Science.gov

Sample records for 18o isotopic labeling

  1. A Novel Method for Relative Quantitation of N-Glycans by Isotopic Labeling Using 18O-Water

    PubMed Central

    Tao, Shujuan; Orlando, Ron

    2014-01-01

    Quantitation is an essential aspect of comprehensive glycomics study. Here, a novel isotopic-labeling method is described for N-glycan quantitation using 18O-water. The incorporation of the 18O-labeling into the reducing end of N-glycans is simply and efficiently achieved during peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase F release. This process provides a 2-Da mass difference compared with the N-glycans released in 16O-water. A mathematical calculation method was also developed to determine the 18O/16O ratios from isotopic peaks. Application of this method to several standard glycoprotein mixtures and human serum demonstrated that this method can facilitate the relative quantitation of N-glycans over a linear dynamic range of two orders, with high accuracy and reproducibility. PMID:25365792

  2. Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

    PubMed Central

    Starkey, Jonathan M.; Zhao, Yingxin; Sadygov, Rovshan G.; Haidacher, Sigmund J.; LeJeune, Wanda S.; Dey, Nilay; Luxon, Bruce A.; Kane, Maureen A.; Napoli, Joseph L.; Denner, Larry; Tilton, Ronald G.

    2010-01-01

    Background Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes. Methodology/Principal Findings Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, 18O- and 16O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change ≥1.5 and p≤0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARβ/δ mRNA. Conclusions/Significance Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in

  3. Protease- and Acid-catalyzed Labeling Workflows Employing 18O-enriched Water

    PubMed Central

    Klingler, Diana; Hardt, Markus

    2013-01-01

    Stable isotopes are essential tools in biological mass spectrometry. Historically, 18O-stable isotopes have been extensively used to study the catalytic mechanisms of proteolytic enzymes1-3. With the advent of mass spectrometry-based proteomics, the enzymatically-catalyzed incorporation of 18O-atoms from stable isotopically enriched water has become a popular method to quantitatively compare protein expression levels (reviewed by Fenselau and Yao4, Miyagi and Rao5 and Ye et al.6). 18O-labeling constitutes a simple and low-cost alternative to chemical (e.g. iTRAQ, ICAT) and metabolic (e.g. SILAC) labeling techniques7. Depending on the protease utilized, 18O-labeling can result in the incorporation of up to two 18O-atoms in the C-terminal carboxyl group of the cleavage product3. The labeling reaction can be subdivided into two independent processes, the peptide bond cleavage and the carboxyl oxygen exchange reaction8. In our PALeO (protease-assisted labeling employing 18O-enriched water) adaptation of enzymatic 18O-labeling, we utilized 50% 18O-enriched water to yield distinctive isotope signatures. In combination with high-resolution matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), the characteristic isotope envelopes can be used to identify cleavage products with a high level of specificity. We previously have used the PALeO-methodology to detect and characterize endogenous proteases9 and monitor proteolytic reactions10-11. Since PALeO encodes the very essence of the proteolytic cleavage reaction, the experimental setup is simple and biochemical enrichment steps of cleavage products can be circumvented. The PALeO-method can easily be extended to (i) time course experiments that monitor the dynamics of proteolytic cleavage reactions and (ii) the analysis of proteolysis in complex biological samples that represent physiological conditions. PALeO-TimeCourse experiments help identifying rate-limiting processing

  4. Multi-isotope labelling of organic matter by diffusion of 2H/18O-H2O vapour and 13C-CO2 into the leaves and its distribution within the plant

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Siegwolf, R. T. W.; Leuenberger, M.; Abiven, S.

    2015-03-01

    Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides × nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After 1 week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled18O = -63 ± 8, δ2H = -156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable back-diffusion of vapour into the leaves (58-69%) in the opposite direction to the net transpiration flow. The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2-4 times higher in leaves than in the stems and roots. This could be an indication of the synthesis of more condensed compounds in roots and stems (e.g. lignin vs. cellulose) or might be the result of O and H exchange and fractionation processes during phloem transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest in the fields of plant physiology, palaeoclimatic reconstruction or soil science.

  5. Direct Synthesis of ESBO Derivatives-18O Labelled with Dioxirane

    PubMed Central

    Tommasi, Immacolata; Fusco, Caterina

    2013-01-01

    This work addresses a new approach developed in our laboratory, consisting in the application of isolated dimethyldioxirane (DDO, 1a) labelled with 18O for synthesis of epoxidized glyceryl linoleate (Gly-LLL, 2). We expect that this work could contribute in improving analytical methods for the determination of epoxidized soybean oil (ESBO) in complex food matrices by adopting an 18O-labelled-epoxidized triacylglycerol as an internal standard. PMID:24163617

  6. Evidence of the chemical reaction of (18)O-labelled nitrite with CO2 in aqueous buffer of neutral pH and the formation of (18)OCO by isotope ratio mass spectrometry.

    PubMed

    Tsikas, Dimitrios; Böhmer, Anke; Gros, Gerolf; Endeward, Volker

    2016-05-01

    Inorganic nitrite (NO2(-), ON-O(-) ←→ (-)O-NO) is the autoxidation product of nitric oxide (NO). Nitrite can also be formed from inorganic nitrate (ONO2(-)), the major oxidation product of NO in erythrocytes, by the catalytic action of bacterial nitrate reductase in gut and oral microflora. Nitrite can be reduced to NO by certain cellular proteins and enzymes, as well as in the gastric juice under acidic conditions. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to convert nitrite to NO. Renal CA isoforms are involved in the reabsorption of nitrite and may, therefore, play an important role in NO homeostasis. Yet, the mechanisms underlying the action of CA on nitrite are incompletely understood. The nitrate/nitrite system is regarded as a reservoir of NO. We have recently shown that nitrite reacts chemically with carbon dioxide (CO2), the regular substrate of CA. The present communication reports a stable isotope ratio mass spectrometry (IRMS) study on the reaction of NO2(-) and CO2 performed in 50 mM HEPES buffer of pH 7.4 at 37 °C. By using (18)O-labelled nitrite ((18)ON-O(-)/(-18)O-NO) and CO2 we observed formation of (18)O-labelled CO2. This finding is an unequivocal evidence of the chemical reaction of (18)ON-O(-)/(-18)O-NO with CO2. The reaction is rapid and involves nucleophilic attack of the negatively charged nitrite via one of its oxygen atoms on the partially positively charged CO2 molecule to form the putative intermediate (18)ON-O-CO2(-)/(-)O2C-(18)O-NO. The by far largest fraction of this intermediate decomposes back to (18)ON-O(-)/(-18)O-NO and CO2. A very small fraction of the intermediate, however, rearranges and finally decomposes to form (18)OCO and nitrite. This reaction is slower in the presence of an isolated erythrocytic CA isoform II. In summary, NO2(-), CO2 and CA are ubiquitous. The chemical reaction of NO2(-) with CO2 and its modulation by CA isoforms may play important roles in the transport of

  7. Secondary sup 18 O isotope effects for hexokinase-catalyzed phosphoryl transfer from ATP

    SciTech Connect

    Jones, J.P.; Weiss, P.M.; Cleland, W.W. )

    1991-04-16

    Secondary {sup 18}O isotope effects in the {gamma}-position of ATP have been measured on phosphoryl transfer catalyzed by yeast hexokinase in an effort to deduce the structure of the transition state. The isotope effects were measured by the remote-label method with the exocyclic amino group of adenine as the remote label. With glucose as substrate, the secondary {sup 18}O isotope effect per {sup 18}O was 0.9987 at pH 8.2 and 0.9965 at pH 5.3, which is below the pK of 6.15 seen in the V/K profile for MgATP. With the slow substrate 1,5-anhydro-D-glucitol, the value was 0.9976 at pH 8.2. While part of the inverse nature of the isotope effect may result from an isotope effect on binding, the more inverse values when catalysis is made more rate limiting by decreasing the pH or switching to a slower substrate suggest a dissociative transition state for phosphoryl transfer, in agreement with predictions from model chemistry. The {sup 18}O equilibrium isotope effect for deprotonation of HATP{sup 3{minus}} is 1.0156, while Mg{sup 2+} coordination to ATP{sup 4{minus}} does not appear to be accompanied by an {sup 18}O isotope effect larger than 1.001.

  8. 18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry

    SciTech Connect

    Kim, Jong Seo; Fillmore, Thomas L.; Liu, Tao; Robinson, Errol W.; Hossain, Mahmud; Champion, Boyd L.; Moore, Ronald J.; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2011-10-11

    Selected reaction monitoring-mass spectrometry (SRM-MS) is an emerging technology for high throughput targeted protein quantification and verification in biological and biomarker discovery studies; however, the cost associated with the use of stable isotope labeled synthetic peptides as internal standards is prohibitive for quantitatively screening large numbers of candidate proteins as often required in the pre-verification phase of biomarker discovery. Herein we present the proof-of-concept experiments of using an 18O-labeled 'universal' reference as comprehensive internal standards for quantitative SRM-MS analysis. With an 18O-labeled whole proteome sample as reference, every peptide of interest will have its own corresponding heavy isotope labeled internal standard, thus providing an ideal approach for quantitative screening of a large number of candidates using SRM-MS. Our results showed that the 18O incorporation efficiency using a recently improved protocol was >99.5% for most peptides investigated, a level comparable to 13C/15N labeled synthetic peptides in terms of heavy isotope incorporation. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into mouse plasma with an 18O-labeled mouse plasma reference. A dynamic range of four orders of magnitude in relative concentration was obtained with high reproducibility (i.e., coefficient of variance <10%) based on the 16O/18O peak area ratios. Absolute and relative quantification of C-reactive protein and prostate-specific antigen were demonstrated by coupling an 18O-labeled reference with standard additions of protein standards. Collectively, our results demonstrated that the use of 18O-labeled reference provides a convenient and effective strategy for quantitative SRM screening of large number of candidate proteins.

  9. Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR.

    PubMed

    Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar; Whittaker, Jonathan; Weiss, Michael A; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    Isotope-edited two-dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site-specific incorporation of stable (13) C=(18) O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis-via a key ester insulin intermediate-of 97 % enriched [(1-(13) C=(18) O)Phe(B24) ] human insulin: stable-isotope labeled at a single backbone amide carbonyl. The amino acid sequence as well as the positions of the disulfide bonds and the correctly folded structure were unambiguously confirmed by the X-ray crystal structure of the synthetic protein molecule. In vitro assays of the isotope labeled [(1-(13) C=(18) O)Phe(B24) ] human insulin showed that it had full insulin receptor binding activity. Linear and 2 D IR spectra revealed a distinct red-shifted amide I carbonyl band peak at 1595 cm(-1) resulting from the (1-(13) C=(18) O)Phe(B24) backbone label. This work illustrates the utility of chemical synthesis to enable the application of advanced physical methods for the elucidation of the molecular basis of protein function. PMID:26715336

  10. 18O Labeling over a Coffee Break: A Rapid Strategy for Quantitative Proteomics

    PubMed Central

    Mirza, Shama P.; Greene, Andrew S.; Olivier, Michael

    2009-01-01

    Proteomics-based quantification methods for differential protein expression measurements are among the most important and challenging techniques in the field of mass spectrometry. Though numerous quantification methods have been established, no method meets all the demands for measuring accurate protein expression levels. Of the various relative quantification methods by isotopic labeling, 18O labeling method has been shown to be simple, specific, cost-effective and applicable to a wide range of analyses. However, some researchers refrain from using the method due to long incubation periods required during the labeling process. To address this problem, we demonstrate a method by which the labeling procedure can be completed in 15 min. We digested and labeled samples using immobilized trypsin on micro-spin columns to speed up the enzyme-mediated oxygen substitution, thereby completing the labeling process within 15 min with high labeling efficiency. We demonstrate the efficiency and accuracy of the method using a four protein mixture and whole cell lysate from rat vascular endothelial cells. PMID:18510357

  11. Optimised conditions for the synthesis of (17)O and (18)O labelled cholesterol.

    PubMed

    de la Calle Arregui, Celia; Purdie, Jonathan A; Haslam, Catherine A; Law, Robert V; Sanderson, John M

    2016-02-01

    Conditions are described for the preparation of cholesterol with (17)O and (18)O labels from i-cholesteryl methyl ether using minimal amounts of isotopically enriched water. Optimum yields employed trifluoromethanesulfonic acid as catalyst in 1,4-dioxane at room temperature with 5 equivalents of water. An isotopic enrichment >90% of that of the water used for the reaction could be attained. Tetrafluoroboric acid could also be used as catalyst, at the expense of a lower overall reaction yield. Byproducts from the reaction included dicholesteryl ether, methyl cholesteryl ether, compounds formed by ether hydrolysis, and olefins arising from elimination reactions. Reactions in tetrahydrofuran yielded significant amounts of cholesteryl ethers formed by reaction with alcohols arising from hydrolysis of the solvent. PMID:26724708

  12. Isotopic Study ( 18O, 2H) of the Ground Water in the Bekaa's plain (Lebanon)

    NASA Astrophysics Data System (ADS)

    Awad, S.

    The stable isotopes of the water molecule (18O, 2H) give informations about the paleoclimate existing during the water seepage and about the recharge conditions of the groundwater. The effects of the Orography, the Continentality, and the origin of the masses of air have an effect on the isotopic abundance of the precipitations (rain + snow) in Lebanon. An evaporation of the recharge water exists in the atmosphere, with a mixing between the deep water and the shallow ones. The sea water has an isotopic abundance at 0 ‰ (SMOW: Standard Mean Ocean Water) for δ2H et δ18O, the Mediterranean Sea is at the origin of the rains which fall on the studied area, and which do not keep the isotopic abundances of the sea because the high mountains that they cross during their movement. This high altitude causes an impoverishment of the water of the rain on heavy isotope (18O).

  13. Characterization of Growing Bacterial Populations in McMurdo Dry Valley Soils through Stable Isotope Probing with 18O-water

    PubMed Central

    Schwartz, Egbert; Buelow, Heather N.; Gooseff, Michael N.; Barrett, John E.; Okie, Jordan G.; Takacs-Vesbach, Cristina D.; Van Horn, David J.

    2014-01-01

    Soil microbial communities of the McMurdo Dry Valleys, Antarctica (MDV) contain representatives from at least fourteen bacterial phyla. However, given low rates of microbial activity, it is unclear whether this richness represents functioning rather than dormant members of the community. We used stable isotope probing (SIP) with 18O-water to determine if microbial populations grow in MDV soils. Changes in the microbial community were characterized in soils amended with H2 18O and H2 18O-organic matter. Sequencing the 16S rRNA genes of the heavy and light fractions of the bacterial community DNA show that DNA of microbial populations was labeled with 18O-water, indicating these microorganisms grew in the MDV soils. Significant differences existed in the community composition of the heavy and light fractions of the H2 18O and H2 18O-organic matter amended samples (Anosim P<0.05 of weighted Unifrac distance). Control samples and the light DNA fraction of the H2 18O amended samples were dominated by representatives of the phyla Deinococcus-Thermus, Proteobacteria, Planctomyces, Gemmatimonadetes, Actinobacteria and Acidobacteria, whereas Proteobacteria were more prevalent in the heavy DNA fractions from the H2 18O-water and the H2 18O-water-organic matter treatments. Our results indicate that SIP with H2 18O can be used to distinguish active bacterial populations even in this low organic matter environment. PMID:24785369

  14. Dentine oxygen isotopes (δ (18)O) as a proxy for odontocete distributions and movements.

    PubMed

    Matthews, Cory J D; Longstaffe, Fred J; Ferguson, Steven H

    2016-07-01

    Spatial variation in marine oxygen isotope ratios (δ (18)O) resulting from differential evaporation rates and precipitation inputs is potentially useful for characterizing marine mammal distributions and tracking movements across δ (18)O gradients. Dentine hydroxyapatite contains carbonate and phosphate that precipitate in oxygen isotopic equilibrium with body water, which in odontocetes closely tracks the isotopic composition of ambient water. To test whether dentine oxygen isotope composition reliably records that of ambient water and can therefore serve as a proxy for odontocete distribution and movement patterns, we measured δ (18)O values of dentine structural carbonate (δ (18) OSC) and phosphate (δ (18) OP) of seven odontocete species (n = 55 individuals) from regional marine water bodies spanning a surface water δ (18)O range of several per mil. Mean dentine δ (18) OSC (range +21.2 to +25.5‰ VSMOW) and δ (18) OP (+16.7 to +20.3‰) values were strongly correlated with marine surface water δ (18)O values, with lower dentine δ (18) OSC and δ (18) OP values in high-latitude regions (Arctic and Eastern North Pacific) and higher values in the Gulf of California, Gulf of Mexico, and Mediterranean Sea. Correlations between dentine δ (18) OSC and δ (18) OP values with marine surface water δ (18)O values indicate that sequential δ (18)O measurements along dentine, which grows incrementally and archives intra- and interannual isotopic composition over the lifetime of the animal, would be useful for characterizing residency within and movements among water bodies with strong δ (18)O gradients, particularly between polar and lower latitudes, or between oceans and marginal basins. PMID:27547302

  15. Calibration of sclerosponge oxygen isotope records to temperature using high-resolution δ 18O data

    NASA Astrophysics Data System (ADS)

    Rosenheim, Brad E.; Swart, Peter K.; Willenz, Philippe

    2009-09-01

    A revised calibration is presented relating the oxygen isotope composition of the aragonite-secreting sclerosponge Ceratoporella nicholsoni, oxygen isotope composition of seawater, and ambient water temperature. This new relationship has been obtained using high-resolution δ 18O data measured in sclerosponges from the Bahamas and Jamaica compared to ambient temperature measurements and δ 18O values of seawater from the two locations, both measured and published. New data improve an existing calibration which was determined using measurements of salinity rather than directly measured δ 18O values of the seawater and was composed of measurements from different species of sclerosponge and other aragonite-secreting organisms. The updated calibration ( n = 12, r2 = 0.95) is: T(°C)=16.1(±3.1)-[6.5(±1.1)](δ-δ), where T is temperature in degrees Celsius, δ arag is the δ 18O value of aragonite normalized to VPDB, and δ sw is the δ 18O value of water normalized to VSMOW. This calibration improves accuracy and precision of Caribbean sclerosponges for reconstructions of temperature as well as δ 18O values of seawater.

  16. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    SciTech Connect

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Weijun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F.; Fredrickson, Jim K.; Pasa-Tolic, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-05-03

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and environmental electron receptors. LC/MS/MS analysis resulted in the identification of about 79% membrane proteins among all proteins identified from the enriched sample. To illustrate the quantification of membrane proteome changes, enriched membrane protein samples from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) were further labeled with 16O and 18O at the peptide level prior to LC-MS analysis. A chemical-probe-labeled pure protein has also been used as an internal standard for normalization purpose. The quantitative data revealed reduced abundances of many outer membrane proteins such as OmcA and MtrC in ΔgspD mutant cells, which agreed well with previously published studies.

  17. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    PubMed Central

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  18. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: I. Patterns

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates frequently precipitate out of {sup 18}O and {sup 13}C equilibrium with ambient waters. Two patterns of isotopic disequilibrium are particularly common. Kinetic disequilibria, so designated because they apparently result from kinetic isotope effects during CO{sub 2} hydration and hydroxylation, involve simultaneous depletions of {sup 18}O and {sup 13}C as large as 4{per thousand} and 10 to 15{per thousand}, respectively. Rapid skeletogenesis favors strong kinetic effects, and approximately linear correlations between skeletal {delta}{sup 18}O and {delta}{sup 13}C are common in carbonates showing mainly the kinetic pattern. Metabolic effects involve additional positive or negative modulation of skeletal {delta}{sup 13}C, reflecting changes in the {delta}{sup 13}C of dissolved inorganic carbon, caused mainly by photosynthesis and respiration. Kinetic isotope disequilibria tend to be fairly consistent in rapidly growing parts of photosynthetic corals, and time dependent isotopic variations therefore reflect changes in environmental conditions. {delta}{sup 18}O variations from Galapagos corals yields meaningful clues regarding seawater temperature, while {delta}{sup 13}C variations reflect changes in photosynthesis, modulated by cloudiness.

  19. Dilution space ratio of 2H and 18O of doubly labeled water method in humans.

    PubMed

    Sagayama, Hiroyuki; Yamada, Yosuke; Racine, Natalie M; Shriver, Timothy C; Schoeller, Dale A

    2016-06-01

    Variation of the dilution space ratio (Nd/No) between deuterium ((2)H) and oxygen-18 ((18)O) impacts the calculation of total energy expenditure (TEE) by doubly labeled water (DLW). Our aim was to examine the physiological and methodological sources of variation of Nd/No in humans. We analyzed data from 2,297 humans (0.25-89 yr old). This included the variables Nd/No, total body water, TEE, body mass index (BMI), and percent body fat (%fat). To differentiate between physiologic and methodologic sources of variation, the urine samples from 54 subjects were divided and blinded and analyzed separately, and repeated DLW dosing was performed in an additional 55 participants after 6 mo. Sex, BMI, and %fat did not significantly affect Nd/No, for which the interindividual SD was 0.017. The measurement error from the duplicate urine sample sets was 0.010, and intraindividual SD of Nd/No in repeats experiments was 0.013. An additional SD of 0.008 was contributed by calibration of the DLW dose water. The variation of measured Nd/No in humans was distributed within a small range and measurement error accounted for 68% of this variation. There was no evidence that Nd/No differed with respect to sex, BMI, and age between 1 and 80 yr, and thus use of a constant value is suggested to minimize the effect of stable isotope analysis error on calculation of TEE in the DLW studies in humans. Based on a review of 103 publications, the average dilution space ratio is 1.036 for individuals between 1 and 80 yr of age. PMID:26989221

  20. The Study of the Groundwater by Using the 34S and 18O of the Sulphates-S18O4 Isotopes

    NASA Astrophysics Data System (ADS)

    Awad, Sadek

    The stable isotope of the sulphur atom (34S) and the 18O of the sulphates (S18O4) give information about the type of the mineralisation of the groundwater existing during the water seepage. The decrease of the concentrations in dissolved SO42- (meq/L) versus the increase of δ18O (‰ vs. SMOW) of the sulphates (S18O42-) confirms a partial reduction of the dissolved sulphates in the water. The Under-saturated waters versus the gypsum do not cause the precipitations of the sulphates. The study of δ34S (‰ CD) vs. Cl- (mg/L) indicates high variations in δ34S (‰ CD) for weak difference in the Cl- (mg/L) content, this is due to the reduction of the dissolved sulphates. Concerning the Jurassic water in Lebanon, an oxidation of the sulphide can take place.

  1. A Bayesian Markov-Chain-Based Heteroscedastic Regression Model for the Analysis of 18O-Labeled Mass Spectra

    NASA Astrophysics Data System (ADS)

    Zhu, Qi; Burzykowski, Tomasz

    2011-03-01

    To reduce the influence of the between-spectra variability on the results of peptide quantification, one can consider the 18O-labeling approach. Ideally, with such labeling technique, a mass shift of 4 Da of the isotopic distributions of peptides from the labeled sample is induced, which allows one to distinguish the two samples and to quantify the relative abundance of the peptides. It is worth noting, however, that the presence of small quantities of 16O and 17O atoms during the labeling step can cause incomplete labeling. In practice, ignoring incomplete labeling may result in the biased estimation of the relative abundance of the peptide in the compared samples. A Markov model was developed to address this issue (Zhu, Valkenborg, Burzykowski. J. Proteome Res. 9, 2669-2677, 2010). The model assumed that the peak intensities were normally distributed with heteroscedasticity using a power-of-the-mean variance funtion. Such a dependence has been observed in practice. Alternatively, we formulate the model within the Bayesian framework. This opens the possibility to further extend the model by the inclusion of random effects that can be used to capture the biological/technical variability of the peptide abundance. The operational characteristics of the model were investigated by applications to real-life mass-spectrometry data sets and a simulation study.

  2. The "Flood of the Century" as Isotopic Fingerprint in Canopy d18O Signatures

    NASA Astrophysics Data System (ADS)

    Seibt, U.; Wingate, L.; Berry, J. A.

    2006-12-01

    The d18O composition of water and CO2 exchange at smaller scales (leaf and ecosystem) can be affected by changes in environmental conditions at larger (regional) scales. During a sampling campaign in a beech forest in Germany in August 2002, we encountered such a large scale change when dry sunny weather was followed by a large storm system with heavy rains leading to floods across Europe. During the first, sunny period, bulk leaf water d18O was -1 permil at night and 7 permil at mid-day. Foliage CO2 exchange had positive values of 18O discrimination during photosynthesis (10-30 permil) and nocturnal respiration (11 permil). The second period had frequent rains and mostly diffuse light, with reduced foliage water fluxes but similar carbon fluxes. Canopy vapour d18O decreased at least 2 permil, and leaf water then reflected isotopic exchange with this depleted vapour due to the high humidity. Hence, bulk leaf water was substantially more depleted at night (-8 permil) and showed virtually no evaporative enrichment during the day (-5 permil). Values of 18O discrimination during CO2 exchange were small or even negative for photosynthesis (-2 to 6 permil) but larger for nocturnal respiration (23-39 permil). Model simulations indicated that the small positive foliage isoflux during the day was offset by the negative isoflux at night. As a consequence, the d18O of CO2 in canopy air decreased from -0.3 permil during the sunny period to -3 permil during the wet period. The d18O signatures of canopy water and CO2 thus reflected the transition from local water to the regional regime of depleted water deposited across the area by the storm.

  3. Photorespiratory Rates in Wheat and Maize as Determined by 18O-Labeling 1

    PubMed Central

    de Veau, Edward J.; Burris, John E.

    1989-01-01

    A method was devised to quantify short-term photorespiratory rates in terrestrial plants using 18O-intermediates of the glycolate pathway, specifically glycolate, glycine, and serine. The pathway intermediates were isolated and analyzed on a GC/MS to determine molecular percent 18O-enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, derived rate equations, and nonlinear regression techniques. Glycolate synthesis in wheat (Triticum aestivum L.), a C3 plant, and maize (Zea mays L.), a C4 plant, was stimulated by high O2 concentrations and inhibited by high CO2 concentrations. The synthesis rates were 7.3, 2.1, and 0.7 micromoles per square decimeter per minute under a 21% O2 and 0.035% CO2 atmosphere for leaf tissue of wheat, maize seedlings, and 3-month-old maize, respectively. Photorespiratory CO2 evolution rates were estimated to be 27, 6, and 2%, respectively, of net photosynthesis for the three groups of plants under the above atmosphere. The results from maize tissue support the hypothesis that C4 plants photorespire, albeit at a reduced rate in comparison to C3 plants, and that the CO2/O2 ratio in the bundle sheath of maize is higher in mature tissue than in seedling tissue. The pool size of the three photorespiratory intermediates remained constant and were unaffected by changes in either CO2 or O2 concentrations throughout the 10-minute labeling period. This suggests that photorespiratory metabolism is regulated by other mechanism besides phosphoglycolate synthesis by ribulose-1,5-bisphosphate carboxylase/oxygenase, at least under short-term conditions. Other mechanisms could be alternate modes of synthesis of the intermediates, regulation of some of the enzymes of the photorespiratory pathway, or regulation of carbon flow between organelles involved in photorespiration. The glycolate pool became nearly 100% 18O-labeled under an atmosphere of 40% O2. This pool failed to become 100% 18O-enriched under

  4. Large-Scale Multiplexed Quantitative Discovery Proteomics Enabled by the Use of an 18O-Labeled “Universal” Reference Sample

    PubMed Central

    Qian, Wei-Jun; Liu, Tao; Petyuk, Vladislav A.; Gritsenko, Marina A.; Petritis, Brianne O.; Polpitiya, Ashoka D.; Kaushal, Amit; Xiao, Wenzhong; Finnerty, Celeste C.; Jeschke, Marc G.; Jaitly, Navdeep; Monroe, Matthew E.; Moore, Ronald J.; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Herndon, David N.; Camp, David G.; Smith, Richard D.

    2009-01-01

    The quantitative comparison of protein abundances across a large number of biological or patient samples represents an important proteomics challenge that needs to be addressed for proteomics discovery applications. Herein, we describe a strategy that incorporates a stable isotope 18O-labeled ″universal″ reference sample as a comprehensive set of internal standards for analyzing large sample sets quantitatively. As a pooled sample, the 18O-labeled ″universal″ reference sample is spiked into each individually processed unlabeled biological sample and the peptide/protein abundances are quantified based on 16O/18O isotopic peptide pair abundance ratios that compare each unlabeled sample to the identical reference sample. This approach also allows for the direct application of label-free quantitation across the sample set simultaneously along with the labeling-approach (i.e., dual-quantitation) since each biological sample is unlabeled except for the labeled reference sample that is used as internal standards. The effectiveness of this approach for large-scale quantitative proteomics is demonstrated by its application to a set of 18 plasma samples from severe burn patients. When immunoaffinity depletion and cysteinyl-peptide enrichment-based fractionation with high resolution LC-MS measurements were combined, a total of 312 plasma proteins were confidently identified and quantified with a minimum of two unique peptides per protein. The isotope labeling data was directly compared with the label-free 16O-MS intensity data extracted from the same data sets. The results showed that the 18O reference-based labeling approach had significantly better quantitative precision compared to the label-free approach. The relative abundance differences determined by the two approaches also displayed strong correlation, illustrating the complementary nature of the two quantitative methods. The simplicity of including the 18O-reference for accurate quantitation makes this

  5. Tracing atmospheric moisture from precipitation δ18O to climate proxy using an isotope enabled land surface model

    NASA Astrophysics Data System (ADS)

    Kanner, L.; Buenning, N. H.; Stott, L. D.; Timmermann, A.

    2013-12-01

    A paleoclimate interpretation of a terrestrial hydrologic proxy such as the δ18O of tree cellulose or speleothem calcite may be biased or misinterpreted if the isotopic composition of the soil water from which the proxy originated undergoes isotopic exchange or fractionation. In this study, we use a global isotope-enabled land surface model (IsoLSM) to investigate how the δ18O of precipitation may be altered in a soil column due to evaporation and vertical moisture flux. In order to assess how precipitation and evaporation contribute the soil water isotopic variability, we compare seasonal and interannual changes in simulated xylem water δ18O within a control simulation and in a suite of experiments where the effect of precipitation δ18O, water vapor δ18O, and ground water evaporation are independently removed. The simulations, carried out for 1979 to 2004, reveal that in semi-arid regions, such as the southwest United States, the seasonal cycle in xylem water δ18O is strongly affected by evaporative loss during the dry season and this can constitute as much as 50% of the interannual δ18O variance. Additional simulations, including soil water tagging experiments, indicate that upward fluxes of soil water occur during drier periods. For soil water δ18O profiles that are isotopically more depleted in 18O at depth, this imparts a low isotopic signature to xylem water δ18O during such dry intervals. Hence, without taking into account moisture flux processes, an isotopic proxy could be misinterpreted as wet conditions (due to decreased evaporative enrichment) for low δ18O years when instead drier conditions are equally as likely. Using IsoLSM simulated xylem water and leaf water δ18O, offline calculations of cellulose δ18O compare well with observations in diverse climatic regimes. Thus, the driving mechanisms on soil water δ18O identified in this study, and in particular the important role of evaporation on seasonal and interannual timescales, may

  6. Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O

    NASA Astrophysics Data System (ADS)

    Cummins, Renata C.; Finnegan, Seth; Fike, David A.; Eiler, John M.; Fischer, Woodward W.

    2014-09-01

    Much of what we know about the history of Earth’s climate derives from the chemistry of carbonate minerals in the sedimentary record. The oxygen isotopic compositions (δ18O) of calcitic marine fossils and cements have been widely used as a proxy for past seawater temperatures, but application of this proxy to deep geologic time is complicated by diagenetic alteration and uncertainties in the δ18O of seawater in the past. Carbonate clumped isotope thermometry provides an independent estimate of the temperature of the water from which a calcite phase precipitated, and allows direct calculation of the δ18O of the water. The clumped isotope composition of calcites is also highly sensitive to recrystallization and can help diagnose different modes of diagenetic alteration, enabling evaluation of preservation states and identification of the most pristine materials from within a sample set-critical information for assessing the quality of paleoproxy data generated from carbonates. We measured the clumped isotope composition of a large suite of calcitic fossils (primarily brachiopods and corals), sedimentary grains, and cements from Silurian (ca. 433 Ma) stratigraphic sections on the island of Gotland, Sweden. Substantial variability in clumped isotope temperatures suggests differential preservation with alteration largely tied to rock-buffered diagenesis, complicating the generation of a stratigraphically resolved climate history through these sections. Despite the generally high preservation quality of samples from these sections, micro-scale observations of calcite fabric and trace metal composition using electron backscatter diffraction and electron microprobe analysis suggest that only a subset of relatively pristine samples retain primary clumped isotope signatures. These samples indicate that Silurian tropical oceans were likely warm (33 ± 7 °C) and similar in oxygen isotopic composition to that estimated for a “modern” ice-free world (δ18OVSMOW of -1

  7. Effects of formalin and ethanol preservation on otolith delta18O stable isotope signatures.

    PubMed

    Storm-Suke, A; Dempson, J B; Caron, F; Power, M

    2007-01-01

    The use of preserved otoliths for stable isotope analysis assumes handling and preservation procedures do not alter the isotopic composition of the otolith. Otoliths from wild and hatchery-reared salmonids (brook charr, Salvelinus fontinalis, and Atlantic salmon, Salmo salar) were used to test for possible delta(18)O preservation effects in ethanol and formalin preservation experiments at varying temperatures. Analysis of variance (ANOVA) demonstrated a significant interaction effect between species and preservative during preservation. Possible causes for the observed effect are discussed in relation to species-specific differences in otolith chemistry related to growth and environment including: (1) chemical mechanisms of dissolution-recrystallisation involving the precipitation of secondary minerals within and at the otolith surface; (2) adsorption of ions at available binding sites on the otolith surface; and (3) isotopic exchange during otolith surface dissolution and/or reprecipitation processes. Differential occurrence of vaterite and aragonite in otoliths is believed to account for some of the observed effects as a result of otolith density differences. Isotopic exchange is also argued to cause much of the observed variation in species-specific preservation effects. Biologically, study findings imply that preserved otoliths should not be used for baseline paleoclimatic or individual fish thermal reconstructions, or the development of delta(18)O-fractionation equations, without the prior use of pilot studies to determine preservation effects. PMID:17245794

  8. Compound specific 13C- and 18O-isotope analysis of organic aerosols

    NASA Astrophysics Data System (ADS)

    Blees, Jan; Saurer, Matthias; Siegwolf, Rolf T. W.; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    . Elements other than carbon may provide valuable additional information. Here we report on the development of methods for the analysis of stable carbon and oxygen isotope ratios of organic compounds in aerosols, through GC-combustion-irMS and GC-pyrolysis-irMS. We apply these analyses to environmental aerosol samples and samples of smog-chamber experiments, with the aim of identifying isotopic signatures of sources and pathways. We will pay special attention to derivatisation techniques - notably alternatives to the often-used trimethylsilyl derivatives in GC-pyrolysis-irMS for δ18O analysis - and to compound separation and identification. We present initial data of combined δ13C and δ18O studies on (secondary) organic aerosol samples, and their added value for source apportionment studies.

  9. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates are built largely from CO{sub 2}, which diffuses across the skeletogenic membrane and reacts to form HCO{sub 3}{sup {minus}}. Kinetic discrimination against the heavy isotopes {sup 18}O and {sup 13}C during CO{sub 2} hydration and hydroxylation apparently causes most of the isotopic disequilibrium observed in biological carbonates. These kinetic isotope effects are expressed when the extracytosolic calcifying solution is thin and alkaline, and HCO{sub 3}{sup {minus}} precipitates fairly rapidly as CaCO{sub 3}. In vitro simulation of the calcifying environment produced heavy isotope depletions qualitatively similar to, but somewhat more extreme than, those seen in biological carbonates. Isotopic equilibration during biological calcification occurs through CO{sub 2} exchange across the calcifying membrane and by admixture ambient waters (containing HCO{sub 3}{sup {minus}}) into the calcifying fluids. Both mechanisms tend to produce linear correlations between skeletal {delta}{sup 13}C and {delta}{sup 18}O.

  10. The oxygen isotope composition of Karoo and Etendeka picrites: High δ18O mantle or crustal contamination?

    NASA Astrophysics Data System (ADS)

    Harris, Chris; le Roux, Petrus; Cochrane, Ryan; Martin, Laure; Duncan, Andrew R.; Marsh, Julian S.; le Roex, Anton P.; Class, Cornelia

    2015-07-01

    Oxygen isotope compositions of Karoo and Etendeka large igneous province (LIP) picrites and picrite basalts are presented to constrain the effects of crustal contamination versus mantle source variation. Olivine and orthopyroxene phenocrysts from lavas and dykes (Mg# 64-80) from the Tuli and Mwenezi (Nuanetsi) regions of the ca 180 Ma Karoo LIP have δ18O values that range from 6.0 to 6.7 ‰. They appear to have crystallized from magmas having δ18O values about 1-1.5 ‰ higher than expected in an entirely mantle-derived magma. Olivines from picrite and picrite basalt dykes from the ca 135 Ma Etendeka LIP of Namibia and Karoo-age picrite dykes from Dronning Maud Land, Antarctica, do not have such elevated δ18O values. A range of δ18O values from 4.9 to 6.0 ‰, and good correlations between δ18O value and Sr, Nd and Pb isotope ratios for the Etendeka picrites are consistent with previously proposed models of crustal contamination. Explanations for the high δ18O values in Tuli/Mwenezi picrites are limited to (1) alteration, (2) crustal contamination, and (3) derivation from mantle with an abnormally high δ18O. Previously, a variety of models that range from crustal contamination to derivation from the `enriched' mantle lithosphere have been suggested to explain high concentrations of incompatible elements such as K, and average ɛNd and ɛSr values of -8 and +16 in Mwenezi (Nuanetsi) picrites. However, the primitive character of the magmas (Mg# 73), combined with the lack of correlation between δ18O values and radiogenic isotopic compositions, MgO content, or Mg# is inconsistent with crustal contamination. Thus, an 18O-enriched mantle source having high incompatible trace element concentration and enriched radiogenic isotope composition is indicated. High δ18O values are accompanied by negative Nb and Ta anomalies, consistent with the involvement of the mantle lithosphere, whereas the high δ18O themselves are consistent with an eclogitic source. Magma δ18

  11. Assessment of the amount of body water in the Red Knot (Calidris canutus): an evaluation of the principle of isotope dilution with 2H, (17)O, and (18)O as measured with laser spectrometry and isotope ratio mass spectrometry.

    PubMed

    Kerstel, Erik R T; Piersma, Theunis; Piersma, Theunis A J; Gessaman, James A; Gessaman, G Jim; Dekinga, Anne; Meijer, Harro A J; Visser, G Henk

    2006-03-01

    We have used the isotope dilution technique to study changes in the body composition of a migratory shorebird species (Red Knot, Calidris canutus) through an assessment of the amount of body water in it. Birds were quantitatively injected with a dose of water with elevated concentrations of 2H, (17)O, and (18)O. Thereafter, blood samples were taken and distilled. The resulting water samples were analysed using an isotope ratio mass spectrometry (for 2H and (18)O only) and a stable isotope ratio infrared laser spectrometry (2H, (17)O, and (18)O) to yield estimates of the amount of body water in the birds, which in turn could be correlated to the amount of body fat. Here, we validate laser spectrometry against mass spectrometry and show that all three isotopes may be used for body water determinations. This opens the way to the extension of the doubly labelled water method, used for the determination of energy expenditure, to a triply labelled water method, incorporating an evaporative water loss correction on a subject-by-subject basis or, alternatively, the reduction of the analytical errors by statistically combining the (17)O and (18)O measurements. PMID:16500750

  12. Glycolate metabolism in low and high CO sub 2 -grown chlorella pyrenoidosa and Pavlova lutheri as determined by sup 18 O-labeling

    SciTech Connect

    de Veau, E.J.; Burris, J.E. )

    1989-11-01

    Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring {sup 18}O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from {sup 18}O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO{sub 2}-grown cells than in air-grown cells when both were assayed under the same O{sub 2} and CO{sub 2} concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O{sub 2} levels and inhibited by high CO{sub 2} levels. Glycolate synthesis in 1.5% CO{sub 2}-grown Chlorella, when exposed to a 0.035% CO{sub 2} atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O{sub 2} concentration was increased from 21 to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O{sub 2} concentration was lowered to 2% or the CO{sub 2}-concentration was raised to 1.5%. Glycolate excretion was also sensitive to O{sub 2} and CO{sub 2} concentrations in 1.5% CO{sub 2}-grown cells and the glycolate that was excreted was {sup 18}O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory {sup 18}O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media.

  13. Theoretical Calibration on the 13C-18O Clumped Isotope Thermometer

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhang, S. T.; LIU, Q.; Liu, Y.

    2014-12-01

    The kinetic isotope effect (KIE) arisen from phosphoric acid digestion of carbonates has been noticed since the beginning of stable isotope geochemistry. However, the molecular level details of this reaction have not been fully understood yet. Equilibrium 13C-18O clumped isotope distribution in carbonates has been suggested as a new thermometer for surface temperature systems; nevertheless, existing Δ47-T relationships calibrated by several different groups are incompatible, generating substantial confusions and debates about those variations. Here we propose a new molecular-level mechanism with three parallel pathways for the phosphoric acid digestion of carbonates. We show that the KIE of such reaction can be different if the relative contributions of the three parallel pathways are changed. This new mechanism abandons completely a previously proposed molecular mechanism (i.e., Guo et al., 2009) and can explain (at least partly) why the Δ47-T relationships provided by different groups are different. Together with a re-calculated equilibrium clumped isotope fractionation factors of carbonate minerals using a new volume-variable-cluster-model method with higher theoretical-level treatments and higher-order anharmonic corrections, we present a theoretical (equilibrium + KIE) Δ47-T relationship for carbonates. Our theoretical calibration line is with large variations due to considering possible changes of relative contributions of the three parallel pathways and different carbonate mineral used. For minimizing the variation, we suggest using the same amount of sample, the same mineral and the same temperature of phosphoric acid digestion for this experiment.

  14. Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2

    PubMed Central

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B.; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-01-01

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 (18O) and carbon-13 (13C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of 18O/16O and 13C/12C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of 18O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of 18O in breath CO2 were manifested in individuals without the infections. In contrast, the 13C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to 13C-enriched glucose uptake, whereas a distinguishable change of breath 13C/12C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the 18O and 13C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath 12C18O16O and 13C16O16O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen’s physiology along with isotope-specific non-invasive diagnosis of the infection. PMID:26039789

  15. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 1: Implementation and verification

    NASA Astrophysics Data System (ADS)

    Roche, D. M.

    2013-03-01

    A new 18O stable water isotope scheme is developed for three components of the iLOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-)water budget in our climate system. Following the implementation, verification of the existence of usual δ18O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ18O-salinity relationship. Advantages and caveats of the approach taken are outlined.

  16. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  17. Stable isotopic studies on chitin. III. The D/H and 18O/ 16O ratios in arthropod chitin

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; DeNiro, Michael J.

    1986-07-01

    Stable hydrogen and oxygen isotope ratios are presented for carbon-bound hydrogen and for oxygen in chitin-derived substrates from 57 arthropod species collected in 50 different locations or grown under controlled conditions in the laboratory. No systematic isotopic differences were found among Insecta, Crustacea, and Merostomata. The determination of infra- and interindividual isotopic variabilities in a lobster and among individuals of crustacean populations yielded small variances of about ±3 per mil for δD values and ±0.3 per mil for δ 18O values. Molting stage and sex of crustaceans showed no systematic effects on isotopic composition. The δD and δ 18O values of ambient water showed only weak correlations with the respective δ values of chitin-derived substrates. Positive correlation was observed between δD values and trophic level. No temperature effects on δ 18O and δD values from marine crustaceans were found that exceed the natural isotopic noise level. Taken together, these observations indicate that reconstruction of water isotopic composition from arthropod chitin δD and δ 18O values will require specific information about the habits and habitats of the species involved in the analysis.

  18. D and 18O enrichment measurements in biological fluids in a continuous-flow elemental analyser with an isotope-ratio mass spectrometer using two configurations.

    PubMed

    Ripoche, N; Ferchaud-Roucher, V; Krempf, M; Ritz, P

    2006-09-01

    In doubly labelled water studies, biological sample enrichments are mainly measured using off-line techniques (equilibration followed by dual-inlet introduction) or high-temperature elemental analysis (HT-EA), coupled with an isotope-ratio mass spectrometer (IRMS). Here another continuous-flow method, (CF-EA/IRMS), initially dedicated to water, is tested for plasma and urine analyses. The elemental analyser configuration is adapted for each stable isotope: chromium tube for deuterium reduction and glassy carbon reactor for 18O pyrolysis. Before on-line conversion of water into gas, each matrix is submitted to a short and easy treatment, which is the same for the analysis of the two isotopes. Plasma is passed through centrifugal filters. Urine is cleaned with black carbon and filtered (0.45 microm diameter). Tested between 150 and 300 ppm in these fluids, the D/H ratio response is linear with good repeatability (SD<0.2 ppm) and reproducibility (SD<0.5 ppm). For 18O/16O ratios (from 2000 to 2200 ppm), the same repeatability is obtained with a between-day precision lower than 1.4 ppm. The accuracy on biological samples is validated by comparison to classical dual-inlet methods: 18O analyses give more accurate results. The data show that enriched physiological fluids can be successfully analysed in CF-EA/IRMS. PMID:16967431

  19. Oxygen isotope effects of enzyme-catalyzed organophosphorus hydrolysis reactions: implications for interpretation of dissolved PO4 δ18O values in natural waters

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2002-12-01

    The geochemical cycling of P in Earth surface environments is controlled largely by biota. It has been recently demonstrated that intracellular cycling of P in microbial cultures and biological turnover of P in natural waters leads to temperature-dependent O isotope equilibrium between dissolved inorganic PO4 (Pi) and ambient water, and that the δ18O of Pi can be a useful tracer of biological reactions and P cycling in aquatic systems/sediments. Oxygen isotope exchange between Pi and water during biological turnover of P is catalyzed by enzymes at low-temperature. Phosphoenzymes play a crucial role in the intracellular functions of all living organisms and also have important extracellular functions in aquatic ecosystems such as regeneration of Pi from organophosphorus compounds (e.g., phosphoesters). Laboratory experiments indicate that extracellular enzyme reactions may result in incomplete Pi turnover and non-equilibrium Pi-water O isotope exchange. Determination of the O isotope effects of phosphoenzyme-catalyzed reactions is fundamental to the understanding of mechanisms of PO4-water O isotope exchange, pathways of biogeochemical P cycling, and interpretation of PO4 δ18O values from natural systems. Here we report on the O isotope fractionation between enzymatically-released Pi and water, in cell-free abiotic systems. Alkaline phosphatase (Apase) is a non-specific phosphohydrolase commonly found in fresh and marine coastal waters that catalyzes the hydrolysis of Pi from phosphomonoesters. We examined the O isotope effects of Apase derived from both microbial and eukaryotic sources and acting on different phosphomonoester substrates (e.g., α-D-Glucose 1-Phosphate, β-Glycerophosphate, AMP) in 18O-labeled waters. Oxygen isotope ratios of Pi released by Apase indicate that only 1 of the 4 O atoms in PO4 is incorporated from water with little or no apparent O isotopic fractionation at the site of incorporation. This observation is consistent with

  20. Validation of the doubly-labeled water (H/sup 3/H/sup 18/O) method for measuring water flux and energy metabolism in tenebrionid beetles

    SciTech Connect

    Cooper, P.D.

    1981-01-01

    Doubly-labeled water (H/sup 3/H/sup 18/O) has been used to determine water flux and energy metabolism in a variety of vertebrates. This study examines the applicability of this technique to arthropods. The theory of the technique depends upon the assumption that doubly-labeled water introduced into the animal's body water equilibrates with water and carbon dioxide by the action of carbonic anhydrase. Tritium (/sup 3/H) is lost from the animal only with water while oxygen-18 is lost with both water and carbon dioxide. The difference bwtween the rates of loss of the two isotopes is proportional to CO/sub 2/ loss rate. Validation of the use of tritiated water for measuring water flux was accomplished by comparing gravimetric measurements of water gain with flux rates determined by loss of tritiated water. At room humidity, an overestimate for influx calculated from labeled water calculations was found, averaging 12 mg H/sub 2/O (g.d)/sup -1/. Comparison of CO/sub 2/ loss rate determined isotopically with rates of CO/sub 2/ loss determined by standard metabolic rates also yielded overestimates for the isotopic technique, overestimates ranging between 20 and 30%. The relevance of this for studies using labeled water for studying water fluxes and free metabolism of free-ranging arthropods is discussed.

  1. Stable Isotope (18O, 2H) and Arsenic Distribution in the Shallow Aquifers in Araihazar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Datta, S.; Stute, M.; Dhar, R.; Hoque, M. A.; Rahman, M. W.; Ahmed, K. M.; Schlosser, P.; van Geen, A.

    2005-12-01

    Recent estimates indicate that in Bangladesh alone, an estimated 50 million people have been exposed to Arsenic levels that exceed the WHO guideline of 10 μgL-1 for drinking water by up to two orders of magnitude. There is still debate on what processes control the spatial heterogeneity of dissolved As concentrations. One recent suggestion has been that surface waters enriched in labile organic matter and transferred to greater depths by irrigation pumping may be an important factor. We have monitored for a year the oxygen and hydrogen isotopic composition of precipitation in Dhaka, Bangladesh, and of surface waters and groundwaters in a 25 km2 study area in Araihazar, 20 km east of Dhaka. The data show a large spatial and temporal heterogeneity, with δ18O covering a range of up to 12 ‰. The isotopic composition of precipitation falls on the global meteoric water line (GMWL), while most surface waters collected from rivers, ponds and irrigated rice fields plot below and to the right of the meteoric water line, suggesting that evaporation is an important mechanism in this system. Surface waters show a strong evaporative enrichment during the dry season of up to 10 ‰ in δ18O and then show increased mixing with precipitation during the wet season. The groundwater isotopic composition obtained at 6 multi level well sites covers the range between the GMWL and moderately evaporated surface waters. These data indicate that some groundwaters are recharged directly by precipitation while others show evidence of recharge from evaporated surface waters during the wet and at the beginning of the dry season. For several well nests, the sources of groundwater vary in a systematic way as a function of depth. Highly evaporated irrigation water from rice fields in the dry season does not seem to contribute much to groundwater recharge. The degree of evaporation expressed as deuterium excess does not correlate with As concentrations in the groundwater samples. This finding

  2. [Isotopic composition of the delta-18O--delta-13C from the otoliths of reef fish from Taiaro (Tuamotu, French Polynesia): isotopic and biological implications].

    PubMed

    Blamart, Dominique; Escoubeyrou, Karine; Juillet-Leclerc, Anne; Ouahdi, Rabia; Lecomte-Finiger, Raymonde

    2002-02-01

    Nuclei (larval stage) and outer parts (adult stage) of fish otoliths from the Taiaro closed lagoon (French Polynesia) and adjacent ocean have been analysed for the C-O isotopic compositions. delta 18O values of the nuclei of both populations indicate that isotopic equilibrium is reached. This implies that the lagoonal fish population has done its complete biological cycle in the lagoon and represents an adaptation in a closed system. delta 18O values of the outer parts show a slight isotopic disequilibrium (< 0.2@1000) interpreted in term of vital effect. All the delta 13C values exhibit a strong isotopic disequilibrium related to metabolic activity. PMID:11980181

  3. Isolating relative humidity: dual isotopes d18O and dD as deuterium deviations from the global meteoric water line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose d18O and dD can provide insights on climates and hydrological cycling in the distant past and how these factors differ spatially. However, most studies of plant cellulose have used only one isotope, most commonly d18O, resulting in difficulties partitioning variation in d18O of precipitati...

  4. Oxygen isotope systematics of the Banda Arc: low δ 18O despite involvement of subducted continental material in magma genesis

    NASA Astrophysics Data System (ADS)

    Vroon, P. Z.; Lowry, D.; van Bergen, M. J.; Boyce, A. J.; Mattey, D. P.

    2001-02-01

    This study reports new laser fluorination oxygen isotope data for 60 volcanic rocks and 15 sediments distributed over the whole length of the Banda Arc, eastern Indonesia. The melt oxygen isotope values (δ 18O melt) were calculated from phenocryst δ 18O data using theoretical and empirical mineral-melt fractionation factors. The δ 18O melt of individual volcanic centers within the arc varies between 5.57 and 6.54‰, except for Serua (δ 18O melt = 6.13-7.48‰) and Ambon (δ 18O melt = 8.12-8.38‰). These δ 18O melt values are up to 2‰ lower than new and previously published oxygen isotope data obtained on whole-rock powders by conventional methods. We attribute this discrepancy to post-emplacement low-temperature alteration and/or to a systematic deviation of the bulk analysis. Sediment δ 18O wr (calculated from the δ 18O carbonate and silica fractions, both measured conventionally) range between 12.9 and 24.2‰. The low δ 18O melt values (excluding Serua and Ambon) overlap with the mantle range, and are in agreement with simple two-component source-mixing models that predict 1-5% addition of subducted continental material to a depleted MORB-type source in the sub-arc mantle. This percentage is consistent with previous models based on Sr-Nd-Pb-Th-He-Hf isotope data. However, correlations between incompatible trace-element ratios and oxygen isotope systematics requires involvement of partial melts derived from subducted continental material as the major slab component rather than bulk addition. The contribution of hydrous fluids, from both subducted altered oceanic crust and continental material is probably of minor importance. Magma-mantle wedge interaction models could account for the observed low δ 18O signatures, but predicted effects are difficult to distinguish from models without mantle-wedge interaction. Assimilation of arc-crust material is thought to be important for the high δ 18O melt values of Serua and Ambon. AFC modelling suggests up to

  5. Integrated platform with a combination of online digestion and (18)O labeling for proteome quantification via an immobilized trypsin microreactor.

    PubMed

    Zhang, Shen; Yuan, Huiming; Zhao, Baofeng; Zhou, Yuan; Jiang, Hao; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2015-08-01

    A novel automated integrated platform for quantitative proteome analysis was established with a combination of online digestion of proteins and in situ(18)O labeling by an immobilized enzyme reactor (IMER); digests were captured and desalted by a C18 trap column, and peptides were analyzed by nanoRPLC-ESI-MS/MS. Bovine serum albumin (BSA) was used to evaluate the performance of the developed platform. Compared with traditional offline methods, not only the digestion and labeling time was shortened from 36 h to just 1 h, but also the labeling efficiency was improved from 95% to 99%. Furthermore, the back-exchange from (18)O to (16)O could also be efficiently avoided by the use of IMER. The platform was further evaluated by the quantitative analysis of 100 ng (18)O and (16)O online labeled yeast sample with a mixing ratio of 1 : 1, and the results showed significantly improved sensitivity and reproducibility, as well as improved quantitative accuracy than offline method. With these advantages, the integrated platform was finally applied to the quantitative profiling of 100 ng proteins extracted from two mouse hepatocarcinoma ascites syngeneic cell lines with high and low lymph node metastases rates, and ten differentially expressed proteins were successfully found, most of which were related to tumorigenesis and tumor metastasis. All these results demonstrate that the developed integrated platform can provide a new way for high efficiency (18)O labeling and the quantitative analysis of trace amounts of sample with high accuracy and high reproducibility. PMID:26063120

  6. Catalytic gasification: Isotopic labeling and transient reaction

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1985-01-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

  7. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    NASA Astrophysics Data System (ADS)

    Brienen, Roel J. W.; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  8. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    PubMed Central

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-01-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  9. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 1: Implementation and verification

    NASA Astrophysics Data System (ADS)

    Roche, D. M.

    2013-09-01

    A new 18O stable water isotope scheme is developed for three components of the iLOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-) water budget in our climate system. Following the implementation, verification of the existence of usual δ18O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ18O -salinity relationship. Advantages and caveats of the approach taken are outlined. The isotopic fields simulated are shown to reproduce most expected oxygen-18-climate relationships with the notable exception of the isotopic composition in Antarctica.

  10. Stable isotope time-series in mammalian teeth: In situ δ18O from the innermost enamel layer

    NASA Astrophysics Data System (ADS)

    Blumenthal, Scott A.; Cerling, Thure E.; Chritz, Kendra L.; Bromage, Timothy G.; Kozdon, Reinhard; Valley, John W.

    2014-01-01

    Stable carbon and oxygen isotope ratios in mammalian tooth enamel are commonly used to understand the diets and environments of modern and fossil animals. Isotope variation during the period of enamel formation can be recovered by intra-tooth microsampling along the direction of growth. However, conventional sampling of the enamel surface provides highly time-averaged records in part due to amelogenesis. We use backscattered electron imaging in the scanning electron microscope (BSE-SEM) to evaluate enamel mineralization in developing teeth from one rodent and two ungulates. Gray levels from BSE-SEM images suggest that the innermost enamel layer, <20 μm from the enamel-dentine junction, is highly mineralized early in enamel maturation and therefore may record a less attenuated isotopic signal than other layers. We sampled the right maxillary incisor from a woodrat subjected to an experimentally induced water-switch during the period of tooth development, and demonstrate that secondary ion mass spectrometry (SIMS) can be used to obtain δ18O values with 4-5-μm spots from mammalian tooth enamel. We also demonstrate that SIMS can be used to discretely sample the innermost enamel layer, which is too narrow for conventional microdrilling or laser ablation. An abrupt δ18O switch of 16.0‰ was captured in breath CO2, a proxy for body water, while a laser ablation enamel surface intra-tooth profile of the left incisor captured a δ18O range of 12.1‰. The innermost enamel profile captured a δ18O range of 15.7‰, which approaches the full magnitude of δ18O variation in the input signal. This approach will likely be most beneficial in taxa such as large mammalian herbivores, whose teeth are characterized by less rapid mineralization and therefore greater attenuation of the enamel isotope signal.

  11. Use of oxygen-18 isotopic labeling to assay photorespiration in terrestrial plants and algae

    SciTech Connect

    de Veau, E.J.

    1988-01-01

    A new method was devised to quantify photorespiration. The assay utilized {sup 18}O{sub 2} to isotopically label intermediates of the glycolate pathway, specifically glycolate, glycine, and serine, for various time periods. The pathway intermediates were isolated and analyzed on a mass spectrometer to determine molecular percent {sup 18}O-enrichment. Rates of glycolate synthesis were determined from: {sup 18}O-labeling kinetics of the intermediates, derived rate equations, and non-linear regression techniques. The method was adapted to measure photorespiratory rates in both terrestrial plants and algae. Test plants are Triticum aestivum, Zea mays L., Pavlova lutheri and Chlorella pyrenoidosa.

  12. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  13. Highly enriched multiply-labeled stable isotopic compounds as atmospheric tracers

    DOEpatents

    Goldblatt, M.; McInteer, B.B.

    1974-01-29

    Compounds multiply-labeled with stable isotopes and highly enriched in these isotopes are readily capable of detection in tracer experiments involving high dilutions. Thus, for example, /sup 13/C/sup 18/O/sub 2/ provides a useful tracer for following atmospheric pol lution produced as a result of fossil fuel burning. (Official Gazette)

  14. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna. PMID:26110629

  15. Periodicity analysis of δ18O in precipitation over Central Europe: Time-frequency considerations of the isotopic 'temperature' effect

    NASA Astrophysics Data System (ADS)

    Salamalikis, V.; Argiriou, A. A.; Dotsika, E.

