Science.gov

Sample records for 18oh2o control valve

  1. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  2. 9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY IN 1931, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  3. Cavitation guide for control valves

    SciTech Connect

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  4. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  5. Energy conservation with automatic flow control valves

    SciTech Connect

    Phillips, D.

    1984-12-01

    Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.

  6. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  7. Coolant-Control Valves For Fluid-Sampling Probes

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1989-01-01

    Small built-in leaks prevent overheating. Downstream flow-control globe valve replaced with modified gate valve. Modification consists of drilling small hole through valve gate, so valve never turned completely off. This "leaky" valve provides enough flow of coolant to prevent overheating causing probe to fail. Principle also applied to automatic control system by installing small bypass line around control valve.

  8. Pressure compensated flow control valve

    DOEpatents

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  9. Solenoid-valve-controlled fuel injection device

    SciTech Connect

    Oshizawa, H.

    1988-12-06

    This patent describes a solenoid-valve-controlled fuel injection device comprising: a fuel injection pump having a pump cylinder, a plunger rotatably and reciprocably disposed in the pump cylinder in a fluid-tight manner and defining a fuel pressurization chamber between a distal end of the plunger and the pump cylinder, a drive shaft rotatable in synchronism with an output shaft of an internal combustion engine, means responsive to rotation of the drive shaft for reciprocably displacing the plunger to pressurize fuel in the pressurization chamber, and a fuel chamber for being supplied with fuel from a fuel tank in response to rotation of the drive shaft, whereby the pressurized fuel can be fed into cylinders of the internal combustion engine; a solenoid valve for selectively opening and closing a communication passage by which the pressurization chamber and the fuel chamber communicate with each other; valve opening delay time detecting means for detecting a valve opening delay time of the solenoid valve; valve closing delay time detecting means for detecting a valve closing delay time of the solenoid valve; valve closing period calculating means for calculating a valve closing time of the solenoid valve according to operating conditions of the internal combustion engine; target fuel injection time calculating means for calculating a target fuel injection time according to the operating conditions of the internal combustion engine.

  10. Valve for controlling solids flow

    DOEpatents

    Staiger, M. Daniel

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  11. Valve for controlling solids flow

    DOEpatents

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  12. High precision high flow range control valve

    DOEpatents

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  13. High precision high flow range control valve

    DOEpatents

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  14. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  15. Electrically Controlled Valve With Small Motor

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.

    1992-01-01

    Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.

  16. 30. Engine controls and valve gear, looking aft on main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Engine controls and valve gear, looking aft on main (promenade) deck level. Threaded admission valve lift rods (two at immediate left of chronometer) permit adjustment of valve timing in lower and upper admission valves of cylinder (left rod controls lower valve, right rod upper valve). Valve rods are lifted by jaw-like "wipers" during operation. Exhaust valve lift rods and wipers are located to right of chronometer. Crank at extreme right drives valve wiper shaft when engaged to end of eccentric rod, shown under "Crank Indicator" dial. Pair of handles to immediate left of admission valve rods control condenser water valves; handles to right of exhaust valve rods control feedwater flow to boilers from pumps. Gauges indicate boiler pressure (left) and condenser vacuum (right); "Crank Indicator" on wall aids engineer in keeping engine crank off "dead-center" at stop so that engine may be easily restarted. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  17. Valve control system for internal combustion engines

    SciTech Connect

    Kaptur, S.J.

    1989-10-24

    This patent describes a valve control system for an internal combustion engine. The system comprising a primary control and a secondary control for modifying the operation of the primary control. The primary control comprising: a camshaft journaled for rotation in camshaft brackets, intake and exhaust cylindrical cams including cam channels; valve pin means; and timing belt means. The secondary system comprising: control plate means adjustably mounted between the cylindrical cams, rocker arm means; and at least one driver positioned between the driver leg and one of cylindrical cams.

  18. Simulation of a Hydraulic Pump Control Valve

    NASA Technical Reports Server (NTRS)

    Molen, G. Vander; Akers, A.

    1987-01-01

    This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.

  19. Hydraulic servo control spool valve

    DOEpatents

    Miller, Donald M.

    1983-01-01

    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  20. Electromechanically Actuated Valve for Controlling Flow Rate

    NASA Technical Reports Server (NTRS)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  1. Exhaust gas bypass valve control for thermoelectric generator

    SciTech Connect

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  2. VALVE

    DOEpatents

    Arkelyan, A.M.; Rickard, C.L.

    1962-04-17

    A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)

  3. 17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE BUTTERFLY VALVE LOCK INDICATES THE BUTTERFLY VALVE IS CLOSED AS UNIT 43 WAS SHUT DOWN FOR REPAIRS, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  4. 25. Typical valves used to control flow into and out ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Typical valves used to control flow into and out of filtration bed. Left valve (painted red) drains the bed, and center valve (painted green) admits water into the bed. The right valve is a cross over valve which is used to admit water into a dry bed from the bottom. This bottom fill excludes entrapped air as the bed is filled. When the water reached to top of the bed, filling is continued from the top of the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  5. Tortuous path control valves for vibration and noise control

    SciTech Connect

    Miller, H.L.

    1996-09-01

    Control valves are needed in many offshore applications involving fluid pressure drop levels that result in excessive system noise and vibration. These situations occur in liquid and gas flow applications. The root cause of the destructive forces that result in noise and vibration is excessive fluid velocities and the kinetic energy associated with these velocities during the pressure letdown. These high uncontrolled velocities can also cause significant erosion of internal parts that would result in a measurable degradation of the valve performance. The use of a multi-path, multi-staged trim design results in fluid velocities that will eliminate the noise and vibration associated with the pressure letdown. Valves of this type are used in chokes, pipeline vents, flow to flare, compressor recycle, pump minimum flow, level control, pressure letdown, fire water control, and bypass flow to mention a few.

  6. EXPERIMENTAL DESIGN OF A FLUID-CONTROLLED HOT GAS VALVE

    DTIC Science & Technology

    Effort is described toward development of a hot gas jet reaction valve utilizing boundary layer techniques to control a high pressure, high...temperature gas stream. The result has been the successful design of a hot gas valve in a reaction control system utilizing fluid-controlled bi-stable

  7. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel valves and controls. 23.995 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.995 Fuel valves and controls. (a) There must be a means to allow appropriate flight...

  8. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Control valves for brakes. 393.49 Section 393.49 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as...

  9. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the... system protects. Control valves must not be located in a protected space unless the CO2 cylinders are also in the protected space. (b) A CO2 system that protects more than one space must have a...

  10. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the... system protects. Control valves must not be located in a protected space unless the CO2 cylinders are also in the protected space. (b) A CO2 system that protects more than one space must have a...

  11. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel valves and controls. 23.995 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.995 Fuel valves and controls. (a) There must be a means to allow appropriate flight...

  12. Semitoroidal-diaphragm cavitating valve designed for bipropellant flow control

    NASA Technical Reports Server (NTRS)

    Young, A. L.

    1969-01-01

    Valve controls the flow of bipropellant liquids in rocket engines. Throttling and cavitation of the liquids are controlled by axial deflections of a semitoroidal metal diaphram. The valve is highly resistant to corrosion and leakage, and should be useful in food processing and chemical industries.

  13. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOEpatents

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  14. Liquid-fuel valve with precise throttling control

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Porter, R. N.; Riebling, R. W.

    1971-01-01

    Prototype liquid-fuel valve performs on-off and throttling functions in vacuum without component cold-welding or excessive leakage. Valve design enables simple and rapid disassembly and parts replacement and operates with short working stroke, providing maximum throttling sensitivity commensurate with good control.

  15. Fuel control valve construction, parts therefor and methods

    SciTech Connect

    Kelly, S.T.; Katchka, J.R.

    1990-05-29

    This patent describes a fuel control valve construction. It comprises: a housing means having an inlet means adapted to be interconnected to a main burner means, the housing means having a main valve seat for interconnecting the inlet means with the main outlet means, the housing means having a movable main valve member for opening and closing the main valve seat, the housing means having a movable lever carrying the main valve member and having a manually operable actuator means for controlling the operating positions of the lever, the lever having an intermediate cam follower portion and opposed ends disposed on each side of the cam follower portion with one end of the opposed ends being pivotally mounted to the housing means and with the other end of the opposed ends carrying the main valve member, the housing means having biasing means operatively interconnected to the lever to tend to pivot the lever in one direction that opens the main valve member away from its main valve seat.

  16. Evaluation of a high response electrohydraulic digital control valve

    NASA Technical Reports Server (NTRS)

    Anderson, R. L.

    1973-01-01

    The application is described of a digital control valve on an electrohydraulic servo actuator. The digital control problem is discussed in general as well as the design and evaluation of a breadboard actuator. The evaluation revealed a number of problems associated with matching the valve to a hydraulic load. The problems were related to lost motion resulting from bulk modulus and leakage. These problems were effectively minimized in the breadboard actuator by maintaining a 1000 psi back pressure on the valve circuit and thereby improving the effective bulk modulus.

  17. 8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, MOSAIC TILE FLOOR, AS SEEN FROM VISITORS GALLERY, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  18. 137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. 20. GENERATOR #1 NEEDLE VALVE CONTROL WHEEL, WATERWHEEL GOVERNOR, PENSTOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. GENERATOR #1 NEEDLE VALVE CONTROL WHEEL, WATERWHEEL GOVERNOR, PENSTOCK PRESSURE GAUGE, AND GOVERNOR OIL SET. VIEW TO EAST. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  20. 19. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE IN ONE OF THE LOCK GATES WHICH SEPARATES UPPER AND LOWER CHAMBERS: 1976 - Pawtucket Canal, Swamp Locks, Pawtucket & Merrimack Canals, Lowell, Middlesex County, MA

  1. 20. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE IN ONE OF THE GATES BETWEEN THE UPPER AND LOWER CHAMBERS: 1976 - Pawtucket Canal, Swamp Locks, Pawtucket & Merrimack Canals, Lowell, Middlesex County, MA

  2. 18. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE IN ONE OF THE GATES BETWEEN THE UPPER AND LOWER CHAMBERS: 1976 - Pawtucket Canal, Swamp Locks, Pawtucket & Merrimack Canals, Lowell, Middlesex County, MA

  3. Chaos in a Hydraulic Control Valve

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Hayase, T.; Kurahashi, T.

    1997-08-01

    In this paper we have studied the instability and chaos occurring in a pilot-type poppet valve circuit. The system consists of a poppet valve, an upstream plenum chamber, a supply pipeline and an orifice inserted between the pelnum and the pipeline. Although the poppet valve rests on the seat stably for a supply pressure lower than the cracking pressure, the circuit becomes unstable for an initial disturbance beyond a critical value and develops a self-excited vibration. In this unstable region, chaotic vibration appears at the period-doubling bifurcation. We have investigated the stability of the circuit and the chaotic phenomenon numerically, and elucidated it by power spectra, a bifurcation diagram and Lyapunov exponent calculations, showing that the phenomenon follows the Feigenbaum route to chaos.Copyright 1997 Academic Press Limited

  4. Valve timing control system for internal combustion engine

    SciTech Connect

    Masuda, S.; Morita, Y.; Oda, H.

    1986-04-15

    This patent describes an internal combustion engine having a camshaft, having an axis of rotation, bearing thereon a cam and a tappet member which transmits the movement of the cam to the stem of a valve to open and close the valve in a timed relation, a valve timing control system comprising a swinging member which is mounted for pivotal movement about the axis of rotation of the camshaft and is provided with a tappet receiving hole for receiving the tappet member to permit sliding movement of the tappet member therein to transmit the movement of the cam to the valve stem, and a control device which swings the swinging member together with the tappet member received in the tappet receiving hole according to the operating condition of the engine so that the relative position of the tappet member to the cam at a given angular position of the camshaft is changed. The tappet member has a cam abutting surface at one end and a valve stem abutting surface at the other end. The valve stem abutting surface is arcuately convex toward the valve, the center of curvature thereof being on the axis of rotation of the camshaft.

  5. Turbo-generator control with variable valve actuation

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  6. Flow characteristics of control valve for different strokes

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-03-01

    The article deals with the determination of flow characteristics and loss coefficients of control valve when the water flows in the interval of operating parameters, including the evaluation of vapour and air cavitation regime. The characteristics of the control valve are measured on the experimental equipment and subsequently loss coefficients are determined. Data from experimental measurements are used for creating of mathematical model with vapour and air cavitation and verification results. This validation will enable the application of methods of numerical modelling for valves of atypical dimensions e.g. for use in nuclear power industry. The correct knowledge of the valve characteristics and fundamental coefficients (e.g. flow coefficient, cavitation coefficient and loss coefficient) is necessarily required primarily for designers of pipe networks.

  7. Injection pump with radially mounted spill control valve

    SciTech Connect

    Djordjevic, I.

    1987-05-26

    This patent describes a rotary fuel injection pump for an internal combustion engine,. The method comprises: a housing, a rotor rotatable in the housing, a charge pump having radially extending plunger bores in the rotor and a plunger pump for each plunger bore having a pumping plunger reciprocable in the bore. The pumping plunger has outward fuel tank strokes and inward fuel delivery strokes for supplying high pressure charges of fuel for fuel injection. A cam ring surrounds the rotor and is engageable with the plunger pumps to reciprocate the plungers as the rotor rotates. A spill control mechanism has spill valve means connected to the charge pump for spill control of the high pressure charge of fuel. The improvement consists of the spill valve means which comprises at least one rotary spill valve having a valve bore in the rotor oriented transversely to the axis of the rotor and connected to the charge pump through pump passage means and a rotary spill valve member rotatably mounted within the valve bore; and the spill control mechanism.

  8. Numerical investigation of vibration in a steam turbine control valve

    NASA Astrophysics Data System (ADS)

    Novak, Luke Michael

    A numerical analysis is performed at North Dakota State University to investigate and resolve steam inlet control valve vibration in a Minnkota Power Cooperative turbine. Pressure fluctuations resulting from an unstable flow pattern are found to cause vibration. Multiple valve disc and seat design modifications to stabilize the flow are made and tested. The full scale geometry is used with steam as the working material. Both steady-state and transient analyses are completed. Analytical calculations are used for verification. Investigation of all modifications is discussed. Results from the original valve configuration show vortex shedding off of the disc. A currently installed cutoff disc has not removed flow-induced vibration. Flow expansion generates unstable flow, creating an unsteady separation bubble on the valve seat at the throat exit. Changing the throat from a converging-diverging to a purely converging nozzle stabilizes the flow, removing the flow-induced pressure forces causing disc vibration.

  9. Valving for controlling a fluid-driven reciprocating apparatus

    SciTech Connect

    Whitehead, J.C.

    1995-06-27

    A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.

  10. Valving for controlling a fluid-driven reciprocating apparatus

    SciTech Connect

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  11. Controlling the cavitation phenomenon of evolution on a butterfly valve

    NASA Astrophysics Data System (ADS)

    Baran, G.; Catana, I.; Magheti, I.; Safta, C. A.; Savu, M.

    2010-08-01

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  12. Valve

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A positive acting valve suitable for operation in a corrosive environment is provided. The valve includes a hollow valve body defining an open-ended bore for receiving two, axially aligned, spaced-apart, cylindrical inserts. One insert, designated the seat insert, terminates inside the valve body in an annular face which lies within plane normal to the axis of the two inserts. An elastomeric O-ring seal is disposed in a groove extending about the annular face. The other insert, designated the wedge insert, terminates inside the valve body in at least two surfaces oppositely inclined with respect to each other and with respect to a plane normal to the axis of the two inserts. An elongated reciprocable gate, movable between the two inserts along a path normal to the axis of the two inserts, has a first flat face portion disposed adjacent and parallel to the annular face of the seat insert. The gate has a second face portion opposite to the first face portion provided with at least two oppositely inclined surfaces for mating with respective inclined surfaces of the wedge insert. An opening is provided through the gate which registers with a flow passage through the two inserts when the valve is open. Interaction of the respective inclined surfaces of the gate and wedge insert act to force the first flat face portion of the gate against the O-ring seal in the seat insert at the limits of gate displacement where it reaches its respective fully open and fully closed positions.

  13. Development of Opto-Pneumatic On/Off Control Valve

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi

    An optical servo system is a new control system that can be used in hazardous environments. The purpose of our study is to develop such an optical control system. In a previous study, we had realized an optical control system that executed cart positioning using optical control signals instead of electric signals. We developed an optical servo valve in which the output pressure was proportional to input optical power. As a next step, we need to develop another type of optical valve in order to get higher pressure-gain. In this study, we propose and produce an optical on/off valve that consists of an optical on/off device and a fluid amplifier, and the structure, operating principle and fundamental characteristics of the valve are investigated. As the result, we obtain a higher output pressure of the tested valve compared with the previous one. And we propose the analytical model of the optical on/off device and identify the system parameters. We confirm their validity by comparing them with experimental results. And finally, we improve the dynamics of the device by using a feedback passage plate based on analytical results of the device.

  14. Directional control valve with the ability to "dangle"

    NASA Astrophysics Data System (ADS)

    Meller, Michael; Tiwari, Rashi; Garcia, Ephrahim

    2011-04-01

    The majority of double-acting hydraulic cylinders are controlled via a 4/3 spool valve, which allows for the active movement of the cylinder in two directions, as well as holding its current position. These control valves lack the ability to "dangle," or rather, the ability to permit the hydraulic cylinder to freely sway passively in response to external forces. Including the ability to dangle within a control valve is of particular interest for a number of reasons. It allows for much more naturalistic actuation of the hydraulic cylinder, making it further compatible with bio-inspired platforms, such as driving the legs of a prosthetic limb or an exoskeleton for human augmentation. Additionally, dangle offers an opportunity for considerable efficiency gains. This is possible because the momentum of the load, gravity, among other external forces, can be utilized to move the actuator instead of solely relying on an active input. A novel control valve that integrates all of the features of a 4/3 spool valve in addition to dangle is reported herein.

  15. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls...

  16. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls...

  17. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls...

  18. D0 Silicon Upgrade: Cryolab Control Valve Modification Information for D0-EVMF-H

    SciTech Connect

    Rucincki, Russ; /Fermilab

    1995-10-26

    This engineering note documents some information regarding the solenoid magnet flow valve, EVMF. See also EN-437 'Control Dewar valve sizing' also for further information on this valve. This note documents the modification done to the valve to change it to a Cv = 0.32.

  19. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    DOEpatents

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  20. Pressure tracking control of vehicle ABS using piezo valve modulator

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  1. Simulation of dynamics of hydraulic system with proportional control valve

    NASA Astrophysics Data System (ADS)

    Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2016-03-01

    Dynamics of a hydraulic system is influenced by several parameters, in this case mainly by proportional control valve, oil bulk modulus, oil viscosity, mass load etc. This paper will be focused on experimental measurement and mathematical simulation of dynamics of a hydraulic system with proportional control valve, linear hydraulic cylinder and mass load. The measurement is performed on experimental equipment that enables realization of dynamic processes of the hydraulic system. Linear hydraulic cylinder with mass load is equipped with position sensor of piston. The movement control of piston rod is ensured by the proportional control valve. The equipment enables to test an influence of parameter settings of regulator of the proportional control valve on position and pressure system responses. The piston position is recorded by magnetostrictive sensor that is located in drilled piston rod side of the linear hydraulic cylinder. Pressures are measured by piezoresistive sensors on the piston side and the piston rod side of the hydraulic cylinder. The measurement is performed during movement of the piston rod with mass load to the required position. There is realized and verified a mathematical model using Matlab SimHydraulics software for this hydraulic system.

  2. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2001-11-06

    An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

  3. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2002-01-01

    Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.

  4. Metabolite Valves: Dynamic Control of Metabolic Flux for Pathway Engineering

    NASA Astrophysics Data System (ADS)

    Prather, Kristala

    2015-03-01

    Microbial strains have been successfully engineered to produce a wide variety of chemical compounds, several of which have been commercialized. As new products are targeted for biological synthesis, yield is frequently considered a primary driver towards determining feasibility. Theoretical yields can be calculated, establishing an upper limit on the potential conversion of starting substrates to target compounds. Such yields typically ignore loss of substrate to byproducts, with the assumption that competing reactions can be eliminated, usually by deleting the genes encoding the corresponding enzymes. However, when an enzyme encodes an essential gene, especially one involved in primary metabolism, deletion is not a viable option. Reducing gene expression in a static fashion is possible, but this solution ignores the metabolic demand needed for synthesis of the enzymes required for the desired pathway. We have developed Metabolite valves to address this challenge. The valves are designed to allow high flux through the essential enzyme during an initial period where growth is favored. Following an external perturbation, enzyme activity is then reduced, enabling a higher precursor pool to be diverted towards the pathway of interest. We have designed valves with control at both the transcriptional and post-translational levels. In both cases, key enzymes in glucose metabolism are regulated, and two different compounds are targeted for heterologous production. We have measured increased concentrations of intracellular metabolites once the valve is closed, and have demonstrated that these increased pools lead to increased product yields. These metabolite valves should prove broadly useful for dynamic control of metabolic flux, resulting in improvements in product yields.

  5. Engine including hydraulically actuated valvetrain and method of valve overlap control

    SciTech Connect

    Cowgill, Joel

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  6. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  7. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    DOEpatents

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  8. Development of Small-sized Fluid Control Valve with Self-holding Function Using Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Ueda, Hirofumi

    Recently, force feedback devices in virtual reality and power assisted nursing care systems have received much attention and active research. In such a control system, an actuator and a driving device such as a control valve are mounted on the human body. In this condition, the size and weight of the control valve become serious problems. At the same time, the valve should be operated with lower energy consumption because of using a limited electrical power. The typical electro magnetic solenoid valve drives its spool using a larger solenoid to open the valve. The complex construction of the valve for sealing makes its miniaturization and the fabrication of a low cost valve more difficult. In addition, the solenoid in the valve consumes more electrical power while the valve is kept opening. The purpose of our study is to develop a small-sized, lightweight, lower energy consumption and flexible control valve that can be safe enough to mount on the human body at a lower cost. In our pervious study, we proposed and tested the control valve that can open using a vibration motor. In this study, we propose and test a new type of fluid control valve with a self-holding function. The new valve uses a permanent magnet ball. It has a cylindrical magnet and two solenoids. The self-holding function of the valve is done as follows. When one side of the solenoid is stimulated by the current momentarily, the solenoid gives a repulsive force to the cylindrical magnet. The magnet moves toward the opposite side of the solenoid and is attracted to the iron core. Then, the magnet ball moves toward the cylindrical magnet and opens the orifice. The valve can keep open without electrical energy. As a result, the valve with the extremely lower energy consumption can be developed.

  9. Electromechanical actuation for cryogenic valve control

    NASA Technical Reports Server (NTRS)

    Lister, M. J.; Reichmuth, D. M.

    1993-01-01

    The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.

  10. A new PROFIBUS interface for vacuum sector gate valve controllers

    NASA Astrophysics Data System (ADS)

    Pigny, G.; Ferreira, R.; Gomes, P.; Gyori, L.; Roda, M.

    2017-02-01

    The vacuum control systems of the accelerators complex at CERN are based on PLCs, which communicate with controllers either with direct inputs or outputs, or via PROFIBUS. In order to improve the efficiency of the sector valve controller communication, a low cost PROFIBUS interface card has been designed. This paper presents the developed hardware and firmware, together with the corresponding assessment tests. It flags the improvements of this new interface, in comparison with the former system. Furthermore, this paper can be helpful for any custom design that needs a PROFIBUS interface.

  11. Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

    NASA Technical Reports Server (NTRS)

    Wilkes, Karlin; Larsen, Ed; McCourt, Jackson

    2003-01-01

    A control valve that can throttle high-pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body.

  12. Use of thermocapillary migration in a controllable heat valve

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1982-01-01

    In accordance with the Marangoni effect, immiscible droplets in a host fluid in which a temperature gradient exists move in the direction of increasing temperature. It is proposed that this thermocapillary migration could be used to construct a 'liquid wick' that would return the condensed vapor at the condenser end of a heat pipe back to the evaporator, thus completing the fluid circuit. The droplets would be formed by capillary pressure forcing the condensate through a perforated diaphragm whose temperature would control the droplet flux, and hence the heat flux between the two ends of the heat pipe, thus making it a controllable heat valve.

  13. Hydraulic valve control system for internal combustion engines

    SciTech Connect

    Bowman, T.J.; LoRusso, J.A.; Kaufman, W.F.

    1992-07-07

    This patent describes a hydraulic engine valve actuating assembly for use in an internal combustion engine cylinder head having a poppet valve which is axially shiftable therein by a rotary camshaft, the hydraulic engine valve actuating assembly. It comprises a housing having a mounted surface to attach to the cylinder head immediately above the poppet valve, a master piston cooperating with the camshaft and sealingly engaging the first cavity; a slave piston cooperating with the poppet valve and sealingly engaging the housing second cavity; a hydraulic energy and fluid storage accumulator assembly affixed and sealingly engaged relative to the housing and being provided with a fluid port coupled with the housing fluid passageway; valve means; the housing including a third cavity coaxially aligned with the poppet valve; and the valve means including a reciprocal valve piston sealingly engaged within the third cavity.

  14. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  15. Development of myoelectric control type speaking valve with low flow resistance

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Sakurai, Kohei; Mimaki, Shinya

    2015-12-01

    We aimed to develop welfare devices for patients with phonation disorder. One of these devices is the electrical controltype speaking valve system. The conventional speaking valves have one-way valve architecture, they open when the user breathes in, and they close when user breathes out and produce voices. This type is very simple and tough, but some users feel closeness in case of exhalation without phonation. This problem is caused by its mechanism what can not be controlled by user's will. Therefore, we proposed an electrical control-type speaking valve system to resolve this problem. This valve is controlled by neck myoelectric signal of sternohyoid muscle. From our previous report, it was clarified that this valve had better performance about easy-to-breath. Furthermore, we proposed the compact myoelectric control-type speaking valve system. The new-type speaking valve was enough small to attach the human body, and its opening area is larger than that of conventional one. Additionally, we described the improvement of flow channel shape by using of FEM analysis. According to the result of the analysis, it was clarified that the shape-improved speaking valve gets the low flow resistance channel in case of inspiration. In this report, we tried to make the flow resistance lower by the shape of current plates, in case of both inspiration and exhalation. From the result of FEM analysis, our speaking valve could get better flow channel than older one.

  16. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  17. Fluid-driven reciprocating apparatus and valving for controlling same

    SciTech Connect

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  18. The Nordic Aortic Valve Intervention (NOTION) trial comparing transcatheter versus surgical valve implantation: study protocol for a randomised controlled trial

    PubMed Central

    2013-01-01

    Background Degenerative aortic valve (AV) stenosis is the most prevalent heart valve disease in the western world. Surgical aortic valve replacement (SAVR) has until recently been the standard of treatment for patients with severe AV stenosis. Whether transcatheter aortic valve implantation (TAVI) can be offered with improved safety and similar effectiveness in a population including low-risk patients has yet to be examined in a randomised setting. Methods/Design This randomised clinical trial will evaluate the benefits and risks of TAVI using the transarterial CoreValve System (Medtronic Inc., Minneapolis, MN, USA) (intervention group) compared with SAVR (control group) in patients with severe degenerative AV stenosis. Randomisation ratio is 1:1, enrolling a total of 280 patients aged 70 years or older without significant coronary artery disease and with a low, moderate, or high surgical risk profile. Trial outcomes include a primary composite outcome of myocardial infarction, stroke, or all-cause mortality within the first year after intervention (expected rates 5% for TAVI, 15% for SAVR). Exploratory safety outcomes include procedure complications, valve re-intervention, and cardiovascular death, as well as cardiac, cerebral, pulmonary, renal, and vascular complications. Exploratory efficacy outcomes include New York Heart Association functional status, quality of life, and valve prosthesis and cardiac performance. Enrolment began in December 2009, and 269 patients have been enrolled up to December 2012. Discussion The trial is designed to evaluate the performance of TAVI in comparison with SAVR. The trial results may influence the choice of treatment modality for patients with severe degenerative AV stenosis. Trial registration ClinicalTrials.gov: NCT01057173 PMID:23302232

  19. Electromagnetic unit fuel injector with piston assist solenoid actuated control valve

    SciTech Connect

    Teerman, R. F.; Bosch, R. H.; Wirth, R. C.

    1985-11-05

    An electromagnetic unit fuel injector includes a pump assembly having an external actuated plunger reciprocable in a bushing with flow therefrom during a pump stroke being directed to a fuel injection nozzle of the assembly. Fuel flow from the pump can also flow through a passage means, containing a normally open, substantially pressure-balanced control valve actuated by a solenoid assembly in the valve closing direction to block drain flow during a pump stroke, as desired. A piston, actuated by discharge fuel pressure is operatively connected to the control valve to assist the solenoid in holding the control valve in a closed position.

  20. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    NASA Astrophysics Data System (ADS)

    Groen, Maarten S.; Wu, Kai; Brookhuis, Robert A.; van Houwelingen, Marc J.; Brouwer, Dannis M.; Lötters, Joost C.; Wiegerink, Remco J.

    2014-12-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch.

  1. Computational Modeling of Liquid and Gaseous Control Valves

    NASA Technical Reports Server (NTRS)

    Daines, Russell; Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Moore, Arden; Sulyma, Peter

    2005-01-01

    In this paper computational modeling efforts undertaken at NASA Stennis Space Center in support of rocket engine component testing are discussed. Such analyses include structurally complex cryogenic liquid valves and gas valves operating at high pressures and flow rates. Basic modeling and initial successes are documented, and other issues that make valve modeling at SSC somewhat unique are also addressed. These include transient behavior, valve stall, and the determination of flow patterns in LOX valves. Hexahedral structured grids are used for valves that can be simplifies through the use of axisymmetric approximation. Hybrid unstructured methodology is used for structurally complex valves that have disparate length scales and complex flow paths that include strong swirl, local recirculation zones/secondary flow effects. Hexahedral (structured), unstructured, and hybrid meshes are compared for accuracy and computational efficiency. Accuracy is determined using verification and validation techniques.

  2. Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)

    SciTech Connect

    J. Napoleon

    1998-12-01

    The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

  3. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  4. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  5. Dual-Use Partnership Addresses Performance Problems with "Y" Pattern Control Valves

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A Dual-Use Cooperative Agreement between the Propulsion Test Directorate (PTD) at Stennis Space Center (SSC) and Oceaneering Reflange, Inc. of Houston, TX has produced an improved 'Y' pattern split-body control valve for use in the propulsion test facilities at Stennis Space Center. The split-body, or clamped bonnet technology, provides for a 'cleaner' valve design featuring enhanced performance and increased flow capacity with extended life expectancy. Other points addressed by the partnership include size, weight and costs. Overall size and weight of each valve will be reduced by 50% compared to valves currently in use at SSC. An initial procurement of two 10 inch valves will result in an overall cost reduction of 15% or approximately $50,000 per valve.

  6. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-09-02

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  7. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-01-01

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  8. Failure Analysis of High Pressure Test Facility Control Valves

    DTIC Science & Technology

    2013-10-01

    larger than the axial load applied to the stem by the actuator in the closed valve position), so we decided that no further buckling analysis was...caused the stem to bend. There are only two modes by which the stem could have bent in the manner it did: buckling and/or a cantilever load...load; however, we have clearly demonstrated on other valves (much to our embarrassment) that it is entirely possible to buckle the stem by over

  9. Heart valve surgery - series (image)

    MedlinePlus

    There are four valves in the heart: aortic valve, mitral valve, tricuspid valve, and pulmonary valve. The valves are designed to control the direction of blood flow through the heart. The opening and closing of the heart valves produce the heart-beat sounds.

  10. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.

    PubMed

    Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin

    2017-01-01

    In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation.

