Science.gov

Sample records for 18s rdna sequence

  1. Phylogenetic relationships among higher Nemertean (Nemertea) Taxa inferred from 18S rDNA sequences.

    PubMed

    Sundberg, P; Turbeville, J M; Lindh, S

    2001-09-01

    We estimated the phylogenetic relationships of 15 nemertean (phylum Nemertea) species from the four subclasses Hoplo-, Hetero-, Palaeo-, and Bdellonemertea with 18S rDNA sequence data. Three outgroup taxa were used for rooting: Annelida, Platyhelminthes, and Mollusca. Parsimony and maximum-likelihood analyses supported the monophyletic status of the Heteronemertea and a taxon consisting of hoplonemerteans and Bdellonemertea, while indicating that Palaeonemertea is paraphyletic. The monophyletic status of the two nemertean classes Anopla and Enopla is not supported by the data. The unambiguous clades are well supported, as assessed by a randomization test (bootstrapping) and branch support values.

  2. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    PubMed Central

    Santos, Henrique F.; Cury, Juliano C.; Carmo, Flavia L.; Rosado, Alexandre S.; Peixoto, Raquel S.

    2010-01-01

    Background Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. Methodology/Principal Findings We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. Conclusions/Significance We believe that

  3. Authentication of Curcuma species (Zingiberaceae) based on nuclear 18S rDNA and plastid trnK sequences.

    PubMed

    Cao, Hui; Sasaki, Yohei; Fushimi, Hirotoshi; Komatsu, Katsuko

    2010-07-01

    Curcuma drugs have been used discriminatingly for invigorating blood circulation, promoting digestion, and as a cholagogic in China. However, there is confusion about the drug's botanical origins and clinical uses because of morphological similarity of Curcuma plants and drugs. Comparative sequencing of the 18S rRNA gene in nuclear ribosomal DNA (rDNA) and trnK gene in chloroplast DNA (cpDNA) was carried out in order to examine interspecies phylogeny and to identify ultimately Curcuma species. A total of a hundred of accessions of eighteen species were analyzed. This resulted in an aligned matrix of 1810 bp for 18S rDNA and 2 800 bp for trnK. 18S rDNA sequence divergence within the ingroup ranged from 0-0.05%, trnK ranged from 0-0.19%. One base transversion-substituted site (from cytosine to thymine) was observed from the upstream of 18S rDNA at nucleotide position 234 in C. kwangsiensis and Japanese population of C. zedoaria which have separated genetic distance to other Curcuma taxa. Two noncoding regions embedded in trnK intron showed higher variability, including nucleotide substitutions, repeat insertion and deletions. Based on consensus of relationship, eighteen major lineages within Curcuma are recognized at the species level. The results suggest that Curcuma is monophyletic with 100% bootstrap support and sister to the genera Hedychium and Zingiber. The trnK sequences showed considerable variations between Curcuma species and thus were revealed as a promising candidate for barcoding of Curcuma species, which provide valuable characters for inferring relationship within species but are insufficient to resolve relationships among closely related taxa.

  4. Chromosomal localization of 18S rDNA and telomere sequence in the aye-aye, Daubentonia madagascariensis.

    PubMed

    Rakotoarisoa, G; Hirai, Y; Go, Y; Kawamoto, Y; Shima, T; Koyama, N; Randrianjafy, A; Mora, R; Hirai, H

    2000-10-01

    Chromosomal localization of 18S rDNA and telomere sequence was attempted on the chromosomes of the aye-aye (2n = 30) using fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS), respectively. The rDNA was localized at the tip or whole of the short arm of acrocentric chromosomes 13 and 14 in all spreads observed. However, post-FISH silver-nitrate (Ag) staining showed that transcriptional activity of the rRNA genes was variable, particularly in chromosome 14, which was most frequently negative in one homologue carrying the smaller copy number of rDNA. This observation supports, at the molecular cytogenetic level, previous data concerning the relationship between the copy number of rDNA and its trancriptional activity. On the other hand, telomere sequence was localized only at the telomeric region of all chromosomes, the so-called telomere-only pattern, a characteristic similar to that of the greater bushbaby. These data may provide information on the chromosomal evolution of the lemur, because locations of rDNA and telomere sequences frequently offer important clues in reconstruction of karyotype differentiation. PMID:11245223

  5. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity.

    PubMed

    Moon-van der Staay, S Y; De Wachter, R; Vaulot, D

    2001-02-01

    Picoplankton--cells with a diameter of less than 3 microm--are the dominant contributors to both primary production and biomass in open oceanic regions. However, compared with the prokaryotes, the eukaryotic component of picoplankton is still poorly known. Recent discoveries of new eukaryotic algal taxa based on picoplankton cultures suggest the existence of many undiscovered taxa. Conventional approaches based on phenotypic criteria have limitations in depicting picoplankton composition due to their tiny size and lack of distinctive taxonomic characters. Here we analyse, using an approach that has been very successful for prokaryotes but has so far seldom been applied to eukaryotes, 35 full sequences of the small-subunit (18S) ribosomal RNA gene derived from a picoplanktonic assemblage collected at a depth of 75 m in the equatorial Pacific Ocean, and show that there is a high diversity of picoeukaryotes. Most of the sequences were previously unknown but could still be assigned to important marine phyla including prasinophytes, haptophytes, dinoflagellates, stramenopiles, choanoflagellates and acantharians. We also found a novel lineage, closely related to dinoflagellates and not previously described.

  6. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity

    NASA Astrophysics Data System (ADS)

    Moon-van der Staay, Seung Yeo; De WachterRDanielVaulot, RupertDe WachterR.Daniel

    2001-02-01

    Picoplankton-cells with a diameter of less than 3µm-are the dominant contributors to both primary production and biomass in open oceanic regions. However, compared with the prokaryotes, the eukaryotic component of picoplankton is still poorly known. Recent discoveries of new eukaryotic algal taxa based on picoplankton cultures suggest the existence of many undiscovered taxa. Conventional approaches based on phenotypic criteria have limitations in depicting picoplankton composition due to their tiny size and lack of distinctive taxonomic characters. Here we analyse, using an approach that has been very successful for prokaryotes but has so far seldom been applied to eukaryotes, 35 full sequences of the small-subunit (18S) ribosomal RNA gene derived from a picoplanktonic assemblage collected at a depth of 75m in the equatorial Pacific Ocean, and show that there is a high diversity of picoeukaryotes. Most of the sequences were previously unknown but could still be assigned to important marine phyla including prasinophytes, haptophytes, dinoflagellates, stramenopiles, choanoflagellates and acantharians. We also found a novel lineage, closely related to dinoflagellates and not previously described.

  7. Phylogenetic Relationships Among Xiphinema and Xiphidorus Nematode Species from Brazil Inferred from 18S rDNA Sequences.

    PubMed

    Oliveira, Claudio M G; Hübschen, Judith; Brown, Derek J F; Ferraz, Luiz C C B; Wright, Frank; Neilson, Roy

    2004-06-01

    Maximum likelihood trees produced from 18S rDNA sequences separated 14 Xiphinema and five Xiphidorus nematode species from Brazil into distinct groups that concurred with their current morphological taxonomic status. Species belonging to the X. americanum group (X. brevicolle, X. diffusum, X. oxycaudatum, and X. peruvianum) formed a single group that was clearly separated from the other Xiphinema species. As with previous taxonomic studies that noted only minor morphological differences between putative X. americanum group species, separation of these species based upon 18S rDNA sequences was inconclusive. Thus it is probable that instead of comprising distinct species, the X. americanum group may in fact represent numerous morphotypes with large inter- and intra- population morphological variability that may be environmentally driven. Within the cluster representing non X. americanum group species, there was little statistical support to clearly separate species. However, three subgroups, comprising (i) the X. setariae/vulgare complex, (ii) X. ifacolum and X. paritaliae, and (iii) X. brasiliense and X. ensiculiferum were well resolved.

  8. Phylogenetic Relationships Among Xiphinema and Xiphidorus Nematode Species from Brazil Inferred from 18S rDNA Sequences

    PubMed Central

    Oliveira, Claudio M. G.; Hübschen, Judith; Brown, Derek J. F.; Ferraz, Luiz C. C. B.; Wright, Frank; Neilson, Roy

    2004-01-01

    Maximum likelihood trees produced from 18S rDNA sequences separated 14 Xiphinema and five Xiphidorus nematode species from Brazil into distinct groups that concurred with their current morphological taxonomic status. Species belonging to the X. americanum group (X. brevicolle, X. diffusum, X. oxycaudatum, and X. peruvianum) formed a single group that was clearly separated from the other Xiphinema species. As with previous taxonomic studies that noted only minor morphological differences between putative X. americanum group species, separation of these species based upon 18S rDNA sequences was inconclusive. Thus it is probable that instead of comprising distinct species, the X. americanum group may in fact represent numerous morphotypes with large inter- and intra- population morphological variability that may be environmentally driven. Within the cluster representing non X. americanum group species, there was little statistical support to clearly separate species. However, three subgroups, comprising (i) the X. setariae/vulgare complex, (ii) X. ifacolum and X. paritaliae, and (iii) X. brasiliense and X. ensiculiferum were well resolved. PMID:19262801

  9. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  10. Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA.

    PubMed

    Callejón, Rocío; Nadler, Steven; De Rojas, Manuel; Zurita, Antonio; Petrášová, Jana; Cutillas, Cristina

    2013-11-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from the mitochondrial cytochrome c oxidase 1 (cox1) and ribosomal 18S genes. The taxa consisted of different described species and several host-associated isolates (undescribed taxa) of Trichuris collected from hosts from Spain. Sequence data from mitochondrial cox1 (partial gene) and nuclear 18S near-complete gene were analyzed by maximum likelihood and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. Phylogenetic results based on 18S ribosomal DNA (rDNA) were robust for relationships among species; cox1 sequences delimited species and revealed phylogeographic variation, but most relationships among Trichuris species were poorly resolved by mitochondrial sequences. The phylogenetic hypotheses for both genes strongly supported monophyly of Trichuris, and distinct genetic lineages corresponding to described species or nematodes associated with certain hosts were recognized based on cox1 sequences. Phylogenetic reconstructions based on concatenated sequences of the two loci, cox1 (mitochondrial DNA (mtDNA)) and 18S rDNA, were congruent with the overall topology inferred from 18S and previously published results based on internal transcribed spacer sequences. Our results demonstrate that the 18S rDNA and cox1 mtDNA genes provide resolution at different levels, but together resolve relationships among geographic populations and species in the genus Trichuris.

  11. Morphology and 18S rDNA gene sequence of Blepharisma sinuosum Sawaya, 1940 (Ciliophora: Heterotrichea) from Brazil.

    PubMed

    Fernandes, Noemi Mendes; Dias, Roberto Júnio Pedroso; Senra, Marcus Vinicius Xavier; Soares, Carlos Augusto Gomes; da Silva Neto, Inácio Domingos

    2013-11-01

    The morphology and morphometric data of seven populations of Blepharisma sinuosum from southeastern Brazil were investigated. The description is based on live observations, protargol impregnation, and scanning electron microscopy. Blepharisma sinuosum measures 75-255μm in length and 25-93μm in width and has a spindle-shaped body, pink color, a single contractile vacuole located at the posterior end, 50 adoral membranelles, a conspicuous paroral, 17-35 somatic kineties, a moniliform macronucleus with 2-7 connected nodules, and 3-20 micronuclei. Morphological comparisons with similar species were performed and suggest that B. americanum is the junior synonym of B. sinuosum. The 18S rDNA gene sequence of B. sinuosum was obtained and compared with that of other Blepharisma species. The length and GC content of the obtained sequence is 1652bp and 47.03%, respectively, and has a very high structural similarity (99.9%) with the B. undulans sequence. The validity of the classification of Blepharisma species in morphonuclear subgenera is also discussed.

  12. Phylogenetic analyses of four species of Ulva and Monostroma grevillei using ITS, rbc L and 18S rDNA sequence data

    NASA Astrophysics Data System (ADS)

    Lin, Zhongheng; Shen, Songdong; Chen, Weizhou; Li, Huihui

    2013-01-01

    Chlorophyta species are common in the southern and northern coastal areas of China. In recent years, frequent green tide incidents in Chinese coastal waters have raised concerns and attracted the attention of scientists. In this paper, we sequenced the 18S rDNA genes, the internal transcribed spacer (ITS) regions and the rbc L genes in seven organisms and obtained 536-566 bp long ITS sequences, 1 377-1 407 bp long rbc L sequences and 1 718-1 761 bp long partial 18S rDNA sequences. The GC base pair content was highest in the ITS regions and lowest in the rbc L genes. The sequencing results showed that the three Ulva prolifera (or U. pertusa) gene sequences from Qingdao and Nan'ao Island were identical. The ITS, 18S rDNA and rbc L genes in U. prolifera and U. pertusa from different sea areas in China were unchanged by geographic distance. U. flexuosa had the least evolutionary distance from U. californica in both the ITS regions (0.009) and the 18S rDNA (0.002). These data verified that Ulva and Enteromorpha are not separate genera.

  13. Quantitative analysis of dinoflagellates and diatoms community via Miseq sequencing of actin gene and v9 region of 18S rDNA

    PubMed Central

    Guo, Liliang; Sui, Zhenghong; Liu, Yuan

    2016-01-01

    Miseq sequencing and data analysis for the actin gene and v9 region of 18S rDNA of 7 simulated samples consisting of different mixture of dinoflagellates and diatoms were carried out. Not all the species were detectable in all the 18S v9 samples, and sequence percent in all the v9 samples were not consistent with the corresponding cell percent which may suggest that 18S rDNA copy number in different cells of these species differed greatly which result in the large deviation of the amplification. And 18S rDNA amplification of the microalgae was prone to be contaminated by fungus. The amplification of actin gene all was from the dinoflagellates because of its targeted degenerate primers. All the actin sequences of dinoflagellates were detected in the act samples except act4, and sequence percentage of the dinoflagellates in the act samples was not completely consistent with the dinoflagellates percentage of cell samples, but with certain amplification deviations. Indexes of alpha diversity of actin gene sequencing may be better reflection of community structure, and beta diversity analysis could cluster the dinoflagellates samples with identical or similar composition together and was distinguishable with blooming simulating samples at the generic level. Hence, actin gene was more proper than rDNA as the molecular marker for the community analysis of the dinoflagellates. PMID:27721499

  14. Phylogenetic relationships of the enigmatic angiosperm family Podostemaceae inferred from 18S rDNA and rbcL sequence data.

    PubMed

    Soltis, D E; Mort, M E; Soltis, P S; Hibsch-Jetter, C; Zimmer, E A; Morgan, D

    1999-03-01

    The phylogenetic relationships of some angiosperm families have remained enigmatic despite broad phylogenetic analyses of rbcL sequences. One example is the aquatic family Podostemaceae, the relationships of which have long been controversial because of major morphological modifications associated with their aquatic habit. Podostemaceae have variously been associated with Piperaceae, Nepenthaceae, Polygonaceae, Caryophyllaceae, Scrophulariaceae, Rosaceae, Crassulaceae, and Saxifragaceae. Two recent analyses of rbcL sequences suggest a possible sister-group relationship of Podostemaceae to Crassulaceae (Saxifragales). However, the branch leading to Podostemaceae was long, and use of different outgroups resulted in alternative placements. We explored the phylogenetic relationships of Podostemaceae using 18S rDNA sequences and a combined rbcL + 18S rDNA matrix representing over 250 angiosperms. In analyses based on 18S rDNA data, Podostemaceae are not characterized by a long branch; the family consistently appears as part of a Malpighiales clade that also includes Malpighiaceae, Turneraceae, Passifloraceae, Salicaceae, Euphorbiaceae, Violaceae, Linaceae, Chrysobalanaceae, Trigoniaceae, Humiriaceae, and Ochnaceae. Phylogenetic analyses based on a combined 18S rDNA + rbcL data set (223 ingroup taxa) with basal angiosperms as the outgroup also suggest that Podostemaceae are part of a Malpighiales clade. These searches swapped to completion, and the shortest trees showed enhanced resolution and increased internal support compared to those based on 18S rDNA or rbcL alone. However, when Gnetales are used as the outgroup, Podostemaceae appear with members of the nitrogen fixing clade (e.g., Elaeagnaceae, Ulmaceae, Rhamnaceae, Cannabaceae, Moraceae, and Urticaceae). None of the relationships suggested here for Podostemaceae receives strong bootstrap support. Our analyses indicate that Podostemaceae are not closely allied with Crassulaceae or with other members of the

  15. The spatial and temporal distribution of microalgae in the South China Sea: evidence from GIS-based analysis of 18S rDNA sequences.

    PubMed

    Li, LüYan; Huang, QiaoJuan; Wu, ShuHui; Lin, Duan; Chen, JiaHui; Chen, YueQin

    2008-12-01

    The purpose of this study was to estimate the spatial and temporal variation of microalgae in the South China Sea and to demonstrate the environmental factors controlling the diversity of microalgae by GIS (geographic information system)-based analysis of 18S rDNA sequences. Six 18S rDNA libraries were constructed from environmental samples collected at different sites in the study area, and more than 600 18S rDNA sequences were determined. The rDNA sequence data were then analyzed by DIVA-GIS software to display the spatial and temporal variation of phytoplankton's composition. It was shown that the autotrophic eukaryotic plankton dominated over the heterotrophic cells in most of our clone libraries, and the dominating phytoplankton was Dinophyceae except for Bacillariophyta at the Xiamen harbor. The percentages of these two groups were controlled by water temperature and salinity. Our results also revealed that the species composition of Chlorophyta showed a close relationship with latitude, changing from Prasinophyceae at the high latitude to Trebouxiophyceae at the low latitude. Several newly classified picoplankton lineages were first uncovered in the South China Sea, including the pico-sized green alga Ostreococcus sp. and Picochlorum eukaryotum, and picobiliphytes, which was just discovered in 2007 with unknown affinities to other eukaryotes. Their spatial and temporal variation were also analyzed and discussed.