    2016-03-01

    In this paper the periodic patterns of the isotopic composition of precipitation (δ18O) for 22 stations located around Central Europe are investigated through sinusoidal models and wavelet analysis over a 23 years period (1980/01-2002/12). The seasonal distribution of δ18O follows the temporal variability of air temperature providing seasonal amplitudes ranging from 0.94‰ to 4.47‰; the monthly isotopic maximum is observed in July. The isotopic amplitude reflects the geographical dependencies of the isotopic composition of precipitation providing higher values when moving inland. In order to describe the dominant oscillation modes included in δ18O time series, the Morlet Continuous Wavelet Transform is evaluated. The main periodicity is represented at 12-months (annual periodicity) where the wavelet power is mainly concentrated. Stations (i.e. Cuxhaven, Trier, etc.) with limited seasonal isotopic effect provide sparse wavelet power areas at the annual periodicity mode explaining the fact that precipitation has a complex isotopic fingerprint that cannot be examined solely by the seasonality effect. Since temperature is the main contributor of the isotopic variability in mid-latitudes, the isotope-temperature effect is also investigated. The isotope-temperature slope ranges from 0.11‰/°C to 0.47‰/°C with steeper values observed at the southernmost stations of the study area. Bivariate wavelet analysis is applied in order to determine the correlation and the slope of the δ18O - temperature relationship over the time-frequency plane. High coherencies are detected at the annual periodicity mode. The time-frequency slope is calculated at the annual periodicity mode ranging from 0.45‰/°C to 0.83‰/°C with higher values at stations that show a more distinguishable seasonal isotopic behavior. Generally the slope fluctuates around a mean value but in certain cases (sites with low seasonal effect) abrupt slope changes are derived and the slope becomes

  16. On the use of stable oxygen isotope18O) measurements for tracking avian movements in North America

    PubMed Central

    Hobson, Keith A; Koehler, Geoff

    2015-01-01

    Tracking migratory animals has benefitted using measurements of naturally occurring stable isotopes of hydrogen (δ2H) in keratinous tissues such as hair and feathers to link animal origins to continental patterns or isoscapes of δ2H in precipitation. However, for most taxa, much less information exists on the use of stable oxygen isotope ratios (δ18O) despite the fact that δ2H and δ18O are strongly linked in environmental waters through the meteoric relationship and the possibility of using both isotopes to infer greater information on origins and climatic conditions where tissues are grown. A fundamental requirement of using stable isotopes to assign individuals and populations to origins is the development of a rescaling function linking environmental food web signals to the tissue of interest and for birds, this has not been carried out. Here, we derived the relationship between H and O isotopes in known source feathers of 104 individuals representing 11 species of insectivorous passerines sampled across the strong precipitation isoscape of North America. We determined again a strong expected relationship between feather δ2H (δ2Hf) and long-term amount-weighted precipitation δ2H (δ2Hp; r2 = 0.77), but the corresponding relationship between δ18Of and δ18Op was poor (r2 = 0.32) for the same samples. This suggests that δ2H measurements are currently more useful for assignment of insectivorous songbirds to precipitation isoscapes but does not preclude other uses of the δ18Of data. Currently, mechanisms responsible for the decoupling of H and O isotopes in food webs is poorly known, and we advocate a much broader sampling of both isotopes in the same keratinous tissues across precipitation isotope gradients and across taxa to resolve this issue and to increase the power of using water isotopes to track migratory animals. PMID:25691999

  17. Isotopic tracing (D, 18O and 29Si) to understand the alteration on historic glass

    NASA Astrophysics Data System (ADS)

    Verney-Carron, Aurélie; Saheb, Mandana; Valle, Nathalie; Mangin, Denis; Remusat, Laurent; Loisel, Claudine

    2015-04-01

    In order to better preserve historic glasses, e.g. stained glass windows, the understanding of their alteration mechanisms and of what controls the kinetics corresponding to each process is required. The ancient stained glasses are characterized by thick alteration layers, continuous or as pits, that are cracked or lost. Therefore, if a passivating role of the alteration layer has been proved on some other kinds of glass (such as basaltic or nuclear glass) in aqueous medium, the issue can be addressed for low durable stained glass weathered in varying atmospheric conditions. The mechanism of alteration layer formation was first investigated by performing dynamic and static experiments on model medieval glasses altered with a solution doped in 29Si at different concentrations (or saturation degrees). Solid analyses were carried out by SIMS and solution by HR-ICP-MS. Medieval stained glass has mainly a potash-lime-silica composition with a low content in alumina. The alkaline and alkaline-earth elements have thus a modifier role in the glassy network. This structural difference compared to boro- or alumino-silicate glasses could induce differences in the alteration mechanisms. However, the analysis of the Si isotopic signature of the gel layer highlighted that diffusion, but also hydrolysis/condensation reactions, are also involved in the gel layer formation process, leading to a structural and textural reorganization. The second objective was to determine the kinetic role of the alteration layer, and especially to trace the circulation of water once the altered layer is formed. For that, ancient glasses were exposed to simulated rainfall events / drying periods cycles during 3 months by using a solution doped in D and 18O. NanoSIMS analyses have shown that the transport in the alteration layer is mainly driven by diffusion in the porosity despite the presence of cracks that could have been preferential ways of circulation. This demonstrates also a potential

  18. Spatial patterns of Transit-Time Distributions using δ18O-isotope tracer simulations at ungauged river locations

    NASA Astrophysics Data System (ADS)

    Stockinger, Michael; Bogena, Heye; Lücke, Andreas; Diekkrüger, Bernd; Weiler, Markus; Vereecken, Harry

    2013-04-01

    Knowledge of catchment response times to a precipitation forcing and of isotope tracer transit times can be used to characterize a catchment's hydrological behavior. The aim of this study was to use one gauging station together with multiple δ18O-isotope monitoring locations along the main stream to characterize the spatial heterogeneity of a catchment's hydrological behavior in the context of transit times. We present a method suitable for small catchments to estimate the Transit-Time Distribution (TTD) of precipitation to any stream point using δ18O tracer data, no matter if the stream point is gauged or ungauged. Hourly runoff and precipitation data were used to determine the effective precipitation under base flow conditions at Wüstebach (Eifel, Germany), a small, forested TERENO/TR32 test site. Modeling was focused on base flow due to the weekly measurement intervals of δ18O. The modeling period of 2.5 years was split up in six different hydrological seasons, based on average soil water content, in order to ensure a good fit of the model. Due to the small size of the Wüstebach catchment (27 ha) we assumed the derived effective precipitation to be applicable for the whole catchment. For subsequent modeling of stream water δ18O data we used effective precipitation as an input variable and corrected in a two-step process for canopy evaporation and soil evaporation. Thus we derived base flow TTDs for the ungauged stream and tributary locations. Results show a different behavior of the catchment's response time for different catchment wetness conditions with respect to base flow formation. Winter seasons show similar response times, as well as summer seasons, with the exception of one summer with a considerable higher response time. The transit time of water across the isotope observation points shows points more influenced by shallow source waters than other points, where a higher contribution of groundwater is observable.

  19. Isotope Labeling in Mammalian Cells

    PubMed Central

    Dutta, Arpana; Saxena, Krishna; Klein-Seetharaman, Judith

    2011-01-01

    Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations. PMID:22167668

  20. Calibration of stable isotopic data: An enriched δ18O standard used for source gas mixing detection and correction

    NASA Astrophysics Data System (ADS)

    Ostermann, D. R.; Curry, W. B.

    2000-06-01

    We present empirically based calibrations of our measurements made on a Finnigan MAT252 equipped with a Kiel Device to Vienna Pee Dee belemnite, using an enriched δ18O standard. Calibrations include corrections for biases caused by the differences in isotopic composition of carbonate standards measured on the two parallel extraction lines of the Kiel Device and for decreases in the isotopic difference between the reference and sample gas caused by mixing in the source. After correcting for these biases, the precision of 2200 NBS19 analyses (10-300 µg ) is ±0.07 for δ18O and ±0.03 for δ13C. We have shared our standard enriched in δ18O with 18 laboratories engaged in paleoceanographic research, producing the first large-scale interlaboratory calibrations for this community. Using correction procedures reported here, water mass reconstructions using data produced on multiple mass spectrometers may now be possible with a precision approaching the level necessary to reconstruct temperature-salinity and density variability in the deep ocean.

  1. Evaluation of a High Intensity Focused Ultrasound-Immobilized Trypsin Digestion and 18 O-Labeling Method for Quantitative Proteomics

    SciTech Connect

    Lopez-Ferrer, Daniel; Hixson, Kim K.; Smallwood, Heather S.; Squier, Thomas C.; Petritis, Konstantinos; Smith, Richard D.

    2009-08-01

    A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultra-rapid digestion and thorough 18O labeling for quantitative protein comparisons. The reproducible and highly efficient method provided effective digestions in <1 min and minimized the amount of enzyme required compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from bacteria Shewanella oneidensis, and mouse plasma, as well as for the labeling of complex protein mixtures, which validated the application of this method for differential proteomic measurements. This approach is simple, reproducible, cost effective, and rapid, and thus well-suited for automation.

  2. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    SciTech Connect

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  3. Directly Measured Clumped Isotope Temperatures From Known And Proposed Paleozoic Glacial Intervals Suggest That Oceans Were Depleted in 18O

    NASA Astrophysics Data System (ADS)

    Petrizzo, D. A.; Runnegar, B.; Ivany, L.; Young, E. D.

    2011-12-01

    Oceans enriched in 13C are thought to result from atmospheric CO2 drawdown and concomitant global cooling resulting from increased burial of organic matter. We investigated ocean temperatures during two times when the oceans were exceptionally heavy in 13C, the Lau Event of the late Silurian and the Late Paleozoic Ice Age (LPIA), using both δ18O and "directly measured" clumped isotope (Δ47) temperatures. We report a tropical ocean temperature of 16 ± 3°C at the peak of the Lau Event, confirm seasonality at a high-latitude LPIA site, and raise the possibility that some degradation of 13C-18O bonds may be widespread in apparently unaltered carbonates that have seen temperatures higher than 100-150°C. Silurian conodonts from Gotland, Sweden, are almost unaltered (CAI ~ 0) indicating burial temperatures of <50°C. We measured atrypid brachiopod calcite from the peak of the late Silurian Lau event, the largest positive carbon isotope excursion (+8%) since the Cambrian, and obtained Δ47 = 0.687 ± 0.014, giving a low latitude water temperature of 16 ± 3°C. This is significantly cooler than tropical temperatures reported from pentamerid brachiopod calcite of the early Silurian greenhouse period (35°C, Came et al., 2007) and those derived from rugose corals during the Hirnantian (Ordovician) positive carbon isotope excursion (+5%) and accompanying glaciation (27-32°C, Finnegan et al., 2010). We also measured Δ47 in two shells of the Australian Permian bivalve Eurydesma, a circumpolar genus associated with cold water indicators. Ivany and Runnegar (2010) found high-amplitude annual cycles in δ18O in one of these specimens but the calculated temperatures seemed too warm for the periglacial conditions indicated by approximately coeval dropstones and glendonites unless Permian ocean water δ18O was lighter than ~ -3%. Our Δ47 results also give unrealistically warm winter (~12°C) and summer (~23°C) temperatures for this high-latitude site, raising the possibility

  4. Partitioning Net Ecosystem Carbon Exchange Into net Assimilation and Respiration With Canopy-scale Isotopic Measurements: an Error Propagation Analysis With Both 13C and 18O Data

    NASA Astrophysics Data System (ADS)

    Peylin, P.; Ogee, J.; Cuntz, M.; Bariac, T.; Ciais, P.; Brunet, Y.

    2003-12-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of non-foliar respiration (FR) and gross photosynthesis (FA). However the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes and a rigorous estimation of the errors on FA and FR is needed. In this study we account and propagate uncertainties on all terms in the mass balance equations for total and "labeled" CO2 in order to get precise estimates of the errors on FA and FR. We applied our method to a maritime pine forest in the Southwest of France. Using the δ 13C-CO2 and CO2 measurements, we show that the resulting uncertainty associated to the gross fluxes can be as large as 4 æmol m-2 s-1. In addition, even if we could get more precise estimates of the isoflux and the isotopic signature of FA we show that this error would not be significantly reduced. This is because the isotopic disequilibrium between FA and FR is around 2-3‰ , i.e. the order of magnitude of the uncertainty on the isotopic signature of FR (δ R). With δ 18O-CO2 and CO2 measurements, the uncertainty associated to the gross fluxes lies also around 4 æmol m-2 s-1. On the other hand, it could be dramatically reduced if we were able to get more precise estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 10-15‰ , i.e. much larger than the uncertainty on δ R. The isotopic disequilibrium between FA and FR or the uncertainty on δ R vary among ecosystems and over the year. Our approach may help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  5. An assessment of the isotopic (2H/18O) integrity of water samples collected and stored by unattended precipitation totalizers

    NASA Astrophysics Data System (ADS)

    Terzer, Stefan; Wassenaar, Leonard I.; Douence, Cedric; Araguas-Araguas, Luis

    2016-04-01

    The IAEA-WMO Global Network of Isotopes in Precipitation (GNIP) provides worldwide δ18O and δ2H data for numerous hydrological and climatological studies. The traditional GNIP sample collection method relies on weather station operators to accumulate precipitation obtained from manual rain gauges. Over the past decades, widespread weather station automatization resulted in the increased use of unattended precipitation totalizers that accumulate and store the rainwater in the field for up to one month. Several low-tech measures were adopted to prevent in situ secondary evaporative isotopic enrichment (SEE) of totalized water samples (i.e. disequilibrium isotopic fractionation after precipitation is stored in the collection device). These include: (a) adding a 0.5-1 cm floating layer of paraffin oil to the totalizer bottle, (b) using an intake tube leading from the collection funnel and submerged to the bottom of the totalizer bottle, or (c) placing a table tennis ball in the funnel aiming to reduce evaporation of the collected water from the receiving bottle to the atmosphere. We assessed the isotopic integrity of stored rainwater samples for three totalizers under controlled settings: each aforementioned totalizer was filled with a 100 or 500 mL of isotopically known water and installed in the field with the intake funnels sheltered to prevent rainwater collection. Potential evapotranspiration (PET) was obtained from on-site meteorological recordings. Stored evaporative loss from each totalizer was evaluated on a monthly basis; gravimetrically and by analysing δ18O and δ2H of the stored water, for a period of 6 months and a cumulative PET of ˜500 mm. The gravimetric and isotope results revealed that for smaller water volumes (100 ml, corresponding to ca. 5 mm of monthly precipitation), negligible isotope enrichment (δ18O) was observed in the paraffin-oil based totalizer, whereas unacceptable evaporative isotope effects were observed for the ball

  6. Water - Isotope - Map (δ 18O, δ 2H, 3H) of Austria: Applications, Extremes and Trends

    NASA Astrophysics Data System (ADS)

    Wyhlidal, Stefan; Kralik, Martin; Benischke, Ralf; Leis, Albrecht; Philippitsch, Rudolf

    2016-04-01

    The isotopic ratios of oxygen and hydrogen in water (2H/1H and 18O/16O) are important tools to characterise waters and their cycles. This starts in the atmosphere as rain or snow and continues in surface water and ends in shallow groundwater as well as in deep groundwater. Tritium formed by natural cosmic radiation in the upper atmosphere and in the last century by tests of thermonuclear bombs in the atmosphere, is characterised by its radioactive decay with a half-life of 12.32 years and is an ideal age-marker during the last 60 years. To determine the origin and mean age of waters in many projects concerning water supply, engineering and scientific projects in the last 45 years on more than 1,350 sites, more than 40,000 isotope measurements were performed in Austria. The median value of all sites of oxygen-18 is δ 18O -10.7 ‰ and for hydrogen-2 δ 2H -75 ‰. As the fractionation is mainly temperature dependent the lowest negative values are observed in winter precipitation (oxygen-18 as low as δ 18O -23 ‰) and in springs in the mountain regions (δ 18O -15.1 ‰). In contrast the highest values were observed in summer precipitation (up to δ 18O - 0.5 ‰) and in shallow lakes in the Seewinkel (up to δ 18O + 5 ‰). The isotopic ratios of the Austrian waters are also influenced by the origin of the evaporated water masses. Therefore the precipitation in the region south of the main Alpine crest (East-Tyrol, Carinthia and South-East Styria) is approximately 1 ‰ higher in δ 18O-values than sites at the same altitude in the northern part. This is most probably caused by the stronger influence of precipitation from the mediterranean area. The median value of all 1,120 sampling sites of decay corrected (2015) tritium measurements is 6.2 tritium units (TU). This is somewhat smaller than the median value of all precipitation stations with 7.2 TU. This can be explained by the fact that in most cases in groundwater the median value has been reduced by decay

  7. Effects of stem cell therapy on protein profile of parkinsonian rats using an(18) O-labeling quantitative proteomic approach.

    PubMed

    Liu, Yahui; Liu, Kefu; Qin, Wei; Liu, Chenghao; Zheng, Xiaowei; Deng, Yulin; Qing, Hong

    2016-03-01

    The application of neural stem cell (NSC) research to neurodegenerative diseases has led to promising clinical trials. Currently, NSC therapy is most promising for Parkinson's disease (PD). We conducted behavioral tests and immunoassays for the profiling of a PD model in rats to assess the therapeutic effects of NSC treatments. Further, using a multiple sample comparison workflow, combined with (18) O-labeled proteome mixtures, we compared the differentially expressed proteins from control, PD, and NSC-treated PD rats. The results were analyzed bioinformatically and verified by Western blot. Based on our initial findings, we believe that the proteomic approach is a valuable tool in evaluating the therapeutic effects of NSC transplantation on neurodegenerative disorders. PMID:26791447

  8. Clumped Isotope Verification of δ18O-Based Freshwater Mussel Shell Growth Chronology for a High-Resolution Climate and River Discharge Record

    NASA Astrophysics Data System (ADS)

    VanPlantinga, A.; Grossman, E. L.; Passey, B. H.; Randklev, C.

    2015-12-01

    Isotope profiles in freshwater mussel shells can be used to reconstruct climate, water source, and river discharge, but problems arise from variable water temperature and δ18O. To resolve this complexity and expand the application of isotope sclerochronology to the study of past river systems, we measured δ18O and Δ47 in two common freshwater mussel species from the Brazos River in Texas. To compare the environmental record with the shell record and develop a sclerochronology, weekly water temperature and δ18O data were collected from the Brazos River near College Station from January 2012 to August 2013. The river data reveal complex, irregular patterns for predicted aragonite δ18O. Comparing δ18O profiles from micromilled transects (70-200 µm increments) of coeval shell growth within and between shells yielded consistent patterns. Shell δ18O can be accurately matched to predicted δ18O, providing a chronology of shell growth. However, without a water temperature and δ18O record, interpreting a sclerochronology would be impossible. Shell Δ47 can potentially provide a seasonal chronology to verify the δ18O sclerochronology, which would be invaluable for the use of δ18O sclerochronology in historical and ancient shells. For Δ47 analyses, samples were taken at 0.5 mm resolution in presumed seasonal dark and light growth bands. Clumped temperatures range between 21 and 35 ± 4˚C (Henkes et al., 2013) and track the river temperature record, supporting the interpreted shell δ18O chronology. Shell Δ47-calculated water δ18O values range from -1.2 to 1.5 ± 0.9‰ and match river δ18O. High-resolution shell δ18O profiles combined with Δ47 temperatures can reconstruct a weekly history of water δ18O, and with the observed river discharge vs. water δ18O relation, produce a qualitative record of river discharge. These analytical techniques applied to a historical Brazos River mussel shell collected prior to dam construction reveal weekly records of

  9. Growth Rates, Stable Oxygen Isotopes (18O), and Strontium (Sr/Ca) Composition in Two Species of Pacific Sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with 18O Calibration and Application to Paleoceanography

    SciTech Connect

    Grottoli, A.; Adkins, J; Panero, W; Reaman, D; Moots, K

    2010-01-01

    The isotopic and elemental composition of sclerosponge skeletons is used to reconstruct paleoceanographic records. Yet few studies have systematically examined the natural variability in sclerosponge skeletal {delta}{sup 18}O, growth, and Sr/Ca, and how that may influence the interpretation of sclerosponge proxy records. Here, we analyzed short records in seven specimens of Acanthocheatetes wellsi (high-Mg calcite, 21 mol% Mg) from Palau, four A. wellsi (high-Mg calcite, 21 mol% Mg) from Saipan, and three Astrosclera willeyana (aragonite) sclerosponges from Saipan, as well as one long record in an A. wellsi specimen from Palau spanning 1945-2001.5. In Saipan, species-specific and mineralogical effects appear to have a negligible effect on sclerosponge {delta}{sup 18}O, facilitating the direct comparison of {delta}{sup 18}O records between species at a given location. At both sites, A. wellsi {delta}{sup 18}O and growth rates were sensitive to environmental conditions, but Sr/Ca was not sensitive to the same conditions. High-resolution {delta}{sup 18}O analyses confirmed this finding as both A. wellsi and A. willeyana deposited their skeleton in accordance with the trends in isotopic equilibrium with seawater, though with a 0.27{per_thousand} offset in the case of A. willeyana. In the high-Mg-calcite species A. wellsi, Mg may be interfering with Sr incorporation into the skeleton. On multidecadal timescales, A. wellsi sclerosponge {delta}{sup 18}O in Palau tracked the Southern Oscillation Index variability post-1977, but not pre-1977, coincident with the switch in the Pacific Decadal Oscillation (PDO) at {approx}1976. This suggests that water mass circulation in the region is influenced by El Nino-Southern Oscillation variability during positive PDO phases, but not during negative ones.

  10. The use of δ(2)H and δ(18)O isotopic analyses combined with chemometrics as a traceability tool for the geographical origin of bell peppers.

    PubMed

    de Rijke, E; Schoorl, J C; Cerli, C; Vonhof, H B; Verdegaal, S J A; Vivó-Truyols, G; Lopatka, M; Dekter, R; Bakker, D; Sjerps, M J; Ebskamp, M; de Koster, C G

    2016-08-01

    Two approaches were investigated to discriminate between bell peppers of different geographic origins. Firstly, δ(18)O fruit water and corresponding source water were analyzed and correlated to the regional GNIP (Global Network of Isotopes in Precipitation) values. The water and GNIP data showed good correlation with the pepper data, with constant isotope fractionation of about -4. Secondly, compound-specific stable hydrogen isotope data was used for classification. Using n-alkane fingerprinting data, both linear discriminant analysis (LDA) and a likelihood-based classification, using the kernel-density smoothed data, were developed to discriminate between peppers from different origins. Both methods were evaluated using the δ(2)H values and n-alkanes relative composition as variables. Misclassification rates were calculated using a Monte-Carlo 5-fold cross-validation procedure. Comparable overall classification performance was achieved, however, the two methods showed sensitivity to different samples. The combined values of δ(2)H IRMS, and complimentary information regarding the relative abundance of four main alkanes in bell pepper fruit water, has proven effective for geographic origin discrimination. Evaluation of the rarity of observing particular ranges for these characteristics could be used to make quantitative assertions regarding geographic origin of bell peppers and, therefore, have a role in verifying compliance with labeling of geographical origin. PMID:26988484

  11. Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration

    USGS Publications Warehouse

    Böhlke, J.K.; Mroczkowski, S.J.; Coplen, T.B.

    2003-01-01

    Despite a rapidly growing literature on analytical methods and field applications of O isotope-ratio measurements of NO3- in environmental studies, there is evidence that the reported data may not be comparable because reference materials with widely varying ?? 18O values have not been readily available. To address this problem, we prepared large quantities of two nitrate salts with contrasting O isotopic compositions for distribution as reference materials for O isotope-ratio measurements: USGS34 (KNO3) with low ??18O and USGS35 (NaNO3) with high ??18O and 'mass-independent' ??17O. The procedure used to produce USGS34 involved equilibration of HNO3 with 18O-depleted meteoric water. Nitric acid equilibration is proposed as a simple method for producing laboratory NO3- reference materials with a range of ??18O values and normal (mass-dependent) 18O: 17O:16O variation. Preliminary data indicate that the equilibrium O isotope-fractionation factor (??) between [NO 3-] and H2O decreases with increasing temperature from 1.0215 at 22??C to 1.0131 at 100??C. USGS35 was purified from the nitrate ore deposits of the Atacama Desert in Chile and has a high 17O:18O ratio owing to its atmospheric origin. These new reference materials, combined with previously distributed NO3- isotopic reference materials IAEA-N3 (=IAEA-NO-3) and USGS32, can be used to calibrate local laboratory reference materials for determining offset values, scale factors, and mass-independent effects on N and O isotope-ratio measurements in a wide variety of environmental NO 3- samples. Preliminary analyses yield the following results (normalized with respect to VSMOW and SLAP, with reproducibilities of ??0.2-0.3???, 1??): IAEA-N3 has ??18O = +25.6??? and ??17O = +13.2??? USGS32 has ?? 18O = +25.7??? USGS34 has ??18O = -27. 9??? and ??17O = -14.8??? and USGS35 has ?? 18O = +57.5??? and ??17O = +51.5???.

  12. Factors Influencing the Stable Oxygen and Hydrogen Isotopic Composition (δ 18O and δ D) of a Subarctic Freshwater Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wooller, M. J.

    2005-12-01

    Previous studies have shown that the stable oxygen and hydrogen isotopic compositions (δ 18O and δD) in various animal tissues can be used to examine past climates and animal migration pattern. Little attention has been paid to the relative roles of diet and water influencing the overall δ 18O and δD of animal tissues in freshwater ecosystems. It is unclear whether different trophic levels in a freshwater lake ecosystem have an identical relationship to the water that surrounds them. The δ18O and δD values of animal tissues may be controlled by numerous different factors, including metabolic and biosynthetic isotopic fractionation and variations of δ 18O and δD in the food available. We began to examine these issues by analyzing the δ 18O and δD throughout a freshwater aquatic ecosystem at Smith Lake in Alaska. We collected samples representing primary producers and consumers (primary and secondary). Samples included green algae, various aquatic plants, such as Nuphar variegatum (water lily), Polygonum amphibium (water smartweed), Carex utriculata (sedge), Utricularia vulgaris (common bladderwort), Typha latifolia (common cattail), and a range of aquatic invertebrates, including Chironomus. sp (midge), Zygoptera (damselfly), Anisoptera (dragonfly), Dytiscidae (diving beetle) and Euhirudinea (leeches). The δ 18O and δD of Smith Lake water were ~-13.5e and -129.0e, respectively, and we present the δ 18O and δD of the rest of the ecosystem relative to these data. For instance, the δ 18O of chironomus sp. was ~12.1, which is greater than the of the lake water. Preliminary results suggest the extent of the fractionation between δ 18O of chironomids vs. lake water δ 18O is consistent with previous studies. Our data provide an insight into the range of variations that could be expected within a single freshwater ecosystem.

  13. Discrimination against C18O16O during photosynthesis and the oxygen isotope ratio of respired CO2 in boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Flanagan, Lawrence B.; Brooks, J. Renee; Varney, Gregory T.; Ehleringer, James R.

    1997-03-01

    Our objective was to analyze factors that influence changes in the oxygen isotope ratio (δ18O) of atmospheric CO2 within boreal forest ecosystems. We made measurements in the three major forest types (black spruce, jack pine, and aspen) at the southern and northern ends of the boreal forest in central Canada. This research was part of a larger study, the Boreal Ecosystem-Atmosphere Study (BOREAS). In terrestrial ecosystems the δ18O value of atmospheric CO2 is strongly influenced by isotope effects that occur during photosynthesis and respiration. Of primary importance is an equilibrium isotope effect that occurs between oxygen in CO2 and oxygen in soil water and plant chloroplast water. During the equilibrium reaction the oxygen isotope ratio of CO2 becomes enriched in 18O relative to that of water. We measured seasonal changes in the oxygen isotope ratio of (1) water input to the ecosystems (precipitation), (2) water taken up by the major plant species from the soil (plant stem water), and (3) water in plant leaves. We used this information in calculations of isotope discrimination during photosynthesis and soil respiration. Discrimination against C18O16O during photosynthetic gas exchange (ΔA) (influenced by equilibration with chloroplast water) averaged approximately 21‰ at midday and was similar for all forest types. In contrast, CO2 released during plant and soil respiration had an average δ18O value of -14.4‰ but was less depleted in 18O than would be expected for respired CO2 in isotopic equilibrium with soil water. This effect was most pronounced in black spruce sites because of the extensive coverage of moss on the ground surface and the observation that water in the upper moss layers can have an oxygen isotope ratio substantially different from water in deeper soil layers.

  14. Stable isotope labeling methods for DNA.

    PubMed

    Nelissen, Frank H T; Tessari, Marco; Wijmenga, Sybren S; Heus, Hans A

    2016-08-01

    NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis. PMID:27573183

  15. Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta18O of water vapour in Pacific Northwest coniferous forests.

    PubMed

    Lai, Chun-Ta; Ehleringer, James R; Bond, Barbara J; Paw U, Kyaw Tha

    2006-01-01

    Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (delta 18O) as high as 4% per hundred were observed for water vapour (delta (18)Ovp) above and within an old-growth coniferous forest in the Pacific Northwest region of the United States. Values of delta 18Ovp decreased in the morning, reached a minimum at midday, and recovered to early-morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2-d period by considering the 18O-isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do delta 18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of delta 18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O-isoflux in the morning of day 1, causing values of delta 18Ovp, to decrease. An isotopically enriched 18O-isoflux resulting from transpiration then offset this decreased delta 18Ovp later during the day. Contributions of 18O-isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H2(16)O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas-fir trees as approximately 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non-steady state model for predicting delta 18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of

  16. Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes ( δ18O, δ13C)

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander; Harzhauser, Mathias; Müllegger, Stefan; Piller, Werner E.

    2010-07-01

    Stable isotope ( δ18O and δ13C) ratios were measured in successive aragonitic shell sequences of ammonoids (class Cephalopoda) to determine whether their depth distributions changed within ontogeny and whether stable isotope values differ in various morphological groups (e.g. Leiostraca vs. Trachyostraca). We concentrate mainly on δ18O for temperature results and added δ13C data to obtain information on the ontogenetic history, for which full spiral measurements were undertaken for the first time. To obtain valid stable isotope data from ammonoid shells, we measured ontogenetic sequences (full shell) within different genera. Data sets from the Jurassic ( Cadoceras) and Cretaceous ( Hypacanthoplites, Nowakites) were chosen due to the pure primary aragonitic shell preservation. The study was designed to extract better information on the habitat and life cycle of fossil cephalopods (e.g. ammonoids) in comparison with recent cephalopods (e.g. Nautilus, Spirula, Sepia) possessing equivalent or comparable hard parts. The data from three genera suggest different modes of life in at least two morphological groups. We detected and established two main groups with different ontogenetic strategies based on the δ18O data. The wcw-type (warm-cool-warm type) of Cadoceras resembles strategies in Nautilus and Sepia, which migrate from shallow into deeper environments and back in ontogeny ( wc-type, warm-cool-type), and the cw-type (cool-warm type) of Hypacanthoplites resembling the first two migration phases of Spirula ( cwc-type), which migrates from deeper into shallower and back again into deeper habitats. The main (three) phases revealed by both δ18O and δ13C data sets most probably reflect diet changes in juvenile to mid-aged individuals, followed by a habitat change for spawning adults. In Cadoceras the temperatures range from 21.2 °C for juveniles down to 12.1 °C for mid-aged individuals and back up 16.9 °C in adults. The cw- type strategy of Hypacanthoplites

  17. The stable isotopic composition of a phosphorite deposit: δ13C, δ34S, and δ18O

    USGS Publications Warehouse

    Piper, D.Z.; Kolodny, Y.

    1987-01-01

    The stable isotopes of carbon and sulfur in a major marine sedimentary phosphate deposit from the northwestern United States (the Phosphoria Formation of Permian age) characterize the chemical properties of the depositional environment. The δ34S and δ13C analyses suggest deposition under conditions of variable redox from a solution the acidity of which was controlled by reaction with carbonate rocks and exchange with seawater. The δ18O concentration of apetite indicates phosphatization in a shallow sea, during three glacial and intervening interglacial stages. These data tend to corroborate the interpretation of field studies by others, that the apatite formed on a continental shelf in an area of intense oceanic upwelling during several episodes of sea level change. 

  18. EFFECT OF RAPID SHALLOW BREATHING ON THE DISTRIBUTION OF 18-O-LABELED OZONE REACTION PRODUCT IN THE RESPIRATORY TRACT OF THE RAT

    EPA Science Inventory

    We examined the effect of breathing pattern on ozone reaction product content within the respiratory tract. Thirty-four anesthetized, maleWistar rats were exposed to oxygen-18 (18O)-labeled ozone at 1.0 ppm for 2 h using a dual-chamber, negative-pressure ventilation system. Fre...

  19. Mechanistic studies of alkene epoxidation catalyzed by nickel(II) cyclam complexes. /sup 18/O labeling and substituent effects

    SciTech Connect

    Kinneary, J.F.; Albert, J.S.; Burrows, C.J.

    1988-08-31

    The oxidations of cyclohexene and various aryl-substituted alkenes are catalyzed by the cyclam (1,4,8,11-tetraazacyclotetradecane) complex of Ni(NO/sub 3/)/sub 2/ with iodosylbenzene as terminal oxidant. Epoxides are the major products; however, small amounts of ring-opened products, over-oxidation to ketones or aldehydes, and allylic oxidation of cyclohexene are also observed. E olefins are more reactive than the corresponding Z olefins in contrast to the results of iron porphyrin catalysis, and kinetic studies of para-substituted styrenes indicate that the reaction is facilitated by electron-donating substituents. Labeling studies with PhI/sup 18/O confirm that the epoxide oxygen is derived from PhIO while allylic oxidation and over-oxidation products involve both PhIO and exogenous sources of oxygen. A pericyclic mechanism for the formation of PhCHO is proposed along with the intermediacy of a high-valent nickel-oxo complex as the active oxidant. These results are discussed in light related transition-metal/PhIO oxidation mechanisms.

  20. Isotopic enhancements of 17O and 18O from solar wind particles in the lunar regolith.

    PubMed

    Ireland, Trevor R; Holden, Peter; Norman, Marc D; Clarke, Jodi

    2006-04-01

    Differences in isotopic abundances between meteorites and rocks on Earth leave unclear the true composition of the gas out of which the Solar System formed. The Sun should have preserved in its outer layers the original composition, and recent work has indicated that the solar wind is enriched in 16O, relative to Earth, Mars and bulk meteorites. This suggests that self-shielding of CO due to photo-dissociation, which is a well understood process in molecular clouds, also led to evolution in the isotopic abundances in the early Solar System. Here we report measurements of oxygen isotopic abundances in lunar grains that were recently exposed to the solar wind. We find that 16O is underabundant, opposite to an earlier finding based on studies of ancient metal grains. Our result, however, is more difficult to understand within the context of current models, because there is no clear way to make 16O more abundant in Solar System rocks than in the Sun. PMID:16598252

  1. Measurement of Whole-Body CO2 Production in Birds Using Real-Time Laser-Derived Measurements of Hydrogen (δ(2)H) and Oxygen (δ(18)O) Isotope Concentrations in Water Vapor from Breath.

    PubMed

    Mitchell, G W; Guglielmo, C G; Hobson, K A

    2015-01-01

    The doubly labeled water (DLW) method is commonly used to measure energy expenditure in free-living wildlife and humans. However, DLW studies involving animals typically require three blood samples, which can affect behavior and well-being. Moreover, measurement of H (δ(2)H) and O (δ(18)O) isotope concentrations in H2O derived from blood using conventional isotope ratio mass spectrometry is technically demanding, time-consuming, and often expensive. A novel technique that would avoid these constraints is the real-time measurement of δ(2)H and δ(18)O in the H2O vapor of exhaled breath using cavity ring-down (CRD) spectrometry, provided that δ(2)H and δ(18)O from body H2O and breath were well correlated. Here, we conducted a validation study with CRD spectrometry involving five zebra finches (Taeniopygia guttata), five brown-headed cowbirds (Molothrus ater), and five European starlings (Sturnus vulgaris), where we compared δ(2)H, δ(18)O, and rCO2 (rate of CO2 production) estimates from breath with those from blood. Isotope concentrations from blood were validated by comparing dilution-space estimates with measurements of total body water (TBW) obtained from quantitative magnetic resonance. Isotope dilution-space estimates from δ(2)H and δ(18)O values in the blood were similar to and strongly correlated with TBW measurements (R(2) = 0.99). The (2)H and (18)O (ppm) in breath and blood were also highly correlated (R(2) = 0.99 and 0.98, respectively); however, isotope concentrations in breath were always less enriched than those in blood and slightly higher than expected, given assumed fractionation values between blood and breath. Overall, rCO2 measurements from breath were strongly correlated with those from the blood (R(2) = 0.90). We suggest that this technique will find wide application in studies of animal and human energetics in the field and laboratory. We also provide suggestions for ways this technique could be further improved. PMID:26658408

  2. North American precipitation isotope18O) zones revealed in time series modeling across Canada and northern United States

    NASA Astrophysics Data System (ADS)

    Delavau, C.; Chun, K. P.; Stadnyk, T.; Birks, S. J.; Welker, J. M.

    2015-02-01

    Delineating spatial patterns of precipitation isotopes ("isoscapes") is becoming increasingly important to understand the processes governing the modern water isotope cycle and their application to migration forensics, climate proxy interpretation, and ecohydrology of terrestrial systems. However, the extent to which these patterns can be empirically predicted across Canada and the northern United States has not been fully articulated, in part due to a lack of time series precipitation isotope data for major regions of North America. In this study, we use multiple linear regressions of CNIP, GNIP, and USNIP observations alongside climatological variables, teleconnection indices, and geographic indicators to create empirical models that predict the δ18O of monthly precipitation (δ18Oppt) across Canada and the northern United States. Five regionalization approaches are used to separate the study domain into isotope zones to explore the effect of spatial grouping on model performance. Stepwise regression-derived parameterizations quantified by permutation testing indicate the significance of precipitable water content and latitude as predictor variables. Within the Canadian Arctic and eastern portion of the study domain, models from all regionalizations capture the interannual and intraannual variability of δ18Oppt. The Pacific coast and northwestern portions of the study domain show less agreement between models and poorer model performance, resulting in higher uncertainty in simulations throughout these regions. Long-term annual average δ18Oppt isoscapes are generated, highlighting the uncertainty in the regionalization approach as it compounds over time. Additionally, monthly time series simulations are presented at various locations, and model structure uncertainty and 90% bootstrapped prediction bounds are detailed for these predictions.

  3. The Kuo-Brown effective interaction: From 18O to the Sn isotopes

    NASA Astrophysics Data System (ADS)

    Engeland, Torgeir; Hjorth-Jensen, Morten; Kartamyshev, Maxim; Osnes, Eivind

    2014-08-01

    After briefly reviewing the pioneering work on effective interactions by Gerry Brown and his group, and the developments which followed, we apply present-day effective interactions to large-scale shell-model calculations on the entire range of Sn isotopes from 102Sn to 132Sn. We have made explorative calculations starting from three different nucleon-nucleon potentials (Argonne V18, CD-Bonn, and N3LO) and evaluated the higher-order contributions to the effective interaction from both G-matrix and Vlowk interactions. Further, we have checked the convergence of intermediate-state excitations up to 10ħω harmonic oscillator energy. Final extensive calculations were made of binding energies, excitation energies and B(E2) transition rates using an effective interaction based on a G-matrix evaluated from the chiral N3LO potential and including intermediate excitations up to 10ħω harmonic oscillator energy. The energy spectra are well reproduced throughout the region while overbinding of the ground states emerges as valence nucleons are added. The B(E2) rates agree well for the heavy isotopes, while they seem too low for the lighter ones.

  4. Stable Isotope Values of the Mesoamerican Monsoon: δ18O and δ2H Values Reveal Climate Controls on Summer Rainfall Amount

    NASA Astrophysics Data System (ADS)

    Bernal, J. P.; Lachniet, M. S.; Rosales Lagarde, L.; Morales Puente, P.; Cienfuegos, E.

    2014-12-01

    Paleoclimate reconstructions using δ18O as a proxy for the isotopic composition of rainfall are based upon the mostly untested assumption that either rainfall amount or equilibration temperature are the main drivers modulating the isotopic composition of pluvial precipitation. Whilst a broad correlation between geographical location and driving mechanisms has been long recognized (i.e. amount effect is pervasive in tropical areas), further tests are required to determine the effect that different sources of moisture might impose on the isotopic composition of precipitation, particularly in areas where contributions from different ocean-basins might be significant, such as south Mexico. Here, we present the δ18O and δ2H composition of summer rainfall collected throughout south, central and western Mexico, particularly from Veracruz, Puebla, Guerrero, Morelos, Mexico City, Jalisco, Michoacán and Querétaro states. The geographical and temporal extent of our sampling (2004, 2005, 2007, 2008, 2011) results in a large dataset comprising more than 600 samples and represents the base data to understand the atmospheric mechanisms modulating the isotopic composition of rainfall in Mexico. Our data span a range of 30‰ in δ18O, from high values nearest the Gulf of Mexico coast and during weak rainfall events, to lowest values in high-altitude central Mexico and during heavy rainfall events associated with tropical cyclones. Values on the Pacific Coast are intermediate, and likely reflect a contribution of both Gulf of Mexico and Pacific sources. Our data define a meteoric water line of δ2H = 7.92 × δ18O + 9.48, which indicate that most precipitation values formed close to isotopic equilibrium with water vapor. The two primary physiographic variables controlling δ18O values are distance from the Gulf of Mexico and altitude, which together explain about 70% of the variation in spatial δ18O values.

  5. Analysis of Hydrogen Isotopic Exchange: Lava Creek Tuff Ash and Isotopically Labeled Water

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Seligman, A. N.; Bindeman, I. N.; Nolan, G. S.

    2015-12-01

    Nolan and Bindeman (2013) placed secondarily hydrated ash from the 7.7 ka eruption of Mt. Mazama (δD=-149‰, 2.3wt% H2Ot) in isotopically labeled water (+650 ‰ δD, +56 ‰ δ18O) and observed that the H2Ot and δ18O values remained constant, but the δD values of ash increased with the surrounding water at 20, 40 and 70 °C. We expand on this work by conducting a similar experiment with ash from the 640 ka Lava Creek Tuff (LCT, δD of -128 ‰; 2.1 wt.% H2Ot) eruption of Yellowstone to see if significantly older glass (with a hypothesized gel layer on the surface shielding the interior from alteration) produces the same results. We have experiments running at 70, 24, and 5 °C, and periodically remove ~1.5 mg of glass to measure the δD (‰) and H2Ot (wt.%) of water extracted from the glass on a TC/EA MAT 253 continuous flow system. After 600 hours, the δD of the samples left at 5 and 24 °C remains at -128 ‰, but increased 8‰ for the 70 °C run series. However, there is no measurable change in wt.% of H2Ot, indicating that hydrogen exchange is not dictated by the addition of water. We are measuring and will report further progress of isotope exchange. We also plan to analyze the water in the LCT glass for δ18O (‰) to see if, as is the case for the Mt. Mazama glass, the δ18O (‰) remains constant. We also analyzed Mt. Mazama glass from the Nolan and Bindeman (2013) experiments that have now been sitting in isotopically labeled water at room temperature for ~5 years. The water concentration is still unchanged (2.3 wt.% H2Ot), and the δD of the water in the glass is now -111 ‰, causing an increase of 38 ‰. Our preliminary results show that exchange of hydrogen isotopes of hydrated glass is not limited by the age of the glass, and that the testing of hydrogen isotopes of secondarily hydrated glass, regardless of age, may not be a reliable paleoclimate indicator.

  6. 18O/(16O) isotope geochemistry of silicic lava flows erupted from Volcán Ollagüe, Andean Central Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Sharp, Z. D.

    1995-07-01

    Twenty-one new oxygen isotope analyses have been obtained from basaltic andesite to dacitic lava flows erupted at Volcán Ollagüe in the Andean Central Volcanic Zone. Variation of δ 18O values (7.1-8.1‰ relative to SMOW) for the entire lava suite is small and the data as a whole exhibit no simple correlation with any parameter of compositional evolution, except that values for basaltic andesite lavas are lower than those of andesitic and dacitic lavas. Within comagmatic suites of the andesitic and dacitic lavas, however, δ 18O values are negatively correlated with major and trace element contents and Sr-isotope ratios. Furthermore, the rate of decrease in δ 18O as a function of compositional evolution is greater for young andesitic lavas erupted from the summit relative to older flows erupted low on the flanks of the volcano. The oxygen isotope compositions of Ollagüe lavas are explained by a two-stage intracrustal contamination model. In the first stage, parental basalt and basaltic andesite magmas assimilate large amounts of high- 18O/16O lower continental crust. In the second stage, the andesitic and dacitic magmas melt and assimilate low- 18O/16O hydrothermally altered wall rocks during differentiation in shallow crustal magma chambers. Modeling of magma evolution trends for δ 18O and 87Sr/86Sr suggests that the upper crustal contaminant for the young andesitic flows erupted from the summit probably had δ 18O ≈ -4‰ and Sr-isotope ratios (0.707) identical to lavas erupted during the initial cone-building phase of Ollagüe. In contrast, older lavas erupted from vents low on the flanks require a crustal source with δ 18O between 2‰ and -1‰, and Sr-isotope compositions (˜ 0.711) similar to the Miocene ignimbrites upon which the volcano is constructed. The differences in the isotopic compositions of the crustal contaminants can be explained by increasing degrees of hydrothermal alteration and hybridization of the shallow crust with time or toward

  7. Down Core Oxygen Isotopic Measurements Of Diatom δ18O From The Guaymas Basin, Gulf Of California

    NASA Astrophysics Data System (ADS)

    Menicucci, A. J.; Spero, H. J.; Thunell, R.

    2015-12-01

    The Guaymas Basin (GB), Gulf of California (27º53'N, 111º40'W ), is an evaporative basin, with sea surface temperatures (SST) varying between ~30oC (summer) and ~15oC (winter). Productivity is controlled mostly by seasonal upwelling starting in fall (early November) and extending into spring. We are currently analyzing δ18Odiatom from a boxcore (BC-43) using microfluorination (Menicucci, et al. 2013). This boxcore was previously analyzed for UK '37 alkenones and 210Pb activity (Goni, et al. 2001). Residual BC-43 material was sampled at ~2cm intervals. Samples were cleaned to isolate diatoms from other sediments, then equilibrated in water with δ18Owater = +85‰ for 70 hours at 21oC prior to vacuum dehydroxylation and microfluorination. The latter equilibration was done to account for fractionation between covalently bound O and OH- groups during vacuum dehydroxylation, preserving the original δ18Odiatom value. We present δ18Odiatom data from BC-43 samples covering 27cm, equivalent to >225 years of sediment accumulation. δ18O data are converted to temperature (T) based on an existing calibration (Leclerc and Labeyrie 1987). Our data suggest δ18Odiatom values record a T range of 22-18oC, corresponding to the mixed layer depth and the chlorophyll maximum during the fall bloom. These T values are offset from SST data by a mean of 5oC for the same sample intervals. However, δ18Odiatom values from the most recent samples suggest a ~2oC increase in diatom T relative to SST during the last 35 years. This subsurface warming may be due to decreased fall upwelling, increased mixed layer and chlorophyll maximum depths, and/or the timing of the peak diatom bloom. Such correlations are being investigated and the latest results will be presented. Goni, M. A., et al. (2001). Oceanographic considerations for the application of the alkenone-based paleotemperature U-37(K ') index in the Gulf of California. Geochimica Et Cosmochimica Acta 65: 545-557. Leclerc, A. J. and L

  8. Oxygen isotopes in an oolitic ironstone and the determination of goethite δ18O values by selective dissolution of impurities: The 5M NaOH method

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton J.

    1991-09-01

    Treatment of iron (III) oxides with hot 5 M NaOH solution can selectively dissolve silicate impurities (KAMPF and SCHWERTMANN, 1982). In the current work 5M NaOH solutions enriched in 18O (+670%.) were employed to determine if this method could be used to purify goethites for δ18O analysis. These experiments suggest that the structural stoichiometric oxygen in well-crystallized goethites does not exchange with hot 5 M NaOH solution. Therefore, this selective dissolution method appears to be isotopically viable. 18O-"normal" 5 M NaOH treatments were applied to goethite-dominated ooids of the Upper Ordovician Neda Fm. ironstone. While not completely removed by successive NaOH treatments, the impurities were incrementally dissolved in constant elemental proportions (within analytical error). Consequently, the δ18O value of the endmember goethite could be determined by material balance calculations. This goethite δ18O value is -1.0%. for all analyzed samples of Neda Fm. ooids, including those from occurrences about 200 km apart. The spatial uniformity of the oolitic goethite δ18O values suggests uniform conditions of goethite formation. The conditions might have been those of a low latitude continental weathering environment.

  9. SIMS δ18O and U isotope analyses of opal speleothems: potential for reconstruction of net infiltration and implications for paleoclimate studies

    NASA Astrophysics Data System (ADS)

    Oster, J. L.; Maher, K.; Kitajima, K.; Valley, J. W.; Rogers, B.

    2012-12-01

    Past environmental changes are often reconstructed using records of oxygen isotope variability (δ18O) in soil minerals and speleothems. However, δ18O may be influenced by a combination of environmental factors including rainfall amount, temperature, and moisture source. Variations in initial uranium isotopic values ((234U/238U)0) reflect changes in net infiltration—precipitation minus evapotranspiration (P-ET)—and thus provide a paleoclimate proxy that is sensitive to changes in rainfall. Combined investigation of (234U/238U)0 and δ18O in the same materials could provide records of variations in P-ET and allow differentiation of the influence of effective moisture on δ18O values from other factors such as moisture source. Opal speleothems from a talus cave at Pinnacles National Monument (PNM) in the central California Coast Ranges have high U concentrations (75-4000 ppm) that permit the development of a 230Th-U chronology and (234U/238U)0 record using in situ secondary ion mass spectrometry (SIMS) on the same spatial scale as a record of δ18O variability also produced using SIMS techniques. Modern rainfall δ18O at PNM displays a negative correlation with relative humidity but is also linked to moisture source. Combined high spatial resolution records of speleothem (234U/238U)0 and δ18O from PNM should allow independent investigation of potential changes in rainfall and moisture source in central California. 230Th-U opal ages of the PNM speleothem, measured using the Stanford/USGS SHRIMP-RG at ~50 μm spatial resolution, suggest a growth interval of 15.7 to 2.7 ka, with some possible depositional shifts to calcite. The δ18O of the PNM speleothem was measured at 10 μm spatial resolution using the CAMECA 1280 at the WiscSIMS facility. Typical precision on individual δ18O measurements was 0.3 ‰, and δ18O in coeval material varied by 0.2 ‰ on average. An age model for the δ18O data was constructed using 230Th ages and cathodoluminescence imaging. Age

  10. A first Late Glacial and Early Holocene coupled 18O and 2H biomarker isotope record from Gemuendener Maar, Germany

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Bromm, Tobias; Hepp, Johannes; Benesch, Marianne; Sirocko, Frank; Glaser, Bruno; Zech, Roland

    2015-04-01

    During the last years, we developed a method for compound-specific d18O analyses of hemicellulose-derived sugars from plants, soils and sediment archives (Zech and Glaser, 2009; Zech et al., 2014). The coupling of respective d18O sugar results with d2H alkane results from paleosol and sediment climate archives proved to be a valuable innovative approach towards quantitative paleoclimate reconstruction (Hepp et al., 2014; Zech et al., 2013). Here we present a first coupled d18O sugar and d2H alkane biomarker record obtained for Late Glacial and Early Holocene sediments from the Gemuendener Maar in the Eifel, Germany. The d18O sugar biomarker record resembles the d18O ice core records of Greenland. The coupling with the d2H alkane biomarker results allows drawing further more quantitative paleocimate information in terms of (i) paleohumidity and (ii) d18O of paleoprecipitation.

  11. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  12. Unsupervised Identification of Isotope-Labeled Peptides.

    PubMed

    Goldford, Joshua E; Libourel, Igor G L

    2016-06-01

    In vivo isotopic labeling coupled with high-resolution proteomics is used to investigate primary metabolism in techniques such as stable isotope probing (protein-SIP) and peptide-based metabolic flux analysis (PMFA). Isotopic enrichment of carbon substrates and intracellular metabolism determine the distribution of isotopes within amino acids. The resulting amino acid mass distributions (AMDs) are convoluted into peptide mass distributions (PMDs) during protein synthesis. With no a priori knowledge on metabolic fluxes, the PMDs are therefore unknown. This complicates labeled peptide identification because prior knowledge on PMDs is used in all available peptide identification software. An automated framework for the identification and quantification of PMDs for nonuniformly labeled samples is therefore lacking. To unlock the potential of peptide labeling experiments for high-throughput flux analysis and other complex labeling experiments, an unsupervised peptide identification and quantification method was developed that uses discrete deconvolution of mass distributions of identified peptides to inform on the mass distributions of otherwise unidentifiable peptides. Uniformly (13)C-labeled Escherichia coli protein was used to test the developed feature reconstruction and deconvolution algorithms. The peptide identification was validated by comparing MS(2)-identified peptides to peptides identified from PMDs using unlabeled E. coli protein. Nonuniformly labeled Glycine max protein was used to demonstrate the technology on a representative sample suitable for flux analysis. Overall, automatic peptide identification and quantification were comparable or superior to manual extraction, enabling proteomics-based technology for high-throughput flux analysis studies. PMID:27145348

  13. Treatment methods for the determination of delta2H and delta18O of hair keratin by continuous-flow isotope-ratio mass spectrometry.

    PubMed

    Bowen, Gabriel J; Chesson, Lesley; Nielson, Kristine; Cerling, Thure E; Ehleringer, James R

    2005-01-01

    The structural proteins that comprise approximately 90% of animal hair have the potential to record environmentally and physiologically determined variation in delta2H and delta18O values of body water. Broad, systematic, geospatial variation in stable hydrogen and oxygen isotopes of environmental water and the capacity for rapid, precise measurement via methods such as high-temperature conversion elemental analyzer/isotope ratio mass spectrometry (TC/EA-IRMS) make these isotope systems particularly well suited for applications requiring the geolocation of hair samples. In order for such applications to be successful, however, methods must exist for the accurate determination of hair delta2H and delta18O values reflecting the primary products of biosynthesis. Here, we present the results of experiments designed to examine two potential inaccuracies affecting delta2H and delta18O measurements of hair: the contribution of non-biologic hydrogen and oxygen to samples in the form of sorbed molecular water, and the exchange of hydroxyl-bound hydrogen between hair keratin and ambient water vapor. We show that rapid sorption of molecular water from the atmosphere can have a substantial effect on measured delta2H and delta18O values of hair (comprising approximately 7.7% of the measured isotopic signal for H and up to approximately 10.6% for O), but that this contribution can be effectively removed through vacuum-drying of samples for 6 days. Hydrogen exchange between hair keratin and ambient vapor is also rapid (reaching equilibrium within 3-4 days), with 9-16% of the total hydrogen available for exchange at room temperature. Based on the results of these experiments, we outline a recommended sample treatment procedure for routine measurement of delta2H and delta18O in mammal hair. PMID:16047316

  14. Analysis of stable isotope ratios (δ18O and δ2H) in precipitation of the Verde River watershed, Arizona 2013 through 2014

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.

    2016-01-01

    Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.

  15. Biscayne aquifer drinking water (USGS45): a new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Lorenz, Jennifer M.; Tarbox, Lauren V.; Buck, Bryan; Qi, Haiping; Coplen, Tyler B.

    2014-01-01

    RATIONALE As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from drinking water collected from the Biscayne aquifer in Ft. Lauderdale, Florida. METHODS This isotopic reference water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available by the case of 144 glass ampoules containing either 4 mL or 5 mL of water in each ampoule. RESULTS The δ2H and δ18O values of this reference material are –10.3 ± 0.4 ‰ and –2.238 ± 0.011 ‰, respectively, relative to VSMOW, on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. CONCLUSIONS This isotopic reference material, designated as USGS45, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. 

  16. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  17. Oxygen isotopes in an oolitic ironstone and the determination of goethite. delta. sup 18 O values by selective dissolution of impurities: The 5 M NaOH method

    SciTech Connect

    Yapp, C.J. )

    1991-09-01

    Treatment of iron (III) oxides with hot 5 M NaOH solution can selectively dissolve silicate impurities (Kampf and Schwertmann, 1982). In the current work 5M NaOH solutions enriched in {sup 18}O (+670 {per thousand}) were employed to determine if this method could be used to purify goethites for {delta}{sup 18}O analysis. These experiments suggest that the structural stoichiometric oxygen in well-crystallized goethites does not exchange with hot 5 M NaOH solution. Therefore, this selective dissolution method appears to be isotopically viable. {sup 18}O- normal' 5 M NaOH treatments were applied to goethite-dominated ooids of the Upper Ordovician Neda Fm. ironstone. While not completely removed by successive NaOH treatments, the impurities were incrementally dissolved in constant elemental proportions (within analytical error). Consequently, the {delta}{sup 18}O value of the endmember goethite could be determined by material balance calculations. This goethite {delta}{sup 18} value is {minus}1.0{per thousand} for all analyzed samples of Neda Fm. ooids, including those from occurrences about 200 km apart. The spatial uniformity of the oolitic goethite {delta}{sup 18}O values suggest uniform conditions of goethite formation. The conditions might have been those of a low latitude continental weathering environment.

  18. A novel isotopic fractionation during dissolved oxygen consumption in mesopelagic waters inferred from observation and model simulation of dissolved oxygen δ18O in open oceanic regions

    NASA Astrophysics Data System (ADS)

    Nakayama, N.; Oka, A.; Gamo, T.

    2012-12-01

    Oxygen isotopic ratio (δ18O) of dissolved oxygen is a useful for bioactive tracer of the subsurface aphotic (mesopelagic) ocean since it varies nonlinearly related to oxygen consumption via stoichiometry of organic matter decomposition. Therefore, along with global circulation model (GCM), observed δ18O and their vertical/geographical distribution can be effectively used to quantitatively determine how marine biological and ocean physical processes contribute to varying dissolved oxygen (DO) concentration in the ocean, in particular mesopelagic zone where pronounced biological activity alters DO concentration significantly. In the central north Pacific Ocean and Indian Ocean, including Arabian Sea, one of the few regions in the open ocean which has oxygen minimum zone (OMZ, a layer with severely depleted DO), vertical profiles of DO and δ18O were observed. These observed data are compared with a GCM simulation in which a constant isotopic fractionation factor of DO by marine biological respiration and a fixed Redfield molar ratio between P and O are assumed. Even in the Arabian Sea OMZ, relationship between DO and δ18O was found to be similar to those observed in other open oceans, indicating that no specific oxygen consumption process occurred in the OMZ. Using the GCM model, we attempted to reproduce the observed overall relationship between DO and δ18O, but it failed when we adopted the previously reported isotopic fractionation factor: Discrepancy became larger when oxygen saturation level decreased, in particular in thermocline water (at 20% oxygen saturation level, modeled δ18O was heavier than observed values by +7‰). Sensitivity simulations with the GCM model revealed that (1) simply changing the intensity of oxygen consumption by respiration/organic matter decomposition nor physical processes (diffusion and/or advection) could explain the observed relationship between DO and δ18O, (2) applying a smaller isotopic fractionation for deep waters

  19. Impact of Bolivian paleolake evaporation on the δ18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): diatom-inferred δ18O values and hydro-isotopic modeling

    NASA Astrophysics Data System (ADS)

    Quesada, Benjamin; Sylvestre, Florence; Vimeux, Françoise; Black, Jessica; Paillès, Christine; Sonzogni, Corinne; Alexandre, Anne; Blard, Pierre-Henri; Tonetto, Alain; Mazur, Jean-Charles; Bruneton, Hélène

    2015-07-01

    During the last deglaciation, the Bolivian Altiplano (15-23°S, 66-70°W) was occupied by paleolake Tauca covering, at least, ˜51,000 km2 at its maximum highstand between 16.5 and 15 ka. Twenty-five hundred years later, after a massive regression, a new transgressive phase, produced paleolake Coipasa, smaller than Tauca and restricted to the southern part of the basin. These paleolakes were overlooked at the west by the Sajama ice cap. The latter provides a continuous record of the oxygen isotopic composition of paleo-precipitation for the last 25 ka. Contemporaneously to the end of paleolake Tauca, around 14.3 ka, the Sajama ice cap recorded a significant increase in ice oxygen isotopic composition (δ18Oice). This paper examines to what extent the disappearance of Lake Tauca contributed to precipitation on the Sajama summit and this specific isotopic variation. The water δ18O values of paleolakes Tauca and Coipasa (δ18Olake) were quantitatively reconstructed from 18.5 to 11.7 ka based on diatom isotopic composition (δ18Odiatoms) and ostracod isotopic composition (δ18Ocarbonates) retrieved in lacustrine sediments. At a centennial time scale, a strong trend appears: abrupt decreases of δ18Olake during lake fillings are immediately followed by abrupt increases of δ18Olake during lake level stable phases. The highest variation occurred at ˜15.8 ka with a δ18Olake decrease of about ˜10‰, concomitant with the Lake Tauca highstand, followed ˜400 years later by a 7‰ increase in δ18Olake. A simple hydro-isotopic modeling approach reproduces consistently this rapid "decrease-increase" feature. Moreover, it suggests that this unexpected re-increase in δ18Olake after filling phases can be partly explained by an equilibration of isotopic fluxes during the lake steady-state. Based on isotopic calculations during lake evaporation and a simple water stable isotopes balance between potential moisture sources at Sajama (advection versus lake evaporation), we show

  20. In-situ unsaturated zone stable water isotope (2H and 18O) measurements in semi-arid environments using tunable off-axis integrated cavity output spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaj, M.; Beyer, M.; Koeniger, P.; Wanke, H.; Hamutoko, J.; Himmelsbach, T.