  11. PROCESS WATER BUILDING, TRA605. SIX CONTROL VALVES INSTALLED ABOVE PIPES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SIX CONTROL VALVES INSTALLED ABOVE PIPES IN BASEMENT. INL NEGATIVE NO. 3583A. Unknown Photographer, 10/29/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Controlling flow in microfluidic channels with a manually actuated pin valve.

    PubMed

    Brett, Marie-Elena; Zhao, Shuping; Stoia, Jonathan L; Eddington, David T

    2011-08-01

    There is a need for a simple method to control fluid flow within microfluidic channels. To meet this need, a simple push pin with a polydimethylsiloxane (PDMS) tip has been integrated into microfluidic networks to be placed within the microchannel to obstruct flow. This new valve design can attain on/off control of fluid flow without an external power source using readily-available, low-cost materials. The valve consists of a 14 gauge (1.6 mm) one inch piece of metal tubing with a PDMS pad at the tip to achieve a fluidic seal when pressed against a microfluidic channel's substrate. The metal tubing or pin is then either manually pushed down to block or pulled up to allow fluid flow. The valve was validated using a pressure transducer and fluorescent dye to determine the breakthrough pressure the valve can withstand over multiple cycles. In the first cycle, the median value for pressure withstood by the valve was 8.8 psi with a range of 17.5-2.7 psi. The pressure the valves were able to withstand during each successive trial was lower suggesting they may be most valuable as a method to control the initial introduction of fluids into a microfluidic device. These valves can achieve flow regulation within microfluidic devices, have a small dead volume, and are simple to fabricate and use, making this technique widely suitable for a range of applications.

  13. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOEpatents

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  14. Inhibition of Calcification of Bioprosthetic Heart Valves by Local Controlled-Release Diphosphonate

    NASA Astrophysics Data System (ADS)

    Levy, Robert J.; Wolfrum, Jacqueline; Schoen, Frederick J.; Hawley, Marguerite A.; Lund, Sally Anne; Langer, Robert

    1985-04-01

    Bioprostheses fabricated from porcine aortic valves are widely used to replace diseased heart valves. Calcification is the principal cause of the clinical failure of these devices. In the present study, inhibition of the calcification of bioprosthetic heart valve cusps implanted subcutaneously in rats was achieved through the adjacent implantation of controlled-release matrices containing the anticalcification agent ethanehydroxydiphosphonate dispersed in a copolymer of ethylene-vinyl acetate. Prevention of calcification was virtually complete, without the adverse effects of retarded bone and somatic growth that accompany systemic administration of ethanehydroxydiphosphonate.

  15. Calibration of sonic valves for the laminar flow control, leading-edge flight test

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Alexander, W., Jr.; Wright, A. S., Jr.; Vallas, M.

    1985-01-01

    Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.

  16. Internal combustion engine valve lift and cam duration control system

    SciTech Connect

    Bledsoe, P.G.

    1987-02-17

    A mechanism is described for varying the lift, timing and duration of a valve member associated with an internal combustion engine having a camshaft, a cam on the camshaft, and a rectilinear reciprocatable valve member for opening and closing a valve port in communication with a combustion chamber of the engine. The mechanism comprises an elongated rocker arm having a first pivot end and a second end forming a valve member actuating free end and an intermediate portion extending therebetween. The free end has a shaped valve member contact formation projecting therefrom and the pivot end has a circular opening therethrough receiving a pivotal mounting assembly therethrough having an exterior cylindrical surface within and corresponding substantially to the diameter of the circular opening forming the surface about which the rocker arm pivots. A pair of eccentric means form a first eccentric member and a second eccentric member collectively defines a pivot axis within the circular opening for the rocker arm, the first eccentric member comprising a shaft having cylindrical end portions journaled for rotation about a shaft axis and an eccentric cylindrical portion located within the opening of the rocker arm. The eccentric cylindrical portion is concentric with a first eccentric axis spaced from the shaft axis, and the second eccentric member comprises a tubular sleeve defining the exterior cylindrical surface and having a cylindrical bore having an inner diameter corresponding to the eccentric cylindrical portion of the shaft rotatably supported on the surface of the latter and concentric with a second eccentric axis spaced from the shaft axis and the first eccentric axis, a first means for rotating the shaft.

  17. An online tuned novel nonlinear PI controller for stiction compensation in pneumatic control valves.

    PubMed

    Mishra, Puneet; Kumar, Vineet; Rana, K P S

    2015-09-01

    A novel Nonlinear PI Controller (NPIC) has been proposed for effective control of flow process employing a sticky pneumatic control valve. The proposed control scheme has been inherited from a classical PI control structure with a difference that the integral gain has been varied in accordance with the instantaneous error and the rate of change of error. The tuning of controller has been carried out online using Differential Evolution algorithm. To evaluate the effectiveness of the proposed controller, a comparative study with the conventional PI controller has also been carried out for the setpoint tracking, disturbance rejection and robustness to parameter uncertainties on account of operating point change on a laboratory scale nonlinear flow process. Based on these intensive experimental evidences, it has been concluded that the NPIC performed far better than the conventional PI controller for all the case studies and suppressed effectively any stiction induced oscillations.

  18. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  19. Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

    NASA Technical Reports Server (NTRS)

    Wilkes, Karlin; Larsen, Ed; McCourt, Jackson

    2004-01-01

    A control valve that can throttle high pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body. The design feature that provides flexibility for changing the trim is a split body. The body is divided into an upper and a lower section with the seat ring sandwiched in between. In order to maintain the plug stem packing at an acceptable sealing temperature during cryogenic service, heat-exchanging fins were added to the upper body section (see figure). The body is made of stainless steel.

  20. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  1. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  2. Ionogel-based light-actuated valves for controlling liquid flow in micro-fluidic manifolds.

    PubMed

    Benito-Lopez, Fernando; Byrne, Robert; Răduţă, Ana Maria; Vrana, Nihal Engin; McGuinness, Garrett; Diamond, Dermot

    2010-01-21

    We present the fabrication, characterisation and performance of four novel ionic liquid polymer gels (ionogels) as photo-actuated valves incorporated into micro-fluidic manifolds. The ionogels incorporate benzospiropyran units and phosphonium-based ionic liquids. Each ionogel is photo-polymerised in situ in the channels of a poly(methyl methacrylate) micro-fluidic device, generating a manifold incorporating four different micro-valves. The valves are actuated by simply applying localised white light irradiation, meaning that no physical contact between the actuation impulse (light) and the valve structure is required. Through variation of the composition of the ionogels, each of the micro-valves can be tuned to open at different times under similar illumination conditions. Therefore, flows through the manifold can be independently controlled by a single light source. At present, the contraction process to open the channel is relatively rapid (seconds) while the recovery (expansion) process to re-close the channel is relatively slow (minutes), meaning that the valve, in its current form, is better suited for single-actuation events.

  3. NASA Work on Fatigue-Induced Cracking of H2 Flow Control Valve Poppet

    NASA Technical Reports Server (NTRS)

    Maes, Miguel

    2009-01-01

    This slide presentation reviews the work that is being done to resolve a potential problem with the flow control valve poppet that controls the flow of GH2 into the space shuttle's main engine. The STS Hydrogen Flow Control Valve (HFVC) and potential problems that could arise from the failure of a poppet are reviewed. The analysis and testing that were performed are discussed. There is discussion about the current work involved in finding a resolution to the problem, including finding new materials to use in construction of poppetts,

  4. Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems

    PubMed Central

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597

  5. Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.

    PubMed

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.

  6. Fast-Acting Valve

    NASA Technical Reports Server (NTRS)

    Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)

    2003-01-01

    A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.

  7. Parallel Control of Velocity Control and Energy-Saving Control for a Hydraulic Valve-Controlled Cylinder System Using Self-Organizing Fuzzy Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Chiang, Mao-Hsiung; Chien, Yu-Wei

    Conventional hydraulic valve-controlled systems that incorporate positive displacement pumps and relief valves have a problem of low energy efficiency. The objective of the research is to implement parallel control of energy-saving control in an electro-hydraulic load-sensing system and velocity control in a hydraulic valve-controlled cylinder system to achieve both high velocity control accuracy and low input power simultaneously. The overall control system is a two-input two-output system. For that, the control strategy of self-organizing fuzzy sliding mode control (SOFSMC) is developed in this study to reduce the fuzzy rule number and to self-organize on-line the fuzzy rules. To compare the energy-saving performance, the velocity control is implemented under three different energy-saving control systems, such as load-sensing control system, constant supply pressure control system and conventional hydraulic system. The parallel control of the velocity control and energy-saving control by the SOFSMC is implemented experimentally.

  8. The effectiveness of a double-stem injection valve in controlling combustion in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1931-01-01

    An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.

  9. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    NASA Astrophysics Data System (ADS)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  10. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  11. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  12. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  13. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  14. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  15. Nonlinear control of valves in diesel engines using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The paper studies robust nonlinear control for gas exchange valves in diesel engines, with the use of the Derivative-free nonlinear Kalman Filter. Robust control of gas exchange valves is important for improving the efficiency in the operation of diesel engines. By applying differential flatness theory the initial nonlinear model of the system is transformed in the linear canonical (Brunovsky) form. For the latter model it is possible to design a state feedback controller that enables accurate tracking of the valve's reference set-points. To estimate the nonmeasurable state variables of the model and the unknown external disturbances the Derivative-free nonlinear Kalman Filter is used as a disturbance observer. The Derivative-free nonlinear Kalman Filter consists of the standard Kalman Filter recursion on the linearized equivalent model of the valve and of computation of state and disturbance estimates using the diffeomorphism (relations about state variables transformation) provided by differential flatness theory. Evaluation tests are performed for assessing the performance of the proposed control scheme.

  16. Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A control valve that can throttle high-pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body. The design feature that provides flexibility for changing the trim is a split body. The body is divided into an upper and a lower section with the seat ring sandwiched in between. In order to maintain the plug stem packing at an acceptable sealing temperature during cryogenic service, heat-exchanging fins were added to the upper body section. The body is made of stainless steel. The seat ring is made of a nickel-based alloy having a coefficient of thermal expansion less than that of the body material. Consequently, when the interior of the valve is cooled cryogenically, the body surrounding the seat ring contracts more than the seat ring. This feature prevents external leakage at the body-seat joint. The seat ring has been machined to have small, raised-face sealing surfaces on both sides of the seal groove. These sealing surfaces concentrate the body bolt load over a small area, thereby preventing external leakage. The design of the body bolt circle is different from that of conventional highpressure control valves. Half of the bolts clamp the split body together from the top, and half from the bottom side. This bolt-circle design allows a short, clean flow path, which minimizes frictional flow losses. This bolt-circle design also makes it possible to shorten the face-toface length of the valve, which is 25.5 in. (65 cm). In contrast, a conventional, high-pressure control valve face-to-face dimension may be greater than 40 in. (>1 m

  17. Dual stage check valve

    NASA Technical Reports Server (NTRS)

    Whitten, D. E. (Inventor)

    1973-01-01

    A dual stage seat valve head arrangement is described which consists of a primary sealing point located between a fixed orifice seat and a valve poppet, and a secondary sealing point between an orifice poppet and a valve poppet. Upstream of the valve orifice is a flexible, convoluted metal diaphragm attached to the orifice poppet. Downstream of the valve orifice, a finger spring exerts a force against the valve poppet, tending to keep the valve in a closed position. The series arrangement of a double seat and poppet is able to tolerate small particle contamination while minimizing chatter by controlling throttling or metering across the secondary seat, thus preserving the primary sealing surface.

  18. Feasibility and testing of lighweight, energy efficient, additive manufactured pneumatic control valve

    SciTech Connect

    Love, Lonnie J.; Mell, Ellen

    2015-02-01

    AeroValve s innovative pneumatic valve technology recycles compressed air through the valve body with each cycle of the valve, and was reported to reduce compressed air requirements by an average of 25% 30%.This technology collaboration project between ORNL and Aerovalve confirms the energy efficiency of valve performance. Measuring air consumption per work completed, the AeroValve was as much as 85% better than the commercial Festo valve.

  19. Gas flow in plant microfluidic networks controlled by capillary valves

    NASA Astrophysics Data System (ADS)

    Capron, M.; Tordjeman, Ph.; Charru, F.; Badel, E.; Cochard, H.

    2014-03-01

    The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ˜102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP ⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP =ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

  20. Gas flow in plant microfluidic networks controlled by capillary valves.

    PubMed

    Capron, M; Tordjeman, Ph; Charru, F; Badel, E; Cochard, H

    2014-03-01

    The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ∼102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP=ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

  1. Control valves and cascades for the first stages of turbines with ultrasupercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.; Rogalev, N. D.; Rogalev, A. N.; Garanin, I. V.; Osipov, S. K.; Grigoriev, E. Yu.

    2016-06-01

    This paper considers the problems that will unavoidably be encountered in the creation of new-generation turbines operated at ultrasupercritical initial steam parameters, namely, the development of new control and shutoff valves, the reduction of end energy losses in blade cascades and steam leaks in high-pressure cylinders (HPCs), the elimination of effect produced by regenerative steam bleedoffs on the afterextraction stage, the cooling of a blade cascade, etc. Some possible solutions are given for the two first of the listed problems. The conclusion about the need for the transition to new-generation control valves in the development of new advanced steam turbines with ultrasupercritical initial steam parameters has been made. From the viewpoint of their design, the considered new-generation valves differ from the known contemporary constructions by a shaped axially symmetric confusor channel and perforated zones on the streamlined spool surface and the inlet diffuser saddle part. The analysis of the vibration behavior of new-generation valves has demonstrated a decrease in the dynamic loads acting on their stems. To reduce the end energy losses in nozzle or blade cascades with small aspect ratios, it is proposed to use finned shrouds in the interblade channels. The cross section of fins has a triangular profile, and their height must be comparable with the thickness of the boundary layer in the outlet cross section of a cascade and, provisionally, be smaller than 8% of the cascade chord.

  2. Fast acting check valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1979-01-01

    A check valve which closes more rapidly to prevent wearing of the valve seat and of the valve member that seals thereagainst, including a solenoid or other actuator that aids the normal spring to quickly close the valve at approximately the time when downpath fluid flow would stop, the actuator then being deenergized. The control circuit that operates the actuator can include a pair of pressure sensors sensing pressure both upstream and downstream from the valve seat. Where the valve is utilized to control flow to or from a piston pump, energization of the actuator can be controlled by sensing when the pump piston reaches its extreme of travel.

  3. Space Shuttle Main Propulsion System Gaseous Hydrogen Flow Control Valve Poppet Failure

    NASA Technical Reports Server (NTRS)

    Zeitler, Rick

    2010-01-01

    The presentation provides background information pertinent to the MPS GH2 Flow Control Valve Poppet failure which occurred on the Space Shuttle Endeavour during STS-126 flight. The presentation provides general MPS system operating information which is pertinent to understanding the failure causes and affects. The presentation provides additional background information on the operating environment in which the FCV functions and basic design history of the flow control valve. The presentation provides an overview of the possible flight failure modes and a brief summary of the flight rationale which was developed for this failure event. This presentation is an introductory presentation to 3 other speakers at the conference who will be speaking on M&P aspects of the investigation, non destructive inspection techniques development, and particle impact testing.

  4. Device for controlling a safety valve disposed below an activation pump in a hydrocarbon production well

    SciTech Connect

    Lefebvre, H. M.; Helderle, P. M.

    1985-05-21

    In a hydrocarbon production well in which the effluent is activated by an activation pump installed in a production pipe, a safety valve is disposed in the production pipe below the pump, the safety valve being operated by lowering of an operating member by a controlling device. The controlling device comprises a piston and cylinder system, and connection means connecting the piston to the operating member during the downward movement of the piston. The cylinder and piston system is provided at the level of the pump, and is advantageously constituted by the production pipe and pump respectively, so that pressurized fluid present at the level of the pump will cause downward movement of the piston.

  5. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

    PubMed

    Xie, Hui; Song, Kang; He, Yu

    2014-07-01

    A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations.

  6. Electrical servo actuator bracket. [fuel control valves on jet engines

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  7. Improved pointing at trackable targets by integrating control valve signals

    NASA Technical Reports Server (NTRS)

    Stone, R. W.; Laverty, C. R.; Colby, M. J.

    1982-01-01

    A compact, low-cost add-on electronic module has been developed for the STRAP III control system to improve pointing at trackable targets. The module provides peak-to-peak limit cycle excursions of + or - 5 arcseconds while tracking a +3 magnitude or brighter star. This is achieved without using rate-integrating gyroscopes, thus reducing payload length, weight, cost, and preparation time. This module has flown successfully five times. In May 1981, it improved the performance of a two-startracker attitude control system with TV camera and joystick control which pointed at a nontrackable target. This paper describes the operation of the module, how it alters the ordinary STRAP III operation, and how it was developed using an analog-computer-based rocket flight simulator.

  8. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    SciTech Connect

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.

  9. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  10. A solenoid failure detection system for cold gas attitude control jet valves

    NASA Technical Reports Server (NTRS)

    Johnston, P. A.

    1970-01-01

    The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.

  11. Evaluation of a fracture failure mode in the Space Shuttle hydrogen pressurization system flow control valves

    NASA Astrophysics Data System (ADS)

    Hauver, S. E.; Sueme, D. R.

    1992-07-01

    During acceptance testing of the Space Shuttle Endeavor hydrogen flow control valves, which are used in the Orbiter's fuel tank pressurization system, two of the valves experienced fracture of the poppet flange. The poppets are made of 440 C, a high strength, wear-resistant, low ductility, martensitic stainless steel. The investigation which was initiated to determine the cause of these failures is traced. All aspects of the poppet processing that may have introduced a defect were assessed. This included machining, heat treating, passivation, assembly, and test. In addition, several potential failure modes were investigated. The extensive investigation revealed no obvious cause of the failures, but did result in a recommendation for a different material application.

  12. Development and marketing of a prosthetic urinary control valve system

    NASA Technical Reports Server (NTRS)

    Tenney, J. B., Jr.; Rabinowitz, R.; Rogers, D. W.; Harrison, H. N.

    1983-01-01

    An implantable prosthetic for the control of urinary incontinence was developed and marketed. Three phases are presented: bench development studies, animal trials, and human clinical trials. This work was performed under the direction of a Research Team at Rochester General Hospital (RGH). Bench trials were completed on prototype hardware and provided early verification of the device's ability to withstand repeated cyclic testing. Configurational variants were evaluated and a preferred design concept was established. Silicone rubber (medical grade) was selected as the preferred material for the prosthesis.

  13. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

    NASA Astrophysics Data System (ADS)

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.

  14. Well safety valve

    SciTech Connect

    Vinzant, M.B.; Hilts, R.L.; Meaders, M.; Speegle, S.C.

    1984-07-24

    A retrievable well safety valve in a cased well system including a tubing string, a dual packer downhole around the tubing sealing with the casing and submersible pump in the tubing string below the packer. The safety valve controls flow of pumped fluids through the tubing to surface and directs gas flow into the casing annulus above the packer. When the safety valve is landed in cooperating tubing nipples above the packer, separated central annular flow passages are formed for pumped fluids and gas respectively. A ball valve in the central flow passage controls pumped fluid flow therethrough and an annular valve coupled to the ball valve controls gas flow from below the packer through the annular flow passage around and by the ball valve. When the ball valve is in the down and open position, the valve ball member engages a lower seat, which maintains the central and annular flow passages separate and prevents comingling flow of fluids and gas. The coupled valves are held open by pressured fluid from surface and are closed automatically on loss of pressure in their control fluid circuits. When the valves close, a circuit of flow passages for recirculating pumped fluids and gas are opened below the ball valve and the pump may continue operation without overload.

  15. Safety valve

    DOEpatents

    Bergman, Ulf C.

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  16. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    PubMed

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness.

  17. Analysis and compensation for the cascade dead-zones in the proportional control valve.

    PubMed

    Xu, Bing; Su, Qi; Zhang, Junhui; Lu, Zhenyu

    2017-01-01

    The four-way proportional directional control valve has been widely used as the main stage spring constant for the two-stage proportional control valve (PDV). Since a tradeoff should be made between manufacturing costs and static performance, two symmetry dead-zones are introduced in the main stage spring constant: the center dead-zone caused by the center floating position and the intermediate dead-zone caused by the intermediate position. Though the intermediate dead-zone is much smaller than the center dead-zone, it has significant effect on the dynamic position tracking performance. In this paper, the cascade dead-zones problem in a typical two-stage PDV is analyzed and a cascade dead-zones model is proposed for the main stage spring constant. Then, a cascade dead-zones inverse method is improved with gain estimation and dead-zone detection to compensate the dead-zone nonlinearity. Finally, a digital controller is designed for verification. The comparative experimental results indicate that it is effective to reduce the large position tracking error when the proposed method is applied.

  18. Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link

    NASA Technical Reports Server (NTRS)

    Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete

    2012-01-01

    Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.

  19. Magnetorheological valve based actuator for improvement of passively controlled turbocharger system

    NASA Astrophysics Data System (ADS)

    Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.

    2016-03-01

    Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.

  20. Mesofluidic two stage digital valve

    DOEpatents

    Jansen, John F; Love, Lonnie J; Lind, Randall F; Richardson, Bradley S

    2013-12-31

    A mesofluidic scale digital valve system includes a first mesofluidic scale valve having a valve body including a bore, wherein the valve body is configured to cooperate with a solenoid disposed substantially adjacent to the valve body to translate a poppet carried within the bore. The mesofluidic scale digital valve system also includes a second mesofluidic scale valve disposed substantially perpendicular to the first mesofluidic scale valve. The mesofluidic scale digital valve system further includes a control element in communication with the solenoid, wherein the control element is configured to maintain the solenoid in an energized state for a fixed period of time to provide a desired flow rate through an orifice of the second mesofluidic valve.

  1. CAM operated fuel valve

    SciTech Connect

    Kelly, S.T.; Katchka, J.R.

    1991-09-03

    This patent describes improvement in a fuel control valve construction comprising a housing means having an inlet means adapted to be interconnected to a fuel source and a main outlet means adapted to be interconnected to a main burner means, the housing means having a main valve seat for interconnecting the inlet means with the main outlet means, the housing means having a movable main valve member for opening and closing the main valve seat, the housing means having a movable lever operatively associated with the main valve member and having a manually operable actuator means for controlling the operating positions of the lever, the lever having an intermediate cam follower portion and opposed ends disposed on each side of the cam follower portion with one end of the opposed ends being pivotally mounted to the housing means and with the other end of the opposed ends for operating the main valve member, the housing means having biasing means operatively interconnected to the lever to tend to pivot the lever in one direction that opens the main valve member away from its the main valve seat. The improvement comprises; the housing means has a thermostatically controlled means that is operatively associated with the lever and is adapted to engage and hold the lever in a position wherein the main valve member is in a closed condition against its the main valve seat when the thermostatically controlled means is in one operating condition thereof and the actuator means is in the on condition thereof.

  2. Main Oxidizer Valve Design

    NASA Technical Reports Server (NTRS)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  3. Influence of pre-injection control parameters on main-injection fuel quantity for an electronically controlled double-valve fuel injection system of diesel engine

    NASA Astrophysics Data System (ADS)

    Song, Enzhe; Fan, Liyun; Chen, Chao; Dong, Quan; Ma, Xiuzhen; Bai, Yun

    2013-09-01

    A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment. The accuracy of the model is validated through comparison with experimental data. The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed. In the spill control valve mode, main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time. In the needle control valve mode, main-injection fuel quantity increases with rising multi-injection dwell time; this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths. Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes; the variation in main-injection quantity is in the range of 1 mm3.

  4. Valve mechanism having variable valve timing

    SciTech Connect

    Oda, H.; Masuda, S.; Morita, Y.

    1986-04-08

    This patent describes a valve mechanism for an internal combustion engine which consists of a camshaft rotatable about a longitudinal axis and having a cam formed thereon, a swingable member mounted for swinging movement about the longitudinal axis of the camshaft and formed with a tappet receiving hole. A valve tapper is received in the tappet receiving hole for a slidable movement along the tappet receiving hole. The tappet has a cam which engages the surface at one end and a stem engages the surface at the other end. A valve stem is mounted for axial movement and engaged at one end with the stem engaging, surface of the tappet to be actuated thereby. A valve timing control swingably moves the swingable member and the tappet about the camshaft axis in accordance with predetermined engine operating conditions to thereby change valve opening and valve closing timing. The control includes means for holding the swingable member at a first position. The tappet and valve stem are in contact at a first position on the stem engaging surface of the tappet and the direction of the slidable movement of the tappet is aligned with the direction of the axial movement of the valve stem at least under heavy load, high speed engine operation, and for moving the swingable member from the first position to a second position. The tappet and valve stem are in contact at a second position on the stem engaging surface of the tappet at low speed engine operation to effect a change in valve opening and valve closing timing.

  5. Polypropylene vs silicone Ahmed valve with adjunctive mitomycin C in paediatric age group: a prospective controlled study

    PubMed Central

    El Sayed, Y; Awadein, A

    2013-01-01

    Purpose To compare the results of silicone and polypropylene Ahmed glaucoma valves (AGV) implanted during the first 10 years of life. Methods A prospective study was performed on 50 eyes of 33 patients with paediatric glaucoma. Eyes were matched to either polypropylene or silicone AGV. In eyes with bilateral glaucoma, one eye was implanted with polypropylene and the other eye was implanted with silicone AGV. Results Fifty eyes of 33 children were reviewed. Twenty five eyes received a polypropylene valve, and 25 eyes received a silicone valve. Eyes implanted with silicone valves achieved a significantly lower intraocular pressure (IOP) compared with the polypropylene group at 6 months, 1 year, and 2 years postoperatively. The average survival time was significantly longer (P=0.001 by the log-rank test) for the silicone group than for the polypropylene group and the cumulative probability of survival by the log-rank test at the end of the second year was 80% (SE: 8.0, 95% confidence interval (CI): 64–96%) in the silicone group and 56% (SE: 9.8, 95% CI: 40–90%) in the polypropylene group. The difference in the number of postoperative interventions and complications between both groups was statistically insignificant. Conclusion Silicone AGVs can achieve better IOP control, and longer survival with less antiglaucoma drops compared with polypropylene valves in children younger than 10 years. PMID:23579403

  6. Failure Analysis of Fractured Poppet from Space Shuttle Orbiter Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Russell, Richard

    2010-01-01

    This slide presentation reviews the failure analysis of a fractured poppet from a flow control valve (FCV) used on the space shuttle. This presentation has focused on the laboratory analysis of the failed hardware. The use of Scanning electron fractography during the investigation led to the conclusion that the poppet failed due to fatigue cracking that, most likely, occurred under changing loading conditions. The initial investigation led to a more thorough test of poppets that had been retired, this testing led to the conclusion that the thumbnail cracks in the flight hardware had existed for the life of the shuttle program. This led to a program to develop an eddy current technique that was capable of detecting small very tight cracks.

  7. Mechanism utilizing a single rocker arm for controlling an internal combustion engine valve

    SciTech Connect

    Burandt, C.O.

    1988-02-09

    This patent describes in combination with an internal combustion engine having a rotatable camshaft, a cam on the camshaft, a combustion chamber and a reciprocable valve member for opening and closing a valve port in communication with the combustion chamber, a mechanism for operating the valve member comprising a rocker arm having first and second angularly disposed and integrally connected legs. The first leg having a cam follower suface thereon having a first section thereof extending in the same general direction that the valve member reciprocates and having a second section thereof curving toward the valve member and toward the direction in which the valve member reciprocates, means mounting the rocker arm for rocking movement about a first axis, and means for shifting the first axis relative to the camshaft in also the same general direction the valve member reciprocates so that various portions of the first and second sections of the cam follower surface on the first leg are relatively engageable with the cam, sufficient shifting of the first axis in the same general direction producing a desmodromic action, and the second leg including a single portion thereof engaging the valve member so that only the single portion acts on the valve member.

  8. Pressure model of a four-way spool valve for simulating electrohydraulic control systems

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.

    1976-01-01

    An equation that relates the pressure flow characteristics of hydraulic spool valves was developed. The dependent variable is valve output pressure, and the independent variables are spool position and flow. This causal form of equation is preferred in applications that simulate the effects of hydraulic line dynamics. Results from this equation are compared with those from the conventional valve equation, whose dependent variable is flow. A computer program of the valve equations includes spool stops, leakage spool clearances, and dead-zone characteristics of overlap spools.

  9. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  10. Ground Simulator Studies of the Effects of Valve Friction, Stick Friction, Flexibility, and Backwash on Power Control System Quality

    NASA Technical Reports Server (NTRS)

    Brown, B Porter

    1958-01-01

    Report presents results of tests made on a power control system by means of a ground simulator to determine the effects of various combinations of valve friction and stick friction on the ability of the pilot to control the system. Various friction conditions were simulated with a rigid control system, a flexible system, and a rigid system having some backlash. For the tests, the period and damping of the simulated airplane were held constant.

  11. ELECTROSTRICTION VALVE

    DOEpatents

    Kippenhan, D.O.

    1962-09-25

    An accurately controlled, pulse gas valve is designed capable of delivering output pulses which vary in length from one-tenth millisecond to one second or more, repeated at intervals of a few milliseconds or- more. The pulsed gas valve comprises a column formed of barium titanate discs mounted in stacked relation and electrically connected in parallel, with means for applying voltage across the discs to cause them to expand and effect a mechanical elongation axially of the column. The column is mounted within an enclosure having an inlet port and an outlet port with an internal seat in communication with the outlet port, such that a plug secured to the end of the column will engage the seat of the outlet port to close the outlet port in response to the application of voltage is regulated by a conventional electronic timing circuit connected to the column. (AEC)

  12. Lessons Learned from the Space Shuttle Engine Hydrogen Flow Control Valve Poppet Breakage

    NASA Technical Reports Server (NTRS)

    Martinez, Hugo E.; Damico, Stephen; Brewer, John

    2011-01-01

    The Main Propulsion System (MPS) uses three Flow Control Valves (FCV) to modulate the flow of pressurant hydrogen gas from the Space Shuttle Main Engines (SSME) to the hydrogen External Tank (ET). This maintains pressure in the ullage volume as the liquid level drops, preserving ET structural integrity and assuring the engines receive a sufficient amount of head pressure. On Space Transportation System (STS)-126 (2009), with only a handful of International Space Station (ISS) assembly flights from the end of the Shuttle program, a portion of a single FCV?s poppet head broke off at about a minute and a half after liftoff. The risk of the poppet head failure is that the increased flow area through the FCV could result in excessive gaseous hydrogen flow back to the external tank, which could result in overboard venting of hydrogen ullage pressure. If the hydrogen venting were to occur in first stage (i.e., lower atmosphere), a flammability hazard exists that could lead to catastrophic loss of crew and vehicle. Other failure risks included particle impact damage to MPS downstream hardware. Although the FCV design had been plagued by contamination-related sluggish valve response problems prior to a redesign at STS-80 (1996), contamination was ruled out as the cause of the STS-126 failure. Employing a combination of enhanced hardware inspection and a better understanding of the consequences of a poppet failure, safe flight rationale for subsequent flights (STS-119 and later) was achieved. This paper deals with the technical lessons learned during the investigation and mitigation of this problem at a time when assembly flights were each in the critical path to Space Station success.

