence and modifications. The strategy compares well with other relative quantification strategies, and in silico calculations reveal its effectiveness as a global relative quantification strategy. An advantage of ISIL is that visualization of gel differences can be used as a first quantification step followed by accurate and sensitive protein level stable-isotope labeling and mass spectrometry-based relative quantification.

  1. Improved water δ2H and δ18O calibration and calculation of measurement uncertainty using a simple software tool.

    PubMed

    Gröning, Manfred

    2011-10-15

    The calibration of all δ(2)H and δ(18)O measurements on the VSMOW/SLAP scale should be performed consistently, based on similar principles, independent of the instrumentation used. The basic principles of a comprehensive calibration strategy are discussed taking water as example. The most common raw data corrections for memory and drift effects are described. Those corrections result in a considerable improvement in data consistency, especially in laboratories analyzing samples of quite variable isotopic composition (e.g. doubly labelled water). The need for a reliable uncertainty assessment for all measurements is discussed and an easy implementation method proposed. A versatile evaluation method based on Excel macros and spreadsheets is presented. It corrects measured raw data for memory and drift effects, performs the calibration and calculates the combined standard uncertainty for each measurement. It allows the easy implementation of the discussed principles in any user laboratory. Following these principles will improve the comparability of data among laboratories. PMID:21913248

  2. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    SciTech Connect

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  3. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  4. Segmental Isotope Labelling of an Individual Bromodomain of a Tandem Domain BRD4 Using Sortase A

    PubMed Central

    Williams, Felix P.; Milbradt, Alexander G.; Embrey, Kevin J.

    2016-01-01

    Bromodomain and extra-terminal (BET) family of proteins are one of the major readers of epigenetic marks and an important target class in oncology and other disease areas. The importance of the BET family of proteins is manifested by the explosion in the number of inhibitors against these targets that have successfully entered clinical trials. One important BET family member is bromodomain containing protein 4 (BRD4). Structural and biophysical studies of BRD4 are complicated by its tertiary-structure consisting of two bromodomains connected by a flexible inter-domain linker of approximately 180 amino acids. A detailed understanding of the interplay of these bromodomains will be key to rational drug design in BRD4, yet there are no reported three-dimensional structures of the multi-domain BRD4 and NMR studies of the tandem domain are hampered by the size of the protein. Here, we present a method for rapid Sortase A-mediated segmental labelling of the individual bromodomains of BRD4 that provides a powerful strategy that will enable NMR studies of ligand-bromodomain interactions with atomic detail. In our labelling strategy, we have used U-[2H,15N]-isotope labelling on the C-terminal bromodomain with selective introduction of 13CH3 methyl groups on Ile (δ1), Val and Leu, whereas the N-terminal bromodomain remained unlabelled. This labelling scheme resulted in significantly simplified NMR spectra and will allow for high-resolution interaction, structure and dynamics studies in the presence of ligands. PMID:27128490

  5. Mechanism of bile-pigment synthesis in algae. 18O incorporation into phycocyanobilin in the unicellular rhodophyte, Cyanidium caldarium.

    PubMed Central

    Brown, S B; Holroyd, A J; Troxler, R F

    1980-01-01

    The origin of the lactam oxygen atoms of phycocyanobilin from Cyanidium caldarium was studied using 18O labelling. By inhibiting photosynthesis, a high 18O enrichment was maintained in the gas phase and the resulting incorporation of label showed that the lactam oxygen atoms were derived from two oxygen molecules. Slow exchange of these oxygen atoms with water was demonstrated directly by using H218O. PMID:7470059

  6. Estimating plant water uptake source depths with optimized stable water isotope labeling

    NASA Astrophysics Data System (ADS)

    Seeger, Stefan; Weiler, Markus

    2016-04-01

    Depth profiles of pore water stable isotopes in soils in conjunction with measurements of stable water isotopes (SWI) in plant transpiration allow the estimation of the contributions of different soil depths to plant water uptake (PWU).
 However, SWI depth profiles that result from the variations of SWI in natural precipitation may lead to highly ambiguous results, i.e. the same SWI signature in transpiration could result from different PWU patterns or SWI depth profiles. The aim of this study was to find an optimal stable water isotope depth profile to estimate plant water uptake patterns and to compare different PWU source depth estimation methods. We used a new soil water transport model including fractionation effects of SWI and exchange between the vapor and liquid phase to simulate different irrigation scenarios. Different amounts of water with differing SWI signatures (glacier melt water, summer precipitation water, deuterated water) were applied in order to obtain a wide variety of SWI depth profiles. Based on these simulated SWI depth profiles and a set of hypothetical PWU patterns, the theoretical SWI signatures of the respective plant transpiration were computed. In the next step, two methods - Bayesian isotope mixing models (BIMs) and optimization of a parametric distribution function (beta function) - were used to estimate the PWU patterns from the different SWI depth profiles and their respective SWI signatures in the resulting transpiration. Eventually, the estimated and computed profiles were compared to find the best SWI depth profile and the best method. The results showed, that compared to naturally occurring SWI depth profiles, the application of multiple, in terms of SWI, distinct labeling pulses greatly improves the possible spatial resolution and at the same time reduces the uncertainty of PWU estimates.
 For the PWU patterns which were assumed for this study, PWU pattern estimates based on an optimized parametric distribution function

  7. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities.

    PubMed

    Verastegui, Y; Cheng, J; Engel, K; Kolczynski, D; Mortimer, S; Lavigne, J; Montalibet, J; Romantsov, T; Hall, M; McConkey, B J; Rose, D R; Tomashek, J J; Scott, B R; Charles, T C; Neufeld, J D

    2014-07-15

    Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon ((12)C) or stable-isotope-labeled ((13)C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the (13)C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. Importance: The ability to identify genes based on function, instead of sequence homology, allows the discovery of genes that would not be identified through sequence alone. This

  8. Isotope labelling to study molecular fragmentation during the dielectric barrier discharge wet reforming of methane

    NASA Astrophysics Data System (ADS)

    Montoro-Damas, Antonio M.; Gómez-Ramírez, Ana; Gonzalez-Elipe, Agustín R.; Cotrino, José

    2016-09-01

    Isotope labelling is used to study the wet plasma reforming of methane in a dielectric barrier discharge reactor using D2O and CH4 as reactants. Besides the formation of CO and hydrogen as main products, different partitions of H and D atoms are found in the hydrogen (i.e., H2, HD, D2), methane (i.e., CH4, CH3D and CH2D2) and water (D2O, DHO) molecules detected by mass spectrometry as outlet gases of the plasma process. The effect of operating parameters such as applied current, residence time and the addition of oxygen to the reaction mixture is correlated with the H/D distribution in these molecules, the overall reaction yield and the energetic efficiency of the process. The results prove the plasma formation of intermediate excited species that rendering water and methane instead of CO and hydrogen greatly contribute to decrease the overall energy efficiency of the reforming process.

  9. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    NASA Astrophysics Data System (ADS)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  10. Predicting animal δ18O: Accounting for diet and physiological adaptation

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.

    1996-12-01

    Theoretical predictions and measured isotope variations indicate that diet and physiological adaptation have a significant impact on animals δ18O and cannot be ignored. A generalized model is therefore developed for the prediction of animal body water and phosphate δ18O to incorporate these factors quantitatively. Application of the model reproduces most published compositions and compositional trends for mammals and birds. A moderate dependence of animal δ18O on humidity is predicted for drought-tolerant animals, and the correlation between humidity and North American deer bone composition as corrected for local meteoric water is predicted within the scatter of the data. In contrast to an observed strong correlation between kangaroo δ18O and humidity (Δδ18O/Δh ∼ 2.5± 0.4‰/10%r.h.), the predicted humidity dependence is only 1.3 - 1.7‰/10% r.h., and it is inferred that drinking water in hot dry areas of Australia is enriched in 18O over rainwater. Differences in physiology and water turnover readily explain the observed differences in δ18O for several herbivore genera in East Africa, excepting antelopes. Antelope models are more sensitive to biological fractionations, and adjustments to the flux of transcutaneous water vapor within experimentally measured ranges allows their δ18O values to be matched. Models of the seasonal changes of forage composition for two regions with dissimilar climates show that significant seasonal variations in animal isotope composition are expected, and that animals with different physiologies and diets track climate differently. Analysis of different genera with disparate sensitivities to surface water and humidity will allow the most accurate quantification of past climate changes.