    2015-06-01

    Stable isotopes (deuterium, 2H, and oxygen-18, 18O) of soil pore water were measured directly in the field using tunable off-axis integrated cavity output spectroscopy (OA-ICOS) and commercially available soil gas probes in a semi-arid region of the Cuvelai-Etosha-Basin, Namibia. High spatial and temporal resolution was achieved in the study area with reasonable accuracy and measurements were in agreement with laboratory-based cryogenic vacuum extraction and subsequent cavity ring down laser spectroscopic isotope analysis (CRDS). After drift correction of the isotope data, mean precision for over 140 measurements of two consecutive field campaigns in June and November 2014 were 1.8 and 0.46 ‰ for δ2H and 18O, respectively. Mean Accuracy using quality check standards was 5 and 0.3 ‰ for δ2H and δ18O, respectively. Results support the applicability of an in-situ measurement system for the determination of stable isotopes in soil pore water. Spatio-temporal variability could be deduced with the observed data in an extremely dry evaporation dominated environment which was sporadically affected by intermittent rainfall.

  1. USGS46 Greenland ice core water – A new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping; Tarbox, Lauren V.; Lorenz, Jennifer M.; Buck, Bryan

    2015-01-01

    Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were −235.8 ± 0.7‰ and −29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, −428 and −55.5‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.

  2. Accurate experimental determination of the isotope effects on the triple point temperature of water. II. Combined dependence on the 18O and 17O abundances

    NASA Astrophysics Data System (ADS)

    Faghihi, V.; Kozicki, M.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; Peruzzi, A.; Meijer, H. A. J.

    2015-12-01

    This paper is the second of two articles on the quantification of isotope effects on the triple point temperature of water. In this second article, we address the combined effects of 18O and 17O isotopes. We manufactured five triple point cells with waters with 18O and 17O abundances exceeding widely the natural abundance range while maintaining their natural 18O/17O relationship. The 2H isotopic abundance was kept close to that of VSMOW (Vienna Standard Mean Ocean Water). These cells realized triple point temperatures ranging between  -220 μK to 1420 μK with respect to the temperature realized by a triple point cell filled with VSMOW. Our experiment allowed us to determine an accurate and reliable value for the newly defined combined 18, 17O correction parameter of AO  =  630 μK with a combined uncertainty of 10 μK. To apply this correction, only the 18O abundance of the TPW needs to be known (and the water needs to be of natural origin). Using the results of our two articles, we recommend a correction equation along with the coefficient values for isotopic compositions differing from that of VSMOW and compare the effect of this new equation on a number of triple point cells from the literature and from our own institute. Using our correction equation, the uncertainty in the isotope correction for triple point cell waters used around the world will be  <1 μK.

  3. Quasiclassical trajectory studies of 18O(3P) + NO2 isotope exchange and reaction to O2 + NO on D0 and D1 potentials

    NASA Astrophysics Data System (ADS)

    Fu, Bina; Zhang, Dong H.; Bowman, Joel M.

    2013-07-01

    We report quasiclassical trajectory calculations for the bimolecular reaction 18O(3P) + NO2 on the recent potential energy surfaces of the ground (D0) and first excited (D1) states of NO3 [B. Fu, J. M. Bowman, H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory. Comput. 9, 893 (2013)], 10.1021/ct3009792. The branching ratio of isotope exchange versus O2 + NO formation, as well as the product angular distributions and energy and rovibrational state distributions are presented. The calculations are done at the collision energy of relevance to recent crossed beam experiments [K. A. Mar, A. L. Van Wyngarden, C.-W. Liang, Y. T. Lee, J. J. Lin, and K. A. Boering, J. Chem. Phys. 137, 044302 (2012)], 10.1063/1.4736567. Very good agreement is achieved between the current calculations and these experiments for the branching ratio and final translational energy and angular distributions of isotope exchange products 16O(3P) + NO2 and O2 + NO formation products. The reactant 18O atom results in 18O16O but not N18O for the O2 + NO formation product channel, consistent with the experiment. In addition, the detailed vibrational and rotational state information of diatomic molecules calculated currently for the 34O2 + NO formation channel on D0 and D1 states are in qualitative agreement with the previous experimental and theoretical results of the photodissociation of NO3 and are consistent with older thermal bimolecular kinetics measurements.

  4. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    The Snake River Plain - Yellowstone (SRP-Y) hotspot trend is one of the largest known low-δ18O magmatic provinces, yet the timing and distribution of hydrothermal alteration relative to hotspot magmatism remains incompletely understood. Existing models for SRP-Y low-δ18O magma genesis differ regarding the timing of protolith alteration (e.g. Eocene vs. present), depth at which alteration occurs (e.g. 15 km vs. <5 km), and physical controls on the extent of alteration (e.g. caldera collapse, crustal scale fluid flow, etc.). We expand the existing oxygen isotope data set for zircon in the Lake Owyhee volcanic field (LOVF) of east central Oregon to further identify magmatic oxygen isotope trends within the field. These data offer insight into the timing of alteration and the extent of the greater SRP-Y low-δ18O province, as well as the conditions that generate large low-δ18O provinces. 16-14 Ma silicic volcanism in the LOVF is linked to the pre-14 Ma SRP-Y hotspot, with volcanism partially overlapping extension in the north-south trending Oregon-Idaho Graben (OIG). Ion microprobe analyses of zircons from 16 LOVF silicic lavas and tuffs reveal homogeneous zircons on both the single grain and hand sample scales: individual samples have 2 S.D. for δ18O ranging from 0.27 to 0.96‰ (SMOW), and sample averages ranging from 1.8 to 6.0‰, excluding texturally chaotic and/or porous zircons which have δ18O values as low as 0.0‰. All low-δ18O LOVF magmas, including the caldera-forming Tuff of Leslie Gulch and Tuff of Spring Creek, are confined to the OIG, although not all zircons from within the OIG have low δ18O values. The presence and sequence of low-δ18O magmas in the LOVF and adjacent central Snake River Plain (CSRP) cannot be explained by existing caldera subsidence or pre-hotspot source models. These data, however, combined with volumetrically limited low-δ18O material in the adjacent Idaho Batholith and Basin and Range, are consistent with low-δ18O magmas

  5. Characterization of biodegradation intermediates of nonionic surfactants by MALDI-MS. 2. Oxidative biodegradation profiles of uniform octylphenol polyethoxylate in 18O-labeled water.

    PubMed

    Sato, Hiroaki; Shibata, Atsushi; Wang, Yang; Yoshikawa, Hiromichi; Tamura, Hiroto

    2003-01-01

    This paper reports the characterization of the biodegradation intermediates of octylphenol octaethoxylate (OP(8)EO) by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The biodegradation test study was carried out in a pure culture (Pseudomonas putida S-5) under aerobic conditions using OP(8)EO as the sole carbon source and (18)O-labeled water as an incubation medium. In the MALDI-MS spectra of biodegraded samples, a series of OP(n)EO molecules with n = 2-8 EO units and their corresponding carboxylic acid products (OP(n)EC) were observed. The use of purified OP(8)EO enabled one to distinguish the shortened OPEO molecules as biodegradation intermediates. Furthermore, the formation of OP(8)EC (the oxidized product of OP(8)EO) supported the notion that terminal oxidation is a step in the biodegradation process. When biodegradation study was carried out in (18)O-labeled water, incorporation of (18)O atoms into the carboxyl group was observed for OPEC, while no incorporation was observed for the shortened OPEO products. These results could provide some rationale to the biodegradation mechanism of alkylphenol polyethoxylates. PMID:12523845

  6. Landscape hydrology and scaling of nitrate 15N and 18O isotope composition in a semi-arid agroecosystem

    NASA Astrophysics Data System (ADS)

    Kelley, C. J.; Martin, R. A.; Keller, C. K.; Orr, C. H.; Huggins, D. R.; Evans, R. D.

    2014-12-01

    Understanding how pore- to hillslope-scale processes combine to control nutrient export at larger scales is a fundamental challenge in today's agroecosystems as the carbon and contamination footprints of production agriculture come under increasing scrutiny. At the Cook Agronomy Farm (CAF) Long-Term Agricultural Research (LTAR) station near Pullman, WA we are using in-field observations to track how local-scale hydrological routing and biogeochemical processing interact to control landscape-scale water and nutrient exports. Previous research at the CAF has shown that conservative tracers and reactive nutrient quantities (NO3-,and DOC concentrations, DOM quality) in landscape-scale drainage can be explained by straightforward mixing of waters from variably contributing areas. Nitrate stable isotope composition in subsurface drain effluent indicate that most leached nitrate originates from reduced nitrogen fertilizer applied to the CAF in the autumn, which undergoes nitrification and subsequent leaching. This occurs over a timespan of weeks to months. However, water samples from contributing areas exhibit nitrate d15N and d18O significantly greater than subsurface drain effluent at all locations, and time-series consistent with the occurrence of denitrification at some locations. Possible explanations include pore-scale processing of nitrogen that does not affect the other tracers (like EC, DOM quality, and DOC concentration), and landscape-scale transport pathways that bypass our field instruments. Through this work we are contributing to a broader understand of how global change and local factors and management practices interact to affect the fate of fertilizer N, which is a cross-cutting research theme of the national LTAR network.

  7. Stable isotope18O and δ2H) data for precipitation, stream water, and groundwater in Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Torres-Sanchez, Angel; Rosario-Torres, Manuel

    2014-01-01

    , hurricanes, and cold fronts, although frequent low-intensity orographic showers occur throughout the year in the mountains. The stable isotope signatures of rainfall (δ2H and δ18O) are broadly correlated with the weather type that produced the rainfall (Scholl and others, 2009; Scholl and Murphy, 2014).

  8. 15N2 formation and fast oxygen isotope exchange during pulsed 15N18O exposure of MnOx/CeO2

    SciTech Connect

    Kwak, Ja Hun; Szanyi, Janos

    2014-12-23

    Pulsing 15N18O onto an annealed 1% Mn16Ox/Ce16O2 catalyst resulted in very fast oxygen isotope exchange and 15N2 formation at 295 K. In the 1st 15N18O pulse, due to the presence of large number of surface oxygen defects, extensive 15N218O and 15N2 formations were observed. In subsequent pulses oxygen isotope exchange dominated as a result of highly labile oxygen in the oxide. We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  9. Limited Boron Isotopic Variation Between Caldera-Forming and Post-Caldera Low-δ 18O Rhyolites from Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Schmitt, A. K.

    2004-12-01

    Post-collapse rhyolites from within Yellowstone caldera show prominent excursions to δ 18O values (VSMOW) as low as ˜0 ‰ that provide strong evidence for significant non-lithospheric oxygen input into magmas, presumably via infiltration of meteoric waters (1). Very little, however, is known about the behavior of other stable isotope systems, such as boron, in low δ 18O rhyolites and their potential for unraveling the mechanisms by which brines and magmas interact. Ion microprobe measurements of quartz-hosted melt inclusions from two low-δ 18O rhyolite flows (South Biscuit Basin SBB and Middle Biscuit Basin MBB) yielded average δ 11B values (NIST SRM 951) of -1.5 and -0.9 ‰ , respectively. These values overlap within error with those for glassy obsidian matrix from SBB and MBB. Melt inclusions from two caldera-forming tuff eruptions (Lava Creek Tuff LCT and Huckleberry Ridge Tuff HRT), known to have 'normal' oxygen isotopic compositions, also yielded indistinguishable δ 11B values of -1.8 ‰ . Recent petrologic studies (1) suggested that bulk remelting of hydrothermally altered volcanic rocks, specifically HRT, in the down-dropped roof of the magma chamber produced the low-δ 18O magmas. The lack of strong boron isotopic variations (within ±2‰ ) between 'normal' and low-δ 18O rhyolites, however, contrasts with published evidence for strong 11B-depletion in hydrothermal altered rhyolite encountered in Yellowstone drill-wells (δ 11B = -9.7 ‰ ; 2). This implies that boron isotopic fractionation due to interaction with hydrothermal fluids was either absent in the source region of the SBB and MBB magmas, or became masked due to subsequent processes. From preliminary mixing calculations it is concluded that assimilation of 11B- and 18O-depleted rocks by fresh rhyolite recharge could be a compositionally and thermally viable alterative to bulk remelting. (1) I. N. Bindeman and J. W. Valley (2001) J Petrol 42, 1491-1517; (2) M. R. Palmer and N. C. Sturchio

  10. The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Tellenbach, C.; Möst, M.; Spaak, P.; van Hardenbroek, M.; Wooller, M. J.; Heiri, O.

    2015-06-01

    The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: -1.6 ± 0.4 ‰; δ18O: -0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to -1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at

  11. Behavior of isotope (18O/16O, 234U/238U) systems during the formation of uranium deposits of the "sandstone" type

    NASA Astrophysics Data System (ADS)

    Golubev, V. N.; Dubinina, E. O.; Chernyshev, I. V.; Ikonnikova, T. A.

    2016-01-01

    The uneven character of the distribution of 18O/16O and 234U/238U values was established in the vertical cross section of the productive sequence of the Dybryn uranium deposit (Vitim uranium-ore region, Buryatia). Both a deficiency and an excess of 234U in relation to the equilibrium 234U/238U ratio in the vertical sequence may provide evidence for the extremely low rate of the infiltration water flow. The behavior of oxygen isotope characteristics for different size fractions of terrigenous rocks provides evidence for active uranium redistribution and openness of the isotope system of this element during interaction of terrigenous-sedimentary rocks with infiltration waters.

  12. Gluconeogenesis from labeled carbon: estimating isotope dilution

    SciTech Connect

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.

  13. What can Δ 15N and Δ 18O isotopes tell us about sources, transport, and fate of nitrate in the Mississippi River Basin?

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.

    2003-12-01

    Water and nutrients, primarily nitrate (NO3) in Mississippi River discharge, affect the size and severity of the Gulf of Mexico hypoxic (depleted dissolved oxygen) zone. Approximately 120 water samples were collected from 16 sites on small streams and 6 sites on large rivers within the Mississippi River Basin in 1997-98 to see if NO3 sources and transformations can be identified using the stable isotopic ratios Δ 15N and Δ 18O. Results from Lagrangian sampling at the large river sites indicate that nitrate mass decreases slightly, while Δ 15N and Δ 18O isotope ratios are unchanged in the 1500 river kilometers between the Upper Mississippi-Ohio River confluence and the Gulf of Mexico. Results also show that Δ 15N and Δ 18O values from small streams draining lands dominated by row crops or livestock tended to be distinct from those dominated by urban or undeveloped land. Mean Δ 15N values at the 16 sites on small streams were most strongly correlated (Pearson's r) with manure production rate (0.64), percent residential land use (-0.45), and urea use rate (0.43). The best multiple linear regression (MLR) model for mean Δ 15N values (r2=0.69) used manure production rate and ammonium nitrate use rate as explanatory variables. Mean Δ 18O values were most strongly correlated with percent wetlands (0.72), mean NO3 concentration (-0.71), and percent residential land use (0.58). The best MLR model for mean Δ 18O values (r2=0.85) used percent residential land use, percent wetlands, and ammonium nitrate use rate as explanatory variables. Mean NO3 concentrations were most strongly correlated with percent row-crops land use (0.84), nitrogen-fertilizer use rate (0.74), and hog-manure production rate (0.66). The best MLR model for mean NO3 concentration (r2=0.85) used percent row-crops land use and percent grain-crops land use as explanatory variables. MLR equations developed from the 16 smaller streams were used to predict mean Δ 15N and Δ 18O values and NO3

  14. Can tree-ring isotopes18O and δ13C) improve our understanding of hydroclimate variability in the Columbia River Basin?

    NASA Astrophysics Data System (ADS)

    Csank, A. Z.; Wise, E.; McAfee, S. A.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean has a strong impact on hydroclimate in the Pacific Northwest. Shifts between zonal and meridional flow are a key influence on drought and pluvial regimes in both the PNW and the western United States as a whole. Circulation-dependent variability in the isotopic composition of precipitation can be recorded and potentially reconstructed using δ18O records derived from tree-rings. Here we present isotopic records of δ18O and δ13C from ponderosa pine (Pinus ponderosa) for the period 1950-2013 from six sites located in the lee of the Cascades in eastern Washington. Because of the orientation of the Cascades, zonal flow will result in an intensified rain shadow whereas meridional flow allows moisture to penetrate at a lower elevation leading to a lower rainout effect. This means zonal flow results in drier conditions in eastern Washington and the converse for meridional flow. We hypothesized that more depleted precipitation δ18O values will occur with periods of more zonal flow across the PNW and will be recorded by trees at our sites. Results show a strong relationship between our δ18O chronologies and winter precipitation (R = -0.50; p<0.001). δ13C chronologies from the same trees showed a relationship to prior fall/winter (pOct-pDec) precipitation (R = -0.46; p<0.005) suggesting a possible link to antecedent moisture conditions. With a focus on years with clear zonal and meridional flow regimes, we regressed the tree-ring δ18O anomaly against the instrumental record of total precipitation and compared the residual series to records of storm track for the period 1978-2008, and we found a detectable signal where the most depleted δ18O was generally associated with zonal flow and the most enriched δ18O with meridional flow. However, there are still some years where the relationship is unclear. Further work is aimed at understanding these anomalous years and extending our record beyond the instrumental

  15. Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes ( δ18O, δ2H)

    NASA Astrophysics Data System (ADS)

    Mayr, Christoph; Lücke, Andreas; Stichler, Willibald; Trimborn, Peter; Ercolano, Bettina; Oliva, Gabriel; Ohlendorf, Christian; Soto, Julio; Fey, Michael; Haberzettl, Torsten; Janssen, Stephanie; Schäbitz, Frank; Schleser, Gerhard H.; Wille, Michael; Zolitschka, Bernd

    2007-02-01

    Stable isotope approaches are often used for estimating water balances of lakes. Such studies require regional background information about hydrogen and oxygen isotope variability of lakes and their potential inflows. Here, a stable isotope database ( δ2H and δ18O) is presented for estimating evaporation to inflow ratios ( E/ I) of lakes in semi-arid southern Patagonia. Water samples of 23 lakes and ponds located in the Patagonian steppe at about 52°S were sampled during three subsequent austral summers. Two deep crater lakes, Laguna Azul and Laguna Potrok Aike, were studied in more detail during a two-years monitoring. Furthermore, precipitation, groundwater and atmospheric water vapor were sampled for isotope analyses. Presented data imply that the isotopic composition of rainfall in southeastern Patagonia is predominantly determined by precipitation amount and moisture source area. For the investigated area, the first meteoric water and evaporation lines in δ2H vs. δ18O space are presented. The database was further used to estimate the water balances of the two crater lakes, Laguna Azul and Laguna Potrok Aike, which are in the focus of recent paleoclimatic investigations. According to that approach about 50% and 60%, respectively, of the water entering Laguna Azul and Laguna Potrok Aike via surface and subsurface inflow evaporates. These results testify a considerable flow of lake waters into the groundwater.

  16. sup 18 O/ sup 16 O and sup 13 C/ sup 12 C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater

    SciTech Connect

    Wadleigh, M.A. ); Veizer, J. Ruhr Univ., Bochum )

    1992-01-01

    Three hundred and eleven articulate brachiopods, with extensive geographic coverage, spanning the Cambrian to Silurian stratigraphic interval, were analyzed for oxygen and carbon isotopic composition. Cambrian samples have {delta}{sup 18}O {le} {minus}7{per thousand}, Ordovician samples {le} {minus}2.4{per thousand}, and Silurian samples {le} {minus}1.9{per thousand}, confirming the previously established trend towards lighter isotopic compositions with increasing age throughout the Lower Paleozoic. Forty-nine best preserved' Ordovician and Silurian samples were identified based on scanning electron microscopy and trace element analysis. They were found to bracket the isotopic compositions of over 85% of specimens from these stratigraphic intervals supporting widespread preservation of the isotopic signal. Some latest Ordovician and Lower Ludlovian samples associated with shale sequences are apparently enriched' in {sup 18}O. These are interpreted as an environmental phenomenon, perhaps related to water temperature and glaciation. A number of Silurian samples of varying genera and stratigraphic levels are highly enriched in {sup 13}C, up to +6{per thousand}. Some are shale related, but some are associated with carbonate-bearing basins. These are also thought to represent near-original' compositions, but a single environmental cause is unknown. The present data show that luminescence is not a decisive criterion for evaluating the degree of brachiopod preservation. Whole-shell values were isotopically similar to their nonluminescent portions for both oxygen and carbon.

  17. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    NASA Astrophysics Data System (ADS)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  18. The non-statistical dynamics of the 18O + 32O2 isotope exchange reaction at two energies

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, Annalise L.; Mar, Kathleen A.; Quach, Jim; Nguyen, Anh P. Q.; Wiegel, Aaron A.; Lin, Shi-Ying; Lendvay, Gyorgy; Guo, Hua; Lin, Jim J.; Lee, Yuan T.; Boering, Kristie A.

    2014-08-01

    The dynamics of the 18O(3P) + 32O2 isotope exchange reaction were studied using crossed atomic and molecular beams at collision energies (Ecoll) of 5.7 and 7.3 kcal/mol, and experimental results were compared with quantum statistical (QS) and quasi-classical trajectory (QCT) calculations on the O3(X1A') potential energy surface (PES) of Babikov et al. [D. Babikov, B. K. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lesard, and R. Schinke, J. Chem. Phys. 118, 6298 (2003)]. In both QS and QCT calculations, agreement with experiment was markedly improved by performing calculations with the experimental distribution of collision energies instead of fixed at the average collision energy. At both collision energies, the scattering displayed a forward bias, with a smaller bias at the lower Ecoll. Comparisons with the QS calculations suggest that 34O2 is produced with a non-statistical rovibrational distribution that is hotter than predicted, and the discrepancy is larger at the lower Ecoll. If this underprediction of rovibrational excitation by the QS method is not due to PES errors and/or to non-adiabatic effects not included in the calculations, then this collision energy dependence is opposite to what might be expected based on collision complex lifetime arguments and opposite to that measured for the forward bias. While the QCT calculations captured the experimental product vibrational energy distribution better than the QS method, the QCT results underpredicted rotationally excited products, overpredicted forward-bias and predicted a trend in the strength of forward-bias with collision energy opposite to that measured, indicating that it does not completely capture the dynamic behavior measured in the experiment. Thus, these results further underscore the need for improvement in theoretical treatments of dynamics on the O3(X1A') PES and perhaps of the PES itself in order to better understand and predict non-statistical effects in this reaction and in the formation

  19. Use of 2H and 18O stable isotopes to investigate water sources for different ages of Populus euphratica along the lower Heihe River

    USGS Publications Warehouse

    Shubao Liu; Yaning Chen; Yapeng Chen; Friedman, Jonathan M.; Gonghuan Fan; Hati, Jarre Heng A.

    2015-01-01

    Investigation of the water sources used by trees of different ages is essential to formulate a conservation strategy for the riparian tree, P. euphratica. This study addressed the contributions of different potential water sources to P. euphratica based on levels of stable oxygen and hydrogen isotopes18O, δ2H) in the xylem of different aged P. euphratica, as well as in soil water and groundwater along the lower Heihe River. We found significant differences in δ18O values in the xylem of different aged P. euphratica. Specifically, the δ18O values of young, mature and over-mature forests were −5.368(±0.252) ‰, −6.033(± 0.185) ‰ and −6.924 (± 0.166) ‰, respectively, reflecting the reliance of older trees on deeper sources of water with a δ18O value closer to that of groundwater. Different aged P. euphratica used different water sources, with young forests rarely using groundwater (mean <15 %) and instead primarily relying on soil water from a depth of 0–50 cm (mean >45 %), and mature and over-mature forests using water from deeper than 100 cm derived primarily from groundwater.

  20. Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precision delta18O determination in CO2 gas.

    PubMed

    Werner, R A; Rothe, M; Brand, W A

    2001-01-01

    The determination of delta18O values in CO2 at a precision level of +/-0.02 per thousand (delta-notation) has always been a challenging, if not impossible, analytical task. Here, we demonstrate that beyond the usually assumed major cause of uncertainty - water contamination - there are other, hitherto underestimated sources of contamination and processes which can alter the oxygen isotope composition of CO2. Active surfaces in the preparation line with which CO2 comes into contact, as well as traces of air in the sample, can alter the apparent delta18O value both temporarily and permanently. We investigated the effects of different surface materials including electropolished stainless steel, Duran glass, gold and quartz, the latter both untreated and silanized. CO2 frozen with liquid nitrogen showed a transient alteration of the 18O/16O ratio on all surfaces tested. The time to recover from the alteration as well as the size of the alteration varied with surface type. Quartz that had been ultrasonically cleaned for several hours with high purity water (0.05 microS) exhibited the smallest effect on the measured oxygen isotopic composition of CO2 before and after freezing. However, quartz proved to be mechanically unstable with time when subjected to repeated large temperature changes during operation. After several days of operation the gas released from the freezing step contained progressively increasing trace amounts of O2 probably originating from inclusions within the quartz, which precludes the use of quartz for cryogenically trapping CO2. Stainless steel or gold proved to be suitable materials after proper pre-treatment. To ensure a high trapping efficiency of CO2 from a flow of gas, a cold trap design was chosen comprising a thin wall 1/4" outer tube and a 1/8" inner tube, made respectively from electropolished stainless steel and gold. Due to a considerable 18O specific isotope effect during the release of CO2 from the cold surface, the thawing time had to

  1. Stable Oxygen (δ 18O) and Carbon (δ 13C) Isotopes in the Skeleton of Bleached and Recovering Corals From Hawaii

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.; Grottoli, A. G.

    2004-12-01

    Coral skeletal stable oxygen isotopes18O) reflect changes in seawater temperature and salinity, while stable carbon isotopes (δ 13C) reflect a combination of both metabolic (photosynthesis and feeding) and kinetic fractionation. Together, the two isotopic signatures may be used as a proxy for past bleaching events. During bleaching, increased seawater temperatures often contribute to a decline in zooxanthellae and/or chlorophyll concentrations, resulting in a decrease in photosynthesis. We experimentally investigated the effect of bleaching and subsequent recovery on the δ 13C and δ 18O values of coral skeleton. Fragments from two coral species (Montipora capitata and Porites compressa) from Kaneohe Bay, Hawaii were bleached in outdoor tanks by raising the seawater temperature to 30° C. Additional fragments from the same parent colonies were maintained at ambient seawater temperatures (27° C) in separate tanks as controls. After one month in the tanks, a subset of the fragments was frozen and all remaining fragments were placed back on the reef to recover. All coral fragments were analyzed for their skeletal δ 13C and δ 18O compositions at five time intervals: before, immediately after, 1.5, 4, and 8 months after bleaching. In addition, rates of photosynthesis, calcification, and heterotrophy were also measured. Immediately after bleaching, δ 18O decreased in bleached M. capitata relative to controls, reflecting their exposure to increased seawater temperatures. During recovery, δ 18O values in the treatment M. capitata were not different from the controls. In P. compressa, δ 18O did not significantly differ in bleached and control corals at any time during the experiment. Immediately after bleaching, δ 13C decreased in the bleached fragments of both species relative to controls reflecting decreased photosynthetic rates. However, during recovery δ 13C in both species was greater in bleached than control fragments despite photosynthesis remaining

  2. Multi-isotope ((15)N, (18)O and (13)C) indicators of sources and fate of nitrate in the upper stream of Chaobai River, Beijing, China.

    PubMed

    Li, Cai; Jiang, Yongbin; Guo, Xinyue; Cao, Yang; Ji, Hongbing

    2014-11-01

    Dual isotopes of nitrate ((15)N and (18)O) and carbon isotopes of dissolved inorganic carbon ((13)C) together with water chemistry were used to identify the sources and fate of nitrate in the upper stream of Chaobai River, north China. The results show that NO3(-) concentrations ranges from 0.03 mmol L(-1) to 0.80 mmol L(-1). Sampling sites from watershed with dominant forest land had higher NO3(-) concentrations and lower δ(15)N-NO3(-) (<10‰) in the wet season than in the dry season, while those from watershed with more anthropogenic activities had lower NO3(-) concentrations and higher δ(15)N-NO3(-) (>10‰) in the wet season. Compositions of isotopes and chemistry indicated that NO3(-) originated mainly from soil N, sewage and livestock wastes and atmospheric nitrogen. Furthermore, the mixing model suggested that soil N was the major NO3(-) source in the wet season, while the sewage and livestock wastes contributed the most in the dry season. Compared to rivers, the Miyun Reservoir had a higher contribution of atmospheric N and the N input from the upper rivers exerted significant influence over the reservoir. Mineralization and nitrification played an important role in N biogeochemistry based on the isotopes ((15)N and (18)O and (13)C) and chemical data. There appeared to be no significant denitrification in the watershed according to the three isotopes and chemical ions. The combined use of (15)N, (18)O and (13)C proved to be useful for further identification of the sources and fate of nitrate in watersheds with dominant forest land in the wet season. PMID:25283837

  3. Nitrogen isotopes as indicators of streamflow generation processes in a headwater forested catchment: Focusing on atmospheric NO3- contribution using δ 18O signature

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Sebestyen, S. D.; Doctor, D. H.; Wankel, S. D.; Shanley, J. B.; Kendall, C.; Boyer, E. W.

    2003-12-01

    To quantify the contributions of atmospheric nitrogen deposition and mechanisms of nitrate discharge to stream, nitrogen chemistry and isotopes (δ 15N and δ 18O of NO3-) of streamwater were studied as part of an ongoing study of nutrient dynamics at the Sleepers River Research Watershed in Vermont, USA. We employed novel analytical procedures for high throughput of NO3- isotopic measurements. The denitrifier method for measurement of δ 15N and δ 18O of NO3- requires a smaller volume of water samples than previously applied methods, thus it enables fine resolution analysis of isotopes for stream, well, and soil water samples. Samples were collected throughout the spring 2003 snowmelt. Snowmelt runoff was initiated in the middle of March and peaked at the end of the month. Then, the runoff rate decreased gradually through April and May, and responded to several storm events. The highest concentration of NO3- in the stream was observed at the beginning of snowmelt (the end of March), and thereafter it declined continuously. The temporal course of NO3- discharge process during snowmelt period was divided into four phases based on changes in the relationship between runoff rate and NO3- concentration. During the earliest phase (very low runoff rate and highest NO3- concentration) isotope signatures, especially δ 18O of NO3-, indicated higher contribution of the atmospherically derived NO3-, meaning that the direct discharge from snow pack was the dominant source of NO3- to the stream. This also suggested that streamwater consisted only of a small volume of groundwater discharge and melt water of the in-stream snow pack and/or stream-covering snow pack. The δ 15N and δ 18O isotope compositions of NO3- during the middle phase of snowmelt indicated that the contribution of the NO3- generated by nitrifiers in soil increased gradually accompanied with increase of groundwater level. These detailed descriptions in the changes of NO3- discharge during snowmelt events

  4. Archaean fluid-assisted crustal cannibalism recorded by low δ18O and negative ɛHf(T) isotopic signatures of West Greenland granite zircon

    NASA Astrophysics Data System (ADS)

    Hiess, Joe; Bennett, Vickie C.; Nutman, Allen P.; Williams, Ian S.

    2011-06-01

    The role of fluids during Archaean intra-crustal magmatism has been investigated via integrated SHRIMP U-Pb, δ18O and LA-MC-ICPMS 176Hf isotopic zircon analysis. Six rock samples studied are all from the Nuuk region (southern West Greenland) including two ~3.69 Ga granitic and trondhjemitic gneisses, a 3.64 Ga granitic augen gneiss, a 2.82 Ga granodioritic Ikkattoq gneiss, a migmatite with late Neoarchaean neosome and a homogeneous granite of the 2.56 Ga Qôrqut Granite Complex (QGC). All zircon grains were thoroughly imaged to facilitate analysis of magmatic growth domains. Within the zircon analysed, there is no evidence for metamictization. Initial ɛHf zircon values ( n = 63) are largely sub-chondritic, indicating the granitic host magmas were generated by the remelting of older, un-radiogenic crustal components. Zircon from some granite samples displays more than one 207Pb/206Pb age, and correlated with 176Hf/177Hf compositions can trace multiple phases of remelting or recrystallization during the Archaean. Model ages calculated using Lu/Hf arrays for each sample indicate that the crustal parental rocks to the granites, granodiorites and trondhjemites segregated from a chondrite-like reservoir at an earlier time during the Archaean, corresponding to known formation periods of more primitive tonalite-trondhjemite-granodiorite (TTG) gneisses. Zircon from the ~3.69 Ga granite, the migmatite and QGC granite contains Eoarchaean cores with chondritic 176Hf/177Hf and mantle-like δ18O compositions. The age and geochemical signatures from these inherited components are identical to those of surrounding tonalitic gneisses, further suggesting genesis of these granites by remelting of broadly tonalitic protoliths. Zircon oxygen isotopic compositions ( n = 62) over nine age populations (six igneous and three inherited) have weighted mean or mean δ18O values ranging from 5.8 ± 0.6 to 3.7 ± 0.5‰. The 3.64 Ga granitic augen gneiss sample displays the highest δ18O with

  5. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  6. Differentiation of the Stereochemistry and Anomeric Configuration for 1-3 Linked Disaccharides Via Tandem Mass Spectrometry and 18O-labeling

    NASA Astrophysics Data System (ADS)

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2012-02-01

    Collision-induced dissociation (CID) of deprotonated hexose-containing disaccharides ( m/z 341) with 1-2, 1-4, and 1-6 linkages yields product ions at m/z 221, which have been identified as glycosyl-glycolaldehyde anions. From disaccharides with these linkages, CID of m/z 221 ions produces distinct fragmentation patterns that enable the stereochemistries and anomeric configurations of the non-reducing sugar units to be determined. However, only trace quantities of m/z 221 ions can be generated for 1-3 linkages in Paul or linear ion traps, preventing further CID analysis. Here we demonstrate that high intensities of m/z 221 ions can be built up in the linear ion trap (Q3) from beam-type CID of a series of 1-3 linked disaccharides conducted on a triple quadrupole/linear ion trap mass spectrometer. 18O-labeling at the carbonyl position of the reducing sugar allowed mass-discrimination of the "sidedness" of dissociation events to either side of the glycosidic linkage. Under relatively low energy beam-type CID and ion trap CID, an m/z 223 product ion containing 18O predominated. It was a structural isomer that fragmented quite differently than the glycosyl-glycolaldehydes and did not provide structural information about the non-reducing sugar. Under higher collision energy beam-type CID conditions, the formation of m/z 221 ions, which have the glycosyl-glycolaldehyde structures, were favored. Characteristic fragmentation patterns were observed for each m/z 221 ion from higher energy beam-type CID of 1-3 linked disaccharides and the stereochemistry of the non-reducing sugar, together with the anomeric configuration, were successfully identified both with and without 18O-labeling of the reducing sugar carbonyl group.

  7. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  8. Prediction of plant vulnerability to salinity increase in a coastal ecosystem by stable isotopic composition (δ18O) of plant stem water: a model study

    USGS Publications Warehouse

    Zhai, Lu; Jiang, Jiang; DeAngelis, Don; Sternberg, Leonel d.S.L

    2016-01-01

    Sea level rise and the subsequent intrusion of saline seawater can result in an increase in soil salinity, and potentially cause coastal salinity-intolerant vegetation (for example, hardwood hammocks or pines) to be replaced by salinity-tolerant vegetation (for example, mangroves or salt marshes). Although the vegetation shifts can be easily monitored by satellite imagery, it is hard to predict a particular area or even a particular tree that is vulnerable to such a shift. To find an appropriate indicator for the potential vegetation shift, we incorporated stable isotope 18O abundance as a tracer in various hydrologic components (for example, vadose zone, water table) in a previously published model describing ecosystem shifts between hammock and mangrove communities in southern Florida. Our simulations showed that (1) there was a linear relationship between salinity and the δ18O value in the water table, whereas this relationship was curvilinear in the vadose zone; (2) hammock trees with higher probability of being replaced by mangroves had higher δ18O values of plant stem water, and this difference could be detected 2 years before the trees reached a tipping point, beyond which future replacement became certain; and (3) individuals that were eventually replaced by mangroves from the hammock tree population with a 50% replacement probability had higher stem water δ18O values 3 years before their replacement became certain compared to those from the same population which were not replaced. Overall, these simulation results suggest that it is promising to track the yearly δ18O values of plant stem water in hammock forests to predict impending salinity stress and mortality.

  9. Determination of energy expenditure during heavy exercise, normal daily activity, and sleep using the doubly-labelled-water (/sup 2/H/sub 2/ 18O) method

    SciTech Connect

    Stein, T.P.; Hoyt, R.W.; Settle, R.G.; O'Toole, M.; Hiller, W.D.

    1987-03-01

    Energy expenditure of four subjects was measured by the doubly-labelled-water (/sup 2/H/sub 2/ 18O) method to determine if energy expenditure could be determined over short periods. Three subjects were studied while they performed 8 h of heavy exercise in a laboratory environment. Urine and blood samples were taken before and after exercise. Estimated energy expended during 8 h of high-intensity exercise for three subjects was 757 +/- 118 kcal/h by the doubly-labelled-water method using urine and a two-point calculation, which compared favorably with 735 +/- 82 kcal/h obtained by respiratory gas exchange. For the fourth subject, daytime, nighttime, and daily energy expenditure was calculated by both the two-pair method and decay-curve analysis of urine and saliva samples collected in the morning and at night. Daytime and nighttime energy expenditures differed significantly (p less than 0.05).

  10. Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systematics in an oceanic crustal section: Evidence from the Samial ophiolite

    SciTech Connect

    McCulloch, M.T.; Gregory, R.T.; Wasserburg, G.J.; Taylor, H.P. Jr.

    1981-04-10

    The Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systems have been used to distinguish between the effects of seafloor hydrothermal alteration and primary magmatic isotopic variations. The Sm-Nd isotopic system is essentially unaffected by seawater alteration, while the Rb-Sr and /sup 18/O//sup 16/O systems are sensitive to hydrothermal interactions with seawater. Sm-Nd mineral isochrons from the cumulate gabbros of the Samail ophiolite have an initial /sup 143/Nd//sup 144/Nd ratio of e/sub Nd/ = 7.8 +- 0.3, which clearly substantiates the oceanic affinity of this complex. The initial /sup 143/Nd//sup 144/Nd ratios for the harzburgite, plagiogranite, sheeted diabase dikes, and basalt units have a limited range in e/sub Nd/ of from 7.5 to 8.6, indicating that all the lithologies have distinctive oceanic affinities, although there is also some evidence for small isotopic heterogeneities in the magma reservoirs. The Sm-Nd mineral isochrons give crystallization ages of 128 +- 20 m.y. and 150 +- 40 m.y. from Ibra and 100 +- 20 m.y. from Wadi Fizh, which is approximately 300 km NW of Ibra. These crystallization ages are interpreted as the time of formation of the oceanic crust. The /sup 87/Sr//sup 86/Sr initial ratios on the same rocks have an extremely large range of from 0.7030 to 0.7065 and the d/sup 18/O values vary from 2.6 to 12.7. These large variations clearly demonstrate hydrothermal interaction of oceanic crust with seawater.

  11. Coordinated Isotopic and Mineral Characterization of Highly Fractionated 18O-Rich Silicates in the Queen Alexandra Range 99177 CR3 Chondrite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.

    2016-01-01

    Carbonaceous chondrites contain a mixture of solar system condensates, pre-solar grains, and primitive organic matter. Each of these materials record conditions and processes in different regions of the solar nebula, on the meteorite parent body, and beyond the solar system. Oxygen isotopic studies of meteorite components can trace interactions of distinct oxygen isotopic reservoirs in the early solar system and secondary alteration processes. The O isotopic compositions of the earliest solar system condensates fall along a carbonaceous chondrite anhydrous mineral (CCAM) line of slope approximately 1 in a plot of delta 17O against delta 18O. This trend is attributed to mixing of material from 16O-poor and 16O-rich reservoirs. Secondary processing can induce mass-dependent fractionation of the O isotopes, shifting these compositions along a line of slope approximately 0.52. Substantial mass-dependent fractionation of O isotopes has been observed in secondary minerals in CAIs, calcite, and FUN inclusions. These fractionations were caused by significant thermal or aqueous alteration. We recently reported the identification of four silicate grains with extremely fractionated O isotopic ratios (delta 18O equals 37 - 55 per mille) in the minimally altered CR3 chondrite QUE 99177. TEM analysis of one grain indicates it is a nebular condensate that did not experience substantial alteration. The history of these grains is thus distinct from those of the aforementioned fractionated materials. To constrain the origin of the silicate grains, we conducted further Mg and Fe isotopic studies and TEM analyses of two grains.

  12. Oxygen isotopes in Indian Plate eclogites (Kaghan Valley, Pakistan): Negative δ18O values from a high latitude protolith reset by Himalayan metamorphism

    NASA Astrophysics Data System (ADS)

    Rehman, Hafiz Ur; Tanaka, Ryoji; O'Brien, Patrick J.; Kobayashi, Katsura; Tsujimori, Tatsuki; Nakamura, Eizo; Yamamoto, Hiroshi; Khan, Tahseenullah; Kaneko, Yoshiyuki

    2014-11-01

    Oxygen isotope compositions are reported for the first time for the Himalayan metabasites of the Kaghan Valley, Pakistan in this study. The highest metamorphic grades are recorded in the north of the valley, near the India-Asia collision boundary, in the form of high-pressure (HP: Group I) and ultrahigh-pressure (UHP: Group II) eclogites. The rocks show a step-wise decrease in grade from the UHP to HP eclogites and amphibolites. The protoliths of these metabasites were the Permian Panjal Trap basalts (ca. 267 ± 2.4 Ma), which were emplaced along the northern margin of India when it was part of Gondwana. After the break-up of Gondwana, India drifted northward, subducted beneath Asia and underwent UHP metamorphism during the Eocene (ca. 45 ± 1.2 Ma). At the regional scale, amphibolites, Group I and II eclogites yielded δ18O values of + 5.84 and + 5.91‰, + 1.66 to + 4.24‰, and - 2.25 to + 0.76‰, respectively, relative to VSMOW. On a more local scale, within a single eclogite body, the δ18O values were the lowest (- 2.25 to- 1.44‰) in the central, the best preserved (least retrograded) parts, and show a systematic increase outward into more retrograded rocks, reaching up to + 0.12‰. These values are significantly lower than the typical mantle values for basalts of + 5.7 ± 0.3‰. The unusually low or negative δ18O values in Group II eclogites potentially resulted from hydrothermal alteration of the protoliths by interactions with meteoric water when the Indian plate was at southern high latitudes (~ 60°S). The stepwise increase in δ18O values, among different eclogite bodies in general and at single outcrop-scales in particular, reflects differing degrees of resetting of the oxygen isotope compositions during exhumation-related retrogression.

  13. Eocene-Oligocene proto-Cascades topography revealed by clumped (Δ47) and oxygen isotope18O) geochemistry (Chumstick Basin, WA, USA)

    NASA Astrophysics Data System (ADS)

    Methner, Katharina; Fiebig, Jens; Wacker, Ulrike; Umhoefer, Paul; Chamberlain, C. Page; Mulch, Andreas

    2016-03-01

    The topography of the present-day Washington Cascades impacts atmospheric circulation and precipitation patterns in the Pacific Northwest, introducing a pronounced orographic rain shadow in the lee of the mountain range. The temporal development of Cascade topography, however, remains largely unconstrained for the early Cenozoic. Based on coupled carbonate clumped isotope (Δ47) and oxygen isotope18O) measurements we reconstruct δ18O values of Eocene groundwater (δ18Owater) in the Chumstick basin (central Washington), today located in the Cascade rain shadow. Δ47 (paleo)thermometry indicates a systematic change in basin burial temperatures from 110°C to 70°C depending on burial depth in the basin. These data are in good agreement with low-T thermochronological and vitrinite reflectance data, and further constrain the basin burial and exhumation history. In concert with field observations, microstructural analysis, and δ18O values of the analyzed carbonates, we suggest that the Δ47 temperatures and δ18O values reflect open-system carbonate cement recrystallization in meteoric-derived groundwaters during early burial diagenesis. Assuming open-system behavior, reconstructed mean δ18Owater values of ~ -7‰ (middle Eocene) to -9‰ (late Eocene/early Oligocene) are consistent with a low-elevation origin of the corresponding meteoric waters that permeated the sandstone/conglomerate members of the Eocene sedimentary units. In light of the paleogeographic setting of the Chumstick basin, the reconstructed δ18Owater values agree well with Pacific-derived moisture that did not experience strong rainout. The absence of a rain shadow effect therefore permits only moderate Eocene/Oligocene elevations at least for the southern part of the Washington proto-Cascades.

  14. Lower to middle Miocene isotope ( sup 87 Sr/ sup 86 Sr,. delta. sup 18 O,. delta. sup 13 C) standard sections, DSDP site 608

    SciTech Connect

    Miller, K.G.; Feigenson, M.D. ); Wright, J.D. )

    1990-05-01

    Isotopes changes ({sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O, {delta}{sup 13}C) have been correlated to the geologic time scale primarily by biostratigraphy. Biostratigraphic correlations suffer from problems of diachrony and taxonomy. Magnetostratigraphy provides a facies-independent correlation tool, but there are few Tertiary sections with unambiguous magnetostratigraphy. The authors previously developed an isotope standard for the Oligocene at the only location with a pristine magnetochronology, Site 522. They extend this approach to Site 608 in the northeastern North Atlantic, which contains a relatively straightforward Miocene magnetochronology. They establish Miocene oxygen isotope Chronozones MI1 through MI6 at Sites 522 and 608, which are directly tied to the geomagnetic polarity time scale (GPTS). The integration of stable isotopes, Sr isotopes, biostratigraphy, and magnetostratigraphy at site 608 provides a standard section with which other Sr isotope and oxygen isotope records can be correlated. For example, using oxygen isotopes to correlate, the Sr isotope record from Site 608 compares well with previously published records from Sites 516 and 590. The firm ties of the Oligocene to middle Miocene isotope records with the GPTS allows them to establish the nature of the change in Sr isotopes between 38 and 8 Ma. There were moderately high rates of {sup 87}Sr/{sup 86}Sr change during the Oligocene ({approximately}0.000030/m.y.), yielding stratigraphic resolution of {plus minus}1.0 m.y. The rate of change of {sup 87}Sr/{sup 86}Sr increased during the early Miocene. They estimate that the rate of change between 23 and 15 Ma was greater than 0.000060/m.y. Given their ability to reproduce Sr isotope measurements ({plus minus}0.000020 to {plus minus}0.000030), temporal resolution is better than {plus minus}0.5 my. for the early to early middle Oliocene.

  15. In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: a soil water balance

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; Beyer, Matthias; Koeniger, Paul; Wanke, Heike; Hamutoko, Josefina; Himmelsbach, Thomas

    2016-02-01

    Stable isotopes (deuterium, 2H, and oxygen-18, 18O) of soil water were measured in the field using a liquid water isotope analyzer (tunable off-axis integrated cavity output spectroscope, OA-ICOS, LGR) and commercially available soil gas probes (BGL-30, UMS, Munich) in the semi-arid Cuvelai-Etosha Basin (CEB), Namibia. Results support the applicability of an in situ measurement system for the determination of stable isotopes in soil pore water. High spatial and temporal resolution was achieved in the study area with reasonable accuracy and measurements were in agreement with laboratory-based cryogenic vacuum extraction and subsequent cavity ring-down laser spectroscopic isotope analysis (CRDS, L2120-i, Picarro Inc.). After drift and span correction of the in situ isotope data, precision for over 140 measurements taken during two consecutive field campaigns (June and November 2014) was 1.8 and 0.48 ‰ for δ2H and δ18O, respectively. Mean measurement trueness is determined using quality check standards and was 5 and 0.3 ‰ for δ2H and δ18O, respectively. The isotope depth profiles are used quantitatively to calculate a soil water balance. The contribution of transpiration to total evapotranspiration ranged between 72 and 92 %. Shortly after a rain event, the contribution of transpiration was much lower, at 35 to 50 %. Potential limitations of such an in situ system are related to environmental conditions which could be minimized by using a temperature-controlled chamber for the laser spectrometer. Further, the applicability of the system using previously oven-dried soil material might be limited by physicochemical soil properties (i.e., clay minerals). Uncertainty in the in situ system is suggested to be reduced by improving the calibration procedure and further studying fractionation effects influencing the isotope ratios in the soil water, especially at low water contents. Furthermore, the influence of soil-respired CO2 on isotope values within the root zone

  16. Experimental assessment of the purity of α-cellulose produced by variations of the Brendel method: Implications for stable isotope (δ13C, δ18O) dendroclimatology

    NASA Astrophysics Data System (ADS)

    Brookman, Tom; Whittaker, Thomas

    2012-09-01

    Stable isotope dendroclimatology using α-cellulose has unique potential to deliver multimillennial-scale, sub-annually resolved, terrestrial climate records. However, lengthy processing and analytical methods often preclude such reconstructions. Variants of the Brendel extraction method have reduced these limitations, providing fast, easy methods of isolating α-cellulose in some species. Here, we investigate application of Standard Brendel (SBrendel) variants to resinous soft-woods by treating samples of kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii), varying reaction vessel, temperature, boiling time and reagent volume. Numerous samples were visibly `under-processed' and Fourier Transform infrared spectroscopic (FTIR) investigation showed absorption peaks at 1520 cm-1 and ˜1600 cm-1 in those fibers suggesting residual lignin and retained resin respectively. Replicate analyses of all samples processed at high temperature yielded consistent δ13C and δ18O despite color and spectral variations. Spectra and isotopic data revealed that α-cellulose δ13C can be altered during processing, most likely due to chemical contamination from insufficient acetone removal, but is not systematically affected by methodological variation. Reagent amount, temperature and extraction time all influence δ18O, however, and our results demonstrate that different species may require different processing methods. FTIR prior to isotopic analysis is a fast and cost effective way to determine α-cellulose extract purity. Furthermore, a systematic isotopic test such as we present here can also determine sensitivity of isotopic values to methodological variables. Without these tests, isotopic variability introduced by the method could obscure or `create' climatic signals within a data set.

  17. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  18. Localization of groundwater infiltration in the combined sewers of Brussels by stable isotopes measurements (δ18O, δD) by Cavity Ring Down Spectroscopy.

    NASA Astrophysics Data System (ADS)

    De Bondt, Kevin; Claeys, Philippe

    2014-05-01

    In the last 20 years research has been conducted to quantify the infiltration of groundwater into the sewers. This groundwater, called parasitic water, increases the volume of waste-water to be treated and consequently the cost of this treatment. Moreover, in the case of combined sewer systems, the parasitic water also limits the sewer capacity and indirectly increases the risks of combined sewer overflows and floods. The infiltration of groundwater occurs trough cracks, sewer collapses and from direct connections with old springs. Different methods quantify the intrusion of parasitic water. Among these, the use of the stable isotopes of water (δ18O & δD) shows good result in catchments or cities close to Mountainous regions (example from Lyon, Zurich), where isotopic signals vary significantly because of continental and altitude effects. However many cities, such as Brussels, are located in more oceanic settings and theoretically offer less potential for the application of the stable isotopes method. In the case of Brussels, river-water from the Meuse is used to produce domestic-water. The catchment of this river extends into the Ardennes, which are affected by slightly different climatic conditions. δ18O & δD analyzes of groundwater from the main aquifer (Ledo-Paniselian-Brusselian) and domestic-water from the Callois reservoir fed by the Meuse River show sufficient isotopic differences in the south of Brussels, but only during the summer. The discrimination potential is better with δD than with δ18O. The improvement of δD measurements (precision, costs,...) brought by Cavity Ring Down Spectroscopy largely contributes to the potential of using stable isotopes method to trace water in Brussels. The first campaigns in the sewers also show a little enrichment (in heavy isotopes) of the waste-water in comparison with the reservoir waters and tap waters. This increases the potential of the method but constrains the sampling to pure waste-water in sewer segments

  19. Stable isotope (2H, 17O, 18O) and hydro chemical patterns of precipitation collected in weekly resolution at Hannover, Germany

    NASA Astrophysics Data System (ADS)

    Koeniger, Paul; Himmelsbach, Thomas

    2016-04-01

    Long-term observations of stable isotopes18O and δ2H) in precipitation were initiated in May 2008 at the Federal Institute of Geosciences and Natural Resources (BGR) in Hannover, Germany. In 2014 all precipitation samples were re-analyzed because a purchase of a new laser spectrometer (Picarro L2140-i) now allowed measurements of δ17O and a calculation of the 17O-excess parameter. Starting in October 2015 a routine analysis of hydro chemical parameters was added whenever enough sample aliquot was available (major ions, trace elements). A discussion of the stable isotope data of the seven year series of weekly precipitation samples (n = 370) will be presented. Beneath general patterns (seasonality and trends) we also focus on importance of amount weighing procedures, corrections for minor rain amounts, aspects of sample storage and re-analyzes, as well as impacts through changes in analytical equipment (IRMS, CRD spectroscopy) which is visible from the data. For stable isotopes a Thermo Fisher delta plus IRMS (Gasbench and H-Device) was used until 2011 and from 2012 on a Picarro L2120-i water vapor analyzer with long-term accuracies for quality check samples better than 0.2‰ and 0.8‰ for δ18O and δ2H, respectively.

  20. Use of Isotope Ratio Mass Spectrometry (IRMS) Determination ((18)O/(16)O) to Assess the Local Origin of Fish and Asparagus in Western Switzerland.

    PubMed

    Rossier, Joël S; Maury, Valérie; de Voogd, Blaise; Pfammatter, Elmar

    2014-10-01

    Here we present the use of isotope ratio mass spectrometry (IRMS) for the detection of mislabelling of food produced in Switzerland. The system is based on the analysis of the oxygen isotope distribution in water (δ(18)O). Depending on the location on the earth, lake or groundwater has a specific isotopic distribution, which can serve as a fingerprint in order to verify whether a product has grown by means of the corresponding water. This report presents specifically the IRMS technique and the results obtained in the origin detection of fish grown in selected Swiss lakes as well as asparagus grown in Valais ground. Strengths and limitations of the method are presented for both cited products; on one hand, the technique is relatively universal for any product which contains significant water but on the other hand, it necessitates a rather heavy workload to build up a database of water δ(18)O values of products of different origins. This analytical tool is part of the concept of combating fraud currently in use in Switzerland. PMID:25437160

  1. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 2: Evaluation of model results against observed δ18O in water samples

    NASA Astrophysics Data System (ADS)

    Roche, D. M.; Caley, T.

    2013-03-01

    The H218O stable isotope was previously introduced in the three coupled components of the Earth System Model iLOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H218O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ18O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in paleoclimatic context.

  2. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 2: Evaluation of model results against observed δ18O in water samples

    NASA Astrophysics Data System (ADS)

    Roche, D. M.; Caley, T.

    2013-09-01

    The H218O stable isotope was previously introduced in the three coupled components of the earth system model iLOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H218O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ18O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in palaeoclimatic context.

  3. Triple isotope (δD, δ17O, δ18O) study on precipitation, drip water and speleothem fluid inclusions for a Western Central European cave (NW Switzerland)

    NASA Astrophysics Data System (ADS)

    Affolter, Stéphane; Häuselmann, Anamaria D.; Fleitmann, Dominik; Häuselmann, Philipp; Leuenberger, Markus

    2015-11-01

    Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of 17Oexcess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17Oexcess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD, δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD, δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17Oexcess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ˜ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8-10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems

  4. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    PubMed

    Berman, Elena S F; Levin, Naomi E; Landais, Amaelle; Li, Shuning; Owano, Thomas

    2013-11-01

    Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant (17)O isotope in addition to (2)H and (18)O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements δ(18)O, δ(17)O, and (17)O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard Greenland Ice Sheet Precipitation (GISP) demonstrate the precision and accuracy of OA-ICOS: δ(18)OVSMOW-SLAP = -24.74 ± 0.07‰ (1σ) and δ(17)OVSMOW-SLAP = -13.12 ± 0.05‰ (1σ). For comparison, the International Atomic Energy Agency (IAEA) value for δ(18)OVSMOW-SLAP is -24.76 ± 0.09‰ (1σ) and an average of previously reported values for δ(17)OVSMOW-SLAP is -13.12 ± 0.06‰ (1σ). Multiple (26) high-precision measurements of GISP provide a (17)O-excessVSMOW-SLAP of 23 ± 10 per meg (1σ); an average of previously reported values for (17)O-excessVSMOW-SLAP is 22 ± 11 per meg (1σ). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in δ(18)O, δ(17)O, and (17)O-excess. The ability to measure accurately δ(18)O, δ(17)O, and (17)O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of δ(17)O and (17)O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others. PMID:24032448

  5. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber experiment

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Mayr, Christoph; Tuthorn, Mario; Leiber-Sauheitl, Katharina; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of cellulose is a valuable proxy in paleoclimate research. However, its application to sedimentary archives is challenging due to extraction and purification of cellulose. Here we present compound-specific δ18O results of hemicellulose-derived sugar biomarkers determined using gas chromatography-pyrolysis-isotope ratio mass spectrometry, which is a method that overcomes the above-mentioned analytical challenges. The biomarkers were extracted from stem material of different plants (Eucalyptus globulus, Vicia faba and Brassica oleracea) grown in climate chamber experiments under different climatic conditions. The δ18O values of arabinose and xylose range from 31.4‰ to 45.9‰ and from 28.7‰ to 40.8‰, respectively, and correlate highly significantly with each other (R = 0.91, p < 0.001). Furthermore, δ18Ohemicellulose (mean of arabinose and xylose) correlate highly significantly with δ18Oleaf water (R = 0.66, p < 0.001) and significantly with modeled δ18Ocellulose (R = 0.42, p < 0.038), as well as with relative air humidity (R = -0.79, p < 0.001) and temperature (R = -0.66, p < 0.001). These findings confirm that the hemicellulose-derived sugar biomarkers, like cellulose, reflect the oxygen isotopic composition of plant source water altered by climatically controlled evapotranspirative 18O enrichment of leaf water. While relative air humidity controls most rigorously the evapotranspirative 18O enrichment, the direct temperature effect is less important. However, temperature can indirectly exert influence via plant physiological reactions, namely by influencing the transpiration rate which affects δ18Oleaf water due to the Péclet effect. In a companion paper (Tuthorn et al., this issue) we demonstrate the applicability of the hemicellulose-derived sugar biomarker δ18O method to soils and provide evidence from a climate transect study confirming that relative air humidity exerts the dominant control on evapotranspirative 18O

  6. The topology of metabolic isotope labeling networks

    PubMed Central

    Weitzel, Michael; Wiechert, Wolfgang; Nöh, Katharina

    2007-01-01

    Background Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs) contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. Results With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs) and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Conclusion Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global topological analysis of ILNs

  7. Unveiling stomata 24/7: can we use carbonyl sulfide (COS) and oxygen isotopes (18O) to constrain estimates of nocturnal transpiration across different evolutionary plant forms?

    NASA Astrophysics Data System (ADS)

    Gimeno, Teresa E.; Ogee, Jerome; Bosc, Alexander; Genty, Bernard; Wohl, Steven; Wingate, Lisa

    2015-04-01

    Numerous studies have reported a continued flux of water through plants at night, suggesting that stomata are not fully closed. Growing evidence indicates that this nocturnal flux of transpiration might constitute an important fraction of total ecosystem water use in certain environments. However, because evaporative demand is usually low at night, nocturnal transpiration fluxes are generally an order of magnitude lower than rates measured during the day and perilously close to the measurement error of traditional gas-exchange porometers. Thus estimating rates of stomatal conductance in the dark (gnight) precisely poses a significant methodological challenge. As a result, we lack accurate field estimates of gnight and how it responds to different atmospheric drivers, indicating the need for a different measurement approach. In this presentation we propose a novel method to obtain detectable and robust estimates of gnight. We will demonstrate using mechanistic theory how independent tracers including the oxygen isotope composition of CO2 (δ18O) and carbonyl sulfide (COS) can be combined to obtain robust estimates of gnight. This is because COS and CO18O exchange within leaves are controlled by the light insensitive enzyme carbonic anhydrase. Thus, if plant stomata are open in the dark we will continue to observe COS and CO18O exchange. Using our theoretical model we will demonstrate that the exchange of these tracers can now be measured using advances in laser spectrometry techniques at a precision high enough to determine robust estimates of gnight. We will also present our novel experimental approach designed to measure simultaneously the exchange of CO18O and COS alongside the conventional technique that relies on measuring the total water flux from leaves in the dark. Using our theoretical approach we will additionally explore the feasibility of our proposed experimental design to detect variations in gnight during drought stress and across a variety of plant

  8. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: Insight from a climate transect study

    NASA Astrophysics Data System (ADS)

    Tuthorn, Mario; Zech, Michael; Ruppenthal, Marc; Oelmann, Yvonne; Kahmen, Ansgar; Valle, Héctor Francisco del; Wilcke, Wolfgang; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = -0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (˜10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant

  9. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: Insight from a climate transect study

    NASA Astrophysics Data System (ADS)

    Tuthorn, Mario; Zech, Michael; Ruppenthal, Marc; Oelmann, Yvonne; Kahmen, Ansgar; Valle, Héctor Francisco del; Wilcke, Wolfgang; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = -0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (˜10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant

  10. Effects of land use on the distribution of stable isotopes of water (18O/2H) in a deep unconfined aquifer and its role for recharge estimates.