  16. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  17. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks

    EPA Science Inventory

    The goal of this study was to characterize microbial eukaryotes over a 12 month period, so as to provide insight into the occurrence of potentially important predators and bacterial hosts in hot and cold premise plumbing. Nearly 6,300 partial (600 bp) 18S rRNA gene sequences from...

  18. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences

    PubMed Central

    Sun, Sang-Mi; Yang, Seung Hwan

    2016-01-01

    Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia. PMID:27190985

  19. Molecular Phylogeny of Cypridoid Freshwater Ostracods (Crustacea: Ostracoda), Inferred from 18S and 28S rDNA Sequences.

    PubMed

    Hiruta, Shimpei F; Kobayashi, Norio; Katoh, Toru; Kajihara, Hiroshi

    2016-04-01

    With the aim of exploring phylogenetic relationships within Cypridoidea, the most species-rich superfamily among the podocopidan ostracods, we sequenced nearly the entire 18S rRNA gene (18S) and part of the 28S rRNA gene (28S) for 22 species in the order Podocopida, with representatives from all the major cypridoid families. We conducted phylogenetic analyses using the methods of maximum likelihood, minimum evolution, and Bayesian analysis. Our analyses showed monophyly for Cyprididae, one of the four families currently recognized in Cypridoidea. Candonidae turned out to be paraphyletic, and included three clades corresponding to the subfamilies Candoninae, Paracypridinae, and Cyclocypridinae. We propose restricting the name Candonidae s. str. to comprise what is now Candoninae, and raising Paracypridinae and Cyclocyprininae to family rank within the superfamily Cypridoidea.

  20. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Struewing, Ian T; Ashbolt, Nicholas J

    2013-09-01

    The goal of this study was to characterize microbial eukaryotes over a 12-month period to provide insight into the occurrence of potential bacterial predators and hosts in premise plumbing. Nearly 6,300 partial 18S rRNA gene sequences from 24 hot (36.9-39.0 °C) and cold (6.8-29.1 °C) drinking water samples were analyzed and classified into major eukaryotic groups. Each major group, consisting of free-living amoebae (FLA)/protozoa, algae, copepods, dinoflagellates, fungi, nematodes, and unique uncultured eukaryotic sequences, showed limited diversity dominated by a few distinct populations, which may be characteristic of oligotrophic environments. Changes in the relative abundance of predators such as nematodes, copepods, and FLA appear to be related to temperature and seasonal changes in water quality. Sequences nearly identical to FLA such as Hartmannella vermiformis, Echinamoeba thermarmum, Pseudoparamoeba pagei, Protacanthamoeba bohemica, Platyamoeba sp., and Vannella sp. were obtained. In addition to FLA, various copepods, rotifers, and nematodes have been reported to internalize viral and bacterial pathogens within drinking water systems thus potentially serving as transport hosts; implications of which are discussed further. Increasing the knowledge of eukaryotic occurrence and their relationship with potential pathogens should aid in assessing microbial risk associated with various eukaryotic organisms in drinking water.

  1. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae sedis).

    PubMed

    Moriya, M; Nakayama, T; Inouye, I

    2000-05-01

    A new heterotrophic flagellate Wobblia lunata gen. et sp. nov. is described. This organism usually attaches to the substratum showing a wobbling motion, and sometimes glides on the substratum or swims freely in the medium. W. lunata has various features characteristic of the stramenopiles. These include a hairy flagellum with tripartite tubular hairs, a mitochondrion with tubular cristae, arrangement of flagellar apparatus components and a double helix in the flagellar transition zone. W. lunata shares a double helix with heterotrophic stramenopiles, including Developayella elegans, oomycetes, hyphochytrids, opalinids and proteromonads, and could be placed in the phylum Bigyra Cavalier-Smith. However, from 18S rDNA tree analysis, these organisms form two distantly-related clades in the stramenopiles, and Wobblia appears at the base of the stramenopiles. Evaluation of morphological features and comparison of 18S rDNA sequences indicate that W. lunata is a member of the stramenopiles, but it is distinct from any other stramenopiles so far described. Its phylogenetic position within the stramenopiles is uncertain and therefore W. lunata is described as a stramenopile incertae sedis. PMID:10896132

  2. Isolation and cultivation of endosymbiotic algae from green hydra and phylogenetic analysis of 18S rDNA sequences.

    PubMed

    Kovacević, Goran; Franjević, Damjan; Jelencić, Biserka; Kalafatić, Mirjana

    2010-01-01

    Symbiotic associations are of wide significance in evolution and biodiversity. The green hydra is a typical example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors the individuals of a unicellular green algae. Endosymbiotic algae from green hydra have been successfully isolated and permanently maintained in a stable clean lab culture for the first time. We reconstructed the phylogeny of isolated endosymbiotic algae using the 18S rRNA gene to clarify its current status and to validate the traditional inclusion of these endosymbiotic algae within the Chlorella genus. Molecular analyses established that different genera and species of unicellular green algae could be present as symbionts in green hydra, depending on the natural habitat of a particular strain of green hydra.

  3. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.

    PubMed

    Giribet, G; Distel, D L; Polz, M; Sterrer, W; Wheeler, W C

    2000-09-01

    Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group

  4. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.

    PubMed

    Giribet, G; Distel, D L; Polz, M; Sterrer, W; Wheeler, W C

    2000-09-01

    Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group

  5. Phylogenetic relationships of Paradiclybothrium pacificum and Diclybothrium armatum (Monogenoidea: Diclybothriidae) inferred from 18S rDNA sequence data.

    PubMed

    Rozhkovan, Konstantin V; Shedko, Marina B

    2015-10-01

    The Diclybothriidae (Monogenoidea: Oligonchoinea) includes specific parasites of fishes assigned to the ancient order Acipenseriformes. Phylogeny of the Diclybothriidae is still unclear despite several systematic studies based on morphological characters. Together with the closely related Hexabothriidae represented by parasites of sharks and ray-fishes, the position of Diclybothriidae in different taxonomical systems has been matter of discussion. Here, we present the first molecular data on Diclybothriidae. The SSU rRNA gene was used to investigate the phylogenetic position of Paradiclybothrium pacificum and Diclybothrium armatum among the other Oligonchoinea. Complete nucleotide sequences of P. pacificum and D. armatum demonstrated high identity (98.53%) with no intraspecific sequence variability. Specimens of D. armatum were obtained from different hosts (Acipenser schrenckii and Huso dauricus); however, variation by host was not detected. The sequence divergence and phylogenetic trees data show that Diclybothriidae and Hexabothriidae are more closely related to each other than with other representatives of Oligonchoinea.

  6. The 18S rDNA sequence of Synchytrium endobioticum and its utility in microarrays for the simultaneous detection of fungal and viral pathogens of potato.

    PubMed

    Abdullahi, Ismail; Koerbler, Marianne; Stachewicz, Hans; Winter, Stephan

    2005-08-01

    Resting spores extracted from wart (Synchytrium endobioticum)-infected potato tubers were used for DNA extraction and amplification of 18S rDNA. Analysis of the cloned, sequenced fragment revealed high similarity to members of the Chytridiomycota. Using this information, specific oligonucleotide probes were designed and arrayed onto glass slides for detection of the pathogen. Viral sequence information available in the databank was retrieved, or new viral sequences were generated, and used to design probes for specific detection of important quarantine viruses of potato. To determine the sensitivity and specificity of the oligonucleotide probes, total RNA from infected plants was reverse transcribed, labelled with Cyanine 5, and hybridised with the microarray. A significant number of the oligonucleotide probes exhibited high specificity to S. endobioticum, Andean potato latent virus, Andean potato mottle virus, Potato black ringspot virus, and Potato spindle tuber viroid. Hybridisation signals of sub-arrays within slides were reproducible (r = 0.79) with a high correlation coefficient of hybridisation repetitions (0.73). Our results demonstrate the potential of microarray-based hybridisation for identification of multiple pathogen targets, which will find application in quarantine laboratories, where parallel testing for diverse pathogens is essential. PMID:15800764

  7. Phylogenetic position of the genus Cyrtostrombidium, with a description of Cyrtostrombidium paralongisomum nov. spec. and a redescription of Cyrtostrombidium longisomum Lynn & Gilron, 1993 (Protozoa, Ciliophora) based on live observation, protargol impregnation, and 18S rDNA sequences.

    PubMed

    Tsai, Sheng-Fang; Chen, Wei-Ting; Chiang, Kuo-Ping

    2015-01-01

    We redescribe Cyrtostrombidium longisomum Lynn & Gilron, 1993, the type species of the genus Cyrtostrombidium, and describe the new species Cyrtostrombidium paralongisomum n. sp. using live observation, protargol staining and molecular data. The morphological characters of these two species are clearly distinct, i.e., dikinetid numbers in the girdle and ventral kineties; however, it is difficult to separate them by 18S rDNA sequences because they differ by only 8 bp, indicating that 18S rDNA sequences are insufficient for separating different species in the genus Cyrtostrombidium. We not only observed the position of the oral primordium in the genus Cyrtostrombidium but also observed a possibly homoplasious trait, a dorsal split in the girdle kinety, in (1) Apostrombidium, (2) Varistrombidium, and (3) Cyrtostrombidium/Williophrya. This partially supports the hypothesis of somatic ciliary pattern evolution recently put forth by Agatha and Strüder-Kypke.

  8. Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics.

    PubMed

    Tanaka, Ryusei; Hino, Akina; Tsai, Isheng J; Palomares-Rius, Juan Emilio; Yoshida, Ayako; Ogura, Yoshitoshi; Hayashi, Tetsuya; Maruyama, Haruhiko; Kikuchi, Taisei

    2014-01-01

    Parasite diversity has important implications in several research fields including ecology, evolutionary biology and epidemiology. Wide-ranging analysis has been restricted because of the difficult, highly specialised and time-consuming processes involved in parasite identification. In this study, we assessed parasite diversity in wild rats using 18S rDNA-based metagenomics. 18S rDNA PCR products were sequenced using an Illumina MiSeq sequencer and the analysis of the sequences using the QIIME software successfully classified them into several parasite groups. The comparison of the results with those obtained using standard methods including microscopic observation of helminth parasites in the rat intestines and PCR amplification/sequencing of 18S rDNA from isolated single worms suggests that this new technique is reliable and useful to investigate parasite diversity.

  9. Phylogeny of the Eustigmatophyceae Based upon 18S rDNA, with Emphasis on Nannochloropsis.

    PubMed

    Andersen, R A; Brett, R W; Potter, D; Sexton, J P

    1998-02-01

    Complete 18S rDNA sequences were determined for 25 strains representing five genera of the Eustigmatophyceae, including re-examination of three strains with previously published sequences. Parsimony analysis of these and 44 published sequences for other heterokont chromophytes (unalignable sites removed) revealed that the Eustigmatophyceae were a monophyletic group. Analysis of eustigmatophyte taxa only (complete gene analyzed) supported the current familial classification scheme. Twenty one strains of Nannochloropsis were also examined using light microscopy. Gross morphology of cells was variable and overlapped among the strains; cell size was consistent within strains but sometimes varied considerably among strains of a species. The 18S rDNA of N. gaditana, N. oculata and N. salina was re-sequenced for strains used in previous publications and one or more nucleotide differences were found. Nucleotide sequences for Nannochloropsis species varied by up to 32 nucleotides. Identical sequences were found for six strains of N. salina, five strains of N. gadifana, four strains of N. granulata, and two strains of N. oculata, respectively. Four strains could not be assigned to described species and may represent two new species. The unique 18S rDNA sequences for each sibling species of Nannochloropsis demonstrates the presence of considerable genetic diversity despite the extremely simple morphology in this genus. PMID:23196114

  10. Comparative physical mapping of the 18S-5.8S-26S rDNA in three sorghum species.

    PubMed

    Sang, Y; Liang, G H

    2000-10-01

    The physical locations of the 18S-5.8S-26S rDNA sequences were examined in three sorghum species by fluorescence in situ hybridization (FISH) using biotin-labeled heterologous 18S-5.8S-26S rDNA probe (pTa71). Each 18S-5.8S-26S rDNA locus occurred at two sites on the chromosomes in Sorghum bicolor (2n = 20) and S. versicolor (2n = 10), but at four sites on the chromosomes of S. halepense (2n = 40) and the tetraploid S. versicolor (2n = 20). Positions of the rDNA loci varied from the interstitial to terminal position among the four accessions of the three sorghum species. The rDNA data are useful for investigation of chromosome evolution and phylogeny. This study excluded S. versicolor as the possible progenitor of S. bicolor.

  11. Chromosomal localization of 18S and 5S rDNA using FISH in the genus Tor (Pisces, Cyprinidae).

    PubMed

    Singh, Mamta; Kumar, Ravindra; Nagpure, N S; Kushwaha, B; Gond, Indramani; Lakra, W S

    2009-12-01

    Dual color fluorescence in situ hybridization (FISH) was performed to study the simultaneous chromosomal localization of 18S and 5S ribosomal genes in the genus Tor for the first time. The 18S and 5S rDNAs in four Tor species were amplified, sequenced and mapped on the metaphase chromosomes. The number and distribution of 18S and 5S rDNA clusters were examined on metaphase chromosome spreads using FISH. The specimens of T. chelynoides, T. putitora and T. progeneius showed six bright fluorescent signals of 18S rDNA and T. tor exhibited ten such signals. The 5S rDNA signals were present only on one pair of chromosomes in all the four Tor species. Ag-NORs were observed on two pairs of chromosomes in T. chelynoides, T. putitora, T. progeneius and four pairs in T. tor. Comparison of the observed 18S rDNA FISH signals and Ag-NORs strongly suggested a possible inactivation of NORs localized at the telomeres of a subtelocentric and telocentric chromosome pairs in all four species. The 5S rDNA contained an identical 120 bp long coding region and 81 bp long highly divergent non-transcribed spacers in all species examined. 18S and 5S rDNA sequencing and chromosomal localization can be a useful genetic marker in species identification as well as phylogenetic and evolutionary studies.

  12. Radiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny

    PubMed Central

    Dolven, Jane K.; Ose, Randi F.; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R.; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis. PMID:21853146

  13. Radiolaria divided into Polycystina and Spasmaria in combined 18S and 28S rDNA phylogeny.

    PubMed

    Krabberød, Anders K; Bråte, Jon; Dolven, Jane K; Ose, Randi F; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis.

  14. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters.

    PubMed

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-03-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI's SRA database (BioProject PRJNA294919). PMID:26904716

  15. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters.

    PubMed

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-03-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI's SRA database (BioProject PRJNA294919).

  16. [18S-25S rDNA variation in tissue culture of some Gentiana L. species].

    PubMed

    Mel'nyk, V M; Andrieiev, I O; Spiridonova, K V; Strashniuk, N M; Kunakh, V A

    2007-01-01

    18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata and G. lutea have been investigated by using blot-hybridization. The decrease of rDNA amount was found in the callus cultures as compared with the plants. In contrast to other species, G. lutea showed intragenome heterogeneity of rRNA genes as well as qualitative rDNA changes in tissue culture, in particular appearance of altered repeats. The relationship between the peculiarities of rRNA gene structure and their rearrangements in in vitro culture was suggested.

  17. Chromosome mapping of 18S rDNA and 5S rDNA by dual-color fluorescence in situ hybridization in the half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Jiang, L; Jiang, J; Liu, J; Yuan, J; Chen, Y; Zhang, Q; Wang, X

    2014-12-18

    Half-smooth tongue sole (Cynoglossus semilaevis) is an important aquaculture flatfish in China. Cytogenetic analysis has revealed that its sex determination system is female heterogametic (ZZ/ZW). The W chromosome is morphologically larger and has been considered evolutionarily younger than any other chromosome in the set. However, the genetic origin and evolution process of this neo-chromosome remains unclear. In this study, 2 tandem arrays of rRNA genes were chosen to address this question. Both the major rDNA (18S rDNA) and the minor rDNA (5S rDNA) were located on the C. semilaevis chromosomes by fluorescence in situ hybridization (FISH). Six 18S rDNA signals were observed on the centromeric regions of 3 pairs of autosomes in both males and females. In females, there was an additional 18S rDNA signal mapping to the telomeric region of the W chromosome long arm. With respect to the 5S rDNA, 12 signals were mapped to the centromeric regions of six pairs of autosomes. Two-color FISH further confirmed that the two pairs of the 5S rDNA signals were correspondingly located at the same positions of the same autosomes as those of the 18S rDNA signals. These results allowed us to speculate about the evolution process of the W chromosome. Chromosome fusions and repetitive sequence accumulations might have occurred in C. semilaevis. The synteny and non-synteny of C. semilaevis 18S rDNA and 5S rDNA might imply the original and evolutionary characteristics of this species. These findings will facilitate studies on karyotype evolution of the order Pleuronectiformes.

  18. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons

    PubMed Central

    Qi, Xiemin; Liu, Biao; Song, Qinxin; Zou, Bingjie; Bu, Ying; Wu, Haiping; Ding, Li; Zhou, Guohua

    2016-01-01

    Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line. PMID:27462344

  19. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons.

    PubMed

    Qi, Xiemin; Liu, Biao; Song, Qinxin; Zou, Bingjie; Bu, Ying; Wu, Haiping; Ding, Li; Zhou, Guohua

    2016-01-01

    Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line. PMID:27462344

  20. The conservation of number and location of 18S sites indicates the relative stability of rDNA in species of Pentatomomorpha (Heteroptera).