  11. Selected reaction monitoring (SRM) mass spectrometry without isotope labeling can be used for rapid protein quantification.

    PubMed

    Zhi, Wenbo; Wang, Meiyao; She, Jin-Xiong

    2011-06-15

    The validation of putative biomarker candidates has become the major bottle-neck in protein biomarker development. Conventional immunoaffinity methods are limited by the availability of antibodies and kits. Here we demonstrate the feasibility of using selected reaction monitoring (SRM) without isotope labeling to achieve fast and reproducible quantification of serum proteins. The SRM/MRM assays for three standard serum proteins, including ceruloplasmin (CP), serum aymloid A (SAA) and sex hormone binding globulin (SHBG), have good linear ranges, generally 10(3) to 10(4) . There are almost perfect correlations between SRM intensities and the loaded peptide amounts (R(2) is usually ~0.99). Our data suggest that SRM/MRM is able to quantify proteins within the range of 0.2-2 fmol, which is comparable to the commercial ELISA/LUMINEX kits for these proteins. Excellent correlations between SRM/MRM and ELISA/LUMINEX assays were observed for SAA and SHBG (R(2)=0.928 and 0.851, respectively). However, the correlation between SRM/MRM and ELISA for CP is less desirable (R(2)=0.565). The reproducibility for SRM/MRM assays is generally very good but may depend on the proteins/peptides being analyzed (R(2)=0.931 and 0.882 for SAA and SHBG, and 0.723 for CP). The SRM/MRM assay without isotope labeling is a rapid and useful method for protein biomarker validation in a modest number of samples and is especially useful when other assays such as ELISA or LUMINEX are not available. PMID:21594933

  12. Convenient synthesis of stable deuterium-labeled alkylpyrazines for use in stable isotope dilution assays.

    PubMed

    Fang, Mingchih; Cadwallader, Keith R

    2013-04-17

    Stable isotope dilution assays (SIDA) provide for accurate and precise quantitation of aroma components, such as alkylpyrazines, which are often present in low concentrations in complex food matrices. The unavailability of labeled standards is the main limitation to the widespread use of SIDA. This study describes the chlorination of several alkylpyrazines to form the corresponding chloroalkylpyrazine compounds, which are efficient starting materials for the synthesis of deuterium-labeled alkylpyrazines, namely [²H₃]-2-methylpyrazine (d-1), [²H₅]-2-ethylpyrazine (d-2), [²H₃]-2,3(or 6)-dimethylpyrazine (d-3A, d-3B), [²H₃]-2,[²H₃]-6-dimethylpyrazine (d-3C), [²H₅]-2,[²H₅]-6-diethylpyrazine (d-4), [²H₅]-2-ethyl-3(or 6)-methylpyrazine (d-5A, d-5B), 2,[²H₃]-3,5-trimethylpyrazine (d-6), [²H₅]-2-ethyl-3,6-dimethylpyrazine (d-7), [²H₅]-2-ethyl-3,5-dimethylpyrazine (d-8), and 2,3-diethyl-[²H₃]-5-methylpyrazine (d-9), which were obtained in good yields (57-100%) and high purities (86-98%). These stable isotopes were used as internal standards in SIDA to accurately and precisely determine selected alkylpyrazines in commercial peanut butter, cocoa powder, and instant coffee. 2,3-Diethyl-5-methylpyrazine (p-9) and 2-ethyl-3,5-dimethylpyrazine (p-8), despite their low abundance, had the highest odor-active values among the 13 pyrazines quantified in all products due to their very low odor thresholds. PMID:23528050

  13. Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain.

    PubMed

    Miyanoiri, Yohei; Ishida, Yojiro; Takeda, Mitsuhiro; Terauchi, Tsutomu; Inouye, Masayori; Kainosho, Masatsune

    2016-06-01

    We recently developed a practical protocol for preparing proteins bearing stereo-selectively (13)C-methyl labeled leucines and valines, instead of the commonly used (13)C-methyl labeled precursors for these amino acids, by E. coli cellular expression. Using this protocol, proteins with any combinations of isotope-labeled or unlabeled Leu and Val residues were prepared, including some that could not be prepared by the precursor methods. However, there is still room for improvement in the labeling efficiencies for Val residues, using the methods with labeled precursors or Val itself. This is due to the fact that the biosynthesis of Val could not be sufficiently suppressed, even by the addition of large amounts of Val or its precursors. In this study, we completely solved this problem by using a mutant strain derived from E. coli BL21(DE3), in which the metabolic pathways depending on two enzymes, dihydroxy acid dehydratase and β-isopropylmalate dehydrogenase, are completely aborted by deleting the ilvD and leuB genes, which respectively encode these enzymes. The ΔilvD E. coli mutant terminates the conversion from α,β-dihydroxyisovalerate to α-ketoisovalerate, and the conversion from α,β-dihydroxy-α-methylvalerate to α-keto-β-methylvalerate, which produce the preceding precursors for Val and Ile, respectively. By the further deletion of the leuB gene, the conversion from Val to Leu was also fully terminated. Taking advantage of the double-deletion mutant, ΔilvDΔleuB E. coli BL21(DE3), an efficient and residue-selective labeling method with various isotope-labeled Ile, Leu, and Val residues was established.

  14. Determination of Multimodal Isotopic Distributions: The Case of a (15)N Labeled Protein Produced into Hairy Roots.

    PubMed

    Trouillard, Romain; Hubert-Roux, Marie; Tognetti, Vincent; Guilhaudis, Laure; Plasson, Carole; Menu-Bouaouiche, Laurence; Coquet, Laurent; Guerineau, François; Hardouin, Julie; Ele Ekouna, Jean-Pierre; Cosette, Pascal; Lerouge, Patrice; Boitel-Conti, Michèle; Afonso, Carlos; Ségalas-Milazzo, Isabelle

    2015-06-16

    Isotopic labeling is widely used in various fields like proteomics, metabolomics, fluxomics, as well as in NMR structural studies, but it requires an efficient determination of the isotopic enrichment. Mass spectrometry is the method of choice for such analysis. However, when complex expression systems like hairy roots are used for production, multiple populations of labeled proteins may be obtained. If the isotopic incorporation determination is actually well-known for unimodal distributions, the multimodal distributions have scarcely been investigated. Actually, only a few approaches allow the determination of the different labeled population proportions from multimodal distributions. Furthermore, they cannot be used when the number of the populations and their respective isotope ratios are unknown. The present study implements a new strategy to measure the (15)N labeled populations inside a multimodal distribution knowing only the peptide sequence and peak intensities from mass spectrometry analyses. Noteworthy, it could be applied to other elements, like carbon and hydrogen, and extended to a larger range of biomolecules.

  15. Extrinsic labelling of staple food crops with isotopic iron does not consistently result in full equilibration: Revisiting the methodology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrinsic isotopic labeling of food Fe has been used for over 50 years to measure Fe absorption. This method is based on the assumption that complete equilibration occurs between the extrinsic and the intrinsic Fe prior to intestinal absorption. The present study tested this assumption via use of in...

  16. [Correlation of delta18O in precipitation and moisture sources at Yunfu, Western Guangdong Province, China].

    PubMed

    Zheng, Yan-Ming; Zhong, Wei; Peng, Xiao-Ying; Xue, Ji-Bin; Zhao, Yin-Juan; Ma, Qiao-Hong; Cai, Ying

    2009-03-15

    Fifty-nine samples of atmospheric precipitation were collected at Yunfu, Western Guangdong province during the period of April 5, 2005 to April 1, 2006 and their oxygen isotopic compositions were analyzed. Results show that delta18O values range from -12.47 per thousand to -0.18 per thousand with an average of -4.91 per thousand; the delta18O values of summer and autumn (from May to September) are relatively lower, ranging from -10.00 per thousand to -5.00 per thousand with an average of -6.30 per thousand; the delta18O values of winter and spring (from October to next April) are relatively higher, ranging from - 3.00 per thousand to - 1.00 per thousand with an average of - 2.20 per thousand. These delta18O values have relatively marked negative correlation with the corresponding temperatures and water vapour pressure and their coefficients are both -0.60; but they have had negative correlation with the precipitation amount, the coefficient is -0.33. Comparing with the monthly delta18O value of Guangzhou atmospheric precipitation, those of Yunfu City is relatively lower, maybe the reason is that Yunfu City is influenced by stronger South-West Asian Monsoon. The results of HYSPLIT back trajectory analysis indicated that the differences of delta18O values are determined by different water vapour sources during the pre-rainy season (from April to June), post-rainy season (from July to September) and non-rainy season (from October to next April), so the delta18O values can be considered as an indicator of denoting their water vapour sources, relatively higher delta18O values denote the water vapour sources are denaturalized tropical hot air mass located in the subtropical sea areas (including the South China Sea), western Pacific Ocean; relatively lower delta18O values indicate denaturalized tropical hot air mass from the India Ocean and Bengal Gulf.