    NASA Astrophysics Data System (ADS)

    Müller, Sascha; Jessen, Søren; Engesgaard, Peter; Jari Leskelä, Jari

    2014-05-01

    Soil evaporation, transpiration and interception varies with land use, such as forest, heath and agriculture, encountered within a catchment. Therefore land use variations may give rise to different isotopic compositions of water recharging an aquifer. We investigated the distribution of stable isotopes of water in an unconfined aquifer at Rabis Creek, Denmark, consisting of up to ~100 m glacio-fluvial sand overlying a clay aquitard. The aquifer has an unsaturated zone of 15 m, assumed to effectively dampen out any seasonal variation in the isotopic composition of recharging water once it arrives to the groundwater table. In addition, the aquifer is situated under different land uses; arable land, forest and heath, and does not receive infiltrating water from surface water bodies. Water samples, analyzed for stable isotopes of water and major ion concentrations, were obtained from eight multi-level wells, sampling up to 21 m below the water table along a 3 km long transect parallel to the general groundwater flow direction. Groundwater derived from recharge in arable areas could be easily traced by its elevated NO3 concentrations (typically 30 to 80 mg/L), whereas NO3 was almost absent in groundwater derived from forest and heath areas. NO3 enriched water formed plumes extending with the flow direction into the deeper parts of the aquifer covered by forest and heath. The δ18O values in the aquifer varied up to 1‰ between 7.5‰ and 8.5‰. Highest depletion values occurred in the proximity of the NO3 plumes. This indicates a certain signal in the δ18O originating from agricultural sites. Furthermore, within the first meters a steady depletion downwards was observed where at a certain depth a jump in depletion occurred. This δ18O distribution suggests a zone dominated by vertical flows influenced by diffuse mixing with horizontal flowing groundwater in the upper part of the aquifer and beneath a zone of dominating horizontal flows with stronger mixing. The 18O

  11. Comparing three methods of NEE-flux partitioning from the same grassland ecosystem: the 13C, 18O isotope approach and using simulated Ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Siegwolf, R.; Bantelmann, E.; Saurer, M.; Eugster, W.; Buchmann, N.

    2007-12-01

    As a change in the global climate occurs with increasing temperatures, the Carbon exchange processes of terrestrial ecosystems will change as well. However, it is difficult to quantify the degree to what ecosystem respiration will change relative to the CO2 uptake by photosynthesis. To estimate the carbon sequestration potential of terrestrial vegetation cover it is essential to know both fluxes: ecosystem respiration and the carbon uptake by the vegetation cover. Therefore the net ecosystem exchange of CO2 (NEE) was measured with the eddy covariance method and separated into assimilation and respiration flux. We applied three different approaches, 1) the conventional method, applying the nighttime relationship between soil temperature and NEE for calculating the respiration flux during the day, 2) the use of stable carbon and 3) oxygen isotopes. We compared the results of the three partitioning exercises for a temperate grassland ecosystem in the pre-Alps of Switzerland for four days in June 2004. The assimilation flux derived with the conventional NEE partitioning approach, was best represented at low PAR and low temperatures, in the morning between 5 and 9 am. With increasing temperature and PAR the assimilation for the whole canopy was underestimated. For partitioning NEE via 18O approach, correlations of temperature and radiation with assimilation and respiration flux were significantly higher for the partitioning approach with 18O than for the 13C NEE partitioning. A sensitivity analysis showed the importance of an accurate determination of the equilibrium term θ between CO2 and leaf water δ18O for the NEE partitioning with 18O. For using 13C to partition NEE, the correct magnitude of the 13C fractionation and for the respiration term is essential. The analysis of the data showed that for low light and low morning temperatures the conventional method delivers reasonably good results. When the temperatures exceeded 21°C the isotope approach provided the

  12. Physiological and isotopic (delta(13)C and delta(18)O) responses of three tropical tree species to water and nutrient availability.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-10-01

    Water-use efficiency and stable isotope composition were studied in three tropical tree species. Seedlings of Tectona grandis, Swietenia macrophylla and Platymiscium pinnatum were grown at either high or low water supply, and with or without added fertilizer. These three species previously exhibited low, intermediate and high whole-plant water-use efficiency (TE) when grown at high water supply in unfertilized soil. Responses of TE to water and nutrient availability varied among species. The TE was calculated as experiment-long dry matter production divided by cumulative water use. Species-specific offsets were observed in relationships between TE and whole-plant (13)C discrimination (Delta(13)C(p)). These offsets could be attributed to a breakdown in the relationship between Delta(13)C(p) and the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)) in P. pinnatum, and to variation among species in the leaf-to-air vapour pressure difference (v). Thus, a plot of v.TE against c(i)/c(a) showed a general relationship among species. Relationships between delta(18)O of stem dry matter and stomatal conductance ranged from strongly negative for S. macrophylla to no relationship for T. grandis. Results suggest inter-specific variation among tropical tree species in relationships between stable isotope ratios (delta(13)C and delta(18)O) and the gas exchange processes thought to affect them. PMID:19558409

  13. Isotope Labeling Study of Retinal Chromophore Fragmentation.

    PubMed

    Musbat, Lihi; Nihamkin, Maria; Ytzhak, Shany; Hirshfeld, Amiram; Friedman, Noga; Dilger, Jonathan M; Sheves, Mordechai; Toker, Yoni

    2016-04-28

    Previous studies have shown that the gas-phase fragmentation of the retinal chromophore after S0-S1 photoexcitation results in a prominent fragment of mass 248 which cannot be explained by the cleavage of any single bond along the polyene chain. It was therefore theorized that the fragmentation mechanism involves a series of isomerizations and cyclization processes, and two mechanisms for these processes were suggested. Here we used isotope labeling MS-MS to provide conclusive support for the fragmentation mechanism suggested by Coughlan et al. (J. Phys. Chem. Lett. 2014, 5, 3195). PMID:27046667

  14. Benchmarking stable isotope labeling based quantitative proteomics.

    PubMed

    Altelaar, A F Maarten; Frese, Christian K; Preisinger, Christian; Hennrich, Marco L; Schram, Andree W; Timmers, H Th Marc; Heck, Albert J R; Mohammed, Shabaz

    2013-08-01

    Several quantitative mass spectrometry based technologies have recently evolved to interrogate the complexity, interconnectivity and dynamic nature of proteomes. Currently, the most popular methods use either metabolic or chemical isotope labeling with MS based quantification or chemical labeling using isobaric tags with MS/MS based quantification. Here, we assess the performance of three of the most popular approaches through systematic independent large scale quantitative proteomics experiments, comparing SILAC, dimethyl and TMT labeling strategies. Although all three methods have their strengths and weaknesses, our data indicate that all three can reach a similar depth in number of identified proteins using a classical (MS2 based) shotgun approach. TMT quantification using only MS2 is heavily affected by co-isolation leading to compromised precision and accuracy. This issue may be partly resolved by using an MS3 based acquisition; however, at the cost of a significant reduction in number of proteins quantified. Interestingly, SILAC and chemical labeling with MS based quantification produce almost indistinguishable results, independent of which database search algorithm used. PMID:23085607

  15. The suitability of the dual isotope approach (δ13C and δ18O) in tree ring studies

    NASA Astrophysics Data System (ADS)

    Siegwolf, Rolf; Saurer, Matthias

    2016-04-01

    The use of stable isotopes, complementary to tree ring width data in tree ring research has proven to be a powerful tool in studying the impact of environmental parameters on tree physiology and growth. These three proxies are thus instrumental for climate reconstruction and improve the understanding of underlying causes of growth changes. In various cases, however, their use suggests non-plausible interpretations. Often the use of one isotope alone does not allow the detection of such "erroneous isotope responses". A careful analysis of these deviating results shows that either the validity of the carbon isotope discrimination concept is no longer true (Farquhar et al. 1982) or the assumptions for the leaf water enrichment model (Cernusak et al., 2003) are violated and thus both fractionation models are not applicable. In this presentation we discuss such cases when the known fractionation concepts fail and do not allow a correct interpretation of the isotope data. With the help of the dual isotope approach (Scheidegger et al.; 2000) it is demonstrated, how to detect and uncover the causes for such anomalous isotope data. The fractionation concepts and their combinations before the background of CO2 and H2O gas exchange are briefly explained and the specific use of the dual isotope approach for tree ring data analyses and interpretations are demonstrated. References: Cernusak, L. A., Arthur, D. J., Pate, J. S. and Farquhar, G. D.: Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globules, Plant Physiol., 131, 1544-1554, 2003. Farquhar, G. D., O'Leary, M. H. and Berry, J. A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves, Aust. J. Plant Physiol., 9, 121-137, 1982. Scheidegger, Y., Saurer, M., Bahn, M. and Siegwolf, R.: Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model

  16. Environmental isotopes (18O, 2H, and 87Sr/86Sr) as a tool in groundwater investigations in the Keta Basin, Ghana

    NASA Astrophysics Data System (ADS)

    Jørgensen, Niels; Banoeng-Yakubo, Bruce

    2001-03-01

    Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes

  17. Environmental isotopes (18O, 2H, and 87Sr/86Sr) as a tool in groundwater investigations in the Keta Basin, Ghana

    NASA Astrophysics Data System (ADS)

    Jørgensen, Niels; Banoeng-Yakubo, Bruce

    2001-03-01

    Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes

  18. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  19. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    PubMed

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters. PMID:25941866

  20. Quantitative Proteome Analysis of Human Plasma Following in vivo Lipopolysaccharide Administration using 16O/18O Labeling and the Accurate Mass and Time Tag Approach

    PubMed Central

    Qian, Wei-Jun; Monroe, Matthew E.; Liu, Tao; Jacobs, Jon M.; Anderson, Gordon A.; Shen, Yufeng; Moore, Ronald J.; Anderson, David J.; Zhang, Rui; Calvano, Steve E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2007-01-01

    SUMMARY Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. Herein we describe an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes post-digestion trypsin-catalyzed 16O/18O peptide labeling, two-dimensional liquid chromatography (LC)-Fourier transform ion cyclotron resonance ((FTICR) mass spectrometry, and the accurate mass and time (AMT) tag strategy to identify and quantify peptides/proteins from complex samples. A peptide accurate mass and LC-elution time AMT tag database was initially generated using tandem mass spectrometry (MS/MS) following extensive multidimensional LC separations to provide the basis for subsequent peptide identifications. The AMT tag database contains >8,000 putative identified peptides, providing 938 confident plasma protein identifications. The quantitative approach was applied without depletion for high abundant proteins for comparative analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Accurate quantification of changes in protein abundance was demonstrated by both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses and the protein abundances for 25 proteins, including several known inflammatory response mediators, were observed to change significantly following LPS administration. PMID:15753121

  1. Competition for water between walnut seedlings (Juglans regia) and rye grass (Lolium perenne) assessed by carbon isotope discrimination and delta18O enrichment.

    PubMed

    Picon-Cochard, C; Nsourou-Obame, A; Collet, C; Guehl, J M; Ferhi, A

    2001-02-01

    Container-grown walnut seedlings (Juglans regia L.) were subjected to competition with rye grass (Lolium perenne L.) and to a 2-week soil drying cycle. One and 2 weeks after the beginning of the drought treatment, H2 18O (delta approximately equals +100%) was added to the bottom layer of soil in the plant containers to create a vertical H2 18O gradient. Rye grass competition reduced aboveground and belowground biomass of the walnut seedlings by 60%, whereas drought had no effect. The presence of rye grass reduced the dry weight of walnut roots in the upper soil layer and caused a 50% reduction in lateral root length. Rye grass competition combined with the drought treatment reduced walnut leaf CO2 assimilation rate (A) and leaf conductance (gw) by 20 and 39%, respectively. Transpiration rates in rye grass, both at the leaf level and at the plant or tiller level, were higher than in walnut seedlings. Leaf intrinsic water-use efficiency (A/gw) of walnut seedlings increased in response to drought and no differences were observed between the single-species and mixed-species treatments, as confirmed by leaf carbon isotope discrimination measurements. Measurement of delta18O in soil and in plant xylem sap indicated that the presence of rye grass did not affect the vertical profile of soil water uptake by walnut seedlings. Walnut seedlings and rye grass withdrew water from the top and middle soil layers in well-watered conditions, whereas during the drought treatment, walnut seedlings obtained water from all soil layers, but rye grass took up water from the bottom soil layer only. PMID:11303649

  2. Stable isotope values (δ18O & δ13C) of multiple ostracode species in a large Neotropical lake as indicators of past changes in hydrology

    NASA Astrophysics Data System (ADS)

    Pérez, Liseth; Curtis, Jason; Brenner, Mark; Hodell, David; Escobar, Jaime; Lozano, Socorro; Schwalb, Antje

    2013-04-01

    Modern lake hydrodynamics, ostracode species autecology, stable isotopes18O and δ13C) of multiple ostracode species, ostracode taphonomy and sediment geochemistry were studied to improve interpretation of the late Pleistocene-early Holocene (˜24-10 ka) stable isotope record of ostracodes in sediment core PI-6 from Lago Petén Itzá, northern Guatemala. Oxygen and carbon stable isotopes in modern and fossil species assemblages of Lago Petén Itzá were used as indicators of changes in the balance between evaporation and precipitation, past lake level and carbon source. Ostracode taphonomy was used to detect past periods of strong currents, high-energy environments, and possible partial or full mixing of the lake. The modern lake water isotopic composition displays clear seasonal differences that are independent of lake level fluctuations. Modern benthic species displayed lower δ18O and δ13C values than nektobenthic species, with differences of 3.0‰ and 5.3‰, respectively. Valves of nektobenthic species display higher values of δ13C because these ostracodes live in shallower environments among abundant algae and aquatic plants, where productivity is high. The benthic species Limnocythere opesta Brehm, 1939 displayed the smallest average offset from δ18O water (+0.3‰) and the largest offset from δ13CDIC values (-4.1‰) among studied ostracode species. Nektobenthic species Heterocypris punctata Keyser, 1975 displayed the smallest difference relative to the δ13CDIC values (-0.1‰). Late Pleistocene-early Holocene climate conditions and water levels in Lago Petén Itzá can be summarized as follows: 1) high lake levels and cold conditions (Last Glacial Maximum [LGM], ˜24-19 ka), 2) fluctuating lake levels and cold conditions (Heinrich Stadial 1 [HS1], ˜19-15 ka), 3) high lake levels and warm and wetter conditions (Bølling-Allerød [BA], ˜15-13 ka), 4) low lake levels and dry conditions (Younger Dryas [YD], ˜13-11.5 ka) and 5) high lake levels and

  3. Intra-shell d18O in Cultured Benthic Foraminiferan Amphistegina lobifera and the Influence of Seawater Carbonate Chemistry and Temperature on this Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.; Zilberman, T.; Segev, E.

    2006-12-01

    Using secondary ion mass spectrometry (SIMS) we looked at the natural variability in the oxygen isotope ratio of the shallow water, symbionts bearing foraminiferan A. lobifera. Live foraminifera were collected in June 2005 in the Gulf of Eilat, Israel. Vertical section exposing the knob area of this species represents the growth history of this species from December 2004 to June 2005. SIMS profile at a resolution of ~ 2 weeks yielded δ^1^8O changes of ~ 1.5 ‰, (from -0.1 ‰ to 1.45 ‰) that are compatible with the known temperature changes for the Gulf of Eilat for this period (20 to 25° C). Natural variability between primary and secondary calcite at the knob area were obtained on horizontal section of the upper knob area. The primary calcite is on average 2 ‰ more negative then the secondary calcite that represents the bulk of the skeleton (more then 95 % by weight). The δ^1^8O in the margin keel area of A. lobifera is also lower compared to the bulk secondary calcite. Specimens that were cultured in the laboratory at a constant temperature and inorganic carbon but at different pH have increased their CaCO3 weight by roughly a factor of 8. Single specimen from each pH (ranging between 7.9 and 8.5) was investigated with the SIMS at the knob area. While there is some variability within each specimen (perhaps related to the primary calcite), the general trend was a decrease in δ^1^8O with increasing pH (or CO32^- concentration), in agreement with previous studies on planktonic foraminifera. Specimens cultured in laboratory at a constant pH, but different temperature were also analysed in the knob area. The temperature range is between 21 and 33° C (experiments at 21, 24, 27 and 33° C). While there is also some variability within each specimen, the trend was a decrease in δ^1^8O with increasing temperature. The decrease measured is 2.7 ± 0.7 ‰ for the entire temperature range, which is completely in agreement with the theoretical value (-0.2 ‰ per

  4. Oxygen isotopes of Pacific seawater, 0-40 kyr, based on d18O and Mg/Ca of benthic and planktic foraminifera: relation to deglacial sealevel rise.

    NASA Astrophysics Data System (ADS)

    Mix, A. C.; Klinkhammer, G. P.

    2007-12-01

    Combining high resolution (~200 year sample resolution) oxygen and carbon isotope measurements and Mg/Ca analyses in planktic (G. ruber and N. dutertrei) and benthic foraminifera (Uvigerina sp.; use of infaunal benthics minimizes likely CO3= effects) from the mid-depth eastern Pacific provides for detailed estimates of changing d18O of seawater over the past 40 kyr at ODP Site 1242. The key to this analysis is improved precision of the Mg/Ca analyses based on a new generation of high precision flow-through time-resolved analysis (FT-TRA) (e.g., average internal precision for Mg/Ca is now +/-0.005 benthic, and +/-0.015 planktic). This method is relatively insensitive to mild dissolution of heterogeneous shells, and thus requires no corrections for preservation. The change in seawater d18O (at 1364 m depth) between the Holocene and Last Glacial Maximum is 1.2 +/- 0.04 permil when averaged over the stages, consistent with pore-water diffusion estimates; however, millennial scale events (which the pore-water data cannot detect) bring the total range up to about 1.6 permil. Are such short-term events related to sealevel change, or do they reflect changing watermasses? Measurements of d13C data (C. wuellerstorfi), sensitive to modern subsurface watermass gradients, are not highly correlated to short- term changes in d18Oseawater suggesting a transient response to ice volume changes. Glacial weakening of AAIW (salty, high d18O, high d13C) relative to north Pacific watermasses (fresher, lower d18O, low d13C) suggest that the benthic d18Oseawater may underestimate total local changes related to ice volume (with a caveat regarding proper scaling of benthic Mg/Ca to temperature). Benthic d18Oseawater falls through the deglaciation in steps, starting at 18 cal ka, with maximum rates of change at 14-15 ka, and with secondary rapid steps at 16-17 ka and 10-11 kar. Planktic foraminifera yield smaller glacial-interglacial d18Oseawater values, with Holocene-to-LGM stage- average

  5. USE OF OXYGEN-18 ISOTOPE LABELING FOR MEASUREMENT OF OXIDATIVE STRESS

    EPA Science Inventory

    Oxygen-18 (18-O) labeling provides a sensitive means for quantifying oxygen
    binding that occurs during in vivo oxidations. Oxidants (ozone, nitrogen
    oxides, hydrogen peroxide, etc.) are first synthesized using 18-O, then cells
    or tissues are exposed to the labeled ...

  6. Coupling δ2H and δ18O biomarker results yields information on relative humidity and isotopic composition of precipitation - a climate transect validation study

    NASA Astrophysics Data System (ADS)

    Tuthorn, M.; Zech, R.; Ruppenthal, M.; Oelmann, Y.; Kahmen, A.; del Valle, H. F.; Eglinton, T.; Rozanski, K.; Zech, M.

    2015-06-01

    The hydrogen isotopic composition (δ2H) of leaf waxes, especially of n-alkanes (δ2Hn-alkanes), is increasingly used for paleohydrological and paleoclimate reconstructions. However, it is challenging to disentangle past changes in the isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf water, which are both recorded in leaf wax δ2H values. In order to overcome this limitation, Zech M. et al. (2013) proposed a coupled δ2Hn-alkanes-δ18Osugar biomarker approach. This coupled approach allows for calculating (i) biomarker-based "reconstructed" δ2Hδ18O values of leaf water (δ2Hδ18Oleaf water), (ii) biomarker-based reconstructed deuterium excess (d-excess) of leaf water, which mainly reflects evapotranspirative enrichment and which can be used to reconstruct relative air humidity (RH) and (iii) biomarker-based reconstructed δ2Hδ18Oprecipitation values. Here we present a climate transect validation study by coupling new results from δ2H analyses of n-alkanes and fatty acids in topsoils along a climate transect in Argentina with previously measured δ18O results obtained for plant-derived sugars. Accordingly, both the reconstructed RH and δ2Hδ18Oprecipitation values correlate highly significantly with actual RH and δ2Hδ18Oprecipitation values. We conclude that compared to single δ2Hn-alkane or δ18Osugar records, the proposed coupled δ2Hn-alkane-δ18Osugar biomarker approach will allow more robust δ2Hδ18Oprecipitation reconstructions in future paleoclimate research. Additionally, the proposed coupled δ2Hn-alkane-δ18Osugar biomarker approach allows for the establishment of a "paleohygrometer", more specifically, the reconstruction of mean summer daytime RH changes/history.

  7. Energy costs of surgery as measured by the doubly labeled water (/sup 2/H/sub 2//sup 18/O) method

    SciTech Connect

    Novick, W.M.; Nusbaum, M.; Stein, T.P.

    1988-01-01

    Energy expenditure before and after surgery was determined in seven patients by the doubly labeled water (/sup 2/H/sub 2//sup 18/O) method (DLW). The values were compared with values obtained by respiratory gas exchange by means of a metabolic measuring cart (MMC). Patients were maintained on total parenteral nutrition before and after trauma. The principal finding was an increase in the rate of CO/sub 2/ production of 11.9 +/- 5.0% after surgery. This corresponds to a 267 +/- increase in energy expenditure (p less than 0.05). No trauma-associated change in energy expenditure was found with the MMC. The correlation of preoperative values from MMC and DLW was not statistically significant (r = 0.25), nor was the correlation of MMC and the Harris-Benedict equation, but the correlation of DLW with Harris-Benedict equation was statistically significant (r = 0.73, p less than 0.05). We suggest that the discrepancy is because the DLW method measures the cumulative energy expenditure over a period, whereas the MMC gives a spot measurement.

  8. Continuous measurements for isotopic ratios of CO2(δ13C, δ18O), water vapor(δD, and δ18O-H2O) in the urban area using laser IR spectroscopic techniques and their analysis with other pollutant species(CO, NOx)

    NASA Astrophysics Data System (ADS)

    Yuba, A.; Takahashi, K.; Nakayama, T.; Matsumi, Y.

    2013-12-01

    The concentration of CO2 has been increasing from a range of 275 to 285 ppmv in the previous industrial period to about 400 ppmv in 2012. IPCC reported that CO2 has the most effects on positive radiation forcing (IPCC 2007). The accurate estimation of the CO2 emission and loss flux are necessary to improve the prediction of the radiation forcing and atmospheric environment. In the urban area, CO2 concentration varies due to the anthropogenic and biogenic emission and advection. We conducted the continuous measurement of CO2 concentration and stable isotope ratio of CO2 (δ13C and δ18O) using the laser isotope spectrometer in Nagoya, Japan during two weeks of winter 2011 and summer 2012. CO2 isotope laser spectrometer can continuously measureδ13, δ18O in high time resolution (10 seconds). We also measured CO, NOx and H2O concentration, and stable isotope ratio of H2O (δD and δ18O-H2O). CO2 sources in summer and winter were identified from the Keeling plot analysis of the CO2 isotope ratio (δ13C and δ18O) and relationship between CO and CO2 concentration variation. The ratio of CO concentration to CO2 concentration shows the contribution of the fossil fuel combustion or biogenic respiration. Lower ratio of CO to CO2 concentration was due to the biogenic respiration because few CO emits from the biogenic respiration. We will discuss the seasonal variation of CO2 source from the analysis of CO2 isotope ratio and CO2 concentration comparing with CO and NOx concentration variation.

  9. Combined /sup 2/H and /sup 18/O isotope effects in support of a concerted, synchronous elimination of acetaldehyde from a bis(benzyl ethyl ether) radical cation

    SciTech Connect

    Allison, C.E.; Stringer, M.B.; Bowie, J.H.; Derrick, P.J.

    1988-09-14

    No evidence has been found of hydrogen scrambling accompanying decomposition of the benzyl ether molecular ion at times approaching 100 ..mu..s. Isotope effects upon produce ion abundances have been measured for elimination of acetaldehyde from the molecular ions of multiply labeled diethoxyxylenes and compared with the results of calculations of kinetic isotope effects using the quasi-equilibrium theory. It is concluded that this rearrangement involving a 6-membered cyclic transition state can be described as a concerted, synchronous process. 31 references, 7 figures, 1 table.

  10. Field calibration of stable isotopes18O) in coccoliths : Toward an accurate carbonate record-based reconstruction of the photic zone temperature

    NASA Astrophysics Data System (ADS)

    Candelier, Y.; Minoletti, F.; Hermoso, M.; Probert, I.

    2010-12-01

    Oxygen-isotopes from biogenic carbonates have been widely used to estimate SSTs during the Cenozoic. The full potential of coccolithophores for reconstructing past temperatures is still unexploited owing to two major issues: their minute size that prevents their isotopic analyzes at the specific level as done for foraminifera, and the large range of interspecific isotopic offsets (~ 5‰) ascribed to the vital effect (Ziveri et al., 2003). To test the suitability of applying in vitro data for the truly pelagic natural record, we established new coccolithophorid δ18O-temperature calibrations from sediments that we compared to empirical thermodependance equations from previous culture experiments. In this respect, we focused on two foremost coccolithophore species: Calcidicus leptoporus and Gephyrocapsa oceanica. We successfully obtained monospecific fractions of those taxa by applying a microfiltering protocol (Minoletti et al., 2009) on Holocene sediments for which the temperature of the photic zone water has been directly measured. For G. oceanica, the constant offset (δcGo-δceq) of ~ +1.5‰ with respect to equilibrium is in a good agreement with previous culture experiments (~ +1.6‰; Ziveri et al., 2003). Conversely, for C. leptoporus, although the relation between temperature and oxygen-isotopic fractionation is also well-behaved between 16 and 27°C, we found a significant discrepancy with previous cultures (-2.8‰; Dudley et al., 1986). This difference could be the result of growing conditions in the lab that may not mimate the natural environment (seawater chemistry such as pH, nutrient level, cell concentration, …). We generated new isotopic results of preliminary temperature-controlled experiments for C. leptoporus in constrained conditions close to the natural environment. We measured an isotopic offset comparable to the one from our sedimentologic study. Hence, we suggest a new correction of -1.2‰ for C. leptoporus, which may be more

  11. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation. PMID:26747642

  12. Effect of temperature on the oxygen isotope composition of carbon dioxide (δ18O) prepared from carbonate minerals by reaction with polyphosphoric acid: An example of the rhombohedral CaCO 3-MgCO 3 group minerals

    NASA Astrophysics Data System (ADS)

    Crowley, Stephen F.

    2010-11-01

    Measurement of the ratio of 18O to 16O in CO 2(δ18O) produced from rhombohedral carbonate minerals in the compositional range CaCO 3-MgCO 3 by reaction with polyphosphoric acid (PPA), at temperatures of between 25 and 110 °C, shows that values of δ18O are linearly correlated ( r o > 0.99) with the reciprocal of absolute reaction temperature (K/ T). This observation is consistent with earlier studies documenting the effect of temperature on the kinetic fractionation of oxygen isotopes between parent carbonate and product CO 2 and H 2O during acid decomposition. However, analysis of the resultant data reveals: (1) a progressive increase in dδ18O/dT-1 with increasing Mg content, and (2) a significant variation in dδ18O/dT-1 between individual samples of carbonate of identical lattice symmetry and similar chemical composition. The overall increase in gradient with increasing Mg content is assumed to reflect cation radius dependent factors that control the bonding environment at the interface between the metal cation exposed at the surface of the reacting carbonate solid and a H 2CO 3 transitional species during disproportionation of H 2CO 3 to CO 2 and H 2O ("cluster model" of Guo et al., 2009). Phase-specific variations in dδ18O/dT-1 might result from differences in lattice structure variables (e.g., degree of lattice distortion, extent of positional disorder, and non-ideal mixing of substituent cations where carbonates depart from end-member compositions). Lattice structure variables may be dependent on geochemical conditions pertaining at the time of carbonate precipitation (e.g., biosynthetic versus inorganic precipitates) and suggests that dδ18O/dT-1 has the potential to vary, within limits, in response to both the chemical composition and structure of each carbonate sample. Because the oxygen isotope composition of carbonate minerals (δ18O) measured on the VPDB scale is defined by the oxygen isotope composition of CO 2 prepared from NBS19 (calcite) by

  13. Fractionation of Oxygen Isotopes by Thermal Ionization Mass Spectrometry Inferred from Simultaneous Measurement of (17)O/(16)O and (18)O/(16)O Ratios and Implications for the (182)Hf-(182)W Systematics.

    PubMed

    Trinquier, Anne

    2016-06-01

    Accurate (182)Hf-(182)W chronology of early planetary differentiation relies on highly precise and accurate tungsten isotope measurements. WO3(-) analysis by negative thermal ionization mass spectrometry requires W(17)O(16)O2(-), W(17)O2(16)O(-), W(18)O(16)O2(-), W(17)O3(-), W(17)O(18)O(16)O(-), and W(18)O2(16)O(-) isotopologue interference corrections on W(16)O3(-) species ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ; Touboul et al. Nature 2015 , 520 , 530 ; Touboul et al. Int. J. Mass Spectrom. 2012 , 309 , 109 ). In addition, low ion beam intensity counting statistics combined with Faraday cup detection noise limit the precision on the determination of (18)O/(16)O and (17)O/(16)O relative abundances. Mass dependent variability of (18)O/(16)O over the course of an analysis and between different analyses calls for oxide interference correction on a per integration basis, based on the in-run monitoring of the (18)O/(16)O ratio ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). Yet, the (17)O/(16)O variation is normally not being monitored and, instead, inferred from the measured (18)O/(16)O variation, assuming a δ(17)O-δ(18)O Terrestrial Fractionation Line ( Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). The purpose of the present study is to verify the validity of this assumption. Using high resistivity amplifiers, (238)U(17)O2 and (238)U(18)O2 ion beams down to 1.6 fA have been monitored simultaneously with (235,238)U(16)O2 species in a uranium certified reference material. This leads to a characterization of O isotope fractionation by thermal ionization mass spectrometry in variable loading and running conditions (additive-to-sample ratio, PO2 pressure, presence of ionized metal and oxide species). Proper determination of O

  14. Analysis of carbon-oxygen reactions by use of a square-input response technique and {sup 18}O isotope

    SciTech Connect

    Miura, Kouichi; Nakagawa, Hiroyuki

    1996-12-31

    Carbon gasification reaction has been investigated for decades including the pioneering works of Walker and his co-workers, but its mechanism has not been completely elucidated. The concept of the active surface area (ASA) was proposed by them, and its importance has been recognized. However, since ASA was measured by O{sub 2} chemisorption at below 300{degrees}C where carbon loss through gasification is negligible, it does not reflect the actual gasification situation. To overcome this weak point, measurements of ASA in a batch reactor and the so-called transient kinetic (TK) method were proposed. Ahmed and Back successfully measured the chemisorbed oxygen during the gasification using a batch reactor, and proposed a new mechanistic sequence for carbon-oxygen reaction which stresses the importance of the reaction between the gaseous oxygen and the chemisorbed oxygen. Radovic et al. proposed the concept of the reactive surface area (RSA), and reported excellent proportionality between the CO{sub 2} gasification rate and the RSA estimated by the TK and the TPD methods. Kapteijn et al. showed that the TK method with labeled molecules is more powerful to examine the mechanism. They found the presence of two types of surface oxygen complexes which desorb at different rates. A Square-input response (SIR) method is applied to the carbon-oxygen reaction. This method allows the observation of transient changes on two step changes. This method has been successfully applied to the analysis of a coal char gasification.

  15. 13C and 18O fractionation effects on open splits and on the ion source in continuous flow isotope ratio mass spectrometry.

    PubMed

    Elsig, Joachim; Leuenberger, Markus C

    2010-05-30

    Measurements of carbon and oxygen isotopes of CO(2) by continuous flow isotope ratio mass spectrometry are widely used in environmental studies and climate change research. Yet, there are remaining problems associated with the reproducibility of measurements, in particular when high precision is required and/or the amount of sample material is limited. Isotopic fractionations in open splits and nonlinear effects occurring in the mass spectrometer due to different sample amounts alter the results. In this study, we discuss the influence and the origin of these two effects and propose procedures for preventing their impact. Fractionation in the open split can be related to diffusion of CO(2) and can lead to shifted delta-values when measuring a sample gas against a reference gas injected via different open splits. We present a method, where such fractionations can be minimized by adjusting either the position of the capillaries or the flow rates involved or both. The nonlinear peak area dependence of delta(13)C measurements for small sample sizes can be explained by adsorption/desorption processes in the ionization chamber or its vicinity. For constant amplitudes, the magnitude of the nonlinearity only depends on the amount of CO(2) entering the ion source. This nonlinearity can be eliminated by a small additional flux of a conditioning gas fed to the mass spectrometer. The best results were obtained when using carbon monoxide. For the adsorption process in the mass spectrometer we found a fractionation factor of 0.982 +/- 0.005 for delta(13)C and 1.002 +/- 0.004 for delta(18)O. PMID:20411581

  16. A conifer-friendly high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.

    2012-12-01

    Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.

  17. Plasma Proteome Response to Severe Burn Injury Revealed by 18O-Labeled “Universal” Reference-based Quantitative Proteomics

    PubMed Central

    Qian, Wei-Jun; Petritis, Brianne O.; Kaushal, Amit; Finnerty, Celeste C; Jeschke, Marc G; Monroe, Matthew E.; Moore, Ronald J.; Schepmoes, Athena A.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Herndon, David N.; Camp, David G.; Smith, Richard D.

    2010-01-01

    A burn injury represents one of the most severe forms of human trauma and is responsible for significant mortality worldwide. Here, we present the first quantitative proteomics investigation of the blood plasma proteome response to severe burn injury by comparing the plasma protein concentrations of 10 healthy control subjects with those of 15 severe burn patients at two time-points following the injury. The overall analytical strategy for this work integrated immunoaffinity depletion of the 12 most abundant plasma proteins with cysteinyl-peptide enrichment-based fractionation prior to LC-MS analyses of individual patient samples. Incorporation of an 18O-labeled “universal” reference among the sample sets enabled precise relative quantification across samples. In total, 313 plasma proteins confidently identified with two or more unique peptides were quantified. Following statistical analysis, 110 proteins exhibited significant abundance changes in response to the burn injury. The observed changes in protein concentrations suggest significant inflammatory and hypermetabolic response to the injury, which is supported by the fact that many of the identified proteins are associated with acute phase response signaling, the complement system, and coagulation system pathways. The regulation of ~35 proteins observed in this study is in agreement with previous results reported for inflammatory or burn response, but approximately 50 potentially novel proteins previously not known to be associated with burn response or inflammation are also found. Elucidating proteins involved in the response to severe burn injury may reveal novel targets for therapeutic interventions, as well as potential predictive biomarkers for patient outcomes such as multiple organ failure. PMID:20698492

  18. Stable isotope labeling strategy based on coding theory.

    PubMed

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori

    2015-10-01

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as "encoding and decoding" processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells. PMID:26293126

  19. The Po river water from the Alps to the Adriatic Sea (Italy): new insights from geochemical and isotopic (δ(18)O-δD) data.

    PubMed

    Marchina, Chiara; Bianchini, Gianluca; Natali, Claudio; Pennisi, Maddalena; Colombani, Nicolò; Tassinari, Renzo; Knoeller, Kay

    2015-04-01

    Although the Po river is the most important fluvial system of Northern Italy, the systematic geochemical and isotopic investigations of its water are rare and were never reported for the whole basin. The present contribution aims to fill this knowledge gap, reporting a comprehensive data set including oxygen and hydrogen stable isotopes as well as major and trace element concentration of dissolved species for 54 Po river water samples, mainly collected in different hydrological conditions (peak discharge in April, drought in August) at increasing distance from the source, i.e., from the upper part of the catchment to the terminal (deltaic) part of the river at the confluence with the Adriatic Sea. The isotopic compositions demonstrate that the predominant part of the runoff derives from the Alpine sector of the catchment through important tributaries such as the Dora Baltea, Ticino, Adda, and Tanaro rivers, whereas the contribution from the Apennines tributaries is less important. The geochemical and isotopic compositions show that the Po river water attains a homogeneous composition at ca. 100 km from the source. The average composition is characterized by δ(18)O -9.8‰, δD -66.2‰, total dissolved solid (TDS) 268 mg/L, and chloride 17 mg/L and by a general Ca-HCO3 hydrochemical facies, which is maintained for most of the river stream, only varying in the terminal part where the river is diverted in a complex deltaic system affected by more significant evaporation and mixing with saline water evidenced by higher TDS and chloride content (up to 8198 and 4197 mg/L, respectively). Geochemical and isotopic maps have been drawn to visualize spatial gradients, which reflect the evolution of the river water composition at progressive distance from the source; more detailed maps were focused on the deltaic part in order to visualize the processes occurring in the transitional zone toward the Adriatic Sea. The data also highlight anthropogenic contributions, mainly

  20. Stereoselective synthesis of stable-isotope-labeled amino acids

    SciTech Connect

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  1. Analysis of proteome dynamics in mice by isotopic labeling.

    PubMed

    Price, John C; Ghaemmaghami, Sina

    2014-01-01

    Recent advances in mass spectrometry and in vivo isotopic labeling have enabled proteome-wide analyses of protein turnover in complex organisms. Here, we describe a protocol for analyzing protein turnover rates in mouse tissues by comprehensive (15)N labeling. The procedure involves the complete isotopic labeling of blue green algae (Spirulina platensis) with (15)N and utilizing it as a source of dietary nitrogen for mice. We outline a detailed protocol for in-house production of (15)N-labeled algae, labeling of mice, and analysis of isotope incorporation kinetics by mass spectrometry. The methodology can be adapted to analyze proteome dynamics in most murine tissues and may be particularly useful in the analysis of proteostatic disruptions in mouse models of disease. PMID:24791984

  2. High-resolution isotopic records ( δ 18O and δ 13C) and cathodoluminescence study of lucinid shells from methane seeps of the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lietard, Cécile; Pierre, Catherine

    2008-08-01

    We present high-resolution isotopic records and cathodoluminescence studies of recently dead and live bivalve specimens from cold seeps, in an attempt to reconstruct environmental conditions during organism growth, and thereby the possible variability of fluid-venting activity at the seafloor. Shells of the burrowing lucinid Myrtea aff. amorpha were collected at three localities near actively venting methane seeps in the Eastern Mediterranean deep sea, using the Nautile submersible during two French oceanographic cruises: from the Kazan mud volcano, in the vicinity of the Anaximander mounts (MEDINAUT cruise, 1998), and from the central pockmark province and the Amon mud volcano of the Nile deep-sea fan (NAUTINIL cruise, 2003). The oxygen and carbon isotope compositions of 18 shells from the various localities, and also from different sites at the same locality show a rather strong scatter (1.8 < δ 18O‰ < 3.4; -10.2 < δ 13C‰ < 2.2), and values lower than those expected for carbonate precipitated at equilibrium with present-day bottom waters. This means that warm methane-rich fluids were mixed with bottom seawater during precipitation of shell carbonates. We have tried to determine ontogenetic age of two shells by using cathodoluminescence as a sclerochronological proxy, because the direct counting of carbonate increments was not possible in these specimens. There is a relatively good correspondence between cathodoluminescence trends and oxygen isotope profiles that might support the link between manganese incorporation during growth and temperature. Eight specimens of lucinid shells were selected for high-resolution isotopic profiling. A few shells exhibit decreasing δ 18O and δ 13C values from the umbo to the actively growing ventral shell margin, which can be attributed to the commonly observed physiologically controlled deceleration of growth with increasing organism age, this metabolic effect corresponding to the increase of incorporation of respiratory

  3. Linkages Between Upwelling and Shell Characteristics of Mytilus californianus: Morphology and Stable Isotope (δ13C, δ18O) Signatures of a Carbonate Archive from the California Current

    NASA Astrophysics Data System (ADS)

    Hosfelt, J. D.; Hill, T. M.; Russell, A. D.; Bean, J. R.; Sanford, E.; Gaylord, B.

    2014-12-01

    Many calcareous organisms are known to record the ambient environmental conditions in which they grow, and their calcium carbonate skeletons are often valuable archives of climate records. Mytilus californianus, a widely distributed species of intertidal mussel, experiences a spatial mosaic of oceanographic conditions as it grows within the California Current System. Periodic episodes of upwelling bring high-CO2 waters to the surface, during which California coastal waters are similar to projected conditions and act as a natural analogue to future ocean acidification. To examine the link between upwelling and shell characteristics of M. californianus, we analyzed the morphology and stable isotope (δ13C, δ18O) signatures of mussel specimens collected live from seven study sites within the California Current System. Morphometric analyses utilized a combination of elliptic Fourier analysis and shell thickness measurements to determine the influence of low pH waters on the growth morphology and ecological fitness of M. californianus. These geochemical and morphological analyses were compared with concurrent high-resolution environmental (T, S, pH, TA, DIC) records from these seven study sites from 2010-2013. With appropriate calibration, new archives from modern M. californianus shells could provide a valuable tool to enable environmental reconstructions within the California Current System. These archives could in turn be used to predict the future consequences of continuing ocean acidification, as well as reconstruct past (archeological) conditions.

  4. Experimental investigation of rates and mechanisms of isotope exchange (O, H) between volcanic ash and isotopically-labeled water

    NASA Astrophysics Data System (ADS)

    Nolan, Gary S.; Bindeman, Ilya N.

    2013-06-01

    The hydrogen and oxygen isotope ratios in hydrous minerals and volcanic glass are routinely used as paleo-proxies to infer the isotopic values of meteoric waters and thus paleo-climatic conditions. We report a series of long-term exposure experiments of distal 7700 BP Mt. Mazama ash (-149‰ δ2H, +7‰ δ18O, 3.8 wt.% H2O) with isotopically-labeled water (+650‰ δ2H, +56‰ δ18O). Experiments were done at 70, 40 and 20 °C, and ranged in duration from 1 to 14454 h (˜20 months), to evaluate the rates of deuterium and 18O exchange, and investigate the relative role of exchange and diffusion. We also investigate the effect of drying on H2Otot and δ2H in native and reacted ash that can be used in defining the protocols for natural sample preparation. We employ Thermal Conversion Elemental Analyzer (TCEA) mass spectrometry, thermogravimetric analysis and a KBr pellet technique with infrared spectroscopy to measure the evolution of δ2H, total water, and OH water peaks in the course of exposure experiments, and in varying lengths of vacuum drying. Time series experiments aided by infrared measurements demonstrate the following new results: (i) It wasobserved that from 5 to >100‰ δ2H increases with time, with faster deuterium exchange at higher temperatures. Times at 15% of theoretical "full δ2H exchange" are: 15.8 years at 20 °C, 5.2 years at 40 °C, and 0.4 years at 70 °C. (ii) Even at extended exposure durations experiments show no net increase in water weight percent nor in δ18O in ash; water released from ash rapidly by thermal decomposition is not enriched in δ18O. This observation clearly suggests that it is hydrogen exchange, and not water addition or oxygen exchange that characterizes the process. (iii) Our time series drying, Fourier transform infrared (FTIR)-KBr and Thermogravimetric Analyzer (TGA) analyses collectively suggest a simple mechanistic view that there are three kinds of "water" in ash: water (mostly H2O) that is less strongly bonded

  5. Oxygen isotopes in synthetic goethite and a model for the apparent pH dependence of goethite-water 18O/ 16O fractionation

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton J.

    2007-03-01

    Goethite synthesis experiments indicate that, in addition to temperature, pH can affect the measured value of the 18O/ 16O fractionation factor between goethite and water ( αG-W). A simple model was developed which expresses αG-W in terms of kinetic parameters associated with the growth of goethite from aqueous solution. The model predicts that, at a particular temperature, the range of pH over which αG-W changes as pH changes is expected to be comparatively small (˜3 pH "units") relative to the range of pH values over which goethite can crystallize (pH from ˜1 to 14). Outside the range of sensitivity to pH, αG-W is predicted to be effectively constant (for constant temperature) at either a low-pH αG-W value or a high-pH αG-W value. It also indicates that the values of αG-W at high pH will be disequilibrium values. Values of αG-W for goethite crystallized at low pH may approach, but probably do not attain, equilibrium values. For goethite synthesized at values of pH from ˜1 to 2, data from two different laboratories define the following equation for the temperature dependence of 1000 ln αG-W ( T in degrees Kelvin) 1000lnα={1.66×106}/{T2}-12.6 Over the range of temperatures from 0 to 120°C, values of 1000 ln αG-W from Eq. (IV) differ by ⩽0.1‰from those of a published equation [Yapp C.J., 1990. Oxygen isotopes in iron (III) oxides. 1. Mineral-water fractionation factors. Chem. Geol.85, 329-335]. Therefore, interpretations of data from natural goethites using the older equation are not changed by use of Eq. (IV). Data from a synthetic goethite suggest that the temperature dependence of 1000 ln αG-W at low pH as expressed in Eq. (IV) may be valid for values of pH up to at least 6. This result and the model prediction of an insensitivity of αG-W to pH over a larger range of pH values could explain the observation that Eq. (IV) yields values of αG-W which mimic most 18O/ 16O fractionations measured to date in natural goethites.

  6. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Liuzhu; Ma, Teng; Du, Yao; Xiao, Cong; Chen, Xinming; Liu, Cunfu; Wang, Yanxin

    2016-05-01

    Geothermal energy is abundant in Guangdong Province of China, however, majority of it is still unexploited. To take full advantage of this energy, it is essential to know the information of geothermal system. Here, physical parameters such as pH and temperature, major ion (Na+, Ca2 +, Mg2 +, Cl-, SO42 - and HCO3-), trace elements (Br-, Sr2 +, Li+ and B3 +) and stable isotopes (2H, 18O and 37Cl) in geothermal water, non-geothermal water (river water, cold groundwater) and seawater were used to identify the origin and evolution of geothermal water in coastal plain of Southwest of Guangdong. Two separate groups of geothermal water have been identified in study area. Group A, located in inland of study area, is characterized by Na+ and HCO3-. Group B, located in coastal area, is characterized by Na+ and Cl-. The relationships of components vs. Cl for different water samples clearly suggest the hydrochemical differences caused by mixing with seawater and water-rock interactions. It's evident that water-rock interactions under high temperature make a significant contribution to hydrochemistry of geothermal water for both Group A and Group B. Besides, seawater also plays an important role during geothermal water evolution for Group B. Mixing ratios of seawater with geothermal water for Group B are calculated by Cl and Br binary diagram, the estimated results show that about < 1% to < 35% of seawater has mixed into geothermal water, and seawater might get into the geothermal system by deep faults. Molar Na/Cl ratios also support these two processes. Geothermal and non-geothermal water samples plot around GMWL in the δ2H vs. δ18O diagram, indicating that these samples have a predominant origin from meteoric water. Most of geothermal water samples display δ37Cl values between those of the non-geothermal water and seawater samples, further reveals three sources of elements supply for geothermal water, including atmospheric deposition, bedrocks and seawater, which show a

  7. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    PubMed

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J

    2016-02-01

    Determination of the (182)W/(184)W ratio to a precision of ± 5 ppm (2σ) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2σ, 1-3 μg loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2σm) for loads between 3000 and 50 ng. PMID:26751903

  8. Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin.

    PubMed

    Mandal, Kalyaneswar; Dhayalan, Balamurugan; Avital-Shmilovici, Michal; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    As a part of a program aimed towards the study of the dynamics of human insulin-protein dimer formation using two-dimensional infrared spectroscopy, we used total chemical synthesis to prepare stable isotope labeled [(1-(13) C=(18) O)Phe(B24) )] human insulin, via [(1-(13) C=(18) O)Phe(B24) )] ester insulin as a key intermediate product that facilitates folding of the synthetic protein molecule (see preceding article). Here, we describe the crystal structure of the synthetic isotope-labeled ester insulin intermediate and the product synthetic human insulin. Additionally, we present our observations on hexamer formation with these two proteins in the absence of phenol derivatives and/or Zn metal ions. We also describe and discuss the fractional crystallization of quasi-racemic protein mixtures containing each of these two synthetic proteins. PMID:26707939

  9. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  10. Isotopically labeled CO{sub 2} from stratosphere: A tracer of carbon biogeochemistry

    SciTech Connect

    Yung, Yuk L.; Thiemens, M.H.

    1993-11-01

    It has been recently discovered that it the stratosphere is a source of isotopically enriched CO{sub 2}: CO{sup 18}O and CO{sub 17}O. The cause of this isotopic enrichment is exchange between heavy O{sub 3} and CO{sub 2} via the excited radical O({sup 1D}). The research effort consists of a coordinated laboratory and model surfaces of isotopomers of CO{sub 2}. The laboratory study yields data on the chemical kinetics of oxygen exchange between CO{sub 2} and O{sub 3}. The modeling study uses the laboratory results as well as atmospheric measurements to model the source and sinks of CO{sub 2} isotopomers in the stratosphere and troposphere. It is expected that this combined study will bring new insights on the exchange of CO{sub 2} between the atmosphere and the biosphere. The goals of this study are to study the kinetic pathways for isotopic exchange between O{sub 2} and CO{sub 2} and to study O{sub 3}: the exchange rate of isotopically labelled CO{sub 2} between the stratosphere and the troposphere.

  11. Stable isotopes18O and δ 13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Correa, Matthias López; Montagna, Paolo; Vendrell-Simón, Begoña; McCulloch, Malcolm; Taviani, Marco

    2010-03-01

    The aragonitic skeletons of bathyal cold-water corals have a high potential as geochemical in situ archives for paleoceanography. Oxygen isotopes and stable carbon isotopes18O and δ 13C) have been analyzed, as well as trace and minor element compositions (e.g. Mg/Ca, Sr/Ca, U/Ca, B/Ca and P/Ca) in Lophelia pertusa, one of the most important frame-builders at the Santa Maria di Leuca (SML) deep-water coral hotspot in the Central Mediterranean. The Apulian Bank is swept by strong currents of the Adriatic Deep Water Outflow. The temperature of 13.9 °C is the highest temperature recorded for L. pertusa and provides an important end-member of environmental conditions for geochemical analyses on living Atlantic and Mediterranean cold-water corals. Temperature and salinity (38.77 PSU) are stable throughout the year, and thus virtually no changes should be observed in the stable oxygen isotope signal—if the coral precipitates its skeleton in equilibrium with seawater. We measured various marine properties, such as the seawater oxygen isotope composition (δ 18O sw), stable carbon isotope composition (δ 13C DIC) of dissolved inorganic carbon (DIC), and dissolved inorganic nutrient concentrations (PO 4, NO 3, NO 2, NH 3 and SiO 2). Bottom water at the coral sites shows a mean oxygen isotope composition of 1.47‰ δ 18O sw-VSMOW, and δ 13C DIC showed a mean of 1.1‰ VPDB. A section of a living L. pertusa with a thick theca calcification was probed with a Merchantek MicroMill at a high spatial sampling resolution with 10 samples per 1 mm. This reduced the signal-smoothing inherent to conventional sampling. The δ 18O ag of coral aragonite ranges between -2.0‰ and +2.8‰ VPDB and the δ 13C ag ranges between -7.77‰ and +1.47‰ VPDB. The Gaussian data distribution for both parameters, including heavy equilibrium values, suggests the completeness of the captured isotopic variability. The strict linear correlation of δ 13C and δ 18O displays a strong 'kinetic

  12. Continuous shipboard measurements of oceanic δ18O, δD and δ13CDIC along a transect from New Zealand to Antarctica using cavity ring-down isotope spectrometry

    NASA Astrophysics Data System (ADS)

    Bass, Adrian M.; Munksgaard, Niels C.; O'Grady, Damien; Williams, Michael J. M.; Bostock, Helen C.; Rintoul, Stephen R.; Bird, Michael I.

    2014-09-01

    Cavity ring-down spectrometers, with automated sampling interfaces, were deployed to allow measurements of water isotopes18O, δD) and dissolved inorganic carbon (δ13CDIC) stable isotope ratios at high temporal resolution along a transect from New Zealand to the Antarctic continental shelf. Measurements every 10 min for δ18O and δD, 15 min for DIC yielded 2499 and 2289 discrete measurements respectively. High resolution data enabled the delineation of water mass boundaries as well as revealing insights into surface hydrological and biological processes. δ18O, δD, and δ13CDIC decreased southwards, dropping by approximately 1.0‰, 7.0‰, and 0.5‰, respectively. Though the decline in δ13CDIC with latitude was generally linear, the drop in δ18O and δD was punctuated by areas of rapid, significant change corresponding to the Sub-Tropical, Sub-Antarctic and Polar Fronts. North of the Sub-Antarctic Front (approx. 54.5°S) the dominant control on water and DIC isotopes was the precipitation-evaporation balance and the contribution of upwelling waters, respectively. Further south, in close proximity to the sea ice and on the Antarctic shelf, water isotope values were more variable and predominantly influenced by the melting/freezing of sea-ice coupled to inputs from glacial/snow melt water. Local increases in δ13CDIC were likely due to photosynthetic enrichment of the DIC pool. Using this new instrumentation has provided one of the most comprehensive oceanic transect data sets yet achieved and illustrates the potential of these methods to delineate discrete water masses and advance our knowledge of both water and inorganic carbon cycling processes in the ocean. This methodology, combining high-resolution isotopic measurements with hydrographic data, has significant benefits in modelling water mixing in locations with multiple sources and controlling processes.

  13. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = < 30 (MDL) to 740 μg/L, I = 1 to 538 μg/L). The Cl/Br molar ratios were higher (171 to 574) at the recharge wetland, indicating meteoric sources, and had a tighter and lower range (33 to 320) at the down-gradient sites. The Cl/I molar ratios of waters throughout the site had a wide range (32 to 26,000). Lowest values occurred at the upgradient shore of P1 (32 to 43) due to low Cl concentrations and the center of P1 (196 to 213) where pore water of weathered till underlying 1.2 m of organic-rich sediment and silty clay soil is enriched in I to ~500 µg/L. Stable isotopes of water showed that evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  14. A method for calculating 16O/18O peptide ion ratios for the relative quantification of proteomes.

    PubMed

    Johnson, Kenneth L; Muddiman, David C

    2004-04-01

    A method is described for the identification and relative quantification of proteomes using accurate mass tags (AMT) generated by nLC-dual ESI-FT-ICR-MS on a 7T instrument in conjunction with stable isotope labeling using 16O/18O ratios. AMTs were used for putative peptide identification, followed by confirmation of peptide identity by tandem mass spectrometry. For a combined set of 58 tryptic peptides from bovine serum albumin (BSA) and human transferrin, a mean mass measurement accuracy of 1.9 ppm +/-0.94 ppm (CIM99%) was obtained. This subset of tryptic peptides was used to measure 16O/18O ratios of 0.36 +/- 0.09 (CIM99%) for BSA (micro = 0.33) and 1.48 +/- 0.47 (CIM99%) for transferrin (micro = 1.0) using a method for calculating 16O/18O ratios from overlapping isotopic multiplets arising from mixtures of 16O, 18O1, and 18O2 labeled C-termini. The model amino acid averagine was used to calculate a representative molecular formula for estimating and subtracting the contributions of naturally occurring isotopes solely as a function of peptide molecular weight. The method was tested against simulated composite 16O/18O spectra where peptide molecular weight, 16O/18O ratio, 18O1/18O2 ratios, and number of sulfur atoms were varied. Relative errors of 20% or less were incurred when the 16O/18O ratios were less than three, even for peptides where the number of sulfur atoms was over- or under-estimated. These data demonstrate that for biomarker discovery, it is advantageous to label the proteome representing the disease state with 18O; and the method is not sensitive to variations in 18O1/18O2 ratio. This approach allows a comprehensive differentiation of expression levels and tentative identification via AMTs, followed by targeted analysis of over- and under-expressed peptides using tandem mass spectrometry, for applications such as the discovery of disease biomarkers. PMID:15047049

  15. /sup 18/O-studies on the mechanism of action of 5-oxoprolinase

    SciTech Connect

    Li, L.; Seddon, A.P.; Meister, A.

    1986-05-01

    When the reaction catalyzed by bacterial 5-oxoprolinase was carried out to 80% of completion in /sup 18/O-enriched H/sub 2/O, /sup 18/O was found in the P/sub i/ and glutamate (..gamma..-COOH) products and also in amide carbonyl oxygen of the residual 5-oxoproline. Some glutamate molecules contained 2 atoms of /sup 18/O (..gamma..-COOH). In similar studies with component A alone, /sup 18/O was incorporated into P/sub i/ but not into 5-oxoproline. When enzyme isolated from rat kidney was run in /sup 18/O-enriched H/sub 2/O, isotope was found in the residual 5-oxoproline, glutamate and P/sub i/. Some glutamate contained 2 ..gamma..-carboxyl /sup 18/O atoms and di-labeling of P/sub i/ was also observed. The results obtained with 5-oxoprolinase isolated from kidney and bacteria are thus comparable. The reversibility of the reaction catalyzed by the bacterial enzyme (A + B) was carefully examined and no reversibility was observed. The labeling patterns observed are consistent with a mechanism in which the phosphorylated enol form of 5-oxoproline is hydrated and converted to ..gamma..-glutamyl phosphate which is hydrolyzed at phosphate to give glutamate. A detailed mechanism consistent with these data will be presented.

  16. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    DOEpatents

    Hooker, Jacob Matthew; Schonberger, Matthias; Schieferstein, Hanno; Fowler, Joanna S.

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  17. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    PubMed Central

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-01-01

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated. PMID:24854363

  18. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard E.

    2012-10-01

    Interpretations of the primary paleoceanographic information recorded in stable oxygen isotope values (δ18O) of biogenic CaCO3 can be obscured by disequilibrium effects. CaCO3 is often depleted in 18O relative to the δ18O values expected for precipitation in thermodynamic equilibrium with ambient seawater as a result of vital effects. Vital effects in δ18O have been explained in terms of the influence of fluid pH on the overall δ18O of the sum of dissolved inorganic carbon (DIC) species (often referred to as "pH model") and in terms of 18O depletion as a result of the kinetic effects associated with CO2 hydration (CO2 + H2O ↔ H2CO3 ↔ HCO3- + H+) and CO2 hydroxylation (CO2 + OH- ↔ HCO3-) in the calcification sites (so-called "kinetic model"). This study addresses the potential role of an enzyme, carbonic anhydrase (CA), that catalyzes inter-conversion of CO2 and HCO3- in relation to the underlying mechanism of vital effects. We performed quantitative inorganic carbonate precipitation experiments in order to examine the changes in 18O equilibration rate as a function of CA concentration. Experiments were performed at pH 8.3 and 8.9. These pH values are comparable to the average surface ocean pH and elevated pH levels observed in the calcification sites of some coral and foraminiferal species, respectively. The rate of uncatalyzed 18O exchange in the CO2-H2O system is governed by the pH-dependent DIC speciation and the kinetic rate constant for CO2 hydration and hydroxylation, which can be summarized by a simple mathematical expression. The results from control experiments (no CA addition) are in agreement with this expression. The results from control experiments also suggest that the most recently published kinetic rate constant for CO2 hydroxylation has been overestimated. When CA is present, the 18O equilibration process is greatly enhanced at both pH levels due to the catalysis of CO2 hydration by the enzyme. For example, the time required for 18O

  19. Kinetic isotope effect of the (16)O + (36)O2 and (18)O + (32)O2 isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study.