  13. Controls on ostracod valve geochemistry, Part 1: Variations of environmental parameters in ostracod (micro-)habitats

    NASA Astrophysics Data System (ADS)

    Decrouy, Laurent; Vennemann, Torsten Walter; Ariztegui, Daniel

    2011-11-01

    The variations of environmental conditions ( T°, pH, δ 13C DIC, [DIC], δ 18O, Mg/Ca, and Sr/Ca) of ostracod habitats were examined to determine the controls of environmental parameters on the chemical and isotopic composition of ostracod valves. Results of a one-year monitoring of environmental parameters at five sites, with depths of between 2 and 70 m, in Lake Geneva indicate that in littoral to sub-littoral zones (2, 5, and 13 m), the chemical composition of bottom water varies seasonally in concert with changes in temperature and photosynthetic activity. An increase of temperature and photosynthetic activity leads to an increase in δ 13C values of DIC and to precipitation of authigenic calcite, which results in a concomitant increase of Mg/Ca and Sr/Ca ratios of water. In deeper sites (33 and 70 m), the composition of bottom water remains constant throughout the year and isotopic values and trace element contents are similar to those of deep water within the lake. The chemical composition of interstitial pore water also does not reflect seasonal variations but is controlled by calcite dissolution, aerobic respiration, anaerobic respiration with reduction of sulphate and/or nitrate, and methanogenesis that may occur in the sediment pores. Relative influence of each of these factors on the pore water geochemistry depends on sediment thickness and texture, oxygen content in bottom as well as pore water. Variations of chemical compositions of the ostracod valves of this study vary according to the specific ecology of the ostracod species analysed, that is its life-cycle and its (micro-)habitat. Littoral species have compositions that are related to the seasonal variations of temperature, δ 13C values of DIC, and of Mg/Ca and Sr/Ca ratios of water. In contrast, the compositions of profundal species are largely controlled by variations of pore fluids along sediment depth profiles according to the specific depth preference of the species. The control on the

  14. The Electronic Valve Instrument (EVI), an electronic musical wind controller for playing synthesizers

    NASA Astrophysics Data System (ADS)

    Steiner, Nyle A.

    2001-05-01

    The Electronic Valve Instrument (EVI) is an electronic musical wind instrument with playing techniques similar to that of a trumpet. Invented by Nyle Steiner in the early 1970's, it was designed to give the performer control of dynamics from breath pressure and the ability to make a humanly generated vibrato. Other musical paramaters can be controlled as well. It has a playing range of seven octaves (similar to that of a piano). When musical lines are played using this instrument (controller) connected to an electronic music synthesizer, the sound is much more natural sounding and expressive than when a normal musical keyboard is used. The evolution of this instrument from the pre-Midi era to it latest Midi configuration, principles of operation, synthesizer programming, and its wide use in movie and TV scoring will be discussed. The EVI has played featured musical lines in many major movie soundtracks and TV shows such as Apocalypse Now, Witness, Dead Poets Society, Fatal Attraction, No Way Out, Gorillas in the Mist, and many others. The EVI design has also been adapted as an Electronic Woodwind Instrument (EWI) by Nyle Steiner and has been manufactured and sold worldwide by the AKAI Co. in Japan.

  15. Heart valve surgery - discharge

    MedlinePlus

    ... surgery - minimally invasive Aortic valve surgery - open Bicuspid aortic valve Endocarditis Heart valve surgery Mitral valve prolapse Mitral valve surgery - minimally invasive Mitral valve surgery - open Pulmonary valve stenosis Smoking - tips on how to quit Patient Instructions ...

  16. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  17. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, K.R.

    1985-07-29

    A drain valve for use in furnace for the melting of thermoplastic material is disclosed. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace.

  18. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  19. Intraocular Pressure Control after Implantation of an Ahmed Glaucoma Valve in Eyes with a Failed Trabeculectomy

    PubMed Central

    Schimiti, Rui B; Abe, Ricardo Y; Tavares, Carla M; Vasconcellos, Jose PC; Costa, Vital P

    2016-01-01

    Aim To evaluate the results of Ahmed glaucoma valve (AGV) in eyes with a failed trabeculectomy. Materials and methods This retrospective study evaluated 61 eyes with a failed trabeculectomy that underwent implantation of an AGV due to uncontrolled intraocular pressure (IOP) on maximal medical therapy. Success was defined as IOP ≤ 21 mm Hg (criterion 1) or 20% reduction in IOP (criterion 2) with or without antiglaucoma medications. Persistent hypotony, loss of light perception, and reoperation for IOP control were defined as failure. Results Mean preoperative IOP and mean lOPs at 6, 12, and 24 months were 21.93 ± 6.32 mm Hg (n = 61), 14.15 ± 4.33 mm Hg (n = 59), 13.21 ± 4.44 mm Hg (n = 56), and 13.60 ± 3.27 mm Hg (n = 25) respectively. Mean number of antiglaucoma medications preoperatively and at 6, 12, and 24 months was 3.95 ± 0.85, 2.19 ± 1.38, 2.48 ± 1.44, and 2.40 ± 1.32 respectively. The reductions in the number of medications and IOP measurements were statistically significant at all time intervals (p < 0.001, Wilcoxon signed rank test). According to criterion 1, the Kaplan-Meier survival curve disclosed success rates of 75% at 12 and 24 months. According to criterion 2, the success rates were 57% at 12 months and 55% at 24 months. The most frequent complications were hypertensive phase (18%) and shallow anterior chamber (16.4%). Conclusion The AGV may effectively reduce IOP in eyes that had a failed trabeculectomy. Clinical significance The AGV is an alternative in eyes with a failed trabeculectomy. How to cite this article Schimiti RB, Abe RY, Tavares CM, Vasconcellos JPC, Costa VP. Intraocular Pressure Control after Implantation of an Ahmed Glaucoma Valve in Eyes with a Failed Trabeculectomy. J Curr Glaucoma Pract 2016;10(3):97-103. PMID:27857489

  20. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  1. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  2. Modeling the Mitral Valve

    NASA Astrophysics Data System (ADS)

    Kaiser, Alexander

    2016-11-01

    The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.

  3. Lightweight Valve Closes Duct Quickly

    NASA Technical Reports Server (NTRS)

    Fournier, Walter L.; Burgy, N. Frank

    1991-01-01

    Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.

  4. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  5. Valve Disease

    MedlinePlus

    ... valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow though the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation ...

  6. Simulation and experimental control of a 3-RPR parallel robot using optimal fuzzy controller and fast on/off solenoid valves based on the PWM wave.

    PubMed

    Moezi, Seyed Alireza; Rafeeyan, Mansour; Zakeri, Ehsan; Zare, Amin

    2016-03-01

    In this paper, a robust optimal fuzzy controller based on the Pulse Width Modulation (PWM) technique is proposed to control a laboratory parallel robot using inexpensive on/off solenoid valves. The controller coefficients are determined using Modified Cuckoo Optimization Algorithm. The objective function of this method is considered such that the results show the position tracking by the robot with less force and more efficiency. Regarding the results of experimental tests, the control strategy with on/off valves indicates good performance such that the maximum value of RMS of error for a circular path with increasing force on the system is 3.1mm. Furthermore, the results show the superiority of the optimal fuzzy controller compared with optimal PID controller in tracking paths with different conditions and uncertainties.

  7. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOEpatents

    Provol, Steve J.; Russell, David B.; Isaksson, Matti J.

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  8. Valve selection in aortic valve endocarditis

    PubMed Central

    Zubrytska, Yana

    2016-01-01

    Aortic prosthetic valve endocarditis (PVE) is a potentially life-threatening disease. Mortality and incidence of infective endocarditis have been reduced in the past 30 years. Medical treatment of aortic PVE may be successful in patients who have a prompt response after antibiotic treatment and who do not have prosthetic dysfunction. In advanced stages, antibiotic therapy alone is insufficient to control the disease, and surgical intervention is necessary. Surgical treatment may be lifesaving, but it is still associated with considerable morbidity and mortality. The aim of surgery is to perform a radical excision of all infected and necrotic tissue, reconstruction of the left ventricle outflow tract, and replacement of the aortic valve. There is no unanimous consensus on which is the optimal prosthesis to implant in this context, and several surgical techniques have been suggested. We aim to analyze the efficacy of the surgical treatment and discuss the issue of valve selection in patients with aortic valve endocarditis. PMID:27785132

  9. Theoretical analysis of a pressure setting and control system with PWM direction control valve

    NASA Astrophysics Data System (ADS)

    Avram, M.; Duminică, D.; Cartal, L. A.

    2016-08-01

    The paper tackles theoretical aspects concerning an original automated system that sets and controls the pressure inside a tank chamber of fixed volume. The structure of the system integrates an original device developed and designed by the authors. The device digitally controls the one way flow of the working fluid using pulse width modulation, allowing the free flow in the other way. The purpose of this research stage was the theoretical establishing of the variation law of the pressure inside the controlled chamber.

  10. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.

    1997-01-01

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.

  11. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.

  12. Boston Scientific Lotus valve.

    PubMed

    Meredith, Ian T; Hood, Kristin L; Haratani, Nicole; Allocco, Dominic J; Dawkins, Keith D

    2012-09-01

    As a result of recent randomised controlled trials and registry observations, transcatheter aortic valve replacement (TAVR) enjoys growing appeal for the treatment of patients at high or extreme risk from surgical aortic valve replacement. However, the current technologies and techniques have important limitations, including risk of stroke, vascular complications and paravalvular aortic regurgitation, which may in turn influence survival. While careful patient selection and screening may improve outcomes, new valve designs and iterations are required. The Lotus aortic valve replacement system is a new fully repositionable device designed to facilitate more precise delivery and minimise paravalvular regurgitation. The safety and efficacy of the Lotus valve are being studied systematically in the REPRISE clinical trial programme.

  13. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  14. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  15. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  16. Inorganic Nanowires-Assembled Layered Paper as the Valve for Controlling Water Transportation.

    PubMed

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin; Yang, Ri-Long

    2017-03-29

    Layered materials with open interlayer channels enable various applications such as tissue engineering, ionic and molecular sieving, and electrochemical devices. However, most reports focus on the two-dimensional nanosheets-assembled layered materials, whose interlayer spacing is limited at the nanometer scale. Herein, we demonstrate that one-dimensional inorganic nanowires are the ideal building blocks for the construction of layered materials with open interlayer channels as well, which has not aroused much attention before. It is found that the relatively long inorganic nanowires are capable of assembling into free-standing layered paper with open interlayer channels during the filtration process. The spacings of interlayer channels between adjacent layers are up to tens of micrometers, which are much larger than those of the two-dimensional nanosheets-assembled layered materials. But the closed interlayer channels are observed when the relatively short inorganic nanowires are used as building blocks. The mechanism based on the relationship between the structural variation and the nanowires used is proposed, including the surface charge amplified effect, surface charge superimposed effect, and pillarlike supporting effect. According to the proposed mechanism, we have successfully fabricated a series of layered paper sheets whose architectures (including interlayer channels of cross section and pores on the surface) show gradient changes. The as-prepared layered paper sheets are employed as the valves for controlling water transportation. Tunable water transportation is achieved by the synergistic effect between in-plane interlayer channels (horizontal transportation) from the open to the closed states, and through-layer pores (vertical transportation) without surface modification or intercalation of any guest species.

  17. Valve Repair or Replacement

    MedlinePlus

    ... invasive valve surgery can be done using a robot. Robotic surgery does not require a large incision ... the procedure. The Texas Heart Institute has a robot. With robotic surgery, the surgeon has a control ...

  18. THERMALLY OPERATED VAPOR VALVE

    DOEpatents

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  19. 49 CFR 179.400-19 - Valves and gages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the lading temperature. (1) Liquid control valves must be of extended stem design. (2) Packing, if... effectively seal the valve stem without causing difficulty of operation. (3) Each control valve and...

  20. Integrating bio-prosthetic valves in the Fontan operation - Novel treatment to control retrograde flow in caval veins

    NASA Astrophysics Data System (ADS)

    Vukicevic, Marija; Conover, Timothy; Zhou, Jian; Hsia, Tain-Yen; Figliola, Richard

    2012-11-01

    For a child born with only one functional heart ventricle, the sequence of palliative surgeries typically culminates in the Fontan operation. This procedure is usually successful initially, but leads to later complications, for reasons not fully understood. Examples are respiratory-dependent retrograde flows in the caval and hepatic veins, and increased pulmonary vascular resistance (PVR), hypothesized to be responsible for elevated pressure in the liver and disease of the liver and intestines. Here we study the parameters responsible for retrograde flows in the inferior vena cava (IVC) and hepatic vein (HV), and investigate two novel interventions to control retrograde flow: implanting either a Medtronic Contegra valved conduit or an Edwards lifescience pericardial aortic valve in the IVC or HV. We performed the experiments in a multi-scale, patient specific mock circuit, with normal and elevated PVR, towards the optimization of the Fontan circulation. The results show that both valves can significantly reduce retrograde flows in the veins, suggesting potential advantages in the treatment of the patients with congenital heart diseases. Fondation Leducq

  1. Methods for combining a theoretical and an empirical approach in modelling pressure and flow control valves for CAE-programs for fluid power circuits

    NASA Astrophysics Data System (ADS)

    Handroos, Heikki

    An analytical mathematical model for a fluid power valve uses equations based on physical laws. The parameters consist of physical coefficients, dimensions of the internal elements, spring constants, etc. which are not provided by the component manufacturers. The valve has to be dismantled in order to determine their values. The model is only in accordance with a particular type of valve construction and there are a large number of parameters. This is a major common problem in computer aided engineering (CAE) programs for fluid power circuits. Methods for solving this problem by combining a theoretical and an empirical approach are presented. Analytical models for single stage pressure and flow control valves are brought into forms which contain fewer parameters whose values can be determined from measured characteristic curves. The least squares criterion is employed to identify the parameter values describing the steady state of a valve. The steady state characteristic curves that are required data for this identification are quite often provided by the manufacturers. The parameters describing the dynamics of a valve are determined using a simple noncomputational method using dynamic characteristic curves that can be easily measured. The importance of the identification accuracy of the different parameters of the single stage pressure relief valve model is compared using a parameter sensitivity analysis method. A new comparison method called relative mean value criterion is used to compare the influences of variations of the different parameters to a nominal dynamic response.

  2. Depressurization valve

    DOEpatents

    Skoda, G.I.

    1989-03-28

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.

  3. Multi-port valve assembly

    DOEpatents

    Guggenheim, S. Frederic

    1986-01-01

    A multi-port fluid valve apparatus is used to control the flow of fluids through a plurality of valves and includes a web, which preferably is a stainless steel endless belt. The belt has an aperture therethrough and is progressed, under motor drive and control, so that its aperture is moved from one valve mechanism to another. Each of the valve mechanisms comprises a pair of valve blocks which are held in fluid-tight relationship against the belt. Each valve block consists of a block having a bore through which the fluid flows, a first seal surrounding the bore and a second seal surrounding the first seal, with the distance between the first and second seals being greater than the size of the belt aperture. In order to open a valve, the motor progresses the belt aperture to where it is aligned with the two bores of a pair of valve blocks, such alignment permitting a flow of the fluid through the valve. The valve is closed by movement of the belt aperture and its replacement, within the pair of valve blocks, by a solid portion of the belt.

  4. Check valve with poppet damping mechanism

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1993-01-01

    An inline check valve for a flow line is presented where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition. One of the guides for the valve element includes a dashpot bore and plunger member to control the rate of travel of the valve element in either direction as well as provided a guiding function. The dashpot is not anchored to the valve body so that the valve can be functional even if the plunger member becomes jammed in the dashpot.

  5. Check valve with poppet damping mechanism

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.

    1993-08-01

    An inline check valve for a flow line is presented where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition. One of the guides for the valve element includes a dashpot bore and plunger member to control the rate of travel of the valve element in either direction as well as provided a guiding function. The dashpot is not anchored to the valve body so that the valve can be functional even if the plunger member becomes jammed in the dashpot.

  6. Check valve with poppet damping mechanism

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.

    1992-06-01

    An inline check valve for a flow line is presented where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition. One of the guides for the valve element includes a dashpot bore and plunger member to control the rate of travel of the valve element in either direction as well as provided a guiding function. The dashpot is not anchored to the valve body so that the valve can be functional even if the plunger member becomes jammed in the dashpot.

  7. Piston and valve assembly

    SciTech Connect

    Rolder, G. K.

    1985-10-01

    A downhole hydraulically actuated pump assembly of either the free or fixed type lifts formation fluid from the bottom of a borehole to the surface of the ground. The downhole pump has a power piston which actuates a production plunger. A valve means is concentrically arranged within the power piston. A stationary, hollow valve control rod extends through the power piston and through the valve means, with a lower marginal end of the control rod terminating within the production plunger. Power fluid flows through the control rod and to the valve means. As the power piston reciprocates within the engine cylinder, means on the control rod actuates the valve means between two alternant positions so that power fluid is applied to the bottom face of the power piston to thereby cause the power piston to reciprocate upward; and thereafter, the control rod causes the valve means to shift to the other position, whereupon spent power fluid is exhausted from the engine cylinder. The spent power fluid is admixed with production fluid and is conducted to the surface of the ground.

  8. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  9. Intraocular pressure control after the implantation of a second Ahmed glaucoma valve.

    PubMed

    Jiménez-Román, Jesús; Gil-Carrasco, Félix; Costa, Vital Paulino; Schimiti, Rui Barroso; Lerner, Fabián; Santana, Priscila Rezende; Vascocellos, Jose Paulo Cabral; Castillejos-Chévez, Armando; Turati, Mauricio; Fabre-Miranda, Karina

    2016-06-01

    The objective of this study is to evaluate the efficacy and safety of a second Ahmed glaucoma valve (AGV) in eyes with refractory glaucoma that had undergone prior Ahmed device implantation. This multicenter, retrospective study evaluated 58 eyes (58 patients) that underwent a second AGV (model S2-n = 50, model FP7-n = 8) due to uncontrolled IOP under maximal medical therapy. Outcome measures included IOP, visual acuity, number of glaucoma medications, and postoperative complications. Success was defined as IOP <21 mmHg (criterion 1) or 30 % reduction of IOP (criterion 2) with or without hypotensive medications. Persistent hypotony (IOP <5 mmHg after 3 months of follow-up), loss of light perception, and reintervention for IOP control were defined as failure. Mean preoperative IOP and mean IOPs at 12 and 30 months were 27.55 ± 1.16 mmHg (n = 58), 14.45 ± 0.83 mmHg (n = 42), and 14.81 ± 0.87 mmHg (n = 16), respectively. The mean numbers of glaucoma medications preoperatively at 12 and 30 months were 3.17 ± 0.16 (n = 58), 1.81 ± 0.2 (n = 42), and 1.83 ± 0.35 (n = 18), respectively. The reductions in mean IOP and number of medications were statistically significant at all time intervals (P < 0.001). According to criterion 1, Kaplan-Meier survival curves disclosed success rates of 62.9 % at 12 months and 56.6 % at 30 months. According to criterion 2, Kaplan-Meier survival curves disclosed success rates of 43.9 % at 12 months and 32.9 % at 30 months. The most frequent early complication was hypertensive phase (10.3 %) and the most frequent late complication was corneal edema (17.2 %). Second AGV implantation may effectively reduce IOP in eyes with uncontrolled glaucoma, and is associated with relatively few complications.

  10. Dual Check Valve and Method of Controlling Flow Through the Same

    NASA Technical Reports Server (NTRS)

    Corallo, Roger (Inventor)

    2016-01-01

    A dual check valve includes, a housing having a cavity fluidically connecting three ports, a movable member movably engaged within the cavity from at least a first position occluding a first port of the three ports, a second position occluding a second port of the three ports, and a third position allowing flow between both the first port, the second port and a third port of the three ports.

  11. Problem: Heart Valve Stenosis

    MedlinePlus

    ... valve . Learn about the different types of stenosis: Aortic stenosis Tricuspid stenosis Pulmonary stenosis Mitral stenosis Outlook for ... Disease "Innocent" Heart Murmur Problem: Valve Stenosis - Problem: Aortic Valve Stenosis - Problem: Mitral Valve Stenosis - Problem: Tricuspid Valve Stenosis - ...

  12. Depressurization valve

    DOEpatents

    Skoda, George I.

    1989-01-01

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of

  13. Slow opening valve. [valve design for shuttle portable oxygen system

    NASA Technical Reports Server (NTRS)

    Drapeau, D. F. (Inventor)

    1984-01-01

    A valve control is described having a valve body with an actuator stem and a rotating handle connected to the actuator stem by a differential drive mechanism which, during uniform movement of the handle in one direction, initially opens the valve at a relatively slow rate and, thereafter, complete the valve movement at a substantially faster rate. A series of stop rings are received about the body in frictional abutting relationship and serially rotated by the handle to uniformly resist handle movement independently of the extent of handle movement.

  14. Engine valve train module

    SciTech Connect

    Wirth, R.C.; De Klep, E.L.

    1988-01-26

    In a reciprocating internal combustion engine of the type having an engine block means defining at least one cylinder with a first port and a second port in flow communication therewith, a first valve and a second valve reciprocably located to control flow through the first and second ports, respectively, and normally biased to a port closed position, the improvement is described comprising a valve train module that includes a housing adapted to be secured by machine screws to the engine block means above the first and second valves; an engine driven camshaft having axial spaced apart first and second cam lobes operatively supported for rotation in the housing; a lifter guide bore in the housing located substantially coaxial with the reciprocating axis of the first valve; a direct acting hydraulic lash adjuster operatively supported in the lifter guide bore with one end thereof engaging the first cam lobe and at its opposite end being operatively connected to the first valve. A follower guide bore is in the housing operatively aligned relative to the second cam lobe; a hollow rocker shaft is operatively fixed in the housing in parallel spaced apart relationship to the engine driven camshaft; a rocker arm pivotably supported intermediate its ends by the rocker shaft.

  15. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  16. An investigation of the use of discharge valves and an intake control for improving the performance of N.A.C.A. Roots type supercharger

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Wilson, Ernest E

    1929-01-01

    This report presents the results of an analytical investigation on the practicability of using mechanically operated discharge valves in conjunction with a manually operated intake control for improving the performance of N. A. C. A. Roots type superchargers. These valves, which may be either of the oscillating or rotating type, are placed in the discharge opening of the supercharger and are so shaped and synchronized with the supercharger impellers that they do not open until the air has been compressed to the delivery pressure. The intake control limits the quantity of air compressed to engine requirements by permitting the excess air to escape from the compression chamber before compression begins. The percentage power saving and the actual horsepower saved were computed for altitudes from 0 to 20,000 feet. These computations are based on the pressure-volume cards for the conventional and the modified roots type superchargers and on the results of laboratory tests of the conventional type. The use of discharge valves shows a power saving of approximately 26 per cent at a critical altitude of 20,000 feet. In addition, these valves reduce the amplitude of the discharge pulsations and increase the volumetric efficiency. With slow-speed roots blowers operating at high-pressure differences even better results would be expected. For aircraft engine superchargers operating at high speeds these discharge valves increase the performance as above, but have the disadvantages of increasing the weight and of adding a high-speed mechanism to a simple machine. (author)

  17. Josephson magnetic rotary valve

    SciTech Connect

    Soloviev, I. I.; Klenov, N. V.; Bakurskiy, S. V.; Bol'ginov, V. V.; Ryazanov, V. V.; Kupriyanov, M. Yu.; Golubov, A. A.

    2014-12-15

    We propose a control element for a Josephson spin valve. It is a complex Josephson device containing ferromagnetic (F) layer in the weak-link area consisting of two regions, representing 0 and π Josephson junctions, respectively. The valve's state is defined by mutual orientations of the F-layer magnetization vector and boundary line between 0 and π sections of the device. We consider possible implementation of the control element by introduction of a thin normal metal layer in a part of the device area. By means of theoretical simulations, we study properties of the valve's structure as well as its operation, revealing such advantages as simplicity of control, high characteristic frequency, and good legibility of the basic states.

  18. Development of an effective valve packing program

    SciTech Connect

    Hart, K.A.

    1996-12-01

    Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.

  19. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  20. Variable gas leak rate valve

    DOEpatents

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  1. Spin valves based on Mn{sub 75}Ir{sub 25} antiferromagnet with controllable functional parameters

    SciTech Connect

    Milyaev, M. A. Naumova, L. I.; Kamenskii, I. Yu.; Ustinov, V. V.

    2015-12-15

    Using the example of spin valves of the Ta(50 Å)/Ni{sub 80}Fe{sub 20}(30 Å)/Co{sub 90}Fe{sub 10}(15 Å)/Cu(28 Å)/Co{sub 90}Fe{sub 10}(20 Å)/Mn{sub 75}Ir{sub 25}(50 Å)/Ta(20 Å) composition, factors controlling the hysteresis properties are studied for the case of macro- and microscopic sizes of an experimental sample. It is shown that a linear change in the magnetoresistance with small hysteresis while retaining the giant magnetoresistance effect at a level of 8% can be obtained in a micro-object (meander) using thermomagnetic treatment.

  2. Efficient gate control of spin-valve signals and Hanle signals in GaAs channel with p-i-n junction-type back-gate structure

    NASA Astrophysics Data System (ADS)

    Miyakawa, Takumi; Akiho, Takafumi; Ebina, Yuya; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-02-01

    Efficient gate control of spin-valve signals and Hanle signals was achieved in a GaAs channel with a p-i-n back-gate structure. Experiments showed that the amplitude of the spin-valve signal (ΔVNL) under constant-injection-current conditions increased for a cross nonlocal geometry when the channel was depleted by the gate voltage (VG). In contrast, the VG dependence of ΔVNL for a nonlocal geometry was complicated. The gate modulation efficiency of spin signals was approximately 50 times that with a graphene or Si channel.

  3. Cardioprotection of Electroacupuncture for Enhanced Recovery after Surgery on Patients Undergoing Heart Valve Replacement with Cardiopulmonary Bypass: A Randomized Control Clinical Trial

    PubMed Central

    Zhang, Fangxiang; Xiao, Hong

    2017-01-01

    We attempted to investigate cardioprotection of electroacupuncture (EA) for enhanced recovery after surgery on patients undergoing heart valve replacement with cardiopulmonary bypass. Forty-four patients with acquired heart valve replacement were randomly allocated to the EA group or the control group. Patients in the EA group received EA stimulus at bilateral Neiguan (PC6), Ximen (PC4), Shenting (GV24), and Baihui (GV20) acupoints twenty minutes before anesthesia induction to the end of surgery. The primary end point was cardioprotection effect of electroacupuncture postoperatively and the secondary endpoints were quality of recovery and cognitive functioning postoperatively. The present study demonstrated that electroacupuncture reduced the occurrence of complications and played a role of cardioprotective effect on patients after heart valve replacement surgery with cardiopulmonary bypass, and it benefits patients more comfortable and contributes to recovery after surgery. This trial is registered with ChiCTR-IOC-16009123. PMID:28298935

  4. Latest design of gate valves

    SciTech Connect

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  5. 14 CFR 27.995 - Fuel valves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel valves. 27.995 Section 27.995... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.995 Fuel valves. (a) There must be a positive, quick-acting valve to shut off fuel to each engine individually. (b) The control...

  6. 14 CFR 27.995 - Fuel valves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel valves. 27.995 Section 27.995... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.995 Fuel valves. (a) There must be a positive, quick-acting valve to shut off fuel to each engine individually. (b) The control...

  7. 14 CFR 27.995 - Fuel valves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel valves. 27.995 Section 27.995... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.995 Fuel valves. (a) There must be a positive, quick-acting valve to shut off fuel to each engine individually. (b) The control...

  8. 14 CFR 27.995 - Fuel valves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel valves. 27.995 Section 27.995... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.995 Fuel valves. (a) There must be a positive, quick-acting valve to shut off fuel to each engine individually. (b) The control...

  9. 14 CFR 27.995 - Fuel valves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 27.995 Section 27.995... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.995 Fuel valves. (a) There must be a positive, quick-acting valve to shut off fuel to each engine individually. (b) The control...

  10. Aortic Valve Regurgitation

    MedlinePlus

    ... valve. Also, a narrowing of the aortic valve (aortic stenosis) can be associated with leaking. High blood pressure (hypertension). High blood pressure may stretch the root of the aorta where the aortic valve sits. The valve flaps ( ...

  11. Mitral Valve Disease

    MedlinePlus

    ... Heart Disease Diseases of the arteries, valves, and aorta, as well as cardiac rhythm disturbances Aortic Valve ... are two main types of mitral valve disease: Stenosis – the valve does not open enough to allow ...

  12. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  13. Towards Performance Prognostics of a Launch Valve

    DTIC Science & Technology

    2014-10-02

    works are related to this paper’s efforts. Gomes et. al. developed a health monitoring system for a pneumatic valve using a Probability Integral...Transform based technique (Gomes 2010) and Daigle et. al. developed a model-based prognostics approach for pneumatic valves (Daigle 2011). While the...Launch Valve in this work is hydraulically controlled, the methods used for pneumatic valve PHM are quite relevant. Diagle et. al. used a Probability

  14. A calcified polymeric valve for valve-in-valve applications.

    PubMed

    Falahatpisheh, Ahmad; Morisawa, Daisuke; Toosky, Taraz T; Kheradvar, Arash

    2017-01-04

    The prevalence of aortic valve stenosis (AS) is increasing in the aging society. More recently, novel treatments and devices for AS, especially transcatheter aortic valve replacement (TAVR) have significantly changed the therapeutic approach to this disease. Research and development related to TAVR require testing these devices in the calcified heart valves that closely mimic a native calcific valve. However, no animal model of AS has yet been available. Alternatively, animals with normal aortic valve that are currently used for TAVR experiments do not closely replicate the aortic valve pathology required for proper testing of these devices. To solve this limitation, for the first time, we developed a novel polymeric valve whose leaflets possess calcium hydroxyapatite inclusions immersed in them. This study reports the characteristics and feasibility of these valves. Two types of the polymeric valve, i.e., moderate and severe calcified AS models were developed and tested by deploying a transcatheter valve in those and measuring the related hemodynamics. The valves were tested in a heart flow simulator, and were studied using echocardiography. Our results showed high echogenicity of the polymeric valve, that was correlated to the severity of the calcification. Aortic valve area of the polymeric valves was measured, and the severity of stenosis was defined according to the clinical guidelines. Accordingly, we showed that these novel polymeric valves closely mimic AS, and can be a desired cost-saving solution for testing the performance of the transcatheter aortic valve systems in vitro.

  15. Wear resistant valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A valve which is resistant to wear caused by particles trapped between the valve seat and the valve member or poppet when the valve closes, including an outlet for directing washing fluid at the valve seat and/or sealing face of the poppet and means for supplying pressured fluid to the outlet at the time when the valve is closing.

  16. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall...

  17. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall...

  18. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall...

  19. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall...

  20. 49 CFR 236.383 - Valve locks, valves, and valve magnets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Valve locks, valves, and valve magnets. 236.383... Inspection and Tests § 236.383 Valve locks, valves, and valve magnets. Valve locks on valves of the non-cut-off type shall be tested at least once every three months, and valves and valve magnets shall...

  1. Miniature motor-driven instrument valve

    NASA Technical Reports Server (NTRS)

    Minkin, H. L.

    1980-01-01

    Valve consists of small geared reversible motor, operated by momentary contact closure, which drives shaft with O-rings placed to seal selected ports. Shaft rotates and also moves axially, causing ports to be alternately connected and disconnected. Electrical control of valve is provided by limit switches and relays. Design has advantage over other available valves: less precision machining of parts is required; machining operations are less expensive. Seals are made with O-rings, which are easily replaceable and inexpensive; valve uses less power. It can be used in any application requiring pilot valves for control devices.

  2. Piezoelectric valve

    SciTech Connect

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  3. Improved Merge Valve

    NASA Technical Reports Server (NTRS)

    George-Falvy, Dez

    1992-01-01

    Circumferential design combines compactness and efficiency. In remotely controlled valve, flow in tributary duct along circumference of primary duct merged with flow in primary duct. Flow in tributary duct regulated by variable throat nuzzle driven by worm gear. Design leak-proof, and most components easily fabricated on lathe.

  4. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  5. Poppet valve tester

    NASA Technical Reports Server (NTRS)

    Tellier, G. F.