  17. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland

    NASA Astrophysics Data System (ADS)

    Wen, Xue-Fa

    2016-04-01

    The oxygen isotope compositions of ecosystem water pools and fluxes are useful tracers in the water cycle. As part of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) program, high-frequency and near-continuous in situ measurements of 18O composition of atmospheric vapor (δv) and of evapotranspiration (δET) were made with the flux-gradient method using a cavity ring-down spectroscopy water vapor isotope analyzer. At the sub-daily scale, we found, in conjunction with intensive isotopic measurements of other ecosystem water pools, that the differences between 18O composition of transpiration (δT) and of xylem water (δx) were negligible in early afternoon (13:00-15:00 Beijing time) when ET approached the daytime maximum, indicating isotopic steady state. At the daily scale, for the purpose of flux partitioning, δT was approximated by δx at early afternoon hours, and the 18O composition of soil evaporation (δE) was obtained from the Craig-Gordon model with a moisture-dependent soil resistance. The relative contribution of transpiration to evapotranspiration ranged from 0.71 to 0.96 with a mean of 0.87 ± 0.052 for the growing season according to the isotopic labeling, which was good agreement with soil lysimeter measurements showing a mean transpiration fraction of 0.86 ± 0.058. At the growing season scale, the predicted18O composition of runoff water was within the range of precipitation and irrigation water according to the isotopic mass conservation. The 18O mass conservation requires that the decreased δ18O of ET should be balanced by enhanced δ18O of runoff water. (Wen, XF*, Yang, B, Sun, XM, Lee, X. 2015. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agricultural and Forest Meteorology , doi:10.1016/j.agrformet.2015.12.003).

  18. Carbon isotope labeling in boreal forests to assess roles of fungal species in decomposition

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Czimczik, C. I.; Trumbore, S. E.; Allison, S. D.

    2006-12-01

    We used 14C and 13C labeling to assess the in situ respiration of alanine-, starch-, and lignocellulose-derived carbon from the sporocarps of particular fungal species fruiting in a boreal forest in Alaska. By measuring isotopically-labeled respiration of sporocarps, which can be identified to species, we were able to attribute turnover of carbon compounds to specific fungal groups. Moreover, collection of sporocarp respiration is non-destructive, so we could return to the same sporocarps to collect a time series of measurements that spanned hours to days. We tested the hypotheses that alanine and starch turn over more quickly than lignocellulose, and that saprotrophic fungi would use starch-C and lignocellulose-C but ectomycorrhizal fungi would not. Small amounts of 14C-labeled alanine (about 100,000 permil) were dispensed into the soil within three meters of sporocarps of the ectomycorrhizal fungus Lactarius alnicola. Δ14CO2 values of sporocarp respiration climbed from 75.8 +/- 6.3 permil to 7855 +/- 3940 permil within one hour of additions, indicating that the fungus quickly acquired, transported, and transformed the alanine-C. In a separate approach, a mixture of 13C-labeled starch (about 15,000 permil) and 14C-labeled lignocellulose (about 36,000 permil) was applied in 9 m2 plots containing sporocarps of the ectomycorrhizal genera Phellodon and Sarcodon and the saprotrophic genera Lycoperdon and Polyporus. An unlabeled control plot was also established. We observed no detectable increase in 14CO2 or 13CO2 over a 144 hour period, suggesting that neither ectomycorrhizal nor saprotrophic fungi significantly broke down starch or lignocellulose during this time. The alanine experiment is one of the first to indicate that ectomycorrhizal fungi can influence the spatial distribution and storage of soil carbon over short time scales. This influence may be restricted to carbon of organic compounds like amino acids. In contrast, starch was not transformed quickly even

  19. Dehydrogenation and dehalogenation of amines in MALDI-TOF MS investigated by isotopic labeling.

    PubMed

    Kang, Chuanqing; Zhou, Yihan; Du, Zhijun; Bian, Zheng; Wang, Jianwei; Qiu, Xuepeng; Gao, Lianxun; Sun, Yuequan

    2013-12-01

    Secondary and tertiary amines have been reported to form [M-H](+) that correspond to dehydrogenation in matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI-TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N-benzyl group, which resulted in the formation of [M-D](+) and [M-H](+) ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N-benzyl group showed high-intensity [M-D](+) and [M-H](+) ion peaks, whereas those of secondary amines showed low-intensity ion peaks. Ratios between the peak intensities of [M-D](+) and [M-H](+) greater than 1 suggested chemoselective dehydrogenation at the N-benzyl groups. The presence of an electron donor group on the N-benzyl groups enhanced the selectivity. The dehalogenation of amines with an N-(4-halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI-TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. PMID:24338887

  20. Calibration of speleothem δ18O records against hydroclimate instrumental records in Central Brazil

    NASA Astrophysics Data System (ADS)

    Moquet, J. S.; Cruz, F. W.; Novello, V. F.; Stríkis, N. M.; Deininger, M.; Karmann, I.; Santos, R. Ventura; Millo, C.; Apaestegui, J.; Guyot, J.-L.; Siffedine, A.; Vuille, M.; Cheng, H.; Edwards, R. L.; Santini, W.

    2016-04-01

    δ18O in speleothems is a powerful proxy for reconstruction of precipitation patterns in tropical and sub-tropical regions. The aim of this study is to calibrate the δ18O record of speleothems against historical precipitation and river discharge data in central Brazil, a region directly influenced by the Southern Atlantic Convergence Zone (SACZ), a major feature of the South American Monsoon System (SAMS). The present work is based on a sub-annual resolution speleothem record covering the last 141 years (the period between the years 1870 and 2011) from a cave in central Brazil. The comparison of this record with instrumental hydroclimate records since 1921 allows defining a strong relationship between precipitation variability and stable oxygen isotope ratios from speleothems. The results from a monitoring program of climatic parameters and isotopic composition of rainfall and cave seepage waters performed in the same cave, show that the rain δ18O variability is dominated by the amount effect in this region, while δ18O drip water remains almost constant over the monitored period (1.5 years). The δ18O of modern calcite, on the other hand, shows clear seasonal variations, with more negative values observed during the rainy season, which implies that other factors also influence the isotopic composition of carbonate. However, the relationship between δ18O of carbonate deposits and rainwater is supported by the results from the comparison between speleothem δ18O records and historical hydroclimate records. A significant correlation between speleothem δ18O and monsoon rainfall variability is observed on sub-decadal time scales, especially for the monsoon period (DJFM and NDJFM), once the rainfall record have been smoothed with a 7-9 years running mean. This study confirms that speleothem δ18O is directly associated with monsoon rainfall variability in central Brazil. The relationship between speleothem δ18O records and hydroclimatic historical records allows

  1. Sources of ground water salinity on islands using 18O, 2H, and 34S.

    PubMed

    Allen, D M

    2004-01-01

    Stable isotopes of 18O and 2H in water, and 34S and 18O in dissolved SO4, are used to verify the interpretation of the chemical evolution and proposed sources of salinity for two islands that have undergone postglacial rebound. Results for delta18O and delta34S in dissolved SO4 on the Gulf Islands, southwest British Columbia, Canada, suggest a three-component mixing between (1) atmospheric SO4 derived largely from recharge of meteoric origin, (2) modern marine SO4 associated with either modern-day salt water intrusion or Pleistocene age sea water, and (3) terrestrial SO4. The age of the marine SO4 is uncertain based on the geochemistry and SO4 isotopes alone. Two options for mixing of saline ground waters are proposed--either between current-day marine SO4 and atmospheric SO4, or between older (Pleistocene age) marine SO4 and atmospheric SO4, delta18O and delta2H compositions are relatively consistent between both islands, with a few samples showing evidence of mixing with water that is a hybrid mixture of Fraser River water and ocean water. The isotopic composition of this hybrid water is approximately delta18O = 10 per thousand. delta18O and delta2H values for many saline ground waters plot close to the global meteoric water line, which is distinctly different from the local meteoric water line. This suggests a meteoric origin for ground waters that is different from the current isotopic composition of meteoric waters. It is proposed these waters may be late Pleistocene in age and were recharged when the island was submerged below sea level and prior to rebound at the end of the last glaciation. PMID:14763614

  2. Solar 18O/17O and the Setting for Solar Birth

    NASA Astrophysics Data System (ADS)

    Clayton, D. D.