    PubMed

    Bardella, Vanessa Bellini; Fernandes, Thiago; Vanzela, André Luís Laforga

    2013-07-01

    Fluorescent in situ hybridization (FISH) with rDNA probes has been used for comparative cytogenetics studies in different groups of organisms. Although heteropterans are a large suborder within Hemiptera, studies using rDNA are limited to the infraorder Cimicomorpha, in which rDNA sites are present in the autosomes or sex chromosomes. We isolated and sequenced a conserved 18S rDNA region of Antiteuchus tripterus (Pentatomidae) and used it as a probe against chromosomes of 25 species belonging to five different families of Pentatomomorpha. The clone pAt05, with a length of 736 bp, exhibited a conserved stretch of 590 bp. FISH analysis with the probe pAt05 always demonstrated hybridization signals in sub-terminal positions, except for Euschistus heros. Apparently, there is a tendency for 18S rDNA sites to locate in autosomes, except for Leptoglossus gonagra and Euryophthalmus rufipennis, which showed signals in the m- and sex chromosomes, respectively. Although FISH has produced evidence that rearrangements are involved in rDNA repositioning, whether in different autosomes or between sex and m-chromosomes, we have no conclusive evidence of what were the pathways of these rearrangements based on the evolutionary history of the species studied here. Nevertheless, the diversity in the number of species analyzed here showed a tendency of 18S rDNA to remain among the autosomes.

  1. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China.

    PubMed

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies. PMID:25699679

  2. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China.

    PubMed

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies.

  3. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCEAE) TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelilhood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the...

  4. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCAE)TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelihood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the ...

  5. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella

    PubMed Central

    2010-01-01

    Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 μmol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days. PMID:20377865

  6. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA.

    PubMed Central

    Kowalchuk, G A; Gerards, S; Woldendorp, J W

    1997-01-01

    Marram grass (Ammophila arenaria L.), a sand-stabilizing plant species in coastal dune areas, is affected by a specific pathosystem thought to include both plant-pathogenic fungi and nematodes. To study the fungal component of this pathosystem, we developed a method for the cultivation-independent detection and characterization of fungi infecting plant roots based on denaturing gradient gel electrophoresis (DGGE) of specifically amplified DNA fragments coding for 18S rRNA (rDNA). A nested PCR strategy was employed to amplify a 569-bp region of the 18S rRNA gene, with the addition of a 36-bp GC clamp, from fungal isolates, from roots of test plants infected in the laboratory, and from field samples of marram grass roots from both healthy and degenerating stands from coastal dunes in The Netherlands. PCR products from fungal isolates were subjected to DGGE to examine the variation seen both between different fungal taxa and within a single species. DGGE of the 18S rDNA fragments could resolve species differences from fungi used in this study yet was unable to discriminate between strains of a single species. The 18S rRNA genes from 20 isolates of fungal species previously recovered from A. arenaria roots were cloned and partially sequenced to aid in the interpretation of DGGE data. DGGE patterns recovered from laboratory plants showed that this technique could reliably identify known plant-infecting fungi. Amplification products from field A. arenaria roots also were analyzed by DGGE, and the major bands were excised, reamplified, sequenced, and subjected to phylogenetic analysis. Some recovered 18S rDNA sequences allowed for phylogenetic placement to the genus level, whereas other sequences were not closely related to known fungal 18S rDNA sequences. The molecular data presented here reveal fungal diversity not detected in previous culture-based surveys. PMID:9327549

  7. Soil clone library analyses to evaluate specificity and selectivity of PCR primers targeting fungal 18S rDNA for denaturing-gradient gel electrophoresis (DGGE).

    PubMed

    Takada Hoshino, Yuko; Morimoto, Sho

    2010-01-01

    We evaluated the fungal specificity and detection bias of four fungal 18S rRNA gene (18S rDNA) primer sets for denaturing-gradient gel electrophoresis (DGGE). We constructed and compared clone libraries amplified from upland and paddy field soils with each primer set (1, NS1/GCFung; 2, FF390/FR1-GC; 3, NS1/FR1-GC; and 4, NS1/EF3 for the first PCR and NS1/FR1-GC for the second PCR). Primer set 4 (for nested PCR) showed the highest specificity for fungi but biased specific sequences. Sets 1, 2, and 3 (for single PCR) amplified non-fungal eukaryotic sequences (from 7 to 16% for upland soil and from 20 to 31% for paddy field soil) and produced libraries with similar distributions of fungal 18S rDNA sequences at both the phylum and the class level. Set 2 tended to amplify more diverse fungal sequences, maintaining higher specificity for fungi. In addition, clone analyses revealed differences among primer sets in the frequency of chimeras. In upland field soil, the libraries amplified with primer sets 3 and 4, which targeted long fragments, contained many chimeric 18S rDNA sequences (18% and 48%, respectively), while the libraries obtained with sets 1 and 2, which targeted short fragments, contained fewer chimeras (5% and 10%, respectively).

  8. Physical mapping of 18S and 5S rDNA loci and histone H3 gene in grasshopper species of the subfamily Gomphocerinae (Acrididae).

    PubMed

    Silva-Neto, L C; Bernardino, A C S; Loreto, V; Moura, R C

    2015-01-01

    In this study, fluorescence in situ hybridization (FISH) analysis was used to determine and compare the numbers and chromosomal locations of two multigene families (rDNA and histone H3) in four Neotropical species of gomphocerine grasshoppers. FISH using the 18S rDNA probe identified a single site on the S9 chromosome of Amblytropidia sp and Cauratettix borelli, a single site on chromosome M6 of Compsacris pulcher, and two sites (chromosomes L1 and L2) in Orphulella punctata. By contrast, FISH with a 5S rDNA probe identified dispersion of this sequence in the genomes of the four species, with evidence of intraspecific variations. Amblytropidia sp had six to eight FISH signals on autosomal chromosomes, while C. pulcher exhibited a signal only on the M5 bivalent. The histone H3 gene was less variable and was restricted to a single pair in all species. The conservation of the numbers and locations of 18S rDNA and H3 genes in conjunction with data from the literature was useful for evaluating karyotype evolution in this subfamily. The variation in the number and sizes of 5S rDNA sites indicates a process of recent dispersion that might have been mediated by transposition. PMID:26634462

  9. Physical mapping of 18S and 5S rDNA loci and histone H3 gene in grasshopper species of the subfamily Gomphocerinae (Acrididae).

    PubMed

    Silva-Neto, L C; Bernardino, A C S; Loreto, V; Moura, R C

    2015-11-25

    In this study, fluorescence in situ hybridization (FISH) analysis was used to determine and compare the numbers and chromosomal locations of two multigene families (rDNA and histone H3) in four Neotropical species of gomphocerine grasshoppers. FISH using the 18S rDNA probe identified a single site on the S9 chromosome of Amblytropidia sp and Cauratettix borelli, a single site on chromosome M6 of Compsacris pulcher, and two sites (chromosomes L1 and L2) in Orphulella punctata. By contrast, FISH with a 5S rDNA probe identified dispersion of this sequence in the genomes of the four species, with evidence of intraspecific variations. Amblytropidia sp had six to eight FISH signals on autosomal chromosomes, while C. pulcher exhibited a signal only on the M5 bivalent. The histone H3 gene was less variable and was restricted to a single pair in all species. The conservation of the numbers and locations of 18S rDNA and H3 genes in conjunction with data from the literature was useful for evaluating karyotype evolution in this subfamily. The variation in the number and sizes of 5S rDNA sites indicates a process of recent dispersion that might have been mediated by transposition.

  10. Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae)

    PubMed Central

    2009-01-01

    The location of 18S and 5S rDNA sites was determined in eight species and populations of the fish genus Triportheus by using fluorescent in situ hybridization (FISH). The males and females of all species had 2n = 52 chromosomes and a ZZ/ZW sex chromosome system. A single 18S rDNA site that was roughly equivalent to an Ag-NOR was detected on the short arms of a submetacentric pair in nearly all species, and up to two additional sites were also observed in some species. In addition, another 18S rDNA cluster was identified in a distal region on the long arms of the W chromosome; this finding corroborated previous evidence that this cluster would be a shared feature amongst Triportheus species. In T. angulatus, a heterozygotic paracentric inversion involving the short arms of one homolog of a metacentric pair was associated with NORs. The 5S rDNA sites were located on the short arms of a single submetacentric chromosomal pair, close to the centromeres, except in T. auritus, which had up to ten 5S rDNA sites. The 18S and 5S rDNA sites were co-localized and adjacent on the short arms of a chromosomal pair in two populations of T. nematurus. Although all Triportheus species have a similar karyotypic macrostructure, the results of this work show that in some species ribosomal genes may serve as species-specific markers when used in conjunction with other putatively synapomorphic features. PMID:21637644

  11. 18S ribosomal DNA sequences provide insight into the phylogeny of patellogastropod limpets (Mollusca: Gastropoda).

    PubMed

    Yoon, Sook Hee; Kim, Won

    2007-02-28

    To investigate the phylogeny of Patellogastropoda, the complete 18S rDNA sequences of nine patellogastropod limpets Cymbula canescens (Gmelin, 1791), Helcion dunkeri (Krauss, 1848), Patella rustica Linnaeus, 1758, Cellana toreuma (Reeve, 1855), Cellana nigrolineata (Reeve, 1854), Nacella magellanica Gmelin, 1791, Nipponacmea concinna (Lischke, 1870), Niveotectura pallida (Gould, 1859), and Lottia dorsuosa Gould, 1859 were determined. These sequences were then analyzed along with the published 18S rDNA sequences of 35 gastropods, one bivalve, and one chiton species. Phylogenetic trees were constructed by maximum parsimony, maximum likelihood, and Bayesian inference. The results of our 18S rDNA sequence analysis strongly support the monophyly of Patellogastropoda and the existence of three subgroups. Of these, two subgroups, the Patelloidea and Acmaeoidea, are closely related, with branching patterns that can be summarized as [(Cymbula + Helcion) + Patella] and [(Nipponacmea + Lottia) + Niveotectura]. The remaining subgroup, Nacelloidea, emerges as basal and paraphyletic, while its genus Cellana is monophyletic. Our analysis also indicates that the Patellogastropoda have a sister relationship with the order Cocculiniformia within the Gastropoda. PMID:17464213

  12. Morphology and 18S rDNA of Henneguya gurlei (Myxosporea) from Ameiurus nebulosus (Siluriformes) in North Carolina

    USGS Publications Warehouse

    Iwanowicz, L.R.; Iwanowicz, D.D.; Pote, L.M.; Blazer, V.S.; Schill, W.B.

    2008-01-01

    Henneguya gurlei was isolated from Ameiurus nebulosus captured in North Carolina and redescribed using critical morphological features and 18S small-subunit ribosomal RNA (SSU rDNA) gene sequence. Plasmodia are white, spherical, or subspherical, occur in clusters, measure up to 1.8 mm in length, and are located on the dorsal, pectoral, and anal fins. Histologically, plasmodia are located in the dermis and subdermally, and the larger cysts disrupt the melanocyte pigment layer. The spore body is lanceolate, 18.2 ?? 0.3 ??m (range 15.7-20.3) in length, and 5.4 ?? 0.1 ??m (range 3.8-6.1) in width in valvular view. The caudal appendages are 41.1 ?? 1.1 ??m (range 34.0-49.7) in length. Polar capsules are pyriform and of unequal size. The longer polar capsule measures 6.2 ?? 0.1 ??m (range 5.48-7.06), while the shorter is 5.7 ?? 0.1 ??m (range 4.8-6.4) in length. Polar capsule width is 1.2 ?? 0.03 ??m (range 1.0-1.54). The total length of the spore is 60.9 ?? 1.2 ??m (range 48.7-68.5). Morphologically, this species is similar to other species of Henneguya that are known to infect ictalurids. Based on SSU rDNA sequences, this species is most closely related to H. exilis and H. ictaluri, which infect Ictalurus punctatus. ?? American Society of Parasitologists 2008.

  13. Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera.

    PubMed

    Gokhman, Vladimir E; Anokhin, Boris A; Kuznetsova, Valentina G

    2014-08-01

    Karyotypes of six species belonging to three main clades of parasitoid Hymenoptera, the superfamilies Ichneumonoidea (Ichneumonidae: Ichneumon amphibolus), Cynipoidea (Cynipidae: Diplolepis rosae) and Chalcidoidea (Eurytomidae: Eurytoma robusta, Eu. serratulae and Eu. compressa, and Torymidae: Torymus bedeguaris) were studied using FISH with 18S rDNA and telomeric (TTAGG)n probes. Haploid karyotypes of D. rosae, Eu. robusta and Eu. serratulae carried the only 18S rDNA hybridization signal, whereas those of I. amphibolus and Eu. compressa carried three and two rDNA clusters respectively. In addition, three rDNA sites were visualized in the aneuploid female of T. bedeguaris. The number of rDNA clusters in parasitoid Hymenoptera generally correlates to the chromosome number. Apart from the overwhelming majority of the studied species of aculeate Hymenoptera, no hybridization signals were obtained from FISH with the telomeric (TTAGG)n probe in the examined parasitoid species. These data suggest absence of the canonical (TTAGG)n insect telomeric motif in the Ichneumonoidea, Cynipoidea and Chalcidoidea, and perhaps in parasitoid Hymenoptera in general.

  14. Comparison of ITS and 18S rDNA for estimating fungal diversity using PCR-DGGE.

    PubMed

    Liu, Jie; Yu, Yaoyao; Cai, Zhang; Bartlam, Mark; Wang, Yingying

    2015-09-01

    Both the internal transcribed spacer (ITS) region and 18S rRNA genes are broadly applied in molecular fingerprinting studies of fungi. However, the differences in those two ribosomal RNA regions are still largely unknown. In the current study, three sets of most suitable subunit ribosomes in ITS and 18S rRNA were compared using denaturing gradient gel electrophoresis (DGGE) under the optimum experimental conditions. Ten samples from both aquatic and soil environments were tested. The results revealed that the ITS region produced range-weighted richness in the range 36-361, which was significantly higher than that produced by 18S rDNA. There was a similar tendency in terms of the Shannon-Weaver diversity index and community dynamics in both water and soil samples. Samples from water and soil were better separated using ITS than 18S rDNA in principal component analysis of DGGE bands. Our study suggests that the ITS region is more precise and has more potential than 18S rRNA genes in fungal community analysis.

  15. [Variability of nuclear 18S-25S rDNA of Gentiana lutea L. in nature and in tissue culture in vitro].

    PubMed

    Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A

    2004-01-01

    18S-25S rDNA sequence in genomes of G. lutea plants from different natural populations and from tissue culture has been studied with blot-hybridization method. It was shown that ribosomal repeats are represented by the variants which differ for their size and for the presence of additional HindIII restriction site. Genome of individual plant usually possesses several variants of DNA repeats. Interpopulation variability according to their quantitative ratio and to the presence of some of them has been shown. Modifications of the range of rDNA repeats not exceeding intraspecific variability were observed in callus tissues in comparison with the plants of initial population. Non-randomness of genome modifications in the course of cell adaptation to in vitro conditions makes it possible to some extent to forecast these modifications in tissue culture.

  16. Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia.

    PubMed

    Shalchian-Tabrizi, Kamran; Kauserud, Håvard; Massana, Ramon; Klaveness, Dag; Jakobsen, Kjetill S

    2007-04-01

    Telonemia has recently been described as a new eukaryotic phylum with uncertain evolutionary origin. So far, only two Telonemia species, Telonema subtilis and Telonema antarcticum, have been described, but there are substantial variations in size and morphology among Telonema isolates and field observations, indicating a hidden diversity of Telonemia-like species and populations. In this study, we investigated the diversity and the global distribution of this group by analyzing 18S rDNA sequences from marine environmental clone libraries published in GenBank as well as several unpublished sequences from the Indian Ocean. Phylogenetic analyses of the identified sequences suggest that the Telonemia phylum includes several undescribed 18S rDNA phylotypes, probably corresponding to a number of different species and/or populations. The Telonemia phylotypes form two main groups, here referred to as Telonemia Groups 1 and 2. Some of the closely related sequences originate from separate oceans, indicating worldwide distributions of various Telonemia phylotypes, while other phylotypes seem to have limited geographical distribution. Further investigations of the evolutionary relationships within Telonemia should be conducted on isolated cultures of Telonema-like strains using multi-locus sequencing and morphological data. PMID:17196879

  17. Evolutionary relationships between 15 Plasmodium species from new and old world primates (including humans): an 18S rDNA cladistic analysis.

    PubMed

    Leclerc, M C; Hugot, J P; Durand, P; Renaud, F

    2004-12-01

    We present a new phylogenetic analysis of 15 primate Plasmodium species based on 18S rDNA sequences including new sequences of Plasmodium coatneyi, P. fieldi, P. gonderi, P. hylobati and P. simium. The results are discussed in the context of the parasite host species and their geographical distribution. Contrary to other phylogenies constructed with this 18S rDNA molecule, we observed that the topology of phylogenetic trees was not affected either by the quality of the nucleotide matrices, or by the species present in the outgroup. This analysis showed the following. (1) The polyphyly of human Plasmodium is confirmed. (2) The monophyly of Plasmodium from Old World monkeys is confirmed by the new added sequences and P. gonderi, an African species, possibly could be at the root of this group. (3) The most parsimonious biogeographical hypothesis is that P. vivax originated in Asia; thus, its related species P. simium appears to be derived through a transfer from the human P. vivax to New World monkey species in South America. (4) Sampling efforts of non-human primate Plasmodium could permit improvement of the knowledge of primate Plasmodium phylogeny and also consideration of the risks of malaria emergence from monkey reservoirs.

  18. 18S rDNA analysis of alkenone-producing haptophyte(s) preserved in surface sediments of Lake Toyoni, Japan

    NASA Astrophysics Data System (ADS)

    McColl, J. L.; Couto, J.; Bendle, J. A.; Henderson, A. C.; Seki, O.; Phoenix, V. R.; Toney, J. L.