    1973-01-01

    Tester investigates fundamental factors affecting cyclic life and sealing performance of valve seats and poppets. Tester provides for varying impact loading of poppet against seat and rate of cycling, and controls amount and type of relative motion between sealing faces of seat and poppet. Relative motion between seat and poppet can be varied in three modes.

  6. Thermostatic Radiator Valve Evaluation

    SciTech Connect

    Dentz, Jordan; Ansanelli, Eric

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  7. Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene.

    PubMed

    Wang, Luda; Drahushuk, Lee W; Cantley, Lauren; Koenig, Steven P; Liu, Xinghui; Pellegrino, John; Strano, Michael S; Bunch, J Scott

    2015-09-01

    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale three-dimensional printing, catalysis and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete ångström-sized pores in monolayer graphene can be detected and then controlled using nanometre-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid-state nanopores.

  8. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  9. Electro-Mechanical Coaxial Valve

    NASA Technical Reports Server (NTRS)

    Patterson, Paul R (Inventor)

    2004-01-01

    Coaxial valves usually contain only one moving part. It has not been easy, then, to provide for electric motor actuation. Many actuators being proposed involve designs which lead to bulky packages. The key facing those improving coaxial valves is the provision of suitable linear actuation. The valve herein indudes a valve housing with a flow channel there-through. Arranged in the flow channel is a closing body. In alignment with the closing body is a ball screw actuator which includes a ball nut and a cylindrical screw. The ball nut sounds a threaded portion of the cylindrical screw. The cylindrical screw is provided with a passageway there-through through which fluid flows. The cylindrical screw is disposed in the flow channel to become a control tube adapted to move toward and away from the valve seat. To rotate the ball nut an actuating drive is employed driven by a stepper motor.

  10. A Parylene MEMS Electrothermal Valve

    PubMed Central

    Li, Po-Ying; Givrad, Tina K.; Holschneider, Daniel P.; Maarek, Jean-Michel I.; Meng, Ellis

    2011-01-01

    The first microelectromechanical-system normally closed electrothermal valve constructed using Parylene C is described, which enables both low power (in milliwatts) and rapid operation (in milliseconds). This low-power valve is well suited for applications in wirelessly controlled implantable drug-delivery systems. The simple design was analyzed using both theory and modeling and then characterized in benchtop experiments. Operation in air (constant current) and water (current ramping) was demonstrated. Valve-opening powers of 22 mW in air and 33 mW in water were obtained. Following integration of the valve with catheters, our valve was applied in a wirelessly operated microbolus infusion pump, and the in vivo functionality for the appropriateness of use of this pump for future brain mapping applications in small animals was demonstrated. PMID:21350679

  11. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  12. Manufacturable plastic microfluidic valves using thermal actuation.

    PubMed

    Pitchaimani, Karthik; Sapp, Brian C; Winter, Adam; Gispanski, Austin; Nishida, Toshikazu; Hugh Fan, Z

    2009-11-07

    A low-cost, manufacturable, thermally actuated, plastic microfluidic valve has been developed. The valve contains an encapsulated, temperature-sensitive fluid, which expands, deflecting a thin elastomeric film into a fluidic channel to control fluid flow. The power input for thermal expansion of each microfluidic valve can be controlled using a printed circuit board (PCB)-based controller, which is suitable for mass production and large-scale integration. A plastic microfluidic device with such valves was fabricated using compression molding and thermal lamination. The operation of the valves was investigated by measuring a change in the microchannel's ionic conduction current mediated by the resistance variation corresponding to the deflection of the microvalve. Valve closing was also confirmed by the disappearance of fluorescence when a fluorescent solution was displaced in the valve region. Valve operation was characterized for heater power ranging from 36 mW to 80 mW. When the valve was actuating, the local channel temperature was 10 to 19 degrees C above the ambient temperature depending on the heater power used. Repetitive valve operations (up to 50 times) have been demonstrated with a flow resulting from a hydrostatic head. Valve operation was tested for a flow rate of 0.33-4.7 microL/min.

  13. Dump valve

    SciTech Connect

    Webber, J.C.

    1981-06-23

    A swab assembly is provided having a dump valve responsive to fluid pressure and drag which will dump the fluid load should either fluid load or drag or the effect of both fluid load and drag become abnormal. Also if the fluid pressure and/or drag become abnormal, the fluid load on the cup will be released and wash away foreign material causing abnormal drag. When the cup is dumped the pulling capabilities of the wireline truck can concentrate on overcoming the drag. The dump valve opens to wide open position and remains open to dump the fluid to assist in washing away solid materials above the cup. A swab assembly also is provided which with normal drag and an overload, may be pulled relatively slowly, but if pulled too rapidly will result in the load on the swab being dumped to protect the swab assembly and the pulling apparatus from damage. 15 claims.

  14. The Effect of Pressure Ratio on Unsteady Fluid-Structure Interaction Characteristics of Ball Type Control Valve

    NASA Astrophysics Data System (ADS)

    Du, Yang; Tu, Shan; Wang, Hongjuan

    Two-way sequential fluid-structure interaction method was used to analyze and discuss the characteristics of unsteady fluid-structure interaction of the complex flow channel of a steam turbine ball type control valve. Research indicates that when the pressure ratio changes as a sine wave, its flow rate occurs a sine wave change, and the maximum flow rate value of 57.46kg•s-1 occurs in the minimum pressure ratio condition. The longitudinal force of the structure domain decreases with the reduction of the pressure ratio, and points to the opposite direction of the flow. The lateral force increases with the decrease of the pressure ratio, and points to the opposite direction of the flow. The maximum value of deformation and force of the structure domain changes consistently with the pressure ratio fluctuation. The maximum value of the structure domain stress is 28.67MPa, which is far less than the yield strength of the structure material, and the maximum deformation value is 3.25um.

  15. Genetic interaction between pku300 and fbn2b controls endocardial cell proliferation and valve development in zebrafish.

    PubMed

    Wang, Xu; Yu, Qingming; Wu, Qing; Bu, Ye; Chang, Nan-Nan; Yan, Shouyu; Zhou, Xiao-Hai; Zhu, Xiaojun; Xiong, Jing-Wei

    2013-03-15

    Abnormal cardiac valve morphogenesis is a common cause of human congenital heart disease. The molecular mechanisms regulating endocardial cell proliferation and differentiation into cardiac valves remain largely unknown, although great progress has been made on the endocardial contribution to the atrioventricular cushion and valve formation. We found that scotch tape(te382) (sco(te382)) encodes a novel transmembrane protein that is crucial for endocardial cell proliferation and heart valve development. The zebrafish sco(te382) mutant showed diminished endocardial cell proliferation, lack of heart valve leaflets and abnormal common cardinal and caudal veins. Positional cloning revealed a C946T nonsense mutation of a novel gene pku300 in the sco(te382) locus, which encoded a 540-amino-acid protein on cell membranes with one putative transmembrane domain and three IgG domains. A known G3935T missense mutation of fbn2b was also found ∼570 kb away from pku300 in sco(te382) mutants. The genetic mutant sco(pku300), derived from sco(te382), only had the C946T mutation of pku300 and showed reduced numbers of atrial endocardial cells and an abnormal common cardinal vein. Morpholino knockdown of fbn2b led to fewer atrial endocardial cells and an abnormal caudal vein. Knockdown of both pku300 and fbn2b phenocopied these phenotypes in sco(te382) genetic mutants. pku300 transgenic expression in endocardial and endothelial cells, but not myocardial cells, partially rescued the atrial endocardial defects in sco(te382) mutants. Mechanistically, pku300 and fbn2b were required for endocardial cell proliferation, endocardial Notch signaling and the proper formation of endocardial cell adhesion and tight junctions, all of which are crucial for cardiac valve development. We conclude that pku300 and fbn2b represent the few genes capable of regulating endocardial cell proliferation and signaling in zebrafish cardiac valve development.

  16. Mitral Valve Prolapse

    MedlinePlus

    ... Personal Stories Support Network: You're Not Alone Heart Valve Disease Symptoms Dr. Robert Bonow describes the symptoms that may alert you to heart valve disease. Valve Disease Resources Patient Guide: Understanding Your Heart ...

  17. Automatic shutoff valve

    NASA Technical Reports Server (NTRS)

    Hawkins, S. F.; Overbey, C. W.

    1980-01-01

    Cellulose-sponge disk absorbs incoming water and expands with enough force to shut valve. When water recedes, valve opens by squeezing sponge dry to its original size. This direct mechanical action is considered more reliable than solenoid valve.

  18. Mitral Valve Prolapse

    MedlinePlus

    Mitral valve prolapse (MVP) occurs when one of your heart's valves doesn't work properly. The flaps of ... Migraine headaches Chest discomfort Most people who have mitral valve prolapse (MVP) don't need treatment because they ...

  19. Water hammer caused by closure of turbine safety spherical valves

    NASA Astrophysics Data System (ADS)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  20. Magnetically operated check valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor); Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  1. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  2. Miniature Latching Valve

    NASA Technical Reports Server (NTRS)

    Johnson, A. David; Benson, Glendon M.

    2008-01-01

    A miniature latching valve has been invented to satisfy a need for an electrically controllable on/off pneumatic valve that is lightweight and compact and remains in the most recently commanded open or closed state when power is not supplied. The valve includes a poppet that is moved into or out of contact with a seat to effect closure or opening, respectively, of the flow path. Motion of the poppet is initiated by electrical heating of one of two opposing pairs of nickel/titanium shape-memory alloy (SMA) wires above their transition temperature: heated wires contract to their remembered length, applying tension to pull the poppet toward or away from the seat. A latch consisting mainly of a bistable Belleville washer (a conical spring) made of a hardened stainless steel operates between two stable positions corresponding to the fully closed or fully open state, holding the poppet in one of these positions when power is not applied to either pair of SMA wires. To obtain maximum actuation force and displacement, the SMA wires must be kept in tension. The mounting fixtures at the ends of the wires must support large tensile stresses without creating stress concentrations that would limit the fatigue lives of the wires. An earlier design provided for each wire to be crimped in a conical opening with a conical steel ferrule that was swaged into the opening to produce a large, uniformly distributed holding force. In a subsequent design, the conical ferrule was replaced with a larger crimped cylindrical ferrule depicted in the figure. A major problem in designing the valve was to protect the SMA wires from a bake-out temperature of 300 C. The problem was solved by incorporating the SMA wires into an actuator module that is inserted into a barrel of the valve body and is held in place by miniature clip rings.

  3. Poppet valve control of throat stability bypass to increase stable airflow range of a Mach 2.5. inlet with 60 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1975-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. System variations included several stability bypass entrance configurations. Poppet valves controlled the bypass airflow. The inlet stable airflow range achieved with each configuration was determined for both steady state conditions and internal pulse transients. Results are compared with those obtained without a stability bypass system. Transient results were also obtained for the inlet with a choke point at the diffuser exit and for the inlet with large and small stability bypass plenum volumes. Poppet valves at the stability bypass exit provided the inlet with a stable airflow range of 20 percent or greater at all static and transient conditions.

  4. Controllable 0–π Josephson junctions containing a ferromagnetic spin valve

    DOE PAGES

    Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; ...

    2016-03-14

    Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less

  5. Controllable 0–π Josephson junctions containing a ferromagnetic spin valve

    SciTech Connect

    Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; Wang, Yixing; Miller, D. L.; Loloee, Reza; Pratt, Jr., W. P.; Birge, Norman O.

    2016-03-14

    Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relative orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.

  6. Bipropellant shut-off valve

    NASA Technical Reports Server (NTRS)

    Smith, J. V.

    1971-01-01

    An advanced design of an all metal, fast response, bipropellant, shut-off valve for use on long duration space missions is reported. The valve provides the flow control capability for a 1,000 lb thrust, bipropellant engine using oxygen difluoride and diborane as propellants. The shutoff seal selection is a soft-on-hard metal concept. The soft seal is a spherical shell that seats against a hard conical seat. Beryllium copper and beryllium nickel seals were selected to seal against an electrolyzed Inconel 718 seat. Poppet shaft sealing is achieved by use of hydroformed, Inconel 718 bellows. Two valve assemblies were fabricated and subjected to a series of tests including leak, response time, flow capacity, dry cycles, water cycles, liquid nitrogen cycles, liquid fluorine cycles, and lead-lag operation cycles. These tests demonstrated the ability of the valve to meet design goals.

  7. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    SciTech Connect

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  8. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  9. Conical Seat Shut-Off Valve

    NASA Technical Reports Server (NTRS)

    Farner, Bruce

    2013-01-01

    A moveable valve for controlling flow of a pressurized working fluid was designed. This valve consists of a hollow, moveable floating piston pressed against a stationary solid seat, and can use the working fluid to seal the valve. This open/closed, novel valve is able to use metal-to-metal seats, without requiring seat sliding action; therefore there are no associated damaging effects. During use, existing standard high-pressure ball valve seats tend to become damaged during rotation of the ball. Additionally, forces acting on the ball and stem create large amounts of friction. The combination of these effects can lead to system failure. In an attempt to reduce damaging effects and seat failures, soft seats in the ball valve have been eliminated; however, the sliding action of the ball across the highly loaded seat still tends to scratch the seat, causing failure. Also, in order to operate, ball valves require the use of large actuators. Positioning the metal-to-metal seats requires more loading, which tends to increase the size of the required actuator, and can also lead to other failures in other areas such as the stem and bearing mechanisms, thus increasing cost and maintenance. This novel non-sliding seat surface valve allows metal-to-metal seats without the damaging effects that can lead to failure, and enables large seating forces without damaging the valve. Additionally, this valve design, even when used with large, high-pressure applications, does not require large conventional valve actuators and the valve stem itself is eliminated. Actuation is achieved with the use of a small, simple solenoid valve. This design also eliminates the need for many seals used with existing ball valve and globe valve designs, which commonly cause failure, too. This, coupled with the elimination of the valve stem and conventional valve actuator, improves valve reliability and seat life. Other mechanical liftoff seats have been designed; however, they have only resulted in

  10. Fail-safe bidirectional valve driver

    NASA Technical Reports Server (NTRS)

    Fujimoto, H.

    1974-01-01

    Cross-coupled diodes are added to commonly used bidirectional valve driver circuit to protect circuit and power supply. Circuit may be used in systems requiring fail-safe bidirectional valve operation, particularly in chemical- and petroleum-processing control systems and computer-controlled hydraulic or pneumatic systems.

  11. Research on fluidics, valves, and proportional amplifiers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Research and development being conducted at the Systems and Controls Laboratory is reviewed. Static characteristics (supply, input, transfer, output, and noise characteristics) of laminar proportional amplifiers were investigated. Other topics discussed include velocity profiles for laminar fluidic jets, speed control systems employing a jet pipe valve, and power amplification with a vortex valve.

  12. Bistable (latching) solenoid actuated propellant isolation valve

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  13. Smart actuators: Valve Health Monitor (VHM) system

    NASA Astrophysics Data System (ADS)

    Perotti, José; Lucena, Angel; Burns, Bradley

    2006-05-01

    The health of electromechanical systems (actuators) and specifically of solenoid valves is a primary concern at Kennedy Space Center (KSC). These systems control the storage and transfer of such commodities as liquid hydrogen. The potential for the failure of electromechanical systems to delay a scheduled launch or to cause personnel injury requires continual maintenance and testing of the systems to ensure their readiness. Monitoring devices need to be incorporated into these systems to verify the health and performance of the valves during real operating conditions. It is very advantageous to detect degradation and/or potential problems before they happen. This feature will not only provide safer operation but save the cost of unnecessary maintenance and inspections. Solenoid valve status indicators are often based upon microswitches that work by physically contacting a valve's poppet assembly. All of the physical contact and movement tends to be very unreliable and is subject to wear and tear of the assemblies, friction, breakage of the switch, and even leakage of the fluid (gas or liquid) in the valve. The NASA Instrumentation Branch, together with its contractor, ASRC Aerospace, has developed a solenoid valve smart current signature sensor that monitors valves in a noninvasive mode. The smart system monitors specific electrical parameters of the solenoid valves and detects and predicts the performance and health of the device. The information obtained from the electrical signatures of these valves points to not only electrical components failures in the valves but also mechanical failures and/or degradations.

  14. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  15. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  16. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  17. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  18. Microfluidic sieve valves

    DOEpatents

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  19. A Lyapunov based nonlinear control scheme for stabilizing a basic compression system using a close-coupled control valve

    NASA Technical Reports Server (NTRS)

    Simon, J. S.; Valavani, L.

    1991-01-01

    The use of a closed-loop control to allow surge-free operation of a compression system beyond its uncontrolled surge line is addressed. In contrast to previous analyses which used a linearized model, the approach described directly addresses the nonlinear nature of the compressor characteristic using a Liapunov-based control law design formulation. The proposed approach is fairly generic and should be of interest for gas turbine engines as well as other applications.

  20. Double valve Implantation

    PubMed Central

    Stassano, Paolo; Mannacio, Vito; Musumeci, Antonino; Golino, Alessandro; Maida, Piero; Ferrigno, Vincenzo; Buonocore, Gaetano; Spampinato, Nicola

    1991-01-01

    From January 1976 through December 1987, 194 patients with a mean age of 43.3 ± 13.7 years (range, 11 to 74 years) underwent double (mitral and aortic) replacement of native valves with 8 types of bioprostheses: Carpentier-Edwards, 127 valves; Hancock, 76 valves; Liotta-Bioimplant, 57 valves; Ionescu-Shiley, 53 valves; Vascor, 27 valves; Carpentier-Edwards Pericardial, 22 valves; Angell-Shiley, 20 valves; and Implamedic, 6 valves. Concomitant cardiac procedures were performed in 25 patients (12.8%). There were 18 operative deaths (9.27%). Our retrospective analysis was restricted to 352 bioprostheses implanted in the 176 patients who survived surgery and were considered at risk for valve tissue failure. The overall cumulative duration of follow-up was 1,174.1 patient-years (range, 1 to 13 years). The durations of follow-up for specific valves were: Carpentier-Edwards, 920.2 valve-years; Hancock, 383.8 valve-years; Liotta-Bioimplant, 310.2 valve-years; Ionescu-Shiley, 357.7 valve-years; Vascor, 131.2 valve-years; Carpentier-Edwards Pericardial, 52.0 valve-years; Angell-Shiley, 167.0 valve-years; and Implamedic, 31.0 valve-years. Thirty patients had thromboembolic accidents, for a linearized incidence of 2.5% per patient-year. At 13 years, the actuarial freedom from thromboembolic accidents was 85.8% ± 10.7%. Nine patients had endocarditis, for a linearized incidence of 0.7% per patient-year. At 13 years, the actuarial freedom from endocarditis was 92.0% ± 1.5%. Twenty-four patients had valve tissue failure, for a cumulative linearized incidence of 1.87% per valve-year. The cumulative actuarial probability of freedom from valve tissue failure was 78.6% ± 3.7% at 10 years and 51.2% ± 10.7% at 13 years. The 24 patients with valve tissue failure all underwent reoperation: 20 of these had double valve replacement, 3 had aortic valve replacement alone, and 1 had mitral valve replacement alone. The mean interval between initial valve implantation and reoperation was

  1. Valve-in-Valve Replacement Using a Sutureless Aortic Valve

    PubMed Central

    Dohmen, Pascal M.; Lehmkuhl, Lukas; Borger, Michael A.; Misfeld, Martin; Mohr, Friedrich W.

    2016-01-01

    Patient: Female, 61 Final Diagnosis: Tissue degeneration Symptoms: Dyspnea Medication: — Clinical Procedure: Redo valve replacement Specialty: Surgery Objective: Rare disease Background: We present a unique case of a 61-year-old female patient with homograft deterioration after redo surgery for prosthetic valve endocarditis with root abscess. Case Report: The first operation was performed for type A dissection with root, arch, and elephant trunk replacement of the thoracic aorta. The present re-redo surgery was performed as valve-in-valve with a sutureless aortic biopros-thesis. The postoperative course was uneventful and the patient was discharged on day 6. Conclusions: The current case report demonstrates that sutureless bioprostheses are an attractive option for surgical valve-in-valve procedures, which can reduce morbidity and mortality. PMID:27694795

  2. Vacuum breaker valve assembly

    DOEpatents

    Thompson, Jeffrey L.; Upton, Hubert Allen

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening.

  3. Bellows sealed plug valve

    DOEpatents

    Dukas, Jr., Stephen J.

    1990-01-01

    A bellows sealed plug valve includes a valve body having an inlet passage and an outlet passage, a valve chamber between the inlet and outlet passages. A valve plug has substantially the same shape as the valve chamber and is rotatably disposed therein. A shaft is movable linearly in response to a signal from a valve actuator. A bellows is sealingly disposed between the valve chamber and the valve actuator and means are located between the bellows and the valve plug for converting linear movement of the shaft connected to the valve actuator to rotational movement of the plug. Various means are disclosed including helical thread mechanism, clevis mechanism and rack and pinion mechanism, all for converting linear motion to rotational motion.

  4. Engine valve control mechanism

    SciTech Connect

    Kamm, L.J.; Meyer, L.L.; Walton, E.B.

    1988-08-09

    A rocker arm is described including a rigid link adapted to be pivotally supported at one end and to operate a device at the other end in response to rotation of a cam lobe projecting radially outward of a base circle surface of a camshaft effecting pivotal movement of the link by engaging a cam follower operative to transmit displacement of the cam lobe to the link, the cam follower being mounted on the link between the ends and being selectively movable relative to the link between a first position wherein the cam lobe displacement is transmitted to the link and a second position wherein the cam lobe displacement is not transmitted to the link. The improvement consists of: roller follower means mounted on the link at a position axially adjacent the cam follower relative to the axis of the camshaft, the roller follower having an outer cylindrical surface adapted to engage the base circle surface of the camshaft and to maintain a clearance between the cam follower and the base circle surface.

  5. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1993-03-01

    A magnetically operated check valve is disclosed having, in one aspect, a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  6. Valve operating mechanism for internal combustion engine

    SciTech Connect

    Inoue, K.; Nagahiro, K.; Ajiki, Y.; Katoh, M.

    1988-12-06

    This patent describes a valve operating mechanism of operating valves of an internal combustion engine, comprising: a camshaft rotatable in synchronism with rotation of the internal combustion engine and having an array of three cams each having a different cam profile and including a high-speed cam position at one end of the array; three cam followers held in sliding contact with the cams, respectively, for operating the valves according to the cam profiles of the cams; and means for selectively interconnecting and disconnecting the cam followers to operate the valves at different valve timings in different speed ranges of the internal combustion engine, the speed ranges including a high-speed range in which all of the valves are controlled by the cam profile of the high-speed cam.

  7. When a Heart Murmur Signals Valve Disease

    MedlinePlus

    ... Problem: Valve Stenosis - Problem: Aortic Valve Stenosis - Problem: Mitral Valve Stenosis - Problem: Tricuspid Valve Stenosis - Problem: Pulmonary Valve Stenosis Problem: Mitral Valve Prolapse Problem: Heart Valve Regurgitation - Problem: Aortic ...

  8. Double-reed exhaust valve engine

    DOEpatents

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  9. Digital hydraulic valving system. [design and development

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and development are reported of a digital hydraulic valving system that would accept direct digital inputs. Topics include: summary of contractual accomplishments, design and function description, valve parameters and calculations, conclusions, and recommendations. The electrical control circuit operating procedure is outlined in an appendix.

  10. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  11. Quickly Removable Valve

    NASA Technical Reports Server (NTRS)

    Robbins, John S.

    1988-01-01

    Unit removed with minimal disturbance. Valve inlet and outlet ports adjacent to each other on same side of valve body. Ports inserted into special manifold on fluid line. Valve body attached to manifold by four bolts or, alternatively, by toggle clamps. Electromechanical actuator moves in direction parallel to fluid line to open and close valve. When necessary to clean valve, removed simply by opening bolts or toggle clamps. No need to move or separate ports of fluid line. Valve useful where disturbance of fluid line detrimental or where fast maintenance essential - in oil and chemical industries, automotive vehicles, aircraft, and powerplants.

  12. Ball valve extractor

    DOEpatents

    Herndon, Charles; Brown, Roger A.

    2002-01-01

    An apparatus and process for removing a ball valve is provided. The ball valve removal tool provides a handle sliding along the length of a shaft. One end of the shaft is secured within an interior cavity of a ball valve while the opposite end of the shaft defines a stop member. By providing a manual sliding force to the handle, the handle impacts the stop member and transmits the force to the ball valve. The direction of the force is along the shaft of the removal tool and disengages the ball valve from the ball valve housing.

  13. Micro-valve pump light valve display

    DOEpatents

    Lee, Yee-Chun

    1993-01-01

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  14. Micro-valve pump light valve display

    DOEpatents

    Yeechun Lee.

    1993-01-19

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  15. 46 CFR 78.47-38 - Valves and closing appliances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Valves and closing appliances. 78.47-38 Section 78.47-38... Fire and Emergency Equipment, Etc. § 78.47-38 Valves and closing appliances. (a) All valves and closing appliances, or other mechanisms which may be required to be operated for damage control purposes in case...

  16. 46 CFR 78.47-38 - Valves and closing appliances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Valves and closing appliances. 78.47-38 Section 78.47-38... Fire and Emergency Equipment, Etc. § 78.47-38 Valves and closing appliances. (a) All valves and closing appliances, or other mechanisms which may be required to be operated for damage control purposes in case...

  17. 46 CFR 78.47-38 - Valves and closing appliances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Valves and closing appliances. 78.47-38 Section 78.47-38... Fire and Emergency Equipment, Etc. § 78.47-38 Valves and closing appliances. (a) All valves and closing appliances, or other mechanisms which may be required to be operated for damage control purposes in case...

  18. 46 CFR 78.47-38 - Valves and closing appliances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Valves and closing appliances. 78.47-38 Section 78.47-38... Fire and Emergency Equipment, Etc. § 78.47-38 Valves and closing appliances. (a) All valves and closing appliances, or other mechanisms which may be required to be operated for damage control purposes in case...

  19. 46 CFR 78.47-38 - Valves and closing appliances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Valves and closing appliances. 78.47-38 Section 78.47-38... Fire and Emergency Equipment, Etc. § 78.47-38 Valves and closing appliances. (a) All valves and closing appliances, or other mechanisms which may be required to be operated for damage control purposes in case...

  20. Aortic Valve Calcification in Mild Primary Hyperparathyroidism

    PubMed Central

    Iwata, Shinichi; Walker, Marcella Donovan; Di Tullio, Marco R.; Hyodo, Eiichi; Jin, Zhezhen; Liu, Rui; Sacco, Ralph L.; Homma, Shunichi

    2012-01-01

    Context: It is unclear whether cardiovascular disease is present in primary hyperparathyroidism (PHPT). Objective: Aortic valve structure and function were compared in PHPT patients and population-based controls. Design: This is a case-control study. Setting: The study was conducted in a university hospital metabolic bone disease unit. Participants: We studied 51 patients with PHPT and 49 controls. Outcome Measures: We measured the aortic valve calcification area and the transaortic pressure gradient. Results: Aortic valve calcification area was significantly higher in PHPT (0.24 ± 0.02 vs. 0.17 ± 0.02 cm2, p<0.01), although there was no difference in the peak transaortic pressure gradient, a functional measure of valvular calcification (5.6 ± 0.3 vs. 6.0 ± 0.3 mm Hg, P = 0.39). Aortic valve calcification area was positively associated with PTH (r = 0.34; P < 0.05) but not with serum calcium, phosphorus, or 25-hydroxyvitamin D levels or with calcium-phosphate product. Serum PTH level remained an independent predictor of aortic valve calcification area after adjustment for age, sex, body mass index, smoking status, history of hypercholesterolemia and hypertension, and estimated glomerular filtration rate. Conclusions: Mild PHPT is associated with subclinical aortic valve calcification. PTH, but not serum calcium concentration, predicted aortic valve calcification. PTH was a more important predictor of aortic valve calcification than well-accepted cardiovascular risk factors. PMID:22031523

  1. Living with Heart Valve Disease

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With Heart Valve Disease Heart valve disease is a lifelong condition. However, ... all of your medicines as prescribed. Pregnancy and Heart Valve Disease Mild or moderate heart valve disease during pregnancy ...

  2. AeroValve Experimental Test Data Final Report

    SciTech Connect

    Noakes, Mark W.

    2014-09-01

    This report documents the collection of experimental test data and presents performance characteristics for the AeroValve brand prototype pneumatic bidirectional solenoid valves tested at the Oak Ridge National Laboratory (ORNL) in July/August 2014 as part of a validation of AeroValve energy efficiency claims. The test stand and control programs were provided by AeroValve. All raw data and processing are included in the report attachments.

  3. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  4. Problem: Mitral Valve Regurgitation

    MedlinePlus

    ... Options • Recovery and Healthy Living Goals • Personal Stories Heart Valve Disease Symptoms Dr. Robert Bonow describes the symptoms that may alert you to heart valve disease. Support Network: You're Not Alone Popular Articles ...

  5. Problem: Heart Valve Regurgitation

    MedlinePlus

    ... Options • Recovery and Healthy Living Goals • Personal Stories Heart Valve Disease Symptoms Dr. Robert Bonow describes the symptoms that may alert you to heart valve disease. Support Network: You're Not Alone Popular Articles ...

  6. Aortic Valve Disease

    MedlinePlus

    ... Ventricle Normal Heart Select Disease To Learn More Aortic Stenosis Aortic Insufficiency Aorta The aorta is the main ... the rest of your body. Aortic Valve In aortic stenosis, the aortic valve becomes narrowed and does not ...

  7. Aortic Valve Stenosis

    MedlinePlus

    ... By Mayo Clinic Staff Aortic valve stenosis — or aortic stenosis — occurs when the heart's aortic valve narrows. This ... pressure may prevent or slow the development of aortic stenosis. Ask your doctor if you need to lower ...

  8. Combined pressure regulator and shutoff valve

    NASA Technical Reports Server (NTRS)

    Koch, E. F. (Inventor)

    1974-01-01

    A remotely operable pressure regulator and shutoff valve particularly suited for achieving high resolution and flow control, and positive shutoff is described. The valve is characterized by a spring-loaded ball coaxially aligned with a fluid port to be sealed, a spring-loaded pintle extended through the port into engagement with the ball, for controlling the position, a spring-loaded diaphragm for controlling the position of the pintle, and an axially displaceable spring supported by a movable stop which, in turn, is repositioned by a selectively operable stepper motor. Thus, the pressure-response characteristics for the valve can be varied through a selective repositioning of the stop.

  9. Stemless Ball Valve

    NASA Technical Reports Server (NTRS)

    Burgess, Robert K.; Yakos, David; Walthall, Bryan

    2012-01-01

    This invention utilizes a new method of opening and closing a ball valve. Instead of rotating the ball with a perpendicular stem (as is the case with standard ball valves), the ball is rotated around a fixed axis by two guide pins. This innovation eliminates the leak point that is present in all standard ball valves due to the penetration of an actuation stem through the valve body. The VOST (Venturi Off-Set-Technology) valve has been developed for commercial applications. The standard version of the valve consists of an off-set venturi flow path through the valve. This path is split at the narrowest portion of the venturi, allowing the section upstream from the venturi to be rotated. As this rotation takes place, the venturi becomes restricted as one face rotates with respect to the other, eventually closing off the flow path. A spring-loaded seal made of resilient material is embedded in the upstream face of the valve, making a leak-proof seal between the faces; thus a valve is formed. The spring-loaded lip seal is the only seal that can provide a class six, or bubble-tight, seal against the opposite face of the valve. Tearing action of the seal by high-velocity gas on this early design required relocation of the seal to the downstream face of the valve. In the stemless embodiment of this valve, inner and outer magnetic cartridges are employed to transfer mechanical torque from the outside of the valve to the inside without the use of a stem. This eliminates the leak path caused by the valve stems in standard valves because the stems penetrate through the bodies of these valves.