    2004-03-01

    The burst of star formation during the gaeous merger of the Milky Way with a low-metallicity dwarf galaxy created not only the Si-isotope correlation in mainstream SiC grains but also the anomalously large ^18O/^17O ratio in the sun.

  3. Loggerhead turtle movements reconstructed from 18O and 13C profiles from commensal barnacle shells

    NASA Astrophysics Data System (ADS)

    Killingley, John S.; Lutcavage, Molly

    1983-03-01

    Commensal barnacles, Chelonibia testudinaria, from logger-head turtles have 18O and 13C variations in their calcitic shells that record the environments in which the turtles live. Isotopic profiles from the barnacle shells can thus be interpreted to reconstruct movements of the host turtle between open ocean and brackish-water regimes.

  4. Patterns of d18O in fish tissues in two Oregon Coast range streams

    EPA Science Inventory

    We are using stable isotopes of C, N, O and S (H planned) to study the ecology of coho salmon in streams of the Oregon Coast Range. As part of this work we have examined changes in d18O in coho salmon juveniles (from eggs to smolting) and sculpin (from 0.5 to 20 gm.). For fish...

  5. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    USGS Publications Warehouse

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  6. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    PubMed Central

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  7. Influence of glacial meltwater on equilibrium process of two Tibetan lakes indicated by δ18O

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2009-12-01

    δ18O measurements based on systematic sampling and isotopic model have been adopted to study the affects of glacial meltwater in two lake basins (Lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, δ18O values in precipitation and lake water display a seasonal fluctuation in both lakes. Spatially, δ18O values in the two lake basins increase by 10‰ from the termini of glaciers to the lake shores, by about 1‰ from the lakeshores to the lake center, by 0.4‰ from the water surface to depth in these lakes. The obvious annual δ18O variations indicate that lake water mixes sufficient in a short time. Model results show that glacial meltwater is an important factor on lake water equilibrium process. Equilibrium δ18O values decrease 0.8‰ for Yamdrok-tso Lake and 0.6‰ for Puma Yum-tso Lake when contributions of glacial meltwater to these lakes shrink by 60%. δ18O increases rapidly during the initial stages and then it takes a long time to approach the equilibrium value. The modeled results also show that the surface lake water temperature has only a little impact on this process.

  8. Late-Pleistocene precipitation δ18O interpolated across the global landmass

    NASA Astrophysics Data System (ADS)

    Jasechko, Scott

    2016-08-01

    Global water cycles, ecosystem assemblages, and weathering rates were impacted by the ˜4°C of global warming that took place over the course of the last glacial termination. Fossil groundwaters can be useful indicators of late-Pleistocene precipitation isotope compositions, which, in turn, can help to test hypotheses about the drivers and impacts of glacial-interglacial climate changes. Here, a global catalog of 126 fossil groundwater records is used to interpolate late-Pleistocene precipitation δ18O across the global landmass. The interpolated data show that extratropical late-Pleistocene terrestrial precipitation was near uniformly depleted in 18O relative to the late Holocene. By contrast, tropical δ18O responses to deglacial warming diverged; late-Pleistocene δ18O was higher-than-modern across India and South China but lower-than-modern throughout much of northern and southern Africa. Groundwaters that recharged beneath large northern hemisphere ice sheets have different Holocene-Pleistocene δ18O relationships than paleowaters that recharged subaerially, potentially aiding reconstructions of englacial transport in paleo ice sheets. Global terrestrial late-Pleistocene precipitation δ18O maps may help to determine 3-D groundwater age distributions, constrain Pleistocene mammal movements, and better understand glacial climate dynamics.

  9. Cellulose (delta)18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants.

    PubMed

    Kahmen, Ansgar; Sachse, Dirk; Arndt, Stefan K; Tu, Kevin P; Farrington, Heraldo; Vitousek, Peter M; Dawson, Todd E

    2011-02-01

    Cellulose in plants contains oxygen that derives in most cases from precipitation. Because the stable oxygen isotope composition, δ(18)O, of precipitation is associated with environmental conditions, cellulose δ(18)O should be as well. However, plant physiological models using δ(18)O suggest that cellulose δ(18)O is influenced by a complex mix of both climatic and physiological drivers. This influence complicates the interpretation of cellulose δ(18)O values in a paleo-context. Here, we combined empirical data analyses with mechanistic model simulations to i) quantify the impacts that the primary climatic drivers humidity (e(a)) and air temperature (T(air)) have on cellulose δ(18)O values in different tropical ecosystems and ii) determine which environmental signal is dominating cellulose δ(18)O values. Our results revealed that e(a) and T(air) equally influence cellulose δ(18)O values and that distinguishing which of these factors dominates the δ(18)O values of cellulose cannot be accomplished in the absence of additional environmental information. However, the individual impacts of e(a) and T(air) on the δ(18)O values of cellulose can be integrated into a single index of plant-experienced atmospheric vapor demand: the leaf-to-air vapor pressure difference (VPD). We found a robust relationship between VPD and cellulose δ(18)O values in both empirical and modeled data in all ecosystems that we investigated. Our analysis revealed therefore that δ(18)O values in plant cellulose can be used as a proxy for VPD in tropical ecosystems. As VPD is an essential variable that determines the biogeochemical dynamics of ecosystems, our study has applications in ecological-, climate-, or forensic-sciences.

  10. A precise method for the analysis of d18O of dissolved inorganic phosphate in seawater

    USGS Publications Warehouse

    McLaughlin, K.; Silva, S.; Kendall, C.; Stuart-Williams, Hilary; Paytan, A.

    2004-01-01

    A method for preparation and analysis of the oxygen isotope composition (d18O) of dissolved inorganic phosphate (DIP) has been developed and preliminary results for water samples from various locations are reported. Phosphate is extracted from seawater samples by coprecipitation with magnesium hydroxide. Phosphate is further purified through a series of precipitations and resin separation and is ultimately converted to silver phosphate. Silver phosphate samples are pyrolitically decomposed to carbon monoxide and analyzed for d18O. Silver phosphate samples weighing 0.7 mg (3.5 mol oxygen) can be analyzed routinely with an average standard deviation of about 0.3. There is no isotope fractionation during extraction and blanks are negligible within analytical error. Reproducibility was determined for both laboratory standards and natural samples by multiple analyses. A comparison between filtered and unfiltered natural seawater samples was also conducted and no appreciable difference was observed for the samples tested. The d18O values of DIP in seawater determined using this method range from 18.6 to 22.3, suggesting small but detectable natural variability in seawater. For the San Francisco Bay estuary DIP d18O is more variable, ranging from 11.4 near the San Joaquin River to 20.1 near the Golden Gate Bridge, and was well correlated with salinity, phosphate concentration, and d18O of water.

  11. Rapid speciation and quantification of selenium compounds by HPLC-ICP MS using multiple standards labelled with different isotopes.

    PubMed

    Ohta, Yuki; Suzuki, Noriyuki; Kobayashi, Yayoi; Hirano, Seishiro

    2011-09-01

    Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP MS) is now commonly used to investigate metabolic and toxicological aspects of some metals and metalloids. We have developed a rapid method for simultaneous identification and quantification of metabolites of selenium (Se) compounds using multiple standards labelled with different isotopes. A mixture of the labelled standards was spiked in a selenised garlic extract and the sample was subjected to speciation analysis by HPLC-ICP MS. The selenised garlic contains γ-glutamyl-methylselenocysteine, methylselenocysteine, and selenomethionine and the concentrations of those Se compounds were 723.8, 414.8, and 310.7 ng Se ml(-1), respectively. The isotopically labelled standards were also applied to the speciation of Se in rat urine. Selenate, methylselenonic acid, selenosugar, and trimethyselenium ions were found to be excreted by the present speciation procedure. Multiple standards labelled with different stable isotopes enable high-throughput identification and quantitative measurements of Se metabolites.