    2013-12-01

    Alkenones (long chain ketones) are readily preserved in sedimentary archives and have the potential to provide quantitative reconstructions of past water temperature. Alkenones are produced by a limited number of haptophyte algae in the marine and also some lacustrine systems. However, lakes are heterogeneous: an individual lake will have a unique combination of ecological conditions, haptophyte species and seasonal alkenone production that contributes to the sedimentary record. Haptophyte algae species have different sensitivities to temperature; therefore identifying the alkenone producer(s) prior to down-core temperature reconstructions is critical before selecting the most appropriate temperature calibration. We present a study from Lake Toyoni, a freshwater lake in Hokkaido, Japan that has alkenones preserved in surface sediments. The aim of this study is to identify the alkenone producer(s) within the lake using 18S rDNA analyses. Preserved rDNA of planktonic phototrophic algae was extracted from surface sediments of Lake Toyoni and phylogenetic analyses of the rDNA sequences suggest alkenones are produced by a single haptophyte within the class Prymnesiophyceae (order Isochrysidales). The Lake Toyoni alkenone-producer shares a distinct phylotype with a haptophyte reported from water filter samples collected in Lake BrayaSø, Greenland (D'Andrea et al., 2006). Similarity between the 18S rDNA sequences from Lake Toyoni and Lake BrayaSø provides a basis for applying (and updating) the Greenland lake temperature calibration. Applying this temperature calibration (T°C = 40.8 [UK37] + 31.8, R2=0.96; n=34) to the surface sediment alkenone unsaturation index from Lake Toyoni gives an estimated lake surface temperature (LST) of 8°C. This is in line with observed LST at Lake Toyoni, which ranges between 7 - 22°C (Apr 2011 to Nov 2011). The occurrence and identification of a single alkenone producer in Lake Toyoni means problems posed by a mixture of haptophytes in

  19. Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles.

    PubMed

    Tiquia, S M

    2005-10-01

    Compost processing is assumed to be related to the microbial communities present. However, methods that will evaluate these relationships are not well understood. In this study, terminal restriction fragment length polymorphism (T-RFLP) analysis was used to evaluate the diversity of PCR-amplified bacterial 16S and fungal 18S rDNA communities from manure composts at different stages of composting (initial [day 0], thermophilic [day 24], and mature [day 104]). Results showed that the bacterial and fungal community profiles changed over the composting process, with bacterial communities showing a higher diversity compared with the fungal communities. During the thermophilic stage (day 24), the diversity of the bacterial communities increased, while the fungal communities decreased. As the compost reached maturity (day 104), a reverse pattern was observed between the diversity of bacterial and fungal communities. That is, the 18S rDNA T-RFLP-based diversity indices increased, while the 16S rDNA T-RFLP-based diversity decreased. Differences in temperature profiles at different stages of composting impacted the chemical properties and the diversity of the microbial communities. The day 104 compost (mature) had lower water, organic matter and C contents and higher C and OM loss compared with the day 0 (initial) and day 24 (thermophilic) composts, which affected the diversity of the microbial communities. The results presented here demonstrated that distinctive community patterns from manure composts could be rapidly generated using T-RFLP analysis. The succession of peaks in combination of increasing and decreasing peak heights at different stage of composting indicates the high potential of T-RFLP technique to monitor the dynamics of microbial communities, and their variation qualitatively and quantitatively.

  20. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades.

  1. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected.

  2. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  3. Short communication: Genetic variants of Sarcocystis cruzi in infected Malaysian cattle based on 18S rDNA.

    PubMed

    Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling

    2015-12-01

    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population. PMID:26679818

  4. Short communication: Genetic variants of Sarcocystis cruzi in infected Malaysian cattle based on 18S rDNA.

    PubMed

    Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling

    2015-12-01

    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population.

  5. Reevaluation of the evolutionary position of opalinids based on 18S rDNA, and alpha- and beta-tubulin gene phylogenies.

    PubMed

    Nishi, Akane; Ishida, Ken-ichiro; Endoh, Hiroshi

    2005-06-01

    Opalinids are enigmatic endosymbiotic protists principally found in the large intestine of anuran amphibians. They are multinucleates and uniformly covered with numerous flagella (or cilia). Their appearance is somewhat similar to that of ciliates, leading to opalinid's initial classification as ciliates, or later as protociliates. However, on the basis of their monomorphic nuclei, absence of a ciliate-like life cycle characterized by conjugation, and an interkinetal fission mode, opalinids were subsequently transferred in the zooflagellates. As several common ultrastructural characteristics shared with proteromonads were elucidated, in particular of the flagellar base, such as their double-stranded flagellar helix, an alliance with proteromonads was widely accepted. Thus, opalinids are currently favored to be placed in the class Opalinea, within the heterokont kingdom Chromista. However, the question of their classification has not been fully resolved, because of a lack of molecular information. Here, we report their phylogenetic position inferred from 18S rDNA, and alpha- and beta-tubulin gene sequences. The 18S rDNA tree gives the opalinids an ancestral position in heterokonts, together with proteromonads, as suggested by the morphological studies. In great contrast, alpha- and beta-tubulin gene analyses suggest an affiliation of opalinids to alveolates, not to heterokonts. However, the AU test implies that opalinids are not closely related with any of other three phyla in the alveolates, suggesting an occupation of an ancestral position within the alveolates. Based on the present molecular information, in particular rDNA phylogeny, and the ultrastructural character of the double helix common to heterokonts, we conclude that opalinids would have a common origin with heterokonts, although analyses based on two tubulin genes do not as yet completely deny a possible placement outside heterokonts. The ambiguity of the evolutionary position shown by the discrepancy

  6. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets

  7. First record of metacestodes of Mesocestoides sp. in the common starling (Sturnus vulgaris) in Europe, with an 18S rDNA characterisation of the isolate.

    PubMed

    Literák, Ivan; Olson, Peter D; Georgiev, Boyko B; Spakulová, Marta

    2004-03-01

    Metacestodes of Mesocestoides sp. were recorded from Sturnus vulgaris (Passeriformes: Stumidae) in the Czech Republic in April 2002. They were found in a cutaneous cyst and in the thoracic region of the body cavity of the bird. This is the first record of metacestodes of Mesocestoides sp. in this host species in Europe as well as the first finding of the formation of a cutaneous cyst provoked by this parasite. Additional specimens from Apodemus agrarius (Mammalia: Rodentia) from Bulgaria and Lacerta agilis (Reptilia: Squamata) from the Czech Republic were compared with that from S. vulgaris. Sequence data from the V4 variable region (18S rDNA) were used to compare genetic variability among these and previously characterized isolates of Mesocestoides spp. A number of distinct clades were recognized, with metacestodes from L. agilis showing the highest degree of relative divergence. PMID:15139376

  8. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    PubMed

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae.

  9. Cloning and sequencing of the rDNA gene family of the water buffalo (Bubalus bubalis).

    PubMed

    Pang, C Y; Deng, T X; Tang, D S; Yang, C Y; Jiang, H; Yang, B Z; Liang, X W

    2012-01-01

    The rDNA genes coding for ribosomal RNA in animals are complicated repeat sequences with high GC content. We amplified water buffalo rDNA gene sequences with the long and accurate (LA) PCR method, using LA Taq DNA polymerase and GC buffer, based on bioinformatic analysis of related organisms. The rDNA genes were found to consist of 9016 nucleotides, including three rRNA genes and two internal transcribed spacers (ITS), which we named 18S rRNA, ITS1, 5.8S rRNA, ITS2 and 28S rRNA. We tested and optimized conditions for cloning these complicated rDNA sequences, including specific rules of primer design, improvements in the reaction system, and selection of the DNA polymerase.

  10. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids

    PubMed Central

    2012-01-01

    Background Tandemly arranged nuclear ribosomal DNA (rDNA), encoding 18S, 5.8S and 26S ribosomal RNA (rRNA), exhibit concerted evolution, a pattern thought to result from the homogenisation of rDNA arrays. However rDNA homogeneity at the single nucleotide polymorphism (SNP) level has not been detailed in organisms with more than a few hundred copies of the rDNA unit. Here we study rDNA complexity in species with arrays consisting of thousands of units. Methods We examined homogeneity of genic (18S) and non-coding internally transcribed spacer (ITS1) regions of rDNA using Roche 454 and/or Illumina platforms in four angiosperm species, Nicotiana sylvestris, N. tomentosiformis, N. otophora and N. kawakamii. We compared the data with Southern blot hybridisation revealing the structure of intergenic spacer (IGS) sequences and with the number and distribution of rDNA loci. Results and Conclusions In all four species the intragenomic homogeneity of the 18S gene was high; a single ribotype makes up over 90% of the genes. However greater variation was observed in the ITS1 region, particularly in species with two or more rDNA loci, where >55% of rDNA units were a single ribotype, with the second most abundant variant accounted for >18% of units. IGS heterogeneity was high in all species. The increased number of ribotypes in ITS1 compared with 18S sequences may reflect rounds of incomplete homogenisation with strong selection for functional genic regions and relaxed selection on ITS1 variants. The relationship between the number of ITS1 ribotypes and the number of rDNA loci leads us to propose that rDNA evolution and complexity is influenced by locus number and/or amplification of orphaned rDNA units at new chromosomal locations. PMID:23259460

  11. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis.

    PubMed

    Hanelt, B; Van Schyndel, D; Adema, C M; Lewis, L A; Loker, E S

    1996-11-01

    The Orthonectida is a small, poorly known phylum of parasites of marine invertebrates. Their phylogenetic placement is obscure; they have been considered to be multicellular protozoans, primitive animals at a "mesozoan" grade of organization, or secondarily simplified flatworm-like organisms. The best known species in the phylum, Rhopalura ophiocomae, was collected on San Juan Island, Wash. and a complete 18S rDNA sequence was obtained. Using the models of minimum evolution and parsimony, phylogenetic analyses were undertaken and the results lend support to the following hypotheses about orthonectids: (1) orthonectids are more closely aligned with triploblastic metazoan taxa than with the protist or diploblastic metazoan taxa considered in this analysis; (2) orthonectids are not derived members of the phylum Platyhelminthes; and (3) orthonectids and rhombozoans are not each other's closest relatives, thus casting further doubt on the validity of the phylum Mesozoa previously used to encompass both groups. PMID:8896370

  12. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis.

    PubMed

    Hanelt, B; Van Schyndel, D; Adema, C M; Lewis, L A; Loker, E S

    1996-11-01

    The Orthonectida is a small, poorly known phylum of parasites of marine invertebrates. Their phylogenetic placement is obscure; they have been considered to be multicellular protozoans, primitive animals at a "mesozoan" grade of organization, or secondarily simplified flatworm-like organisms. The best known species in the phylum, Rhopalura ophiocomae, was collected on San Juan Island, Wash. and a complete 18S rDNA sequence was obtained. Using the models of minimum evolution and parsimony, phylogenetic analyses were undertaken and the results lend support to the following hypotheses about orthonectids: (1) orthonectids are more closely aligned with triploblastic metazoan taxa than with the protist or diploblastic metazoan taxa considered in this analysis; (2) orthonectids are not derived members of the phylum Platyhelminthes; and (3) orthonectids and rhombozoans are not each other's closest relatives, thus casting further doubt on the validity of the phylum Mesozoa previously used to encompass both groups.

  13. Molecular Organization of the 25S–18S rDNA IGS of Fagus sylvatica and Quercus suber: A Comparative Analysis

    PubMed Central

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5′-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5′-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5′-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family. PMID:24893289

  14. Molecular organization of the 25S-18S rDNA IGS of Fagus sylvatica and Quercus suber: a comparative analysis.

    PubMed

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5'-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5'-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5'-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼ 2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family.

  15. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

    PubMed Central

    Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.

    2015-01-01

    Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239

  16. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata.

  17. Karyotype diversity of four species of the incertae sedis group (Characidae) from different hydrographic basins: analysis of AgNORs, CMA3 and 18S rDNA.

    PubMed

    Mendes, M M; da Rosa, R; Giuliano-Caetano, L; Dias, A L

    2011-01-01

    A large number of genera in the tropical fish family Characidae are incertae sedis. Cytogenetic analysis was made of four of these species: Astyanax eigenmanniorum, Deuterodon stigmaturus, Hyphessobrycon luetkenii, and H. anisitsi, collected from various hydrographic basins: hydrographic system from Laguna dos Patos/RS, Tramandaí basin/RS and Tibagi River basin/PR. The first two species were collected in their type locality in the State of Rio Grande do Sul. The 2n = 48 karyotype was observed only in A. eigenmanniorum, while the other species had 2n = 50 chromosomes, with different karyotypic formulas. There was weak heterochromatin staining in the pericentromeric region of A. eigenmanniorum, D. stigmaturus and H. luetkenni chromosomes. In H. anisitsi, heterochromatin appeared to be more abundant and distributed in the pericentromeric and terminal regions of the chromosomes; three pairs showed more evident heterochromatic blocks. There were multiple Ag-NORs in all populations, visualized by FISH with an 18S rDNA probe. While D. stigmaturus and H. luetkenii had conserved AgNOR, CMA3 and 18S rDNA sites, the other two species showed intra- and interindividual variation at these sites. The karyotype variability was high, as is common in this group of fish. Different species arising from isolated hydrographic basins maintain an elevated level of karyotype differentiation, mainly with respect to chromosome structure, heterochromatin distribution and rDNA localization. This is the first report with cytogenetic data for D. stigmaturus and H. luetkenii. PMID:22179995

  18. Physical mapping of the 5S and 18S rDNA in ten species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): evolutionary tendencies in the genus.

    PubMed

    Bueno, Vanessa; Venere, Paulo César; Thums Konerat, Jocicléia; Zawadzki, Cláudio Henrique; Vicari, Marcelo Ricardo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus.

  19. Physical Mapping of the 5S and 18S rDNA in Ten Species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): Evolutionary Tendencies in the Genus

    PubMed Central

    César Venere, Paulo; Thums Konerat, Jocicléia; Henrique Zawadzki, Cláudio; Ricardo Vicari, Marcelo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus. PMID:25405240

  20. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies ( Ctenogobius , Gobiidae).

    PubMed

    Lima-Filho, P A; Bertollo, L A C; Cioffi, M B; Costa, G W W F; Molina, W F

    2014-01-01

    Karyotype analyses of the cryptobenthic marine species Ctenogobius boleosoma and C. smaragdus were performed by means of classical and molecular cytogenetics, including physical mapping of the multigene 18S and 5S rDNA families. C. boleosoma has 2n = 44 chromosomes (2 submetacentrics + 42 acrocentrics; FN = 46) with a single chromosome pair each carrying 18S and 5S ribosomal sites; whereas C. smaragdus has 2n = 48 chromosomes (2 submetacentrics + 46 acrocentrics; FN = 50), also with a single pair bearing 18S rDNA, but an extensive increase in the number of GC-rich 5S rDNA sites in 21 chromosome pairs. The highly divergent karyotypes among Ctenogobius species contrast with observations in several other marine fish groups, demonstrating an accelerated rate of chromosomal evolution mediated by both chromosomal rearrangements and the extensive dispersion of 5S rDNA sequences in the genome. PMID:24643007

  1. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies ( Ctenogobius , Gobiidae).

    PubMed

    Lima-Filho, P A; Bertollo, L A C; Cioffi, M B; Costa, G W W F; Molina, W F

    2014-01-01

    Karyotype analyses of the cryptobenthic marine species Ctenogobius boleosoma and C. smaragdus were performed by means of classical and molecular cytogenetics, including physical mapping of the multigene 18S and 5S rDNA families. C. boleosoma has 2n = 44 chromosomes (2 submetacentrics + 42 acrocentrics; FN = 46) with a single chromosome pair each carrying 18S and 5S ribosomal sites; whereas C. smaragdus has 2n = 48 chromosomes (2 submetacentrics + 46 acrocentrics; FN = 50), also with a single pair bearing 18S rDNA, but an extensive increase in the number of GC-rich 5S rDNA sites in 21 chromosome pairs. The highly divergent karyotypes among Ctenogobius species contrast with observations in several other marine fish groups, demonstrating an accelerated rate of chromosomal evolution mediated by both chromosomal rearrangements and the extensive dispersion of 5S rDNA sequences in the genome.

  2. Fluorescent Oligonucleotide Probes for Clinical and Environmental Detection of Acanthamoeba and the T4 18S rRNA Gene Sequence Type

    PubMed Central

    Stothard, Diane R.; Hay, John; Schroeder-Diedrich, Jill M.; Seal, David V.; Byers, Thomas J.

    1999-01-01

    The first genus- and subgenus-specific fluorescent oligonucleotide probes for in situ staining of Acanthamoeba are described. Sequences of these phylogeny-based probes complement the 18S rRNA and the gene encoding it (18S rDNA). The genus-specific probe (GSP) is a fluorescein-labeled 22-mer specific for Acanthamoeba as shown here by its hybridization to growing trophozoites of all 12 known Acanthamoeba 18S rDNA sequence types and by its failure to hybridize with amoebae of two other genera (Hartmannella vermiformis and Balamuthia mandrillaris), two human cell lines, and two bacteria (Pseudomonas aeruginosa and Escherichia coli). The sequence type T4-specific probe (ST4P) is a rhodamine-labeled 30-mer specific for Acanthamoeba 18S rDNA sequence type T4, as shown here in hybridization tests with trophozoites of all 12 sequence types. T4 is the subgenus group associated most closely with Acanthamoeba keratitis (AK). GSP also was tested with corneal scrapings from 17 patients with a high index of clinical suspicion of AK plus 5 patient controls. GSP stained both trophozoites and cysts, although nonspecific cyst wall autofluorescence also was observed. Results could be obtained with GSP in 1 to 2 days, and based on results from cell culture tests, the probe correctly detected the presence or absence of Acanthamoeba in 21 of 24 specimens from the 22 patients. The use of GSP with cultured trophozoites and cysts from corneal scrapings has illustrated the suitability of using fluorescent oligonucleotide probes for identification of the genus Acanthamoeba in both environmental and clinical samples. In addition, the use of ST4P with cultured amoebae has indicated the potential of oligonucleotide probes for use in subgenus classification. PMID:10405422

  3. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants.

    PubMed

    Stenøien, H K

    2008-03-01

    The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential.

  4. Uneven seasonal distribution of Babesia canis and its two 18S rDNA genotypes in questing Dermacentor reticulatus ticks in urban habitats.