  10. Valve technology: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A technical compilation on the types, applications and modifications to certain valves is presented. Data cover the following: (1) valves that feature automatic response to stimuli (thermal, electrical, fluid pressure, etc.), (2) modified valves changed by redesign of components to increase initial design effectiveness or give the item versatility beyond its basic design capability, and (3) special purpose valves with limited application as presented, but lending themselves to other uses with minor changes.

  11. TWO-WAY FREEZE VALVE

    DOEpatents

    Lantz, K.D.; Clark, P.M.

    1960-01-01

    A valve for closing off the flow of radioactive and corrosive gases and liquids or mixtures thereof and forming a leak tight barrier is described. This valve has no mechanical moving parts which would require design to close tolerances and retention of the usual seal tighthess. Instead, there is provided a cavity in which a fusible metal is contained. Heating and cooling are provided to exercise control over the state of the metal. Baffle chambers are utilized to separate the molten fusible metal from the gas or liquid which is being passed through and return the molten metal to its cavity.

  12. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  13. Propellant isolation shutoff valve program

    NASA Technical Reports Server (NTRS)

    Merritt, F. L.

    1973-01-01

    An analysis and design effort directed to advancing the state-of-the-art of space storable isolation valves for control of flow of the propellants liquid fluorine/hydrazine and Flox/monomethylhydrazine is discussed. Emphasis is on achieving zero liquid leakage and capability of withstanding missions up to 10 years in interplanetary space. Included is a study of all-metal poppet sealing theory, an evaluation of candidate seal configurations, a valve actuator trade-off study and design description of a pneumo-thermally actuated soft metal poppet seal valve. The concepts and analysis leading to the soft seal approach are documented. A theoretical evaluation of seal leakage versus seal loading, related finishes and yield strengths of various materials is provided. Application of a confined soft aluminum seal loaded to 2 to 3 times yield strength is recommended. Use of either an electro-mechanical or pneumatic actuator appears to be feasible for the application.

  14. Bistable diverter valve in microfluidics

    NASA Astrophysics Data System (ADS)

    Tesař, V.; Bandalusena, H. C. H.

    2011-05-01

    Bistable diverter valves are useful for a large number of no-moving-part flow control applications, and there is a considerable interest in using them also in microfluidics, especially for handling small pressure-driven flows. However, with decreasing Reynolds number, the Coanda effect—on which the flow diverting effect depends—becomes less effective. Authors performed a study, involving flow visualisation, PIV experiments, measurements of the flow rates, and numerical flowfield computations, aimed at clarifying behaviour of a typical fluidic valve at low Reynolds numbers. A typical fluidic valve originally developed for high Re operation was demonstrated to be useful, though with progressively limited efficiency, down to surprisingly low Re values as small as Re = 800. Also observed was a previously not reported discontinuation in the otherwise monotonic decrease in performance at Re between 1,500 and 2,000.

  15. Active combustion flow modulation valve

    DOEpatents

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  16. Heart Valve Diseases

    MedlinePlus

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  17. Mitral Valve Prolapse

    PubMed Central

    Rosser, Walter W.

    1992-01-01

    The author discusses the pathophysiology of mitral valve prolapse and provides guidelines to identify and treat low-to high-risk mitral valve prolapse. An approach to diagnosing bacterial endocarditis and its prophylaxis are also discussed. The author reviews mitral valve prolapse syndrome and the risk of sudden death.

  18. Double-Poppet Valve

    NASA Technical Reports Server (NTRS)

    Huber, W. C.

    1984-01-01

    New valve design includes two poppet/seat combinations actuated simultaneously. If one fails, other continues to seal against fluid flow. Valve primarily useful for handling dangerous fluids and lighter and more compact than comparable redundant-valve systems used at present.

  19. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  20. Dump valve assembly

    DOEpatents

    Owen, T.J.

    1984-01-01

    A dump valve assembly comprising a body having a bore defined by a tapered wall and a truncated spherical valve member adapted to seat along a spherical surface portion thereof against said tapered wall. Means are provided for pivoting said valve member between a closed position engagable with said tapered wall and an open position disengaged therefrom.

  1. Microblower assisted barometric valve

    DOEpatents

    Rossabi, Joseph; Hyde, Warren K.; Riha, Brian D.; Jackson, Dennis G.; Sappington, Frank

    2005-12-06

    A gas exchange apparatus is provided which provides for both passive fluid flow and blower associated fluid flow through a barometric valve. A battery powered blower is provided which allows for operation of the barometric valve during times when the barometric valve would otherwise be closed, and provides for enhanced volume of gas exchange.

  2. Lock For Valve Stem

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Guirguis, Kamal S.

    1991-01-01

    Simple, cheap device locks valve stem so its setting cannot be changed by unauthorized people. Device covers valve stem; cover locked in place with standard padlock. Valve lock made of PVC pipe and packing band. Shears, drill or punch, and forming rod only tools needed.

  3. How Is Mitral Valve Prolapse Treated?

    MedlinePlus

    ... page from the NHLBI on Twitter. How Is Mitral Valve Prolapse Treated? Most people who have mitral valve ... all hospitals offer this method. Valve Repair and Valve Replacement In mitral valve surgery, the valve is repaired or replaced. ...

  4. Multidisciplinary optimization of a butterfly valve.

    PubMed

    Song, Xue Guan; Wang, Lin; Baek, Seok Heum; Park, Young Chul

    2009-07-01

    A butterfly valve is a type of flow control device, typically used to regulate fluid flow. This paper proposes a new process to meet desired needs in valve design that is characterized by the complex configuration. First, the need is identified according to the valve user/company, and then the problem is defined with a characteristic function. Second, the initial model of valve is made, and then the initial analysis including fluid and/or structural analysis is carried out to predict the fluid and/or structural performance of the valve. Third, the optimization in the form of mathematical functions, which considers single or multiple objective and/or discipline, is handled. This part includes the design of computer experiment, approximation technique, topology optimization and sizing optimization. Finally, the validation experiment is conducted based on the optimum result to verify the accuracy of the optimization. An example is provided to confirm the availability of the process proposed here.

  5. Multi-port valve

    DOEpatents

    Lewin, Keith F.

    1997-04-15

    A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.

  6. Multi-port valve

    DOEpatents

    Lewin, K.F.

    1997-04-15

    A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.

  7. Refrigeration system having a modulation valve which also performs function of compressor throttling valve

    SciTech Connect

    Hanson, J.L.

    1990-12-18

    This paper discusses a method of controlling a refrigeration system having a compressor, with the compressor being driven by a prime mover. It comprises providing a controllable modulation valve which is open in the absence of electrical current flow, disposing the modulation valve in the refrigeration system in a position which enables the modulation valve to control the amount of refrigerant flow to the compressor, controlling the modulation valve in a predetermined range near a selected set point temperature according to a predetermined control algorithm, with the control algorithm otherwise allowing the modulation valve to remain open, causing the modulation valve to provide a predetermined restriction in the flow of refrigerant to the compressor for a predetermined period of time following start-up of the compressor, overriding the control algorithm, providing an overload signal in response to a predetermined overload condition of the prime mover, and causing the modulation valve to provide the predetermined restriction in the flow of refrigerant to the compressor in response to the overload signal, overriding the control algorithm.

  8. Valves Based on Amplified Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Le Letty, R.; Lhermet, N.; Patient, G.; Claeyssen, F.; Lang, M.

    2004-10-01

    Amplified Piezo Actuators have been developed at CEDRAT TECHNOLOGIES for several years and found several applications in space. Their well-known advantages (rapid response and precise positioning) have been used in valve designs to obtain either rapid or fine proportional valves. A first gas valve is using a small amplified piezo actuator and is further driven with a switched amplifier to get a high frequency modulation. A frequency modulation higher than 400 Hz with a stroke of 100 m has been measured. These properties can also be used for gasoline injectors. A second gas valve is also using an amplified piezo actuator, a linear amplifier, and a servo controller to get an accurate proportional valve dedicated to precise gas flow control in the fields of instrumentation and space. A linear and stable flow control has been demonstrated. The low power consumption of the piezoelectric valve in the space applications is an additional advantage. A stable flow of dry Nitrogen ranging from 0.1 sccm to 200 sccm has been measured with an inlet pressure of 1 bar. These valves have been designed with the help of several modelling tools: finite element procedure for the electro-mechanical part, the contact mechanics between the poppet and the seat, the computational fluid dynamics. The valves have been further measured by using several measuring equipment's, including a laser interferometer, a spectrum analyser to measure the gas flow stability, Thermal vacuum and leak tests have also been performed. A special emphasis is realised on the driving and control aspects of this valve for space applications.

  9. Mitral Valve Annuloplasty

    PubMed Central

    Rausch, Manuel K.; Bothe, Wolfgang; Kvitting, John-Peder Escobar; Swanson, Julia C.; Miller, D. Craig; Kuhl, Ellen

    2012-01-01

    Mitral valve annuloplasty is a common surgical technique used in the repair of a leaking valve by implanting an annuloplasty device. To enhance repair durability, these devices are designed to increase leaflet coaptation, while preserving the native annular shape and motion; however, the precise impact of device implantation on annular deformation, strain, and curvature is unknown. Here we quantify how three frequently used devices significantly impair native annular dynamics. In controlled in vivo experiments, we surgically implanted eleven flexible-incomplete, eleven semi-rigid-complete, and twelve rigid-complete devices around the mitral annuli of 34 sheep, each tagged with 16 equally-spaced tantalum markers. We recorded four-dimensional marker coordinates using biplane videofluoroscopy, first with device and then without, which were used to create mathematical models using piecewise cubic splines. Clinical metrics (characteristic anatomical distances) revealed significant global reduction in annular dynamics upon device implantation. Mechanical metrics (strain and curvature fields) explained this reduction via a local loss of anterior dilation and posterior contraction. Overall, all three devices unfavorably reduced annular dynamics. The flexible-incomplete device, however, preserved native annular dynamics to a larger extent than the complete devices. Heterogeneous strain and curvature profiles suggest the need for heterogeneous support, which may spawn more rational design of annuloplasty devices using design concepts of functionally graded materials. PMID:22037916

  10. Pressure activated stability-bypass-control valves to increase the stable airflow range of a Mach 2.5 inlet with 40 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. The inlet stable airflow range provided by various stability-bypass entrance configurations in alternate combination with several stability-bypass exit controls was determined for both steady-state conditions and internal transient pulses. Transient results were also obtained for the inlet with a choke point at the diffuser exit. Instart angles of attack were determined for the various stability-bypass entrance configurations. The response of the inlet-coldpipe system to internal and external oscillating disturbances was determined. Poppet valves at the stability-bypass exit provided an inlet stable airflow range of 28 percent or greater at all static and transient conditions.

  11. Thermostatic Radiator Valve Evaluation

    SciTech Connect

    Dentz, J.; Ansanelli, E.

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as a means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).

  12. Guide to prosthetic cardiac valves

    SciTech Connect

    Morse, D.; Steiner, R.M.; Fernandez, J.

    1985-01-01

    This book contains 10 chapters. Some of the chapter titles are: The development of artificial heart valves: Introduction and historical perspective; The radiology of prosthetic heart valves; The evaluation of patients for prosthetic valve implantation; Pathology of cardiac valve replacement; and Bioengineering of mechanical and biological heart valve substitutes.

  13. What Is Heart Valve Disease?

    MedlinePlus

    ... flow properly. Acquired heart valve disease usually involves aortic or mitral valves. Although the valves are normal at first, problems develop over time. Both congenital and acquired heart valve disease can cause stenosis or backflow. Outlook Many people have heart valve ...

  14. Line Fluid Actuated Valve Development Program. [for application on the space shuttle

    NASA Technical Reports Server (NTRS)

    Lynch, R. A.

    1975-01-01

    The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.

  15. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  16. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  17. Control of spin current by a magnetic YIG substrate in NiFe/Al nonlocal spin valves

    NASA Astrophysics Data System (ADS)

    Dejene, F. K.; Vlietstra, N.; Luc, D.; Waintal, X.; Ben Youssef, J.; van Wees, B. J.

    2015-03-01

    We study the effect of a magnetic insulator [yttrium iron garnet (YIG)] substrate on the spin-transport properties of Ni80Fe20/Al nonlocal spin valve (NLSV) devices. The NLSV signal on the YIG substrate is about two to three times lower than that on a nonmagnetic SiO2 substrate, indicating that a significant fraction of the spin current is absorbed at the Al/YIG interface. By measuring the NLSV signal for varying injector-to-detector distances and using a three-dimensional spin-transport model that takes spin-current absorption at the Al/YIG interface into account, we obtain an effective spin-mixing conductance G↑↓≃5 -8 ×1013Ω-1m-2 . We also observe a small, but clear, modulation of the NLSV signal when rotating the YIG magnetization direction with respect to the fixed spin polarization of the spin accumulation in the Al. Spin relaxation due to thermal magnons or roughness of the YIG surface may be responsible for the observed small modulation of the NLSV signal.

  18. Cryogenic Cam Butterfly Valve

    NASA Technical Reports Server (NTRS)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  19. Minimally invasive valve surgery.

    PubMed

    Woo, Y Joseph; Seeburger, Joerg; Mohr, Friedrich W

    2007-01-01

    As alternatives to standard sternotomy, surgeons have developed innovative, minimally invasive approaches to conducting valve surgery. Through very small skin incisions and partial upper sternal division for aortic valve surgery and right minithoracotomy for mitral surgery, surgeons have become adept at performing complex valve procedures. Beyond cosmetic appeal, apparent benefits range from decreased pain and bleeding to improved respiratory function and recovery time. The large retrospective studies and few small prospective randomized studies are herein briefly summarized. The focus is then directed toward describing specific intraoperative technical details in current clinical use, covering anesthetic preparation, incision, mediastinal access, cardiovascular cannulation, valve exposure, and valve reconstruction. Finally, unique situations such as pulmonic valve surgery, reoperations, beating heart surgery, and robotics are discussed.

  20. JenaValve.

    PubMed

    Treede, Hendrik; Rastan, Ardawan; Ferrari, Markus; Ensminger, Stephan; Figulla, Hans-Reiner; Mohr, Friedrich-Wilhelm

    2012-09-01

    The JenaValve is a next-generation TAVI device which consists of a well-proven porcine root valve mounted on a low-profile nitinol stent. Feeler guided positioning and clip fixation on the diseased leaflets allow for anatomically correct implantation of the device without rapid pacing. Safety and efficacy of transapical aortic valve implantation using the JenaValve were evaluated in a multicentre prospective study that showed good short and midterm results. The valve was CE-mark released in Europe in September 2011. A post-market registry ensures on-going and prospective data collection in "real-world" patients. The transfemoral JenaValve delivery system will be evaluated in a first-in-man study in the near future.

  1. Remote manual operator for space station intermodule ventilation valve

    NASA Technical Reports Server (NTRS)

    Guyaux, James R.

    1996-01-01

    The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.

  2. Check valve with poppet dashpot/frictional damping mechanism

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.

    1993-08-01

    An inline check valve for a flow line where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition is presented. One of the guides for the valve element includes a dashpot housing with a bore and plunger member to control the rate of travel of the valve element in either direction, providing a guiding function. The plunger member is arranged with a dashpot ring to frictionally contact the dashpot bore and has an interior tortuous flow path from one side to the other side of the dashpot ring. The dashpot housing is not anchored to the valve body so that the valve can be functional even if the dashpot ring becomes jammed in the dashpot housing.

  3. Check valve with poppet dashpot/frictional damping mechanism

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1993-01-01

    An inline check valve for a flow line where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition is presented. One of the guides for the valve element includes a dashpot housing with a bore and plunger member to control the rate of travel of the valve element in either direction, providing a guiding function. The plunger member is arranged with a dashpot ring to frictionally contact the dashpot bore and has an interior tortuous flow path from one side to the other side of the dashpot ring. The dashpot housing is not anchored to the valve body so that the valve can be functional even if the dashpot ring becomes jammed in the dashpot housing.

  4. Check valve with poppet dashpot/frictional damping mechanism

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.

    1992-06-01

    An inline check valve for a flow line where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition is presented. One of the guides for the valve element includes a dashpot housing with a bore and plunger member to control the rate of travel of the valve element in either direction, providing a guiding function. The plunger member is arranged with a dashpot ring to frictionally contact the dashpot bore and has an interior tortuous flow path from one side to the other side of the dashpot ring. The dashpot housing is not anchored to the valve body so that the valve can be functional even if the dashpot ring becomes jammed in the dashpot housing.

  5. Mixed mode fuel injector with individually moveable needle valve members

    DOEpatents

    Stewart, Chris; Chockley, Scott A.; Ibrahim, Daniel R.; Lawrence, Keith; Tomaseki, Jay; Azam, Junru H.; Tian, Steven Ye; Shafer, Scott F.

    2004-08-03

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. One of the needle valve members moves to an open position while the other needle valve member remains stationary for a homogeneous charge injection event. The former needle valve member stays stationary while the other needle valve member moves to an open position for a conventional injection event. One of the needle valve members is at least partially positioned in the other needle valve member. Thus, the injector can perform homogeneous charge injection events, conventional injection events, or even a mixed mode having both types of injection events in a single engine cycle.

  6. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  7. Aortic or Mitral Valve Replacement With the Biocor and Biocor Supra

    ClinicalTrials.gov

    2016-03-09

    Aortic Valve Insufficiency; Aortic Valve Regurgitation; Aortic Valve Stenosis; Aortic Valve Incompetence; Mitral Valve Insufficiency; Mitral Valve Regurgitation; Mitral Valve Stenosis; Mitral Valve Incompetence

  8. [Modern mitral valve surgery].

    PubMed

    Bothe, W; Beyersdorf, F

    2016-04-01

    At the beginning of the 20th century, Cutler and Levine performed the first successful surgical treatment of a stenotic mitral valve, which was the only treatable heart valve defect at that time. Mitral valve surgery has evolved significantly since then. The introduction of the heart-lung machine in 1954 not only reduced the surgical risk, but also allowed the treatment of different mitral valve pathologies. Nowadays, mitral valve insufficiency has become the most common underlying pathomechanism of mitral valve disease and can be classified into primary and secondary mitral insufficiency. Primary mitral valve insufficiency is mainly caused by alterations of the valve (leaflets and primary order chords) itself, whereas left ventricular dilatation leading to papillary muscle displacement and leaflet tethering via second order chords is the main underlying pathomechanism for secondary mitral valve regurgitation. Valve reconstruction using the "loop technique" plus annuloplasty is the surgical strategy of choice and normalizes life expectancy in patients with primary mitral regurgitation. In patients with secondary mitral regurgitation, implanting an annuloplasty is not superior to valve replacement and results in high rates of valve re-insufficiency (up to 30 % after 3 months) due to ongoing ventricular dilatation. In order to improve repair results in these patients, we add a novel subvalvular technique (ring-noose-string) to the annuloplasty that aims to prevent ongoing ventricular remodeling and re-insufficiency. In modern mitral surgery, a right lateral thoracotomy is the approach of choice with excellent repair and cosmetic results.

  9. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  10. Randomised controlled trial of thermostatic mixer valves in reducing bath hot tap water temperature in families with young children in social housing: A protocol

    PubMed Central

    Kendrick, Denise; Stewart, Jane; Coupland, Carol; Hayes, Michael; Hopkins, Nick; McCabe, Debbie; Murphy, Robert; O'Donnell, George; Phillips, Ceri; Radford, David; Ryan, Jackie; Smith, Sherie; Groom, Lindsay; Towner, Elizabeth

    2008-01-01

    Background Each year in the UK 2000 children attend emergency departments and 500 are admitted to hospital following a bath water scald. The long term effects can include disability, disfigurement or psychological harm and repeated skin grafts may be required as the child grows. The costs of treating a severe scald are estimated at 250,000 GBP. Children living in the most deprived wards are at greatest risk of thermal injuries; hospital admission rates are three times that for children living in the least deprived wards. Domestic hot water, which is usually stored at around 60 degrees Celsius, can result in a second-degree burn after 3 seconds and a third-degree burn after 5 seconds. Educational strategies to encourage testing of tap water temperature and reduction of hot water thermostat settings have largely proved unsuccessful. Legislation in the USA mandating pre-setting hot water heater thermostats at 49 degrees Celsius was effective in reducing scald injuries, suggesting passive measures may have a greater impact. Thermostatic mixer valves (TMVs), recently developed for the domestic market, fitted across the hot and cold water supply pipes of the bath, allow delivery of water set at a fixed temperature from the hot bath tap. These valves therefore offer the potential to reduce scald injuries. Design/Methods A pragmatic, randomised controlled trial to assess the effectiveness of TMVs in reducing bath hot tap water temperatures in the homes of families with young children in rented social housing. Two parallel arms include an intervention group and a control group where the intervention will be deferred. The intervention will consist of fitting a TMV (set at 44 degrees Celsius) by a qualified plumber and provision of educational materials. The control arm will not receive a TMV or the educational materials for the study duration but will be offered the intervention after collection of follow-up data 12 months post randomisation. The primary outcome measure will

  11. Transventricular mitral valve operations.

    PubMed

    Joseph Woo, Y; McCormick, Ryan C

    2011-10-01

    We report transventricular mitral valve operations in 2 patients with severe mitral regurgitation and postinfarction left ventricular rupture and pseudoaneurysm. The first patient had direct papillary muscle involvement necessitating replacement of the mitral valve. The second patient had indirect mitral involvement allowing for placement of an atrial mitral annuloplasty ring via the left ventricle. Both patients showed no mitral valve regurgitation after replacement or repair and had uneventful postoperative recoveries. These cases demonstrate a feasible, alternative, transventricular approach to mitral valve replacement and repair.

  12. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  13. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  14. Engine valve driving apparatus

    SciTech Connect

    Masuda, S.; Uesugi, T.; Oda, H.

    1989-01-03

    An engine valve driving apparatus for an internal combustion engine having a cam driven engine valve is described. It consists of a camshaft rotatable in synchronism with rotation of a crankshaft of an engine and a movable cam member supported by the camshaft for axial movement and prevented from turning relative to the camshaft. The movable cam member can be axially shifted between an operative position wherein the cam member is cooperative with a member of the engine valve so as to cause an operation of the engine valve and an inoperative position wherein the cam member is out of cooperation with the member.

  15. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  16. What Causes Heart Valve Disease?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Causes Heart Valve Disease? Heart conditions and other disorders, age-related changes, ... valve disease. Other Conditions and Factors Linked to Heart Valve Disease Many other conditions and factors are linked to ...

  17. Options for Heart Valve Replacement

    MedlinePlus

    ... which may include human or animal donor tissue) Ross Procedure — “Borrowing” your healthy valve and moving it ... Considerations for Surgery Medications Valve Repair Valve Replacement - Ross Procedure - Newer Surgery Options - What is TAVR? - Types ...

  18. A review of design and modeling of magnetorheological valve

    NASA Astrophysics Data System (ADS)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  19. Hydraulic Design of Lock Culvert Valves

    DTIC Science & Technology

    2007-11-02

    Engineering and Design HYDRAULIC DESIGN OF LOCK CULVERT VALVES Distribution Restriction Statement Approved for public release; distribution is unlimited...Report Documentation Page Report Date 10 Jul 1989 Report Type N/A Dates Covered (from... to) - Title and Subtitle Hydraulic Design of Lock...from experience and research that may be useful to Corps of Engineers hydraulic designers concerned with the design of control valves for navigation lock

  20. Are anticoagulant independent mechanical valves within reach—fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models

    PubMed Central

    Siegel, Rolland

    2015-01-01

    Background Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Methods Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Results Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Conclusions Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration

  1. A Novel Implantable Glaucoma Valve Using Ferrofluid

    PubMed Central

    Paschalis, Eleftherios I.; Chodosh, James; Sperling, Ralph A.; Salvador-Culla, Borja; Dohlman, Claes

    2013-01-01

    Purpose To present a novel design of an implantable glaucoma valve based on ferrofluidic nanoparticles and to compare it with a well-established FDA approved valve. Setting Massachusetts Eye & Ear Infirmary, Boston, USA. Methods A glaucoma valve was designed using soft lithography techniques utilizing a water-immiscible magnetic fluid (ferrofluid) as a pressure-sensitive barrier to aqueous flow. Two rare earth micro magnets were used to calibrate the opening and closing pressure. In-vitro flow measurements were performed to characterize the valve and to compare it to Ahmed™ glaucoma valve. The reliability and predictability of the new valve was verified by pressure/flow measurements over a period of three months and X-ray diffraction (XRD) analysis over a period of eight weeks. In vivo assessment was performed in three rabbits. Results In the in vitro experiments, the opening and closing pressures of the valve were 10 and 7 mmHg, respectively. The measured flow/pressure response was linearly proportional and reproducible over a period of three months (1.8 µl/min at 12 mmHg; 4.3 µl/min at 16 mmHg; 7.6 µl/min at 21 mmHg). X-ray diffraction analysis did not show oxidization of the ferrofluid when exposed to water or air. Preliminary in vivo results suggest that the valve is biocompatible and can control the intraocular pressure in rabbits. Conclusions The proposed valve utilizes ferrofluid as passive, tunable constriction element to provide highly predictable opening and closing pressures while maintaining ocular tone. The ferrofluid maintained its magnetic properties in the aqueous environment and provided linear flow to pressure response. Our in-vitro tests showed reliable and reproducible results over a study period of three months. Preliminary in-vivo results were very promising and currently more thorough investigation of this device is underway. PMID:23840691

  2. A capillary valve for microfluidic systems.

    SciTech Connect

    Cummings, Eric B.; Kanouff, Michael P.; Rush, Brian M.

    2004-10-01

    Microfluidic systems are becoming increasingly complicated as the number of applications grows. The use of microfluidic systems for chemical and biological agent detection, for example, requires that a given sample be subjected to many process steps, which requires microvalves to control the position and transport of the sample. Each microfluidic application has its own specific valve requirements and this has precipitated the wide variety of valve designs reported in the literature. Each of these valve designs has its strengths and weaknesses. The strength of the valve design proposed here is its simplicity, which makes it easy to fabricate, easy to actuate, and easy to integrate with a microfluidic system. It can be applied to either gas phase or liquid phase systems. This novel design uses a secondary fluid to stop the flow of the primary fluid in the system. The secondary fluid must be chosen based on the type of flow that it must stop. A dielectric fluid must be used for a liquid phase flow driven by electroosmosis, and a liquid with a large surface tension should be used to stop a gas phase flow driven by a weak pressure differential. Experiments were carried out investigating certain critical functions of the design. These experiments verified that the secondary fluid can be reversibly moved between its 'valve opened' and 'valve closed' positions, where the secondary fluid remained as one contiguous piece during this transport process. The experiments also verified that when Fluorinert is used as the secondary fluid, the valve can break an electric circuit. It was found necessary to apply a hydrophobic coating to the microchannels to stop the primary fluid, an aqueous electrolyte, from wicking past the Fluorinert and short-circuiting the valve. A simple model was used to develop valve designs that could be closed using an electrokinetic pump, and re-opened by simply turning the pump off and allowing capillary forces to push the secondary fluid back into its

  3. Valve mechanisms for at least two simultaneously actuable valves

    SciTech Connect

    Heimburg, F.

    1989-02-21

    This patent describes a valve gear for at least two valves of an internal combustion engine to be operated simultaneously on longitudinal axes, wherein the valve gear comprises a thrust device which is common to all valves and displaceable on an axis by a cam shaft and against which the valves abut by their valve stems to that displacement of the thrust device causes corresponding displacement of the valves, characterized in that the camshaft includes a single cam that is seated on the thrust device eccentrically relative to its axis causing rotation of the thrust device about its axis. When the thrust device is displaced, the thrust device is axially symmetrical, and the valve stems each abut against the thrust device at positions centered on points offset from the longitudinal axes of the valves causing rotation of the valves about their longitudinal axis when the valves are displaced.

  4. Understanding Heart Valve Problems and Causes

    MedlinePlus

    ... affecting the aortic valve, and can lead to aortic stenosis . Mediastinal radiation therapy (radiation to the chest) – Studies ... Disease "Innocent" Heart Murmur Problem: Valve Stenosis - Problem: Aortic Valve Stenosis - Problem: Mitral Valve Stenosis - Problem: Tricuspid Valve Stenosis - ...

  5. How Is Heart Valve Disease Treated?

    MedlinePlus

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  6. Controls of evaporative irrigation return flows in comparison to seawater intrusion in coastal karstic aquifers in northern Sri Lanka: evidence from solutes and stable isotopes

    NASA Astrophysics Data System (ADS)

    Chandrajith, Rohana; Diyabalanage, Saranga; Premathilake, Mahinda; Hanke, Christian; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Groundwater in Miocene karstic aquifers in the Jaffna Peninsula of Sri Lanka is an important resource since no other fresh water sources are available in the region. The subsurface is characterized by highly productive limestone aquifers that are used for drinking and agriculture purposes. A comprehensive hydrogeochemical study was carried out to reveal the processes affecting the groundwater quality in this region. Major and trace element composition and environmental isotope ratios of oxygen and hydrogen (δ18OH2O and δ2HH2O) were determined in 35 groundwater samples for this investigation. The ion abundance of groundwater in the region was characterized by an anion sequence order with HCO3¯ >Cl¯ >SO4¯ >NO3¯ . For cations, average Na++K+ contents in groundwater exceeded those of Ca2++Mg2+ in most cases. Ionic relationships of major solutes indicated open system calcite dissolution while seawater intrusions are also evident but only close to the coast. The solute contents are enriched by agricultural irrigation returns and associated evaporation. This was confirmed by the stable isotope composition of groundwater that deviated from the local meteoric water line (LMWL) and formed its own regression line denoted as the local evaporation line (LEL). The latter can be described by δ2HH2O=5.8 ×δ18OH2O - 2.9. Increased contents of nitrate (up to 26 mg/L), sulfate (up to 430 mg/L) and fluoride (up to 1.5 mg/L) provided evidences for anthropogenic inputs of solutes, most likely from agriculture activities. Among trace elements Ba, Sr, As and Se levels in the Jaffna groundwater were higher compared to that of the dry zone metamorphic aquifers in Sri Lanka. Solute geochemistry and stable isotope evidences from the region indicates that groundwater in the area is mainly derived from local modern precipitation but modified heavily by progressive evaporative concentration rather than seawater intrusion. The currently most imminent vulnerability of groundwater in the

  7. Temperature-Operated Valve

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    Bimetallic valve stem positions orifice at end of inner pipe orifice so liquid flows to outlet when temperature lies within small range of preset value. If liquid too cold or too hot, orifices misaligned and liquid returned to source. Such as in shower, valve prevents outflow of dangerously hot or uncomfortably cold water.

  8. Heimlich valve and pneumothorax.

    PubMed

    Gogakos, Apostolos; Barbetakis, Nikolaos; Lazaridis, George; Papaiwannou, Antonis; Karavergou, Anastasia; Lampaki, Sofia; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Zissimopoulos, Athanasios; Tsirgogianni, Katerina; Zarogoulidis, Konstantinos; Zarogoulidis, Paul

    2015-03-01

    The Heimlich valve is a small one-way valve used for chest drainage that empties into a flexible collection device and prevents return of gases or fluids into the pleural space. The Heimlich valve is less than 13 cm (5 inches) long and facilitates patient ambulation. Currently there are several systems in the market. It can be used in many patients instead of a traditional water seal drainage system. The Heimlich chest drainage valve was developed so that the process of draining the pleural cavity could be accomplished in a safe, relatively simple, and efficient manner. This valve system has replaced the cumbersome underwater drainage bottle system. Moreover; the Heimlich valve system connects to chest tubing and allows fluid and air to pass in one direction only. This system functions in any position, and it does not ever need to be clamped, a regulated suction can be attached to it if necessary. The valve drains into a plastic bag that can be held at any level, allowing the patient undergoing chest drainage to be ambulatory simply by carrying the bag. In the current mini review we will present the Heimlich valve system and method of insertion.