  12. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  13. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid

    SciTech Connect

    Baldi, B.G. ); Maher, B.R. ); Slovin, J.P.; Cohen, J.D. Univ. of Maryland, College Park )

    1991-04-01

    The authors present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of ({sup 15}N-indole)-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of L-({sup 15}N)tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled L-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into D-tryptophan. D-({sup 15}N)trytophan supplied to Lemna at rates of approximately 400 times excess of endogenous D-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of L-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that L-tryptophan is a more direct precursor to IAA than the D isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that L-tryptophan also may not be a primary precursor to IAA in plants.

  14. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future.

    PubMed

    Allen, Doug K; Bates, Philip D; Tjellström, Henrik

    2015-04-01

    Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant

  15. ­Characterization of Reduced Magmatic C-O-H-N Volatiles By Isotopic Labeling

    NASA Astrophysics Data System (ADS)

    Falksen, E.; Armstrong, L. S.; Hirschmann, M. M.

    2014-12-01

    Characterization of COHN species in silicate melts [1-10] is required to understand the role of reduced volatiles in planetary and early Earth processes, including partitioning between planetary cores, mantles, and atmospheres during early differentiation. Vibrational spectroscopy has been used to examine volatile speciation, but for a number of absorptions there is uncertainty as to whether they relate to species containing N, C, or both [1,3]. In particular, an IR band at 3370 cm-1 is commonly attributed to N-H stretching [1,4,5,7], but associated Raman bands near 3280 cm-1 have also been attributed to alkyne (C-H) bonds [8-10]. The 3370 cm-1 IR band appears even in nominally N-free experiments owing to trapped air and is accompanied by a feature at 1615 cm-1 which could be caused by C=O or N-H bonds [1,3,8]. We sought to determine whether N and C were responsible for various IR bands by dissolving different isotopes of N and C in basaltic melts at high pressure and temperature and observing the shift in position of the resulting absorptions. Experiments were conducted at 1.2 GPa and 1400 oC and volatiles were added to a basaltic oxide mix in the form of unlabeled, 13C labeled, and 15N labeled urea [(NH2)2CO]. The resulting glasses were analyzed using FTIR and the theoretical band shifts were predicted based on a classical approximation of a diatomic molecule. Relative to isotopically normal glasses, bands at both 3370 cm-1 and 1615 cm-1 decrease by 4-8 wavenumbers for 15N and not at all for 13C, consistent with origination by N-H bonds in amines or metal-ammine complexes. [1] Stanley et al. (2014) GCA 129, 54-76. [2] Wetzel et al. (2013) PNAS 110, 8010-8013. [3] Armstrong et al. (in prep). [4] Kadik et al. (2011) Geochem. Int. 49, 429-438. [5] Kadik et al. (2013) PEPI 214, 14-24. [6]Mysen (2013) Chem. Geo. 346, 113-124. [7] Mysen et al. (2008) Am. Min. 93, 1760-1770. [8] Mysen et al. (2009) GCA 73, 1696-1710. [9] Dasgupta et al. (2013) GCA 102, 191-212. [10] Chi

  16. δ18O analysis of individual carbohydrates - a new method for GC-pyrolysis-IRMS

    NASA Astrophysics Data System (ADS)

    Lehmann, Marco M.; Fischer, Maria; Zech, Michael; Siegwolf, Rolf T. W.; Saurer, Matthias

    2015-04-01

    Measuring the oxygen isotopic composition (δ18O) of various plant tissues is a widely used tool to investigate biochemical and physiological processes. While we have a good understanding about the hydrological cycle in plants with an evaporative enrichment in 18O in leaf water, we still lack knowledge about the biochemical link between the oxygen atoms in leaf water, leaf assimilates, and stem cellulose and associated isotope fractionations. Especially, the influence of different environmental factors on δ18O of individual carbohydrates (i.e. sugars) and thus on δ18O of cellulose is not fully resolved. A better understanding of these processes may improve climatic reconstructions of tree-ring studies about past environmental conditions. However, further progress in this topic is limited since a precise and reliable method to determine δ18O of individual sugars has not been available yet. With our new approach we attempt to overcome this issue by establishing a new methylation derivatization method suitable for GC-pyrolysis -IRMS. A methyl group (CH3) was thereby added to all hydroxyl groups of a sugar (e.g., glucose, fructose, and sucrose) during a catalyzed one-pot reaction overnight in acetonitrile with methyl iodide (CH3-I) and silver oxide, making them amenable for GC analysis. First results show a very good precision for δ18O of sucrose, but also δ18O of other high-abundant sugars such as glucose and fructose could be measured for the first time. We successfully analyzed a standard mix of all three sugars and determined various other carbohydrates not only related to plant sciences (e.g. mannitol, lactose), showing promising δ18O results. First tests with real plant samples were performed to make this method available for determining δ18O of individual carbohydrates of diverse plant tissues. In future, this new methylation derivatization method should allow us analyzing plant samples of different field sites and of lab experiments to investigate the

  17. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias H.; Alaoui, Abdallah; Kuells, Christoph; Leistert, Hannes; Meusburger, Katrin; Stumpp, Christine; Weiler, Markus; Alewell, Christine

    2014-11-01

    Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection-dispersion model using δ18O values of precipitation (ranging from -24.7 to -2.9‰) as input data to simulate the δ18O profiles of soil water. The variability of δ18O values with depth within each soil profile and a comparison of the simulated and measured δ18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of δ18O in precipitation was found in several profiles, ranging from -14.5 to -4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46°. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated δ18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The δ18O value of snow (-17.7 ± 1.9‰) was absent in several measured δ18O profiles but present in the respective simulated δ18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied

  18. Influence of Carbonic Anhydrase Activity in Terrestrial Vegetation on the 18O Content of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Gillon, Jim; Yakir, Dan

    2001-03-01

    The oxygen-18 (18O) content of atmospheric carbon dioxide (CO2) is an important indicator of CO2 uptake on land. It has generally been assumed that during photosynthesis, oxygen in CO2 reaches isotopic equilibrium with oxygen in 18O-enriched water in leaves. We show, however, large differences in the activity of carbonic anhydrase (which catalyzes CO2 hydration and 18O exchange in leaves) among major plant groups that cause variations in the extent of 18O equilibrium (θeq). A clear distinction in θeq between C3 trees and shrubs, and C4 grasses makes atmospheric C18OO a potentially sensitive indicator to changes in C3 and C4 productivity. We estimate a global mean θeq value of ~0.8, which reasonably reconciles inconsistencies between 18O budgets of atmospheric O2 (Dole effect) and CO2.

  19. Pulmonary NO and C18O2 uptake during pressure-induced lung expansion in rabbits.

    PubMed

    Heller, Hartmut; Schuster, Klaus-Dieter

    2007-01-01

    In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.

  20. Stable isotope N-phosphorylation labeling for Peptide de novo sequencing and protein quantification based on organic phosphorus chemistry.

    PubMed

    Gao, Xiang; Wu, Hanzhi; Lee, Kim-Chung; Liu, Hongxia; Zhao, Yufen; Cai, Zongwei; Jiang, Yuyang

    2012-12-01

    In this paper, we describe the development of a novel stable isotope N-phosphorylation labeling (SIPL) strategy for peptide de novo sequencing and protein quantification based on organic phosphorus chemistry. The labeling reaction could be performed easily and completed within 40 min in a one-pot reaction without additional cleanup procedures. It was found that N-phosphorylation labeling reagents were activated in situ to form labeling intermediates with high reactivity targeting on N-terminus and ε-amino groups of lysine under mild reaction conditions. The introduction of N-terminal-labeled phosphoryl group not only improved the ionization efficiency of peptides and increased the protein sequence coverage for peptide mass fingerprints but also greatly enhanced the intensities of b ions, suppressed the internal fragments, and reduced the complexity of the tandem mass spectrometry (MS/MS) fragmentation patterns of peptides. By using nano liquid chromatography chip/time-of-flight mass spectrometry (nano LC-chip/TOF MS) for the protein quantification, the obtained results showed excellent correlation of the measured ratios to theoretical ratios with relative errors ranging from 0.5% to 6.7% and relative standard deviation of less than 10.6%, indicating that the developed method was reproducible and precise. The isotope effect was negligible because of the deuterium atoms were placed adjacent to the neutral phosphoryl group with high electrophilicity and moderately small size. Moreover, the SIPL approach used inexpensive reagents and was amenable to samples from various sources, including cell culture, biological fluids, and tissues. The method development based on organic phosphorus chemistry offered a new approach for quantitative proteomics by using novel stable isotope labeling reagents.