    PubMed

    Sun, Zhigang; Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-01

    The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the (18)O + (32)O2 and (16)O + (36)O2 reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the "reef" structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients. PMID:25956105

  20. Kinetic isotope effect of the 16O + 36O2 and 18O + 32O2 isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-01

    The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the 18O + 32O2 and 16O + 36O2 reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the "reef" structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

  1. Isotopic monitoring (2H, 18O) of the St. Lawrence and Ottawa rivers between 1997 and 2003- Links with interannual climatic variability and hydrological processes in their catchment basins

    NASA Astrophysics Data System (ADS)

    Myre, A.; Hillaire-Marcel, C.

    2004-05-01

    This study based on a water isotope (18O and 2H) monitoring of the St. Lawrence and Ottawa rivers (Canada) is a contribution to the international IAEA project: Isotopes tracing of hydrologic processes in large river basins [Gibson et al., 2002. EOS 83: 613 et p.]. Sampling of the St. Lawrence and Ottawa river waters started in 1997, on a biweekly to weekly basis. Monitoring stations are located at Montreal (i.e., at the outlet of the Great Lakes), Quebec City (the estuary of the St. Lawrence) and at the Carillon hydroelectric dam, near the outlet of a major tributary, the Ottawa River into the St. Lawrence itself. The goal of the study was to examine the seasonal and interannual variability of isotopic signatures of the St. Lawrence and Ottawa rivers, in relation notably with interannual climatic variations, and seasonal hydrologic processes in the watershed (summer evaporation, snowmelt, transit time of precipitation signals into runoff). Waters sampled at the three stations depict distinct isotopic compositions. At Montreal, relatively stable isotopic composition are observed with a mean weighted annual value of -54 % for 2H and -7.1 % for 18O. The Ottawa River water at Carillon also displays stable isotopic compositions but much lighter values (weighted mean annual values: -80 % for 2H and -10.8 % for 18O). Finally, isotopic compositions at Quebec City are intermediate between those of Montreal and Carillon, but show a much larger variability. They reflect mixing between the heavy isotope enriched Great Lakes water, the lighter water from the Ottawa River, and highly variable inputs from smaller tributaries (from the Laurentides and Appalachian mountains). The mean weighted isotopic compositions at Quebec City are -65 % and -8.6 %, respectively for 2H and 18O). Evaporative enrichment, in particular during low water level episodes, seem to be more important in the Ottawa River catchment than in the Great Lakes basin, based on a comparison of isotopic clusters at

  2. Complete Measurement of Stable Isotopes in N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O) Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Gupta, M.

    2014-12-01

    Nitrate contamination in water is a worldwide environmental problem and source apportionment is critical to managing nitrate pollution. Fractionation caused by physical, chemical and biological processes alters the isotope ratios of nitrates (15N/14N, 18O/16O and 17O/16O) and biochemical nitrification and denitrification impart different intramolecular site preference (15N14NO vs. 14N15NO). Additionally, atmospheric nitrate is anomalously enriched in 17O compared to other nitrate sources. The anomaly (Δ17O) is conserved during fractionation processes, providing a tracer of atmospheric nitrate. All of these effects can be used to apportion nitrate in soil. Current technology for measuring nitrate isotopes is complicated and costly - it involves conversion of nitrate to nitrous oxide (N2O), purification, preconcentration and measurement by isotope ratio mass spectrometer (IRMS). Site specific measurements require a custom IRMS. There is a pressing need to make this measurement simpler and more accessible. Los Gatos Research has developed a next generation mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to quantify all stable isotope ratios of N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O). We present the latest performance data demonstrating the precision and accuracy of the OA-ICOS based measurement. At an N2O concentration of 322 ppb, the analyzer quantifies [N2O], δ15N, δ15Na, δ15Nb, and δ18O with a precision of ±0.05 ppb, ±0.4 ‰, ±0.45 ‰, and ±0.6 ‰, and ±0.8 ‰ respectively (1σ, 100s; 1σ, 1000s for δ18O). Measurements of gas standards demonstrate accuracy better than ±1 ‰ for isotope ratios over a wide dynamic range (200 - 100,000 ppb). The measurement of δ17O requires a higher concentration (1 - 50 ppm), easily obtainable through conversion of nitrates in water. For 10 ppm of N2O, the instrument achieves a δ17O precision of ±0.05 ‰ (1σ, 1000s). This performance is sufficient to quantify atmospheric

  3. Heavy isotope production by multinucleon transfer reactions with /sup 254/Es. [101 MeV /sup 16/O, 98 MeV /sup 18/O, 127 MeV /sup 22/Ne

    SciTech Connect

    Schaedel, M.; Bruechle, W.; Bruegger, M.; Gaeggeler, H.; Moody, K.J.; Schardt, D.; Suemmerer, K.; Hulet, E.K.; Douran, A.D.; Dougan, R.J.

    1985-01-01

    Fast automated on-line and quasi-on-line radiochemical techniques were applied to search for new isotopes, to measure their decay characteristics, and to study the cross sections of the heaviest, most neutron-rich actinide isotopes in reactions of /sup 16,18/O and /sup 22/Ne projectiles with /sup 254/Es as a target. The measured yields for isotopes up to Lr-260 are three or more orders of magnitude higher than in any other reaction used so far. A comparison with data for similar transfers from /sup 248/Cm targets is made. Transfer cross sections are extrapolated for the production of unknown, neutron-rich isotopes of elements 101 through 105, and the unique potential of /sup 254/Es as a target to make these exoctic nuclei accessible is demonstrated. 18 refs., 2 figs., 1 tab.

  4. Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data

    NASA Astrophysics Data System (ADS)

    OgéE, J.; Peylin, P.; Cuntz, M.; Bariac, T.; Brunet, Y.; Berbigier, P.; Richard, P.; Ciais, P.

    2004-06-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of nonfoliar respiration (FR) and net photosynthesis (FA) in order to better understand the variations of this exchange. However, the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes, and a rigorous estimation of the errors on FA and FR is needed. In this study, we account for and propagate uncertainties on all terms in the mass balance and isotopic mass balance equations for CO2 in order to get accurate estimates of the errors on FA and FR. We apply our method to a maritime pine forest in the southwest of France. Nighttime Keeling plots are used to estimate the 13C and 18O isotopic signature of FR (δR), and for both isotopes the a priori uncertainty associated with this term is estimated to be around 2‰ at our site. Using δ13C-CO2 and [CO2] measurements, we then show that the uncertainty on instantaneous values of FA and FR can be as large as 4 μmol m-2 s-1. Even if we could get more accurate estimates of the net CO2 flux, the isoflux, and the isotopic signatures of FA and FR, this uncertainty would not be significantly reduced because the isotopic disequilibrium between FA and FR is too small, around 2-3‰. With δ18O-CO2 and [CO2] measurements the uncertainty associated with the gross fluxes lies also around 4 μmol m-2 s-1 but could be dramatically reduced if we were able to get more accurate estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 12-17‰. The isotopic disequilibrium between FA and FR and the uncertainty on δR vary among ecosystems and over the year. Our approach should help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  5. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite

    USGS Publications Warehouse

    Revesz, Kinga M.; Landwehr, Jurate M.

    2002-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 ± 20 µg) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 °C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was ≤0.1 and ≤0.2 per mill or ‰, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for δ18O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows

  6. Radiogenic and stable isotopes of mid-Miocene silicic volcanism in eastern Oregon: Evidence for variable and high Sr / low δ18O domains west of the terrane-cratonic lithosphere transition

    NASA Astrophysics Data System (ADS)

    Jenkins, E. N.; Streck, M. J.; Ramos, F. C.; Bindeman, I. N.

    2013-12-01

    Widespread mid-Miocene rhyolite volcanism of eastern Oregon mostly coeval with flood basalts of the Columbia River Basalt Province allows for mapping crustal domains using radiogenic and stable isotopes. Rhyolites are thought to be derived in large part by partial melting of the crust and thus yield direct information on the composition of the crust. Silicic volcanism is expressed in the form of numerous domes and tuffs exposed over a wide area (~300 km in N-S dimension and ~100 km in E-W dimension) west of the craton boundary, which runs parallel but mostly east of the Oregon-Idaho state border as delineated by geophysical characteristics and isotopic transitions. Here, we mainly focus on initial 87Sr/86Sr ratios and δ18O obtained from mid-Miocene silicic volcanic centers in eastern Oregon. Our data, in combination with data from the literature, indicate variable 87Sr/86Sr mostly along longitudinal sections, yet more similar ratios in latitudinal directions. Except for rare examples on the west side, dispersion of 87Sr/86Sr ratios among both silicic and basaltic rocks occurs eastward of 118.6°W. For example, rhyolites in the Owyhee region between 117.10°W and 117.25°W retain 87Sr/86Sr ratios ranging from 0.70413 to 0.70566. The most radiogenic Sri ratio of 0.70787 in our study is obtained on a plagioclase separate from Buchanan Dome complex located near the western boundary of our study area. Feldspar separates and fresh groundmass of samples from adjacent centers yield similar 87Sr/86Sr ratios. δ18O values for feldspars range from below 2‰ to above 9‰. In addition, there is a crude trend of rhyolites having lower δ18O and more radiogenic 87Sr/86Sr ratios. With one exception, all samples with 87Sr/86Sr above 0.7050 are depleted in 18O18O <5.5‰), while rhyolites with 87Sr/86Sr below 0.7045 are enriched in 18O18O >6‰). The most depleted oxygen ratios (<2‰) come from rhyolites ~80 km west of the cratonic margin reflecting remelting or

  7. Stable Isotopes18O and δ2H) Help to Delineate Flow Paths and the Importance of Different Climate Patterns in Watersheds of the Luquillo Mountains, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Shanley, J. B.; Scatena, F. N.

    2009-12-01

    Precipitation isotopic signatures can help determine the relative importance of different rainfall regimes in the interactions between water, soils, and ecosystems in watersheds. The tropical forest in the Luquillo Mountains of Puerto Rico can receive over 5000 mm of precipitation per year. Recent modeling studies indicate that global climate change or local land use changes may lead to a decline in precipitation amounts. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade-wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems, with the remainder from fronts, troughs, and isolated thunderstorms. Trade-wind orographic precipitation usually occurs as frequent, low-intensity and low-volume rain events, whereas easterly waves and low-pressure systems have higher volume and more intense rainfall. To help determine the importance of different precipitation types in the forest water cycle, monthly precipitation samples from a network of rain and cloud water collectors and stream samples from two watersheds were collected and analyzed for δ18O and δ2H. Weekly throughfall and rain samples were also collected at one site during five periods of different rainfall intensity to determine whether isotopic fractionation occurs when rain falls through the forest canopy. Seasonal rainfall sources have distinct isotopic signatures, partly due to differences in cloud height associated with the seasonal climate patterns. Monthly precipitation samples during the dry season had average isotopic values of -1.5‰ δ18O and +2.3‰ δ2H, associated with the weather pattern of trade-wind showers and fronts. Rainy season precipitation, from easterly waves and low pressure systems, had average monthly values of -3.7‰ δ18O and -16‰ δ2H. Precipitation during months with significant low pressure systems had average values of -5.9‰ δ18O and -36‰ δ2H. Isotopic composition of stream water at higher

  8. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, Carol; Paytan, Adina

    2009-01-01

    Nitrate (NO-3 concentrations and dual isotopic composition (??15N and ??18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO-3 within this California estuary. We found the isotopic composition of NO-3 was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end-member mixing model to calculate the relative contribution of these two NO-3 sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season when NO-3 concentrations were low. Although multiple linear regression generally yielded good fits to the observed data, deviations from conservative mixing were still evident. After consideration of potential alternative sources, we concluded that deviations from two end-member mixing were most likely derived from interactions with marsh sediments in regions of the Slough where high rates of NO-3 uptake and nitrification result in NO-3 with low ?? 15N and high ??18O values. A simple steady state dual isotope model is used to illustrate the impact of cycling processes in an estuarine setting which may play a primary role in controlling NO -3 isotopic composition when and where cycling rates and water residence times are high. This work expands our understanding of nitrogen and oxygen isotopes as biogeochemical tools for investigating NO -3 sources and cycling in estuaries, emphasizing the role that cycling processes may play in altering isotopic composition. Copyright 2009 by the American Geophysical Union.

  9. Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted ³¹P NMR and mass spectrometry.

    PubMed

    Nemutlu, Emirhan; Zhang, Song; Gupta, Anu; Juranic, Nenad O; Macura, Slobodan I; Terzic, Andre; Jahangir, Arshad; Dzeja, Petras

    2012-04-01

    Next-generation screening of disease-related metabolomic phenotypes requires monitoring of both metabolite levels and turnover rates. Stable isotope (18)O-assisted (31)P nuclear magnetic resonance (NMR) and mass spectrometry uniquely allows simultaneous measurement of phosphometabolite levels and turnover rates in tissue and blood samples. The (18)O labeling procedure is based on the incorporation of one (18)O into P(i) from [(18)O]H(2)O with each act of ATP hydrolysis and the distribution of (18)O-labeled phosphoryls among phosphate-carrying molecules. This enables simultaneous recording of ATP synthesis and utilization, phosphotransfer fluxes through adenylate kinase, creatine kinase, and glycolytic pathways, as well as mitochondrial substrate shuttle, urea and Krebs cycle activity, glycogen turnover, and intracellular energetic communication. Application of expanded (18)O-labeling procedures has revealed significant differences in the dynamics of G-6-P[(18)O] (glycolysis), G-3-P[(18)O] (substrate shuttle), and G-1-P[(18)O] (glycogenolysis) between human and rat atrial myocardium. In human atria, the turnover of G-3-P[(18)O], which defects are associated with the sudden death syndrome, was significantly higher indicating a greater importance of substrate shuttling to mitochondria. Phosphometabolomic profiling of transgenic hearts deficient in adenylate kinase (AK1-/-), which altered levels and mutations are associated to human diseases, revealed a stress-induced shift in metabolomic profile with increased CrP[(18)O] and decreased G-1-P[(18)O] metabolic dynamics. The metabolomic profile of creatine kinase M-CK/ScCKmit-/--deficient hearts is characterized by a higher G-6-[(18)O]P turnover rate, G-6-P levels, glycolytic capacity, γ/β-phosphoryl of GTP[(18)O] turnover, as well as β-[(18)O]ATP and β-[(18)O]ADP turnover, indicating altered glycolytic, guanine nucleotide, and adenylate kinase metabolic flux. Thus, (18)O-assisted gas chromatography-mass spectrometry

  10. The value of stable Isotope (18O) and electrical conductivity (EC) as tracers for submarine Groundwater exfiltration and density-driven flow infiltration into the aquifer.

    NASA Astrophysics Data System (ADS)

    Müller, Sascha; Engesgaard, Peter; Duque, Carlos; Jessen, Søren; Sonnenborg, Torben; Stau, Joakim; Neilson, Bethany

    2015-04-01

    Saltwater intrusion (SWI) into a freshwater aquifer is a dynamic process due to e.g. natural changes in sea levels (tides) and recharge. Coastal lagoons, on the other hand, are often controlled water bodies where the water level and salinity are managed by the operation of a sluice connecting the lagoon to the ocean. This study describes the seasonal dynamics of the saltwater/freshwater interface and submarine groundwater discharge (SGD) patterns at a coastal lagoon on the West coast of Denmark. Here the salinity of the lagoon is high in the summer period, where recharge is low (favoring SWI) and vice versa in the winter time. SGD was measured over four seasons in 2012 along two transects. 18O and electrical conductivity (EC) were measured at the same time to a depth of 3.5 m with a sample interval of 0.25 m. In September 2014 a transect with 12 piezometers (screening depth between 1.5 and 15 m below surface) and one profile well (with measurements every 1 m down to 15 m) was established across the saltwater/freshwater interface at one of the transects. 18O and EC were measured and each piezometer was equipped with a CTD-diver measuring pressure head, temperature, and EC in the period switching from summer to winter conditions. Although 18O and EC is relatively well correlated (correlation coefficient of 0.8) the use of both tracers are recommend for this type of environment. Salinity (or EC) in the lagoon changes seasonally, whereas 18O in both lagoon water and groundwater is relatively stable within each end- member, suggesting that 18O is the tracer to prefer. However, on the other hand EC is an easy and in-expensive (continuous) measurement allowing a much better resolution in both space and time. The combination of both tracers can improve the explanation of the origin of water with more certainty. Both tracers show a seasonal interplay between freshwater discharge into the lagoon and a density- driven recycling with opposing flow into the aquifer. 18O and EC

  11. The oxygen-hafnium isotope paradox in the early post Columbia River Basalt silicic volcanism: Evidence for complex batch assembly of upper crustal, lower crustal and low-δ18O silicic magmas

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Ellis, B. S.; Schmitt, A. K.; Fisher, C. M.; Vervoort, J. D.

    2013-12-01

    Eruptions of the Columbia River flood basalts were immediately followed by large eruptions of silicic magmas; some may have been coeval, others genetically-linked to the CRB. Among the most voluminous of these eruptions was the Jarbidge Rhyolite, which comprises ~500 km3 of lava erupted from 16.1-15.0 Ma in northern Nevada. Activity at Jarbidge was followed at 15.0 Ma by a series of rhyolitic ignimbrites and lavas in the J-P Desert of Idaho ~50 km NW of the Jarbidge Rhyolite center. To constrain magmatic origins and upper crustal magma storage conditions of these two silicic magmatic systems, we conducted bulk and high spatial resolution analysis of whole rocks and minerals (quartz, feldspar, and zircon). Bulk quartz and plagioclase δ18O values of the J-P Desert units are only moderately lower than mantle values, with δ18O-quartz of 5.0-5.5‰ and plagioclase δ18O of ~3.9-5.8‰, along with slightly unradiogenic Nd and Hf whole rock values (average ɛHf and ɛNd of -13.1 and -10.0, respectively), while quartz from the Jarbidge Rhyolite has normal δ18O (+8.4‰), but very unradiogenic ɛHf-ɛNd (ɛHf = -34.7, ɛNd = -24.0), fingerprinting Archean upper crust. SIMS analysis of J-P Desert zircons reveals considerably diverse δ18O values, ranging from -0.6‰ to +6.5‰ in a single unit. The same zircon spots yielded U-Pb SIMS ages which generally agree with the 40Ar/39Ar eruption ages, with no evidence of inheritance of pre-Miocene zircons. Combined with LA-MC-ICP-MS analysis of Hf isotopes overlapping the earlier SIMS spots, these zircons show a clear near-linear correlation between ɛHf and δ18O values observed in individual zircons. This relationship suggests variable mixing of two distinct silicic magmas prior to eruption of the J-P Desert rhyolites. One of these, characterized by extremely low ɛHf values and normal δ18O values, is likely a mantle magma strongly contaminated with shallow Archean crust, represented by the Jarbidge Rhyolite. The other is

  12. Isotopic labeling for the understanding of the alteration of limestone used in built cultural heritage

    NASA Astrophysics Data System (ADS)

    Saheb, Mandana; Chabas, Anne; Mertz, Jean-Didier; Rozenbaum, Olivier; Verney-Carron, Aurélie

    2015-04-01

    This project belongs to a specific work aiming at developing isotopic tools to better understand the alteration of materials used in the built cultural heritage. It is focused on the study of the alteration of limestone used in the facades of historic buildings subject to atmospheric polluted environment. Actually in the elevated parts of the buildings, water as rainfall (runoff or wet deposition) or in vapor form (condensation or dry deposition) is the main agent of alteration. Thus, the rock/water interactions need to be well understood to propose adapted solution to better preserve the buildings. To identify the water transfer within the porous limestone and locate the reaction preferential sites, two isotopic tracers (D and 18O) are used to monitor the alteration solution (D) and locate the zones containing the secondary phases (18O). The Saint-Maximin limestone used in many monuments in the suburbs of Paris (France) as a building and restoration stone has been specifically studied. Pristine materials, stones from monuments (monuments in the Paris area) and samples altered in laboratory constitute the analytical corpus to compare different stages of alteration. In a first step the stones are characterized at different scales to identify the alteration pattern (SEM-EDS, Raman microspectrometry, XRD, rugosimetry) and study the water transfers (X-ray tomography, mercury porosimetry, imbibition kinetics). The samples are then altered in the laboratory by realistic and controlled wet or dry deposition using isotopically labeled solutions to locate the reaction zones by SIMS. The multiscale characterization of the alteration pattern has allowed proposing alteration mechanisms linked to the properties of the stones and their location inside the building. Moreover, the location of the reactive zones inside the materials determined by the isotopic experiments helps examining the role of the evolution of porosity and formation of alteration products within the material

  13. Life history of the individuals buried in the St. Benedict Cemetery (Prague, 15th-18th centuries): insights from (14)C dating and stable isotope (δ(13)C, δ(15)N, δ(18)O) analysis.

    PubMed

    Salesse, Kevin; Dufour, Élise; Castex, Dominique; Velemínský, Petr; Santos, Frédéric; Kuchařová, Hedvika; Jun, Libor; Brůžek, Jaroslav

    2013-06-01

    Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ(13)C, δ(18)O and δ(15)N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ(15)N values of collagen and the difference between the δ(13)C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ(18)O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ(18)O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight (14)C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French-Bavarian-Saxon armies is identified as the cause of the St. Benedict mass mortality event. PMID:23588853

  14. A theoretical study of soft mode behavior and ferroelectric phase transition in 18O-isotope exchanged SrTiO3: evidence of phase coexistence at the quantum critical point

    NASA Astrophysics Data System (ADS)

    Mkam Tchouobiap, S. E.

    2014-02-01

    Motivated by recent experiments, the dynamics of the ferroelectric soft mode and the ferroelectric phase transition mechanism in 18O isotope exchanged systems SrTi(16O1-x18Ox)3 (abbreviated as STO18-x) are reinvestigated as a function of the 18O isotope exchange rate x, within a quasiharmonic model (QHM) for quantum ferroelectric modes in double-Morse local potential with mean-field approximation interactions between modes. The approach was realized within the framework of the variational principle method at finite temperature through the quantum mean-field approximation and by taking into account the effect of isotope replacement through the predominant mass effect, the cell volume effect, homogeneity of the composition throughout the material and the concentration-dependent ferroelectric mode distortion effect. The dynamics of the lowest-frequency soft phonon mode clearly presents an increased softening phenomenon with increasing x and a complete one at the corresponding phase transition temperature Tc, demonstrating the perfect soft-mode-type quantum ferroelectric phase transition for x ⩾ xc. Also, a ferroelectric-paraelectric phase coexistence state has been found near the quantum critical point xc and its origin is discussed. The ferroelectric phase transition mechanism is analyzed and its nature discussed, where a second-order phase transition close to the tricritical point is predicted. In addition, the effect of quantum fluctuations on the soft mode dynamics is discussed which reveals its reduction with increasing x and the crossover of the soft mode dynamics from the quantum to the classic one at the full 18O exchange limit x = 1, for which the origin seems to lie in the new homogeneity associated with the direct reduction of quantum fluctuations effects on the soft mode behavior. Within the QHM, consistent agreement with some of the previous experimental results and theoretical predictions of quantum ferroelectricity throughout the full range of x are

  15. Simultaneous 13C/12C and (18)O/(16)O isotope ratio measurements on CO2 based on off-axis integrated cavity output spectroscopy.

    PubMed

    Jost, Hans-Jürg; Castrillo, Antonio; Wilson, H William

    2006-03-01

    A prototype off-axis integrated cavity output spectrometer (OA-ICOS) utilizing two identical cavities together with a near-infrared (1.63 microm) external cavity tunable diode laser is described. The two-cavity design-one for a reference gas and one for a sample gas-takes advantage of classical double-beam infrared spectrometer characteristics in reducing uncertainties due to laser scan or power instabilities and major temperature variations by a factor of three or better compared with a single-cavity scheme. This is the first OA-ICOS instrument designed to determine 13C/12C and (18)O/(16)O ratios from CO2 rotation/vibration fine structure in three different combination bands. Preliminary results indicate that at 0.8 Hz a precision of 3.3 and 2.8 per thousand is obtained for delta13C and delta(18)O, respectively, over a period of 10 h and a pure CO2 gas sample at 26 hPa. By averaging 100 spectra over a subset of the data, we achieved a precision of 1.6 and 0.8 \\permil\\ for delta13C and delta(18)O, respectively. PMID:16500753

  16. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  17. Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin.

    PubMed

    Sonar, S; Lee, C P; Coleman, M; Patel, N; Liu, X; Marti, T; Khorana, H G; RajBhandary, U L; Rothschild, K J

    1994-08-01

    Insight into integral membrane proteins function is presently limited by the difficulty of producing three-dimensional crystals. In addition, X-ray structures of proteins normally do not provide information about the protonation state and structural changes of individual residues. We report here the first use of site-directed isotope labelling and Fourier transform infrared (FTIR) difference spectroscopy to detect structural changes at the level of single residues in an integral membrane protein. Two site-directed isotope labeled (SDIL) tyrosine analogues of bacteriorhodopsin were produced which exhibit normal activity. FTIR spectroscopy shows that out of 11 tyrosines, only Tyr 185 is structurally active during the early photocycle and may be part of a proton wire. PMID:7664078

  18. Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis.

    PubMed

    Allen, Doug K

    2016-02-01

    Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations and long metabolic steady states such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other metabolically more dynamic tissues such as leaves in greater detail using novel methods in mass spectrometry, isotope labeling strategies, and transient labeling-based flux analyses. Such studies are necessary for a systems level description of plant function that more closely represents biological reality, and provides insights into the genes that will need to be modified as natural resources become ever more limited and environments change. PMID:26613198

  19. Plan of study to determine if the isotopic ratios [delta]15 N and [delta]18 O can reveal the sources of nitrate discharged by the Mississippi River into the Gulf of Mexico

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Goolsby, Donald A.; Boyer, Laurie L.

    1997-01-01

    Nitrate and other nutrients discharged from the Mississippi River basin are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse effect on aquatic life and commercial fisheries. Commercial fertilizers are the dominant source of nitrogen input to the Mississippi basin. Other nitrogen sources include animal waste, fixation of atmospheric nitrogen by legumes, precipitation, domestic and industrial effluent, and the soil. The inputs of nitrogen from most of these sources to the Mississippi basin can be estimated and the outputs in surface water can be measured. However, nitrogen from each source is affected differently by physical, chemical, and biological processes that control nitrogen cycling in terrestrial and aquatic systems. Hence, the relative contributions from the various sources of nitrogen to nitrate load in the Mississippi River are unknown because the different sources may not contribute proportionally to their inputs in the basin. It may be possible to determine the relative contributions of the major sources of nitrate in river water using the stable isotopic ratios d15N and d18O of the nitrate ion. A few researchers have used the d15N and/or d18O isotope ratios to determine sources of nitrate in ground water, headwater catchments, and small rivers, but little is known about the isotopic composition of nitrate in larger rivers. The objective of this study is to measure the isotopic composition of nitrate and suspended organic matter in the Mississippi River and its major tributaries, in discharge to the Gulf of Mexico, and in streamflow from smaller watersheds that have distinct sources of nitrogen (row crops, animal wastes, and urban effluents) or are minimally impacted by man (undeveloped). Samples from seven sites on the Mississippi River and its tributaries and from 17 sites in smaller watersheds within the Mississippi River basin will be analyzed for d15N and

  20. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  1. Structure-related geochemical (REE) and isotopic (K-Ar, Rb-Sr, {delta}{sup 18}O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany)

    SciTech Connect

    Zwingmann, H.; Clauer, N.; Gaupp, R.

    1999-09-01

    Euhedral illite cementing the gas-bearing sandstone reservoirs of the Rotliegend in the Niedersaechsische rift system (northern Germany) was studied along a horst-to-graben cross-section to examine its chemical and isotopic characteristics. The data show that differentiated illite particles grew during a tectono-thermal event marked by distinct episodic hydrothermal activities along fault drains and in the poral space of sandstones at 210 Ma and at 195 to 190 Ma in horst positions, at 185 to 175 Ma in the nearby graben, and at 170 to 165 Ma in both the horst and graben. Varied REE distribution patterns and initial {sup 87}Sr/{sup 86}Sr ratios (from 0.7124 to 0.7142) relative to illite-particle size outline a high chemical variability of the fluids during illite growth. The {delta}{sup 18}O values of illite range from +20.0 to +12.4% and those of chlorite from +12.0 to +6.9%. The changing {delta}{sup 18}O values of the minerals most likely relate to varied {delta}{sup 18}O values of the fluids, or to different water/rock ratios during crystallization. Differences among the REE and {sup 87}Sr/{sup 86}Sr tracers and the {delta}{sup 18}O values of different generations of illite also suggest a changing fluid chemistry relative to time. significant positive Eu anomalies and negative Ce anomalies in the REE distributions of illite suggest feldspar alteration by the migrating fluids in oxidizing environments.

  2. Adenosine triphosphate utilization rates and metabolic pool sizes in intact cells measured by transfer of 18O from water.

    PubMed Central

    Dawis, S M; Walseth, T F; Deeg, M A; Heyman, R A; Graeff, R M; Goldberg, N D

    1989-01-01

    The hydrolytic rates and metabolic pool sizes of ATP were determined in intact cells by monitoring the time courses of 18O incorporation from 18O-water into the gamma-phosphoryl of ATP and orthophosphate. To calculate the rate of ATP hydrolysis, a kinetic model is used to fit the time course of the 18O labeling. The size of the metabolic pool of ATP is calculated from the 18O distribution after isotopic equilibrium has been achieved. Metabolic pools have a binomial distribution of 18O whereas nonmetabolic pools exhibit negligible 18O labeling. The application and limitations of this approach are illustrated with data from isolated toad retinas and human platelets. At 22 degrees C, the time constant of ATP hydrolysis in the dark-adapted toad retina is about 30 s. Under these conditions, over 80% of the retinal ATP is involved in high-energy phosphate metabolism. It is calculated that when cGMP metabolic flux in the photoreceptors is maximally stimulated by light, it accounts for 10% of the ATP utilization by the entire retina. The time constant of ATP hydrolysis in human platelets at 37 degrees C is approximately 1 s, and 60% of the platelet ATP is involved in energy metabolism. PMID:2930826

  3. Determination of wine authenticity and geographical origin by measuring non-exchangeable hydrogen stable isotopes in wine ethanol with EIM-IRMS® methodology in combination with δ18O values obtained from wine water.

    NASA Astrophysics Data System (ADS)

    Smajlovic, Ivan; Glavanovic, Mirko; Sparks, Kimberlee L.; Sparks, Jed P.; Jovic, Slobodan

    2014-05-01

    Wine consumption has grown significantly in the last two decades, with the United States being the leading consumer of wine in the world. It is also the second largest wine producer and importer after the European Union, which consists of 27 European countries. The world has seen a significant increase in production from new world countries, especially the United States, Australia and Chile, and wine imports have grown significantly with this globalization. The quality and authenticity of products have become critical concerns. With the amount of wine being imported the need for verifying wine authenticity and understanding procedures used in wine making has become more important than ever. Understanding the origin of consumed wine in rapidly expanding global economy has become fundamental in order to control quality and protect consumers. In our previous scientific work we have shown that EIM-IRMS®, Ethanol Isotope Measurement - Isotope Ratio Mass Spectrometry (EIM-IRMS®), is capable of providing unique molecular fingerprint that cannot be reproduced or counterfeited. Today we know that δ18O value from the wine water is one of the most important parameters which can give information about wine geographical origin. Earlier we have suggested that grape juice or grape pulp is a closed biochemical system in which all chemical compounds stand in dynamic equilibrium and are in direct connection with each other. Taking that into consideration we have concluded that if system is genuine and if no water, or no sugar has been added to the grape must or grape juice prior to alcoholic fermentation, then ethanol which is made in process of alcoholic fermentation will have specific δD value of non-exchangeable hydrogen stable isotopes which will be in range from -205 to -215 ‰ vs. V-SMOW. In this work we will show that this value, which we named δDn (non-exchangeable hydrogen stable isotopes in ethanol), is very important because it can support or refute conclusions

  4. Isotopic Labeling of Red Cabbage Anthocyanins with Atmospheric 13-CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopic labeling of plants provides a unique opportunity for understanding metabolic processes. A significant challenge of isotopic labeling during plant growth is that isotopes must be administered without disrupting plant development and at sufficient levels for mass spectral analysis. We describ...

  5. Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways.

    PubMed

    Webster, Christopher R; Heymsfield, Andrew J

    2003-12-01

    Water isotope ratios have been measured by laser absorption spectroscopy in and out of cirrus clouds formed in situ and convectively generated in anvils over subtropical regions. Water vapor in the tropical and subtropical upper troposphere shows a wide range of isotopic depletion not observed previously. The range suggests that dehydration of upper tropospheric air occurs both by convective dehydration and by gradual dehydration mechanisms. Twenty-five percent of upper tropospheric water sampled is in ice particles whose isotopic signatures are used to identify those grown in situ from those lofted from below. PMID:14657493

  6. Latest Paleocene benthic extinction event on the southern Tethyan shelf (Egypt): Foraminiferal stable isotopic (δ13C, δ18O) records

    NASA Astrophysics Data System (ADS)

    Schmitz, B.; Speijer, R. P.; Aubry, M.-P.

    1996-04-01

    The dramatic global extinction of 35% 50% of benthic foraminifera species in the deep sea in the latest Paleocene and associated negative excursions in δ13C and δ18O may be related to spreading of warm, saline bottom water from subtropical Tethyan shallow regions over the sea floor worldwide. Our study of neritic sections in Egypt shows that in the southern shallow Tethys, a prominent long-term change in bottom-water chemistry, sedimentation, and benthic foraminifera fauna was initiated at the time when the deep-sea benthic extinction event (BEE) took place. Bottom-water δ13C values on the Tethyan shelf show a sudden 3.0‰ negative shift at this event; however, contrary to the deep sea, in which the δ13C excursion was of short duration, Tethyan δ13C values did not fully return to preboundary values, but remained depressed by ˜1.5‰ for at least 1 m.y. The δ13C values at the Egyptian shelf during the BEE are much lower than would be expected if this was a source region for global deep water. The δ18O values indicate no significant change in bottom-water salinity or temperature at the BEE. The long-lasting environmental changes that began on the Egyptian shelf at the BEE may be related to, for example, gateway reorganization along the Tethyan seaway. Paleogeographic changes possibly also triggered a change in the loci of global deep-water formation; however, these loci must be sought in another part of the Tethys.

  7. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  8. Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments.

    PubMed

    Ahmed, Raya; Westera, Liset; Drylewicz, Julia; Elemans, Marjet; Zhang, Yan; Kelly, Elizabeth; Reljic, Rajko; Tesselaar, Kiki; de Boer, Rob J; Macallan, Derek C; Borghans, José A M; Asquith, Becca

    2015-10-01

    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated (2)H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique. PMID:26437372

  9. Comparison between IRMS and CRDS methods in the determination of isotopic ratios {sup 2}H/{sup 1}H and {sup 18}O/{sup 16}O in water

    SciTech Connect

    Santos, T. H. R.; Zucchi, M. R.; Lemaire, T.; Azevedo, A. E. G.

    2013-05-06

    Traditionally, the method used for measuring the isotope ratios is the Isotope Ratio Mass Spectrometers (IRMS). A new method has been used to determine the isotopic abundances, the Cavity Ring-Down Spectroscopy (CRDS). It consists of a technique of direct absorption, of high sensitivity, which is based on measuring the absorption ratio, as a function of time, of the light confined in a high finesse optical cavity, instead of the magnitude of light beam absorption. The values of {sup 18}O/{sup 16}O and D/H ratios are determined with respect to international standards VSMOW, GISP and SLAP from the International Atomic Energy Agency (IAEA). In this work, the IRMS and CRDS techniques are compared, verifying that the CRDS technique is promising and has some advantages compared to IRMS. It uses a smaller amount of sample, the isotope measurements are made simultaneously from the steam, reducing the analysis time. It also shows good reproducibility and accuracy, and it does not require a preliminary sample preparation.

  10. Respiratory-tract dosimetry of /sup 18/O-labeled ozone in rats: implications for a rat-human extrapolation of ozone dose

    SciTech Connect

    Hatch, G.E.; Wiester, M.J.; Overton, J.H.; Aissa, M.

    1988-08-01

    Efforts to obtain a comparison between rats and humans of the dose of inhaled ozone (O/sub 3/) delivered to the lungs during O/sub 3/ exposure has been impeded because of the lack of data on the nasopharyngeal removal of O/sub 3/ in rats. This study sought to address the need through use of a newly developed tracing technique that involved oxygen-18 labeled O/sub 3/. Comparison of the result to a published value of about 40% nasopharyngeal removal in the resting human, yields the conclusion that the O/sub 3/ concentration in the rat trachea is about 30% higher than in the human trachea under similar exposure conditions.

  11. Mechanism of 17α,20-Lyase and New Hydroxylation Reactions of Human Cytochrome P450 17A1: 18O LABELING AND OXYGEN SURROGATE EVIDENCE FOR A ROLE OF A PERFERRYL OXYGEN.

    PubMed

    Yoshimoto, Francis K; Gonzalez, Eric; Auchus, Richard J; Guengerich, F Peter

    2016-08-12

    Cytochrome P450 (P450) reactions can involve C-C bond cleavage, and several of these are critical in steroid and sterol biosynthesis. The mechanisms of P450s 11A1, 17A1, 19A1, and 51A1 have been controversial, in the context of the role of ferric peroxide (FeO2 (-)) versus perferryl (FeO(3+), compound I) chemistry. We reinvestigated the 17α-hydroxyprogesterone and 17α-hydroxypregnenolone 17α,20-lyase reactions of human P450 17A1 and found incorporation of one (18)O atom (from (18)O2) into acetic acid, consonant with proposals for a ferric peroxide mechanism (Akhtar, M., Lee-Robichaud, P., Akhtar, M. E., and Wright, J. N. (1997) J. Steroid Biochem. Mol. Biol. 61, 127-132; Akhtar, M., Wright, J. N., and Lee-Robichaud, P. (2011) J. Steroid Biochem. Mol. Biol. 125, 2-12). However, the reactions were supported by iodosylbenzene (a precursor of the FeO(3+) species) but not by H2O2 We propose three mechanisms that can involve the FeO(3+) entity and that explain the (18)O label in the acetic acid, two involving the intermediacy of an acetyl radical and one a steroid 17,20-dioxetane. P450 17A1 was found to perform 16-hydroxylation reactions on its 17α-hydroxylated products to yield 16,17α-dihydroxypregnenolone and progesterone, suggesting the presence of an active perferryloxo active species of P450 17A1 when its lyase substrate is bound. The 6β-hydroxylation of 16α,17α-dihydroxyprogesterone and the oxidation of both 16α,17α-dihydroxyprogesterone and 16α,17α-dihydroxypregnenolone to 16-hydroxy lyase products were also observed. We provide evidence for the contribution of a compound I mechanism, although contribution of a ferric peroxide pathway in the 17α,20-lyase reaction cannot be excluded. PMID:27339894

  12. Combination of improved (18)O incorporation and multiple reaction monitoring: a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer.

    PubMed

    Zhao, Yan; Jia, Wei; Sun, Wei; Jin, Wenhai; Guo, Lihai; Wei, Junying; Ying, Wantao; Zhang, Yangjun; Xie, Yongming; Jiang, Ying; He, Fuchu; Qian, Xiaohong

    2010-06-01

    Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS), which is an alternative to immunoassay methods such as ELISA and Western blotting, has been used to alleviate the bottlenecks of high-throughput verification of biomarker candidates recently. However, the inconvenience and high isotope consumption required to obtain stably labeled peptide impedes the broad application of this method. In our study, the (18)O-labeling method was introduced to generate stable isotope-labeled peptides instead of the Fmoc chemical synthesis and Qconcat recombinant protein synthesis methods. To make (18)O-labeling suitable for absolute quantification, we have added the following procedures: (1) RapiGest SF and microwave heating were added to increase the labeling efficiency; (2) trypsin was deactivated completely by chemical modification using tris(2-carboxyethyl)phosphine (TCEP) and iodoacetamide (IAA) to prevent back-exchange of (18)O to (16)O, and (3) MRM parameters were optimized to maximize specificity and better distinguish between (18)O-labeled and unlabeled peptides. As a result, the (18)O-labeled peptides can be prepared in less than 1 h with satisfactory efficiency (>97%) and remained stable for 1 week, compared to traditional protocols that require 5 h for labeling with poor stability. Excellent separation of (18)O-labeled and unlabeled peptides was achieved by the MRM-MS spectrum. Finally, through the combined improvement in (18)O-labeling with multiple reaction monitoring, an absolute quantification strategy was developed to quantitatively verify hepatocellular carcinoma-related biomarker candidates, namely, vitronectin and clusterin, in undepleted serum samples. Sample preparation and capillary-HPLC analysis were optimized for high-throughput applications. The reliability of this strategy was further evaluated by method validation, with accuracy (%RE) and precision (%RSD) of less than 20% and good linearity (r(2) > 0.99), and clinical

  13. Synthesis of ¹⁸O-labeled RNA for application to kinetic studies and imaging.

    PubMed

    Hamasaki, Tomohiro; Matsumoto, Takahiro; Sakamoto, Naoya; Shimahara, Akiko; Kato, Shiori; Yoshitake, Ayumi; Utsunomiya, Ayumi; Yurimoto, Hisayoshi; Gabazza, Esteban C; Ohgi, Tadaaki

    2013-07-01

    Radioisotopes and fluorescent compounds are frequently used for RNA labeling but are unsuitable for clinical studies of RNA drugs because of the risk from radiation exposure or the nonequivalence arising from covalently attached fluorophores. Here, we report a practical phosphoramidite solid-phase synthesis of (18)O-labeled RNA that avoids these disadvantages, and we demonstrate its application to quantification and imaging. The synthesis involves the introduction of a nonbridging (18)O atom into the phosphate group during the oxidation step of the synthetic cycle by using (18)O water as the oxygen donor. The (18)O label in the RNA was stable at pH 3-8.5, while the physicochemical and biological properties of labeled and unlabeled short interfering RNA were indistinguishable by circular dichroism, melting temperature and RNA-interference activity. The (18)O/(16)O ratio as measured by isotope ratio mass spectrometry increased linearly with the concentration of (18)O-labeled RNA, and this technique was used to determine the blood concentration of (18)O-labeled RNA after administration to mice. (18)O-labeled RNA transfected into human A549 cells was visualized by isotope microscopy. The RNA was observed in foci in the cytoplasm around the nucleus, presumably corresponding to endosomes. These methodologies may be useful for kinetic and cellular-localization studies of RNA in basic and pharmaceutical studies. PMID:23632164

  14. Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, off-axis integrated cavity output spectroscopy.

    PubMed

    Berman, Elena S F; Fortson, Susan L; Snaith, Steven P; Gupta, Manish; Baer, Douglas S; Chery, Isabelle; Blanc, Stephane; Melanson, Edward L; Thomson, Peter J; Speakman, John R

    2012-11-20

    The stable isotopes of hydrogen (δ(2)H) and oxygen (δ(18)O) in human urine are measured during studies of total energy expenditure by the doubly labeled water method, measurement of total body water, and measurement of insulin resistance by glucose disposal among other applications. An ultrasensitive laser absorption spectrometer based on off-axis integrated cavity output spectroscopy was demonstrated for simple and inexpensive measurement of stable isotopes in natural isotopic abundance and isotopically enriched human urine. Preparation of urine for analysis was simple and rapid (approximately 25 samples per hour), requiring no decolorizing or distillation steps. Analysis schemes were demonstrated to address sample-to-sample memory while still allowing analysis of 45 natural or 30 enriched urine samples per day. The instrument was linear over a wide range of water isotopes (δ(2)H = -454 to +1702 ‰ and δ(18)O = -58.3 to +265 ‰). Measurements of human urine were precise to better than 0.65 ‰ 1σ for δ(2)H and 0.09 ‰ 1σ for δ(18)O for natural urines, 1.1 ‰ 1σ for δ(2)H and 0.13 ‰ 1σ for δ(18)O for low enriched urines, and 1.0 ‰ 1σ for δ(2)H and 0.08 ‰ 1σ for δ(18)O for high enriched urines. Furthermore, the accuracy of the isotope measurements of human urines was verified to better than ±0.81 ‰ in δ(2)H and ±0.13 ‰ in δ(18)O (average deviation) against three independent isotope-ratio mass spectrometry laboratories. The ability to immediately and inexpensively measure the stable isotopes of water in human urine is expected to increase the number and variety of experiments which can be undertaken. PMID:23075099

  15. Simultaneous determination of stable isotopic compositions of nitrous oxide (δ15N and δ18O of N2O) and methane (δ13C of CH4) in nanomolar quantities from a single water sample

    NASA Astrophysics Data System (ADS)

    Hirota, A.; Tsunogai, U.; Komatsu, D. D.; Nakagawa, F.

    2010-12-01

    The stable isotopic compositions of nitrous oxide (δ15N of N2O and δ18O of N2O, respectively) and methane (δ13C of CH4) have provided us with some interesting geochemical insights. We have developed a rapid, sensitive, and automated analytical system to simultaneously determine the concentrations and stable isotopic compositions of nanomolar quantities of N2O and CH4 in the environmental water, by combining continuous-flow isotope-ratio mass spectrometry and a He-sparging system to extract and purify the dissolved gases. Our system, which is composed of a sparging bottle, a chemical trap, four cold traps and a capillary gas chromatograph that use ultra-pure helium as the carrier gas, achieves complete extraction of N2O and CH4 in a water sample and separation among N2O, CH4, and the other component gases. The flow path subsequent to gas chromatograph was periodically changed to pass the gases through the combustion furnace to convert CH4 and the other hydrocarbons into CO2, or to bypass the combustion furnace for the direct introduction of eluted N2O into the mass spectrometer, for determining the stable isotopic compositions through monitoring m/z = 44, 45, and 46, on the bases of CO2+ and N2O+, respectively. The analytical system can be operated automatically with sequential software programmed on a personal computer. The analytical precisions (the standard deviation of a single measurement) were better than 0.2‰ for δ15N of N2O and 0.3‰ for δ18O of N2O, in the case of more than 6.7 nmol N2O injection and better than 1.4‰ for δ15N of N2O and 2.6‰ for δ18O of N2O, in the case of more than 0.2 nmol N2O injection, respectively. Simultaneously, the analytical precisions were better than 0.07‰ for δ13C of CH4, in the case of more than 5.5 nmol CH4 infection and better than 2.1‰ for δ13C of CH4, when more than 0.024 nmol CH4 injection. In this manner, we can simultaneously determine stable isotopic compositions of a 120 mL water sample having

  16. Variations in [sup 18]O/[sup 16]O ratios of kaolinites within a lateritic profile: Their significance for laterite genesis and isotope paleoclimatology

    SciTech Connect

    Giral, S.; Girard, J.P.; Savin, S.M. . Dept. of Geological Sciences); Nahon, D.B. )

    1992-01-01

    The authors have made an integrated study of the field occurrence, petrology, mineralogy and crystallography, and oxygen isotope geochemistry of an active lateritic profile from about 60 km north of Manaus (Amazonia, Brazil). The parent rock is an arkosic sandstone. The delta O-18 values of kaolinites from the profile are far from uniform. The total range is about 2.4 per mil (18.7 to 21.1 per mil). The calculated delta O-18 value of kaolinite in isotopic equilibrium with local average precipitation and mean annual temperature is 19.6 per mil, within the range of the measured values. Kaolinite of each of several textural occurrences also shows significant isotopic variation both vertically and within a given horizon. Different size fractions of kaolinite of a single textural occurrence within a single horizon also exhibit differences in delta O-18 values. At depths below a few meters, they expect the temperature and the delta O-18 values of the soil water profile to be relatively uniform at any time. If this is so, the variations in delta O-18 values of the kaolinites would suggest that the formation of different populations occurred at different times. They cannot yet distinguish between variations of conditions that were seasonal and variations that occurred on scales of many years. However, it is most important to resolve the causes of these variations before using the delta O-18 values of soil clays for purposes of paleoclimatic reconstruction.

  17. Simplified synthesis of isotopically labeled 5,5-dimethyl-pyrroline N-oxide.

    PubMed

    Leinisch, Fabian; Jiang, Jinjie; Deterding, Leesa J; Mason, Ronald P

    2011-01-01

    5,5-Dimethylpyrroline N-oxide (15N) and 5,5-di(trideuteromethyl)pyrroline N-oxide were synthesized from the respective isotopically labeled 2-nitropropane analogs obtained from the reaction of sodium nitrate with 2-halopropanes. This facile, straightforward process allows synthesizing isotopically labeled DMPO analogs in a 4-step reaction without special equipment. PMID:21986521

  18. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics

    SciTech Connect

    Qian, Weijun; Petritis, Brianne O.; Nicora, Carrie D.; Smith, Richard D.

    2011-07-01

    Stable isotope labeling based on relative peptide/protein abundance measurements is commonly applied for quantitative proteomics. Recently, trypsin-catalyzed oxygen-18 labeling has grown in popularity due to its simplicity, cost-effectiveness, and its ability to universally label peptides with high sample recovery. In (18)O labeling, both C-terminal carboxyl group atoms of tryptic peptides can be enzymatically exchanged with (18)O, thus providing the labeled peptide with a 4 Da mass shift from the (16)O-labeled sample. Peptide (18)O labeling is ideally suited for generating a labeled "universal" reference sample used for obtaining accurate and reproducible quantitative measurements across large number of samples in quantitative discovery proteomics.

  19. Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, Off-Axis Integrated Cavity Output Spectroscopy

    PubMed Central

    Berman, Elena S.F.; Fortsona, Susan L.; Snaith, Steven P.; Gupta, Manish; Baer, Douglas S.; Chery, Isabelle; Blanc, Stephane; Melanson, Edward L.; Thomson, Peter J; Speakman, John R.

    2012-01-01

    The stable isotopes of hydrogen (δ2H) and oxygen (δ18O) in human urine are measured during studies of total energy expenditure by the doubly labeled water method, measurement of total body water, and measurement of insulin resistance by glucose disposal among other applications. An ultrasensitive laser absorption spectrometer based on off-axis integrated cavity output spectroscopy was demonstrated for simple and inexpensive measurement of stable isotopes in natural isotopic abundance and isotopically enriched human urine. Preparation of urine for analysis was simple and rapid (approx. 25 samples per hour), requiring no decolorizing or distillation steps. Analysis schemes were demonstrated to address sample-to-sample memory while still allowing analysis of 45 natural or 30 enriched urine samples per day. The instrument was linear over a wide range of water isotopes (δ2H = −454 to +1702 ‰ and δ18O= −58.3 to +265 ‰). Measurements of human urine were precise to better than 0.65 ‰ 1σ for δ2H and 0.09 ‰ 1σ for δ18O for natural urines, 1.1 ‰ 1σ for δ2H and 0.13 ‰ 1σ for δ18O for low enriched urines, and 1.0 ‰ 1σ for δ2H and 0.08 ‰ 1σ for δ18O for high enriched urines. Furthermore, the accuracy of the isotope measurements of human urines was verified to better than ±0.81 ‰ in δ2H and ±0.13 ‰ in δ18O (average deviation) against three independent IRMS laboratories. The ability to immediately and inexpensively measure the stable isotopes of water in human urine is expected to increase the number and variety of experiments which can be undertaken. PMID:23075099

  20. Water-Isotopes (2H, 3H, 18O) to trace the source and timing of recharge in a fractured granite aquifer in Western Kenya, Africa

    NASA Astrophysics Data System (ADS)

    Kralik, Martin; Whylidal, Stefan; Asunah, Francis; Sültenfuß, Jürgen

    2014-05-01

    The Vihiga District in West Kenya North-West of Lake Victoria is one of the most densely populated areas in Kenya with 1033 person per square kilometer. To find the most suitable location of an own well for a Primary School in this district, springs, school wells and creeks were sampled in the surroundings to get information about the hydrological cycle in the area. The Waluka Primary school (0.02134°N, 34.64311°E) is situated on the northern slope of the Maragoli Hills 20 km to the North-West of the Nyanzan provincial capital of Kisumu at the eastern shore of Lake Victoria. The hilly relief varies between 1535 - 1675m. The yearly precipitation is between 1200-1600 mm/a (23°C mean temperature) with biannual rainy seasons in which the long rains are generally from March to May as the Inter-Tropical Convergence Zone (ITCZ) moves northwards, and the short rains are typically from October to December as the ITCZ retreats southwards. A lateritic soil covers a thin alteration zone above the Precambrian Maragoli-Granite (Saggerson, 1952). Water circulates either in the thin alteration zone or in fault zones cutting through the Precambrian granite. From discharge measurements of two springs and a creek at the end of the dry season (February 2012) a minimum discharge of ca. 10-20 L/s km2 (300-600 mm) can be estimated. The water is of the alkaline sulfate-nitrate type with low mineralization (70-150 μ S/cm, 25°C) and a low pH of about 5 to 6. The delta oxygen-18 and deuterium value ranges between -2.84 to -1.98 oand -8.5 to - 3.9 o(VSMOW). The deuterium excess ranges from 11.7-14.2 oThe water of one spring and well close to the school have a tritium content of 1.42 - 1.62 TU. All groundwater has a low arsenium, fluorine and uranium content, which had only a short soil passage. The relatively elevated, but not problematic content in nitrate (10 - 16 mg/L) probaly reflects the intensive agricultural activities in this area. As the mean δ 18O values during the rainy

  1. Multi-Proxy Palaeothermometry (δ18O, Mg/Ca, clumped isotopes) of Mid-Cretaceous Rudist Bivalves: Deciphering Stratigraphic and Seasonal Changes in Shallow-Marine Sea-Surface Temperature

    NASA Astrophysics Data System (ADS)

    Huck, S.; Steuber, T.; Bernasconi, S. M.; Heimhofer, U.

    2014-12-01

    The Cretaceous period is generally considered to have been a time of warm climate, but there is an on-going dispute about the existence of cool interludes - including the short-termed installation of polar ice caps. Mid-Cretaceous shoal-water ecosystems have been proven to show characteristic response modes (e.g., microencruster-blooms) to major climatic and environmental changes related to oceanic anoxic events (OAEs), times of widespread pelagic organic matter burial. Some biotic changes predate OAE1a by few 100kyrs, an observation that is in favour of gradual and pulsed volcanic CO2-outgassing as main trigger of this event. We aim at reconstructing the evolution of Barremian-Aptian sea-surface temperatures (SSTs) and SST seasonalities in the prelude, during and in the aftermath of OAE1a. The outer low-Mg calcite-shell layer of rudist bivalves (e.g., Toucasia), collected at carbonate platform settings in the (sub-)tropical Tethyan realm (France, Croatia, Spain), serves both as chemostratigraphic and palaeoclimatic archive. Sclerochronological variations in isotopic18O, δ13C, Mg/Ca, clumped isotopes) and geochemical composition (Sr, Fe, Mn, Ba, Ca/Mg) provide insights into seasonal and long-term palaeoclimatic and palaeoenvironmental changes. The outcome of this work will be of significance both for those studying the triggering factors of oceanic anoxic events and the palaeoecology of rudist bivalves.

  2. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ(15)N and δ(18)O values and an isotope mixing model.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Sun, Feixiang; Sun, Jichao; Liu, Jingtao; Ouyang, Zhiyun

    2015-12-01

    Nitrate contamination in surface water has become an environmental problem widespread concern. In this study, environmental isotopes (δ(15)N-NO3 (-) and δ(18)O-NO3 (-)) and the chemical compositions of water samples from an urban river in Chongqing, China, were analyzed to evaluate the primary sources of nitrate pollution. A Bayesian isotope mixing model was applied to estimate the relative contributions of five potential NO3 (-) sources to river pollution (sewage/manure, soil N, NH4 (+) in fertilizer and precipitation, NO3 (-) fertilizer, and NO3 (-) in precipitation). The results show that the urban river was affected by NO3 (-) pollution from multiple sources. The major sources of NO3 (-) pollution in the dry season were sewage/manure (38-50 %) and soil N (22-26 %); in the wet season, the major sources of NO3 (-) pollution were sewage/manure (30-37 %), soil N (16-25 %), and precipitation (14-24 %). The higher contribution of N to the river water by precipitation indicates that atmospheric N deposition has become an important source of pollution in surface water in China. We conclude that domestic sewage is still the main contributor to NO3 (-) pollution in urban rivers in China. The discharge of domestic sewage into rivers should be prohibited as a priority measure to prevent NO3 (-) contamination. PMID:26527336

  3. Using phylogenetic probes for quantification of stable isotope labeling and microbial community analysis

    DOEpatents

    Brodie, Eoin L; DeSantis, Todd Z; Karaoz, Ulas; Andersen, Gary L

    2014-12-09

    Herein is described methods for a high-sensitivity means to measure the incorporation of stable isotope labeled substrates into RNA following stable isotope probing experiments (SIP). RNA is hybridized to a set of probes such as phylogenetic microarrays and isotope incorporation is quantified such as by secondary ion mass spectrometer imaging (NanoSIMS).

  4. Analysis of accurate 13C and 18O isotope measurements of CO2 in CARIBIC aircraft air samples from the tropical troposphere, and the upper troposphere/lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Assonov, S. S.; Brenninkmeijer, C. A. M.; Schuck, T. J.; Taylor, P.

    2010-03-01

    The project CARIBIC (http://caribic-atmospheric.com) aims to study atmospheric chemistry and transport by regularly measuring many compounds in the free troposphere (FT) and the upper troposphere/lowermost stratosphere (UT/LMS) by using passenger aircraft. Here CO2 concentrations and highly accurate isotope results are presented in detail together with supporting trace gas data. 509 CARIBIC-2 samples (highest precision and accuracy δ13C(CO2) and δ18O(CO2) data) from June 2007 until March 2009, together with CARIBIC-1 samples (flights between November 1999 and April 2002, 350 samples in total, 270 for NH, mostly δ13C(CO2) data) give a fairly extensive, unique data set for the NH free troposphere and the UT/LMS region. To compare data from different years a de-trending is applied. In the UT/LMS region δ13C(CO2), δ18O(CO2) and CO2 are found to correlate well with stratospheric tracers, in particular N2O. These correlations are in good agreement with current understanding of stratospheric circulation. δ18O(CO2) appears to be a useful, hitherto unused, tracer of atmospheric transport in the UT/LMS region. By filtering out the LMS data (based on N2O distribution), the isotope variations for the free and upper troposphere are obtained. These show however little latitudinal gradient, if any, and are in good agreement with the data of selected NOAA stations in NH tropics. Correlations between δ13C(CO2) and CO2 are observed both within single flight(s) covering long distances and for certain seasons. The overall variability in de-trended δ13C(CO2) and CO2 for CARIBIC-1 and CARIBIC-2 are similar and basically agree with each other, which also underscores the high quality of measurement. Based on all correlations, we discuss that CO2 distribution in the NH FT and UT (at CARIBIC flight routes) is regulated by uplift and pole-wards transport of tropical air up to approximately 50° N. The main reasons for

  5. Analysis of 13C and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper troposphere/lower stratosphere mixing and the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Assonov, S. S.; Brenninkmeijer, C. A. M.; Schuck, T. J.; Taylor, P.