    PubMed

    Hornok, Sándor; Kartali, Kitti; Takács, Nóra; Hofmann-Lehmann, Regina

    2016-07-01

    It has been reported from cities in Central Europe that clinical cases of canine babesiosis are most frequent in spring time, despite the fact that the peak activity of Dermacentor reticulatus (the vector of Babesia canis) is during autumn. The present study was initiated to evaluate the seasonal distribution of B. canis-infected D. reticulatus ticks in this context. In two habitats of Budapest 852 D. reticulatus adults were collected between August, 2014 and June, 2015. Among the molecularly analysed 413 ticks 8.2% were PCR positive for piroplasms. Both formerly reported 18S rDNA genotypes of B. canis: ("A" and "B") were identified. In habitat-1 B. canis-infected ticks were detected only in spring. Similarly, in habitat-2 B. canis-infected ticks occurred significantly more frequently during winter and spring than in the autumn (24.6% vs. 1.4%), and their monthly distribution showed significant negative correlation with tick size. The prevalence of infected ticks was the highest (43.5%) in late February. In addition, a month-dependent time-shift was noted in the appearance of the two B. canis 18S rDNA genotypes: the less pathogenic "A" predominating earlier, and the more pathogenic "B" later. It is known from literature that D. reticulatus individuals that moult to adult in the spring are smaller in size. Thus, the above results suggest that in urban habitats the occurrence of B. canis-infected ticks (or their questing activity) is more likely, when there are freshly emerged adults in the population, i.e. early in the questing season. It was also observed that the temporal distribution of D. reticulatus ticks carrying different B. canis genotypes was not random. PMID:27009915

  5. Phylogeny of protostome worms derived from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1995-07-01

    The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade.

  6. A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces.

    PubMed

    Corse, Emmanuel; Costedoat, Caroline; Chappaz, Rémi; Pech, Nicolas; Martin, Jean-François; Gilles, André

    2010-01-01

    The development of DNA barcoding from faeces represents a promising method for animal diet analysis. However, current studies mainly rely on prior knowledge of prey diversity for a specific predator rather than on a range of its potential prey species. Considering that the feeding behaviour of teleosts may evolve with their environment, it could prove difficult to establish an exhaustive listing of their prey. In this article, we extend the DNA barcoding approach to diet analysis to allow the inclusion of a wide taxonomic range of potential prey items. Thirty-four ecological clade-specific primer sets were designed to cover a large proportion of prey species found in European river ecosystems. Selected primers sets were tested on isolated animal, algal or plant tissues and thereafter on fish faeces using nested PCR to increase DNA detection sensitivity. The PCR products were sequenced and analysed to confirm the identity of the taxa and to validate the method. The methodology developed here was applied to a diet analysis of three freshwater cyprinid species that are assumed to have similar feeding behaviour [Chondrostoma toxostoma toxostoma (Vallot 1837), Chondrostoma nasus nasus (Linnaeus, 1758) and Barbus barbus, (Linneaus 1758)]. These three species were sampled in four different hydrographic basins. Principal Component Analysis based on prey proportions identified distinct perilithon grazer and benthophagous behaviours. Furthermore, our results were consistent with the available literature on feeding behaviour in these fish. The simplicity of the PCR-based method and its potential generalization to other freshwater organisms may open new perspectives in food web ecology. PMID:21564994

  7. A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces.

    PubMed

    Corse, Emmanuel; Costedoat, Caroline; Chappaz, Rémi; Pech, Nicolas; Martin, Jean-François; Gilles, André

    2010-01-01

    The development of DNA barcoding from faeces represents a promising method for animal diet analysis. However, current studies mainly rely on prior knowledge of prey diversity for a specific predator rather than on a range of its potential prey species. Considering that the feeding behaviour of teleosts may evolve with their environment, it could prove difficult to establish an exhaustive listing of their prey. In this article, we extend the DNA barcoding approach to diet analysis to allow the inclusion of a wide taxonomic range of potential prey items. Thirty-four ecological clade-specific primer sets were designed to cover a large proportion of prey species found in European river ecosystems. Selected primers sets were tested on isolated animal, algal or plant tissues and thereafter on fish faeces using nested PCR to increase DNA detection sensitivity. The PCR products were sequenced and analysed to confirm the identity of the taxa and to validate the method. The methodology developed here was applied to a diet analysis of three freshwater cyprinid species that are assumed to have similar feeding behaviour [Chondrostoma toxostoma toxostoma (Vallot 1837), Chondrostoma nasus nasus (Linnaeus, 1758) and Barbus barbus, (Linneaus 1758)]. These three species were sampled in four different hydrographic basins. Principal Component Analysis based on prey proportions identified distinct perilithon grazer and benthophagous behaviours. Furthermore, our results were consistent with the available literature on feeding behaviour in these fish. The simplicity of the PCR-based method and its potential generalization to other freshwater organisms may open new perspectives in food web ecology.

  8. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.

    PubMed

    Whiting, M F; Carpenter, J C; Wheeler, Q D; Wheeler, W C

    1997-03-01

    Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of

  9. New Hosts of Simplicimonas similis and Trichomitus batrachorum Identified by 18S Ribosomal RNA Gene Sequences

    PubMed Central

    Dimasuay, Kris Genelyn B.; Lavilla, Orlie John Y.; Rivera, Windell L.

    2013-01-01

    Trichomonads are obligate anaerobes generally found in the digestive and genitourinary tract of domestic animals. In this study, four trichomonad isolates were obtained from carabao, dog, and pig hosts using rectal swab. Genomic DNA was extracted using Chelex method and the 18S rRNA gene was successfully amplified through novel sets of primers and undergone DNA sequencing. Aligned isolate sequences together with retrieved 18S rRNA gene sequences of known trichomonads were utilized to generate phylogenetic trees using maximum likelihood and neighbor-joining analyses. Two isolates from carabao were identified as Simplicimonas similis while each isolate from dog and pig was identified as Pentatrichomonas hominis and Trichomitus batrachorum, respectively. This is the first report of S. similis in carabao and the identification of T. batrachorum in pig using 18S rRNA gene sequence analysis. The generated phylogenetic tree yielded three distinct groups mostly with relatively moderate to high bootstrap support and in agreement with the most recent classification. Pathogenic potential of the trichomonads in these hosts still needs further investigation. PMID:23936631

  10. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343

  11. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    PubMed

    Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  12. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product.

  13. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product. PMID:26789074

  14. Novel Acanthamoeba 18S rRNA gene sequence type from an environmental isolate.

    PubMed

    Magnet, A; Henriques-Gil, N; Galván-Diaz, A L; Izquiedo, F; Fenoy, S; del Aguila, C

    2014-08-01

    The free-living amoebae, Acanthamoeba, can act as opportunistic parasites on a wide range of vertebrates and are becoming a serious threat to human health due to the resistance of their cysts to harsh environmental conditions, disinfectants, some water treatment practices, and their ubiquitous distribution. Subgenus classification based on morphology is being replaced by a classification based on the sequences of the 18S rRNA gene with a total of 18 different genotypes (T1-T18). A new environmental strain of Acanthamoeba isolated from a waste water treatment plant is presented in this study as a candidate for the description of the novel genotype T19 after phylogenetic analysis.

  15. Molecular phylogenetic studies of Brassica, rorippa, arabidopsis and allied genera based on the internal transcribed spacer region of 18S-25S rDNA.

    PubMed

    Yang, Y W; Lai, K N; Tai, P Y; Ma, D P; Li, W H

    1999-12-01

    The phylogenetic relationships of nine genera in four tribes of the family Brassicaceae were estimated from the sequences of the internal transcribed spacer region (ITS) of the 18S-25S nuclear ribosomal DNA. The entire ITS region of 16 accessions belonging to 10 species of seven genera was sequenced. Eight published sequences of Brassicaceae were also used. A total of 27 sequences were included in this study; four of them were found to be pseudogenes. Both the neighbor-joining and the parsimony trees suggest that the nine genera can be divided into three groups: (1) Arabidopsis, Cardaminopsis, Capsella, and Lepidium; (2) Rorippa and Cardamine; and (3) Brassica, Sinapis, and Raphanus. In contradiction to the proposal that Cardaminopsis and Arabidopsis be put into an expanded tribe Arabideae, our data show that these two genera are more closely related to Capsella and Lepidium (tribe Lepidieae) than to Rorippa and Cardamine (tribe Arabideae). Further, our data show that within the tribe Brassiceae, Raphanus is more closely related to B. nigra than to the B. oleracea/B. rapa clade. This result is in agreement with the nuclear data obtained in several studies, but is in conflict with the RFLP data of mitochondrial and chloroplast DNA. As pointed out by previous authors, it is possible that Raphanus is a hybrid between the B. nigra and B. oleracea/B. rapa lineages with the latter as the maternal parent.

  16. Use of Subgenic 18S Ribosomal DNA PCR and Sequencing for Genus and Genotype Identification of Acanthamoebae from Humans with Keratitis and from Sewage Sludge

    PubMed Central

    Schroeder, Jill M.; Booton, Gregory C.; Hay, John; Niszl, Ingrid A.; Seal, David V.; Markus, Miles B.; Fuerst, Paul A.; Byers, Thomas J.

    2001-01-01

    This study identified subgenic PCR amplimers from 18S rDNA that were (i) highly specific for the genus Acanthamoeba, (ii) obtainable from all known genotypes, and (iii) useful for identification of individual genotypes. A 423- to 551-bp Acanthamoeba-specific amplimer ASA.S1 obtained with primers JDP1 and JDP2 was the most reliable for purposes i and ii. A variable region within this amplimer also identified genotype clusters, but purpose iii was best achieved with sequencing of the genotype-specific amplimer GTSA.B1. Because this amplimer could be obtained from any eukaryote, axenic Acanthamoeba cultures were required for its study. GTSA.B1, produced with primers CRN5 and 1137, extended between reference bp 1 and 1475. Genotypic identification relied on three segments: bp 178 to 355, 705 to 926, and 1175 to 1379. ASA.S1 was obtained from single amoeba, from cultures of all known 18S rDNA genotypes, and from corneal scrapings of Scottish patients with suspected Acanthamoeba keratitis (AK). The AK PCR findings were consistent with culture results for 11 of 15 culture-positive specimens and detected Acanthamoeba in one of nine culture-negative specimens. ASA.S1 sequences were examined for 6 of the 11 culture-positive isolates and were most closely associated with genotypic cluster T3-T4-T11. A similar distance analysis using GTSA.B1 sequences identified nine South African AK-associated isolates as genotype T4 and three isolates from sewage sludge as genotype T5. Our results demonstrate the usefulness of 18S ribosomal DNA PCR amplimers ASA.S1 and GTSA.B1 for Acanthamoeba-specific detection and reliable genotyping, respectively, and provide further evidence that T4 is the predominant genotype in AK. PMID:11326011

  17. Origin of the Mesozoa inferred from 18S rRNA gene sequences.

    PubMed

    Pawlowski, J; Montoya-Burgos, J I; Fahrni, J F; Wüest, J; Zaninetti, L

    1996-10-01

    The phylum Mesozoa comprises small, simply organized wormlike parasites of marine invertebrates and is composed of two classes, the Rhombozoa and the Orthonectida. The origin of Mesozoa is uncertain; they are classically considered either as degenerate turbellarians or as primitive multicellular animals related to ciliated protists. In order to precisely determine the phylogenetic position of this group we sequenced the complete 18S rRNA gene of one rhombozoid, Dicyema sp., and one orthonectid, Rhopalura ophiocomae. The sequence analysis shows that the Mesozoa branch early in the animal evolution, closely to nematodes and myxozoans. Our data indicate probably separate origins of rhombozoids and orthonectids, suggesting that their placement in the same phylum needs to be revised.

  18. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    USGS Publications Warehouse

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  19. Cytogenetic Diversity and the Evolutionary Dynamics of rDNA Genes and Telomeric Sequences in the Ancistrus Genus (Loricariidae: Ancistrini).

    PubMed

    Favarato, Ramon Marin; Silva, Maelin da; Oliveira, Renildo Ribeiro de; Artoni, Roberto Ferreira; Feldberg, Eliana; Matoso, Daniele Aparecida

    2016-04-01

    The Ancistrus genus differs from other Ancistrini due to its wide karyotypic diversity, varied diploid numbers, differences in sex chromosomes, and large number of species, as well as its tendency to form small populations with low vagility. This study investigated the role of 5S and 18S rDNA and telomeric repetitive sequences in the evolution of the karyotypic macrostructure of seven species of the genus Ancistrus from the Central Amazon. The results indicate a strong correlation between the location of ribosomal sites and fragile sites in the genome, particularly of 5S rDNA sequences, which are associated, in some species, with telomeric sequences at the sites of chromosomal healing. Moreover, the occurrence of two lineages was observed with regard to the synteny of ribosomal genes. The species of the genus Ancistrus showed high chromosomal lability associated with breakpoints, which was characterized by the presence of repetitive DNA sequences and this process is suggested to be an evolutionary model for the rapid fixation of structural rearrangements. PMID:26829587

  20. Cytogenetic Diversity and the Evolutionary Dynamics of rDNA Genes and Telomeric Sequences in the Ancistrus Genus (Loricariidae: Ancistrini).

    PubMed

    Favarato, Ramon Marin; Silva, Maelin da; Oliveira, Renildo Ribeiro de; Artoni, Roberto Ferreira; Feldberg, Eliana; Matoso, Daniele Aparecida

    2016-04-01

    The Ancistrus genus differs from other Ancistrini due to its wide karyotypic diversity, varied diploid numbers, differences in sex chromosomes, and large number of species, as well as its tendency to form small populations with low vagility. This study investigated the role of 5S and 18S rDNA and telomeric repetitive sequences in the evolution of the karyotypic macrostructure of seven species of the genus Ancistrus from the Central Amazon. The results indicate a strong correlation between the location of ribosomal sites and fragile sites in the genome, particularly of 5S rDNA sequences, which are associated, in some species, with telomeric sequences at the sites of chromosomal healing. Moreover, the occurrence of two lineages was observed with regard to the synteny of ribosomal genes. The species of the genus Ancistrus showed high chromosomal lability associated with breakpoints, which was characterized by the presence of repetitive DNA sequences and this process is suggested to be an evolutionary model for the rapid fixation of structural rearrangements.

  1. A phylogenetic study on galactose-containing Candida species based on 18S ribosomal DNA sequences.

    PubMed

    Suzuki, Motofumi; Suh, Sung-Oui; Sugita, Takashi; Nakase, Takashi

    1999-10-01

    Phylogenetic relationships of 33 Candida species containing galactose in the cells were investigated by using 18S ribosomal DNA sequence analysis. Galactose-containing Candida species and galactose-containing species from nine ascomycetous genera were a heterogeneous assemblage. They were divided into three clusters (II, III, and IV) which were phylogenetically distant from cluster I, comprising 9 galactose-lacking Candida species, C. glabrata, C. holmii, C. krusei, C. tropicalis (the type species of Candida), C. albicans, C. viswanathii, C. maltosa, C. parapsilosis, C. guilliermondii, and C. lusitaniae, and 17 related ascomycetous yeasts. These three clusters were also phylogenetically distant from Schizosaccharomyces pombe, which contains galactomannan in its cell wall. Cluster II comprised C. magnoliae, C. vaccinii, C. apis, C. gropengiesseri, C. etchellsii, C. floricola, C. lactiscondensi, Wickerhamiella domercqiae, C. versatilis, C. azyma, C. vanderwaltii, C. pararugosa, C. sorbophila, C. spandovensis, C. galacta, C. ingens, C. incommunis, Yarrowia lipolytica, Galactomyces geotrichum, and Dipodascus albidus. Cluster III comprised C. tepae, C. antillancae and its synonym C. bondarzewiae, C. ancudensis, C. petrohuensis, C. santjacobensis, C. ciferrii (anamorph of Stephanoascus ciferrii), Arxula terrestris, C. castrensis, C. valdiviana, C. paludigena, C. blankii, C. salmanticensis, C. auringiensis, C. bertae, and its synonym C. bertae var. chiloensis, C. edax (anamorph of Stephanoascus smithiae), Arxula adeninivorans, and C. steatolytica (synonym of Zygoascus hellenicus). Cluster IV comprised C. cantarellii, C. vinaria, Dipodascopsis uninucleata, and Lipomyces lipofer. Two galactose-lacking and Q-8-forming species, C. stellata and Pichia pastoris, and 5 galactose-lacking and Q-9-forming species, C. apicola, C. bombi, C. bombicola, C. geochares, and C. insectalens, were included in Cluster II. Two galactose-lacking and Q-9-forming species, C. drimydis and C

  2. Sequence requirements for maturation of the 5' terminus of human 18 S rRNA in vitro.

    PubMed

    Yu, Y T; Nilsen, T W

    1992-05-01

    Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s). PMID:1577760

  3. Metagenomic data of fungal internal transcribed Spacer and 18S rRNA gene sequences from Lonar lake sediment, India.

    PubMed

    Dudhagara, Pravin; Ghelani, Anjana; Bhavsar, Sunil; Bhatt, Shreyas

    2015-09-01

    The data in this article contains the sequences of fungal Internal Transcribed Spacer (ITS) and 18S rRNA gene from a metagenome of Lonar soda lake, India. Sequences were amplified using fungal specific primers, which amplified the amplicon lined between the 18S and 28S rRNA genes. Data were obtained using Fungal tag-encoded FLX amplicon pyrosequencing (fTEFAP) technique and used to analyze fungal profile by the culture-independent method. Primary analysis using PlutoF 454 pipeline suggests the Lonar lake mycobiome contained the 29 different fungal species. The raw sequencing data used to perform this analysis along with FASTQ file are located in the NCBI Sequence Read Archive (SRA) under accession No. SRX889598 (http://www.ncbi.nlm.nih.gov/sra/SRX889598).

  4. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA

    PubMed Central

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio Jr., Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Abstract Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group. PMID:24260632

  5. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA.

    PubMed

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio, Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group.