  1. Analysis of liposoluble carboxylic acids metabolome in human serum by stable isotope labeling coupled with liquid chromatography-mass spectrometry.

    PubMed

    Zhu, Quan-Fei; Zhang, Zheng; Liu, Ping; Zheng, Shu-Jian; Peng, Ke; Deng, Qian-Yun; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-08-19

    Fatty acids (FAs) are groups of liposoluble carboxylic acids (LCAs) and play important roles in various physiological processes. Abnormal contents or changes of FAs are associated with a series of diseases. Here we developed a strategy with stable isotope labeling combined with liquid chromatography-tandem mass spectrometry (IL-LC-MS) analysis for comprehensive profiling and relative quantitation of LCAs in human serum. In this strategy, a pair of isotope labeling reagents (2-dimethylaminoethylamine (DMED)) and d4-2-dimethylaminoethylamine (d4-DMED) were employed to selectively label carboxyl groups of LCAs. The DMED and d4-DMED labeled products can lose four characteristic neutral fragments of 45 and 49Da or 63 and 67Da in collision-induced dissociation. Therefore, quadruple neutral loss scan (QNLS) mode was established and used for non-targeted profiling of LCAs. The peak pairs of DMED and d4-DMED labeling with the same retention time, intensity and characteristic mass differences were extracted from the two NLS spectra respectively, and assigned as potential LCA candidates. Using this strategy, 241 LCA candidates were discovered in the human serum; 156 carboxylic acid compounds could be determined by searching HMDB and METLIN databases (FAs are over 90%) and 21 of these LCAs were successfully identified by standards. Subsequently, a modified pseudo-targeted method with multiple reaction monitoring (MRM) detection mode was developed and used for relative quantification of LCAs in human serum from type 2 diabetes mellitus (T2DM) patients and healthy controls. As a result, 81 LCAs were found to have significant difference between T2DM patients and healthy controls. Taken together, the isotope labeling combined with tandem mass spectrometry analysis demonstrated to be a powerful strategy for identification and quantification of LCA compounds in serum samples. PMID:27432792

  2. Teasing Cellulose Isotopic Signals Apart by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Sternberg, L. D.; Anderson, W. T.; Morrison, K.

    2002-12-01

    The δ18O and δD values of precipitation water correlates with changes in atmospheric circulation patterns and temperature. This has been the basis of many attempts to use fossil tree ring cellulose as a proxy for paleoclimate. Ideally by measuring δ18O and δD values of tree ring cellulose one would infer isotopic composition of water available for plant uptake, which presumably is the least isotopically altered from precipitation. Subsequently, paleo-temperatures or atmospheric circulation patterns at the time of cellulose formation could then be inferred. However, this goal is confounded by isotopic exchange processes occurring in the leaf. Our current understanding of the physiological/biochemical mechanisms operating during the labeling of carbohydrates by water during tree ring cellulose synthesis indicates that the isotopic composition of tree ring cellulose is a mixture of isotopic signals coming from source (CA 35 to 45%) and leaf (CA 55 to 65%) water. The isotopic composition of the latter component is radically modified from that of the original source water by factors such as relative humidity and leaf properties. Here we present a chemical method of derivatizing cellulose to tease these two signals apart. We analyze the isotopic composition of cellulose and its derivative and calculate the δ18O value of the oxygen attached to the second carbon of the glucose moieties in cellulose (2C-OH). A one to one relationship between δ18O values of this oxygen and that of water available for cellulose synthesis in seeds germinated in the presence of water having different δ18O values was observed. Indicating that 2C-OH undergoes complete exchange with water during the synthesis of cellulose from sucrose. This technique can potentially be an analytical tool in paleo-climatic and ecological studies, once the analytical techniques are refined so as to increase precision.

  3. Absolute Quantitation of Glycosylation Site Occupancy Using Isotopically Labeled Standards and LC-MS

    NASA Astrophysics Data System (ADS)

    Zhu, Zhikai; Go, Eden P.; Desaire, Heather

    2014-06-01

    N-linked glycans are required to maintain appropriate biological functions on proteins. Underglycosylation leads to many diseases in plants and animals; therefore, characterizing the extent of glycosylation on proteins is an important step in understanding, diagnosing, and treating diseases. To determine the glycosylation site occupancy, protein N-glycosidase F (PNGase F) is typically used to detach the glycan from the protein, during which the formerly glycosylated asparagine undergoes deamidation to become an aspartic acid. By comparing the abundance of the resulting peptide containing aspartic acid against the one containing non-glycosylated asparagine, the glycosylation site occupancy can be evaluated. However, this approach can give inaccurate results when spontaneous chemical deamidation of the non-glycosylated asparagine occurs. To overcome this limitation, we developed a new method to measure the glycosylation site occupancy that does not rely on converting glycosylated peptides to their deglycosylated forms. Specifically, the overall protein concentration and the non-glycosylated portion of the protein are quantified simultaneously by using heavy isotope-labeled internal standards coupled with LC-MS analysis, and the extent of site occupancy is accurately determined. The efficacy of the method was demonstrated by quantifying the occupancy of a glycosylation site on bovine fetuin. The developed method is the first work that measures the glycosylation site occupancy without using PNGase F, and it can be done in parallel with glycopeptide analysis because the glycan remains intact throughout the workflow.

  4. LC/MS Method for the Determination of Stable Isotope Labeled Promethazine in Human Plasma

    NASA Technical Reports Server (NTRS)

    Zuwei, Wang; Boyd, Jason; Berens, Kurt L.; Putcha, Lakshmi

    2004-01-01

    Promethazine (PMZ) is taken by astronauts orally (PO), intramuscularly (IM) or rectally (PR) for space motion sickness. LC/MS method was developed with off-line solid phase extraction to measure plasma concentrations of PMZ given as stable isotope-labeled (SIL) formulations by the three different routes of administration simultaneously. Samples (0.5ml) were loaded on to Waters Oasis HLB co-polymer cartridges and eluted with 1.0 mL methanol. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 6 min. Acetonitrile/ ammonium acetate (30 mM) in water (3:2, v/v), pH 5.6 plus or minus 0.1, was used as the mobile phase for separation. Concentrations of PMZ, PMZ-d4 and PMZ-d7 and chlorpromazine (internal standard) were determined using a Micromass ZMD single quadrupole mass spectrometer with Electrospray Ionization (ESI). ESI mass spectra were acquired in positive ion mode with selected ion monitoring of [M+ H]dot plus. The method is rapid, reproducible and the assay specific parameters are listed in a table. A novel, sensitive and specific method for the measurement of PMZ and SIL PMZ in human plasma is reported.

  5. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.

  6. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.).

    PubMed

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit; Soares, Emanuela L; Soares, Arlete A; Roepstorff, Peter; Domont, Gilberto B; Campos, Francisco A P

    2013-11-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748 could be mapped to extant castor gene models, considerably expanding the number of proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP that are differentially expressed during seed development.

  7. Isotopically labelled compounds in the study of extracellular fluid space in dog bone.

    PubMed

    Khan, R A

    1979-04-01

    The extracellular fluid space in dog bone has been examined using a series of isotopically labelled compounds. Sodium-77 bromide and indium-113m ethylenediaminetetracetic acid were used as extracellular fluid space markers, radioactive water as a total fluid space marker, and potassium-43 chloride to examine the existence of a bone membrane. The clearance of each tracer from bone was monitored for a period of 2h post-injection. Graphical analysis of the clearance curves shows that the number of exponential functions vary depending on the type of tracer used. The fact that a sum of three exponential terms can completely describe each curve indicates that a simple model consisting of three compartments is sufficient to approximate the clearance of these tracers from bone and its associated fluid space. It is concluded that bone consists of an extracellular fluid space, and that this space may well play an important part in the transference of solutes and the mechanisms involved in their localization on the hydroxyapatite crystals of bone.