    2010-09-01

    The project CARIBIC (http://caribic-atmospheric.com) aims to study atmospheric chemistry and transport by regularly measuring many compounds in the free troposphere and the upper troposphere/lowermost stratosphere (UT/LMS) by using passenger aircraft. Here we present CO2 concentrations and isotope results, and analyze the data together with supporting trace gas data. 509 CARIBIC-2 samples (highest precision and accuracy δ13C(CO2) and δ18O(CO2) data) from June 2007 until March 2009, together with CARIBIC-1 samples (flights between November 1999 and April 2002, 350 samples in total, 270 for NH, mostly δ13C(CO2) data) give a fairly extensive, unique data set for the NH free troposphere and the UT/LMS region. Total uncertainty of the data is the same as reported for the global monitoring program by NOAA-ESRL. To compare data from different years a de-trending is applied. In the UT/LMS region δ13C(CO2), δ18O(CO2) and CO2 are found to correlate well with stratospheric tracers, in particular N2O; δ18O(CO2) appears to be a useful, hitherto unused, tracer of atmospheric transport in the UT/LMS region and also inter-hemispheric mixing. By filtering out the LMS data (based on N2O distributions), the isotope variations for the free and upper troposphere are obtained. These variations have only small latitudinal gradients, if any, and are in good agreement with the data of selected NOAA stations in NH tropics. Correlations between δ13C(CO2) and CO2 are observed both within single flight(s) covering long distances and during certain seasons. The overall variability in de-trended δ13C(CO2) and CO2 for CARIBIC-1 and CARIBIC-2 are similar and are generally in agreement, which underscores agreement between high and low resolution sampling. Based on all correlations, we infer that the CO2 distribution in the NH troposphere along CARIBIC flight routes is chiefly regulated by uplift and pole-wards transport of

  6. SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards

    PubMed Central

    Basu, Sankha S; Blair, Ian A

    2013-01-01

    Stable isotope labeling by essential nutrients in cell culture (SILEC) was recently developed to generate isotopically labeled coenzyme A (CoA) and short-chain acyl-CoA thioesters. This was accomplished by modifying the widely used technique of stable isotope labeling by amino acids in cell culture to include [13C315N]-pantothenate (vitamin B5), a CoA precursor, instead of the isotopically labeled amino acids. The lack of a de novo pantothenate synthesis pathway allowed for efficient and near-complete labeling of the measured CoA species. This protocol provides a step-by-step approach for generating stable isotope-labeled short-chain acyl-CoA internal standards in mammalian and insect cells as well as instructions on how to use them in stable isotope dilution mass spectrometric-based analyses. Troubleshooting guidelines, as well as a list of unlabeled and labeled CoA species, are also included. This protocol represents a prototype for generating stable isotope internal standards from labeled essential nutrients such as pantothenate. The generation and use of SILEC standards takes approximately 2–3 weeks. PMID:22157971

  7. Isotope-labeling of the fibril binding compound FSB via a Pd-catalyzed double alkoxycarbonylation.

    PubMed

    Burhardt, Mia N; Taaning, Rolf; Nielsen, Niels Chr; Skrydstrup, Troels

    2012-06-15

    We have synthesized two isotopically labeled variants of the β-amyloid binding compound FSB possessing (13)C-labels on the two terminal aryl carboxylic acid moieties. One of these was also fully deuterated on the olefinic spacers. The (13)C-isotope labeling was achieved applying a Pd-catalyzed methoxycarbonylation of the corresponding aryl chlorides with externally (ex situ) generated (13)C-labeled CO. Application of the Shirakawa-Hayashi protocol for the Pd-catalyzed reduction of a dialkyne intermediate using D(2)O allowed for the selective deuterium labeling of the two trans-C,C double bonds of FSB. PMID:22612598

  8. Conifers, Angiosperm Trees, and Lianas: Growth, Whole-Plant Water and Nitrogen Use Efficiency, and Stable Isotope Composition (δ13C and δ18O) of Seedlings Grown in a Tropical Environment1[W][OA

    PubMed Central

    Cernusak, Lucas A.; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L.

    2008-01-01

    Seedlings of several species of gymnosperm trees, angiosperm trees, and angiosperm lianas were grown under tropical field conditions in the Republic of Panama; physiological processes controlling plant C and water fluxes were assessed across this functionally diverse range of species. Relative growth rate, r, was primarily controlled by the ratio of leaf area to plant mass, of which specific leaf area was a key component. Instantaneous photosynthesis, when expressed on a leaf-mass basis, explained 69% of variation in r (P < 0.0001, n = 94). Mean r of angiosperms was significantly higher than that of the gymnosperms; within angiosperms, mean r of lianas was higher than that of trees. Whole-plant nitrogen use efficiency was also significantly higher in angiosperm than in gymnosperm species, and was primarily controlled by the rate of photosynthesis for a given amount of leaf nitrogen. Whole-plant water use efficiency, TEc, varied significantly among species, and was primarily controlled by ci/ca, the ratio of intercellular to ambient CO2 partial pressures during photosynthesis. Instantaneous measurements of ci/ca explained 51% of variation in TEc (P < 0.0001, n = 94). Whole-plant 13C discrimination also varied significantly as a function of ci/ca (R2 = 0.57, P < 0.0001, n = 94), and was, accordingly, a good predictor of TEc. The 18O enrichment of stem dry matter was primarily controlled by the predicted 18O enrichment of evaporative sites within leaves (R2 = 0.61, P < 0.0001, n = 94), with some residual variation explained by mean transpiration rate. Measurements of carbon and oxygen stable isotope ratios could provide a useful means of parameterizing physiological models of tropical forest trees. PMID:18599645

  9. Water mass provenance and mixing in the Fram Strait, Arctic Ocean - Multi-proxy evidence from dissolved Nd isotopes, REEs, Ba, nutrients, and δ18O

    NASA Astrophysics Data System (ADS)

    Laukert, G.; Frank, M.; Hathorne, E. C.; Bauch, D.; Wegner, C.; Cao, Z.; Zieringer, M.; Andersen, N.; Kassens, H.

    2014-12-01

    Dissolved radiogenic Nd isotopes (ɛNd), rare earth element (REE), Ba, and nutrient concentrations combined with oxygen isotopes retrieved along a section between Spitsbergen and Greenland at approximately 79°N during the ARK XXVII/1 cruise in 2012 were measured to characterize the origin and mixing of the water masses in the Fram Strait. Deep waters below 500 m are nearly constant in Nd concentration (CNd) around 16 pmol/kg and ɛNd signatures range from -9.5±0.2 to -10.9±0.2. The heavy REE to light REE ratio (HREE/LREE) ranges from 4 to 5. Ba concentrations range from 47 to 58 nmol/kg, increasing slightly with depth. These homogeneous signatures do not allow identification of distinct deep water masses. The upper 500 m of the water column close to the Western Svalbard margin including the shelf is relatively warm and saline (T ≤ 5.5°C, S ≤ 35.1) and shares characteristics of Atlantic Water (AW) including low CNd (~15 pmol/kg) and relatively unradiogenic ɛNd signatures (-12.2±0.2). This water is also characterized by HREE/LREE around 4 and CBa around 50 nmol/kg. Low salinity surface waters on the East Greenland shelf have unradiogenic ɛNd signatures similar to AW (-12.4±0.3) but in contrast to AW high CNd of up to 37 pmol/kg. At the same time the HREE/LREE ratio is relatively low (~3.5) and CBa reaches 73 nmol/kg. This suggests a significant freshwater contribution either from the McKenzie or the Lena rivers. Eastwards of these freshwater-influenced waters (at ~5°W), admixture of a Pacific component characterized by a more radiogenic ɛNd (-8.8±0.2) and high nutrient concentrations outcropping at surface was detected. Waters of the same origin are present on the East Greenland shelf at about 150 m depth. Based on these data we use mass balance calculations to determine the fractions of sea ice meltwater, Eurasian run-off, North American run-off, and Arctic seawater and compare these results with our ɛNd and REE data.

  10. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    SciTech Connect

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  11. 18O enrichment in phosphorus pools extracted from soybean leaves.

    PubMed

    Pfahler, Verena; Dürr-Auster, Thilo; Tamburini, Federica; Bernasconi, M Stefano; Frossard, Emmanuel

    2013-01-01

    The objective of this study was to investigate the isotopic composition of oxygen bound to phosphate (δ(18)O-PO(4)) in different phosphorus (P) pools in plant leaves. As a model plant we used soybean (Glycine max cv Toliman) grown in the presence of ample P in hydroponic cultures. The leaf blades were extracted with 0.3 M trichloroacetic acid (TCA) and with 10 M nitric acid. These extractions allowed measurement of the TCA-soluble reactive P (TCA P) that is rapidly cycled within the cell and the total leaf P. The difference between total leaf P and TCA P yielded the structural P which includes organic P compounds not extractable by TCA. P uptake and its translocation and transformation within the soybean plants lead to an (18)O enrichment of TCA P (δ(18)O-PO(4) between 16.9 and 27.5‰) and structural P (δ(18)O-PO(4) between 42.6 and 68.0 ‰) compared with 12.4‰ in the phosphate in the nutrient solution. δ(18)O values of phosphate extracted from soybean leaves grown under optimal conditions are greater than the δ(18)O-PO(4) values of the provided P source. Furthermore, the δ(18)O-PO(4) of TCA P seems to be controlled by the δ(18)O of leaf water and the activity of inorganic pyrophosphatase or other pyrophosphatases. PMID:23106517

  12. Glacial-interglacial shifts in global and regional precipitation δ18O

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Lechler, A.; Pausata, F. S. R.; Fawcett, P. J.; Gleeson, T.; Cendón, D. I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; Welker, J. M.; Werner, M.; Yoshimura, K.

    2015-03-01

    Previous analyses of past climate changes have often been based on site-specific isotope records from speleothems, ice cores, sediments and groundwaters. However, in most studies these dispersed records have not been integrated and synthesized in a comprehensive manner to explore the spatial patterns of precipitation isotope changes from the last ice age to more recent times. Here we synthesize 88 globally-distributed groundwater, cave calcite, and ice core isotope records spanning the last ice age to the late-Holocene. Our data-driven review shows that reconstructed precipitation δ18O changes from the last ice age to the late-Holocene range from -7.1‰ (ice age δ18O < late-Holocene δ18O) to +1.8‰ (ice age δ18O > late-Holocene δ18O) with wide regional variability. The majority (75%) of reconstructions have lower ice age δ18O values than late-Holocene δ18O values. High-magnitude, negative glacial-interglacial precipitation δ18O shifts (ice age δ18O < late-Holocene δ18O by more than 3‰) are common at high latitudes, high altitudes and continental interiors. Conversely, lower-magnitude, positive glacial-interglacial precipitation δ18O shifts (ice age δ18O > late-Holocene δ18O by less than 2‰) are most common along subtropical coasts. Broad, global patterns of glacial-interglacial precipitation δ18O shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles. Further, to complement our synthesis of proxy-record precipitation δ18O, we compiled isotope enabled general circulation model simulations of recent and last glacial maximum climate states. Simulated precipitation δ18O from five general circulation models show better inter-model and model-observation agreement in the sign of δ18O changes from the last ice age to present day in temperate and polar regions than in the tropics. Further model precipitation

  13. Coupling of continuous in situ ecosystem water vapor, precipitation, plant and soil water isotope (δ2H, δ18O and d-excess) measurements in Arctic Alaska to understand a changing water cycle

    NASA Astrophysics Data System (ADS)

    Welker, J. M.; Klein, E. S.; Leffler, J.; Cherry, J. E.; Young, J. M.

    2013-12-01

    A changing Arctic water cycle is focusing our efforts on the patterns and processes governing the exchange of water between the land surface and the atmosphere. We initiated a NSF EAGER study of the changing Arctic water cycle with a cross-scale water isotope (ecosystem-landscape and region) study employing tower, aircraft and satellite measurements in N Alaska. At the land surface, we measured in situ, continuous ecosystem δ2H and δ18O in water vapor isotopes along a vertical profile (0.1 to 3 m) in late winter, spring, and summer of 2013 at the Toolik Lake Field Station in Arctic Alaska. The continuous water vapor measurements are being combined with soil, plant and precipitation water isotope measurements, and species-level transpiration rates. Diurnal patterns of δ2H values in water vapor vary systematically from the soil surface, through the plant canopy and in the near boundary layer ranging between -200 ‰ at the surface to -240 ‰ at 3 m. These vertical patterns were also observed in d-excess ranging from 5 ‰ near the soil surface to -15 ‰ at 3 m. These patterns disappeared at night indicating their link with evapotranspiration. These data will serve as the foundation for a Bayesian model to articulate the sources, species, and processes governing the exchange of H2O with the lower boundary layer; and will also help to calibrate ecosystem, landscape (aircraft) and regional (satellite) measurements of the water vapor isotopes above different vegetation types (tussock tundra, riparian tundra, and recently burned tundra) and regions (Northern Foothills of the Brooks Range and the Arctic Coastal Plain). Continuous water vapor isotope traits in Arctic Tundra from the soil surface (0.02 m) to 3 m above the tundra for a window of time during the 2013 growing season. The diurnal patterns depict the evidence for transpiration and evaporation as the values above the soil (0.02 m) and in the canopy (0.2m) are enriched during the day and become depleted during

  14. NMR studies of two spliced leader RNAs using isotope labeling

    SciTech Connect

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  15. Survey of groundwater isotopic composition (δ2H and δ18O) from the southwestern Edwards Aquifer and regionally associated aquifers

    NASA Astrophysics Data System (ADS)

    West, J. B.; Shallock, J. R.; Cooper, R.

    2009-12-01

    Aquifers are an important source of water for growing human populations, while they also support numerous critical ecosystem functions, including supplying water to springs and rivers necessary for terrestrial and aquatic ecosystems and the sometimes endangered species that are part of them. As human populations increase and the climate changes, demands on aquifer resources will continue to increase. To support these growing populations, urban areas in particular seek to develop additional water resources with, in some cases, not well-understood impacts on interconnected aquifers as well as the terrestrial and aquatic ecosystems that depend on spring-fed surface water. In addition, large-scale changes to terrestrial systems (e.g., removal of woody vegetation) can be motivated by a desire to enhance aquifer recharge, but an understanding of the effect of those efforts on the regional water cycle is hampered, in part, by a lack of detailed understanding of the interactions of various features below ground. It is critical therefore to understand the relationships between waters found in different formations, as well as among surface and ground waters to improve our understanding of the consequences of increasing human demands and the impacts of climate change. We have conducted a survey of wells in south central Texas that access major and minor aquifers, including the karst-type Edwards (BFZ) aquifer and several regional minor aquifers. The primary objective of this survey was to establish baseline information from which to develop further targeted research using event-based sampling and a range of additional data on precipitation, geology, and other spatially explicit information. We sampled multiple wells in an area west of San Antonio, TX that access the primary major and minor aquifers in the region. The isotopic compositions of water taken from these wells at various locations and depths were similar, suggesting that these aquifers experience significant mixing

  16. Mobile, outdoor continuous-flow isotope-ratio mass spectrometer system for automated high-frequency 13C- and 18O-CO2 analysis for Keeling plot applications.

    PubMed

    Schnyder, Hans; Schäufele, Rudi; Wenzel, Richard

    2004-01-01

    A continuous-flow isotope-ratio mass spectrometer (CF-IRMS, custom-made GasBenchII and Delta(plus)Advantage, ThermoFinnigan) was installed on a grassland site and interfaced with a closed-path infrared gas analyser (IRGA). The CF-IRMS and IRGA were housed in an air-conditioned travel van. Air was sampled at 1.5 m above the 0.07-m tall grassland canopy, drawn through a 17-m long PTFE tube at a rate of 0.25 L s(-1), and fed to the IRGA and CF-IRMS in series. The IRMS was interfaced with the IRGA via a stainless steel capillary inserted 0.5 m into the sample air outlet tube of the IRGA (forming an open split), a gas-tight pump, and a sample loop attached to the eight-port Valco valve of the continuous-flow interface. Air was pumped through the 0.25-mL sample loop at 10 mL s(-1) (a flushing frequency of 40 Hz). Air samples were analysed at intervals of approx. 2.8 min. Whole system precision was tested in the field using air mixed from pure CO2 and CO2-free air by means of mass flow controllers. The standard deviation of repeated single measurements was 0.21-0.07 per thousand for delta13C and 0.34-0.14 per thousand for delta18O of CO2 in air with mixing ratios ranging between 200-800 micromol mol(-1). The CO2 peak area measured by the IRMS was proportional to the CO2 mixing ratio (r2 = 1.00), allowing estimation of sample air CO2 mixing ratio from IRMS data. A 1-day long measurement cycle of CO2, delta13C and delta18O of air sampled above the grassland canopy was used to test the system for Keeling plot applications. Delta18O exhibited a clear diurnal cycle (4 per thousand range), but short-term (1-h interval) variability was small (average SD 0.38 per thousand). Yet, the correlation between delta18O and CO2 mixing ratio was relatively weak, and this was true for both the whole data set and 1-h subsets. Conversely, the delta13C of all 541 samples measured during the 25.2-h interval fitted well the Keeling regression (r2 = 0.99), yielding an intercept of -27.40 per

  17. Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos.

    PubMed

    McDougall, Melissa Q; Choi, Jaewoo; Stevens, Jan F; Truong, Lisa; Tanguay, Robert L; Traber, Maret G

    2016-08-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E-) or with added α-tocopherol (E+, 500mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E- and E+ embryos. The E- compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E- compared with E+ embryos at 24, 48, 72, and 120hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E- at all time-points. Additionally, H2(18)O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E- compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E- embryos. PMID:26774753

  18. Multiplexed DNA sequencing and diagnostics by hybridization with enriched stable isotope labels

    SciTech Connect

    Arlinghaus, H.F.; Kwoka, M.N.; Guo, X.Q.; Jacobson, K.B.

    1997-04-15

    A new DNA diagnostic and sequencing system has been developed that uses time-of-flight resonance ionization mass spectrometry (TOF-RIMS) to provide a rapid method of analyzing stable isotope-labeled oligonucleotides in form 1 sequencing by hybridization (SBH). With form 1, the DNA is immobilized on a nylon membrane and enriched isotope-labeled individual oligonucleotide probes are free to seek out complementary DNAs during hybridization. The major advantage of this new approach is that multiple oligonucleotides can be labeled with different enriched isotopes and can all be simultaneously hybridized to the genosensor matrix. The probes can then be simultaneously detected with TOF-RIMS with high selectivity, sensitivity, and efficiency. By using isotopically enriched tin labels, up to 10 labeled oligonucleotides could be examined in a single hybridization to the DNA matrix. Greater numbers of labels are available if rare earth isotopes are employed. In the present study, matrices containing three different DNAs were prepared and simultaneously hybridized with two different probes under a variety of conditions. The results show that DNAs, immobilized on nylon surfaces, can be specifically hybridized to probes labeled with different enriched tin isotopes. Discrimination between complementary and noncomplementary sites of better than 100 was obtained in multiplexed samples. 34 refs., 5 figs.

  19. Application of {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C isotopes to diagenesis correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani field, Tunisia

    SciTech Connect

    Mearns, E.W.; McBride, J.J.; Bramwell, M.

    1996-12-31

    Oil is produced primarily from open fracture porosity in Upper Cretaceous chalk in the Sidi El Kilani oil field. Strontium Stratigraphy analyses of primary, unaltered matrix chalk has confirmed a Campanian to Maastrichtian age and has allowed dating of the reservoir with a resolution of {+-}1 Ma. This has facilitated reservoir correlation and has indicated where section is missing in certain wells due to faulting. {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C analyses suggest an early generation of fracture fill calcite cement may have formed by redistribution of CaCO{sub 3} from underlying carbonate sequences at temperatures in the region 35-55{degrees}C. Calcite cemented fractures tend to be healed and are not productive. Strontium Isotope Residual Salt Analyses (SrRSA) conducted on core, provide information on the formation water chemistry and reservoir connectivity at the time of oil filling. These data suggest that the NW-SE trending fault system that bisects the field is sealed across much of the fault plane. The main oil pool lies SW of the fault. A later generation of dolomite and barite cements, associated with productive open fractures, have Sr-O-C composition consistent with precipitation from fluids circulating at the time of hydrocarbon charge at temperatures close to current reservoir conditions of 70-75{degrees}C. Predicting the distribution of dolomite cemented open fractures has thus helped guide the development strategy of the field.

  20. Application of [sup 87]Sr/[sup 86]Sr, [delta][sup 18]O and [delta][sup 13]C isotopes to diagenesis correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani field, Tunisia

    SciTech Connect

    Mearns, E.W.; McBride, J.J. ); Bramwell, M.

    1996-01-01

    Oil is produced primarily from open fracture porosity in Upper Cretaceous chalk in the Sidi El Kilani oil field. Strontium Stratigraphy analyses of primary, unaltered matrix chalk has confirmed a Campanian to Maastrichtian age and has allowed dating of the reservoir with a resolution of [+-]1 Ma. This has facilitated reservoir correlation and has indicated where section is missing in certain wells due to faulting. [sup 87]Sr/[sup 86]Sr, [delta][sup 18]O and [delta][sup 13]C analyses suggest an early generation of fracture fill calcite cement may have formed by redistribution of CaCO[sub 3] from underlying carbonate sequences at temperatures in the region 35-55[degrees]C. Calcite cemented fractures tend to be healed and are not productive. Strontium Isotope Residual Salt Analyses (SrRSA) conducted on core, provide information on the formation water chemistry and reservoir connectivity at the time of oil filling. These data suggest that the NW-SE trending fault system that bisects the field is sealed across much of the fault plane. The main oil pool lies SW of the fault. A later generation of dolomite and barite cements, associated with productive open fractures, have Sr-O-C composition consistent with precipitation from fluids circulating at the time of hydrocarbon charge at temperatures close to current reservoir conditions of 70-75[degrees]C. Predicting the distribution of dolomite cemented open fractures has thus helped guide the development strategy of the field.

  1. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics.

    PubMed

    Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A

    2014-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover. PMID:24952180

  2. Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    NASA Astrophysics Data System (ADS)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-10-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C and δ18O to disentangle the potential times needed to transfer carbohydrates produced by photosynthesis down to trunk, roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. We have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consecutive days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Other non-biological causes like diffusion fractionation and advection induced by gas withdrawn from the measurement chamber complicate data interpretation on this step of C transfer path. Nevertheless, it was possible to identify the speed of carbohydrates' translocation from the point of assimilation to the trunk breast height because leaf-imprinted enrichment of δ18O in soluble sugars was less modified along the downward transport and was well related to environmental parameters potentially linked to stomatal conductance. The speed of carbohydrates translocation from the site of assimilation to the trunk

  3. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture

    PubMed Central

    Snyder, Nathaniel W.; Tombline, Gregory; Worth, Andrew J.; Parry, Robert C.; Silvers, Jacob A.; Gillespie, Kevin P.; Basu, Sankha S.; Millen, Jonathan; Goldfarb, David S.; Blair, Ian A.

    2015-01-01

    Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and β-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the gold standard for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope labeled metabolites such as acyl-coenzyme A thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell media with commercially available [13C3 15N1]-pantothenic acid, mammalian cells exclusively incorporated [13C3 15N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope labeled CoA and acyl-CoAs from [13C3 15N1]-pantothenate using Stable Isotope Labeling by Essential nutrients in Cell culture (SILEC) in Pan6 deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof-of-concept for generating other labeled metabolites in yeast mutants. PMID:25572876

  4. Synthesis of isotopically labelled 2-isopropylthioxanthone from 2,2'-dithiosalicylic acid and deuterium cumene.

    PubMed

    Fang, Chao; Yang, Weicheng; Yang, Chao; Wang, Haoran; Sun, Kai; Luo, Yong

    2016-06-30

    Two efficient synthetic routes of stable deuterium labelled 2-isopropylthioxanthone were presented with 98.1% and 98.8% isotopic abundance in acceptable yields and excellent chemical purities. Their structures and the isotope-abundance were confirmed according to proton nuclear magnetic resonance and liquid chromatography-mass spectrometry. PMID:27123759

  5. Open system sulphate reduction in a diagenetic environment - Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada

    NASA Astrophysics Data System (ADS)

    Magnall, J. M.; Gleeson, S. A.; Stern, R. A.; Newton, R. J.; Poulton, S. W.; Paradis, S.

    2016-05-01

    Highly positive δ34S values in sulphide minerals are a common feature of shale hosted massive sulphide deposits (SHMS). Often this is attributed to near quantitative consumption of seawater sulphate, and for Paleozoic strata of the Selwyn Basin (Canada), this is thought to occur during bacterial sulphate reduction (BSR) in a restricted, euxinic water column. In this study, we focus on drill-core samples of sulphide and barite mineralisation from two Late Devonian SHMS deposits (Tom and Jason, Macmillan Pass, Selwyn Basin), to evaluate this euxinic basin model. The paragenetic relationship between barite, pyrite and hydrothermal base metal sulphides has been determined using transmitted and reflected light microscopy, and backscatter electron imaging. This petrographic framework provides the context for in-situ isotopic microanalysis (secondary ion mass spectrometry; SIMS) of barite and pyrite. These data are supplemented by analyses of δ34S values for bulk rock pyrite (n = 37) from drill-core samples of un-mineralised (barren), siliceous mudstone, to provide a means by which to evaluate the mass balance of sulphur in the host rock. Three generations of barite have been identified, all of which pre-date hydrothermal input. Isotopically, the three generations of barite have overlapping distributions of δ34S and δ18O values (+22.5‰ to +33.0‰ and +16.4‰ to +18.3‰, respectively) and are consistent with an origin from modified Late Devonian seawater. Radiolarian tests, enriched in barium, are abundant within the siliceous mudstones, providing evidence that primary barium enrichment was associated with biologic activity. We therefore propose that barite formed following remobilisation of productivity-derived barium within the sediment, and precipitated within diagenetic pore fluids close to the sediment water interface. Two generations of pyrite are texturally associated with barite: framboidal pyrite (py-I), which has negative δ34S values (-23‰ to -28

  6. Efficient and selective isotopic labeling of hemes to facilitate the study of multiheme proteins

    SciTech Connect

    Fonseca, Bruno M.; Tien, Ming; Rivera, Mario; Shi, Liang; Louro, Ricardo O.

    2012-04-02

    Specific isotopic labeling of hemes provides a unique opportunity to characterize the structure and function of heme-proteins. Unfortunately, present day methods do not allow efficient labeling in high yields of multiheme cytochromes c, which are of great biotechnological interest. Here, a method for production of recombinant multiheme cytochromes c in Escherichia coli with isotopically labeled hemes is reported. A small tetraheme cytochrome of 12 kDa from Shewanella oneidensis MR-1 was used to demonstrate the method, achieving a production of 4 mg of pure protein per liter. This method achieves, in a single step, efficient expression and incorporation of hemes isotopically labeled in specific atom positions adequate for spectroscopic characterization of these complex heme proteins. It is, furthermore, of general application to heme proteins opening new possibilities in the characterization of this important class of proteins.

  7. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins.

    PubMed

    Kerfah, Rime; Plevin, Michael J; Sounier, Remy; Gans, Pierre; Boisbouvier, Jerome

    2015-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a uniquely powerful tool for studying the structure, dynamics and interactions of biomolecules at atomic resolution. In the past 15 years, the development of new isotopic labeling strategies has opened the possibility of exploiting NMR spectroscopy in the study of supra-molecular complexes with molecular weights of up to 1MDa. At the core of these isotopic labeling developments is the specific introduction of [(1)H,(13)C]-labeled methyl probes into perdeuterated proteins. Here, we describe the evolution of these approaches and discuss their impact on structural and biological studies. The relevant protocols are succinctly reviewed for single and combinatorial isotopic-labeling of methyl-containing residues, and examples of applications on challenging biological systems, including high molecular weight and membrane proteins, are presented. PMID:25881211

  8. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks

    PubMed Central

    Chokkathukalam, Achuthanunni; Kim, Dong-Hyun; Barrett, Michael P; Breitling, Rainer; Creek, Darren J

    2014-01-01

    The rapid emergence of metabolomics has enabled system-wide measurements of metabolites in various organisms. However, advances in the mechanistic understanding of metabolic networks remain limited, as most metabolomics studies cannot routinely provide accurate metabolite identification, absolute quantification and flux measurement. Stable isotope labeling offers opportunities to overcome these limitations. Here we describe some current approaches to stable isotope-labeled metabolomics and provide examples of the significant impact that these studies have had on our understanding of cellular metabolism. Furthermore, we discuss recently developed software solutions for the analysis of stable isotope-labeled metabolomics data and propose the bioinformatics solutions that will pave the way for the broader application and optimal interpretation of system-scale labeling studies in metabolomics. PMID:24568354

  9. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr

    NASA Astrophysics Data System (ADS)

    Pinti, D. L.; Castro, M. C.; Shouakar-Stash, O.; Tremblay, A.; Garduño, V. H.; Hall, C. M.; Hélie, J.-F.; Ghaleb, B.

    2013-01-01

    Isotopes of noble gases, CO2, H2O and Sr were measured in 10 geothermal wells and 8 hot springs, fumaroles and mud volcanoes at Los Azufres, the second most important geothermal field in Mexico. The aim of this study is to provide additional information on fluid circulation in the field and surrounding areas (Araró hot springs), as well as on physical processes such as boiling, steam separation and invasion of re-injected brines following over 25 years of geothermal fluid exploitation. Mantle helium dominates in fluids from the northern production zone of Marítaro, with measured 3He/4He ratios up to 7 Ra (where Ra is the atmospheric ratio of 1.386 × 10- 6). 3He/4He ratios are positively correlated with 87Sr/86Sr ratios and with δD and δ18O. These relationships suggest that Los Azufres fluids represent a mixing between primary magmatic 3He-rich fluids and groundwater currently discharging at Araró hot springs and enriched in radiogenic 4He acquired from Miocene andesites. Unusually high He ratios together with radiogenic Sr isotopic ratios suggest that thermal waters acquired mantle He from deep-seated parent magmas and radiogenic Sr possibly during their uprising through the metamorphic basement. 40Ar/36Ar ratios of 366 to 429 measured in two wells indicate either mantle-derived argon or a radiogenic 40Ar in situ component, suggesting the local presence of an older crustal fluid component in the northern part of the field. Ne, Kr and Xe are entirely of atmospheric origin, but processes of boiling, steam separation and re-injection of used brines have led to fractionation of their elemental abundances. Comparison with previous studies suggests that the boiling zone in the northern production zone is currently extending further north (Marítaro hot springs). In the southwestern productive zone, re-injected brines might account for more than 90% of the exploited fluids.

  10. Relative quantification of biomarkers using mixed-isotope labeling coupled with MS

    PubMed Central

    Chapman, Heidi M; Schutt, Katherine L; Dieter, Emily M; Lamos, Shane M

    2013-01-01

    The identification and quantification of important biomarkers is a critical first step in the elucidation of biological systems. Biomarkers take many forms as cellular responses to stimuli and can be manifested during transcription, translation, and/or metabolic processing. Increasingly, researchers have relied upon mixed-isotope labeling (MIL) coupled with MS to perform relative quantification of biomarkers between two or more biological samples. MIL effectively tags biomarkers of interest for ease of identification and quantification within the mass spectrometer by using isotopic labels that introduce a heavy and light form of the tag. In addition to MIL coupled with MS, a number of other approaches have been used to quantify biomarkers including protein gel staining, enzymatic labeling, metabolic labeling, and several label-free approaches that generate quantitative data from the MS signal response. This review focuses on MIL techniques coupled with MS for the quantification of protein and small-molecule biomarkers. PMID:23157360

  11. Quantitative microbial ecology through stable isotope probing.

    PubMed

    Hungate, Bruce A; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; McHugh, Theresa A; Marks, Jane C; Morrissey, Ember M; Price, Lance B

    2015-11-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing. PMID:26296731

  12. Investigation of spatio-temporal variability of water uptake in a groundwater-dependent ecosystem using a stable isotope approach (δ18O, δ2H): Pfyn Forest, Switzerland

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Masini, J.; Goldscheider, N.; Gobat, J. M.; Hunkeler, D.

    2012-04-01

    This work consists of an eco-hydrogeological study of the Pfyn Forest (46o17'35''N; 7o31'59''E, z = 550 m) which is a 6 km long alluvial zone in the upper Rhône valley, near Sierre (Wallis, Switzerland). From a hydrological point of view, the Rhône has a glacio-nival regime type in this area. Between low-flow and high-flow periods, groundwater levels strongly vary (about 8 m) near the main river-aquifer interaction zone in the most upgradient part of the site. In contrast, the downstream part of Pfyn is characterized by a low groundwater level fluctuation of about 1 or 2 m. From an ecological point of view, the riverine fringe at Pfyn presents a broadly recognized natural value but faces many threats due to human activities (derivation channel located upstream, gravel pits). Phytocoenosis vary from dry environments associations (with Scots pines, feather grass) upstream to active floodplain associations (with poplars, alders, willows) and likely dependent on groundwater, downstream. Between these two end-members, a transition mixed forest occurs. In the context of a potential hydrologic alteration due to global climatic change in a close future, this ecosystem should face modifications of the various water source (rainwater, groundwater) proportion and availability. In order to constrain the meteorological, hydrological, pedological and ecological factors governing water uptakes by trees, isotopic characterizations (δ18O, δ2H) of each water compartment (precipitations, groundwater, river, soil, xylem) coupled with the evaluation of the water balance, has been carried out. The investigation focused on 3 different sites located along a transect through the alluvial valley between April 2010 and February 2011, with a twice-monthly resolution. The data permit to obtain three major findings: - At first, an overview of both δ18O and δ2H data shows that rainwater, groundwater, soil water and plant water are usually located on the regional meteoric water line. For

  13. Isotopic labeling of mammalian G protein-coupled receptors heterologously expressed in Caenorhabditis elegans.

    PubMed

    Salom, David; Cao, Pengxiu; Yuan, Yiyuan; Miyagi, Masaru; Feng, Zhaoyang; Palczewski, Krzysztof

    2015-03-01

    High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack post-translational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work, we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with (15)N,(13)C by providing them with isotopically labeled bacteria. (2)H labeling also was achieved by growing C. elegans in the presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the "test" GPCR to demonstrate the viability of this approach. Although the worms' cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization. PMID:25461480

  14. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. PMID:25828952

  15. The role of soil processes in δ18O terrestrial climate proxies

    NASA Astrophysics Data System (ADS)

    Kanner, Lisa C.; Buenning, Nikolaus H.; Stott, Lowell D.; Timmermann, Axel; Noone, David

    2014-03-01

    A paleoclimate interpretation of a terrestrial hydrologic proxy such as the δ18O of tree cellulose or speleothem calcite may be biased or misinterpreted if the isotopic composition of the soil water from which the proxy originated undergoes isotopic exchange or fractionation. In this study, we use a global isotope-enabled land surface model to investigate how the δ18O of precipitation may be altered in a soil column due to evaporation and vertical moisture transport. In order to assess how precipitation and evaporation contribute to the soil water isotopic variability, we compare seasonal and interannual changes in simulated xylem water δ18O within a control simulation and in a suite of sensitivity experiments where the effects of precipitation δ18O, water vapor δ18O, and soil water evaporation are independently removed. The simulations, carried out for the period 1979 to 2004, reveal that in semiarid regions, such as the southwest United States, the seasonal cycle in xylem water δ18O is strongly affected by evaporative loss during the dry season and evaporation can also constitute as much as 50% of the interannual δ18O variance. Additional simulations, including soil water tagging experiments, indicate that upward fluxes of soil water occur during drier periods. For soil water δ18O profiles that are isotopically more depleted in 18O at depth, this imparts a low isotopic signature to xylem water δ18O during such dry intervals. Hence, without taking into account vertical moisture transport in the soils, low δ18O years could be misinterpreted as wet conditions (due to decreased evaporative enrichment) when instead drier conditions are equally as likely.

  16. X13CMS: Global Tracking of Isotopic Labels in Untargeted Metabolomics

    PubMed Central

    2015-01-01

    Studies of isotopically labeled compounds have been fundamental to understanding metabolic pathways and fluxes. They have traditionally, however, been used in conjunction with targeted analyses that identify and quantify a limited number of labeled downstream metabolites. Here we describe an alternative workflow that leverages recent advances in untargeted metabolomic technologies to track the fates of isotopically labeled metabolites in a global, unbiased manner. This untargeted approach can be applied to discover novel biochemical pathways and characterize changes in the fates of labeled metabolites as a function of altered biological conditions such as disease. To facilitate the data analysis, we introduce X13CMS, an extension of the widely used mass spectrometry-based metabolomic software package XCMS. X13CMS uses the XCMS platform to detect metabolite peaks and perform retention-time alignment in liquid chromatography/mass spectrometry (LC/MS) data. With the use of the XCMS output, the program then identifies isotopologue groups that correspond to isotopically labeled compounds. The retrieval of these groups is done without any a priori knowledge besides the following input parameters: (i) the mass difference between the unlabeled and labeled isotopes, (ii) the mass accuracy of the instrument used in the analysis, and (iii) the estimated retention-time reproducibility of the chromatographic method. Despite its name, X13CMS can be used to track any isotopic label. Additionally, it detects differential labeling patterns in biological samples collected from parallel control and experimental conditions. We validated the ability of X13CMS to accurately retrieve labeled metabolites from complex biological matrices both with targeted LC/MS/MS analysis of a subset of the hits identified by the program and with labeled standards spiked into cell extracts. We demonstrate the full functionality of X13CMS with an analysis of cultured rat astrocytes treated with uniformly

  17. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA.

    PubMed Central

    Batey, R T; Inada, M; Kujawinski, E; Puglisi, J D; Williamson, J R

    1992-01-01

    A general method for large scale preparation of uniformly isotopically labeled ribonucleotides and RNAs is described. Bacteria are grown on isotopic growth medium, and their nucleic acids are harvested and degraded to mononucleotides. These are enzymatically converted into ribonucleoside triphosphates, which are used in transcription reactions in vitro to prepare RNAs for NMR studies. For 15N-labeling, E.coli is grown on 15N-ammonium sulfate, whereas for 13C-labeling, Methylophilus methylotrophus is grown on 13C-methanol, which is more economical than 13C-glucose. To demonstrate the feasibility and utility of this method, uniformly 13C-labeled ribonucleotides were used to synthesize a 31 nucleotide HIV TAR RNA that was analyzed by 3D-NMR. This method should find widespread use in the structural analysis of RNA by NMR. Images PMID:1383928

  18. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    PubMed

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction. PMID:25537104

  19. A new method for the labelling of proteins with radioactive arsenic isotopes

    NASA Astrophysics Data System (ADS)

    Jennewein, M.; Hermanne, A.; Mason, R. P.; Thorpe, P. E.; Rösch, F.

    2006-12-01

    Radioarsenic labelled radiopharmaceuticals could be a valuable asset to positron emission tomography. In particular, the long half-lives of 72As ( T=26 h) and 74As ( T=17.8 d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of monoclonal antibodies (mab) in tumour tissue. In this work, a new method for the labelling of proteins with various radioactive arsenic isotopes was developed. For this purpose, two proteins, namely a chimeric IgG 3 monoclonal antibody, ch3G4, directed against anionic phospholipids, and Rituxan (Rituximab), were labelled as a proof of principle with no-carrier-added radioarsenic isotopes ( 74As and 77As). The developed labelling chemistry gives high yields (>99.9%), is reliable and could easily be transferred to automated labelling systems in a clinical environment. At least for the mab used in this work, this route of radioarsenic labelling does not affect the immunoreactivity of the product. The arsenic label stays stable for up to 72 h at the molecular mass of the monoclonal antibody, which is in particular relevant to follow the pharmacology and pharmacokinetics of the labelled mab for several days.

  20. Late-Glacial to Late-holocene Shifts in Global Precipitation Delta(sup 18)O

    NASA Technical Reports Server (NTRS)

    Jasechko, S.; Lechler, A.; Pausata, F.S.R.; Fawcett, P.J.; Gleeson, T.; Cendon, D.I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; Welker, J. M.; Werner, M.; Yoshimura, K.

    2015-01-01

    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta(sup 18)O. Here we present a synthesis of 86 globally distributed groundwater (n 59), cave calcite (n 15) and ice core (n 12) isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5000 years). We show that precipitation delta(sup 18)O changes from the late-glacial to the late-Holocene range from -7.1% (delta(sup 18)O(late-Holocene) > delta(sup 18)O(late-glacial) to +1.7% (delta(sup 18)O(late-glacial) > delta(sup 18)O(late-Holocene), with the majority (77) of records having lower late-glacial delta(sup 18)O than late-Holocene delta(sup 18)O values. High-magnitude, negative precipitation delta(sup 18)O shifts are common at high latitudes, high altitudes and continental interiors.

  1. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  2. Kinetic isotope effect of the {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study

    SciTech Connect

    Sun, Zhigang Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-07

    The O + O{sub 2} isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the {sup 18}O + {sup 32}O{sub 2} and {sup 16}O + {sup 36}O{sub 2} reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the “reef” structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

  3. Origin of secondary nucleation as revealed by isotopic labelling

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Tsukamoto, K.; Horita, J.; Tadaki, T.

    1984-11-01

    Isotopic measurement by mass spectroscopy was for the first time applied to the secondary nucleation products formed in a supersaturated H 2O-alum solution in the presence of a seed crystal containing D 2O. It was shown that fine particles were chipped off from the seed into the solution and act as centres for secondary nucleation.

  4. Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...

  5. Enantioselective synthesis of isotopically labeled homocitric acid lactone.

    PubMed

    Moore, Jared T; Hanhan, Nadine V; Mahoney, Maximillian E; Cramer, Stephen P; Shaw, Jared T

    2013-11-15

    A concise synthesis of homocitric acid lactone was developed to accommodate systematic placement of carbon isotopes (specifically (13)C) for detailed studies of this cofactor. This new route uses a chiral allylic alcohol, available in multigram quantities from enzymatic resolution, as a starting material, which transposes asymmetry through an Ireland-Claisen rearrangement. PMID:24180620

  6. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    EPA Science Inventory

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  7. An air-tolerant approach to the carbonylative Suzuki-Miyaura coupling: applications in isotope labeling.

    PubMed

    Ahlburg, Andreas; Lindhardt, Anders T; Taaning, Rolf H; Modvig, Amalie E; Skrydstrup, Troels

    2013-10-18

    Carbonylative Suzuki-Miyaura coupling conditions have been developed that proceed without the exclusion of oxygen and in the presence of nondegassed and nondried solvents. By adapting the method to a two-chamber setup, the direct handling of carbon monoxide, produced from stable CO precursors, is avoided. The protocol afforded the desired benzophenones with excellent functional group tolerance and in good yields. Substituting the CO precursor, in the CO-producing chamber, with its carbon-13 labeled version generated the corresponding carbon-13 labeled benzophenones. Finally, the developed system was applied in the synthesis and isotope labeling of two pharmaceuticals, nordazepam and Tricor. PMID:24004340

  8. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    SciTech Connect

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-12-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.

  9. A 240 ka terrestrial 18O record from a NE-Siberian loess-like permafrost paleosol-sequence based on a novel analytical 18O method

    NASA Astrophysics Data System (ADS)

    Tuthorn, M.; Zech, M.; Detsch, F.; Juchelka, D.; Kalbitz, K.; Mayr, C.; Werner, R.; Zech, R.; Zech, W.; Glaser, B.

    2012-04-01

    Recently, we developed a novel analytical tool for paleoclimate research based on compound-specific delta18O analyses of hemicellulose-derived monosaccharides using gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) (Zech and Glaser, 2009. Rapid Communications in Mass Spectrometry 23, 3522-3532). This method overcomes extraction, purification and hygroscopicity problems of so far applied cellulose methods based on TC/EA-IRMS delta18O analyses and allows establishing 18O records from sedimentary organic matter. Taking advantage of plant samples from a climate chamber experiment we can demonstrate that our novel method yields similar results like cellulose for plant material. Furthermore, we demonstrate using 18O-enriched water that the hydroxyl-groups of hemicelluloses are not prone to oxygen exchange reactions (Zech et al., 2012. Organic Geochemistry 42, 1470-1475). Ongoing methodological improvements will be shortly reported. By applying our novel 18O method to a loess-like permafrost paleosol-sequence we established a presumably 240 ka terrestrial 18O record for NE-Siberia. While the modern topsoil and the interglacial/-stadial paleosols reveal more positive delta18O values, the glacial paleosols reveal more negative delta18O values. The 18O variability is generally confirmed by a respective deltaD record which is based on sedimentary plant leafwax-derived n-alkanes. This finding suggests that our high-latitude 240 ka terrestrial 18O and D/H record from NE-Siberia reflects the temperature-dependent isotopic composition of precipitation and the increased isotopic enrichment of leaf-water during interglacials/-stadials.

  10. Protein N- and C-Termini Identification Using Mass Spectrometry and Isotopic Labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method for protein N- and C-terminal analysis using mass spectrometry is introduced. A novel stable isotopic labeling scheme has been developed to identify terminal peptides generated from an enzyme digestion for the determination of both N- and C-termini of the protein. This method works dire...

  11. Expeditious syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, and its metabolites.

    PubMed

    Lin, Ronghui; Weaner, Larry E; Hoerr, David C; Salter, Rhys; Gong, Yong

    2013-01-01

    Syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, that is, N-(benzo[b]thien-3-ylmethyl)-sulfamide and its metabolites are described. [(13)C(15)N]Benzo[b]thiophene-3-carbonitrile was first prepared by coupling of 3-bromo-benzo[b]thiophene with [(13)C(15)N]-copper cyanide. The resultant [(13)C(15)N]benzo[b]thiophene-3-carbonitrile was reduced with lithium aluminum deuteride to give [(13)CD2(15)N]benzo[b]thiophen-3-yl-methylamine; which was then coupled with sulfamide to afford [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide, the stable isotope-labeled compound with four stable isotope atoms. Direct oxidation of [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide with hydrogen peroxide and peracetic acid gave the stable isotope-labeled sulfoxide and sulfone metabolites. On the other hand, radioactive (14)C-labeled N-(benzo[b]thien-3-ylmethyl)-sulfamide was prepared conveniently by sequential coupling of 3-bromo-benzo[b]thiophene with [(14)C]-copper cyanide, reduction of the carbonitrile to carboxaldehyde, and reductive amination with sulfamide. PMID:24285137

  12. Isotopic labelling studies on far-infrared spectra of nickel-histamine complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    2000-11-01

    Nickel-histamine (hm) complexes type [Ni(hm)Cl 2] and [Ni(hm) 3] X2 (Where X=Cl, Br, I, ClO 4) were investigated in the far-infrared region. Metal isotope labelling and deuteration effects were employed for observed band assignments. Metal-ligand vibrations were discussed and correlated with the structures of the complexes.

  13. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-02-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2 / N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in previous studies, pointing to a reduction in CO emissions from traffic. The 13C in CO2 reflects the isotopic composition of the fuel. 18O in CO2 is slightly depleted compared to the 18O in atmospheric O2, and shows significant variability. In contrast, the δ13C values of CO show that significant fractionation takes place during CO destruction in the catalytic converter. 13C in CO is enriched by 3‰ compared to the 13C in the fuel burnt, while the 18O content is similar to that of atmospheric O2. We compute a fractionation constant of (-2.7 ± 0.7)‰ for 13C during CO destruction. The N2O : CO2 average ratio of (1.8 ± 0.2) × 10-2 ppb:ppm is significantly lower than in past studies, showing a reduction in N2O emissions likely related to improvements in the catalytic converter technology. We also observed small CH4 emissions, with an average CH4 : CO2 ratio of (4.6 ± 0.2) × 10-2 ppb:ppm. The O2 : CO2 ratios of (-1.47 ± 0.01) ppm:ppm are very close to the expected, theoretically calculated values of O2 depletion per CO2 enhancement.

  14. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2013-09-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the highway tunnel Islisberg (Switzerland). The CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb : ppm, are lower than reported by previous studies, pointing to a reduction in CO emissions from traffic. The 13C in CO2 reflects the isotopic composition of the fuel. 18O in CO2 is slightly depleted compared to the 18O in atmospheric O2, and shows significant variability. In contrast, the δ13C values of CO show that significant fractionation takes place during CO destruction in the catalytic converter. 13C in CO is enriched by 3 ‰ compared to the 13C in the fuel burnt, while the 18O content is similar to that of atmospheric O2. We compute a fractionation constant of (-2.7 ± 0.7) ‰ for 13C during CO destruction. The N2O : CO2 average ratio (1.8 ± 0.2) × 10-2 ppb : ppm is significantly lower than in past studies, showing a reduction in N2O emissions likely related to improvements in the catalytic technology. We also observed small CH4 emissions, with an average CH4 : CO2 ratio of (4.6 ± 0.2) × 10-2 ppb : ppm. The O2 : CO2 ratios of (-1.47 ± 0.01) ppm : ppm are very close to the expected, theoretically calculated values.

  15. Chironomid δ ^{18}O and \\delta$D as Paleoclimate Proxies: Progress and Puzzles

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Miller, G. H.; Wooller, M. J.; Francis, D.; Geirsdottir, A.; Wang, Y.; Sauer, P. E.

    2004-12-01

    An increasing number of paleolimnological studies are aimed at reconstructing lakewater isotopic composition, and thus (in appropriate hydrologic settings) the isotopic composition of paleo-precipitation. Records of \\delta18O and δ D of paleo-precipitation are used to infer changes in climate, including changes in site temperature and storm tracks. This study investigates the viability of using the \\delta18O and δ D of subfossil chironomid head capsules preserved in lake sediments to reconstruct lakewater isotopic composition. Chironomids (Chironomidae, or non-biting midges) spend much of their life cycle as aquatic larvae, and their chitinous larval head capsules are well preserved in many lake sediments. Wooller et al. (2004) demonstrated that chironomid \\delta18O and precipitation \\delta18O are strongly correlated along a transect from Greenland to Vermont (n=4, r2=0.96). The goal of the current research is to further investigate the relationships between mean annual temperature (MAT) and the stable isotopic composition (\\delta18O and δ D) of chironomids, lakewater, and precipitation. We have analyzed more than 100 samples from lakes in Iceland and Arctic Canada, including surface sediments from a transect of lakes representing a broad modern climatic gradient. Results confirm a correlation between chironomid \\delta18O and both lakewater \\delta18O and MAT. Chironomid δ D also correlates with lakewater δ D and MAT. On the other hand, preliminary results suggest differences in isotopic fractionation between taxa. Ongoing experiments are aimed at evaluating taxonomic differences and refining our methodology.

  16. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    SciTech Connect

    Serianni, A.S.

    1994-12-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds.

  17. Synthesis of stable isotope labelled internal standards for drug-drug interaction (DDI) studies.

    PubMed

    Atzrodt, J; Blankenstein, J; Brasseur, D; Calvo-Vicente, S; Denoux, M; Derdau, V; Lavisse, M; Perard, S; Roy, S; Sandvoss, M; Schofield, J; Zimmermann, J

    2012-09-15

    The syntheses of stable isotope labelled internal standards of important CYP-isoform selective probes, like testosterone 1, diclofenac 3, midazolam 5, and dextromethorphan 7, as well as their corresponding hydroxylated metabolites 6β-hydroxytestosterone 2, 4'-hydroxydiclofenac 4, 1'-hydroxymidazolam 6 and dextrorphan 8 are reported. Microwave-enhanced H/D-exchange reactions applying either acid, base, or homogeneous and heterogeneous transition metal catalysis, or combinations thereof proved to be highly efficient for direct deuterium labelling of the above mentioned probes. Compared to conventional stepwise synthetic approaches, the combination of H/D exchange and biotransformation provides the potential for considerable time- and cost savings, in particular for the synthesis of the stable isotope labelled internal standards of 4'-hydroxydiclofenac 4 and 1'-hydroxymidazolam 6. PMID:22890009

  18. Synthesis of stable isotope-labeled epothilone D using a degradation-reconstruction approach.

    PubMed

    Burrell, Richard C; Turley, Wesley A; Bonacorsi, Samuel J

    2015-07-01

    The stabilization of microtubules using epothilones represents a novel mechanism of action to treat Alzheimer's disease. Epothilone D is one such microtubule-stabilizing drug that has been investigated by Bristol-Myers Squibb. An important step in the development process was the synthesis of a stable isotope-labeled analog for use in bioanalytical assays to accurately quantify the concentration of the drug in biological samples. A novel synthetic route to stable isotope-labeled epothilone D is described. The synthetic route was based on a strategy to degrade epothilone B and then use that key intermediate to reconstruct stable isotope-labeled epothilone D. Epothilone B was treated with potassium osmate and sodium periodate. The thiazole moiety in epothilone B was efficiently cleaved to give (1S,3S,7S,10R,11S,12S,16R)-3-acetyl-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione. The epoxide in the macrocyclic ring of that intermediate was cleanly removed by treatment with tungsten hexachloride and n-butyllithium to give the corresponding olefin (4S,7R,8S,9S,16S,Z)-16-acetyl-4,8-dihydroxy-5,5,7,9,13-pentamethyloxacyclohexadec-13-ene-2,6-dione. Bis(triethylsilyl) protection produced (4S,7R,8S,9S,16S,Z)-16-acetyl-5,5,7,9,13-pentamethyl-4,8-bis(triethylsilyloxy)-oxacyclohexadec-13-ene-2,6-dione. This intermediate was coupled to a stable isotope-labeled thiazole using a Wittig reaction as the key step to provide (13)C5, (15)N-labeled epothilone D. In summary, the synthesis was completed in nine total steps, only six of which involved isotopically labeled reagents. A total of 168 mg of (13)C5, (15)N-labeled epothilone D was prepared in an 8% overall yield from (13)C2, (15)N-labeled thioacetamide and (13)C3-labeled ethyl bromopyruvate. PMID:26158758

  19. Isotope Coded Labeling for Accelerated Protein Interaction Profiling using MS

    PubMed Central

    Venable, John D.; Steckler, Caitlin; Ou, Weijia; Grünewald, Jan; Agarwalla, Sanjay; Brock, Ansgar

    2015-01-01

    Protein interaction surface mapping using MS is widely applied but comparatively resource intensive. Here a workflow adaptation for use of isotope coded tandem mass tags for the purpose is reported. The key benefit of improved throughput derived from sample acquisition multiplexing and automated analysis is shown to be maintained in the new application. Mapping of the epitopes of two monoclonal antibodies on their respective targets serves to illustrate the novel approach. We conclude that the approach enables mapping of interactions by MS at significantly larger scales than hereto possible. PMID:26151661

  20. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  1. Climatological significance of δ18O in north Tibetan ice cores

    NASA Astrophysics Data System (ADS)

    Yao, Tandong; Thompson, Lonnie G.; Mosley-Thompson, Ellen; Zhihong, Yang; Xingping, Zhang; Lin, Ping-Nan

    1996-12-01

    Oxygen isotopic ratios (δ18O) of precipitation samples collected over several years at three meteorological stations on the northern Tibetan Plateau were used to conduct the first investigation of the relationship between δ18O and contemporaneous air temperatures (Ta). Inferring past temperatures from δ18O measured in recently acquired Tibetan ice cores necessitates establishing whether a δ18O-Ta relationship exists. For each station a strong temporal relationship is found between δ18O and Ta, particularly for monthly averages which remove synoptic-scale influences such as changes in condensation level, condensation temperature, and moisture sources. Moisture source is identified as a major factor in the spatial distribution of δ18O, but air temperature determines the temporal fluctuations of δ18O at individual sites on the northern Tibetan Plateau. The 30-year records of annually averaged δ18O from three different ice coring sites are not correlated significantly with contemporaneous air temperature records from their closest meteorological station (150 to 200 km). However, since 1960 the three air temperature records reveal a modest warming trend, while the three contemporaneous δ18O records show a modest 18O enrichment.

  2. An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins.

    PubMed

    Hegeman, Adrian D; Harms, Amy C; Sussman, Michael R; Bunner, Anne E; Harper, Jeffrey F

    2004-05-01

    A procedure for determining the extent of phosphorylation at individual sites of multiply phosphorylated proteins was developed and applied to two polyphosphorylated proteins. The protocol, using simple chemical (Fischer methyl-esterification) and enzymatic (phosphatase) modification steps and an accessible isotopic labeling reagent (methyl alcohol-d(4)), is described in detail. Site-specific phosphorylation stoichiometries are derived from the comparison of chemically identical but isotopically distinct peptide species analyzed by microspray liquid chromatography-mass spectrometry (microLC-MS) using a Micromass Q-TOF2 mass spectrometer. Ten phosphorylation sites were unambiguously identified in tryptic digests of both proteins, and phosphorylation stoichiometries were determined for eight of the ten sites using the isotope-coded strategy. The extent of phosphorylation was also estimated from the mass spectral peak areas for the phosphorylated and unmodified peptides, and these estimates, when compared with stoichiometries determined using the isotope-coded technique, differed only marginally (within approximately 20%). PMID:15121193

  3. Mechanistic Insights into Catalytic Ethanol Steam Reforming Using Isotope-Labeled Reactants.

    PubMed

    Crowley, Stephen; Castaldi, Marco J

    2016-08-26

    The low-temperature ethanol steam reforming (ESR) reaction mechanism over a supported Rh/Pt catalyst has been investigated using isotope-labeled EtOH and H2 O. Through strategic isotope labeling, all nonhydrogen atoms were distinct from one another, and allowed an unprecedented level of understanding of the dominant reaction pathways. All combinations of isotope- and non-isotope-labeled atoms were detected in the products, thus there are multiple pathways involved in H2 , CO, CO2 , CH4 , C2 H4 , and C2 H6 product formation. Both the recombination of C species on the surface of the catalyst and preservation of the C-C bond within ethanol are responsible for C2 product formation. Ethylene is not detected until conversion drops below 100 % at t=1.25 h. Also, quantitatively, 57 % of the observed ethylene is formed directly through ethanol dehydration. Finally there is clear evidence to show that oxygen in the SiO2 -ZrO2 support constitutes 10 % of the CO formed during the reaction. PMID:27487203

  4. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  5. 18O-Tracer Metabolomics Reveals Protein Turnover and CDP-Choline Cycle Activity in Differentiating 3T3-L1 Pre-Adipocytes

    PubMed Central

    Kirkwood, Jay S.; Miranda, Cristobal L.; Bobe, Gerd; Maier, Claudia S.; Stevens, Jan F.

    2016-01-01

    The differentiation of precursor cells into mature adipocytes (adipogenesis) has been an area of increased focus, spurred by a rise in obesity rates. Though our understanding of adipogenesis and its regulation at the cellular level is growing, many questions remain, especially regarding the regulation of the metabolome. The 3T3-L1 cell line is the most well characterized cellular model of adipogenesis. Using a time course metabolomics approach, we show that the 3T3-L1 preadipocyte metabolome is greatly altered during the first 48 hours of differentiation, where cells go through about two rounds of cell division, a process known as mitotic clonal expansion. Short-chain peptides were among several small molecules that were increased during mitotic clonal expansion. Additional indicators of protein turnover were also increased, including bilirubin, a degradation product of heme-containing proteins, and 3-methylhistidine, a post-translationally modified amino acid that is not reutilized for protein synthesis. To study the origin of the peptides, we treated differentiating preadipocytes with 18O labeled water and found that 18O was incorporated into the short chain peptides, confirming them, at least in part, as products of hydrolysis. Inhibitors of the proteasome or matrix metalloproteinases affected the peptide levels during differentiation, but inhibitors of autophagy or peptidases did not. 18O was also incorporated into several choline metabolites including cytidine 5'-diphosphocholine (CDP-choline), glycerophosphocholine, and several phosphatidylcholine species, indicative of phosphatidylcholine synthesis/degradation and of flux through the CDP-choline cycle, a hallmark of proliferating cells. 18O-Tracer metabolomics further showed metabolic labeling of glutamate, suggestive of glutaminolysis, also characteristic of proliferating cells. Together, these results highlight the utility of 18O isotope labeling in combination with metabolomics to uncover changes in

  6. 18O-Tracer Metabolomics Reveals Protein Turnover and CDP-Choline Cycle Activity in Differentiating 3T3-L1 Pre-Adipocytes.

    PubMed

    Kirkwood, Jay S; Miranda, Cristobal L; Bobe, Gerd; Maier, Claudia S; Stevens, Jan F

    2016-01-01

    The differentiation of precursor cells into mature adipocytes (adipogenesis) has been an area of increased focus, spurred by a rise in obesity rates. Though our understanding of adipogenesis and its regulation at the cellular level is growing, many questions remain, especially regarding the regulation of the metabolome. The 3T3-L1 cell line is the most well characterized cellular model of adipogenesis. Using a time course metabolomics approach, we show that the 3T3-L1 preadipocyte metabolome is greatly altered during the first 48 hours of differentiation, where cells go through about two rounds of cell division, a process known as mitotic clonal expansion. Short-chain peptides were among several small molecules that were increased during mitotic clonal expansion. Additional indicators of protein turnover were also increased, including bilirubin, a degradation product of heme-containing proteins, and 3-methylhistidine, a post-translationally modified amino acid that is not reutilized for protein synthesis. To study the origin of the peptides, we treated differentiating preadipocytes with 18O labeled water and found that 18O was incorporated into the short chain peptides, confirming them, at least in part, as products of hydrolysis. Inhibitors of the proteasome or matrix metalloproteinases affected the peptide levels during differentiation, but inhibitors of autophagy or peptidases did not. 18O was also incorporated into several choline metabolites including cytidine 5'-diphosphocholine (CDP-choline), glycerophosphocholine, and several phosphatidylcholine species, indicative of phosphatidylcholine synthesis/degradation and of flux through the CDP-choline cycle, a hallmark of proliferating cells. 18O-Tracer metabolomics further showed metabolic labeling of glutamate, suggestive of glutaminolysis, also characteristic of proliferating cells. Together, these results highlight the utility of 18O isotope labeling in combination with metabolomics to uncover changes in

  7. Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG).