  6. The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae.

    PubMed

    Rubtsov, P M; Musakhanov, M M; Zakharyev, V M; Krayev, A S; Skryabin, K G; Bayev, A A

    1980-12-11

    The cloned 18 S ribosomal RNA gene from Saccharomyces cerevisiae have been sequenced, using the Maxam-Gilbert procedure. From this data the complete sequence of 1789 nucleotides of the 18 S RNA was deduced. Extensive homology with many eucaryotic as well as E. coli ribosomal small subunit rRNA (S-rRNA) has been observed in the 3'-end region of the rRNA molecule. Comparison of the yeast 18 S rRNA sequences with partial sequence data, available for rRNAs of the other eucaryotes provides strong evidence that a substantial portion of the 18 S RNA sequence has been conserved in evolution.

  7. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    USGS Publications Warehouse

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  8. Chromosomal localization and partial sequencing of the 18S and 28S ribosomal genes from Bradysia hygida (Diptera: Sciaridae).

    PubMed

    Gaspar, V P; Shimauti, E L T; Fernandez, M A

    2014-03-26

    In insects, ribosomal genes are usually detected in sex chromosomes, but have also or only been detected in autosomal chromosomes in some cases. Previous results from our research group indicated that in Bradysia hygida, nucleolus organizer regions were associated with heterochromatic regions of the autosomal C chromosome, using the silver impregnation technique. The present study confirmed this location of the ribosomal genes using fluorescence in situ hybridization analysis. This analysis also revealed the partial sequences of the 18S and 28S genes for this sciarid. The sequence alignment showed that the 18S gene has 98% identity to Corydalus armatus and 91% identity to Drosophila persimilis and Drosophila melanogaster. The partial sequence analysis of the 28S gene showed 95% identity with Bradysia amoena and 93% identity with Schwenckfeldina sp. These results confirmed the location of ribosomal genes of B. hygida in an autosomal chromosome, and the partial sequence analysis of the 18S and 28S genes demonstrated a high percentage of identity among several insect ribosomal genes.

  9. Phylogenetic position of the yeast-like symbiotes of Tagosodes orizicolus (Homoptera: Delphacidae) based on 18S ribosomal DNA partial sequences.

    PubMed

    Xet-Mull, Ana M; Quesada, Tania; Espinoza, Ana M

    2004-09-01

    Tagosodes orizicolus Muir (Homoptera: Delphacidae), the endemic delphacid species of tropical America carries yeast-like symbiotes (YLS) in the abdominal fat bodies and the ovarial tissues, like other rice planthoppers of Asia. These YLS are obligate symbiotes, which are transmitted transovarially, and maintain a mutualistic relationship with the insect host. This characteristic has made in vitro culture and classification of YLS rather difficult using conventional methods. Nevertheless, microorganisms of similar characteristics have been successfully classified by using molecular taxonomy. In the present work, the YLS of Tagosodes orizicolus (YLSTo) were purified on Percoll gradients, and specific segments of 18S rDNA were amplified by PCR, cloned and sequenced. Sequences were aligned by means of the CLUSTAL V (DNASTAR) program; phylogenetic trees were constructed with the Phylogeny Inference Package (PHYLIP), showing that YLSTo belong to the fungi class Pyrenomycetes, phylum Ascomycota. Similarities between 98% and 100% were observed among YLS of the rice delphacids Tagosodes orizicolus, Nilaparvata lugens, Laodelphax striatellus and Sogatella fur cifera, and between 89.8% and 90.8% when comparing the above to YLS of the aphid Hamiltonaphis styraci. These comparisons revealed that delphacid YLS are a highly conserved monophyletic group within the Pyrenomycetes and are closely related to Hypomyces chrysospermus. PMID:17361570

  10. How well do ITS rDNA sequences differentiate species of true morels (Morchella)?

    PubMed

    Du, Xi-Hui; Zhao, Qi; Yang, Zhu L; Hansen, Karen; Taskin, Hatira; Büyükalaca, Saadet; Dewsbury, Damon; Moncalvo, Jean-Marc; Douhan, Greg W; Robert, Vincent A R G; Crous, Pedro W; Rehner, Stephen A; Rooney, Alejandro P; Sink, Stacy; O'Donnell, Kerry

    2012-01-01

    Arguably more mycophiles hunt true morels (Morchella) during their brief fruiting season each spring in the northern hemisphere than any other wild edible fungus. Concerns about overharvesting by individual collectors and commercial enterprises make it essential that science-based management practices and conservation policies are developed to ensure the sustainability of commercial harvests and to protect and preserve morel species diversity. Therefore, the primary objectives of the present study were to: (i) investigate the utility of the ITS rDNA locus for identifying Morchella species, using phylogenetic species previously inferred from multilocus DNA sequence data as a reference; and (ii) clarify insufficiently identified sequences and determine whether the named sequences in GenBank were identified correctly. To this end, we generated 553 Morchella ITS rDNA sequences and downloaded 312 additional ones generated by other researchers from GenBank using emerencia and analyzed them phylogenetically. Three major findings emerged: (i) ITS rDNA sequences were useful in identifying 48/62 (77.4%) of the known phylospecies; however, they failed to identify 12 of the 22 species within the species-rich Elata Subclade and two closely related species in the Esculenta Clade; (ii) at least 66% of the named Morchella sequences in GenBank are misidentified; and (iii) ITS rDNA sequences of up to six putatively novel Morchella species were represented in GenBank. Recognizing the need for a dedicated Web-accessible reference database to facilitate the rapid identification of known and novel species, we constructed Morchella MLST (http://www.cbs.knaw.nl/morchella/), which can be queried with ITS rDNA sequences and those of the four other genes used in our prior multilocus molecular systematic studies of this charismatic genus.

  11. Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs.

    PubMed

    Nelles, L; Fang, B L; Volckaert, G; Vandenberghe, A; De Wachter, R

    1984-12-11

    The primary structure of the gene for 18 S rRNA of the crustacean Artemia salina was determined. The sequence has been aligned with 13 other small ribosomal subunit RNA sequences of eukaryotic, archaebacterial, eubacterial, chloroplastic and plant mitochondrial origin. Secondary structure models for these RNAs were derived on the basis of previously proposed models and additional comparative evidence found in the alignment. Although there is a general similarity in the secondary structure models for eukaryotes and prokaryotes, the evidence seems to indicate a different topology in a central area of the structures.

  12. Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences.

    PubMed

    Fan, C

    2001-06-01

    Phylogenetic relationships within the dogwood genus Cornus have been highly controversial due to the great morphological heterogeneity. Earlier phylogenetic analyses of Cornus using chloroplast DNA (cpDNA) data (including rbcL and matK sequences, as well as restriction sites) and morphological characters suggested incongruent relationships within the genus. The present study generated sequence data from the nuclear gene 26S rDNA for Cornus to test the phylogenetic hypotheses based on cpDNA and morphological data. The 26S rDNA sequence data obtained represent 16 species, 13 from Cornus and three from outgroups, having an aligned length of 3380 bp. Both parsimony and maximum likelihood analyses of these sequences were conducted. Trees resulting from these analyses suggest relationships among subgroups of Cornus consistent with those inferred from cpDNA data. That is, the dwarf dogwood (subg. Arctocrania) and the big-bracted dogwood (subg. Cynoxylon and subg. Syncarpea) clades are sisters, which are, in turn, sister to the cornelian cherries (subg. Cornus and subg. Afrocrania). This red-fruited clade is sister to the blue- or white-fruited dogwoods (subg. Mesomora, subg. Kraniopsis, and subg. Yinquania). Within the blue- or white-fruited clade, C. oblonga (subg. Yinquania) is sister to the remainder, and subg. Mesomora is sister to subg. Kraniopsis. These relationships were also suggested by the combined 26S rDNA and cpDNA data, but with higher bootstrap and Bremer support in the combined analysis. The 26S rDNA sequence data of Cornus consist of 12 expansion segments spanning 1034 bp. These expansion segments evolve approximately four times as fast as the conserved core regions. The study provides an example of phylogenetic utility of 26S rDNA sequences below the genus level. PMID:11410478

  13. Ultrastructure and 18S rDNA phylogeny of Apoikia lindahlii comb. nov. (Chrysophyceae) and its epibiontic protists, Filos agilis gen. et sp. nov. (Bicosoecida) and Nanos amicus gen. et sp. nov. (Bicosoecida).

    PubMed

    Kim, Eunsoo; Yubuki, Naoji; Leander, Brian S; Graham, Linda E

    2010-04-01

    Three heterotrophic stramenopiles--Apoikia lindahlii comb. nov. (Chrysophyceae), Filos agilis gen. et sp. nov. (Bicosoecida), and Nanos amicus gen. et sp. nov. (Bicosoecida)--were isolated from acidic peat bogs. The biflagellate A. lindahlii forms loose irregular colonies from which swimming cells may detach, and produces extensive mucilaginous material containing bacterial cells. Phylogenetic analyses of small subunit rDNA sequences demonstrated that A. lindahlii branches within the Chrysophyceae. While A. lindahlii is an obligate heterotroph, ultrastructural observations revealed a leukoplast in the perinuclear region. The pico-sized uniflagellates F. agilis and N. amicus were isolated from separate lakes and within the mucilage of A. lindahlii, suggesting their close associations in natural habitats. In SSU rDNA phylogenies, F. agilis and N. amicus were closely related to the bicosoecids Adriamonas, Siluania, Paramonas, and Nerada. While Filos, Nanos, and Siluania are similar in light microscopic features, their SSU rDNA gene sequences differed significantly (>8% differences) and were not monophyletic. Both F. agilis and N. amicus have a cytostome/cytopharynx particle ingestion apparatus. Bacterial cells and material similar to the mucilage of A. lindahlii occurred within the food vacuole of F. agilis and N. amicus. The nature of association between A. lindahlii and its epibiontic bicosoecids is discussed.

  14. Conservation patterns in angiosperm rDNA ITS2 sequences.

    PubMed Central

    Hershkovitz, M A; Zimmer, E A

    1996-01-01

    The two internal transcribed spacers (ITS1 and ITS2) of nuclear ribosomal DNA have become commonly exploited sources of informative variation for interspecific-/intergeneric-level phylogenetic analyses among angiosperms and other eukaryotes. We present an alignment in which one-third to one-half of the ITS2 sequence is alignable above the family level in angiosperms and a phenetic analysis showing that ITS2 contains information sufficient to diagnose lineages at several hierarchical levels. Base compositional analysis shows that angiosperm ITS2 is inherently GC-rich, and that the proportion of T is much more variable than that for other bases. We propose a general model of angiosperm ITS2 secondary structure that shows common pairing relationships for most of the conserved sequence tracts. Variations in our secondary structure predictions for sequences from different taxa indicate that compensatory mutation is not limited to paired positions. PMID:8760866

  15. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data. PMID:15012964

  16. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data.

  17. Heterothallic species of neurospora are distinguishable by restriction analysis of their nuclear rDNA sequences

    SciTech Connect

    Chambers, C.; Dutta, S.K.

    1983-01-01

    Restriction analysis of rDNAs was used to distinguish nuclear rDNA's of three different reference strains of heterothallic species of the genus Neurospora: N. crassa 74A (FGSC number987), N. intermedia P420 (FGSC number2316), and N. sitophila 10B (FGSC number580). Two approaches were adopted: (1) Nuclear DNA's of these three Neurospora species were treated with various restriction enzymes. Against the streaks of nuclear DNAs on the 0.7% agarose gels background bands were visible. These background bands are visible because rDNA sequences of Neurospora species exist in multiple copies within the nuclear DNA's. (2) The second approach was comparison of auto-radiographs of hybrid molecules of Southern blot transfers of restricted nuclear DNAs and /sup 32/P-labelled nick translated rDNA's (referred to as rDNA probe) isolated from N. crassa slime mutant (FGSC number1118), rDNA cloned into pBR322. A summary of restricted fragment sizes as seen in the gels and in autoradiographs of Southern blots of the respective gels is presented.

  18. Genetic differentiation of strongyloides stercoralis from two different climate zones revealed by 18S ribosomal DNA sequence comparison.

    PubMed

    Pakdee, Wallop; Thaenkham, Urusa; Dekumyoy, Paron; Sa-Nguankiat, Surapol; Maipanich, Wanna; Pubampen, Somchit

    2012-11-01

    Over 70 countries in tropical and subtropical zones are endemic areas for Strongyloides stercoralis, with a higher prevalence of the parasite often occurring in tropical regions compared to subtropical ones. In order to explore genetic variations of S. stercoralis form different climate zones, 18S ribosomal DNA of parasite specimens obtained from Thailand were sequenced and compared with those from Japan. The maximum likelihood indicates that S. stercoralis populations from these two different climate zones have genetically diverged. The genetic relationship between S. stercoralis populations is not related to the host species, but rather to moisture and temperature. These factors may directly drive genetic differentiation among isolated populations of S. stercoralis.

  19. Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rDNA sequences.

    PubMed Central

    Burgess, J G; Kawaguchi, R; Sakaguchi, T; Thornhill, R H; Matsunaga, T

    1993-01-01

    We have investigated the evolutionary relationships between two facultatively anaerobic Magnetospirillum strains (AMB-1 and MGT-1) and fastidious, obligately microaerophilic species, such as Magnetospirillum magnetotacticum, using a molecular phylogenetic approach. Genomic DNA from strains MGT-1 and AMB-1 was used as a template for amplification of the genes coding for 16S rRNA (16S rDNA) by the polymerase chain reaction. Amplified DNA fragments were sequenced (1,424 bp) and compared with sequences for M. magnetotacticum MS-1 and Magnetospirillum gryphiswaldense MSR-1. Phylogenetic analysis of the aligned 16S rDNA sequences indicated that the two new magnetic spirilla, AMB-1 and MGT-1, lie within the alpha subdivision (alpha-1) of the eubacterial group Proteobacteria and are closely related to Rhodospirillum fulvum and to several endosymbiotic bacteria. Strains AMB-1, MGT-1, and MS-1 formed a cluster, termed group I, in which they were more closely related to each other than to group II, which contained M. gryphiswaldense MSR-1. Group I strains were also physiologically distinct from strain MSR-1. Sequence alignment studies allowed elucidation of genus-specific regions of the 16S rDNA, and oligonucleotide primers complementary to two of these regions were used to develop a specific polymerase chain reaction assay for detection of magnetic spirilla in natural samples. Images PMID:7691800

  20. Phylogeny of chloromonas (chlorophyceae): A study of 18S ribosomal RNA gene sequences

    SciTech Connect

    Buchheim, M.A.; Buchheim, J.A.; Chapman, R.L.

    1997-04-01

    The unicellular, biflagellate genus Chloromonas differs from its ally, Chlamydomonas, primarily by the absence of pyrenoids in the vegetative stage of the former. As with most green flagellate genera, little is known about phylogenetic affinities within and among Chloromonas species. Phylogenetic analyses of nuclear-encoded small-subunit ribosomal RNA gene sequences demonstrate that a sampling of five Chloromonas taxa, obtained from major culture collections, do not form a monophyletic group. However, only three of these isolates, Chloromonas clathrata, Chloromonas serbinowi, and Chloromonas rosae, are diagnosable morphologically as Chloromonas species by the absence of a pyrenoid in the vegetative stage. The three diagnosable Chloromonas taxa form an alliance with two pyrenoid-bearing chlamydomonads, Chlamydomonas augustae and Chlamydomonas macrostellata. With the exception of Chloromonas serbinowi, which represents the basal lineage within the clade, each of the diagnosable Chloromonas taxa and their pyrenoid-bearing Chlamydomonas allies were isolated originally from mountain soils, snow, or cold peat. These observations suggest that hibitat, independent of pyrenoid status, may be most closely linked to the natural history of this clade of chlamydomonad flagellates. 51 refs., 3 figs., 3 tabs.

  1. Phylogenetic Analysis of Geographically Diverse Radopholus similis via rDNA Sequence Reveals a Monomorphic Motif

    PubMed Central

    Kaplan, D. T.; Thomas, W. K.; Frisse, L. M.; Sarah, J. L.; Stanton, J. M.; Speijer, P. R.; Marin, D. H.; Opperman, C. H.

    2000-01-01

    The nucleic acid sequences of rDNA ITS1 and the rDNA D2/D3 expansion segment were compared for 57 burrowing nematode isolates collected from Australia, Cameroon, Central America, Cuba, Dominican Republic, Florida, Guadeloupe, Hawaii, Nigeria, Honduras, Indonesia, Ivory Coast, Puerto Rico, South Africa, and Uganda. Of the 57 isolates, 55 were morphologically similar to Radopholus similis and seven were citrus-parasitic. The nucleic acid sequences for PCR-amplified ITS1 and for the D2/D3 expansion segment of the 28S rDNA gene were each identical for all putative R. similis. Sequence divergence for both the ITS1 and the D2/D3 was concordant with morphological differences that distinguish R. similis from other burrowing nematode species. This result substantiates previous observations that the R. similis genome is highly conserved across geographic regions. Autapomorphies that would delimit phylogenetic lineages of non-citrus-parasitic R. similis from those that parasitize citrus were not observed. The data presented herein support the concept that R. similis is comprised of two pathotypes-one that parasitizes citrus and one that does not. PMID:19270959

  2. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. PMID:27084467

  3. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis.

  4. Molecular analysis of complete ssu to lsu rdna sequence in the harmful dinoflagellate alexandrium tamarense (korean isolate, HY970328M)

    NASA Astrophysics Data System (ADS)

    Ki, Jang-Seu; Han, Myung-Soo

    2005-09-01

    New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

  5. Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani.