  8. Two-neutron transfer analysis of the 16O(18O,16O)18O reaction

    NASA Astrophysics Data System (ADS)

    Ermamatov, M. J.; Cappuzzello, F.; Lubian, J.; Cubero, M.; Agodi, C.; Carbone, D.; Cavallaro, M.; Ferreira, J. L.; Foti, A.; Garcia, V. N.; Gargano, A.; Lay, J. A.; Lenzi, S. M.; Linares, R.; Santagati, G.; Vitturi, A.

    2016-08-01

    Recently a quantitative description of the two-neutron transfer reaction 12C(18O,16O)14C was performed and the measured cross sections were successfully reproduced [M. Cavallaro et al., Phys. Rev. C 88, 054601 (2013), 10.1103/PhysRevC.88.054601]. This task was accomplished by combining nuclear structure calculations of spectroscopic amplitudes and a full quantum description of the reaction mechanism. Verification of such a theoretical approach to other heavy nuclear systems is mandatory in order to use (18O,16O ) reactions to assess pair configurations in nuclear states. In this work we apply this methodology to the 16O(18O,16O)18O reaction at 84 MeV. Experimental angular distributions for the two-neutron transfer to the ground state and 21+ state of 18O were obtained using the MAGNEX spectrometer at INFN-LNS. The roles of one- and two-step processes are analyzed under the exact finite range coupled reaction channel and the second order distorted wave Born approximation. We conclude that the one-step transfer mechanism is dominant in this system.

  9. High-frequency observations of δ2H and δ18O in storm rainfall

    NASA Astrophysics Data System (ADS)

    Stoecker, F.; Klaus, J.; Pangle, L. A.; Garland, C.; McDonnell, J. J.

    2012-12-01

    Stable isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O) are indispensable tools for investigation of the hydrologic cycle. Recent technological advances with laser spectroscopy now enable high-frequency measurement of key water cycle components. While the controls on rainfall isotope composition have been known generally for some time, our understanding of the effect of inter- and intra-storm processes on fine scale rainfall isotope composition is poorly understood. Here we present a new approach to observe inter- and intra-storm isotope variability in precipitation in high-frequency. We investigate the temporal development of δ2H and δ18O within and between discrete rainstorm. δ2H and δ18O in precipitation was measured from November 2011 to February 2012 in Corvallis, OR using a flow-cell combined with a Liquid Water Isotope Analyzer (LWIA-24d, Los Gatos Research, Inc.). The average sample frequency was 15 samples per hour, resulting in more than 3100 samples during the observation period. 27 separate rainstorms were identified in the dataset based on minimum inter-event time, minimum precipitation depth, and minimum number of isotope measurements. Event meteoric water lines were developed for each event. We observed short-term isotopic patterns (e.g., V-shaped trends), high-rate changes (5.3‰/h) and large absolute changes in isotopic composition (20‰) on intra-event scale. V-shaped trends appeared to be related to individual storm fronts detected by air temperature, cloud heights (NEXRAD radar echo tops) and cloud trajectories (Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)). Despite this, we could detect no linear correlation between event-based isotopic variables (slope, δ2H-intercept, δ2H, δ18O) and the event meteoric water line. Furthermore, the composite event meteoric water line (i.e. the local meteoric water line) showed a wider spread for heavy isotopes than for light isotopes, caused presumably by different

  10. Measuring the Composition and Stable-Isotope Labeling of Algal Biomass Carbohydrates via Gas Chromatography/Mass Spectrometry.

    PubMed

    McConnell, Brian O; Antoniewicz, Maciek R

    2016-05-01

    We have developed a method to measure carbohydrate composition and stable-isotope labeling in algal biomass using gas chromatography/mass spectrometry (GC/MS). The method consists of two-stage hydrochloric acid hydrolysis, followed by chemical derivatization of the released monomer sugars and quantification by GC/MS. Fully (13)C-labeled sugars are used as internal standards for composition analysis. This convenient, reliable, and accurate single-platform workflow offers advantages over existing methods and opens new opportunities to study carbohydrate metabolism of algae under autotrophic, mixotrophic, and heterotrophic conditions using metabolic flux analysis and isotopic tracers such as (2)H2O and (13)C-glucose. PMID:27042946

  11. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    SciTech Connect

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  12. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers with Isotopically-Labeled Grignard Reagents

    PubMed Central

    2015-01-01

    In this manuscript we highlight the potential of stereospecific nickel-catalyzed cross-coupling reactions for applications in the pharmaceutical industry. Using an inexpensive and sustainable nickel catalyst, we report a gram-scale Kumada cross-coupling reaction. Reactions are highly stereospecific and proceed with inversion at the benzylic position. We also expand the scope of our reaction to incorporate isotopically labeled substituents. PMID:27458328

  13. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  14. Temporal and spatial distributions of δ18O and δ2H in precipitation in Romania

    NASA Astrophysics Data System (ADS)

    Nagavciuc, Viorica; Bădăluță, Carmen-Andreea; Perșoiu, Aurel

    2015-04-01

    Stable isotope ratios of meteoric water have an important role in climatic, paleoclimatic, hydrological and meteorological studies. While such data are available from most of Europe, so far, in Romania (East Central Europe), no systematic study of the stable isotopic composition of precipitation exists. In this context, the aim of this study is to analyze the isotopic composition of rainwater, its temporal and spatial distribution, the identification of the main factors influencing these variations and the creation of the first map of spatial distribution of stable isotopes in precipitation in Romania. Between March 2012 and March 2014 we have collected monthly samples from 22 stations in Romania, which were subsequently analyzed for their δ18O and δ2H at the Stable Isotopes Laboratory, Stefan cel Mare University, Suceava, Romania. Precipitation in W and NW Romania plot along the GMWL, while those in the East are slightly below it, on an evaporative trend. The LMWL for Romania is defined as δ2H=7,27*δ18O + 6,92. The W-E gradient in the distribution of δ18O and δ2H are less marked than the N-S ones, with local influences dominating in areas of strong evaporation (intramountain basins, rain-shadow areas etc). In SW, and especially in autumn and winter, Meditteranean cyclones carry moisture from the Eastern Mediterranean, the δ18O and δ2H values in precipitation in the area plotting between the GMWL and the Eastern Mediterranean Meteoric Water Line. The isotopic composition of rainwater in Romania correlates well with air temperature, and is influenced to a lesser extent by other factors such as the amount of precipitation, topography configuration, the effect of continentalism and season of the year.

  15. Co-occurring species differ in tree-ring delta(18)O trends.

    PubMed

    Marshall, John D; Monserud, Robert A

    2006-08-01

    The stable oxygen isotope ratio (delta(18)O) of tree-ring cellulose is jointly determined by the delta(18)O of xylem water, the delta(18)O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric humidity and the delta(18)O of water vapor vary seasonally and annually, but if the canopy atmosphere is well mixed, atmospheric characteristics should be uniform among co-occurring trees. In contrast, xylem water delta(18)O is determined by the delta(18)O of water being drawn from the soil, which varies with depth. If co-occurring trees draw water from different soil depths, this soil-water delta(18)O signal would be manifest as differences in delta(18)O among the trees. We examined the variation in tree ring delta(18)O, over eight decades during the 20th Century, among three species co-occurring in natural forest stands of the northern Rocky Mountains in the USA. We sampled 10 Douglas-firs (Pseudotsuga menziesii (Mirb.) Franco var. glauca), 10 ponderosa pines (Pinus ponderosa Laws.) and seven western white pines (Pinus monticola Dougl.). As expected, variation in atmospheric conditions was recorded in the delta(18)O of the cellulose produced in a given year, but observed climatic correlations with delta(18)O were weak. Significant correlations with June climate data included: daily maximum temperature (r = 0.29), daily minimum temperature (r = -0.25), mean temperature (r = 0.20), mean daily precipitation (r = -0.54), vapor pressure deficit (r = 0.32) and solar radiation (r = 0.44). Lagged effects were observed in Douglas-fir and western white pine. In these species, the delta(18)O of a given annual ring was correlated with the delta(18)O of the previous ring. Ponderosa pine showed no significant autocorrelation. Although the species means were correlated among years (r = 0.67 to 0.76), ponderosa pine was consistently enriched in delta(18)O relative to the other species; differences

  16. Metal Oxide-Based Selective Enrichment Combined with Stable Isotope Labeling-Mass Spectrometry Analysis for Profiling of Ribose Conjugates.