    PubMed

    Kim, Kyoung-Jin; Kim, Yoon-Woo; Kim, Yun-Gon; Park, Hae-Min; Jin, Jang Mi; Hwan Kim, Young; Yang, Yung-Hun; Kyu Lee, Jun; Chung, Junho; Lee, Sun-Gu; Saghatelian, Alan

    2015-01-01

    Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling-based quantitative targeted glycomics (i-QTaG) technique for the comparative and quantitative analysis of total N-glycans using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N-glycans using a model glycoprotein (bovine fetuin). Moreover, the i-QTaG using MALDI-TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of (13) C6 /(12) C6 -2-aminobenzoic acid-labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N-glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N-glycan peaks from i-QTaG method showed a good linearity (R(2) > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2-AA labeled N-glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up-regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof-of-concept study, we demonstrated that the i-QTaG method, which enables to achieve a reliable comparative quantitation of total N-glycans via MALDI-TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. PMID:25832445

  8. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling

    NASA Astrophysics Data System (ADS)

    Wang, Shengnan; Suzuki, Satoru; Hibino, Hiroki

    2014-10-01

    Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of 12C-lattice and surface deposition of 13C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like 13C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new way to investigate multiple grain structures in CVD graphene with a simple spectroscopic technique.Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of 12C-lattice and surface deposition of 13C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like 13C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new

  9. Radiogenic Nd isotope labeling of the northern NE Atlantic during MIS 2

    NASA Astrophysics Data System (ADS)

    Roberts, Natalie L.; Piotrowski, Alexander M.

    2015-08-01

    Paleoceanographic reconstructions rely on chemical proxies which are controlled by physical, chemical, and biological marine parameters. The accurate interpretation of proxy records relies on the integrity of proxy-environmental relationships through time, and under changing conditions. In this study we closely examine paleo controls on authigenic Nd isotope records from five cores in the northern NE Atlantic, approximating a depth-transect, allowing spatial and temporal relationships to be reconstructed. We compare our Nd isotope records with other paleocirculation proxies, and consider the sedimentalogical controls on Nd isotope signals, by comparing ice-rafted detritus lithology and counts, detrital sediment chemistry and redox sensitive element concentrations measured on foraminifera authigenic coatings. With this suite of geochemical and sedimentalogical data we show that Nd isotope records in the northern NE Atlantic were labeled by radiogenic sediments, however this modification did not occur in the pore-waters of each core, but instead likely reflects changes in the Nd isotopic composition of deep-waters caused by the input of ice-rafted sediment during Heinrich events and the last glacial maximum. This study has implications for understanding how localized changes in the Nd isotope signal can set a watermass end-member composition, decoupling chemical proxy-circulation relationships locally, but providing a signal which can be potentially traced along the deep-water flowpath. Such scenarios must be considered in future interpretations of glacial Nd isotope records taken from within the ice-rafted detritus belt and downstream along watermass flowpaths.

  10. Turnover of Leaf Waxes in Florida Slash Pine: Results of an Isotopic Labeling Experiment

    NASA Astrophysics Data System (ADS)

    Crumsey, J.; Conte, M. H.; Weber, J. C.; Mortazavi, B.; Smith, M.; Chanton, J.

    2006-12-01

    Isotopic discrimination of terrestrial photosynthesis, atmospheric CO2 concentration, and δ13CO2 are important parameters in global carbon models that are employed to estimate global carbon sources and sinks. Yet, terrestrial isotopic discrimination can be highly variable over space and time, yielding large uncertainties of terrestrial fluxes. The isotopic composition of plant wax aerosols in continental air masses can be used as an indirect measure of the spatial and temporal patterns of photosynthetic discrimination integrated over large (subcontinental) spatial scales. However, the temporal offset between wax biosynthesis and the wax aerosol isotopic signal of photosynthetic discrimination is not well constrained. To further our understanding of this temporal lag, this study sought to determine the turnover time of conifer leaf waxes by performing an isotopic labeling experiment. Four clonal pine saplings were placed in a tent and labeled with enriched 13CO2 for one year, while another four control saplings were grown under ambient CO2. At the end of the year long enrichment, the labeled saplings were removed from the tent and placed in ambient air, such that the wax turnover rate could be determined by analyzing the resultant isotopic and molecular changes. The results of this experiment indicated that after 80 days of sequestering ambient CO2, the wax (and soluble sugar) isotopic composition of the labeled saplings varied minimally. The molecular composition of the waxes, however, did change over time. From these results we concluded that waxes are turning over, but rather than being synthesized de novo from recently fixed carbon precursors they are synthesized using carbon from stored (labeled) carbon pools. Therefore, the δ13C of conifer leaf waxes in aerosols may not reflect recent photosynthetic discrimination, but instead represents photosynthetic discrimination integrated over a longer period of time. The implications of these findings are focused on

  11. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives.

    PubMed

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Asquith, Becca; Macallan, Derek

    2016-06-30

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  12. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives

    PubMed Central

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Macallan, Derek

    2016-01-01

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  13. Identification of Extracellular Signal-regulated Kinase 1 (ERK1) Direct Substrates using Stable Isotope Labeled Kinase Assay-Linked Phosphoproteomics*

    PubMed Central

    Xue, Liang; Wang, Pengcheng; Cao, Pianpian; Zhu, Jian-kang; Tao, W. Andy

    2014-01-01

    Kinase mediated phosphorylation signaling is extensively involved in cellular functions and human diseases, and unraveling phosphorylation networks requires the identification of substrates targeted by kinases, which has remained challenging. We report here a novel proteomic strategy to identify the specificity and direct substrates of kinases by coupling phosphoproteomics with a sensitive stable isotope labeled kinase reaction. A whole cell extract was moderately dephosphorylated and subjected to in vitro kinase reaction under the condition in which 18O-ATP is the phosphate donor. The phosphorylated proteins are then isolated and identified by mass spectrometry, in which the heavy phosphate (+85.979 Da) labeled phosphopeptides reveal the kinase specificity. The in vitro phosphorylated proteins with heavy phosphates are further overlapped with in vivo kinase-dependent phosphoproteins for the identification of direct substrates with high confidence. The strategy allowed us to identify 46 phosphorylation sites on 38 direct substrates of extracellular signal-regulated kinase 1, including multiple known substrates and novel substrates, highlighting the ability of this high throughput method for direct kinase substrate screening. PMID:25022875

  14. Determination of Phytochelatins in Rice by Stable Isotope Labeling Coupled with Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Ping; Cai, Wen-Jing; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-01

    A highly sensitive method was developed for the detection of phytochelatins (PCs) in rice by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (IL-LC-ESI-MS/MS) analysis. A pair of isotope-labeling reagents [ω-bromoacetonylquinolinium bromide (BQB) and BQB-d(7)] were used to label PCs in plant sample and standard PCs, respectively, and then combined prior to LC/MS analysis. The heavy labeled standards were used as the internal standards for quantitation to minimize the matrix and ion suppression effects in MS analysis. In addition, the ionization efficiency of PCs was greatly enhanced through the introduction of a permanent charged moiety of quaternary ammonium of BQB into PCs. The detection sensitivities of PCs upon BQB labeling improved by 14-750-fold, and therefore, PCs can be quantitated using only 5 mg of plant tissue. Furthermore, under cadmium (Cd) stress, we found that the contents of PCs in rice dramatically increased with the increased concentrations and treatment time of Cd. It was worth noting that PC5 was first identified and quantitated in rice tissues under Cd stress in the current study. Taken together, this IL-LC-ESI-MS/MS method demonstrated to be a promising strategy in detection of PCs in plants with high sensitivity and reliability. PMID:26073168

  15. Plant SILAC: Stable-Isotope Labelling with Amino Acids of Arabidopsis Seedlings for Quantitative Proteomics

    PubMed Central

    Lewandowska, Dominika; ten Have, Sara; Hodge, Kelly; Tillemans, Vinciane; Lamond, Angus I.; Brown, John W. S.

    2013-01-01

    Stable Isotope Labelling by Amino acids in Cell culture (SILAC) is a powerful technique for comparative quantitative proteomics, which has recently been applied to a number of different eukaryotic organisms. Inefficient incorporation of labelled amino acids in cell cultures of Arabidopsis thaliana has led to very limited use of SILAC in plant systems. We present a method allowing, for the first time, efficient labelling with stable isotope-containing arginine and lysine of whole Arabidopsis seedlings. To illustrate the utility of this method, we have combined the high labelling efficiency (>95%) with quantitative proteomics analyses of seedlings exposed to increased salt concentration. In plants treated for 7 days with 80 mM NaCl, a relatively mild salt stress, 215 proteins were identified whose expression levels changed significantly compared to untreated seedling controls. The 92 up-regulated proteins included proteins involved in abiotic stress responses and photosynthesis, while the 123 down-regulated proteins were enriched in proteins involved in reduction of oxidative stress and other stress responses, respectively. Efficient labelling of whole Arabidopsis seedlings by this modified SILAC method opens new opportunities to exploit the genetic resources of Arabidopsis and analyse the impact of mutations on quantitative protein dynamics in vivo. PMID:23977254

  16. Synthesis of an Isotopically Labeled Naphthalene Derivative That Supports a Long-Lived Nuclear Singlet State

    PubMed Central

    2015-01-01

    The synthesis of an octa-alkoxy substituted isotopically labeled naphthalene derivative, shown to have excellent properties in singlet NMR experiments, is described. This highly substituted naphthalene system, which incorporates an adjacent 13C spin pair, is readily accessed from a commercially available 13C2-labeled building block via sequential thermal alkynyl- and arylcyclobutenone rearrangements. The synthetic route incorporates a simple desymmetrization approach leading to a small difference in the chemical shifts of the 13C spin pair, a design constraint crucial for accessing nuclear singlet order. PMID:25898076

  17. Comparisons of observed and modelled lake δ18O variability

    NASA Astrophysics Data System (ADS)

    Jones, Matthew D.; Cuthbert, Mark O.; Leng, Melanie J.; McGowan, Suzanne; Mariethoz, Gregoire; Arrowsmith, Carol; Sloane, Hilary J.; Humphrey, Kerenza K.; Cross, Iain

    2016-01-01

    With the substantial number of lake sediment δ18O records published in recent decades, a quantitative, process-based understanding of these systems can increase our understanding of past climate change. We test mass balance models of lake water δ18O variability against five years of monthly monitoring data from lakes with different hydrological characteristics, in the East-Midlands region of the UK, and the local isotope composition of precipitation. These mass balance models can explain up to 74% of the measured lake water isotope variability. We investigate the sensitivity of the model to differing calculations of evaporation amount, the amount of groundwater, and to different climatic variables. We show there is only a small range of values for groundwater exchange flux that can produce suitable lake water isotope compositions and that variations in evaporation and precipitation are both required to produce recorded isotope variability in lakes with substantial evaporative water losses. We then discuss the potential for this model to be used in a long-term, palaeo-scenario. This study demonstrates how long term monitoring of a lake system can lead to the development of robust models of lake water isotope compositions. Such systematics-based explanations allow us to move from conceptual, to more quantified reconstructions of past climates and environments.

  18. Seasonal variation in natural abundance of 2H and 18O in urine samples from rural Nigeria

    PubMed Central

    Dugas, Lara R.; Brieger, William; Tayo, Bamidele O.; Alabi, Tunrayo; Schoeller, Dale A.; Luke, Amy

    2015-01-01

    The doubly labeled water (DLW) method is used to measure free-living energy expenditure in humans. Inherent to this technique is the assumption that natural abundances of stable isotopes 2H and 18O in body water remain constant over the course of the measurement period and after elimination of the loading dose of DLW will return to the same predose level. To determine variability in the natural abundances of 2H and 18O in humans living in a region with seasonal shifts in rain patterns and sources of drinking water, over the course of 12 mo we collected weekly urine samples from four individuals living in southwest Nigeria as well as samples of their drinking water. From ongoing regional studies of hypertension, obesity, and energy expenditure, we estimated average water turnover rate, urine volumes, and sodium and potassium excretion. Results suggest that 2H and 18O in urine, mean concentrations of urinary sodium and potassium, urine volume, and total body turnover differed significantly from dry to rainy season. Additionally, seasonal weather variables (mean monthly maximum temperatures, total monthly rainfall, and minimum relative humidity) were all significantly associated with natural abundances in urine. No seasonal difference was observed in drinking water samples. Findings suggest that natural abundances in urine may not remain constant as assumed, and studies incorporating DLW measurements across the transition of seasons should interpret results with caution unless appropriate doses of the tracers are used. PMID:25977450

  19. A ‘hidden’ 18O-enriched reservoir in the sub-arc mantle

    PubMed Central

    Liu, Chuan-Zhou; Wu, Fu-Yuan; Chung, Sun-Lin; Li, Qiu-Li; Sun, Wei-Dong; Ji, Wei-Qiang

    2014-01-01

    Plate subduction continuously transports crustal materials with high-δ18O values down to the mantle wedge, where mantle peridotites are expected to achieve the high-δ18O features. Elevated δ18O values relative to the upper mantle value have been reported for magmas from some subduction zones. However, peridotites with δ18O values significantly higher than the well-defined upper mantle values have never been observed from modern subduction zones. Here we present in-situ oxygen isotope data of olivine crystals in Sailipu mantle xenoliths from South Tibet, which have been subjected to a long history of Tethyan subduction before the India-Asia collision. Our data identify for the first time a metasomatized mantle that, interpreted as the sub-arc lithospheric mantle, shows anomalously enriched oxygen isotopes18O = +8.03 ± 0.28 ‰). Such a high-δ18O mantle commonly does not contribute significantly to typical island arc basalts. However, partial melting or contamination of such a high-δ18O mantle is feasible to account for the high-δ18O signatures in arc basalts. PMID:24577190

  20. A 'hidden' 18O-enriched reservoir in the sub-arc mantle.

    PubMed

    Liu, Chuan-Zhou; Wu, Fu-Yuan; Chung, Sun-Lin; Li, Qiu-Li; Sun, Wei-Dong; Ji, Wei-Qiang

    2014-01-01

    Plate subduction continuously transports crustal materials with high-δ(18)O values down to the mantle wedge, where mantle peridotites are expected to achieve the high-δ(18)O features. Elevated δ(18)O values relative to the upper mantle value have been reported for magmas from some subduction zones. However, peridotites with δ(18)O values significantly higher than the well-defined upper mantle values have never been observed from modern subduction zones. Here we present in-situ oxygen isotope data of olivine crystals in Sailipu mantle xenoliths from South Tibet, which have been subjected to a long history of Tethyan subduction before the India-Asia collision. Our data identify for the first time a metasomatized mantle that, interpreted as the sub-arc lithospheric mantle, shows anomalously enriched oxygen isotopes (δ(18)O = +8.03 ± 0.28 ‰). Such a high-δ(18)O mantle commonly does not contribute significantly to typical island arc basalts. However, partial melting or contamination of such a high-δ(18)O mantle is feasible to account for the high-δ(18)O signatures in arc basalts. PMID:24577190

  1. Experiments for a systematic comparison between stable-isotope-(deuterium) labeling and radio-((14)C) labeling for the elucidation of the in vitro metabolic pattern of pharmaceutical drugs.

    PubMed

    Grunwald, Helge; Hargreaves, Patrick; Gebhardt, Klaus; Klauer, Dominique; Serafyn, Arnaud; Schmitt-Hoffmann, Anne; Schleimer, Michael; Schlotterbeck, Goetz; Wind, Mathias

    2013-11-01

    A systematic comparison between two labeling approaches for the investigation of the in vitro metabolic pattern of pharmaceutical drugs was performed by examining the use of (i) radiolabeled drugs analyzed with LC-MS-offline radiodetection and (ii) stable-isotope labeled drugs, used in a defined mixture with the unlabeled drug and analyzed by LC-MS with recognition of the specific isotopic pattern. (14)C was used for the radioisotope-approach and deuterium for the stable-isotope approach. Olanzapine, diclofenac and ketoconazole were chosen as model drugs, as they are commercially available in their non-, radio- and stable-isotope labeled forms. For all three model drugs, liver microsome- and hepatocyte-incubations (both from rat) were performed with various concentrations and incubation times for both, the radio- and the stable-isotope approaches. The metabolic pattern, including structure elucidation of all detected metabolites, was performed independently for all individual compounds and incubations. Subsequently, the metabolic patterns of the radio-, and the stable-isotope approaches were compared. In conclusion, all metabolites found with the radioisotope approach could also be found with the stable-isotope approach. Although the stable-isotope approach does not provide a quantitative result, it can be considered to be a highly suited analytical alternative for early in vitro metabolism investigations, especially when radiolabeled drug analogues are not yet available and quantitative results are not yet necessary. PMID:23933567

  2. Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study.

    PubMed

    Bindschedler, Laurence V; Palmblad, Magnus; Cramer, Rainer

    2008-07-01

    Hydroponic isotope labelling of entire plants (HILEP) is a cost-effective method enabling metabolic labelling of whole and mature plants with a stable isotope such as (15)N. By utilising hydroponic media that contain (15)N inorganic salts as the sole nitrogen source, near to 100% (15)N-labelling of proteins can be achieved. In this study, it is shown that HILEP, in combination with mass spectrometry, is suitable for relative protein quantitation of seven week-old Arabidopsis plants submitted to oxidative stress. Protein extracts from pooled (14)N- and (15)N-hydroponically grown plants were fractionated by SDS-PAGE, digested and analysed by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). Proteins were identified and the spectra of (14)N/(15)N peptide pairs were extracted using their m/z chromatographic retention time, isotopic distributions, and the m/z difference between the (14)N and (15)N peptides. Relative amounts were calculated as the ratio of the sum of the peak areas of the two distinct (14)N and (15)N peptide isotope envelopes. Using Mascot and the open source trans-proteomic pipeline (TPP), the data processing was automated for global proteome quantitation down to the isoform level by extracting isoform specific peptides. With this combination of metabolic labelling and mass spectrometry it was possible to show differential protein expression in the apoplast of plants submitted to oxidative stress. Moreover, it was possible to discriminate between differentially expressed isoforms belonging to the same protein family, such as isoforms of xylanases and pathogen-related glucanases (PR 2). PMID:18538804

  3. Comment on “Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber experiment” by Zech et al. (2014)

    NASA Astrophysics Data System (ADS)

    Sternberg, Leonel da Silveira Lobo

    2014-09-01

    Zech et al. (2014) reported oxygen isotope ratios of stem hemicellulose for three species of plants grown at different temperatures and humidity. The authors did not consider temperature effects on biochemical fractionation during hemicellulose synthesis as an important determinant of the oxygen isotope ratio of hemicellulose. However, a closer examination of their data shows that, indeed, temperature has a significant effect on the oxygen isotope biochemical fractionation. Lower temperature has no effect on the proportion of oxygen isotope exchange with cell water, but it increases the biochemical fractionation of the exchange reaction. These results are consistent with previous observations.

  4. Late-glacial to late-Holocene shifts in global precipitation δ18O

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Lechler, A.; Pausata, F. S. R.; Fawcett, P. J.; Gleeson, T.; Cendón, D. I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; Welker, J. M.; Werner, M.; Yoshimura, K.

    2015-10-01

    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation δ18O. Here we present a synthesis of 86 globally distributed groundwater (n = 59), cave calcite (n = 15) and ice core (n = 12) isotope records spanning the late-glacial (defined as ~ 50 000 to ~ 20 000 years ago) to the late-Holocene (within the past ~ 5000 years). We show that precipitation δ18O changes from the late-glacial to the late-Holocene range from -7.1 ‰ (δ18Olate-Holocene > δ18Olate-glacial) to +1.7 ‰ (δ18Olate-glacial > δ18Olate-Holocene), with the majority (77 %) of records having lower late-glacial δ18O than late-Holocene δ18O values. High-magnitude, negative precipitation δ18O shifts are common at high latitudes, high altitudes and continental interiors (δ18Olate-Holocene > δ18Olate-glacial by more than 3 ‰). Conversely, low-magnitude, positive precipitation δ18O shifts are concentrated along tropical and subtropical coasts (δ18Olate-glacial > δ18Olate-Holocene by less than 2 ‰). Broad, global patterns of late-glacial to late-Holocene precipitation δ18O shifts suggest that stronger-than-modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by larger global temperature differences between the tropics and the poles. Further, to test how well general circulation models reproduce global precipitation δ18O shifts, we compiled simulated precipitation δ18O shifts from five isotope-enabled general circulation models simulated under recent and last glacial maximum climate states. Climate simulations generally show better inter-model and model-measurement agreement in temperate regions than in the tropics, highlighting a need for further research to better understand how inter-model spread in

  5. Stable isotope labeling - Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids.

    PubMed

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-28

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d5-Girard reagent P (d5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4-504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related

  6. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills. PMID:22665301

  7. Quantitative metabolomic profiling using dansylation isotope labeling and liquid chromatography mass spectrometry.

    PubMed

    Zhou, Ruokun; Li, Liang

    2014-01-01

    Differential chemical isotopic labeling (CIL) LC-MS has been used for quantifying a targeted metabolite in biological samples with high precision and accuracy. Herein we describe a high-performance CIL LC-MS method for generating quantitative and comprehensive profiles of the metabolome for metabolomics applications. After mixing two comparative samples separately labeled by light or heavy isotopic tags through chemical reactions, the peak intensity ratio of the labeled analyte pair can provide relative or absolute quantitative information on the metabolites. We describe the use of (12)C2- and (13)C2-dansyl chloride (DnsCl) as the isotope reagents to profile the metabolites containing amine and phenolic hydroxyl functional groups by LC-MS. This method can be used to compare the relative concentration changes of hundreds or thousands of amine- and phenol-containing metabolites among many comparative samples and generate absolute concentration information on metabolites for which the standards are available. Combined with statistical analysis and metabolite identification tools, this method can be used to identify key metabolites involved in differentiating comparative samples such as disease cases vs. healthy controls. PMID:25270927

  8. 18O/16O in CO2 evolved from goethite during some unusually rapid solid state α-FeOOH to α-Fe2O3 phase transitions: Test of an exchange model for possible use in oxygen isotope analyses of goethite

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton J.

    2015-12-01

    The initial ∼60% of an isothermal vacuum dehydration of goethite can commonly be approximated by first order kinetics. Also, natural goethites contain small amounts of an Fe(CO3)OH component in apparent solid solution. The 18O/16O of CO2 evolved from the Fe(CO3)OH during isothermal vacuum dehydrations is related to the 18O/16O of the goethite by an apparent fractionation factor (αapp) that is, in turn, correlated with a first order rate constant, |m|. A kinetic exchange model predicts that αapp should decrease as |m| increases for a range of |m| that corresponds to relatively slow rates of dehydration. This pattern has been observed in published results. In contrast, for rapid rates of dehydration, αapp is predicted to increase with increasing |m|. Isothermal vacuum dehydrations of two natural goethites had unusually large values of |m| and provided serendipitous tests of this rapid-rate prediction. For these experiments, the measured values of αapp were consistent with patterns of variation predicted by the model. This allowed an estimate of the activation energy (E2) of a model parameter, K2, which is the rate constant for oxygen isotope exchange between CO2 and H2O during the solid-state goethite to hematite phase transition. The estimated value of E2 is only ∼9 kJ/mol. Heterogeneous catalysis tends to decrease the activation energies of gas reactions. Consequently, the inferred value of E2 suggests that goethite and/or hematite catalyze oxygen isotope exchange between CO2 and H2O during the solid-state phase change. Yield, δ13C, and δ18O values are routinely measured for increments of CO2 evolved from the Fe(CO3)OH component during isothermal vacuum dehydration of goethite. Model-predicted values of αapp can be combined with plateau δ18O values of the evolved CO2 to estimate the δ18O of the goethite with a less than optimal, but potentially useful, precision of about ±0.8‰. Therefore, a single analytical procedure (incremental dehydration

  9. IMPACT OF DURATION OF INFUSION OF CHOICE ISOTOPE LABEL ON ISOTOPE RECYCLING IN GLUCOSE HOMEOSTASIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purposes of this study were to quantitate the impact of the duration of infusion and choice of stable isotope of glucose on measures of glucose rate of appearance (glucose Ra) and to determine whether the differences observed were due to tracer recycling via the glycogen pool (direct pathway) or...

  10. Enhanced sample multiplexing for nitrotyrosine-modified proteins using combined precursor isotopic labeling and isobaric tagging.

    PubMed

    Robinson, Renã A S; Evans, Adam R

    2012-06-01

    Current strategies for identification and quantification of 3-nitrotyrosine (3NT) post-translationally modified proteins (PTM) generally rely on biotin/avidin enrichment. Quantitative approaches have been demonstrated which employ isotopic labeling or isobaric tagging in order to quantify differences in the relative abundances of 3NT-modified proteins in two or potentially eight samples, respectively. Here, we present a novel strategy which uses combined precursor isotopic labeling and isobaric tagging (cPILOT) to increase the multiplexing capability of quantifying 3NT-modified proteins to 12 or 16 samples using commercially available tandem mass tags (TMT) or isobaric tags for relative and absolute quantification (iTRAQ), respectively. This strategy employs "light" and "heavy" labeled acetyl groups to block both N-termini and lysine residues of tryptic peptides. Next, 3NT is reduced to 3-aminotyrosine (3AT) using sodium dithionite followed by derivatization of light and heavy labeled 3AT-peptides with either TMT or iTRAQ multiplex reagents. We demonstrate the proof-of-principle utility of cPILOT with in vitro nitrated bovine serum albumin (BSA) and mouse splenic proteins using TMT(0), TMT(6), and iTRAQ(8) reagents and discuss limitations of the strategy. PMID:22509719

  11. Pinpointing RNA-Protein Cross-Links with Site-Specific Stable Isotope-Labeled Oligonucleotides

    PubMed Central

    2015-01-01

    High affinity RNA-protein interactions are critical to cellular function, but directly identifying the determinants of binding within these complexes is often difficult. Here, we introduce a stable isotope mass labeling technique to assign specific interacting nucleotides in an oligonucleotide-protein complex by photo-cross-linking. The method relies on generating site-specific oxygen-18-labeled phosphodiester linkages in oligonucleotides, such that covalent peptide-oligonucleotide cross-link sites arising from ultraviolet irradiation can be assigned to specific sequence positions in both RNA and protein simultaneously by mass spectrometry. Using Lin28A and a let-7 pre-element RNA, we demonstrate that mass labeling permits unambiguous identification of the cross-linked sequence positions in the RNA-protein complex. PMID:26583201

  12. Comparison of Acetate Turnover in Methanogenic and Sulfate-Reducing Sediments by Radiolabeling and Stable Isotope Labeling and by Use of Specific Inhibitors: Evidence for Isotopic Exchange

    PubMed Central

    de Graaf, W.; Wellsbury, P.; Parkes, R. J.; Cappenberg, T. E.

    1996-01-01

    Acetate turnover in the methanogenic freshwater anoxic sediments of Lake Vechten, The Netherlands, and in anoxic sediments from the Tamar Estuary, United Kingdom, and the Grosser Jasmunder Bodden, Germany, the latter two dominated by sulfate reduction, was determined. Stable isotopes and radioisotopes, inhibitors (chloroform and fluoroacetate), and methane flux were used to provide independent estimates of acetate turnover. Pore water acetate pool sizes were determined by gas chromatography with a flame ionization detector, and stable isotope-labeled acetate was determined by gas chromatography-mass spectrometry. The appearance of acetates with a different isotope labeling pattern from that initially added demonstrated that isotopic exchange occurred during methanogenic acetate metabolism. The predominant exchange processes were (i) D-H exchange in the methyl group and (ii) (sup13)C-(sup12)C exchange at the carboxyl carbon. These exchanges are most probably caused by the activity of the enzyme complex carbon monoxide dehydrogenase and subsequent methyl group dehydrogenation by tetrahydromethanopterine or a related enzyme. The methyl carbon was not subject to exchange during transformation to methane, and hence acetate with the methyl carbon labeled will provide the most reliable estimate of acetate turnover to methane. Acetate turnover rate estimates with these labels were consistent with independent estimates of acetate turnover (acetate accumulation after inhibition and methane flux). Turnover rates from either radioisotope- or stable isotope-labeled methyl carbon isotopes are, however, dependent on accurate determination of the acetate pool size. The additions of large amounts of stable isotope-labeled acetate elevate the acetate pool size, stimulating acetate consumption and causing deviation from steady-state kinetics. This can, however, be overcome by the application of a non-steady-state model. Isotopic exchange in sediments dominated by sulfate reduction

  13. Recombinant isotope labeled and selenium quantified proteins for absolute protein quantification.

    PubMed

    Zinn, Nico; Winter, Dominic; Lehmann, Wolf D

    2010-03-15

    A novel, widely applicable method for the production of absolutely quantified proteins is described, which can be used as internal standards for quantitative proteomic studies based on mass spectrometry. These standards are recombinant proteins containing an isotope label and selenomethionine. For recombinant protein expression, assembly of expression vectors fitted to cell-free protein synthesis was conducted using the gateway technology which offers fast access to a variety of genes via open reading frame libraries and an easy shuttling of genes between vectors. The proteins are generated by cell-free expression in a medium in which methionine is exchanged against selenomethionine and at least one amino acid is exchanged by a highly stable isotope labeled analogue. After protein synthesis and purification, selenium is used for absolute quantification by element mass spectrometry, while the heavy amino acids in the protein serve as reference in subsequent analyses by LC-ESI-MS or MALDI-MS. Accordingly, these standards are denominated RISQ (for recombinant isotope labeled and selenium quantified) proteins. In this study, a protein was generated containing Lys+6 ([(13)C(6)]-lysine) and Arg+10 ([(13)C(6),(15)N(4)]-arginine) so that each standard tryptic peptide contains a labeled amino acid. Apolipoprotein A1 was synthesized as RISQ protein, and its use as internal standard led to quantification of a reference material within the specified value. Owing to their cell-free expression, RISQ proteins do not contain posttranslational modifications. Thus, correct quantitative data by ESI- or MALDI-MS are restricted to quantifications based on peptides derived from unmodified regions of the analyte protein. Therefore, besides serving as internal standards, RISQ proteins stand out as new tools for quantitative analysis of covalent protein modifications. PMID:20163147

  14. Enhanced Interferon Signaling Pathway in Oral Cancer Revealed by Quantitative Proteome Analysis of Microdissected Specimens Using 16O/18O Labeling and Integrated Two-dimensional LC-ESI-MALDI Tandem MS*

    PubMed Central

    Chi, Lang-Ming; Lee, Chien-Wei; Chang, Kai-Ping; Hao, Sheng-Po; Lee, Hang-Mao; Liang, Ying; Hsueh, Chuen; Yu, Chia-Jung; Lee, I-Neng; Chang, Yin-Ju; Lee, Shih-Ying; Yeh, Yuan-Ming; Chang, Yu-Sun; Chien, Kun-Yi; Yu, Jau-Song

    2009-01-01

    Oral squamous cell carcinoma (OSCC) remains one of the most common cancers worldwide, and the mortality rate of this disease has increased in recent years. No molecular markers are available to assist with the early detection and therapeutic evaluation of OSCC; thus, identification of differentially expressed proteins may assist with the detection of potential disease markers and shed light on the molecular mechanisms of OSCC pathogenesis. We performed a multidimensional 16O/18O proteomics analysis using an integrated ESI-ion trap and MALDI-TOF/TOF MS system and a computational data analysis pipeline to identify proteins that are differentially expressed in microdissected OSCC tumor cells relative to adjacent non-tumor epithelia. We identified 1233 unique proteins in microdissected oral squamous epithelia obtained from three pairs of OSCC specimens with a false discovery rate of <3%. Among these, 977 proteins were quantified between tumor and non-tumor cells. Our data revealed 80 dysregulated proteins (53 up-regulated and 27 down-regulated) when a 2.5-fold change was used as the threshold. Immunohistochemical staining and Western blot analyses were performed to confirm the overexpression of 12 up-regulated proteins in OSCC tissues. When the biological roles of 80 differentially expressed proteins were assessed via MetaCore™ analysis, the interferon (IFN) signaling pathway emerged as one of the most significantly altered pathways in OSCC. As many as 20% (10 of 53) of the up-regulated proteins belonged to the IFN-stimulated gene (ISG) family, including ubiquitin cross-reactive protein (UCRP)/ISG15. Using head-and-neck cancer tissue microarrays, we determined that UCRP is overexpressed in the majority of cheek and tongue cancers and in several cases of larynx cancer. In addition, we found that IFN-β stimulates UCRP expression in oral cancer cells and enhances their motility in vitro. Our findings shed new light on OSCC pathogenesis and provide a basis for the

  15. Simulation of 18O in precipitation by the regional circulation model REMOiso

    NASA Astrophysics Data System (ADS)

    Sturm, Kristof; Hoffmann, Georg; Langmann, Bärbel; Stichler, Willibald

    2005-11-01

    The first results of a regional circulation model REMOiso fitted with water isotope diagnostics are compared with various isotope series from central Europe. A 2 year case study is conducted from March 1997 to February 1999 centred over Europe, analysing daily and monthly measurements. Isotope signals over Europe are dominated by the typical isotopic effects such as temperature, continental and altitude effects, both on annual and seasonal scales. These well-known isotopic effects are successfully reproduced by REMOiso, using two different boundary data sets. In a first simulation, the European Centre for Medium-range Weather Forecasts (ECMWF) analyses serve as boundary conditions, where water isotopes were parameterized by a simple temperature dependence. In a second simulation, boundary conditions both for climatic and isotopic variables are taken from the ECHAMiso general circulation model output. The comparison of both simulations shows a very high sensitivity of the simulated 18O signal to boundary conditions. The ECMWF-nested simulation shows an average offset of -4.5 in mean 18O values and exaggerated seasonal amplitude. The ECHAM-nested simulation represents correctly the observed mean 18O values, although with a dampened seasonality. REMOiso's isotope module is further validated against daily 18O measurements at selected stations (Nordeney, Arkona and Hohenpeissenberg) situated in Germany. Copyright

  16. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation

    PubMed Central

    Yeung, Laurence Y.; Affek, Hagit P.; Hoag, Katherine J.; Guo, Weifu; Wiegel, Aaron A.; Atlas, Elliot L.; Schauffler, Sue M.; Okumura, Mitchio; Boering, Kristie A.; Eiler, John M.

    2009-01-01

    The stratospheric CO2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO2 isotopologue 16O13C18O, in concert with 18O and 17O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO2 sample to date. We show, through photochemical experiments, that lower 16O13C18O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher 16O13C18O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric 16O13C18O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change. PMID:19564595

  17. Chemical imaging of biological materials by NanoSIMS using isotopic and elemental labels

    SciTech Connect

    Weber, P K; Fallon, S J; Pett-Ridge, J; Ghosal, S; Hutcheon, I D

    2006-04-10

    The NanoSIMS 50 combines unprecedented spatial resolution (as good as 50 nm) with ultra-high sensitivity (minimum detection limit of {approx}200 atoms). The NanoSIMS 50 incorporates an array of detectors, enabling simultaneous collection of 5 species originating from the same sputtered volume of a sample. The primary ion beam (Cs{sup +} or O{sup -}) can be scanned across the sample to produce quantitative secondary ion images. This capability for multiple isotope imaging with high spatial resolution provides a novel new approach to the study of biological materials. Studies can be made of sub-regions of tissues, mammalian cells, and bacteria. Major, minor and trace element distributions can be mapped on a submicron scale, growth and metabolism can be tracked using stable isotope labels, and biogenic origin can be determined based on composition. We have applied this technique extensively to mammalian and prokaryotic cells and bacterial spores. The NanoSIMS technology enables the researcher to interrogate the fate of molecules of interest within cells and organs through elemental and isotopic labeling. Biological applications at LLNL will be discussed.

  18. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.

    PubMed

    Wang, Shengnan; Suzuki, Satoru; Hibino, Hiroki

    2014-11-21

    Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of (12)C-lattice and surface deposition of (13)C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like (13)C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new way to investigate multiple grain structures in CVD graphene with a simple spectroscopic technique. PMID:25303722

  19. PCR and non-isotopic labeling techniques for plant virus detection.

    PubMed

    Fenby, N S; Scott, N W; Slater, A; Elliott, M C

    1995-07-01

    PCR technology permits the detection of viruses at levels several orders of magnitude lower than is possible by other methods. This high sensitivity facilitates detection of virus sequences during the early stages of infection of plants and in soil and vector samples. Early detection of beet necrotic yellow vein virus (BNYVV) in Beta vulgaris is an important part of the strategy for prevention of the spread of rhizomania, a commercially significant disease of sugar beet. A diagnostic test for BNYVV has been developed. This test involves amplification of the viral genome by PCR coupled with non-isotopic labeling and detection of specific sequences. The PCR amplification of BNYVV sequences has been optimized with respect to primer design, sample preparation and reaction conditions. Several non-isotopic labeling strategies for signal amplification have been compared. Hybridization with digoxigenin-labelled cDNA permits the most sensitive detection of PCR products and is the most appropriate method for routine diagnosis. These observations are discussed in the context of the application of PCR for detecting a wide range of viruses. PMID:7580844

  20. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    SciTech Connect

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. )

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  1. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: Quantitative benchmark for the interpretation of amyloid and protein infrared spectra

    PubMed Central

    Woys, Ann Marie; Almeida, Aaron M.; Wang, Lu; Chiu, Chi Cheng; McGovern, Michael; de Pablo, Juan J.; Skinner, James L.; Gellman, Samuel H.; Zanni, Martin T.

    2012-01-01

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly 13C=18O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequen cies of the labels ranged from 1585 to 1595 cm−1, with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the linewidths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm−1 linewidth. Narrower linewidths indicate that the amide I backbone is solvent protected

  2. Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling

    PubMed Central

    2011-01-01

    Background Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (Mus domesticus), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with 15N and then mating them to unlabeled, vasectomized males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that isotopic labeling is a powerful means to study reproductive proteins. Results We identified 69 male-derived proteins from the female reproductive tract following copulation. More than a third of all spectra detected mapped to just seven genes known to be structurally important in the formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly more rapidly than other proteins that we previously identified directly from dissection of the male reproductive tract. Conclusion Our study attempts to comprehensively identify the proteins transferred from males to females during mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female reproductive tract. PMID:21663664

  3. Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis.

    PubMed

    Rauniyar, Navin; McClatchy, Daniel B; Yates, John R

    2013-06-15

    Metabolic labeling of rodent proteins with ¹⁵N, a heavy stable isotope of nitrogen, provides an efficient way for relative quantitation of differentially expressed proteins. Here we describe a protocol for metabolic labeling of rats with an ¹⁵N-enriched spirulina diet. As a case study, we also demonstrate the application of ¹⁵N-enriched tissue as a common internal standard in quantitative analysis of differentially expressed proteins in neurodevelopment in rats at two different time points, postnatal day 1 and 45. We briefly discuss the bioinformatics tools, ProLucid and Census, which can easily be used in a sequential manner to identify and quantitate relative protein levels on a proteomic scale. PMID:23523555

  4. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGESBeta

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; Want, Elizabeth J.; Smith, Colin; O'Maille, Paul; NordstrÖm, Anders; Morita, Hirotoshi; Qin, Chuan; Uritboonthai, Wilasinee; et al

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  5. Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene

    NASA Astrophysics Data System (ADS)

    Costa, Sara D.; Weis, Johan Ek; Frank, Otakar; Fridrichová, Michaela; Kalbac, Martin

    2016-06-01

    In this report important Raman modes for the evaluation of strain in graphene (the 2D and 2D‧) are analyzed. The isotope labeling is used to disentangle contribution of individual graphene layers of graphene bilayer to the studied Raman modes. It is shown that for Bernal-stacked bilayers, the 2D and the 2D‧ Raman modes have three distinct components that can be assigned to processes originating solely from the top graphene layer, bottom graphene layer, and from a combination of processes originating both from the top and bottom layers. The reported results thus enable addressing the properties of individual graphene layers in graphene bilayer by Raman spectroscopy.

  6. Online high-precision delta(2)H and delta(18)O analysis in water by pyrolysis.

    PubMed

    Lu, Feng H

    2009-10-01

    A method for online simultaneous delta(2)H and delta(18)O analysis in water by high-temperature conversion is presented. Water is injected by using a syringe into a high-temperature carbon reactor and converted into H(2) and CO, which are separated by gas chromatography (GC) and carried by helium to the isotope ratio mass spectrometer for hydrogen and oxygen isotope analysis. A series of experiments was conducted to evaluate several issues such as sample size, temperature and memory effects. The delta(2)H and delta(18)O values in multiple water standards changed consistently as the reactor temperature increased from 1150 to 1480 degrees C. The delta(18)O in water can be measured at a lower temperature (e.g. 1150 degrees C) although the precision was relatively poor at temperatures <1300 degrees C. Memory effects exist for delta(2)H and delta(18)O between two waters, and can be reduced (to <1%) with proper measures. The injection of different amounts of water may affect the isotope ratio results. For example, in contrast to small injections (100 nL or less) from small syringes (e.g. 1.2 microL), large injections (1 microL or more) from larger syringes (e.g. 10 microL) with dilution produced asymmetric peaks and shifts of isotope ratios, e.g. 4 per thousand for delta(2)H and 0.4 per thousand for delta(18)O, probably resulting from isotope fractionation during dilution via the ConFlo interface. This method can be used to analyze nanoliter samples of water (e.g. 30 nL) with good precision of 0.5 per thousand for delta(2)H and 0.1 per thousand for delta(18)O. This is important for geosciences; for instance, fluid inclusions in ancient minerals may be analyzed for delta(2)H and delta(18)O to help understand the formation environments. PMID:19714707

  7. Multiplexed Analysis of Cage and Cage Free Chicken Egg Fatty Acids Using Stable Isotope Labeling and Mass Spectrometry

    PubMed Central

    Torde, Richard G.; Therrien, Andrew J.; Shortreed, Michael R.; Smith, Lloyd M.; Lamos, Shane M.

    2014-01-01

    Binary stable isotope labeling couple with LC-ESI-MS has been used as a powerful non-targeted approach for the relative quantification of lipids, amino acids, and many other important metabolite classes. A multiplexed approach using three or more isotopic labeling reagents greatly reduces analytical run-time while maintaining excellent sensitivity and reproducibility. Three isotopic cholamine labeling reagents have been developed to take advantage of the pre-ionized character of cholamine, for ESI, and the ease by which stable isotopes can be incorporated into the cholamine structure. These three cholamine labeling reagents have been used to relatively quantify three fatty acid samples simultaneously. The quantification resulted in the observation of 12 fatty acids that had an average absolute error of 0.9% and an average coefficient of variation of 6.1%. Caged versus cage-free isotope labeling experiments showed that cage-free eggs have an increased level of omega-3 fatty acids as compared to caged eggs. This multiplexed fatty acid analysis provides an inexpensive and expedited tool for broad-based lipid profiling that will further aid discoveries in the mechanisms of fatty acid action in cells. PMID:24317525

  8. Multiplexed analysis of cage and cage free chicken egg fatty acids using stable isotope labeling and mass spectrometry.

    PubMed

    Torde, Richard G; Therrien, Andrew J; Shortreed, Michael R; Smith, Lloyd M; Lamos, Shane M

    2013-01-01

    Binary stable isotope labeling couple with LC-ESI-MS has been used as a powerful non-targeted approach for the relative quantification of lipids, amino acids, and many other important metabolite classes. A multiplexed approach using three or more isotopic labeling reagents greatly reduces analytical run-time while maintaining excellent sensitivity and reproducibility. Three isotopic cholamine labeling reagents have been developed to take advantage of the pre-ionized character of cholamine, for ESI, and the ease by which stable isotopes can be incorporated into the cholamine structure. These three cholamine labeling reagents have been used to relatively quantify three fatty acid samples simultaneously. The quantification resulted in the observation of 12 fatty acids that had an average absolute error of 0.9% and an average coefficient of variation of 6.1%. Caged versus cage-free isotope labeling experiments showed that cage-free eggs have an increased level of omega-3 fatty acids as compared to caged eggs. This multiplexed fatty acid analysis provides an inexpensive and expedited tool for broad-based lipid profiling that will further aid discoveries in the mechanisms of fatty acid action in cells. PMID:24317525

  9. Proteome Scale-Protein Turnover Analysis Using High Resolution Mass Spectrometric Data from Stable-Isotope Labeled Plants.

    PubMed

    Fan, Kai-Ting; Rendahl, Aaron K; Chen, Wen-Ping; Freund, Dana M; Gray, William M; Cohen, Jerry D; Hegeman, Adrian D

    2016-03-01

    Protein turnover is an important aspect of the regulation of cellular processes for organisms when responding to developmental or environmental cues. The measurement of protein turnover in plants, in contrast to that of rapidly growing unicellular organismal cultures, is made more complicated by the high degree of amino acid recycling, resulting in significant transient isotope incorporation distributions that must be dealt with computationally for high throughput analysis to be practical. An algorithm in R, ProteinTurnover, was developed to calculate protein turnover with transient stable isotope incorporation distributions in a high throughput automated manner using high resolution MS and MS/MS proteomic analysis of stable isotopically labeled plant material. ProteinTurnover extracts isotopic distribution information from raw MS data for peptides identified by MS/MS from data sets of either isotopic label dilution or incorporation experiments. Variable isotopic incorporation distributions were modeled using binomial and beta-binomial distributions to deconvolute the natural abundance, newly synthesized/partial-labeled, and fully labeled peptide distributions. Maximum likelihood estimation was performed to calculate the distribution abundance proportion of old and newly synthesized peptides. The half-life or turnover rate of each peptide was calculated from changes in the distribution abundance proportions using nonlinear regression. We applied ProteinTurnover to obtain half-lives of proteins from enriched soluble and membrane fractions from Arabidopsis roots. PMID:26824330

  10. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    NASA Astrophysics Data System (ADS)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  11. A conceptual model for interpreting δ18O and δD biomarker records from terrestrial archives

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Tuthorn, Mario; Detsch, Florian; Rozanski, Kazimierz; Zech, Roland; Zöller, Ludwig; Zech, Wolfgang; Glaser, Bruno

    2013-04-01

    The natural abundances of stable oxygen (18O/16O) and hydrogen isotopes (D/H) are valuable proxies for reconstructing paleoclimate history on global as well as on regional scale. While stable isotope analyses of sedimentary leaf wax-derived n-alkanes enables establishing δD biomarker records, we recently developed a method based on compound-specific δ18O analyses of hemicellulose sugars (Zech and Glaser, 2009), which now additionally allows establishing δ18O biomarker records from soil/sedimentary organic matter of terrestrial archives. Here we present a conceptual model for interpreting combined δ18O and δD biomarker records (Zech et al., submitted). Based on this model, we suggest that both δ18O and δD biomarker records primarily reflect the isotopic composition of paleoprecipitation modified by evaporative isotope enrichment of leaf water during transpiration. Considering biosynthetic fractionation factors allows reconstructing from combined δ18O and δD biomarker records the leaf water isotopic composition and the deuterium excess of the leaf water. The deuterium excess may serve as proxy for evaporative enrichment and allows reconstructing relative humidity using a Craig-Gordon model. Furthermore, the model allows calculating δ18O of the plant source water (δ18Osource water), which can be assumed to primarily reflect δ18O of paleoprecipitation. Hence, paleoclimatic conclusions in terms of temperature can be drawn in high latitude study areas and precipitation amount can be reconstructed in monsoon regions. Zech, M., Glaser, B., 2009. Compound-specific δ18O analyses of neutral sugars in soils using GC-Py-IRMS: problems, possible solutions and a first application. Rapid Commun. Mass Spectrom. 23, 3522-3532. Zech et al., 2013. A 220 ka terrestrial δ18O and deuterium excess biomarker record from an eolian permafrost paleosol sequence, NE-Siberia. Submitted to Chemical Geology.

  12. Performance of human mass balance studies with stable isotope-labeled drug and continuous flow-isotope ratio mass spectrometry: a progress report.

    PubMed

    Browne, T R; Szabo, G K; Ajami, A; Browne, D G

    1998-04-01

    We propose performing human mass balance studies by administering stable isotope labeled (13C or 15N) drug and quantitating excess (above background) 13C or 15N in urine, serum, and feces by continuous flow-isotope ratio mass spectrometry (CF-IRMS). Theoretical calculations and empirical data (dynamic range, linearity, sensitivity, precision, accuracy) are presented to establish that commercially available CF-IRMS instruments can quantitate stable isotope labeled (one or two 15N or 13C labels) drug concentrations of 1.0 microg/mL or greater in urine, serum (15N), or feces. More than two 13C labels may be necessary to quantitate 1.0 microg/mL of drug in serum. Three volunteers received 650 mg of 15N13C2-acetaminophen, and urine was collected for 72 hours. Percent of administered label recovered in urine from the three subjects was 97.4, 78.9, and 95.4 for 13C and 90.3, 77.0, and 90.6 for 15N. Fecal recovery of label for one subject was 0.9% (13C2) and 1.1% (15N). Serum pharmacokinetic values obtained by counting 13C or 15N in one subject were as expected for acetaminophen. This method appears to be promising, and further validation is ongoing. PMID:9590457

  13. Application of {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C Isotopes to diagenesis, correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani Field Tunisia

    SciTech Connect

    Mearns, E.W.; Mcbride, J.J.; Bramwell, M.

    1995-08-01

    Strontium Stratigraphy Analysis of the primary matrix chalk of the Abiod Formation reservoir in the Sidi El Kilani Field indicate a Campanian to Maastrichtian age (Upper Cretaceous). A resolution of {+-}1Ma has been achieved and results suggest that there are no major stratigraphic breaks in the studied sequences. Sr-O-C isotope data from early fracture-filling calcite cements suggest they may have formed by the redistribution of CaCO{sub 3} from underlying carbonate sequences and may have precipitated at temperatures in the region of 35-55{degrees}C. The {sup 87}Sr/{sup 86}Sr isotope ratios of formation waters determined by residual salt analysis (SrRSA) suggest that the chemical evolution of waters during reservoir filling was controlled by the influx of basinal waters as opposed to in situ water-rock interaction. Late, fracture-filling dolomite and barite cements have Sr-O-C isotope characteristics consistent with precipitation from these migrating basinal fluids at temperatures similar to current reservoir conditions (70-75{degrees}C). Sr RSA results suggest that the reservoir section in two of the wells may have been in direct lateral communication at the time of oil emplacement. These wells however are separated by a strike-slip fault. The SrRSA results therefore suggest that the fault is a partial barrier which has restricted pressure equilibration in the relatively short timescale of oil production, but which may have allowed homogenization of Sr isotope ratios in formation water.

  14. Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

    PubMed Central

    Verastegui, Y.; Cheng, J.; Engel, K.; Kolczynski, D.; Mortimer, S.; Lavigne, J.; Montalibet, J.; Romantsov, T.; Hall, M.; McConkey, B. J.; Rose, D. R.; Tomashek, J. J.; Scott, B. R.

    2014-01-01

    ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. PMID:25028422

  15. Peak metamorphic temperatures from Raman Spectroscopy on Carbonaceous Matter (RSCM) and δ18O and δ13C (carb) isotope composition of a major mélange zone in the South Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Jakob, Johannes; Beyssac, Olivier; Boulvais, Philippe; Andersen, Torgeir B.

    2016-04-01

    A mélange in southern Norway comprises a matrix of garnet, mica- and black carbonaceous schists and phyllites of abyssal origin, interlayered with originally coarser grained siliciclastic metasediments, serpentinite conglomerates and sandstones, solitary metaperidotites and thin slivers of gneisses. Several models for the formation of the mélange have been suggested, including formation as a) an ophiolitic mélange formed during ophiolite obduction, b) an unconformable post-obduction transgressive sequence or c) a mélange formed during hyperextension along the pre-Caledonian margin of Baltica. In the past, the mélange has therefore not been treated as one single tectonic unit, but has been assigned to various tectonic positions with both outboard Iapetus and inboard Baltican origins. In this study we argue that the mélange occupies a tectonostratigraphic position below major Baltican basement nappe-complexes previously assigned to the Middle Allochthon. Furthermore, we present new consistent results on the peak metamorphic temperatures (T ˜ 500° C), based on RSCM, and a characteristic δ18Ocarb isotope composition (11-15.5 ‰ SMOW), both consistent for more than 250 km along strike of the mélange. δ13Ccarb values fall within three clusters around 1, ‑ 2 , and ‑ 7 ‰ (PDB), respectively. The stable isotope investigation presented here was carried out in order to explore if pre-Caledonian isotope signatures in various generations of carbonate veins and the early Ordovician fossils at Otta, could have been preserved through a later Caledonian metamorphic overprint. The results presented here however, suggest that re-equilibration of the carbonates took place in the Silurian, most likely coeval with peak metamorphism of ˜ 500° C at ˜ 420 Ma, and the main fabric development close to the base of the nappe-stack. Re-equilibration of the carbonates was assisted by the presence a pervasive static fluid, allowing for oxygen isotope exchange with the

  16. The origin of high δ18O zircons: marbles, megacrysts, and metamorphism

    NASA Astrophysics Data System (ADS)

    Cavosie, Aaron J.; Valley, John W.; Kita, Noriko T.; Spicuzza, Michael J.; Ushikubo, Takayuki; Wilde, Simon A.

    2011-11-01

    The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O values from 5 to 17‰, with 99% below 15‰. However, zircons with anomalously high δ18O, up to 23‰, have been reported in detrital suites; source rocks for these unusual zircons have not been identified. We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic petrogenesis for anomalously high δ18O in zircon. A suite of 28 large detrital zircon megacrysts from Mogok (Myanmar) analyzed by laser fluorination yields δ18O from 9.4 to 25.5‰. The U-Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields δ18O = 15.4 ± 0.1‰ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin section of Sri Lanka granulite facies calcite marble yields δ18O = 19.4‰ by ion microprobe and confirms a metamorphic petrogenesis of zircon in marble. Small oxygen isotope fractionations between zircon and most minerals require a high δ18O source for the high δ18O zircons. Predicted equilibrium values of Δ18O(calcite-zircon) = 2-3‰ from 800 to 600°C show that metamorphic zircon crystallizing in a high δ18O marble will have high δ18O. The high δ18O zircons (>15‰) from both Sri Lanka and Mogok overlap the values of primary marine carbonates, and marbles are known detrital gemstone sources in both localities. The high δ18O zircons are thus metamorphic; the 15-25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e., low fluid(external)/rock); the lower δ18O zircon values (9-15‰) are consistent with an origin in an external fluid-dominated system, such as skarn derived from marble, although many non-metasomatized marbles also fall in this range of δ18O. High δ18O (>15‰) and the absence of zoning can thus be used as a tracer to identify a marble source for high δ18O

  17. Formation of Hydroxymethyl DNA Adducts in Rats Orally Exposed to Stable Isotope Labeled Methanol

    PubMed Central

    Lu, Kun; Gul, Husamettin; Upton, Patricia B.; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Methanol is a large volume industrial chemical and widely used solvent and fuel additive. Methanol’s well known toxicity and use in a wide spectrum of applications has raised long-standing environmental issues over its safety, including its carcinogenicity. Methanol has not been listed as a carcinogen by any regulatory agency; however, there are debates about its carcinogenic potential. Formaldehyde, a metabolite of methanol, has been proposed to be responsible for the carcinogenesis of methanol. Formaldehyde is a known carcinogen and actively targets DNA and protein, causing diverse DNA and protein damage. However, formaldehyde-induced DNA adducts arising from the metabolism of methanol have not been reported previously, largely due to the absence of suitable DNA biomarkers and the inability to differentiate what was due to methanol compared with the substantial background of endogenous formaldehyde. Recently, we developed a unique approach combining highly sensitive liquid chromatography-mass spectrometry methods and exposure to stable isotope labeled chemicals to simultaneously quantify formaldehyde-specific endogenous and exogenous DNA adducts. In this study, rats were exposed daily to 500 or 2000 mg/kg [13CD4]-methanol by gavage for 5 days. Our data demonstrate that labeled formaldehyde arising from [13CD4]-methanol induced hydroxymethyl DNA adducts in multiple tissues in a dose-dependent manner. The results also demonstrated that the number of exogenous DNA adducts was lower than the number of endogenous hydroxymethyl DNA adducts in all tissues of rats administered 500 mg/kg per day for 5 days, a lethal dose to humans, even after incorporating an average factor of 4 for reduced metabolism due to isotope effects of deuterium-labeled methanol into account. PMID:22157354

  18. Comparison of River Water and Precipitation δ18O Across the 48 Contiguous United States

    NASA Astrophysics Data System (ADS)

    Dutton, A. L.; Wilkinson, B. H.; Welker, J. M.; Lohmann, K. C.

    2002-12-01

    A variety of proxies for ancient meteoric precipitation δ18O have been employed to reconstruct paleoclimates including compositions of glacial ice, speleothems, pedogenic carbonate and hematite, authigenic clay minerals, lacustrine carbonate, meteoric cements, and biogenic hardparts such as teeth, otoliths, and bivalve shells. Because many of these techniques rely upon the assumption that the isotopic composition of the surface or groundwater is analogous to that of precipitation in the same locality, we have undertaken a quantitative comparison of the oxygen isotope18O) composition of modern river water and precipitation across the entire U. S. using data from the USGS gauging stations, U. S. Network for Isotopes in Precipitation, and data compiled from the literature. We have generated maps of modern mean annual δ18O for both precipitation and river water across the 48 contiguous United States using latitude and elevation as our primary predictors of stable isotope composition while also incorporating regional and local deviations from this simple model based on available isotopic data. Differences between precipitation and river water compositions were calculated at each grid point (spaced at 30 arc seconds) to generate a final map that displays regions where river water δ18O is similar to, or significantly offset from local precipitation δ18O. Additional maps depicting seasonal and extreme values for river water and precipitation were also constructed. Across most of the Great Plains, river water δ18O is significantly more positive than precipitation, while throughout much of the western United States river water is depleted in 18O compared to local precipitation. One of the most salient features that emerged from this comparison is the "catchment effect" for the river water. Because river water samples are largely derived from precipitation that occurs upstream of the sample localities (i.e., at higher elevations), river water δ18O values are lower

  19. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use. PMID:26086729

  20. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    SciTech Connect

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  1. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  2. Determination of Polychlorinated Biphenyls in Solid Samples by Isotope Dilution Mass Spectrometry Using ³⁷Cl-Labeled Analogues.

    PubMed

    Somoano-Blanco, Lourdes; Rodriguez-Gonzalez, Pablo; García Fonseca, Sergio; Alonso, J Ignacio Garcia

    2015-08-01

    This work describes the first application of (37)Cl-labeled compounds to isotope dilution mass spectrometry (IDMS). The synthesis of 12 (37)Cl-labeled polychlorinated biphenyls (PCBs) was carried out by the chlorination of biphenyl with isotopically enriched chlorine gas, generated by the direct oxidation of Na(37)Cl with potassium peroxymonosulfate. After an exhaustive purification due to the presence of other congeners, the concentration and the isotopic enrichment of all (37)Cl-labeled PCBs in the mixture was determined. The proposed procedure allows the simultaneous quantification of every isotope diluted PCB congener in a single gas chromatography-tandem mass spectrometry (GC-MS/MS) injection without resorting to a methodological calibration graph. The results obtained here demonstrate that the use of (37)Cl-labeled analogues provides results in agreement with the certified values of three different Certified Reference Materials (marine sediment SRM 1944, fish tissue 1947, and loamy soil CRM 962-50) and analytical figures of merit comparable to those obtained using regular IDMS procedures based on the use of commercially available (13)C-labeled analogues. PMID:26165349

  3. Segmental Isotope Labelling of an Individual Bromodomain of a Tandem Domain BRD4 Using Sortase A

    PubMed Central

    Williams, Felix P.; Milbradt, Alexander G.; Embrey, Kevin J.

    2016-01-01

    Bromodomain and extra-terminal (BET) family of proteins are one of the major readers of epigenetic marks and an important target class in oncology and other disease areas. The importance of the BET family of proteins is manifested by the explosion in the number of inhibitors against these targets that have successfully entered clinical trials. One important BET family member is bromodomain containing protein 4 (BRD4). Structural and biophysical studies of BRD4 are complicated by its tertiary-structure consisting of two bromodomains connected by a flexible inter-domain linker of approximately 180 amino acids. A detailed understanding of the interplay of these bromodomains will be key to rational drug design in BRD4, yet there are no reported three-dimensional structures of the multi-domain BRD4 and NMR studies of the tandem domain are hampered by the size of the protein. Here, we present a method for rapid Sortase A-mediated segmental labelling of the individual bromodomains of BRD4 that provides a powerful strategy that will enable NMR studies of ligand-bromodomain interactions with atomic detail. In our labelling strategy, we have used U-[2H,15N]-isotope labelling on the C-terminal bromodomain with selective introduction of 13CH3 methyl groups on Ile (δ1), Val and Leu, whereas the N-terminal bromodomain remained unlabelled. This labelling scheme resulted in significantly simplified NMR spectra and will allow for high-resolution interaction, structure and dynamics studies in the presence of ligands. PMID:27128490

  4. Predicting animal δ18O: Accounting for diet and physiological adaptation

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.