    PubMed

    Kuninaga, S; Natsuaki, T; Takeuchi, T; Yokosawa, R

    1997-09-01

    Sequence analysis of the rDNA region containing the internal transcribed spacer (ITS) regions and the 5.8s rDNA coding sequence was used to evaluate the genetic diversity of 45 isolates within and between anastomosis groups (AGs) in Rhizoctonia solani. The 5.8s rDNA sequence was completely conserved across all the AGs examined, whereas the ITS rDNA sequence was found to be highly variable among isolates. The sequence homology in the ITS regions was above 96% for isolates of the same subgroup, 66-100% for isolates of different subgroups within an AG, and 55-96% for isolates of different AGs. In neighbor-joining trees based on distances derived from ITS-5.8s rDNA sequences, subgroups IA, IB and IC within AG-1 and subgroups HG-I and HG-II within AG-4 were placed on statistically significant branches as assessed by bootstrap analysis. These results suggest that sequence analysis of ITS rDNA regions of R. solani may be a valuable tool for identifying AG subgroups of biological significance.

  6. Genotypic heterogeneity based on 18S-rRNA gene sequences among Acanthamoeba isolates from clinical samples in Italy.

    PubMed

    Di Cave, David; D' Alfonso, Rossella; Dussey Comlavi, Kodjo A; D' Orazi, Carlo; Monno, Rosa; Berrilli, Federica

    2014-11-01

    Acanthamoeba keratitis (AK) is an ocular disease caused by members of a genus of free-living amoebae and it is associated predominantly with contact lens (CL) use. This study reports 55 cases of AK diagnosed in Italy. Genotype identification was carried out by PCR assay followed by sequence analysis of the 18S rRNA gene using the genus specific primers JDP1 and JDP2. Genotype assignment was based on phenetic analysis of the ASA.S1 subset of the small-subunit rRNA gene sequences. The material has been collected at the Polyclinic Tor Vergata of Rome for a total of 19 isolates and at the Polyclinic Hospital of Bari (36 isolates). Thirty-three out of the 55 genetically characterized isolates were assigned to the genotype T4. Ten isolates were identified as belonging to the genotype T15 thus confirming the first association between the genotype T15 and human amoebic keratitis previously described from the same area. We underline the occurrence of the genotype T3 and T11 identified for the first time in the country.

  7. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  8. Phylogeny and systematics of demospongiae in light of new small-subunit ribosomal DNA (18S) sequences.

    PubMed

    Redmond, N E; Morrow, C C; Thacker, R W; Diaz, M C; Boury-Esnault, N; Cárdenas, P; Hajdu, E; Lôbo-Hajdu, G; Picton, B E; Pomponi, S A; Kayal, E; Collins, A G

    2013-09-01

    The most diverse and species-rich class of the phylum Porifera is Demospongiae. In recent years, the systematics of this clade, which contains more than 7000 species, has developed rapidly in light of new studies combining molecular and morphological observations. We add more than 500 new, nearly complete 18S sequences (an increase of more than 200%) in an attempt to further enhance understanding of the phylogeny of Demospongiae. Our study specifically targets representation of type species and genera that have never been sampled for any molecular data in an effort to accelerate progress in classifying this diverse lineage. Our analyses recover four highly supported subclasses of Demospongiae: Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha. Within Keratosa, neither Dendroceratida, nor its two families, Darwinellidae and Dictyodendrillidae, are monophyletic and Dictyoceratida is divided into two lineages, one predominantly composed of Dysideidae and the second containing the remaining families (Irciniidae, Spongiidae, Thorectidae, and Verticillitidae). Within Myxospongiae, we find Chondrosida to be paraphyletic with respect to the Verongida. We amend the latter to include species of the genus Chondrosia and erect a new order Chondrillida to contain remaining taxa from Chondrosida, which we now discard. Even with increased taxon sampling of Haploscleromorpha, our analyses are consistent with previous studies; however, Haliclona species are interspersed in even more clades. Haploscleromorpha contains five highly supported clades, each more diverse than previously recognized, and current families are mostly polyphyletic. In addition, we reassign Janulum spinispiculum to Haploscleromorpha and resurrect Reniera filholi as Janulum filholi comb. nov. Within the large clade Heteroscleromorpha, we confirmed 12 recently identified clades based on alternative data, as well as a sister-group relationship between the freshwater Spongillida and the family

  9. Phylogenetic relationships among Linguatula serrata isolates from Iran based on 18S rRNA and mitochondrial cox1 gene sequences.

    PubMed

    Ghorashi, Seyed Ali; Tavassoli, Mousa; Peters, Andrew; Shamsi, Shokoofeh; Hajipour, Naser

    2016-01-01

    The phylogenetic relationships among seven Linguatula serrata (L. serrata) isolates collected from cattle, goats, sheep, dogs and camels in different geographical locations of Iran were investigated using partial 18S ribosomal RNA (rRNA) and partial mitochondrial cytochrome c oxidase subunit 1 (cox1) gene sequences. The nucleotide sequences were analysed in order to determine the phylogenetic relationships between the isolates. Higher sequence diversity and intraspecies variation was observed in the cox1 gene compared to 18S rRNA sequences. Phylogenetic analysis of the cox1 gene placed all L. serrata isolates in a sister clade to L. arctica. The Mantel regression analysis revealed no association between genetic variations and host species or geographical location, perhaps due to the small sample size. However, genetic variations between L. serrata isolates in Iran and those isolated in other parts of the world may exist and could reveal possible evolutionary relationships.

  10. Phylogenetic relationships among Linguatula serrata isolates from Iran based on 18S rRNA and mitochondrial cox1 gene sequences.

    PubMed

    Ghorashi, Seyed Ali; Tavassoli, Mousa; Peters, Andrew; Shamsi, Shokoofeh; Hajipour, Naser

    2016-01-01

    The phylogenetic relationships among seven Linguatula serrata (L. serrata) isolates collected from cattle, goats, sheep, dogs and camels in different geographical locations of Iran were investigated using partial 18S ribosomal RNA (rRNA) and partial mitochondrial cytochrome c oxidase subunit 1 (cox1) gene sequences. The nucleotide sequences were analysed in order to determine the phylogenetic relationships between the isolates. Higher sequence diversity and intraspecies variation was observed in the cox1 gene compared to 18S rRNA sequences. Phylogenetic analysis of the cox1 gene placed all L. serrata isolates in a sister clade to L. arctica. The Mantel regression analysis revealed no association between genetic variations and host species or geographical location, perhaps due to the small sample size. However, genetic variations between L. serrata isolates in Iran and those isolated in other parts of the world may exist and could reveal possible evolutionary relationships. PMID:27149706

  11. Molecular epidemiology of Theileria annulata and identification of 18S rRNA gene and ITS regions sequences variants in apparently healthy buffaloes and cattle in Pakistan.

    PubMed

    Khan, Muhammad Kasib; He, Lan; Hussain, Altaf; Azam, Sabita; Zhang, Wen-Jie; Wang, Li-Xia; Zhang, Qing-Li; Hu, Min; Zhou, Yan-Qin; Zhao, Junlong

    2013-01-01

    A molecular epidemiological survey was conducted to determine the prevalence of piroplasms in buffaloes and cattle from Sheikhupura and Okara districts of Punjab, Pakistan using reverse line blot (RLB) hybridization assay. The genetic diversity within 18S rRNA gene and ITS regions sequences of various obtained Theileria species (spp.) was also investigated. Briefly, 102 blood samples from buffaloes and cattle in the study districts were collected on blood collection cards and brought to the laboratory. DNA was extracted; the V4 hypervariable region of 18S rRNA was amplified and analyzed using RLB. Out of total samples analyzed, 61 (59.8%) were hybridized with Babesia/Theileria (B/T) genus-specific probe. Only one species of piroplasm was detected in buffaloes and cattle in study districts, i.e. Theileria (T.) annulata. Six samples only hybridized with B/T genus-specific and Theileria genus-specific probes but not with any species-specific probe indicating the presence of novel species or variants. The sequences of 18S rRNA gene and ITS regions of these six samples revealed the presence of T. annulata variants as confirmed through sequence identity estimation and phylogenetic analyses. Meanwhile, an unexpected sequence variation was observed within the 18S rRNA gene and ITS regions sequences of T. annulata identified in the present study. This is the first report on the simultaneous detection of species of piroplasms infecting buffaloes and cattle in Pakistan and molecular characterization of T. annulata 18S rRNA gene and ITS regions. The present study may address the new insights into the epidemiology of theileriosis which will help researches in designing control strategies and developing various molecular diagnostic tools at national level.

  12. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  13. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships.

  14. Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera).

    PubMed

    Gillespie, J J; McKenna, C H; Yoder, M J; Gutell, R R; Johnston, J S; Kathirithamby, J; Cognato, A I

    2005-12-01

    We report the entire sequence (2864 nts) and secondary structure of the nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S) from the twisted-wing parasite Caenocholax fenyesi texensis Kathirithamby & Johnston (Strepsiptera: Myrmecolacidae). The majority of the base pairings in this structural model map on to the SSU rRNA secondary and tertiary helices that were previously predicted with comparative analysis. These regions of the core rRNA were unambiguously aligned across all Arthropoda. In contrast, many of the variable regions, as previously characterized in other insect taxa, had very large insertions in C. f. texensis. The helical base pairs in these regions were predicted with a comparative analysis of a multiple sequence alignment (that contains C. f. texensis and 174 published arthropod 18S rRNA sequences, including eleven strepsipterans) and thermodynamic-based algorithms. Analysis of our structural alignment revealed four unusual insertions in the core rRNA structure that are unique to animal 18S rRNA and in general agreement with previously proposed insertion sites for strepsipterans. One curious result is the presence of a large insertion within a hairpin loop of a highly conserved pseudoknot helix in variable region 4. Despite the extraordinary variability in sequence length and composition, this insertion contains the conserved sequences 5'-AUUGGCUUAAA-3' and 5'-GAC-3' that immediately flank a putative helix at the 5'- and 3'-ends, respectively. The longer sequence has the potential to form a nine base pair helix with a sequence in the variable region 2, consistent with a recent study proposing this tertiary interaction. Our analysis of a larger set of arthropod 18S rRNA sequences has revealed possible errors in some of the previously published strepsipteran 18S rRNA sequences. Thus we find no support for the previously recovered heterogeneity in the 18S molecules of strepsipterans. Our findings lend insight to the evolution of RNA structure and

  15. Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera).

    PubMed

    Gillespie, J J; McKenna, C H; Yoder, M J; Gutell, R R; Johnston, J S; Kathirithamby, J; Cognato, A I

    2005-12-01

    We report the entire sequence (2864 nts) and secondary structure of the nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S) from the twisted-wing parasite Caenocholax fenyesi texensis Kathirithamby & Johnston (Strepsiptera: Myrmecolacidae). The majority of the base pairings in this structural model map on to the SSU rRNA secondary and tertiary helices that were previously predicted with comparative analysis. These regions of the core rRNA were unambiguously aligned across all Arthropoda. In contrast, many of the variable regions, as previously characterized in other insect taxa, had very large insertions in C. f. texensis. The helical base pairs in these regions were predicted with a comparative analysis of a multiple sequence alignment (that contains C. f. texensis and 174 published arthropod 18S rRNA sequences, including eleven strepsipterans) and thermodynamic-based algorithms. Analysis of our structural alignment revealed four unusual insertions in the core rRNA structure that are unique to animal 18S rRNA and in general agreement with previously proposed insertion sites for strepsipterans. One curious result is the presence of a large insertion within a hairpin loop of a highly conserved pseudoknot helix in variable region 4. Despite the extraordinary variability in sequence length and composition, this insertion contains the conserved sequences 5'-AUUGGCUUAAA-3' and 5'-GAC-3' that immediately flank a putative helix at the 5'- and 3'-ends, respectively. The longer sequence has the potential to form a nine base pair helix with a sequence in the variable region 2, consistent with a recent study proposing this tertiary interaction. Our analysis of a larger set of arthropod 18S rRNA sequences has revealed possible errors in some of the previously published strepsipteran 18S rRNA sequences. Thus we find no support for the previously recovered heterogeneity in the 18S molecules of strepsipterans. Our findings lend insight to the evolution of RNA structure and

  16. Identification of protein-coding sequences using the hybridization of 18S rRNA and mRNA during translation.

    PubMed

    Xing, Chuanhua; Bitzer, Donald L; Alexander, Winser E; Vouk, Mladen A; Stomp, Anne-Marie

    2009-02-01

    We introduce a new approach in this article to distinguish protein-coding sequences from non-coding sequences utilizing a period-3, free energy signal that arises from the interactions of the 3'-terminal nucleotides of the 18S rRNA with mRNA. We extracted the special features of the amplitude and the phase of the period-3 signal in protein-coding regions, which is not found in non-coding regions, and used them to distinguish protein-coding sequences from non-coding sequences. We tested on all the experimental genes from Saccharomyces cerevisiae and Schizosaccharomyces pombe. The identification was consistent with the corresponding information from GenBank, and produced better performance compared to existing methods that use a period-3 signal. The primary tests on some fly, mouse and human genes suggests that our method is applicable to higher eukaryotic genes. The tests on pseudogenes indicated that most pseudogenes have no period-3 signal. Some exploration of the 3'-tail of 18S rRNA and pattern analysis of protein-coding sequences supported further our assumption that the 3'-tail of 18S rRNA has a role of synchronization throughout translation elongation process. This, in turn, can be utilized for the identification of protein-coding sequences.

  17. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    PubMed

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  18. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    PubMed

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  19. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  20. Sequence variation identified in the 18S rRNA gene of Theileria mutans and Theileria velifera from the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2013-01-16

    The African buffalo (Syncerus caffer) is a natural reservoir host for both pathogenic and non-pathogenic Theileria species. These often occur naturally as mixed infections in buffalo. Although the benign and mildly pathogenic forms do not have any significant economic importance, their presence could complicate the interpretation of diagnostic test results aimed at the specific diagnosis of the pathogenic Theileria parva in cattle and buffalo in South Africa. The 18S rRNA gene has been used as the target in a quantitative real-time PCR (qPCR) assay for the detection of T. parva infections. However, the extent of sequence variation within this gene in the non-pathogenic Theileria spp. of the Africa buffalo is not well known. The aim of this study was, therefore, to characterise the full-length 18S rRNA genes of Theileria mutans, Theileria sp. (strain MSD) and T. velifera and to determine the possible influence of any sequence variation on the specific detection of T. parva using the 18S rRNA qPCR. The reverse line blot (RLB) hybridization assay was used to select samples which either tested positive for several different Theileria spp., or which hybridised only with the Babesia/Theileria genus-specific probe and not with any of the Babesia or Theileria species-specific probes. The full-length 18S rRNA genes from 14 samples, originating from 13 buffalo and one bovine from different localities in South Africa, were amplified, cloned and the resulting recombinants sequenced. Variations in the 18S rRNA gene sequences were identified in T. mutans, Theileria sp. (strain MSD) and T. velifera, with the greatest diversity observed amongst the T. mutans variants. This variation possibly explained why the RLB hybridization assay failed to detect T. mutans and T. velifera in some of the analysed samples.

  1. Species-genomic relationships among the tribasic diploid and polyploid Carthamus taxa based on physical mapping of active and inactive 18S-5.8S-26S and 5S ribosomal RNA gene families, and the two tandemly repeated DNA sequences.

    PubMed

    Agrawal, Renuka; Tsujimoto, Hisashi; Tandon, Rajesh; Rao, Satyawada Rama; Raina, Soom Nath

    2013-05-25

    In the genus Carthamus (2n=20, 22, 24, 44, 64; x=10, 11, 12), most of the homologues within and between the chromosome complements are difficult to be identified. In the present work, we used fluorescent in situ hybridisation (FISH) to determine the chromosome distribution of the two rRNA gene families, and the two isolated repeated DNA sequences in the 14 Carthamus taxa. The distinctive variability in the distribution, number and signal intensity of hybridisation sites for 18S-26S and 5S rDNA loci could generally distinguish the 14 Carthamus taxa. Active 18S-26S rDNA sites were generally associated with NOR loci on the nucleolar chromosomes. The two A genome taxa, C. glaucus ssp. anatolicus and C. boissieri with 2n=20, and the two botanical varieties of B genome C. tinctorius (2n=24) had diagnostic FISH patterns. The present results support the origin of C. tinctorius from C. palaestinus. FISH patterns of C. arborescens vis-à-vis the other taxa indicate a clear division of Carthamus taxa into two distinct lineages. Comparative distribution and intensity pattern of 18S-26S rDNA sites could distinguish each of the tetraploid and hexaploid taxa. The present results indicate that C. boissieri (2n=20) is one of the genome donors for C. lanatus and C. lanatus ssp. lanatus (2n=44), and C. lanatus is one of the progenitors for the hexaploid (2n=64) taxa. The association of pCtKpnI-2 repeated sequence with rRNA gene cluster (orphon) in 2-10 nucleolar and non-nucleolar chromosomes and the consistent occurrence of pCtKpnI-1 repeated sequence at the subtelomeric region in all the taxa analysed indicate some functional role of these sequences.

  2. Identification of Theileria parva and Theileria sp. (buffalo) 18S rRNA gene sequence variants in the African Buffalo (Syncerus caffer) in southern Africa.

    PubMed

    Chaisi, Mamohale E; Sibeko, Kgomotso P; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2011-12-15

    Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the

  3. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia.

    PubMed

    Hugerth, Luisa W; Muller, Emilie E L; Hu, Yue O O; Lebrun, Laura A M; Roume, Hugo; Lundin, Daniel; Wilmes, Paul; Andersson, Anders F

    2014-01-01

    High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.