    PubMed

    Chu, Jie-Mei; Qi, Chu-Bo; Huang, Yun-Qing; Jiang, Han-Peng; Hao, Yan-Hong; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-21

    Some modified ribonucleosides in biological fluids have been evaluated as cancer-related metabolites. Detection of endogenous modified ribonucleosides in biological fluids may serve as a noninvasive cancers diagnostic method. However, determination of modified ribonucleosides is still challenging because of their low abundance and serious matrix interferences in biological fluids. Here, we developed a novel strategy for comprehensive profiling of ribose conjugates from biological fluids using metal oxide-based dispersive solid-phase extraction (DSPE) followed with in vitro stable isotope labeling and double neutral loss scan-mass spectrometry analysis (DSPE-SIL-LC-DNLS-MS). Cerium dioxide (CeO2) was used to selectively recognize and capture ribose conjugates from complex biological samples under basic environment. The enriched ribose conjugates were subsequently labeled with a pair of isotope labeling reagents (acetone and acetone-d6). The glucosidic bond of acetone labeled ribose conjugates is readily ruptured, and the generated ribose that carries an isotope tag can be lost as a neutral fragment under collision induced dissociation (CID). Since the light (acetone) and heavy (acetone-d6) labeled compounds have the same chemical structures and can generate different neutral loss fragments (NL 172 and 178 Da), it is therefore highly convenient to profile ribose conjugates by double neutral loss scan mode in mass spectrometry analysis. In this respect, the light and heavy labeled compounds were ionized at the same condition but recorded separately on MS spectra, which can significantly improve the detection specificity and facilitate the identification of ribose conjugates. Using the developed DSPE-SIL-LC-DNLS-MS strategy, we profiled the ribose conjugates in human urine, and 49 ribose conjugates were readily identified, among which 7 ribose conjugates exhibited significant contents change between healthy controls and lymphoma patients. The DSPE

  17. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul F.; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  18. Evaporative enrichment and time lags between delta18O of leaf water and organic pools in a pine stand.

    PubMed

    Barnard, Romain L; Salmon, Yann; Kodama, Naomi; Sörgel, Karin; Holst, Jutta; Rennenberg, Heinz; Gessler, Arthur; Buchmann, Nina

    2007-05-01

    Understanding ecosystem water fluxes has gained increasing attention, as climate scenarios predict a drier environment for many parts of the world. Evaporative enrichment of (18)O (Delta(18)O) of leaf water and subsequent enrichment of plant organic matter can be used to characterize environmental and physiological factors that control evaporation, based on a recently established mechanistic model. In a Pinus sylvestris forest, we measured the dynamics of oxygen isotopic composition (delta(18)O) every 6 h for 4 d in atmospheric water vapour, xylem sap, leaf water and water-soluble organic matter in current (N) and previous year (N-1) needles, phloem sap, together with leaf gas exchange for pooled N and N-1 needles, and relevant micrometeorological variables. Leaf water delta(18)O showed strong diel periodicity, while delta(18)O in atmospheric water vapour and in xylem sap showed little variation. The Delta(18)O was consistently lower for N than for N-1 needles, possibly related to phenological stage. Modelled leaf water Delta(18)O showed good agreement with measured values when applying a non-steady state evaporative enrichment model including a Péclet effect. We determined the time lags between delta(18)O signals from leaf water to water-soluble foliar organic matter and to phloem sap at different locations down the trunk, which clearly demonstrated the relevance of considering these time-lag effects for carbon transport, source-sink and carbon flux partitioning studies. PMID:17407532

  19. Isotope labeled internal standards (ILIS) as a basis for quality control in clinical studies using plasma samples.

    PubMed

    Rezeli, Melinda; Végvári, Akos; Marko-Varga, György; Laurell, Thomas

    2010-04-18

    For clinical proteomic studies, the quality of the biofluid samples such as human blood plasma is extremely important. In this study we have investigated the stability of human plasma samples by spiking stable isotope-labeled peptides into the plasma and monitoring their degradation under different storage conditions. FPA-1, C4A and C3f were synthesized with isotopically labeled amino acids, and used as reference peptides. The mixture of internal calibrants was spiked into plasma at the starting point of investigation, mimicking the time of collection for future biobanking efforts, and their qualitative and quantitative changes were analyzed over time by using both MALDI-MS (LTQ Orbitrap XL) and nanoLC-ESI-MS (LTQ XL ETD). We have found that all three synthetic peptides were stable in plasma at -20 and -80 degrees C during the examined 2-month period. However, different proteolytic degradation profiles of the peptides were observed at room temperature. We anticipate that the use of these isotope-labeled peptides as internal standards (ILIS) provides a quality control for long-term storage and proteomic plasma analysis.

  20. Stable isotope labeling tandem mass spectrometry (SILT): integration with peptide identification and extension to data-dependent scans.

    PubMed

    Elbert, Donald L; Mawuenyega, Kwasi G; Scott, Evan A; Wildsmith, Kristin R; Bateman, Randall J

    2008-10-01

    Quantitation of relative or absolute amounts of proteins by mass spectrometry can be prone to large errors. The use of MS/MS ion intensities and stable isotope labeling, which we term stable isotope labeling tandem mass spectrometry (SILT), decreases the effects of contamination from unrelated compounds. We present a software package (SILTmass) that automates protein identification and quantification by the SILT method. SILTmass has the ability to analyze the kinetics of protein turnover, in addition to relative and absolute protein quantitation. Instead of extracting chromatograms to find elution peaks, SILTmass uses only scans in which a peptide is identified and that meet an ion intensity threshold. Using only scans with identified peptides, the accuracy and precision of SILT is shown to be superior to precursor ion intensities, particularly at high or low dilutions of the isotope labeled compounds or with low amounts of protein. Using example scans, we demonstrate likely reasons for the improvements in quantitation by SILT. The appropriate use of variable modifications in peptide identification is described for measurement of protein turnover kinetics. The combination of identification with SILT facilitates quantitation without peak detection and helps to ensure the appropriate use of variable modifications for kinetics experiments.

  1. A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Plant biomass consists primarily of carbohydrates derived from photosynthesis. Monitoring the assimilation of carbon via the Calvin-Benson cycle and its subsequent utilisation is fundamental to understanding plant growth. The use of stable and radioactive carbon isotopes, supplied to plants as CO2, allows the measurement of fluxes through the intermediates of primary photosynthetic metabolism, long-distance transport of sugars in the vasculature, and the synthesis of structural and storage components. Results Here we describe the design of a system for supplying isotopically labelled CO2 to single leaves of Arabidopsis thaliana. We demonstrate that the system works well using short pulses of 14CO2 and that it can be used to produce robust qualitative and quantitative data about carbon export from source leaves to the sink tissues, such as the developing leaves and the roots. Time course experiments show the dynamics of carbon partitioning between storage as starch, local production of biomass, and export of carbon to sink tissues. Conclusion This isotope labelling method is relatively simple to establish and inexpensive to perform. Our use of 14CO2 helps establish the temporal and spatial allocation of assimilated carbon during plant growth, delivering data complementary to those obtained in recent studies using 13CO2 and MS-based metabolomics techniques. However, we emphasise that this labelling device could also be used effectively in combination with 13CO2 and MS-based techniques. PMID:24252607

  2. Latitudinal gradients in greenhouse seawater δ(18) O: evidence from Eocene sirenian tooth enamel.

    PubMed

    Clementz, Mark T; Sewall, Jacob O

    2011-04-22

    The Eocene greenhouse climate state has been linked to a more vigorous hydrologic cycle at mid- and high latitudes; similar information on precipitation levels at low latitudes is, however, limited. Oxygen isotopic fluxes track moisture fluxes and, thus, the δ(18)O values of ocean surface waters can provide insight into hydrologic cycle changes. The offset between tropical δ(18)O values from sampled Eocene sirenian tooth enamel and modern surface waters is greater than the expected 1.0 per mil increase due to increased continental ice volume. This increased offset could result from suppression of surface-water δ(18)O values by a tropical, annual moisture balance substantially wetter than that of today. Results from an atmospheric general circulation model support this interpretation and suggest that Eocene low latitudes were extremely we