  9. Mitral valve surgery - open

    MedlinePlus

    ... Saunders; 2012:chap 61. Otto CM, Bonow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ... Editorial team. Related MedlinePlus Health Topics Heart Surgery Heart Valve Diseases Mitral Valve Prolapse Browse the Encyclopedia A.D. ...

  10. Minimally invasive valve surgery.

    PubMed

    Woo, Y Joseph

    2009-08-01

    Traditional cardiac valve replacement surgery is being rapidly supplanted by innovative, minimally invasive approaches toward the repair of these valves. Patients are experiencing benefits ranging from less bleeding and pain to faster recovery and greater satisfaction. These operations are proving to be safe, highly effective, and durable, and their use will likely continue to increase and become even more widely applicable.

  11. Linear motion valve

    NASA Technical Reports Server (NTRS)

    Chandler, J. A. (Inventor)

    1985-01-01

    The linear motion valve is described. The valve spool employs magnetically permeable rings, spaced apart axially, which engage a sealing assembly having magnetically permeable pole pieces in magnetic relationship with a magnet. The gap between the ring and the pole pieces is sealed with a ferrofluid. Depletion of the ferrofluid is minimized.

  12. Heimlich valve and pneumothorax

    PubMed Central

    Gogakos, Apostolos; Barbetakis, Nikolaos; Lazaridis, George; Papaiwannou, Antonis; Karavergou, Anastasia; Lampaki, Sofia; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Zissimopoulos, Athanasios; Tsirgogianni, Katerina; Zarogoulidis, Konstantinos

    2015-01-01

    The Heimlich valve is a small one-way valve used for chest drainage that empties into a flexible collection device and prevents return of gases or fluids into the pleural space. The Heimlich valve is less than 13 cm (5 inches) long and facilitates patient ambulation. Currently there are several systems in the market. It can be used in many patients instead of a traditional water seal drainage system. The Heimlich chest drainage valve was developed so that the process of draining the pleural cavity could be accomplished in a safe, relatively simple, and efficient manner. This valve system has replaced the cumbersome underwater drainage bottle system. Moreover; the Heimlich valve system connects to chest tubing and allows fluid and air to pass in one direction only. This system functions in any position, and it does not ever need to be clamped, a regulated suction can be attached to it if necessary. The valve drains into a plastic bag that can be held at any level, allowing the patient undergoing chest drainage to be ambulatory simply by carrying the bag. In the current mini review we will present the Heimlich valve system and method of insertion. PMID:25861609

  13. A staged approach to transcatheter aortic valve implantation and mitral valve-in-valve implantation for a degenerated bioprosthesis in a high-risk patient.

    PubMed

    Santarpino, Giuseppe; Fischlein, Theodor; Concistrè, Giovanni; Pfeiffer, Steffen

    2012-10-01

    Recently, small case series have described the successful off-label use of transcatheter valve implantation in patients with degenerated bioprosthetic valves in the mitral position. We report here the case of a 78-year old female patient who underwent transcatheter aortic valve implantation for severe aortic stenosis and transapical valve-in-valve implantation for a degenerated mitral bioprosthesis. There was no evidence of intraprosthetic regurgitation and/or paraprosthetic leakages on control angiography and transoesophageal echocardiography. The postoperative course was uneventful. Following accurate patient selection and evaluation by an experienced multidisciplinary team, the transcatheter approach to double-valve implantation in the aortic and mitral positions may represent a viable treatment option for those high-risk patients who would otherwise be inoperable. We preferred a two-step approach, considering a single procedure to be high-risk.

  14. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  15. Simultaneous Individually Controlled Upper and Lower Body Perfusion for Valve-Sparing Root and Total Aortic Arch Replacement: A Case Study

    PubMed Central

    Fernandes, Philip; Mayer, Rick; Adams, Corey; Chu, Michael W.A.

    2011-01-01

    Abstract: Optimal perfusion strategies for extensive aortic resection in patients with mega-aortic syndromes include: tailored myocardial preservation, antegrade cerebral perfusion, controlled hypothermia and selective organ perfusion. Typically, the aortic arch resection and elephant trunk procedure are performed under hypothermic circulatory arrest with myocardial and cerebral protection. However, mesenteric and systemic ischemia occur during circulatory arrest and commonly rely upon deep hypothermia alone for metabolic protection. We hypothesized that simultaneously controlled mesenteric and systemic perfusion can attenuate some of the metabolic debt accrued during circulatory arrest, which may help improve perioperative outcomes. The perfusion strategy consisted of delivering a 1 to 3 liter per minute flow at 25°C to the head/upper body via right axillary graft and simultaneous perfusion to the lower body/mesenteric organs of 1 to 3 liters per minute at 30°C via a right femoral arterial graft. We describe our technique of simultaneous mesenteric, systemic, cerebral and myocardial perfusion, and protection utilized for a young male patient with Marfan’s syndrome, while undergoing a valve sparing root replacement, total arch replacement and elephant trunk reconstruction. This perfusion technique allowed us to deliver differential flow rates and temperatures to the upper and lower body (cold head/warm lower body perfusion) to minimize ischemic debt and quickly reverse metabolic derangements. PMID:22416605

  16. Contamination avoidance devices for poppettype shutoff valves

    NASA Technical Reports Server (NTRS)

    Endicott, D. L.

    1973-01-01

    The determination of the cycle life is reported of the scal closure of a typical poppet-type shutoff valve in an uncontaminated GH2 environment and then compared this component performance with simulated operation with GN2 and LN2 containing controlled amounts of AL2O3 contaminant particles. The original valve design was tested for contamination damage tolerance characteristics under full-flow and cyclic-operating conditions, redesigned to improve the damage tolerance to contaminants, and then retested. The redesigned valve was found to have acceptable tolerance characteristics under all full-flow conditions and cyclic operation with small (25-75 microns) particulate contamination. The tolerance characteristics of the valve under cyclic conditions with large (75-250 microns) particulate contamination was improved but was not found to be completely satisfactory.

  17. Intermittent stuck valve after aortic valve replacement with a mechanical valve

    PubMed Central

    Luo, Wenzong; Wang, Xinxin; Li, Jing; Mu, Yun; Ni, Yiming

    2017-01-01

    Abstract Background: Intermittent stuck valve after mechanical valve replacement surgery is a very rare and severe complication. Case summary: We present 1 case of a 53-year-old woman after aortic valve replacement for severe aortic valve stenosis combined with hypertrophy septum. She was diagnosed with intermittent stuck valve only 1 day after surgery by clinical symptoms, intraoperative transoesophageal echocardiogram, and intraoperative findings. Conclusions: Although indications for concomitant myectomy during aortic valve replacement are not clear, we recommend myectomy to prevent stuck valve after St Jude Medical Regent prosthesis replacement for severe aortic valve stenosis combined with hypertrophy septum. PMID:28248877

  18. Back end valves: history and modifications, status report, June 1983

    SciTech Connect

    Not Available

    1984-02-01

    At the Grimethorpe Experimental Facility the valves which control the combustor freeboard pressure are known as the back end valves. They are situated downstream of the main heat exchanger. They are required to work under adverse conditions and their operation has not been without problems. The report provides a description of the valves and a history of their operation and modifications from December 1980 to April 1983. Considerable erosion and control problems were experienced during 1981, however, operational and mechanical modifications have now been made which have greatly improved the reliability of the valves.

  19. Noninvasive evaluation of cardiac valve prostheses.

    PubMed

    Kotler, M N; Goldman, A; Parry, W R

    1986-01-01

    , cinefluoroscopy, and Doppler echocardiography. With regard to bioprosthetic valves, 2-D echo is superior to M-mode in detecting primary valve failure. In addition, detection of vegetations, valve alignment, ring and individual leaflet motion can be readily accomplished by 2-D echo. When considering the value of noninvasive techniques in prosthetic valve function, it is essential to recognize that the patients must serve as their own control in the follow-up assessment.

  20. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  1. Self-aligning, low-pressure sealing poppet valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Bratfisch, W. A.

    1972-01-01

    Design and characteristics of poppet valve operated by very low differential pressures to control fluid flow are described. Valve is used to control flow of petroleum, chemical, and aircraft hydraulics where low leakage rates and activation at low pressures are required.

  2. Fluidics research, including vortex and jet pipe valves

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research at the Systems and Control Laboratory is reported. Topics discussed include: response characteristics of laminar fluidic amplifiers, power amplification with a vortex valve, pulse-supply-mode fluidics, speed control system employing a jet pipe valve, and the fluidics reference center.

  3. Cinematics and sticking of heart valves in pulsatile flow test.

    PubMed

    Köhler, J; Wirtz, R

    1991-05-01

    The aim of the project was to develop laboratory test devices for studies of the cinematics and sticking behaviour of technical valve protheses. The second step includes testing technical valves of different types and sizes under static and dynamic conditions. A force-deflection balance was developed in order to load valve rims by static radial forces until sticking or loss of a disc (sticking- and clamping-mould point) with computer-controlled force deflection curves. A second deflection device was developed and used for prosthetic valves in the aortic position of a pulsatile mock circulation loop with simultaneous video-cinematography. The stiffness of technical valve rims varied between 0.20 (St. Jude) and about 1.0 N/micron (metal rim valves). The stiffness decreased significantly with increasing valve size. Sticking under pulsatile flow conditions was in good agreement with the static deflection measurements. Hence, valve sticking with increasing danger of thrombus formation is more likely with a less stiff valve rim. In the case of forces acting perpendicularly to the pendulum axis, the clamping mould-point of the valve can be reached, followed by disc dislodgement.

  4. Face-Sealing Butterfly Valve

    NASA Technical Reports Server (NTRS)

    Tervo, John N.

    1992-01-01

    Valve plate made to translate as well as rotate. Valve opened and closed by turning shaft and lever. Interactions among lever, spring, valve plate, and face seal cause plate to undergo combination of translation and rotation so valve plate clears seal during parts of opening and closing motions.

  5. Sliding-gate valve

    DOEpatents

    Usnick, George B.; Ward, Gene T.; Blair, Henry O.; Roberts, James W.; Warner, Terry N.

    1979-01-01

    This invention is a novel valve of the slidable-gate type. The valve is designed especially for long-term use with highly abrasive slurries. The sealing surfaces of the gate are shielded by the valve seats when the valve is fully open or closed, and the gate-to-seat clearance is swept with an inflowing purge gas while the gate is in transit. A preferred form of the valve includes an annular valve body containing an annular seat assembly defining a flow channel. The seat assembly comprises a first seat ring which is slidably and sealably mounted in the body, and a second seat ring which is tightly fitted in the body. These rings cooperatively define an annular gap which, together with passages in the valve body, forms a guideway extending normal to the channel. A plate-type gate is mounted for reciprocation in the guideway between positions where a portion of the plate closes the channel and where a circular aperture in the gate is in register with the channel. The valve casing includes opposed chambers which extend outwardly from the body along the axis of the guideway to accommodate the end portions of the gate. The chambers are sealed from atmosphere; when the gate is in transit, purge gas is admitted to the chambers and flows inwardly through the gate-to-seat-ring, clearance, minimizing buildup of process solids therein. A shaft reciprocated by an external actuator extends into one of the sealed chambers through a shaft seal and is coupled to an end of the gate. Means are provided for adjusting the clearance between the first seat ring and the gate while the valve is in service.

  6. Long life valve design concepts

    NASA Technical Reports Server (NTRS)

    Jones, J. R.; Hall, A. H., Jr.

    1975-01-01

    Valve concept evaluation, final candidate selection, design, manufacture, and demonstration testing of a pneumatically actuated 10-inch hybrid poppet butterfly shutoff valve are presented. Conclusions and recommendations regarding those valve characteristics and features which would serve to guide in the formulation of future valve procurements are discussed. The pertinent design goals were temperature range of plus 200 to minus 423 F, valve inlet pressure 35 psia, actuation pressure 750 psia, main seal leakage 3 x 0.00001 sccs at 35 psia valve inlet pressure, and a storage and operating life of 10 years. The valve was designed to be compatible with RP-1, propane, LH2, LO2, He, and N2.

  7. Anchor/Darling Double-Disc Gate Valve, METC SOA Test Valve No. A-12 and Test Valve No. A-12R state-of-the-art Lockhopper Valve-Testing and Development Project. Summary test report

    SciTech Connect

    Gardner, J.F.; Galvin, W.E.; Gayheart, T.R.; Griffith, R.A.; Hall, R.C.; Hornbeck, R.G.; Maxfield, D.A.; Nieman, H.D.; Chester, S.O.

    1981-03-01

    The Anchor/Darling Double-Disc Gate Valve (METC SOA Test Valve Nos. A-12 and A-12R) performed well in testing with clean gases. The packing developed some leakage, but it could be controlled by tightening the packing gland. In both dynamic and slurry testing, solids accumulated in the bonnet and internals, jamming the valve. The forces on internal parts as a result of the jamming were sufficient to crack the hardfacing on the seats and discs. Any design with voids that can be packed with particles will have difficulty handling solids media. It is recommended that no further testing be performed on this valve.

  8. Dual mode fuel injector with one piece needle valve member

    DOEpatents

    Lawrence, Keith E.; Hinrichsen, Michael H.; Buckman, Colby

    2005-01-18

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively by inner and outer needle value members. The homogenous charged nozzle outlet set is defined by an outer needle value member that is moveably positioned in an injector body, which defines the conventional nozzle outlet set. The inner needle valve member is positioned in the outer needle valve member. The outer needle valve member is a piece component that includes at least one external guide surface, an external value surface and an internal valve seat.

  9. Human Mesenchymal Stem Cells Reendothelialize Porcine Heart Valve Scaffolds: Novel Perspectives in Heart Valve Tissue Engineering

    PubMed Central

    Lanuti, Paola; Serafini, Francesco; Pierdomenico, Laura; Simeone, Pasquale; Bologna, Giuseppina; Ercolino, Eva; Di Silvestre, Sara; Guarnieri, Simone; Canosa, Carlo; Impicciatore, Gianna Gabriella; Chiarini, Stella; Magnacca, Francesco; Mariggiò, Maria Addolorata; Pandolfi, Assunta; Marchisio, Marco; Di Giammarco, Gabriele; Miscia, Sebastiano

    2015-01-01

    Abstract Heart valve diseases are usually treated by surgical intervention addressed for the replacement of the damaged valve with a biosynthetic or mechanical prosthesis. Although this approach guarantees a good quality of life for patients, it is not free from drawbacks (structural deterioration, nonstructural dysfunction, and reintervention). To overcome these limitations, the heart valve tissue engineering (HVTE) is developing new strategies to synthesize novel types of valve substitutes, by identifying efficient sources of both ideal scaffolds and cells. In particular, a natural matrix, able to interact with cellular components, appears to be a suitable solution. On the other hand, the well-known Wharton's jelly mesenchymal stem cells (WJ-MSCs) plasticity, regenerative abilities, and their immunomodulatory capacities make them highly promising for HVTE applications. In the present study, we investigated the possibility to use porcine valve matrix to regenerate in vitro the valve endothelium by WJ-MSCs differentiated along the endothelial lineage, paralleled with human umbilical vein endothelial cells (HUVECs), used as positive control. Here, we were able to successfully decellularize porcine heart valves, which were then recellularized with both differentiated-WJ-MSCs and HUVECs. Data demonstrated that both cell types were able to reconstitute a cellular monolayer. Cells were able to positively interact with the natural matrix and demonstrated the surface expression of typical endothelial markers. Altogether, these data suggest that the interaction between a biological scaffold and WJ-MSCs allows the regeneration of a morphologically well-structured endothelium, opening new perspectives in the field of HVTE. PMID:26309804

  10. Application of Model-based Prognostics to a Pneumatic Valves Testbed

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.; Gorospe, George

    2014-01-01

    Pneumatic-actuated valves play an important role in many applications, including cryogenic propellant loading for space operations. Model-based prognostics emphasizes the importance of a model that describes the nominal and faulty behavior of a system, and how faulty behavior progresses in time, causing the end of useful life of the system. We describe the construction of a testbed consisting of a pneumatic valve that allows the injection of faulty behavior and controllable fault progression. The valve opens discretely, and is controlled through a solenoid valve. Controllable leaks of pneumatic gas in the testbed are introduced through proportional valves, allowing the testing and validation of prognostics algorithms for pneumatic valves. A new valve prognostics approach is developed that estimates fault progression and predicts remaining life based only on valve timing measurements. Simulation experiments demonstrate and validate the approach.

  11. Mitral Valve Prolapse

    MedlinePlus

    ... Kawasaki Disease Long Q-T Syndrome Marfan Syndrome Metabolic Syndrome Mitral Valve Prolapse Myocardial Bridge Myocarditis Obstructive Sleep Apnea Pericarditis Peripheral Vascular Disease Rheumatic Fever Sick Sinus Syndrome Silent Ischemia Stroke Sudden ...

  12. Pulmonary valve stenosis

    MedlinePlus

    ... valvuloplasty - pulmonary Images Heart valves References Carabello BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman's Cecil ... Saunders; 2016:chap 69. Otto CM, Bownow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ...

  13. Mitral Valve Prolapse.

    ERIC Educational Resources Information Center

    Bergy, Gordon G.

    1980-01-01

    Mitral valve prolapse is the most common heart disease seen in college and university health services. It underlies most arrhythmia and many chest complaints. Activity and exercise restrictions are usually unnecessary. (Author/CJ)

  14. Pulmonary Valve Stenosis

    MedlinePlus

    ... as mild, moderate or severe, depending on a measurement of the blood pressure difference between the right ... balloon, widening the narrowed valve to increase blood flow, and then removes the balloon. The most common ...

  15. Bidirectional piston valve

    DOEpatents

    Fischer, Harry C.

    1977-01-01

    This invention is a reversing valve having an inlet, an outlet, and an inlet-outlet port. The valve is designed to respond to the introduction of relatively high-pressure fluid at its inlet or, alternatively, of lower-pressure fluid at its inlet-outlet port. The valve includes an axially slidable assembly which is spring-biased to a position where it isolates the inlet and connects the inlet-outlet port to the outlet. The admission of high-pressure fluid to the inlet displaces the slidable assembly to a position where the outlet is isolated and the inlet is connected to the inlet-outlet port. The valve is designed to minimize pressure drops and leakage. It is of a reliable and comparatively simple design.

  16. Bicuspid aortic valve

    MedlinePlus

    ... stiff and not open up. This is called aortic stenosis , which causes the heart to pump harder than usual to get blood through the valve. The aorta may become enlarged with this condition. BAV is ...

  17. Liquid blocking check valve

    DOEpatents

    Merrill, John T.

    1984-01-01

    A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.

  18. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  19. Bicuspid Aortic Valve

    DTIC Science & Technology

    2006-08-01

    severe aortic stenosis . Figure 1F. Oblique axial cine bright blood imaging through the valve plane of the aorta, demonstrates the aortic valve to...the ascending aorta. This moderate to large jet is consistent with moderate to severe aortic stenosis . No diastolic jet to suggest aortic ...conditions. Functional impairment of the aortic valve—namely aortic stenosis and aortic regurgitation—is the most common complication (in up to 68-85% of

  20. Pneumatic Valve Operated by Multiplex Pneumatic Transmission

    NASA Astrophysics Data System (ADS)

    Nishioka, Yasutaka; Suzumori, Koichi; Kanda, Takefumi; Wakimoto, Shuichi

    A pneumatic system has several advantages, which are cheapness, lightweight, and reliability to human and environment. These advantages are adapted to some research areas, such as industrial lines, medical and nursing cares, and rehabilitation tools. However, the pneumatic system needs several devices; compressor, air tube, and control valve. This research aim to downsize pneumatic system. In this paper, a new method of multiplex pneumatic transmission for multi-pneumatic servo system is proposed. The valve for this system consists of two vibrators supported by springs, which was designed with simple and cheap structure. The working principle of the valve is vibrators resonance from multiplex pneumatic transmission and it is possible to work as ON/OFF valves without electric wire. Dynamic simulation was used to confirm the working principle of the resonance driving system. A prototype device confirming the principle was designed and developed based on the simulation. The experiments show that this new control system works very well to control two separated valves through single pneumatic tube.

  1. Raloxifene attenuates Gas6 and apoptosis in experimental aortic valve disease in renal failure

    PubMed Central

    Abedat, Suzan; Beeri, Ronen; Valitsky, Michael; Daher, Sameh; Kott-Gutkowski, Miriam; Gal-Moscovici, Anca; Sosna, Jacob; Rajamannan, Nalini M.; Lotan, Chaim

    2011-01-01

    Renal failure is associated with aortic valve calcification. Using our rat model of uremia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in that disease. We also explored the effects of raloxifene, an estrogen receptor modulator, on valvular calcification. Gene array analysis was performed in aortic valves obtained from three groups of rats (n = 7 rats/group): calcified valves obtained from rats fed with uremic diet, valves after calcification resolution following diet cessation, and control. In addition, four groups of rats (n = 10 rats/group) were used to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet that also received daily raloxifene. Evaluation included imaging, histology, and antigen expression analysis. Gene array results showed that the majority of the altered expressed genes were in diet group valves. Most apoptosis-related genes were changed in a proapoptotic direction in calcified valves. Apoptosis and decreases in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of survival pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. In conclusion, downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure. PMID:21335463

  2. Valve operating device for internal combustion engine

    SciTech Connect

    Shibata, M.; Kumagai, K.; Fukuo, K.; Hiro, T.; Matsumoto, M.

    1989-02-28

    A valve operating mechanism is described for intake or exhaust valves of an internal combustion engine having a low-speed cam formed on a camshaft and suited for an operation mode of the intake or exhaust valves during low-speed operation of the engine, a high-speed cam formed on the camshaft and suited for an operation mode of the intake or exhaust valves during high-speed operation of the engine, a cam follower held in slidable contact with the low-speed cam, a cam follower held in slidable contact with the high-speed cam, and a selective coupling mechanism disposed between the cam followers for selectively connecting and disconnecting the cam followers in order to open and close the intake or exhaust valves dependent on the operating speed of the engine. The improvement comprises a low-speed lubricating oil passage for supplying lubricating oil to sliding surfaces of the low-speed cam and the associated cam follower and a high-speed lubricating oil passage for supplying lubricating oil to sliding surfaces of the high-speed cam and the associate cam follower, the low-speed lubricating oil passage and the high-speed lubricating oil passage being separate of each other. It also includes a control valve connected between and oil supply source and the low-speed lubricating oil passage and the high-speed lubricating oil passage, the control valve being selectively operable for communicating the high-speed lubricating oil passage and the oil pressure supply source throughout a full operating range of the engine while restricting the rate of flow of oil during low-speed operation of the engine and for communicating the low-speed lubricating oil passage and the oil pressure supply source at least during low-speed operation of the engine.

  3. Valve-less microdispenser

    NASA Astrophysics Data System (ADS)

    Tan, Ming Kwang; Xin, Wang; Lee, Weng Kent

    2015-11-01

    We demonstrate the concept of valve-less microdispenser to control of the liquid flow through the nozzle, by incorporating Leidenfrost effect into the nozzle design. When the nozzle is heated above the Leidenfrost point, a thin vapor layer is formed between the heated substrate and the liquid above it. The vapor pressure due to the presence of the vapor layer, together with the effect of surface tension of the liquid, exerted on the liquid-vapor interface, preventing the flow of the liquid through the nozzle. The experimental results shown that nozzles of diameter 400 micrometer and below, the nozzle temperature of 150 degree Celsius is sufficient to prevent the continuous flowing of the liquid, whereas for nozzles of diameter between 400 to 500 micrometer, the nozzle temperature needs to increase to 160 degree Celsius in order to prevent the continuous flowing of the liquid. When nozzle temperature below 160 degree Celsius, intermittent ejection of microdroplets, whose size is a function of nozzle temperature, is observed.

  4. Annular flow diverter valve

    DOEpatents

    Rider, Robert L.

    1980-01-01

    A valve for diverting flow from the center of two concentric tubes to the annulus between the tubes or, operating in the reverse direction, for mixing fluids from concentric tubes into a common tube and for controlling the volume ratio of said flow consists of a toroidal baffle disposed in sliding engagement with the interior of the inner tube downstream of a plurality of ports in the inner tube, a plurality of gates in sliding engagement with the interior of the inner tube attached to the baffle for movement therewith, a servomotor having a bullet-shaped plug on the downstream end thereof, and drive rods connecting the servomotor to the toroidal baffle, the servomotor thereby being adapted to move the baffle into mating engagement with the bullet-shaped plug and simultaneously move the gates away from the ports in the inner tube and to move the baffle away from the bullet-shaped plug and simultaneously move the gates to cover the ports in the inner tube.

  5. Abnormal Mitral Valve Dimensions in Pediatric Patients with Hypertrophic Cardiomyopathy.

    PubMed

    Schantz, Daryl; Benson, Lee; Windram, Jonathan; Wong, Derek; Dragulescu, Andreea; Yoo, Shi-Joon; Mertens, Luc; Friedberg, Mark; Al Nafisi, Bahiyah; Grosse-Wortmann, Lars

    2016-04-01

    The hearts of patients with hypertrophic cardiomyopathy (HCM) show structural abnormalities other than isolated wall thickening. Recently, adult HCM patients have been found to have longer mitral valve leaflets than control subjects. The aim of the current study was to assess whether children and adolescents with HCM have similar measureable differences in mitral valve leaflet dimensions when compared to a healthy control group. Clinical and echocardiographic data from 46 children with myocardial hypertrophy and a phenotype and/or genotype consistent with sarcomeric HCM were reviewed. Cardiac magnetic resonance imaging studies were evaluated. The anterior and posterior mitral valve leaflet lengths and myocardial structure were compared to 20 healthy controls. The anterior mitral valve was longer in the HCM group than in the control group (28.4 ± 4.9 vs. 25.2 ± 3.6 mm in control patients, p = 0.013) as was the posterior mitral valve leaflet (16.3 ± 3.0 vs. 13.1 ± 2.3 mm for controls <0.0001). There was no correlation between the resting left ventricular outflow tract gradient and anterior mitral valve leaflet length, nor was the anterior mitral valve leaflet longer in those with systolic anterior motion of the mitral valve compared to those without (28.9 ± 6.1 vs. 28.1 ± 4.5 mm, p = 0.61). Children and adolescents with HCM have abnormally long mitral valve leaflets when compared with healthy control subjects. These abnormalities do not appear to result in, or be due to, obstruction to left ventricular outflow. The mechanism of this mitral valve elongation is not clear but appears to be independent of hemodynamic disturbances.

  6. 46 CFR 169.746 - Fuel shutoff valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fuel shutoff valves. 169.746 Section 169.746 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.746 Fuel shutoff valves. Each remote...

  7. 46 CFR 169.746 - Fuel shutoff valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fuel shutoff valves. 169.746 Section 169.746 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.746 Fuel shutoff valves. Each remote...

  8. 46 CFR 169.746 - Fuel shutoff valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fuel shutoff valves. 169.746 Section 169.746 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.746 Fuel shutoff valves. Each remote...

  9. 46 CFR 169.746 - Fuel shutoff valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fuel shutoff valves. 169.746 Section 169.746 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.746 Fuel shutoff valves. Each remote...

  10. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... means for closing at the shell if the controls are readily accessible and have indicators showing when... have— (1) An automatic nonreturn valve with a positive means for closing; or (2) Two automatic... show when the valve is not closed. (c) If the pipe discharges from a space that is not manned or...

  11. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... means for closing at the shell if the controls are readily accessible and have indicators showing when... have— (1) An automatic nonreturn valve with a positive means for closing; or (2) Two automatic... show when the valve is not closed. (c) If the pipe discharges from a space that is not manned or...

  12. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... means for closing at the shell if the controls are readily accessible and have indicators showing when... have— (1) An automatic nonreturn valve with a positive means for closing; or (2) Two automatic... show when the valve is not closed. (c) If the pipe discharges from a space that is not manned or...

  13. Transcatheter Pulmonary Valve Replacement by Hybrid Approach Using a Novel Polymeric Prosthetic Heart Valve: Proof of Concept in Sheep

    PubMed Central

    Xu, Tong-yi; Zhang, Zhi-gang; Li, Xin; Han, Lin; Xu, Zhi-yun

    2014-01-01

    Background Since 2000, transcatheter pulmonary valve replacement has steadily advanced. However, the available prosthetic valves are restricted to bioprosthesis which have defects like poor durability. Polymeric heart valve is thought as a promising alternative to bioprosthesis. In this study, we introduced a novel polymeric transcatheter pulmonary valve and evaluated its feasibility and safety in sheep by a hybrid approach. Methods We designed a novel polymeric trileaflet transcatheter pulmonary valve with a balloon-expandable stent, and the valve leaflets were made of 0.1-mm expanded polytetrafluoroethylene (ePTFE) coated with phosphorylcholine. We chose glutaraldehyde-treated bovine pericardium valves as control. Pulmonary valve stents were implanted in situ by a hybrid transapical approach in 10 healthy sheep (8 for polymeric valve and 2 for bovine pericardium valve), weighing an average of 22.5±2.0 kg. Angiography and cardiac catheter examination were performed after implantation to assess immediate valvular functionality. After 4-week follow-up, angiography, echocardiography, computed tomography, and cardiac catheter examination were used to assess early valvular function. One randomly selected sheep with polymeric valve was euthanized and the explanted valved stent was analyzed macroscopically and microscopically. Findings Implantation was successful in 9 sheep. Angiography at implantation showed all 9 prosthetic valves demonstrated orthotopic position and normal functionality. All 9 sheep survived at 4-week follow-up. Four-week follow-up revealed no evidence of valve stent dislocation or deformation and normal valvular and cardiac functionality. The cardiac catheter examination showed the peak-peak transvalvular pressure gradient of the polymeric valves was 11.9±5.0 mmHg, while that of two bovine pericardium valves were 11 and 17 mmHg. Gross morphology demonstrated good opening and closure characteristics. No thrombus or calcification was seen

  14. Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems

    NASA Technical Reports Server (NTRS)

    Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John

    2010-01-01

    Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.

  15. Mitral disc-valve variance

    PubMed Central

    Berroya, Renato B.; Escano, Fernando B.

    1972-01-01

    This report deals with a rare complication of disc-valve prosthesis in the mitral area. A significant disc poppet and struts destruction of mitral Beall valve prostheses occurred 20 and 17 months after implantation. The resulting valve incompetence in the first case contributed to the death of the patient. The durability of Teflon prosthetic valves appears to be in question and this type of valve probably will be unacceptable if there is an increasing number of disc-valve variance in the future. Images PMID:5017573

  16. Implantation of the CoreValve percutaneous aortic valve.

    PubMed

    Lamarche, Yoan; Cartier, Raymond; Denault, André Y; Basmadjian, Arsène; Berry, Colin; Laborde, Jean-Claude; Bonan, Raoul

    2007-01-01

    Surgical aortic valve replacement is the only recommended treatment for significant aortic valve stenosis. Percutaneous aortic valve replacement appears to be a novel option for high-risk patients. We report the implantation of the ReValving system (CoreValve, Paris, France) in a 64-year-old woman who was refused aortic valve replacement surgery for critical aortic stenosis and left ventricular dysfunction because of severe pulmonary fibrosis. After anesthesia, the patient was put on femorofemoral cardiopulmonary bypass, and underwent a balloon valvuloplasty with subsequent retrograde aortic valve replacement by the ReValving system. Transesophageal echocardiographic monitoring of the patient's hemodynamics showed immediate improvements of the valvular area and left ventricular ejection fraction and only traces of paravalvular leaks. The patient was easily weaned from ventilation and resumed activity soon after the surgery. A multidisciplinary approach is presently necessary to offer a reliable and safe procedure.