    1996-12-01

    Theoretical predictions and measured isotope variations indicate that diet and physiological adaptation have a significant impact on animals δ18O and cannot be ignored. A generalized model is therefore developed for the prediction of animal body water and phosphate δ18O to incorporate these factors quantitatively. Application of the model reproduces most published compositions and compositional trends for mammals and birds. A moderate dependence of animal δ18O on humidity is predicted for drought-tolerant animals, and the correlation between humidity and North American deer bone composition as corrected for local meteoric water is predicted within the scatter of the data. In contrast to an observed strong correlation between kangaroo δ18O and humidity ( Δδ 18O/Δh ˜ 2.5 ± 0.4‰/10% r.h.), the predicted humidity dependence is only 1.3 - 1.7‰/10% r.h., and it is inferred that drinking water in hot dry areas of Australia is enriched in 18O over rainwater. Differences in physiology and water turnover readily explain the observed differences in δ18O for several herbivore genera in East Africa, excepting antelopes. Antelope models are more sensitive to biological fractionations, and adjustments to the flux of transcutaneous water vapor within experimentally measured ranges allows their δ18O values to be matched. Models of the seasonal changes of forage composition for two regions with dissimilar climates show that significant seasonal variations in animal isotope composition are expected, and that animals with different physiologies and diets track climate differently. Analysis of different genera with disparate sensitivities to surface water and humidity will allow the most accurate quantification of past climate changes.

  5. Predicting animal δ18O: Accounting for diet and physiological adaptation

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.

    1996-12-01

    Theoretical predictions and measured isotope variations indicate that diet and physiological adaptation have a significant impact on animals δ18O and cannot be ignored. A generalized model is therefore developed for the prediction of animal body water and phosphate δ18O to incorporate these factors quantitatively. Application of the model reproduces most published compositions and compositional trends for mammals and birds. A moderate dependence of animal δ18O on humidity is predicted for drought-tolerant animals, and the correlation between humidity and North American deer bone composition as corrected for local meteoric water is predicted within the scatter of the data. In contrast to an observed strong correlation between kangaroo δ18O and humidity (Δδ18O/Δh ∼ 2.5± 0.4‰/10%r.h.), the predicted humidity dependence is only 1.3 - 1.7‰/10% r.h., and it is inferred that drinking water in hot dry areas of Australia is enriched in 18O over rainwater. Differences in physiology and water turnover readily explain the observed differences in δ18O for several herbivore genera in East Africa, excepting antelopes. Antelope models are more sensitive to biological fractionations, and adjustments to the flux of transcutaneous water vapor within experimentally measured ranges allows their δ18O values to be matched. Models of the seasonal changes of forage composition for two regions with dissimilar climates show that significant seasonal variations in animal isotope composition are expected, and that animals with different physiologies and diets track climate differently. Analysis of different genera with disparate sensitivities to surface water and humidity will allow the most accurate quantification of past climate changes.

  6. Seasonal-Resolution δ18O in Speleothems by Ion Microprobe: Revealing Asian Monsoon Dynamics

    NASA Astrophysics Data System (ADS)

    Orland, I. J.; Edwards, R. L.; Cheng, H.; Kozdon, R.; Valley, J. W.

    2014-12-01

    Over the last decade, ion microprobe analysis of speleothems (cave carbonates) has increased the temporal resolution of their oxygen isotope18O) paleoclimate proxy records. Recent improvements in methodology, standardization, and imaging at the WiscSIMS lab make it possible to examine sub-annual patterns of δ18O variability at 10-µm-scale, revealing new seasonal paleoenvironmental information. We applied this technique to an important suite of Chinese stalagmites with conventional drill-sampled δ18O records that reflect changes in Asian Monsoon dynamics across the last deglaciation. Seasonal-resolution δ18O analyses in the Chinese stalagmites reveal regular patterns of annual δ18O variability. Quantitative assessment of the patterns identifies two important components in the δ18O records. First, the source and rainout histories of water vapors that ultimately yield rainfall over China play a primary role in determining the δ18O value of speleothem calcite year-round. Second, intra-annual patterns of calcite δ18O variability indicate that the annual proportion of monsoon precipitation changes systematically during the last deglaciation; the annual proportion of monsoon rainfall is greater during the Holocene and Bølling-Allerød than during the Younger Dryas. This is the first time these components have been characterized in any speleothem δ18O record of monsoon dynamics because seasonal δ18O variability is lost by conventional drill-sampling. Ion microprobe analysis of speleothems can also produce year-by-year records of δ18O across abrupt climate change events. At the Younger Dryas-Holocene transition in a Kulishu Cave stalagmite, which spanned 16 years at 11.53 ky BP, there is a relatively smooth decrease in year-round δ18O(calcite). In contrast, the intra-annual δ18O patterns indicate that the increase in the annual proportion of monsoon rainfall across this transition is stochastic, implying that this record can distinguish the regional

  7. Holocene tropical South American hydroclimate revealed from a decadally resolved lake sediment δ 18O record

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Abbott, Mark B.; Rodbell, Donald T.; Vuille, Mathias

    2011-10-01

    Oxygen isotope ratios of authigenic calcite (δ 18O cal) measured at annual to decadal resolution from Laguna Pumacocha document Andean precipitation variability during the last 11,200 years. Modern limnological data show that Pumacocha δ 18O cal reflects the average annual isotopic composition of the lake's surface waters (δ 18O lw), and that δ 18O lw tracks the isotopic composition of precipitation (δ 18O precip), which is largely controlled by the intensity of the South American summer monsoon (SASM). Based on these relationships we use down-core δ 18O cal measurements as a proxy for δ 18O precip that varies with the intensity of SASM precipitation. Pumacocha δ 18O cal increased rapidly between 11,200 and 10,300 yr B.P. from - 14.5‰ to - 10.5‰, reaching a maximum of - 10.3‰ by 9800 yr B.P. After 9800 yr B.P., δ 18O cal underwent a long-term decrease that tracked increasing Southern Hemisphere summer insolation, suggesting that enhanced SASM precipitation was linked to precessional forcing. Higher-frequency trends did not follow insolation and therefore represent other variability in the climate system. Millennial-scale trends from Pumacocha strongly resemble those from lower-resolution tropical Andean ice and lake core isotopic records, particularly the Huascaran ice core, and low elevation speleothems. These relationships suggest that tropical Andean isotopic records reflect variations in precipitation intensity related to precessional forcing rather than tropical temperatures. They also demonstrate a coherent pattern of SASM variability, although with differences between low elevation and Andean records during the late Glacial to Holocene transition and the late Holocene. Centennial and decadal SASM precipitation variability is also apparent. Reduced SASM rainfall occurred from 10,000-9200, 7000-5000, 1500-900 yr B.P. and during the last 100 years. Intensifications of the SASM occurred at 5000, 2200-1500, and 550-130 yr B.P. with the amplitude of

  8. Estimating plant water uptake source depths with optimized stable water isotope labeling

    NASA Astrophysics Data System (ADS)

    Seeger, Stefan; Weiler, Markus

    2016-04-01

    Depth profiles of pore water stable isotopes in soils in conjunction with measurements of stable water isotopes (SWI) in plant transpiration allow the estimation of the contributions of different soil depths to plant water uptake (PWU).
 However, SWI depth profiles that result from the variations of SWI in natural precipitation may lead to highly ambiguous results, i.e. the same SWI signature in transpiration could result from different PWU patterns or SWI depth profiles. The aim of this study was to find an optimal stable water isotope depth profile to estimate plant water uptake patterns and to compare different PWU source depth estimation methods. We used a new soil water transport model including fractionation effects of SWI and exchange between the vapor and liquid phase to simulate different irrigation scenarios. Different amounts of water with differing SWI signatures (glacier melt water, summer precipitation water, deuterated water) were applied in order to obtain a wide variety of SWI depth profiles. Based on these simulated SWI depth profiles and a set of hypothetical PWU patterns, the theoretical SWI signatures of the respective plant transpiration were computed. In the next step, two methods - Bayesian isotope mixing models (BIMs) and optimization of a parametric distribution function (beta function) - were used to estimate the PWU patterns from the different SWI depth profiles and their respective SWI signatures in the resulting transpiration. Eventually, the estimated and computed profiles were compared to find the best SWI depth profile and the best method. The results showed, that compared to naturally occurring SWI depth profiles, the application of multiple, in terms of SWI, distinct labeling pulses greatly improves the possible spatial resolution and at the same time reduces the uncertainty of PWU estimates.
 For the PWU patterns which were assumed for this study, PWU pattern estimates based on an optimized parametric distribution function

  9. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland

    NASA Astrophysics Data System (ADS)

    Wen, Xue-Fa

    2016-04-01

    The oxygen isotope compositions of ecosystem water pools and fluxes are useful tracers in the water cycle. As part of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) program, high-frequency and near-continuous in situ measurements of 18O composition of atmospheric vapor (δv) and of evapotranspiration (δET) were made with the flux-gradient method using a cavity ring-down spectroscopy water vapor isotope analyzer. At the sub-daily scale, we found, in conjunction with intensive isotopic measurements of other ecosystem water pools, that the differences between 18O composition of transpiration (δT) and of xylem water (δx) were negligible in early afternoon (13:00-15:00 Beijing time) when ET approached the daytime maximum, indicating isotopic steady state. At the daily scale, for the purpose of flux partitioning, δT was approximated by δx at early afternoon hours, and the 18O composition of soil evaporation (δE) was obtained from the Craig-Gordon model with a moisture-dependent soil resistance. The relative contribution of transpiration to evapotranspiration ranged from 0.71 to 0.96 with a mean of 0.87 ± 0.052 for the growing season according to the isotopic labeling, which was good agreement with soil lysimeter measurements showing a mean transpiration fraction of 0.86 ± 0.058. At the growing season scale, the predicted18O composition of runoff water was within the range of precipitation and irrigation water according to the isotopic mass conservation. The 18O mass conservation requires that the decreased δ18O of ET should be balanced by enhanced δ18O of runoff water. (Wen, XF*, Yang, B, Sun, XM, Lee, X. 2015. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agricultural and Forest Meteorology , doi:10.1016/j.agrformet.2015.12.003).

  10. Peptide Biosynthesis with Stable Isotope Labeling from a Cell-free Expression System for Targeted Proteomics with Absolute Quantification.

    PubMed

    Xian, Feng; Zi, Jin; Wang, Quanhui; Lou, Xiaomin; Sun, Haidan; Lin, Liang; Hou, Guixue; Rao, Weiqiao; Yin, Changcheng; Wu, Lin; Li, Shuwei; Liu, Siqi

    2016-08-01

    Because of its specificity and sensitivity, targeted proteomics using mass spectrometry for multiple reaction monitoring is a powerful tool to detect and quantify pre-selected peptides from a complex background and facilitates the absolute quantification of peptides using isotope-labeled forms as internal standards. How to generate isotope-labeled peptides remains an urgent challenge for accurately quantitative targeted proteomics on a large scale. Herein, we propose that isotope-labeled peptides fused with a quantitative tag could be synthesized through an expression system in vitro, and the homemade peptides could be enriched by magnetic beads with tag-affinity and globally quantified based on the corresponding multiple reaction monitoring signals provided by the fused tag. An Escherichia coli cell-free protein expression system, protein synthesis using recombinant elements, was adopted for the synthesis of isotope-labeled peptides fused with Strep-tag. Through a series of optimizations, we enabled efficient expression of the labeled peptides such that, after Strep-Tactin affinity enrichment, the peptide yield was acceptable in scale for quantification, and the peptides could be completely digested by trypsin to release the Strep-tag for quantification. Moreover, these recombinant peptides could be employed in the same way as synthetic peptides for multiple reaction monitoring applications and are likely more economical and useful in a laboratory for the scale of targeted proteomics. As an application, we synthesized four isotope-labeled glutathione S-transferase (GST) peptides and added them to mouse sera pre-treated with GST affinity resin as internal standards. A quantitative assay of the synthesized GST peptides confirmed the absolute GST quantification in mouse sera to be measurable and reproducible. PMID:27234506

  11. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    NASA Astrophysics Data System (ADS)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  12. Isotope labelling to study molecular fragmentation during the dielectric barrier discharge wet reforming of methane

    NASA Astrophysics Data System (ADS)

    Montoro-Damas, Antonio M.; Gómez-Ramírez, Ana; Gonzalez-Elipe, Agustín R.; Cotrino, José

    2016-09-01

    Isotope labelling is used to study the wet plasma reforming of methane in a dielectric barrier discharge reactor using D2O and CH4 as reactants. Besides the formation of CO and hydrogen as main products, different partitions of H and D atoms are found in the hydrogen (i.e., H2, HD, D2), methane (i.e., CH4, CH3D and CH2D2) and water (D2O, DHO) molecules detected by mass spectrometry as outlet gases of the plasma process. The effect of operating parameters such as applied current, residence time and the addition of oxygen to the reaction mixture is correlated with the H/D distribution in these molecules, the overall reaction yield and the energetic efficiency of the process. The results prove the plasma formation of intermediate excited species that rendering water and methane instead of CO and hydrogen greatly contribute to decrease the overall energy efficiency of the reforming process.

  13. Minimization of sample requirement for delta18O in benzoic acid.

    PubMed

    Hagopian, William M; Jahren, A Hope

    2010-09-15

    The measurement of the oxygen stable isotope content in organic compounds has applications in many fields, ranging from paleoclimate reconstruction to forensics. Conventional High-Temperature Conversion (HTC) techniques require >20 microg of O for a single delta(18)O measurement. Here we describe a system that converts the CO produced by HTC into CO(2) via reduction within a Ni-furnace. This CO(2) is then concentrated cryogenically, and 'focused' into the isotope ratio mass spectrometry (IRMS) source using a low-flow He carrier gas (6-8 mL/min). We report analyses of benzoic acid (C(7)H(6)O(2)) reference materials that yielded precise delta(18)O measurement down to 1.3 microg of O, suggesting that our system could be used to decrease sample requirement for delta(18)O by more than an order of magnitude. PMID:20740528

  14. Convenient synthesis of stable deuterium-labeled alkylpyrazines for use in stable isotope dilution assays.

    PubMed

    Fang, Mingchih; Cadwallader, Keith R

    2013-04-17

    Stable isotope dilution assays (SIDA) provide for accurate and precise quantitation of aroma components, such as alkylpyrazines, which are often present in low concentrations in complex food matrices. The unavailability of labeled standards is the main limitation to the widespread use of SIDA. This study describes the chlorination of several alkylpyrazines to form the corresponding chloroalkylpyrazine compounds, which are efficient starting materials for the synthesis of deuterium-labeled alkylpyrazines, namely [²H₃]-2-methylpyrazine (d-1), [²H₅]-2-ethylpyrazine (d-2), [²H₃]-2,3(or 6)-dimethylpyrazine (d-3A, d-3B), [²H₃]-2,[²H₃]-6-dimethylpyrazine (d-3C), [²H₅]-2,[²H₅]-6-diethylpyrazine (d-4), [²H₅]-2-ethyl-3(or 6)-methylpyrazine (d-5A, d-5B), 2,[²H₃]-3,5-trimethylpyrazine (d-6), [²H₅]-2-ethyl-3,6-dimethylpyrazine (d-7), [²H₅]-2-ethyl-3,5-dimethylpyrazine (d-8), and 2,3-diethyl-[²H₃]-5-methylpyrazine (d-9), which were obtained in good yields (57-100%) and high purities (86-98%). These stable isotopes were used as internal standards in SIDA to accurately and precisely determine selected alkylpyrazines in commercial peanut butter, cocoa powder, and instant coffee. 2,3-Diethyl-5-methylpyrazine (p-9) and 2-ethyl-3,5-dimethylpyrazine (p-8), despite their low abundance, had the highest odor-active values among the 13 pyrazines quantified in all products due to their very low odor thresholds. PMID:23528050

  15. Mass spectrometric studies of cocaine disposition in animals and humans using stable isotope-labeled analogues.

    PubMed

    Jindal, S P; Lutz, T

    1989-12-01

    Ion cluster technique in conjunction with gas chromatography-mass spectrometry (GC-MS) was used for the identification and quantitation of major metabolites of cocaine (1a) in rat and humans. In a typical experiment, a female rat weighing 250 gm was intraperitoneally administered a 20-mg/kg mixture of 1a, NCD3-cocaine (1b), OCD3-cocaine (1c), and 4T2-cocaine (1d). The urine was collected, extracted with organic solvents, and separated into several fractions using TLC and HPLC techniques. Tritium radioactivity in a metabolically stable position in 1d was useful in the separation of metabolites, while the deuterium labeled 1(b + c), creating an artificial isotopic cluster, provided specific identification of metabolites by mass spectrometric interpretation. Norcocaine (2), benzoylnorecgonine (3), N-hydroxynorcocaine (4), methylecgonidine (5), benzoylecgonine (11), ecgonine methyl ester (9), hydroxycocaine (7), hydroxymethoxycocaine (10), and dimethoxyhydroxycocaine (6) were found to be the major metabolites of 1a in the rat urine as well as in plasma. The whole brain analysis showed significant amounts of unmetabolized 1a and 2, and minor concentrations of 9, 5, 7, and 10, and traces of 6. Some of these metabolites have been reported earlier by us as well as other investigators and are unequivocally confirmed in this work. Unmetabolized 1a, its pharmacologically active metabolite 2, and other major metabolites were quantitated in the rat brain, plasma, and urine using stable isotope-labeled analogues as internal standards and selected ion monitoring (SIM) mass spectrometry. The pharmacokinetic profiles of 1a and 2 indicate half-lives of less than 20 min in the brain and plasma. These data are in good agreement with widely reported short-lived behavioral effects of cocaine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2614690

  16. Calibration of speleothem δ18O records against hydroclimate instrumental records in Central Brazil

    NASA Astrophysics Data System (ADS)

    Moquet, J. S.; Cruz, F. W.; Novello, V. F.; Stríkis, N. M.; Deininger, M.; Karmann, I.; Santos, R. Ventura; Millo, C.; Apaestegui, J.; Guyot, J.-L.; Siffedine, A.; Vuille, M.; Cheng, H.; Edwards, R. L.; Santini, W.

    2016-04-01

    δ18O in speleothems is a powerful proxy for reconstruction of precipitation patterns in tropical and sub-tropical regions. The aim of this study is to calibrate the δ18O record of speleothems against historical precipitation and river discharge data in central Brazil, a region directly influenced by the Southern Atlantic Convergence Zone (SACZ), a major feature of the South American Monsoon System (SAMS). The present work is based on a sub-annual resolution speleothem record covering the last 141 years (the period between the years 1870 and 2011) from a cave in central Brazil. The comparison of this record with instrumental hydroclimate records since 1921 allows defining a strong relationship between precipitation variability and stable oxygen isotope ratios from speleothems. The results from a monitoring program of climatic parameters and isotopic composition of rainfall and cave seepage waters performed in the same cave, show that the rain δ18O variability is dominated by the amount effect in this region, while δ18O drip water remains almost constant over the monitored period (1.5 years). The δ18O of modern calcite, on the other hand, shows clear seasonal variations, with more negative values observed during the rainy season, which implies that other factors also influence the isotopic composition of carbonate. However, the relationship between δ18O of carbonate deposits and rainwater is supported by the results from the comparison between speleothem δ18O records and historical hydroclimate records. A significant correlation between speleothem δ18O and monsoon rainfall variability is observed on sub-decadal time scales, especially for the monsoon period (DJFM and NDJFM), once the rainfall record have been smoothed with a 7-9 years running mean. This study confirms that speleothem δ18O is directly associated with monsoon rainfall variability in central Brazil. The relationship between speleothem δ18O records and hydroclimatic historical records allows

  17. Determination of Multimodal Isotopic Distributions: The Case of a (15)N Labeled Protein Produced into Hairy Roots.

    PubMed

    Trouillard, Romain; Hubert-Roux, Marie; Tognetti, Vincent; Guilhaudis, Laure; Plasson, Carole; Menu-Bouaouiche, Laurence; Coquet, Laurent; Guerineau, François; Hardouin, Julie; Ele Ekouna, Jean-Pierre; Cosette, Pascal; Lerouge, Patrice; Boitel-Conti, Michèle; Afonso, Carlos; Ségalas-Milazzo, Isabelle

    2015-06-16

    Isotopic labeling is widely used in various fields like proteomics, metabolomics, fluxomics, as well as in NMR structural studies, but it requires an efficient determination of the isotopic enrichment. Mass spectrometry is the method of choice for such analysis. However, when complex expression systems like hairy roots are used for production, multiple populations of labeled proteins may be obtained. If the isotopic incorporation determination is actually well-known for unimodal distributions, the multimodal distributions have scarcely been investigated. Actually, only a few approaches allow the determination of the different labeled population proportions from multimodal distributions. Furthermore, they cannot be used when the number of the populations and their respective isotope ratios are unknown. The present study implements a new strategy to measure the (15)N labeled populations inside a multimodal distribution knowing only the peptide sequence and peak intensities from mass spectrometry analyses. Noteworthy, it could be applied to other elements, like carbon and hydrogen, and extended to a larger range of biomolecules. PMID:25973921

  18. The effect of different meals on the absorption of stable isotope labelled phylloquinone

    PubMed Central

    Jones, Kerry S.; Bluck, Les J. C.; Wang, Laura Y.; Stephen, Alison M.; Prynne, Celia J.; Coward, W. Andy

    2010-01-01

    Few studies have investigated the absorption of phylloquinone (vitamin K1). We recruited twelve healthy, non-obese adults. On each study day, fasted subjects took a capsule containing 20 μg of 13C-labelled phylloquinone with one of three meals, defined as convenience, cosmopolitan and animal-oriented, in a three-way crossover design. The meals were formulated from the characteristics of clusters identified in dietary pattern analysis of data from the National Diet and Nutrition Survey conducted in 2000-2001. Plasma phylloquinone concentration and isotopic enrichment were measured over 8 h. Significantly more phylloquinone tracer was absorbed when consumed with the cosmopolitan and animal-oriented meals than with the convenience meal (P = 0.001 and P = 0.035, respectively). Estimates of the relative availability of phylloquinone from the meals were: convenience meal = 1.00, cosmopolitan meal = 0.31, and animal-oriented meal = 0.23. Combining the tracer data with availability estimates for phylloquinone from the meals provides overall relative bioavailability values of convenience = 1.00, cosmopolitan = 0.46 and animal-oriented = 0.29. Stable isotopes provide a useful tool to investigate further the bioavailability of low doses of phylloquinone. Different meals can affect the absorption of free phylloquinone. The meal-based study design used in the current work provides an approach that reflects more closely the way foods are eaten in a free-living population. PMID:19538810

  19. Dehydrogenation and dehalogenation of amines in MALDI-TOF MS investigated by isotopic labeling.

    PubMed

    Kang, Chuanqing; Zhou, Yihan; Du, Zhijun; Bian, Zheng; Wang, Jianwei; Qiu, Xuepeng; Gao, Lianxun; Sun, Yuequan

    2013-12-01

    Secondary and tertiary amines have been reported to form [M-H](+) that correspond to dehydrogenation in matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI-TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N-benzyl group, which resulted in the formation of [M-D](+) and [M-H](+) ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N-benzyl group showed high-intensity [M-D](+) and [M-H](+) ion peaks, whereas those of secondary amines showed low-intensity ion peaks. Ratios between the peak intensities of [M-D](+) and [M-H](+) greater than 1 suggested chemoselective dehydrogenation at the N-benzyl groups. The presence of an electron donor group on the N-benzyl groups enhanced the selectivity. The dehalogenation of amines with an N-(4-halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI-TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. PMID:24338887

  20. Patterns of d18O in fish tissues in two Oregon Coast range streams

    EPA Science Inventory

    We are using stable isotopes of C, N, O and S (H planned) to study the ecology of coho salmon in streams of the Oregon Coast Range. As part of this work we have examined changes in d18O in coho salmon juveniles (from eggs to smolting) and sculpin (from 0.5 to 20 gm.). For fish...

  1. Loggerhead turtle movements reconstructed from 18O and 13C profiles from commensal barnacle shells

    NASA Astrophysics Data System (ADS)

    Killingley, John S.; Lutcavage, Molly

    1983-03-01

    Commensal barnacles, Chelonibia testudinaria, from logger-head turtles have 18O and 13C variations in their calcitic shells that record the environments in which the turtles live. Isotopic profiles from the barnacle shells can thus be interpreted to reconstruct movements of the host turtle between open ocean and brackish-water regimes.

  2. Influence of glacial meltwater on equilibrium process of two Tibetan lakes indicated by δ18O

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2009-12-01

    δ18O measurements based on systematic sampling and isotopic model have been adopted to study the affects of glacial meltwater in two lake basins (Lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, δ18O values in precipitation and lake water display a seasonal fluctuation in both lakes. Spatially, δ18O values in the two lake basins increase by 10‰ from the termini of glaciers to the lake shores, by about 1‰ from the lakeshores to the lake center, by 0.4‰ from the water surface to depth in these lakes. The obvious annual δ18O variations indicate that lake water mixes sufficient in a short time. Model results show that glacial meltwater is an important factor on lake water equilibrium process. Equilibrium δ18O values decrease 0.8‰ for Yamdrok-tso Lake and 0.6‰ for Puma Yum-tso Lake when contributions of glacial meltwater to these lakes shrink by 60%. δ18O increases rapidly during the initial stages and then it takes a long time to approach the equilibrium value. The modeled results also show that the surface lake water temperature has only a little impact on this process.

  3. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    PubMed Central

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  4. Regional scale high resolution δ18O prediction in precipitation using MODIS EVI.

    PubMed

    Chan, Wei-Ping; Yuan, Hsiao-Wei; Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ(18)O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ(18)O are highly correlated and thus the EVI is a good predictor of precipitated δ(18)O. We then test the predictability of our EVI-δ(18)O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ(18)O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ(18)O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  5. The role of effective leaf mixing length in the relationship between the δ18 O of stem cellulose and source water across a salinity gradient.

    PubMed

    Ellsworth, Patricia V; Ellsworth, Patrick Z; Anderson, William T; Sternberg, Leonel S L

    2013-01-01

    Previous mangrove tree ring studies attempted, unsuccessfully, to relate the δ(18) O of trunk cellulose (δ(18) O(CELL) ) to the δ(18) O of source water (δ(18) O(SW) ). Here, we tested whether biochemical fractionation associated with one of the oxygen in the cellulose glucose moiety or variation in leaf water oxygen isotope fractionation (Δ(LW) ) can interfere with the δ(18) O(SW) signal as it is recorded in the δ(18) O(CELL) of mangrove (saltwater) and hammock (freshwater) plants. We selected two transects experiencing a salinity gradient, located in the Florida Keys, USA. The δ(18) O(CELL) throughout both transects did not show the pattern expected based on that of the δ(18) O(SW) . We found that in one of the transects, biochemical fractionation interfered with the δ(18) O(SW) signal, while in the other transect Δ(LW) differed between mangrove and hammock plants. Observed differences in Δ(LW) between mangroves and hammocks were caused by a longer effective leaf mixing length (L) of the water pathway in mangrove leaves compared to those of hammock leaves. Changes in L could have caused the δ(18) O(CELL) to record not only variations in the δ(18) O(SW) but also in Δ(LW) making it impossible to isolate the δ(18) O(SW) signal. PMID:22716972

  6. A precise method for the analysis of d18O of dissolved inorganic phosphate in seawater

    USGS Publications Warehouse

    McLaughlin, K.; Silva, S.; Kendall, C.; Stuart-Williams, Hilary; Paytan, A.

    2004-01-01

    A method for preparation and analysis of the oxygen isotope composition (d18O) of dissolved inorganic phosphate (DIP) has been developed and preliminary results for water samples from various locations are reported. Phosphate is extracted from seawater samples by coprecipitation with magnesium hydroxide. Phosphate is further purified through a series of precipitations and resin separation and is ultimately converted to silver phosphate. Silver phosphate samples are pyrolitically decomposed to carbon monoxide and analyzed for d18O. Silver phosphate samples weighing 0.7 mg (3.5 mol oxygen) can be analyzed routinely with an average standard deviation of about 0.3. There is no isotope fractionation during extraction and blanks are negligible within analytical error. Reproducibility was determined for both laboratory standards and natural samples by multiple analyses. A comparison between filtered and unfiltered natural seawater samples was also conducted and no appreciable difference was observed for the samples tested. The d18O values of DIP in seawater determined using this method range from 18.6 to 22.3, suggesting small but detectable natural variability in seawater. For the San Francisco Bay estuary DIP d18O is more variable, ranging from 11.4 near the San Joaquin River to 20.1 near the Golden Gate Bridge, and was well correlated with salinity, phosphate concentration, and d18O of water.

  7. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2.

    PubMed

    Gillon, J; Yakir, D

    2001-03-30

    The oxygen-18 (18O) content of atmospheric carbon dioxide (CO2) is an important indicator of CO2 uptake on land. It has generally been assumed that during photosynthesis, oxygen in CO2 reaches isotopic equilibrium with oxygen in 18O-enriched water in leaves. We show, however, large differences in the activity of carbonic anhydrase (which catalyzes CO2 hydration and 18O exchange in leaves) among major plant groups that cause variations in the extent of 18O equilibrium (theta(eq)). A clear distinction in theta(eq) between C3 trees and shrubs, and C4 grasses makes atmospheric C18OO a potentially sensitive indicator to changes in C3 and C4 productivity. We estimate a global mean theta(eq) value of approximately 0.8, which reasonably reconciles inconsistencies between 18O budgets of atmospheric O2 (Dole effect) and CO2. PMID:11283366

  8. Influence of Carbonic Anhydrase Activity in Terrestrial Vegetation on the 18O Content of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Gillon, Jim; Yakir, Dan

    2001-03-01

    The oxygen-18 (18O) content of atmospheric carbon dioxide (CO2) is an important indicator of CO2 uptake on land. It has generally been assumed that during photosynthesis, oxygen in CO2 reaches isotopic equilibrium with oxygen in 18O-enriched water in leaves. We show, however, large differences in the activity of carbonic anhydrase (which catalyzes CO2 hydration and 18O exchange in leaves) among major plant groups that cause variations in the extent of 18O equilibrium (θeq). A clear distinction in θeq between C3 trees and shrubs, and C4 grasses makes atmospheric C18OO a potentially sensitive indicator to changes in C3 and C4 productivity. We estimate a global mean θeq value of ~0.8, which reasonably reconciles inconsistencies between 18O budgets of atmospheric O2 (Dole effect) and CO2.

  9. δ18O analysis of individual carbohydrates - a new method for GC-pyrolysis-IRMS

    NASA Astrophysics Data System (ADS)

    Lehmann, Marco M.; Fischer, Maria; Zech, Michael; Siegwolf, Rolf T. W.; Saurer, Matthias

    2015-04-01

    Measuring the oxygen isotopic composition (δ18O) of various plant tissues is a widely used tool to investigate biochemical and physiological processes. While we have a good understanding about the hydrological cycle in plants with an evaporative enrichment in 18O in leaf water, we still lack knowledge about the biochemical link between the oxygen atoms in leaf water, leaf assimilates, and stem cellulose and associated isotope fractionations. Especially, the influence of different environmental factors on δ18O of individual carbohydrates (i.e. sugars) and thus on δ18O of cellulose is not fully resolved. A better understanding of these processes may improve climatic reconstructions of tree-ring studies about past environmental conditions. However, further progress in this topic is limited since a precise and reliable method to determine δ18O of individual sugars has not been available yet. With our new approach we attempt to overcome this issue by establishing a new methylation derivatization method suitable for GC-pyrolysis -IRMS. A methyl group (CH3) was thereby added to all hydroxyl groups of a sugar (e.g., glucose, fructose, and sucrose) during a catalyzed one-pot reaction overnight in acetonitrile with methyl iodide (CH3-I) and silver oxide, making them amenable for GC analysis. First results show a very good precision for δ18O of sucrose, but also δ18O of other high-abundant sugars such as glucose and fructose could be measured for the first time. We successfully analyzed a standard mix of all three sugars and determined various other carbohydrates not only related to plant sciences (e.g. mannitol, lactose), showing promising δ18O results. First tests with real plant samples were performed to make this method available for determining δ18O of individual carbohydrates of diverse plant tissues. In future, this new methylation derivatization method should allow us analyzing plant samples of different field sites and of lab experiments to investigate the

  10. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias H.; Alaoui, Abdallah; Kuells, Christoph; Leistert, Hannes; Meusburger, Katrin; Stumpp, Christine; Weiler, Markus; Alewell, Christine

    2014-11-01

    Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection-dispersion model using δ18O values of precipitation (ranging from -24.7 to -2.9‰) as input data to simulate the δ18O profiles of soil water. The variability of δ18O values with depth within each soil profile and a comparison of the simulated and measured δ18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of δ18O in precipitation was found in several profiles, ranging from -14.5 to -4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46°. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated δ18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The δ18O value of snow (-17.7 ± 1.9‰) was absent in several measured δ18O profiles but present in the respective simulated δ18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied

  11. Investigating spatially coherent changes in European speleothem δ18O time-series

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; McDermott, Frank; Mangini, Augusto; Schröder-Ritzrau, Andrea; Fohlmeister, Jens; Scholz, Denis; Winterhalder, Sophie

    2013-04-01

    Speleothems can provide valuable archives of past environmental conditions on the continents. They can be dated precisely using U-Series disequilibria techniques, or in some cases by lamina counting. Oxygen isotope ratios in speleothem calcite are widely used to infer past climatic conditions. In general speleothem δ18O values are typically dominated by the δ18O signal of the precipitation above a cave site. Therefore, coeval speleothems represent different parts of the same hydrological cycle and should, consequently record spatially coherent δ18O variations. Here we present a new study, in which speleothem δ18O time-series from different locations in Europe are collated to investigate coherent δ18O variations, applying principal component analysis (PCA). The temporal focus of our study was the past 2,000 years, an interval that includes two relatively strong phases of climate change, namely the Medieval Warm Period (MWP) and the Little Ice Age (LIA). The first of two time slices investigated covers the interval from 2.0 until 0.8 ka BP (BP = 1950 cal. years) and the second, the period from 1.2 to 0.05 ka BP. The seven speleothem δ18O time-series, which were tested for spatial coherence during the analysed time slices originate from caves in Austria, Germany, Ireland, Romania, Northern Spain, Sweden and Northern Turkey, respectively. The 1st principal component (PC 1) derived for the first time slice (2.0-0.8 ka BP) explains 36.0 ± 8.9 % (1-sigma) of the total variance (TEV) and is anti-correlated with the speleothem δ18O time-series in Central, Northern and Eastern Europe, including Turkey and correlated with the speleothem δ18O time-series from Ireland and Northern Spain. The mean Spearman rank coefficient between PC 1 with the speleothem δ18O time-series is +/- 0.6, respectively. For the second time slice (1.2-0.05 ka BP) the 1st PC (TEV = 30.9 ± 4.3 %) shows a significant correlation with the speleothem δ18O time-series from Austria, Germany

  12. δ 18O of ethanol in wine and spirits for authentication purposes.

    PubMed

    Perini, Matteo; Camin, Federica

    2013-06-01

    Since 1986 the European Union has established official isotopic analysis methods for detecting the illegal addition of sugar and water to wine and to enable geographical traceability. In this paper we investigate the possibility of using analysis of the 18O/16O stable isotope ratio (expressed as δ 18O) of ethanol to improve detection of the watering of wine and to determine the origin of ethanol. Sixty-nine authentic wine samples from all over Italy, 59 spirits from fruit and cereals, 5 chemically synthesized ethanols, one concentrated and rectified must, one beet and one cane sugar, one fresh must, and 6 waters with increasing δ 18O values were considered. Ethanol was recovered by distillation, using a Cadiot spinning band column, following the official OIV methods. The residual water was trapped by storing the distillate for at least 24 h on a molecular sieve. The 18O/16O ratio was measured using a pyrolyser interfaced with an isotope ratio mass spectrometer. The δ (-18)O of ethanol is significantly related to the δ 18O of the fermentation water and can be considered as a reliable internal reference. The values ranged from +24‰ to +36‰ in wine (years 2008 to 2012), +10‰ to +26‰ in fruit and cereal distillates, and from -2‰ to +12‰ in synthetic ethanol. The method was shown to be effective in improving detection of the watering of wine and determining the origin of ethanol (from grapes, other fruit, or synthesis), but not in detecting the addition of cane or beet sugar to wine. PMID:23772705

  13. Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid.

    PubMed

    Geary, Bethany; Magee, Kieran; Cash, Phillip; Young, Iain S; Whitfield, Phillip D; Doherty, Mary K

    2016-05-01

    The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates. PMID:26929125

  14. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    PubMed Central

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  15. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  16. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid

    SciTech Connect

    Baldi, B.G. ); Maher, B.R. ); Slovin, J.P.; Cohen, J.D. Univ. of Maryland, College Park )

    1991-04-01

    The authors present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of ({sup 15}N-indole)-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of L-({sup 15}N)tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled L-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into D-tryptophan. D-({sup 15}N)trytophan supplied to Lemna at rates of approximately 400 times excess of endogenous D-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of L-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that L-tryptophan is a more direct precursor to IAA than the D isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that L-tryptophan also may not be a primary precursor to IAA in plants.

  17. ­Characterization of Reduced Magmatic C-O-H-N Volatiles By Isotopic Labeling

    NASA Astrophysics Data System (ADS)

    Falksen, E.; Armstrong, L. S.; Hirschmann, M. M.

    2014-12-01

    Characterization of COHN species in silicate melts [1-10] is required to understand the role of reduced volatiles in planetary and early Earth processes, including partitioning between planetary cores, mantles, and atmospheres during early differentiation. Vibrational spectroscopy has been used to examine volatile speciation, but for a number of absorptions there is uncertainty as to whether they relate to species containing N, C, or both [1,3]. In particular, an IR band at 3370 cm-1 is commonly attributed to N-H stretching [1,4,5,7], but associated Raman bands near 3280 cm-1 have also been attributed to alkyne (C-H) bonds [8-10]. The 3370 cm-1 IR band appears even in nominally N-free experiments owing to trapped air and is accompanied by a feature at 1615 cm-1 which could be caused by C=O or N-H bonds [1,3,8]. We sought to determine whether N and C were responsible for various IR bands by dissolving different isotopes of N and C in basaltic melts at high pressure and temperature and observing the shift in position of the resulting absorptions. Experiments were conducted at 1.2 GPa and 1400 oC and volatiles were added to a basaltic oxide mix in the form of unlabeled, 13C labeled, and 15N labeled urea [(NH2)2CO]. The resulting glasses were analyzed using FTIR and the theoretical band shifts were predicted based on a classical approximation of a diatomic molecule. Relative to isotopically normal glasses, bands at both 3370 cm-1 and 1615 cm-1 decrease by 4-8 wavenumbers for 15N and not at all for 13C, consistent with origination by N-H bonds in amines or metal-ammine complexes. [1] Stanley et al. (2014) GCA 129, 54-76. [2] Wetzel et al. (2013) PNAS 110, 8010-8013. [3] Armstrong et al. (in prep). [4] Kadik et al. (2011) Geochem. Int. 49, 429-438. [5] Kadik et al. (2013) PEPI 214, 14-24. [6]Mysen (2013) Chem. Geo. 346, 113-124. [7] Mysen et al. (2008) Am. Min. 93, 1760-1770. [8] Mysen et al. (2009) GCA 73, 1696-1710. [9] Dasgupta et al. (2013) GCA 102, 191-212. [10] Chi

  18. Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme.

    PubMed

    Castañeda, Carlos; Liu, Jia; Chaturvedi, Apurva; Nowicka, Urszula; Cropp, T Ashton; Fushman, David

    2011-11-01

    Polymeric chains made of a small protein ubiquitin act as molecular signals regulating a variety of cellular processes controlling essentially all aspects of eukaryotic biology. Uncovering the mechanisms that allow differently linked polyubiquitin chains to serve as distinct molecular signals requires the ability to make these chains with the native connectivity, defined length, linkage composition, and in sufficient quantities. This, however, has been a major impediment in the ubiquitin field. Here, we present a robust, efficient, and widely accessible method for controlled iterative nonenzymatic assembly of polyubiquitin chains using recombinant ubiquitin monomers as the primary building blocks. This method uses silver-mediated condensation reaction between the C-terminal thioester of one ubiquitin and the ε-amine of a specific lysine on the other ubiquitin. We augment the nonenzymatic approaches developed recently by using removable orthogonal amine-protecting groups, Alloc and Boc. The use of bacterially expressed ubiquitins allows cost-effective isotopic enrichment of any individual monomer in the chain. We demonstrate that our method yields completely natural polyubiquitin chains (free of mutations and linked through native isopeptide bonds) of essentially any desired length, linkage composition, and isotopic labeling scheme, and in milligram quantities. Specifically, we successfully made Lys11-linked di-, tri-, and tetra-ubiquitins, Lys33-linked diubiquitin, and a mixed-linkage Lys33,Lys11-linked triubiquitin. We also demonstrate the ability to obtain, by high-resolution NMR, residue-specific information on ubiquitin units at any desired position in such chains. This method opens up essentially endless possibilities for rigorous structural and functional studies of polyubiquitin signals. PMID:21962295

  19. δ18O and δ13C values of modern brachiopod shells

    NASA Astrophysics Data System (ADS)

    Carpenter, Scott J.; Lohmann, Kyger C.

    1995-09-01

    Researchers have not rigorously tested the hypothesis that calcite from modern brachiopod shells is precipitated in oxygen isotope equilibrium with ambient seawater. Isotopic variability at the intraspecimen and intertaxon levels has not been examined. Without such data for modern brachiopods, similar data from ancient brachiopods cannot be accurately interpreted. In this study, a survey is made of δ18O and δ13C values of Terebratulid, Rhynchonellid, Thecideidine, and Craniacean brachiopods from Antarctica, the Bay of Fundy, Curacao, Japan, New Zealand, Norway, Puget Sound, Palau, Sicily, and South Africa. This suite of samples provides a wide range of taxonomic levels, temperatures, salinities, and depositional environments for evaluating the degree of isotopic equilibrium attained during precipitation of brachiopod calcite. New data indicate that modem brachiopod calcite is not always precipitated in oxygen and carbon isotope equilibrium with ambient seawater. Calcite from the primary layer and specialized shell structures (hinge, brachidium, foramen, interarea, muscle scars) are depleted in both 18O and 13C, a characteristic of biological fractionation or "vital" effects often found in other calcerous, marine organisms. Our findings suggest that these portions of the brachiopod shell should be avoided during sampling of ancient brachiopods. Secondary layer calcite, the material most often analyzed in ancient brachiopods, has higher δ18O and δ13C values which approach and sometimes correspond with predicted equilibrium values. Therefore, secondary layer calcite is the most suitable portion of the brachiopod shell for use as an ancient seawater proxy. Although near equilibrium precipitation in secondary layer calcite is encouraging to those studying the isotopic composition of ancient oceans, these data come with caveats. Large intraspecimen variability in the δ18O values of secondary layer calcite (±1‰ in some samples) limits the use of brachiopods as

  20. Analysis of liposoluble carboxylic acids metabolome in human serum by stable isotope labeling coupled with liquid chromatography-mass spectrometry.

    PubMed

    Zhu, Quan-Fei; Zhang, Zheng; Liu, Ping; Zheng, Shu-Jian; Peng, Ke; Deng, Qian-Yun; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-08-19

    Fatty acids (FAs) are groups of liposoluble carboxylic acids (LCAs) and play important roles in various physiological processes. Abnormal contents or changes of FAs are associated with a series of diseases. Here we developed a strategy with stable isotope labeling combined with liquid chromatography-tandem mass spectrometry (IL-LC-MS) analysis for comprehensive profiling and relative quantitation of LCAs in human serum. In this strategy, a pair of isotope labeling reagents (2-dimethylaminoethylamine (DMED)) and d4-2-dimethylaminoethylamine (d4-DMED) were employed to selectively label carboxyl groups of LCAs. The DMED and d4-DMED labeled products can lose four characteristic neutral fragments of 45 and 49Da or 63 and 67Da in collision-induced dissociation. Therefore, quadruple neutral loss scan (QNLS) mode was established and used for non-targeted profiling of LCAs. The peak pairs of DMED and d4-DMED labeling with the same retention time, intensity and characteristic mass differences were extracted from the two NLS spectra respectively, and assigned as potential LCA candidates. Using this strategy, 241 LCA candidates were discovered in the human serum; 156 carboxylic acid compounds could be determined by searching HMDB and METLIN databases (FAs are over 90%) and 21 of these LCAs were successfully identified by standards. Subsequently, a modified pseudo-targeted method with multiple reaction monitoring (MRM) detection mode was developed and used for relative quantification of LCAs in human serum from type 2 diabetes mellitus (T2DM) patients and healthy controls. As a result, 81 LCAs were found to have significant difference between T2DM patients and healthy controls. Taken together, the isotope labeling combined with tandem mass spectrometry analysis demonstrated to be a powerful strategy for identification and quantification of LCA compounds in serum samples. PMID:27432792

  1. Two-neutron transfer analysis of the 16O(18O,16O)18O reaction

    NASA Astrophysics Data System (ADS)

    Ermamatov, M. J.; Cappuzzello, F.; Lubian, J.; Cubero, M.; Agodi, C.; Carbone, D.; Cavallaro, M.; Ferreira, J. L.; Foti, A.; Garcia, V. N.; Gargano, A.; Lay, J. A.; Lenzi, S. M.; Linares, R.; Santagati, G.; Vitturi, A.

    2016-08-01

    Recently a quantitative description of the two-neutron transfer reaction 12C(18O,16O)14C was performed and the measured cross sections were successfully reproduced [M. Cavallaro et al., Phys. Rev. C 88, 054601 (2013), 10.1103/PhysRevC.88.054601]. This task was accomplished by combining nuclear structure calculations of spectroscopic amplitudes and a full quantum description of the reaction mechanism. Verification of such a theoretical approach to other heavy nuclear systems is mandatory in order to use (18O,16O ) reactions to assess pair configurations in nuclear states. In this work we apply this methodology to the 16O(18O,16O)18O reaction at 84 MeV. Experimental angular distributions for the two-neutron transfer to the ground state and 21+ state of 18O were obtained using the MAGNEX spectrometer at INFN-LNS. The roles of one- and two-step processes are analyzed under the exact finite range coupled reaction channel and the second order distorted wave Born approximation. We conclude that the one-step transfer mechanism is dominant in this system.

  2. Past break-monsoon conditions detectable by high resolution intra-annual δ18O analysis of teak rings

    NASA Astrophysics Data System (ADS)

    Managave, S. R.; Sheshshayee, M. S.; Borgaonkar, H. P.; Ramesh, R.

    2010-03-01

    Intra-annual variations in the cellulose oxygen isotopic composition (δ18O) of several annual growth rings of three teak (Tectona grandis L.F.) trees from central India show a clear seasonal cycle with higher values in the early and late growing seasons and lower values in the middle. This cycle is useful to identify growth occurring during different phases of the growing season. Relative humidity (RH) appears to control the intra-annual δ18O variations rather than rainfall, and therefore past break-monsoon conditions associated with lower RH, could be detected by high resolution sub-sampling of annual rings for δ18O analysis.

  3. High-frequency observations of δ2H and δ18O in storm rainfall

    NASA Astrophysics Data System (ADS)

    Stoecker, F.; Klaus, J.; Pangle, L. A.; Garland, C.; McDonnell, J. J.

    2012-12-01

    Stable isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O) are indispensable tools for investigation of the hydrologic cycle. Recent technological advances with laser spectroscopy now enable high-frequency measurement of key water cycle components. While the controls on rainfall isotope composition have been known generally for some time, our understanding of the effect of inter- and intra-storm processes on fine scale rainfall isotope composition is poorly understood. Here we present a new approach to observe inter- and intra-storm isotope variability in precipitation in high-frequency. We investigate the temporal development of δ2H and δ18O within and between discrete rainstorm. δ2H and δ18O in precipitation was measured from November 2011 to February 2012 in Corvallis, OR using a flow-cell combined with a Liquid Water Isotope Analyzer (LWIA-24d, Los Gatos Research, Inc.). The average sample frequency was 15 samples per hour, resulting in more than 3100 samples during the observation period. 27 separate rainstorms were identified in the dataset based on minimum inter-event time, minimum precipitation depth, and minimum number of isotope measurements. Event meteoric water lines were developed for each event. We observed short-term isotopic patterns (e.g., V-shaped trends), high-rate changes (5.3‰/h) and large absolute changes in isotopic composition (20‰) on intra-event scale. V-shaped trends appeared to be related to individual storm fronts detected by air temperature, cloud heights (NEXRAD radar echo tops) and cloud trajectories (Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)). Despite this, we could detect no linear correlation between event-based isotopic variables (slope, δ2H-intercept, δ2H, δ18O) and the event meteoric water line. Furthermore, the composite event meteoric water line (i.e. the local meteoric water line) showed a wider spread for heavy isotopes than for light isotopes, caused presumably by different

  4. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul F.; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  5. LC/MS Method for the Determination of Stable Isotope Labeled Promethazine in Human Plasma

    NASA Technical Reports Server (NTRS)

    Zuwei, Wang; Boyd, Jason; Berens, Kurt L.; Putcha, Lakshmi

    2004-01-01

    Promethazine (PMZ) is taken by astronauts orally (PO), intramuscularly (IM) or rectally (PR) for space motion sickness. LC/MS method was developed with off-line solid phase extraction to measure plasma concentrations of PMZ given as stable isotope-labeled (SIL) formulations by the three different routes of administration simultaneously. Samples (0.5ml) were loaded on to Waters Oasis HLB co-polymer cartridges and eluted with 1.0 mL methanol. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 6 min. Acetonitrile/ ammonium acetate (30 mM) in water (3:2, v/v), pH 5.6 plus or minus 0.1, was used as the mobile phase for separation. Concentrations of PMZ, PMZ-d4 and PMZ-d7 and chlorpromazine (internal standard) were determined using a Micromass ZMD single quadrupole mass spectrometer with Electrospray Ionization (ESI). ESI mass spectra were acquired in positive ion mode with selected ion monitoring of [M+ H]dot plus. The method is rapid, reproducible and the assay specific parameters are listed in a table. A novel, sensitive and specific method for the measurement of PMZ and SIL PMZ in human plasma is reported.

  6. Absolute Quantitation of Glycosylation Site Occupancy Using Isotopically Labeled Standards and LC-MS

    NASA Astrophysics Data System (ADS)

    Zhu, Zhikai; Go, Eden P.; Desaire, Heather

    2014-06-01

    N-linked glycans are required to maintain appropriate biological functions on proteins. Underglycosylation leads to many diseases in plants and animals; therefore, characterizing the extent of glycosylation on proteins is an important step in understanding, diagnosing, and treating diseases. To determine the glycosylation site occupancy, protein N-glycosidase F (PNGase F) is typically used to detach the glycan from the protein, during which the formerly glycosylated asparagine undergoes deamidation to become an aspartic acid. By comparing the abundance of the resulting peptide containing aspartic acid against the one containing non-glycosylated asparagine, the glycosylation site occupancy can be evaluated. However, this approach can give inaccurate results when spontaneous chemical deamidation of the non-glycosylated asparagine occurs. To overcome this limitation, we developed a new method to measure the glycosylation site occupancy that does not rely on converting glycosylated peptides to their deglycosylated forms. Specifically, the overall protein concentration and the non-glycosylated portion of the protein are quantified simultaneously by using heavy isotope-labeled internal standards coupled with LC-MS analysis, and the extent of site occupancy is accurately determined. The efficacy of the method was demonstrated by quantifying the occupancy of a glycosylation site on bovine fetuin. The developed method is the first work that measures the glycosylation site occupancy without using PNGase F, and it can be done in parallel with glycopeptide analysis because the glycan remains intact throughout the workflow.

  7. Investigation of bn-44 Peptide Fragments Using High Resolution Mass Spectrometry and Isotope Labeling

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Yu, Jiayi; Wang, Huixin; Wei, Zhonglin; Guo, Xinhua; Xiao, Zhaohui; Zeng, Zhoufang; Kong, Wei

    2014-12-01

    An N-terminal deuterohemin-containing hexapeptide (DhHP-6) was designed as a short peptide cytochrome c (Cyt c) mimetic to study the effect of N-terminal charge on peptide fragmentation pathways. This peptide gave different dissociation patterns than normal tryptic peptides. Upon collision-induced dissociation (CID) with an ion trap mass spectrometer, the singly charged peptide ion containing no added proton generated abundant and characteristic bn-44 ions instead of bn-28 (an) ions. Studies by high resolution mass spectrometry (HRMS) and isotope labeling indicate that elimination of 44 Da fragments from b ions occurs via two different pathways: (1) loss of CH3CHO (44.0262) from a Thr side chain; (2) loss of CO2 (43.9898) from the oxazolone structure in the C-terminus. A series of analogues were designed and analyzed. The experimental results combined with Density Functional Theory (DFT) calculations on the proton affinity of the deuteroporphyrin demonstrate that the production of these novel bn-44 ions is related to the N-terminal charge via a charge-remote rather than radical-directed fragmentation pathway.

  8. Determination of Protein Thiol Reduction Potential by Isotope Labeling and Intact Mass Measurement.

    PubMed

    Thurlow, Sophie E; Kilgour, David P; Campopiano, Dominic J; Mackay, C Logan; Langridge-Smith, Pat R R; Clarke, David J; Campbell, Colin J

    2016-03-01

    Oxidation/reduction of thiol residues in proteins is an important type of post-translational modification that is implicated in regulating a range of biological processes. The nature of the modification makes it possible to define a quantifiable electrochemical potential (E(⊕)) for oxidation/reduction that allows cysteine-containing proteins to be ranked based on their propensity to be oxidized. Measuring oxidation of cysteine residues in proteins is difficult using standard electrochemical methods, but top-down mass spectrometry recently has been shown to enable the quantification of E(⊕) for thiol oxidations. In this paper, we demonstrate that mass spectrometry of intact proteins can be used in combination with an isotopic labeling strategy and an automated data analysis algorithm to measure E(⊕) for the thiols in both E. coli Thioredoxin 1 and human Thioredoxin 1. Our methodology relies on accurate mass measurement of proteins using liquid chromatography-mass spectroscopy (LC-MS) analyses and does not necessarily require top-down fragmentation. In addition to analyzing homogeneous protein samples, we also demonstrate that our methodology can be used to determine thiol E(⊕) measurements in samples that contain mixtures of proteins. Thus, the combination of experimential methodology and data analysis regime has the potential to make such measurements in a high-throughput manner and in a manner that is more accessible to a broad community of protein scientists. PMID:26881737

  9. Novel diagnostics of metabolic dysfunction detected in breath and plasma by selective isotope-assisted labeling.

    PubMed

    Haviland, Julia A; Tonelli, Marco; Haughey, Dermot T; Porter, Warren P; Assadi-Porter, Fariba M

    2012-08-01

    Metabolomics is the study of a unique fingerprint of small molecules present in biological systems under healthy and disease conditions. One of the major challenges in metabolomics is validation of fingerprint molecules to identify specifically perturbed pathways in metabolic aberrations. This step is crucial to the understanding of budding metabolic pathologies and the ability to identify early indicators of common diseases such as obesity, type 2 diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, and cancer. We present a novel approach to diagnosing aberrations in glucose utilization including metabolic pathway switching in a disease state. We used a well-defined prenatally exposed glucocorticoid mouse model that results in adult females with metabolic dysfunction. We applied the complementary technologies of nuclear magnetic resonance spectroscopy and cavity ring-down spectroscopy to analyze serial plasma samples and real-time breath measurements following selective (13)C-isotope-assisted labeling. These platforms allowed us to trace metabolic markers in whole animals and identify key metabolic pathway switching in prenatally glucocorticoid-treated animals. Total glucose flux is significantly proportionally increased through the major oxidative pathways of glycolysis and the pentose phosphate pathway in the prenatally glucocorticoid-treated animals relative to the control animals. This novel diagnostics approach is fast, noninvasive, and sensitive for determining specific pathway utilization, and provides a direct translational application in the health care field. PMID:22304834

  10. Novel diagnostics of metabolic dysfunction detected in breath and plasma by selective isotope assisted labeling (SIAL)

    PubMed Central

    Haviland, Julia A.; Tonelli, Marco; Haughey, Dermot T.; Porter, Warren P.; Assadi-Porter, Fariba M.

    2012-01-01

    OBJECTIVE Metabolomics is the study of a unique fingerprint of small molecules present in biological systems under healthy and disease conditions. One of the major challenges in metabolomics is validation of fingerprint molecules to identify specifically perturbed pathways in metabolic aberrations. This step is crucial to the understanding of budding metabolic pathologies and the ability to identify early indicators of common diseases such as obesity, diabetes mellitus type II, metabolic syndrome, polycystic ovary syndrome, and cancer. We present a novel approach to diagnosing aberrations in glucose utilization including metabolic pathway switching in a disease state. METHODS We used a well-defined prenatally exposed glucocorticoid mouse model that results in adult females with metabolic dysfunction. We applied the complementary technologies of nuclear magnetic resonance spectroscopy, and cavity ringdown spectroscopy to analyze serial plasma samples and real-time breath measurements following selective 13C-isotope assisted labeling (SIAL). These platforms allowed us to trace metabolic markers in whole animals and identify key metabolic pathway switching in prenatally glucocorticoid-treated animals. RESULTS Total glucose flux is significantly proportionally increased through the major oxidative pathways of glycolysis and the pentose phosphate pathway in the prenatally glucocorticoid-treated animals relative to the control animals. CONCLUSION This novel diagnostics approach is fast, non-invasive and sensitive for determining specific pathway utilization, and provides a direct translational application in the healthcare field. PMID:22304834

  11. Expression of the Trichoderma reesei tyrosinase 2 in Pichia pastoris: isotopic labeling and physicochemical characterization.

    PubMed

    Westerholm-Parvinen, Ann; Selinheimo, Emilia; Boer, Harry; Kalkkinen, Nisse; Mattinen, Maija; Saloheimo, Markku

    2007-09-01

    Trichoderma reesei tyrosinase TYR2 has been demonstrated to be able to oxidize various phenolic compounds and also peptide and protein bound tyrosine, and thus is of great interest for different biotechnological applications. In order to understand the reaction mechanism of the enzyme it would be essential to solve its three dimensional structure. Pichia pastoris is a suitable expression system for the production of recombinant enzymes for NMR studies and therefore we expressed TYR2 in this host. As a result of extensive optimization, the production yield of active histidine tagged tyrosinase purified from P. pastoris shake flask cultures was increased from 2.5 to 24 mg/L. Correct copper concentration in the growth medium was critical for the expression of this copper containing enzyme. Our analysis showed that TYR2 expressed in P. pastoris is post-translationally modified; the C-terminal domain of 153 amino acids of the protein is proteolytically cleaved off from the catalytic domain and the only potential N-glycosylation site is glycosylated. The activities of TYR2 expressed in P. pastoris and T. reesei on diphenolic L-dopa and monophenolic L-tyrosine were rather similar. The TYR2 expressed in P. pastoris showed the same physicochemical properties in CD and unfolding assays as the native TYR2 enzyme. Uniform isotopic (15)N-labeling of TYR2 was carried out with (15)NH(4)SO(4) in minimal medium to assess the suitability of the expression system for investigation by NMR spectroscopy. PMID:17562370

  12. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy. PMID:26257288

  13. Temporal and spatial distributions of δ18O and δ2H in precipitation in Romania

    NASA Astrophysics Data System (ADS)

    Nagavciuc, Viorica; Bădăluță, Carmen-Andreea; Perșoiu, Aurel

    2015-04-01

    Stable isotope ratios of meteoric water have an important role in climatic, paleoclimatic, hydrological and meteorological studies. While such data are available from most of Europe, so far, in Romania (East Central Europe), no systematic study of the stable isotopic composition of precipitation exists. In this context, the aim of this study is to analyze the isotopic composition of rainwater, its temporal and spatial distribution, the identification of the main factors influencing these variations and the creation of the first map of spatial distribution of stable isotopes in precipitation in Romania. Between March 2012 and March 2014 we have collected monthly samples from 22 stations in Romania, which were subsequently analyzed for their δ18O and δ2H at the Stable Isotopes Laboratory, Stefan cel Mare University, Suceava, Romania. Precipitation in W and NW Romania plot along the GMWL, while those in the East are slightly below it, on an evaporative trend. The LMWL for Romania is defin