  17. Perceval Sutureless Valve – are Sutureless Valves Here?

    PubMed Central

    Chandola, Rahul; Teoh, Kevin; Elhenawy, Abdelsalam; Christakis, George

    2015-01-01

    With the advent of transcatheter aortic valve implantation (TAVI) techniques, a renewed interest has developed in sutureless aortic valve concepts in the last decade. The main feature of sutureless aortic valve implantation is the speed of insertion, thus making implantation easier for the surgeon. As a result, cross clamp times and myocardial ischemia may be reduced. The combined procedures (CABG with AVR in particular) can be done with a short cross clamp time. Perceval valve also provides an increased effective orifice area as compared with a stented bioprosthesis. Sutureless implantation of the Perceval valve is not only associated with shorter cross-clamp and cardiopulmonary bypass times but improved clinical outcomes too. This review covers the sutureless aortic valves and their evolution, with elaborate details on Perceval S valve in particular (which is the most widely used sutureless valve around the globe). PMID:25394851

  18. Fast closing valve

    SciTech Connect

    Hanson, C.L.

    1984-01-10

    A valve is provided for protecting the high vacuum of a particle accelerator in the event of air leakage, wherein the valve provides an axially symmetrical passage to avoid disturbance of the partical beam during normal operation, and yet enables very rapid and tight closure of the beam-carrying pipe in the event of air leakage. The valve includes a ball member which can rotate between a first position wherein a bore in the member is aligned with the beam pipe, and a second position out of line with the pipe. A seal member is flexibly sealed to the pipe, and has a seal end which can move tightly against the ball member after the bore has rotated out of line with the pipe, to thereby assure that the seal member does not retard rapid rotation of the ball valve member. The ball valve member can be rapidly rotated by a conductive arm fixed to it and which is rotated by the discharge of a capacitor bank through coils located adjacent to the arm.

  19. Fast closing valve

    DOEpatents

    Hanson, Clark L.

    1984-01-10

    A valve is provided for protecting the high vacuum of a particle accelera in the event of air leakage, wherein the valve provides an axially symmetrical passage to avoid disturbance of the partical beam during normal operation, and yet enables very rapid and tight closure of the beam-carrying pipe in the event of air leakage. The valve includes a ball member (30) which can rotate between a first position wherein a bore (32) in the member is aligned with the beam pipe, and a second position out of line with the pipe. A seal member (38) is flexibly sealed to the pipe, and has a seal end which can move tightly against the ball member after the bore has rotated out of line with the pipe, to thereby assure that the seal member does not retard rapid rotation of the ball valve member. The ball valve member can be rapidly rotated by a conductive arm (40) fixed to it and which is rotated by the discharge of a capacitor bank through coils (44, 45) located adjacent to the arm.

  20. Sutureless aortic valve replacement

    PubMed Central

    Phan, Kevin

    2015-01-01

    The increasing incidence of aortic stenosis and greater co-morbidities and risk profiles of the contemporary patient population has driven the development of minimally invasive aortic valve surgery and percutaneous transcatheter aortic valve implantation (TAVI) techniques to reduce surgical trauma. Recent technological developments have led to an alternative minimally invasive option which avoids the placement and tying of sutures, known as “sutureless” or rapid deployment aortic valves. Potential advantages for sutureless aortic prostheses include reducing cross-clamp and cardiopulmonary bypass (CPB) duration, facilitating minimally invasive surgery and complex cardiac interventions, whilst maintaining satisfactory hemodynamic outcomes and low paravalvular leak rates. However, given its recent developments, the majority of evidence regarding sutureless aortic valve replacement (SU-AVR) is limited to observational studies and there is a paucity of adequately-powered randomized studies. Recently, the International Valvular Surgery Study Group (IVSSG) has formulated to conduct the Sutureless Projects, set to be the largest international collaborative group to investigate this technology. This keynote lecture will overview the use, the potential advantages, the caveats, and current evidence of sutureless and rapid deployment aortic valve replacement (AVR). PMID:25870807

  1. Aortic valve replacement with the De Bakey valve.

    PubMed

    Paton, B C; Pine, M B

    1976-10-01

    De Bakey prostheses were inserted in 29 patients with aortic valve disease between October, 1970, and May, 1972. Ten patients have died, but all but one of the remaining 19 have beel followed for a minimum of 19 months. Evaluation of the results in these subjects indicates that the function of the De Bakey valve compares favorably with that of other aortic valve prostheses.

  2. 81. View of 41 valve house (right) and 42 valve ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. View of 4-1 valve house (right) and 4-2 valve house (left); in the foreground is penstock which extends from Penstock No. 1 to the 4-1 valve house; looking south. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  3. 83. Interior of 42 valve house; the motor and valve ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. Interior of 4-2 valve house; the motor and valve mechanism is identical to that in the 4-1 valve house. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  4. What Is Mitral Valve Prolapse?

    MedlinePlus

    ... may not close tightly. These flaps normally help seal or open the valve. Much of the time, ... and tricuspid valves close. They form a tight seal that prevents blood from flowing back into the ...

  5. Medications for Heart Valve Symptoms

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Medications for Heart Valve Symptoms Updated:Sep 21,2016 How do medications help people with valve problems? People who are ...

  6. Locking apparatus for gate valves

    DOEpatents

    Fabyan, Joseph; Williams, Carl W.

    1988-01-01

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing futher movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  7. Locking apparatus for gate valves

    DOEpatents

    Fabyan, J.; Williams, C.W.

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing further movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  8. Aortic valve surgery - minimally invasive

    MedlinePlus

    ... of the heart is reduced. This is called aortic stenosis. The aortic valve can be replaced using: Minimally ... RN, Wang A. Percutaneous heart valve replacement for aortic stenosis: state of the evidence. Ann Intern Med . 2010; ...

  9. Valve-spring Surge

    NASA Technical Reports Server (NTRS)

    Marti, Willy

    1937-01-01

    Test equipment is described that includes a system of three quartz indicators whereby three different pressures could be synchronized and simultaneously recorded on a single oscillogram. This equipment was used to test the reliction of waves at ends of valve spring, the dynamical stress of the valve spring for a single lift of the valve, and measurement of the curve of the cam tested. Other tests included simultaneous recording of the stress at both ends of the spring, spring oscillation during a single lift as a function of speed, computation of amplitude of oscillation for a single lift by harmonic analysis, effect of cam profile, the setting up of resonance, and forced spring oscillation with damping.

  10. Sliding valve pump

    SciTech Connect

    Rupert, C.L.

    1980-09-09

    A sliding valve pump for oil wells which includes a working barrel having a plurality of apertures located in spaced relationship in the wall thereof and a pair of travelling valves fitted within the working barrel and carried by a plunger rod, the valves also having a plurality of apertures or ports for periodic registration with the ports in the working barrel wall to facilitate pumping of fluid from an oil reservoir or pool to the surface. The pump is designed to pull the oil-gas mixture from the reservoir pool into the lower section of the working barrel on the downward stroke, and to subsequently pump the collected oil through the barrel and tubing upwardly toward the surface on the upward stroke.

  11. Hydrogen gas relief valve

    DOEpatents

    Whittlesey, Curtis C.

    1985-01-01

    An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

  12. Magnetostrictive valve assembly

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2008-01-01

    A magnetostrictive valve assembly includes a housing that defines a passage with a seat being formed therein. A magnetically-biased and axially-compressed magnetostrictive assembly slidingly fitted in the passage is configured as a hollow and open-ended conduit adapted to support a flow of a fluid therethrough. Current-carrying coil(s) disposed about the passage in the region of the magnetostrictive assembly generate a magnetic field in the passage when current flows through the coil(s). A hollow valve body with side ports is coupled on one end thereof to an axial end of the magnetostrictive assembly. The other end of the valve body is designed to seal with the seat formed in the housing's passage when brought into contact therewith.

  13. Valve- And Switch-Monitoring Computer Program

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Lowe, Carlyle M., III

    1991-01-01

    Human operators freed from tedious, repetitive monitoring tasks. Computer program applies techniques of artificial intelligence to monitoring positions of many switches and valves. Uses combination of procedural and declarative programming techniques. NASA's C Language Integrated Production System (CLIPS) provides rule-processing capabilities. Host program, written in C, acquires necessary data and applies valuation algorithm to generate knowledge-based propositions. Written to assist human flight controllers in comparing actual with expected configuration of switches and valves in Space Shuttle; underlying programming concept applicable to other complicated systems as chemical-processing plants, power-plants, and automated assembly lines. Program works with present monitoring equipment and computers.

  14. Self-regulating valve

    DOEpatents

    Humphreys, D.A.

    1982-07-20

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  15. Ball valve safety screen

    SciTech Connect

    Bolding, B.H.

    1981-09-01

    A device for preventing unwanted objects from entering the ball assembly of a float collar or float shoe and otherwise damaging or plugging the valve mechanism therein is disclosed. The device comprises a screen constructed of expanded metal and rigidly affixed to the interior of the float collar or float shoe above the ball valve assembly. The screen portion is either mounted to the interior surface of the float collar sleeve by an annular structural member or mounted to a structural band which is partially embedded in the concrete portion of the float collar or casing guide shoe.

  16. System for remotely servicing a top loading captive ball valve

    DOEpatents

    Berry, Stephen M.; Porter, Matthew L.

    1996-01-01

    An attachment for facilitating servicing of a valve, the valve including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve seat; a housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs.

  17. A cryogenic valve for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; Spivak, A. L.

    1982-01-01

    Space-compatible cryogenic valves are now required to operate between room and liquid helium temperatures. A remotely controllable cryogenic valve is described, which is made of bellows-type stainless steel and is operated by a miniature dc motor with integral gearset (485:1) at a nominal voltage of 28 Vdc. The power transmission provides a further reduction of 7.2:1 to give an overall gear ratio of nearly 3500:1, assuring reliability of operation at low temperatures. Valve performance (leak rate) data are presented at LN2, LHe, and SfHe temperatures at delivered torques of 18, 27, 31, and 35 N-m. At a closing torque of 31 N-m, a leak rate of 0.028 scc/sec was achieved at 2 K, while at a torque of 18 N-m the leak rate at 300 K was less than 3 x 10 to the -9th scc/sec.

  18. Lipomatous hamartoma of mitral valve.

    PubMed

    Bhat, Seetharama P S; Gowda, Girish S L; Chikkatur, Raghavendra; Nanjappa, Manjunath C

    2016-01-01

    Primary cardiac tumors are very rare, and tumors arising from cardiac valves are extremely rare. We present a case of lipomatous hamartoma of the mitral valve in a young female. This is the 6th case of lipomatous hamartoma of the mitral valve to be reported. We discuss the operative and histopathological findings.

  19. Valve stem and packing assembly

    DOEpatents

    Wordin, John J.

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  20. Valve stem and packing assembly

    DOEpatents

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  1. Transcatheter Valve-in-Valve: A Cautionary Tale.

    PubMed

    Luc, Jessica G Y; Shanks, Miriam; Tyrrell, Benjamin D; Welsh, Robert C; Butler, Craig R; Meyer, Steven R

    2016-09-01

    Transcatheter aortic valve replacement (TAVR) by valve-in-valve (VIV) implantation is an alternative treatment for high-risk patients with a degenerating aortic bioprosthesis. We present a case of transapical TAVR VIV with a 29-mm Edwards SAPIEN XT (ESV) (Edwards Lifesciences, Irvine, CA) into a 29-mm Medtronic Freestyle stentless bioprosthesis (Medtronic Inc, Minneapolis, MN) in which unanticipated dilatation of the Freestyle bioprosthesis resulted in intraprocedural embolization of the TAVR valve, necessitating urgent conversion to a conventional surgical aortic valve replacement (AVR). Our experience suggests that TAVR VIV with the 29-mm ESV in the setting of a degenerated 29-mm Freestyle stentless bioprosthesis must be undertaken with caution.

  2. Wear and wear mechanism simulation of heavy-duty engine intake valve and seat inserts

    NASA Astrophysics Data System (ADS)

    Wang, Y. S.; Narasimhan, S.; Larson, J. M.; Schaefer, S. K.

    1998-02-01

    A silicon-chromium alloy frequently used for heavy-duty diesel engine intake valves was tested against eight different insert materials with a valve seat wear simulator. Wear resistance of these combinations was ranked. For each test, the valve seat temperature was controlled at approximately 510 °C, the number of cycles was 864,000 (or 24 h), and the test load was 17,640 N. The combination of the silicon-chromium valve against a cast iron insert produced the least valve seat wear, whereas a cobalt-base alloy insert produced the highest valve seat wear. In the overall valve seat recession ranking, however, the combination of the silicon-chromium valve and an iron-base chromium-nickel alloy insert had the least total seat recession, whereas the silicon-chromium valve against cobalt-base alloy, cast iron, and nickel-base alloy inserts had significant seat recession. Hardness and microstructure compatibility of valve and insert materials are believed to be significant factors in reducing valve and insert wear. The test results indicate that the mechanisms of valve seat and insert wear are a complex combination of adhesion and plastic deformation. Adhesion was confirmed by material transfer, while plastic deformation was verified by shear strain (or radial flow) and abrasion. The oxide films formed during testing also played a significant role. They prevented direct metal-to-metal contact and reduced the coefficient of friction on seat surfaces, thereby reducing adhesive and deformation-controlled wear.

  3. High-temperature, high-pressure oxygen metering valve

    NASA Technical Reports Server (NTRS)

    Christianson, Rollin C. (Inventor); Lycou, Peter P. (Inventor); Daniel, James A. (Inventor)

    1993-01-01

    A control valve includes a body defining a central cavity arranged between a fluid inlet and outwardly-diverging first and second fluid outlets respectively disposed in a common transverse plane. A valve member is arranged in the cavity for rotation between first and second operating positions where a transverse fluid passage through the valve member alternatively communicates the fluid inlet with one or the other of the fluid outlets. To minimize fluid turbulence when the valve member is rotated to an alternate operating position, the fluid passage has a convergent entrance for maintaining the passage in permanent communication with the fluid inlet as well as an oblong exit opening with spaced side walls for enabling the exit opening to temporarily span the first and second fluid outlets as the valve member is turned between its respective operating positions.

  4. Safety studies on hydraulic proportional valves with electrical position feedback.

    PubMed

    Reinert, Dietmar; Kimura, Tetsuya; Gorgs, Karl-Josef

    2006-01-01

    The authors analysed a proportional valve with electrical position feedback for its failure behaviour. Several failures were introduced into the feedback loop, especially into the 2 solenoids and the inductive position transducer. The behaviour of the valve for square and ramp reference signals was recorded and systematically analysed. It was shown that failures could be detected by monitoring the residual signal from the equipment under control or the residual signal from the sensor. It was possible to achieve the safe position within twice the normal response time of the valve by switching off the current of both solenoids. The application of these results for a new generation of safe proportional valves is discussed. The use of the results of these investigations obviates the need for redundancy of the electrical position monitoring arrangement in a safe proportional valve.

  5. Aortic valve surgery - open

    MedlinePlus

    ... Saunders; 2012:chap 61. Otton CM, Bowow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ... Editorial team. Related MedlinePlus Health Topics Heart Surgery Heart Valve Diseases Browse the Encyclopedia A.D.A.M., Inc. ...

  6. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  7. Transcatheter aortic valve replacement

    MedlinePlus

    ... fully will restrict blood flow. This is called aortic stenosis. If there is also a leak, it is ... TAVR is used for people with severe aortic stenosis who aren't ... valve . In adults, aortic stenosis usually occurs due to calcium ...

  8. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  9. Valve assembly for internal combustion engine

    SciTech Connect

    Wakeman, R.J.; Shea, S.F.

    1989-09-05

    This patent describes an improvement in a valve assembly for an internal combustion engine of the type including a valve having a valve stem, a valve guideway for mounting this valve for reciprocal strokes between opened and seated position, and spring means for biasing the valve into the seated position. The improvement comprising a valve spool of greater cross-sectional diameter as compared to the valve stem, and a valve spool guideway within which the valve spool is movable during the strokes of the valve, an upper surface of the valve spool and a portion of the spool guideway collectively establishing a damper chamber which varies in volume during the valve strokes. a feed passage for introducing oil into the damper chamber, and a bleed passage for discharging oil from the damper chamber. The bleed passages each laterally opening into the valve spool guideway.

  10. Progress on a small multi-cycling cryogenic fluid flow valve

    NASA Astrophysics Data System (ADS)

    Weilert, M.; Hahn, I.; Barmatz, M.; Higham, D.; Frodsham, G.

    2001-11-01

    Mission Research Corporation (MRC) in cooperation with the Jet Propulsion Laboratory (JPL) has developed a new small remote-controlled fluid valve. The motivation for developing this valve came from the requirements of a future International Space Station experiment called Microgravity Scaling Theory Experiment (MISTE). This experiment requires an in situ, low-temperature operated, fluid valve that can be open/closed over 50 times during a 4.5 month flight. The successful operation of MISTE and other space-based and ground-based laboratory experiments now in development will require reliable cryogenic fluid valves that are remotely operated, helium leak tight, non-magnetic, very low power, and which have a small dead volume. The new valve is normally closed and requires fluid actuation at a pressure of approximately 600 kPa to open. The heart of the valve design is found in the configuration of the valve seat and sealing poppet. The design of these two surfaces was derived from work performed previously during a five year development program for a larger MRC remote-controlled, cryogenic fluid flow control valve. More than 50 of the larger valves have been produced and delivered for space flight applications. The new small valve has only three moving parts, which move less than 0.012 cm when the valve fully opens or closes. The bearing surfaces in the valve operating mechanism are all flexure (except for the valve poppet) and thus the valve is expected to have a lifetime of thousands of open/close cycles. The materials and processes used to fabricate the new valve have been flight certified. Results from the first extensively tested prototype show repeatable behavior with a leak rate of typically 3×10 -8 scc/ s after the first open/close cycle at 4.2 K, rising to about 10 -6 scc/ s after 100 cycles. Further tests and minor modifications are expected to improve the performance.

  11. Computational cavitation flows at inception and light stages on an axial-flow pump blade and in a cage-guided control valve

    NASA Astrophysics Data System (ADS)

    Saito, Sumio; Shibata, Masahiro; Fukae, Hideo; Outa, Eisuke

    2007-11-01

    Cavitation flows induced around an axial-flow pump blade and inside a high pressure cage-type valve are simulated by a two-dimensional unsteady Navier-Stokes analysis with the simplest treatment of bubble dynamics. The fluid is assumed as a continuum of homogeneous dispersed mixture of water and vapor nuclei. The analysis is aimed to capture transient stages with high amplitude pressure change during the birth and collapse of the bubble especially at the stage of cavitation inception. By the pump blade analysis, in which the field pressure is moderate, cavitation number of the inception and locations of developed cavitation are found to agree with experimental results in a wide flow range between high incidence and negative incidence. In the valve flow analysis, in which the water pressure of 5MPa is reduced to 2MPa, pressure change responding to the bubble collapse between the vapor pressure lower than 1 KPa and the extreme pressure of higher than 104 KPa is captured through a stable computation. Location of the inception bubble and pressure force to the valve plug is found agree well with the respective experimental features.

  12. 6. POWERHOUSE INTERIOR SHOWING EXCITER No. 1. HANDCONTROLLED GATE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. POWERHOUSE INTERIOR SHOWING EXCITER No. 1. HAND-CONTROLLED GATE VALVE SHOWN ON NOZZLE TO PELTON-DOBLE IMPULSE WHEEL. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  13. A normally-closed piezoelectric micro-valve with flexible stopper

    NASA Astrophysics Data System (ADS)

    Chen, Song; Lu, Song; Liu, Yong; Wang, Jiantao; Tian, Xiaochao; Liu, Guojun; Yang, Zhigang

    2016-04-01

    In the field of controlled drug delivery system, there are still many problems on those reported micro-valves, such as the small opening height, unsatisfactory particle tolerance and high cost. To solve the above problems, a novel normally-closed piezoelectric micro-valve is presented in this paper. The micro-valve was driven by circular unimorph piezoelectric vibrator and natural rubber membrane with high elasticity was used as the valve stopper. The small axial displacement of piezoelectric vibrator can be converted into a large stroke of valve stopper based on hydraulic amplification mechanism. The experiment indicates that maximum hydraulic amplification ratio is up to 14, and the cut-off pressure of the micro-valve is 39kPa in the case of no working voltage. The presented micro valve has a large flow control range (ranging from 0 to 8.75mL/min).

  14. Airbag vent valve and system

    NASA Technical Reports Server (NTRS)

    Peterson, Leslie D. (Inventor); Zimmermann, Richard E. (Inventor)

    2001-01-01

    An energy absorbing airbag system includes one or more vent valve assemblies for controlling the release of airbag inflation gases to maintain inflation gas pressure within an airbag at a substantially constant pressure during a ride-down of an energy absorbing event. Each vent valve assembly includes a cantilever spring that is flat in an unstressed condition and that has a free end portion. The cantilever spring is secured to an exterior surface of the airbag housing and flexed to cause the second free end portion of the cantilever spring to be pressed, with a preset force, against a vent port or a closure covering the vent port to seal the vent port until inflation gas pressure within the airbag reaches a preselected value determined by the preset force whereupon the free end portion of the cantilever spring is lifted from the vent port by the inflation gases within the airbag to vent the inflation gases from within the airbag. The resilience of the cantilever spring maintains a substantially constant pressure within the airbag during a ride-down portion of an energy absorbing event by causing the cantilever spring to vent gases through the vent port whenever the pressure of the inflation gases reaches the preselected value and by causing the cantilever spring to close the vent port whenever the pressure of the inflation gases falls below the preselected value.

  15. Study of hydraulic actuation system for Space Shuttle main engine propellant valves

    NASA Technical Reports Server (NTRS)

    Ewel, Bob (Editor)

    1993-01-01

    Recent performance concerns involving the Space Shuttle Main Engine Propellant Valve Actuator assemblies prompted the NASA Marshall Space Flight Center to request an independent design assessment. Moog Inc. responded to this request and received a study contract with objectives of increasing valve reliability, decreasing maintenance costs while preserving the existing design interfaces. The results of the Propellant Valve Actuation System review focus on contamination control and the bypass valve design. Three proof of concept bypass valves employing design changes were built and successfully tested. Test results are presented.

  16. Hydrodynamic Assessment of Aortic Valves Prepared from Porcine Small Intestinal Submucosa.

    PubMed

    Ramaswamy, Sharan; Lordeus, Makensley; Mankame, Omkar V; Valdes-Cruz, Lilliam; Bibevski, Steven; Bell, Sarah M; Baez, Ivan; Scholl, Frank

    2017-03-01

    Infants and children born with severe cardiac valve lesions have no effective long term treatment options since currently available tissue or mechanical prosthetic valves have sizing limitations and no avenue to accommodate the growth of the pediatric patient. Tissue engineered heart valves (TEHVs) which could provide for growth, self-repair, infection resistance, and long-term replacement could be an ideal solution. Porcine small intestinal submucosa (PSIS) has recently emerged as a potentially attractive bioscaffold for TEHVs. PSIS may possess the ability to recruit endogenous cardiovascular cells, leading to phenotypically-matched replacement tissue when the scaffold has completely degraded. Our group has successfully implanted custom-made PSIS valves in 4 infants with critical valve defects in whom standard bioprosthetic or mechanical valves were not an option. Short term clinical follow-up has been promising. However, no hydrodynamic data has been reported to date on these valves. The purpose of this study was to assess the functional effectiveness of tri-leaflet PSIS bioscaffolds in the aortic position compared to standard tri-leaflet porcine bioprosthetic valves. Hydrodynamic evaluation of acute PSIS function was conducted using a left heart simulator in our laboratory. Our results demonstrated similar flow and pressure profiles (p > 0.05) between the PSIS valves and the control valves. However, forward flow energy losses were found to be significantly greater (p < 0.05) in the PSIS valves compared to the controls possibly as a result of stiffer material properties of PSIS relative to glutaraldehyde-fixed porcine valve tissue. Our findings suggest that optimization of valve dimensions and shape may be important in accelerating de novo valve tissue growth and avoidance of long-term complications associated with higher energy losses (e.g. left ventricular hypertrophy). Furthermore, long term animal and clinical studies will be needed in order to

  17. Fast acting multiple element valve

    DOEpatents

    Yang, Jefferson Y. S.; Wada, James M.

    1991-01-01

    A plurality of slide valve elements having plural axial-spaced annular parts and an internal slide are inserted into a bulkhead in a fluid conduit from a downstream side of the bulkhead, locked in place by a bayonet coupling and set screw, and project through the bulkhead into the upstream conduit. Pneumatic lines connecting the slide valve element actuator to pilot valves are brought out the throat of the valve element to the downstream side. Pilot valves are radially spaced around the exterior of the valve to permit the pneumatic lines to be made identical, thereby to minimize adverse timing tolerances in operation due to pressure variations. Ring manifolds surround the valve adjacent respective pilot valve arrangements to further reduce adverse timing tolerances due to pressure variations, the manifolds being directly connected to the respective pilot valves. Position sensors are provided the valve element slides to signal the precise time at which a slide reaches or passes through a particular point in its stroke to initiate a calibrated timing function.

  18. Fast-acting valve and uses thereof

    DOEpatents

    Meyer, J.A.

    1980-05-16

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  19. Fast-acting valve and uses thereof

    DOEpatents

    Meyer, James A.

    1982-01-01

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  20. Rotary multiposition valve

    DOEpatents

    Barclay, John A.; Dyson, Jack E.

    1985-01-01

    The disclosure is directed to a rotary multiposition valve for selectively directing the flow of a fluid through a plurality of paths. The valve comprises an inner member and a hollow housing with a row of ducts on its outer surface. The ducts are in fluid communication with the housing. An engaging section of the inner member is received in the housing. A seal divides the engaging section into a hollow inlet segment and a hollow outlet segment. A plurality of inlet apertures are disposed in the inlet segment and a plurality of outlet apertures are disposed in the outlet segment. The inlet apertures are disposed in a longitudinally and radially spaced-apart pattern that can be a helix. The outlet apertures are disposed in a corresponding pattern. As the inner member is rotated, whenever an inlet aperture overlaps one of the ducts, the corresponding outlet aperture overlaps a different duct, thus forming a fluid pathway.

  1. Stemless ball valve

    NASA Technical Reports Server (NTRS)

    Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)

    2011-01-01

    A stemless ball valve comprising two flanges and a ball with a channel, two axis pins and two travel pins. One end of each axis and travel pin is fixedly attached to the ball, and the other end of each axis pin is lodged into a notch in the first or second flange such that the axis pin is allowed to rotate in the notch. The guide sleeve comprises two channels, and one end of each travel pin is situated within one of the two channels in the guide sleeve. An outer magnetic cartridge causes the inner magnetic cartridge and guide sleeve to rotate, and when the guide sleeve rotates, the travel pins move up and down within the channels in the guide sleeve. The movement of the travel pins within the channels in the guide sleeve causes the ball to rotate, thereby opening and closing the ball valve.

  2. Rotary multiposition valve

    DOEpatents

    Barclay, J.A.; Dyson, J.E.

    1984-04-06

    The disclosure is directed to a rotary multiposition valve for selectively directing the flow of a fluid through a plurality of paths. The valve comprises an inner member and a hollow housing with a row of ducts on its outer surface. The ducts are in fluid communication with the housing. An engaging section of the inner member is received in the housing. A seal divides the engaging section into a hollow inlet segment and a hollow outlet segment. A plurality of inlet apertures are disposed in the inlet sgegment and a plurality of outlet apertures are disposed in the outlet segment. The inlet apertures are disposed in a longitudinally and radially spaced-apart pattern that can be a helix. The outlet apertures are disposed in a corresponding pattern. As the inner member is rotated, whenever an inlet aperture overlaps one of the ducts, the corresponding outlet aperture overlaps a different duct, thus forming a fluid pathway.

  3. Bioprosthetic mitral valve dysfunction due to native valve preserving procedure.

    PubMed

    Matsuno, Yukihiro; Mori, Yoshio; Umeda, Yukio; Takiya, Hiroshi

    2016-03-01

    Mitral valve replacement with preservation of the mitral leaflets and subvalvular apparatus is considered to maintain left ventricular geometry and function and reduce the risk of myocardial rupture. However, the routine use of this technique may lead to early complications such as left ventricular outflow tract obstruction and even mitral inflow obstruction, requiring reoperation. We describe a rare case of bioprosthetic mitral valve dysfunction caused by a native valve preserving procedure.

  4. Performance Characteristics of an Isothermal Freeze Valve

    SciTech Connect

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  5. System for remotely servicing a top loading captive ball valve

    DOEpatents

    Berry, S.M.; Porter, M.L.

    1996-06-25

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve seat; a housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs.

  6. Hydraulic lash adjuster with multi-directional check valve

    SciTech Connect

    Litwinchuk, A.; Dura, L.E.; Dekker, A.

    1989-02-28

    A hydraulic lash adjuster is described wherein a check valve is in the form of a flat reed valve that includes a part-circular flapper, a split retainer ring extending about the flapper and having spaced apart free ends, and a spring leg integrally connecting the flapper to the split retainer ring centrally of and opposite the free ends, the split retainer ring being operative to operatively secure the flat reed valve within the stepped bore of the plunger to control flow through the port.

  7. Nitrile/Buna N Material Failure Assessment for an O-Ring used on the Gaseous Hydrogen Flow Control Valve (FCV) of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2006-01-01

    After the rollout of Space Shuttle Discovery in April 2005 in preparation for return-to-flight, there was a failure of the Orbiter (OV-103) helium signature leak test in the gaseous hydrogen (GH2) system. Leakage was attributed to the Flow Control Valve (FCV) in Main Engine 3. The FCV determined to be the source of the leak for OV-103 is designated as LV-58. The nitrile/Buna N rubber O-ring seal was removed from LV-58, and failure analysis indicated radial cracks providing leak paths in one quadrant. Cracks were eventually found in 6 of 9 FCV O-rings among the three Shuttle Orbiters, though none were as severe as those for LV-58, OV-103. Testing by EM10 at MSFC on all 9 FCV O- rings included: laser dimensional, Shore A hardness and properties from a dynamic mechanical analyzer (DMA) and an Instron tensile machine. The following test data was obtained on the cracked quadrant of the LV-58, OV-103 O-ring: (1) the estimated compression set was only 9.5%, compared to none for the rest of the O-ring; (2) Shore A hardness for the O.D. was higher by almost 4 durometer points than for the rest of the O-ring; and (3) DMA data showed that the storage/elastic modulus E was almost 25% lower than for the rest of the O-ring. Of the 8 FCV O-rings tested on an Instron, 4 yielded tensile strengths that were below the MIL spec requirement of 1350 psi-a likely influence of rubber cracking. Comparisons were made between values of modulus determined by DNA (elastic) and Instron (Young s). Each nitrile/Buna N O-ring used in the FCV conforms to the MIL-P-25732C specification. A number of such O-rings taken from shelf storage at MSFC and Kennedy Space Center (KSC) were used to generate a reference curve of DMA glass transition temperature (Tg) vs. shelf storage time ranging from 8 to 26 years. A similar reference curve of TGA onset temperature (of rubber weight loss) vs. shelf storage time was also generated. The DMA and TGA data for the used FCV O-rings were compared to the reference

  8. Nucleotide Catabolism on the Surface of Aortic Valve Xenografts; Effects of Different Decellularization Strategies.

    PubMed

    Kutryb-Zajac, Barbara; Yuen, Ada H Y; Khalpey, Zain; Zukowska, Paulina; Slominska, Ewa M; Taylor, Patricia M; Goldstein, Steven; Heacox, Albert E; Lavitrano, Marialuisa; Chester, Adrian H; Yacoub, Magdi H; Smolenski, Ryszard T

    2016-04-01

    Extracellular nucleotide metabolism controls thrombosis and inflammation and may affect degeneration and calcification of aortic valve prostheses. We evaluated the effect of different decellularization strategies on enzyme activities involved in extracellular nucleotide metabolism. Porcine valves were tested intact or decellularized either by detergent treatment or hypotonic lysis and nuclease digestion. The rates of ATP hydrolysis, AMP hydrolysis, and adenosine deamination were estimated by incubation of aorta or valve leaflet sections with substrates followed by HPLC analysis. We demonstrated relatively high activities of ecto-enzymes on porcine valve as compared to the aortic wall. Hypotonic lysis/nuclease digestion preserved >80 % of ATP and AMP hydrolytic activity but reduced adenosine deamination to <10 %. Detergent decellularization completely removed (<5 %) all these activities. These results demonstrate high intensity of extracellular nucleotide metabolism on valve surface and indicate that various valve decellularization techniques differently affect ecto-enzyme activities that could be important in the development of improved valve prostheses.

  9. Sequenced drive for rotary valves

    DOEpatents

    Mittell, Larry C.

    1981-01-01

    A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.

  10. Semi-active compressor valve

    DOEpatents

    Brun, Klaus; Gernentz, Ryan S.

    2010-07-27

    A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

  11. Streamline coal slurry letdown valve

    DOEpatents

    Platt, Robert J.; Shadbolt, Edward A.

    1983-01-01

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

  12. Streamline coal slurry letdown valve

    DOEpatents

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  13. Initial experience of mitral valve replacement with total preservation of both valve leaflets.

    PubMed Central

    Dottori, V; Barberis, L; Lijoi, A; Giambuzzi, M; Maccario, M; Faveto, C

    1994-01-01

    We compared a series of 7 consecutive patients who underwent mitral valve replacement with preservation of both leaflets to a control group of 97 patients who underwent standard mitral valve replacement at our institution during the same period. Use of inotropic drugs and duration of postoperative intensive care were compared and shown to be markedly reduced in the study group; however, statistical analysis was not applied due to the small number of patients. Comparison of the available pre- and postoperative echocardiographic values showed a decrease in left ventricular end-diastolic and end-systolic diameters in patients with preserved leaflets, particularly in those with mitral regurgitation of degenerative origin. PMID:8000269

  14. Double-disc gate valve

    DOEpatents

    Wheatley, Seth J.

    1979-01-01

    This invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewtih, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separtion of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve.

  15. Innovative Stemless Valve Eliminates Emissions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Big Horn Valve Inc. (BHVI), of Sheridan, Wyoming, won a series of SBIR and Small Business Technology Transfer (STTR) contracts with Kennedy Space Center and Marshall Space Flight Center to explore and develop a revolutionary valve technology. BHVI developed a low-mass, high-efficiency, leak-proof cryogenic valve using composites and exotic metals, and had no stem-actuator, few moving parts, with an overall cylindrical shape. The valve has been installed at a methane coal gas field, and future applications are expected to include in-flight refueling of military aircraft, high-volume gas delivery systems, petroleum refining, and in the nuclear industry.

  16. Potential flow in engine valves

    NASA Technical Reports Server (NTRS)

    Eck, Bruno

    1925-01-01

    The extensive applicability of the hydrodynamic theory to the problems of engine construction is clearly shown in the following attempt to determine by exact methods the nature of the flow in valves under variously restricted conditions. Observation shows that two principal kinds of flow occur in simple flat-seated valves. For small valve lifts, the flow is along the horizontal wall and is therefore deflected 90 degrees, but for greater valve lifts the flow separates and forms a free stream, whose angle of deflection naturally increases with increasing lift. Both these kinds of flow can, in fact, be theoretically explained

  17. Prosthetic valve endocarditis: an overview.

    PubMed

    Gnann, J W; Dismukes, W E

    1983-12-01

    Infection of an intracardiac prosthesis, the incidence of which is about 2.5% among patients having undergone valve replacement, is a serious complication with considerable morbidity and mortality. Early prosthetic valve endocarditis (PVE), with an onset within 60 days of valve replacement, accounts for approximately one-third of all cases, while the remaining two-thirds, occur more than two months postoperatively (late prosthetic valve endocarditis). Prosthetic valve endocarditis is most commonly caused by Staphylococcus epidermidis, less frequently by viridans streptococci, Staphylococcus aureus, and gram-negative bacilli. The most likely pathogenetic mechanisms in prosthetic valve endocarditis are intraoperative contamination and postoperative infections at extracardiac sites. Prominent clinical features include fever, new or changing heart murmurs, leukocytosis, anemia and hematuria. The etiologic microorganism can be isolated in more than 90% of all cases. Patients with proven prosthetic valve endocarditis should be examined daily to detect signs of congestive heart failure and changes in murmurs; electrocardiographic monitoring is essential for documentation of arrhythmias. With limitations, echocardiography, especially two-dimensional, may help to demonstrate vegetations or valvular dehiscence. Cinefluoroscopy may reveal loosening or dehiscence of the sewing ring or impaired motion of a radio-opaque poppet due to thrombus or vegetation. Cardiac catheterization, not always necessary even when surgical intervention is anticipated, may provide valuable information on the degree of dysfunction, multiple valve involvement, left ventricular function and extent of concomitant coronary artery disease. In patients with mechanical valves, prosthetic valve endocarditis may be associated with a high incidence of valve ring and myocardial abscesses; the reported frequency of valve ring abscesses is lower with porcine heterografts. Infections on mechanical valves

  18. Fluid mechanics of heart valves.

    PubMed

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  19. Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments

    NASA Technical Reports Server (NTRS)

    Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet

    2004-01-01

    This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.

  20. Bicuspid aortic valve disease: systematic review and meta-analysis of surgical aortic valve repair

    PubMed Central

    Naci, Huseyin; Pender, Sarah; Kuehne, Titus; Kelm, Marcus

    2016-01-01

    Aortic valve repair is still emerging, and its role in the treatment of bicuspid aortic valve disease (BAVD) is not yet fully understood. Our objective is to synthesise available evidence on outcomes after surgical aortic valve repair in patients with BAVD. We conducted a systematic review of clinical studies using prespecified methods for searching, identifying and selecting eligible studies in 4 databases, and synthesising results (PROSPERO 2014:CRD42014014415). 2 researchers independently reviewed full-text articles and extracted data. The results of included studies were quantitatively synthesised in frequentist meta-analyses. We included 11 aortic valve repair studies or study arms with a total of 2010 participants. Pooled estimates for the proportion of patients surviving at 30 days, 1 year, 5 years and 10 years were 0.995 (95% CI 0.991 to 0.995), 0.994 (0.989 to 0.999), 0.945 (0.898 to 0.993) and 0.912 (0.845 to 0.979), respectively. The pooled proportion of late deaths from valve-related causes was 0.008 (0.000 to 0.019) at a mean follow-up of 3.5 years. Proportion of patients with valve-related reinterventions was 0.075 (0.037 to 0.113) at a mean follow-up of 3.9 years, and the linearised reintervention rate was 1.3 (0.7 to 1.9) per 100 patient-years. Outcome reporting was insufficient to pool the results for a number of predefined outcomes. In conclusion, existing evidence on aortic valve repair in BAVD is limited to mostly small case series, case–control and small retrospective cohort studies. Despite the low quality, available evidence suggests favourable survival outcomes after aortic valve repair in selected patients with BAVD. Valve-related reinterventions at follow-up are common in all patients undergoing repair surgery. PMID:28008357

  1. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai

    2011-01-01

    Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.

  2. Micro system comprising 96 micro valves on a titer plate

    NASA Astrophysics Data System (ADS)

    Krabbe, S.; Flitsch, D.; Büchs, J.; Schomburg, W. K.

    2016-10-01

    A system of 96 micro valves has been developed and mounted on top of a 48-well micro titer plate providing two valves for each well controlling its air inlet and outlet. Testing of the valve system showed that all valves are working and are opened and closed reliably. A pneumatic system is switching inlet and outlet valves independently of each other. The geometry of the feed channels ensures an equal air flow through all wells, when the valves are open. Between the micro valves, one optical fibre was inserted through the lid of each well allowing measuring the oxygen partial pressure in the enclosed air volume by fluorescence sensor spots. Escherichia coli bacteria were grown inside the wells and their metabolism was observed by the oxygen partial pressure change due to respiration. In all 48 wells, the same oxygen transfer rate was observed within an averaged standard deviation of 1 mmol/L/h. The oxygen transfer rate differences compared to a macroscopic standard shake flask system were overall compatible within their uncertainties.

  3. Microfluidic droplet sorting using integrated bilayer micro-valves

    NASA Astrophysics Data System (ADS)

    Chen, Yuncong; Tian, Yang; Xu, Zhen; Wang, Xinran; Yu, Sicong; Dong, Liang

    2016-10-01

    This paper reports on a microfluidic device capable of sorting microfluidic droplets utilizing conventional bilayer pneumatic micro-valves as sorting controllers. The device consists of two micro-valves placed symmetrically on two sides of a sorting area, each on top of a branching channel at an inclined angle with respect to the main channel. Changes in transmitted light intensity, induced by varying light absorbance by each droplet, are used to divert the droplet from the sorting area into one of the three outlet channels. When no valve is activated, the droplet flows into the outlet channel in the direction of the main channel. When one of the valves is triggered, the flexible membrane of valve will first be deflected. Once the droplet leaves the detection point, the deflected membrane will immediately return to its default flattened position, thereby exerting a drawing pressure on the droplet and deviating it from its original streamline to the outlet on the same side as the valve. This sorting method will be particularly suitable for numerous large-scale integrated microfluidic systems, where pneumatic micro-valves are already used. Only few structural modifications are needed to achieve droplet sorting capabilities in these systems. Due to the mechanical nature of diverting energy applied to droplets, the proposed sorting method may induce only minimal interference to biological species or microorganisms encapsulated inside the droplets that may accompany electrical, optical and magnetic-based techniques.

  4. Analysis of hydrodynamic losses for various types of aortic valves

    NASA Astrophysics Data System (ADS)

    Starobin, I. M.; Lupachev, S. P.; Dolgopolov, R. V.; Zaiko, V. M.; Kas'yanov, V. A.; Mungalov, D. D.; Morov, G. V.

    1985-05-01

    The creation of an automated computer-controlled hydraulic stand made it possible to measure the main hydrodynamic parameters of the flow through the investigated HVP and to determine the coefficients of Eq. (2) of fluid flow in the test chamber of the stand. The coefficients found can serve as a criterion of a comparative assessment of the hydrodynamics of HVPs. An analysis of the coefficients showed that the main contribution to pressure losses across ball and disc valves is made by viscous and convective effects. An analysis of inertial losses confirmed the presence of oscillations of the ball closing elements of the AKCh-3-06 valve around the props of the stroke limiters and made it possible to assess them quantitatively. For leaflet valves the contribution of inertial losses to the total pressure losses is more considerable than in the case of disc and ball valves both in the regime of an increase of power of the output and in the regime of a constant power. The mechanical properties of the material of leaflet valves have an effect on the hydrodynamic characteristics. The advantage of the investigated leaflet valves consists not only in that they have smaller total hydraulic losses compared with the other valves, but also in that they provide a high amplitude of pulsations of the blood stream in the case of insufficient contractility of the heart.

  5. All metal valve structure for gas systems

    DOEpatents

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  6. Heart Valve Surgery Recovery and Follow Up

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Heart Valve Surgery Recovery and Follow Up Updated:Sep 14,2016 What to expect after heart valve surgery The normal recovery time after a heart valve surgery is usually ...

  7. 49 CFR 195.116 - Valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Each valve must be both hydrostatically shell tested and hydrostatically seat tested without leakage to... the position of the valve (open, closed, etc.). (f) Each valve must be marked on the body or...

  8. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  9. Magnetically driven cold valve for {sup 4}He

    SciTech Connect

    Bueno, J.; Blaauwgeers, R.; Partapsing, R.; Taminiau, I.; Jochemsen, R.

    2006-08-15

    We have designed a low temperature valve for liquid helium, which uses a magnetic field gradient and a permanent magnet to close. For closing, it presses a small ruby ball onto a Torlon seat. We present a small valve that is easy to build and easily controlled via two wires. It has a fast response, reliable, and has the advantage that there is no dead volume change on closing and no additional helium line is required to operate.

  10. 241-AN-B valve pit manifold valves and position indication acceptance test procedure

    SciTech Connect

    VANDYKE, D.W.

    1999-08-25

    This document describes the method used to test design criteria for gear actuated ball valves installed in 241-AN-B Valve Pit located at 200E Tank Farms. The purpose of this procedure is to demonstrate the following: Equipment is properly installed, labeled, and documented on As-Built drawings; New Manifold Valves in the 241-AN-B Valve Pit are fully operable using the handwheel of the valve operators; New valve position indicators on the valve operators will show correct valve positions; New valve position switches will function properly; and New valve locking devices function properly.

  11. 241-AN-A valve pit manifold valves and position indication acceptance test procedure

    SciTech Connect

    VANDYKE, D.W.

    1999-08-25

    This document describes the method used to test design criteria for gear actuated ball valves installed in 241-AN-A Valve Pit located at 200E Tank Farms. The purpose of this procedure is to demonstrate the following: Equipment is properly installed, labeled, and documented on As-Built drawings; New Manifold Valves in the 241-AN-A Valve Pit are fully operable using the handwheel of the valve operators; New valve position indicators on the valve operators will show correct valve positions; New valve position switches will function properly; and New valve locking devices function properly.

  12. Rotary selector valve

    SciTech Connect

    Jones, J.A.; Herndon, J.W.

    1991-02-05

    This paper discusses a multi-port valve which internally supports a rotatable trunnion having an elbow passage between a nozzle portion of the trunnion and a lower end outlet that communicates with a test port of the valve body. The outer end of the nozzle has an axially reciprocable hollow seal piston with a seal support ring whose outer face is formed with an endless groove to receive an O-ring. An actuating shaft is coaxially mounted in an upper end of the trunnion and has a lower end with an eccentric pin engaged in a slot of the seal piston to reciprocate the seal piston into and out of sealing registration around a port selected by rotation of the trunnion. External ends of the actuating shaft and trunnion are respectively drivably coupled to a coaxial sprocket wheel and geneva wheel. A housing on top of the valve contains an input rotor fitted with a cam and a drive roller for engaging radial slots of the geneva wheel alternately with cam engagement of the dwell notches of the geneva wheel. Concurrently and in advance of forward rotation of the geneva wheel, a rotor driven seal actuating yoke a free end engages one of a series of radial slots of the sprocket to rotate the sprocket in a retrograde direction to disengage the seal. When the yoke is disengaged, a detent mechanism temporarily locks the geneva and sprocket wheels together for co-rotation in a forward direction as the geneva drive roller again comes into engagement with the geneva wheel. After the nozzle has been advanced one step, further rotation of the input rotor advances an arm independently pivotally mounted on the yoke to compress a spring mechanism to bias the yoke and sprocket to compress the seal on a seat around the next port.

  13. Overhead-valve engine

    SciTech Connect

    Tamba, S.; Miyake, H.; Fukui, N.

    1987-05-05

    An overhead valve engine is described comprising: push rod receiving bores, at least one of the push rod receiving bores being maintained in communication at one end with a crank chamber and at an opposite end with a rocker arm chamber and at least one other push rod receiving bore being maintained in communication with the rocker arm chamber; push rods contained within push rod receiving bores; and a breather chamber in communication with at least one other push rod receiving bore in the vicinity of a camshaft.

  14. Mitral valve surgery - minimally invasive

    MedlinePlus

    ... Saunders; 2012:chap 61. Otto CM, Bonow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ... Editorial team. Related MedlinePlus Health Topics Heart Surgery Heart Valve Diseases Mitral Valve Prolapse Browse the Encyclopedia A.D. ...

  15. Valve-"Health"-Monitoring System

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2009-01-01

    A system that includes sensors and data acquisition, wireless data-communication, and data-processing subsystems has been developed as a means of both real-time and historical tracking of information indicative of deterioration in the mechanical integrity and performance of a highgeared ball valve or a linearly actuated valve that operates at a temperature between cryogenic and ambient.

  16. Valve designed with elastic seat

    NASA Technical Reports Server (NTRS)

    Mac Glashan, W. F., Jr.

    1965-01-01

    Absolute valve closure is accomplished by a machined valve with an axially annular channel which changes the outlet passage into a thin tubular elastic seat member with a retainer backup ring. The elasticity of the seat provides tight conformity to ball irregularity.

  17. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  18. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  19. FLUID PURIFIER AND SEALING VALVE

    DOEpatents

    Swanton, W.F.

    1962-04-24

    An improved cold trap designed to condense vapors and collect foreign particles in a flowing fluid is described. In the arrangement, a valve is provided to prevent flow reversal in case of pump failure and to act as a sealing valve. Provision is made for reducing the temperature of the fluid being processed, including a pre-cooling stage. (AEC)

  20. Determinants of valve gating in collecting lymphatic vessels from rat mesentery

    PubMed Central

    Rahbar, Elaheh; Gashev, Anatoliy A.; Zawieja, David C.; Moore, James E.

    2011-01-01

    Secondary lymphatic valves are essential for minimizing backflow of lymph and are presumed to gate passively according to the instantaneous trans-valve pressure gradient. We hypothesized that valve gating is also modulated by vessel distention, which could alter leaflet stiffness and coaptation. To test this hypothesis, we devised protocols to measure the small pressure gradients required to open or close lymphatic valves and determine if the gradients varied as a function of vessel diameter. Lymphatic vessels were isolated from rat mesentery, cannulated, and pressurized using a servo-control system. Detection of valve leaflet position simultaneously with diameter and intraluminal pressure changes in two-valve segments revealed the detailed temporal relationships between these parameters during the lymphatic contraction cycle. The timing of valve movements was similar to that of cardiac valves, but only when lymphatic vessel afterload was elevated. The pressure gradients required to open or close a valve were determined in one-valve segments during slow, ramp-wise pressure elevation, either from the input or output side of the valve. Tests were conducted over a wide range of baseline pressures (and thus diameters) in passive vessels as well as in vessels with two levels of imposed tone. Surprisingly, the pressure gradient required for valve closure varied >20-fold (0.1–2.2 cmH2O) as a passive vessel progressively distended. Similarly, the pressure gradient required for valve opening varied sixfold with vessel distention. Finally, our functional evidence supports the concept that lymphatic muscle tone exerts an indirect effect on valve gating. PMID:21460194

  1. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.

    PubMed

    Davis, Michael J; Rahbar, Elaheh; Gashev, Anatoliy A; Zawieja, David C; Moore, James E

    2011-07-01

    Secondary lymphatic valves are essential for minimizing backflow of lymph and are presumed to gate passively according to the instantaneous trans-valve pressure gradient. We hypothesized that valve gating is also modulated by vessel distention, which could alter leaflet stiffness and coaptation. To test this hypothesis, we devised protocols to measure the small pressure gradients required to open or close lymphatic valves and determine if the gradients varied as a function of vessel diameter. Lymphatic vessels were isolated from rat mesentery, cannulated, and pressurized using a servo-control system. Detection of valve leaflet position simultaneously with diameter and intraluminal pressure changes in two-valve segments revealed the detailed temporal relationships between these parameters during the lymphatic contraction cycle. The timing of valve movements was similar to that of cardiac valves, but only when lymphatic vessel afterload was elevated. The pressure gradients required to open or close a valve were determined in one-valve segments during slow, ramp-wise pressure elevation, either from the input or output side of the valve. Tests were conducted over a wide range of baseline pressures (and thus diameters) in passive vessels as well as in vessels with two levels of imposed tone. Surprisingly, the pressure gradient required for valve closure varied >20-fold (0.1-2.2 cmH(2)O) as a passive vessel progressively distended. Similarly, the pressure gradient required for valve opening varied sixfold with vessel distention. Finally, our functional evidence supports the concept that lymphatic muscle tone exerts an indirect effect on valve gating.

  2. Heimlich valve for chest drainage.

    PubMed

    Heimlich, H J

    1983-01-01

    The Heimlich chest drainage valve was developed so that the process of draining the pleural cavity could be accomplished in a safe, relatively simple, and efficient manner. Replacing the cumbersome underwater drainage bottle system, the Heimlich valve connects to chest tubing and allows fluid and air to pass in one direction only. The valve, which functions in any position, need never be clamped, and regulated suction can be attached to it if necessary. The valve drains into a plastic bag that can be held at any level, allowing the patient undergoing chest drainage to be ambulatory simply by carrying the bag. The construction and function of the valve is easily understood by medical and nursing staffs. It is presterilized, stored in a sterile package, and readily utilized on emergency vehicles and in the operating room.

  3. Titanium aluminide automotive engine valves

    SciTech Connect

    Hartfield-Wuensch, S.E.; Sperling, A.A.; Morrison, R.S.; Dowling, W.E. Jr.; Allison, J.E.

    1995-12-31

    The low density and high elevated temperature strength make titanium aluminide alloys an excellent candidate for automotive exhaust valve applications. Lighter weight valve train components allow either improved performance or reduction of valve spring loads which reduce noise and friction, thereby improving fuel economy. The key to successful application of TiAl alloys for automotive engine valves is not optimization of strength and ductility, but rather the development of a low-cost, high-volume manufacturing method. Different manufacturing approaches will be discussed in this paper, along with their advantages and disadvantages. Currently, casting appears to be the lowest-cost alternative that produces adequate material properties and emphasis is being placed on this manufacturing approach. The results of several successful engine tests will also be discussed, including results on a binary TiAl alloy. However, these engine tests have indicated that TiAl alloy valves will require tip protection and stem coating.

  4. Atmospheric dump valve engineering analysis

    SciTech Connect

    Mendoza, B.; McNemar, P.

    1990-01-01

    This report documents the activities undertaken after the atmospheric dump valves (ADVs) failed to operate following a Unit 3 reactor trip. The activities consisted of testing valves in all three units, examining Palo Verde Nuclear Generating Station (PVNGS) history with the valves, determining causes for failures, and making recommendations. The PVNGS engineering departments performed an in-depth review of the history, operation, maintenance, and design of ADVs. A preliminary mathematical model of the valves' dynamic behavior was developed by Arizona State University. The corrective actions are designed to eliminate the anomalies noted with the Unit 1 and 3 ADVs. Subsequent monitoring and testing activities following the planned modifications will ensure the ADVs remain operable during modes required by the PVNGS technical specifications. Through this increased monitoring and testing program, the valve modifications will be evaluated to confirm that the required level of reliability has been reached for the ADVs. The specific failures have been evaluated and the causes determined.

  5. Dynamic Spin Valve

    NASA Astrophysics Data System (ADS)

    Demirtas, Sezen; Koymen, Ali; Salamon, Myron

    2010-03-01

    In this study we investigate a dynamic extension of well known classic spin valves. Ultra thin films were dc sputtered in a UHV chamber and their dynamic responses were measured by ferromagnetic resonance (FMR). Two Co layers, separated by a nonmagnetic Ag layer--thick enough to suppress exchange coupling--were deposited, with one of them coupled to a Gd underlayer, forming a Co(1)/Ag/Co(2)/Gd multilayer. At room temperature both Co(1) and Co(2) FMR's are observed for the external magnetic field in the plane of the film. The field for resonance of Co(2) is reduced significantly relative to Co(1), with the paramagnetic moment of the Gd apparently added to the Co magnetization, and the linewidth is broader. Spin pumping effects are minimal since Co(1) and Co(2) do not resonate at the same field.. The Co(2) FMR disappears at the TC of Gd leaving the linewidth of the Co(1) FMR weakly temperature dependent down to the compensation temperature of the Co(2)/Gd bilayer. Below that point, the two Co layers in this dynamic spin valve device are in antiparallel alignment, leading to strong broadening of the Co(1) FMR with decreasing temperature.

  6. Recirculating valve lash adjuster

    SciTech Connect

    Stoody, R.R.

    1987-02-24

    This patent describes an internal combustion engine with a valve assembly of the type including overhead valves supported by a cylinder head for opening and closing movements in a substantially vertical direction and a rotatable overhead camshaft thereabove lubricated by engine oil pumped by an engine oil pump. A hydraulic lash adjuster with an internal reservoir therein is solely supplied with run-off lubricating oil from the camshaft which oil is pumped into the internal reservoir of the lash adjuster by self-pumping operation of the lash adjuster produced by lateral forces thereon by the rotative operation of the camshaft comprising: a housing of the lash adjuster including an axially extending bore therethrough with a lower wall means of the housing closing the lower end thereof; a first plunger member being closely slidably received in the bore of the housing and having wall means defining a fluid filled power chamber with the lower wall means of the housing; and a second plunger member of the lash adjuster having a portion being loosely slidably received and extending into the bore of the housing for reciprocation therein. Another portion extends upwardly from the housing to operatively receive alternating side-to-side force inputs from operation of the camshaft.

  7. Cavitation detection of butterfly valve using support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Bo-Suk; Hwang, Won-Woo; Ko, Myung-Han; Lee, Soo-Jong

    2005-10-01

    Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur, resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, monitoring of cavitation is of economic interest and is very important in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals acquired from butterfly valves in the pumping stations. And the classification success rate is compared with that of self-organizing feature map neural network (SOFM).

  8. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 1

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the findings and recommendations from the NESC assessment.

  9. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the Appendices to the main report.

  10. Optimising BMW four-cylinder two-valve engines Optimising BMW Four-Cylinder Two-Valve Engines (OpOptimising BMW Four-Cylinder Two-Valve Engines (OpOptimising BMW Four-Cylinder Two-Valve Engines (OpOptimising BMW Four-Cylinder Two-Valve Engines (OpOptimising BMW Four-Cylinder Two-Valve Engines (OpOptimising BMW Four-Cylinder Two-Valve Engines (OpOptimising BMW Four-Cylinder Two-Valve Engines (OpOptimising BMW Four-Cylinder Two-Valve Engines (OpOptimising BMW Four-Cylinder Two-Valve Engines (OpOpt

    NASA Astrophysics Data System (ADS)

    Flierl, R.; Kramer, F.; Rech, H.; Stanski, U.; Wenzel, M.

    1993-11-01

    In model year 1994, BMW will present two essentially redesigned 4-cylinder, 2-valve engines. BMW has upgraded its 1.6 1 and 1.8 1 2-valve engines using technical features previously reserved for the 4-valve engines, such as knock control system, distributorless semiconductor ignition, variable induction system (DISA) and ribbed V-belt accessory drive, along with measures to reduce power losses, noise levels and exhaust emissions. BMW models equipped with these two engines offer customers improved response characteristics and fuel consumption, as well as reduced emissions and maintenance requirements.

  11. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  12. A Control System for the Wind Tunnel Model of a Reverse-Blowing Circulation Control Rotor (RB-CCR)

    DTIC Science & Technology

    1976-05-01

    for possible application, e.g., (1) sleeve valves , (2) cam driver poppet valves , (3) on-off (bang-bang) type valves , (4) cam nozzle valves , and (5...Identify by block number) Circulation Control Rotors Control System for High Speed Circulation Control Rotor Model Pneumatic Valving System, Dual Receiver...Continued on reverse side) 20. A STRACT (Continue on reverse side if neceesary iand IdjntIty by block number) A pneumatic valving system has been

  13. Valve operating device for internal combustion engine

    SciTech Connect

    Yoshida, K.; Hirose, K.; Komatsu, T.; Shimoyama, K.; Tsuji, Y.

    1989-05-16

    A valve operating device is described for an internal combustion engine having cam followers disposed adjacent to each other for valve operation in mutually different modes by cams on a camshaft dependent on engine speed, and a selective coupling mechanism disposed between the cam followers and having at least one switching pin movable in a guide hole in a cam follower between a connecting position in which the cam followers, are interconnected and a disconnecting position in which the cam followers are disconnected. The improvement consists of an oil passage defined in at least one cam follower and passing through the guide hole, and the switching pin having means for controlling the rate of flow of oil through the oil passage and past the guide hole in response to movement of the switching pin between the connecting and disconnecting positions.

  14. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOEpatents

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  15. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  16. Transcatheter valve-in-valve implantation for failed mitral prosthesis: the first experience in Japan.

    PubMed

    Tada, Norio; Enta, Yusuke; Sakurai, Mie; Ootomo, Tatsushi; Hata, Masaki

    2017-01-01

    An 82-year-old woman had a history of mitral valve replacement with a 25-mm MOSAIC (Medtronic, USA) for severe mitral regurgitation (MR) 8 years previously. Recently, she developed heart failure due to MR secondary to prosthetic valve failure. She underwent transcatheter valve-in-valve implantation with a 23-mm SAPIEN XT (Edwards Lifesciences, USA) to the prosthetic mitral valve by transapical approach. To our knowledge, this is the first reported case of transcatheter valve implantation for failed mitral prosthetic valve using valve-in-valve technique in Japan.

  17. Minimally invasive aortic valve surgery

    PubMed Central

    Castrovinci, Sebastiano; Emmanuel, Sam; Moscarelli, Marco; Murana, Giacomo; Caccamo, Giuseppa; Bertolino, Emanuela Clara; Nasso, Giuseppe; Speziale, Giuseppe; Fattouch, Khalil

    2016-01-01

    Aortic valve disease is a prevalent disorder that affects approximately 2% of the general adult population. Surgical aortic valve replacement is the gold standard treatment for symptomatic patients. This treatment has demonstrably proven to be both safe and effective. Over the last few decades, in an attempt to reduce surgical trauma, different minimally invasive approaches for aortic valve replacement have been developed and are now being increasingly utilized. A narrative review of the literature was carried out to describe the surgical techniques for minimally invasive aortic valve surgery and report the results from different experienced centers. Minimally invasive aortic valve replacement is associated with low perioperative morbidity, mortality and a low conversion rate to full sternotomy. Long-term survival appears to be at least comparable to that reported for conventional full sternotomy. Minimally invasive aortic valve surgery, either with a partial upper sternotomy or a right anterior minithoracotomy provides early- and long-term benefits. Given these benefits, it may be considered the standard of care for isolated aortic valve disease. PMID:27582764

  18. Valve for apportioning preheated and non-preheated air to an internal combustion engine

    SciTech Connect

    Eriksson, S.

    1986-12-30

    A valve is described for apportioning preheated and non-preheated air to an internal combustion engine, comprising a valve body having an inlet for preheated air, an inlet for non-preheated air, and a common outlet from the valve leading to an intake conduit for the engine. It also comprises a thermostatically controlled flap valve mounted for pivotal movement about an axis that passes through the valve body, between extreme end positions in one of which a first flap portion on one side of the axis closes the inlet for preheated air and in the other extreme end position of which the first flap portion closes the inlet for non-preheated air. The valve flap has a second flap portion on the side of the axis opposite the first flap portion, the valve body having a balancing chamber which communicates on both sides of the axis with the portion of the interior of the valve body in which the first flap portion moves. The second flap portion is disposed in the balancing chamber and divides the balancing chamber into two portions separated from each other by the second flap portion. The flap portions are of such dimensions and are so arranged that the forces exerted on the flap valve as a result of the air flow through the valve body give rise to oppositely directed torques of substantially the same magnitude.

  19. Lock Culvert Valves; Hydraulic Design Considerations

    DTIC Science & Technology

    2011-06-01

    lock culvert valves with particular emphasis on reverse tainter valves. Hydraulic coefficients, used to quantify energy losses at valves and the jet...due to a sudden culvert expansion did increase the energy losses in the flow as the jet was dissipated. This additional head loss and associated...8 Figure 5. Loss coefficient for vertical-lift valve having a 45 degree lip

  20. 14 CFR 125.137 - Oil valves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Oil valves. 125.137 Section 125.137....137 Oil valves. (a) Each oil valve must— (1) Comply with § 125.155; (2) Have positive stops or... the valve. (b) The closing of an oil shutoff means must not prevent feathering the propeller,...