  4. Phylogenetic analysis of Leymus (Poaceae: Triticeae) inferred from nuclear rDNA ITS sequences.

    PubMed

    Sha, Li-Na; Yang, Rui-Wu; Fan, Xing; Wang, Xiao-Li; Zhou, Yong-Hong

    2008-10-01

    To investigate the phylogenetic relationships of polyploid Leymus (Poaceae: Triticeae), sequences of the nuclear rDNA internal transcribed spacer region (ITS) were analyzed for 34 Leymus accessions representing 25 species, together with three Psathyrostachys species (Ns genome), two Pseudoroegneria (St genome) species, Lophopyrum elongatum (E(e) genome), and Thinopyrum bessarabicum (E(b) genome). The phylogenetic analyses (maximum likelihood and Bayesian inference) supported two major clades, one including 21 Leymus species and three Psathyrostachys species, the other with nine Leymus species and four diploid species. The ITS RNA secondary structure of the Leymus species was compared with that of their putative diploid donor. It is suggested that (1) the species from the same areas or neighboring geographic regions are closely related to each other; (2) L. coreanus, L. duthiei, L. duthiei var. longearistatus, and L. komarovii are closely related to other Leymus species, and it is reasonable to transfer these species from the genus Hystrix to Leymus; (3) the ITS sequences of Leymus are evolutionarily distinct; (4) the different Leymus species and different distribution of a species derived their Ns genome from different Psathyrostachys species; and (5) there is a close relationship among Leymus, Pseudoroegneria, Lophopyrum, and Thinopyrum, but it is difficult to presume that the St, E(e), and E(b) genome may be the Xm genome donor of the Leymus species.

  5. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff.

  6. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. PMID:23205499

  7. Evaluation of nucleic acid sequence based amplification using fluorescence resonance energy transfer (FRET-NASBA) in quantitative detection of Aspergillus 18S rRNA.

    PubMed

    Park, Chulmin; Kwon, Eun-Young; Shin, Na-Young; Choi, Su-Mi; Kim, Si-Hyun; Park, Sun Hee; Lee, Dong-Gun; Choi, Jung-Hyun; Yoo, Jin-Hong

    2011-01-01

    We attempted to apply fluorescence resonance energy transfer technology to nucleic acid sequence-based amplification (FRET-NASBA) on the platform of the LightCycler system to detect Aspergillus species. Primers and probes for the Aspergillus 18S rRNA were newly designed to avoid overlapping with homologous sequences of human 18s rRNA. NASBA using molecular beacon (MB) showed non-specific results which have been frequently observed from controls, although it showed higher sensitivity (10(-2) amol) than the FRET. FRET-NASBA showed a sensitivity of 10(-1) amol and a high fidelity of reproducibility from controls. As FRET technology was successfully applied to the NASBA assay, it could contribute to diverse development of the NASBA assay. These results suggest that FRET-NASBA could replace previous NASBA techniques in the detection of Aspergillus.

  8. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity

    PubMed Central

    2010-01-01

    Background The 18S rRNA gene is one of the most important molecular markers, used in diverse applications such as molecular phylogenetic analyses and biodiversity screening. The Mollusca is the second largest phylum within the animal kingdom and mollusks show an outstanding high diversity in body plans and ecological adaptations. Although an enormous amount of 18S data is available for higher mollusks, data on some early branching lineages are still limited. Despite of some partial success in obtaining these data from Solenogastres, by some regarded to be the most "basal" mollusks, this taxon still remained problematic due to contamination with food organisms and general amplification difficulties. Results We report here the first authentic 18S genes of three Solenogastres species (Mollusca), each possessing a unique sequence composition with regions conspicuously rich in guanine and cytosine. For these GC-rich regions we calculated strong secondary structures. The observed high intra-molecular forces hamper standard amplification and appear to increase formation of chimerical sequences caused by contaminating foreign DNAs from potential prey organisms. In our analyses, contamination was avoided by using RNA as a template. Indication for contamination of previously published Solenogastres sequences is presented. Detailed phylogenetic analyses were conducted using RNA specific models that account for compensatory substitutions in stem regions. Conclusions The extreme morphological diversity of mollusks is mirrored in the molecular 18S data and shows elevated substitution rates mainly in three higher taxa: true limpets (Patellogastropoda), Cephalopoda and Solenogastres. Our phylogenetic tree based on 123 species, including representatives of all mollusk classes, shows limited resolution at the class level but illustrates the pitfalls of artificial groupings formed due to shared biased sequence composition. PMID:20214780

  9. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci.

    PubMed

    Paparini, Andrea; Gofton, Alexander; Yang, Rongchang; White, Nicole; Bunce, Michael; Ryan, Una M

    2015-01-01

    Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are

  10. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  11. Chromosomal characteristics and distribution of rDNA sequences in the brook trout Salvelinus fontinalis (Mitchill, 1814).

    PubMed

    Śliwińska-Jewsiewicka, A; Kuciński, M; Kirtiklis, L; Dobosz, S; Ocalewicz, K; Jankun, Malgorzata

    2015-08-01

    Brook trout Salvelinus fontinalis (Mitchill, 1814) chromosomes have been analyzed using conventional and molecular cytogenetic techniques enabling characteristics and chromosomal location of heterochromatin, nucleolus organizer regions (NORs), ribosomal RNA-encoding genes and telomeric DNA sequences. The C-banding and chromosome digestion with the restriction endonucleases demonstrated distribution and heterogeneity of the heterochromatin in the brook trout genome. DNA sequences of the ribosomal RNA genes, namely the nucleolus-forming 28S (major) and non-nucleolus-forming 5S (minor) rDNAs, were physically mapped using fluorescence in situ hybridization (FISH) and primed in situ labelling. The minor rDNA locus was located on the subtelo-acrocentric chromosome pair No. 9, whereas the major rDNA loci were dispersed on 14 chromosome pairs, showing a considerable inter-individual variation in the number and location. The major and minor rDNA loci were located at different chromosomes. Multichromosomal location (3-6 sites) of the NORs was demonstrated by silver nitrate (AgNO3) impregnation. All Ag-positive i.e. active NORs corresponded to the GC-rich blocks of heterochromatin. FISH with telomeric probe showed the presence of the interstitial telomeric site (ITS) adjacent to the NOR/28S rDNA site on the chromosome 11. This ITS was presumably remnant of the chromosome rearrangement(s) leading to the genomic redistribution of the rDNA sequences. Comparative analysis of the cytogenetic data among several related salmonid species confirmed huge variation in the number and the chromosomal location of rRNA gene clusters in the Salvelinus genome.

  12. Identification of Entamoeba polecki with Unique 18S rRNA Gene Sequences from Celebes Crested Macaques and Pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia.

    PubMed

    Tuda, Josef; Feng, Meng; Imada, Mihoko; Kobayashi, Seiki; Cheng, Xunjia; Tachibana, Hiroshi

    2016-09-01

    Unique species of macaques are distributed across Sulawesi Island, Indonesia, and the details of Entamoeba infections in these macaques are unknown. A total of 77 stool samples from Celebes crested macaques (Macaca nigra) and 14 stool samples from pigs were collected in Tangkoko Nature Reserve, North Sulawesi, and the prevalence of Entamoeba infection was examined by PCR. Entamoeba polecki was detected in 97% of the macaques and all of the pigs, but no other Entamoeba species were found. The nucleotide sequence of the 18S rRNA gene in E. polecki from M. nigra was unique and showed highest similarity with E. polecki subtype (ST) 4. This is the first case of identification of E. polecki ST4 from wild nonhuman primates. The sequence of the 18S rRNA gene in E. polecki from pigs was also unique and showed highest similarity with E. polecki ST1. These results suggest that the diversity of the 18S rRNA gene in E. polecki is associated with differences in host species and geographic localization, and that there has been no transmission of E. polecki between macaques and pigs in the study area.

  13. rDNA ITS sequences among morphotypes of Keratell cochlearis, Keratell quadrata and Brachionus forficula (Rotifera).

    PubMed

    Ge, Y L; Xi, Y L; Ma, J; Xu, D D

    2012-03-22

    Morphological variation in rotifers is affected by environmental conditions, making it hard to identify some rotifer taxa. We examined the rDNA ITS sequences of 10 unspined (KCU1-KCU10) and 17 spined (KCS1-KCS17) Keratell cochlearis clones, 26 two-spined (KQT1-KQT26), 18 single-spined (KQS1-KQS18) and 9 unspined (KQU1-KQU9) K. quadrata clones, and 17 long-spined (BL1-BL17) and 11 short-spined (BS1-BS11) Brachionus forficula clones collected from Lake Tingtang in Wuhu city, China. Molecular phylogenetic trees were constructed by neighbor-joining, maximum-likelihood, maximum parsimony, and Bayesian inference methods using B. calyciflorus as an outgroup. The K. cochlearis clones included 20 haplotypes, the K. quadrata clones included 37 haplotypes, and the B. forficula clones included 25 haplotypes. Different morphotypes of each rotifer species had shared haplotypes. Sequence divergences were 0.1-8.9% among different K. cochlearis haplotypes, and 8.1-8.9% between KCHAP1 (KCU1 and KCU10), KCU3, KCU4 and KCU6, and the other haplotypes. Sequence divergences were 0.1-14.5% among different K. quadrata haplotypes, and 11.9-14.5% between KQS17 and the other haplotypes. Sequence divergences were 0.1-11.7% among different B. forficula haplotypes, 11.0-11.7% between BL15 and the other haplotypes, 9.3-10.1% between BS3 and the other haplotypes, and 11.7% between BL15 and BS3. The four phylogenetic trees all supported that KCHAP1, KCU3, KCU4, KCU6 and the other 16 haplotypes among the 20 K. cochlearis haplotypes, KQS17 and the other 36 haplotypes among the 37 K. quadrata haplotypes, and BL15, BS3 and the other 23 haplotypes among the 25 B. forficula haplotypes all belonged to their own isolated clades. The morphological variation of the three rotifer species was attributed mainly to phenotypic plasticity.

  14. Cytogenetic analysis of the tamaraw (Bubalus mindorensis): a comparison of R-banded karyotype and chromosomal distribution of centromeric satellite DNAs, telomeric sequence, and 18S-28S rRNA genes with domestic water buffaloes.

    PubMed

    Tanaka, K; Matsuda, Y; Masangkay, J S; Solis, C D; Anunciado, R V; Kuro-o, M; Namikawa, T

    2000-01-01

    The karyotype of the tamaraw (Bubalus mindorensis, 2n = 46) was investigated by RBG-banding technique and compared with those of the river and the swamp cytotypes of domestic water buffalo (B. bubalis). The tamaraw karyotype consisted of 6 submetacentric and 16 acrocentric autosome pairs (NAA = 56), and X and Y chromosomes. The RBG-banded karyotype of the three taxa had a high degree of homology, and the tamaraw karyotype could be explained by a Robertsonian translocation between chromosomes 7 and 15 and by a telomere-centromere tandem fusion between chromosomes 4p and 12 of the standardized river buffalo cytotype (2n = 50, NAA = 58). The buffalo satellite I and II DNAs were localized to the centromeric regions of all the tamaraw chromosomes. The biarmed chromosome 2 of the tamaraw resulting from the fusion between chromosomes 7 and 15 of the standard contained much larger amounts of the satellite I DNA than the other biarmed chromosomes, suggesting that this chromosome was formed by a relatively recent Robertsonian fusion. The (TTAGGG)n telomeric sequence was specifically localized to the telomeric region of all the buffalo chromosomes. The 18S + 28S rDNA was localized to the telomeric regions of the chromosomes 5p, 7, 19, 21, and 22 of the tamaraw and of their homologous chromosomes in the river and swamp buffalo cytotypes.

  15. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5' UTRs and its implications for eukaryotic gene translation regulation.

    PubMed

    Pánek, Josef; Kolár, Michal; Vohradský, Jirí; Shivaya Valásek, Leos

    2013-09-01

    There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA-rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5' untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5' UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5' UTRs of mRNAs.

  16. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole.

  17. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole. PMID:24961025

  18. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA.

    PubMed

    Silva, Duilio M Z A; Utsunomia, Ricardo; Pansonato-Alves, José C; Oliveira, Cláudio; Foresti, Fausto

    2015-01-01

    Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group. PMID:26329975

  19. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA.

    PubMed

    Silva, Duilio M Z A; Utsunomia, Ricardo; Pansonato-Alves, José C; Oliveira, Cláudio; Foresti, Fausto

    2015-01-01

    Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group.

  20. Characterization and Sequence Variation in the rDNA Region of Six Nematode Species of the Genus Longidorus (Nematoda)

    PubMed Central

    De Luca, F.; Reyes, A.; Grunder, J.; Kunz, P.; Agostinelli, A.; De Giorgi, C.; Lamberti, F.

    2004-01-01

    Total DNA was isolated from individual nematodes of the species Longidorus helveticus, L. macrosoma, L. arthensis, L. profundorum, L. elongatus, and L. raskii collected in Switzerland. The ITS region and D1-D2 expansion segments of the 26S rDNA were amplified and cloned. The sequences obtained were aligned in order to investigate sequence diversity and to infer the phylogenetic relationships among the six Longidorus species. D1-D2 sequences were more conserved than the ITS sequences that varied widely in primary structure and length, and no consensus was observed. Phylogenetic analyses using the neighbor-joining, maximum parsimony and maximum likelihood methods were performed with three different sequence data sets: ITS1-ITS2, 5.8S-D1-D2, and combining ITS1-ITS2+5.8S-D1-D2 sequences. All multiple alignments yielded similar basic trees supporting the existence of the six species established using morphological characters. These sequence data also provided evidence that the different regions of the rDNA are characterized by different evolution rates and by different factors associated with the generation of extreme size variation. PMID:19262800

  1. Comparative study of the validity of three regions of the 18S-rRNA gene for massively parallel sequencing-based monitoring of the planktonic eukaryote community.

    PubMed

    Tanabe, Akifumi S; Nagai, Satoshi; Hida, Kohsuke; Yasuike, Motoshige; Fujiwara, Atushi; Nakamura, Yoji; Takano, Yoshihito; Katakura, Seiji

    2016-03-01

    The nuclear 18S-rRNA gene has been used as a metabarcoding marker in massively parallel sequencing (MPS)-based environmental surveys for plankton biodiversity research. However, different hypervariable regions have been used in different studies, and their utility has been debated among researchers. In this study, detailed investigations into 18S-rRNA were carried out; we investigated the effective number of sequences deposited in international nucleotide sequence databases (INSDs), the amplification bias, and the amplicon sequence variability among the three variable regions, V1-3, V4-5 and V7-9, using in silico polymerase chain reaction (PCR) amplification based on INSDs. We also examined the primer universality and the taxonomic identification power, using MPS-based environmental surveys in the Sea of Okhotsk, to determine which region is more useful for MPS-based monitoring. The primer universality was not significantly different among the three regions, but the number of sequences deposited in INSDs was markedly larger for the V4-5 region than for the other two regions. The sequence variability was significantly different, with the highest variability in the V1-3 region, followed by the V7-9 region, and the lowest variability in the V4-5 region. The results of the MPS-based environmental surveys showed significantly higher identification power in the V1-3 and V7-9 regions than in the V4-5 region, but no significant difference was detected between the V1-3 and V7-9 regions. We therefore conclude that the V1-3 region will be the most suitable for future MPS-based monitoring of natural eukaryote communities, as the number of sequences deposited in INSDs increases.

  2. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia.

    PubMed

    Cooper, Madalyn K; Phalen, David N; Donahoe, Shannon L; Rose, Karrie; Šlapeta, Jan

    2016-01-30

    Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations.

  3. Molecular characterization of nuclear small subunit (18S)-rDNA pseudogenes in a symbiotic dinoflagellate (Symbiodinium, Dinophyta).

    PubMed

    Santos, Scott R; Kinzie, Robert A; Sakai, Kazuhiko; Coffroth, Mary Alice

    2003-01-01

    For the dinoflagellates, an important group of single-cell protists, some nuclear rDNA phylogenetic studies have reported the discovery of rDNA pseudogenes. However, it is unknown if these aberrant molecules are confined to free-living taxa or occur in other members of the group. We have cultured a strain of symbiotic dinoflagellate, belonging to the genus Symbiodinium, which produces three distinct amplicons following PCR for nuclear small subunit (18S) rDNA genes. These amplicons contribute to a unique restriction fragment length polymorphism pattern diagnostic for this particular strain. Sequence analyses revealed that the largest amplicon was the expected region of 18S-rDNA, while the two smaller amplicons are Symbiodinium nuclear 18S-rDNA genes that contain single long tracts of nucleotide deletions. Reverse transcription (RT)-PCR experiments did not detect RNA transcripts of these latter genes, suggesting that these molecules represent the first report of nuclear 18S-rDNA pseudogenes from the genome of Symbiodinium. As in the free-living dinoflagellates, nuclear rDNA pseudogenes are effective indicators of unique Symbiodinium strains. Furthermore, the evolutionary pattern of dinoflagellate nuclear rDNA pseudogenes appears to be unique among organisms studied to date, and future studies of these unusual molecules will provide insight on the cellular biology and genomic evolution of these protists.

  4. Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA genes.

    PubMed

    Lie, Alle A Y; Liu, Zhenfeng; Hu, Sarah K; Jones, Adriane C; Kim, Diane Y; Countway, Peter D; Amaral-Zettler, Linda A; Cary, S Craig; Sherr, Evelyn B; Sherr, Barry F; Gast, Rebecca J; Caron, David A

    2014-07-01

    Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages.

  5. Structural diversity of eukaryotic 18S rRNA and its impact on alignment and phylogenetic reconstruction.

    PubMed

    Xie, Qiang; Lin, Jinzhong; Qin, Yan; Zhou, Jianfu; Bu, Wenjun

    2011-02-01

    Ribosomal RNAs are important because they catalyze the synthesis of peptides and proteins. Comparative studies of the secondary structure of 18S rRNA have revealed the basic locations of its many length-conserved and length-variable regions. In recent years, many more sequences of 18S rDNA with unusual lengths have been documented in GenBank. These data make it possible to recognize the diversity of the secondary and tertiary structures of 18S rRNAs and to identify the length-conserved parts of 18S rDNAs. The longest 18S rDNA sequences of almost every known eukaryotic phylum were included in this study. We illustrated the bioinformatics-based structure to show that, the regions that are more length-variable, regions that are less length-variable, the splicing sites for introns, and the sites of A-minor interactions are mostly distributed in different parts of the 18S rRNA. Additionally, this study revealed that some length-variable regions or insertion positions could be quite close to the functional part of the 18S rRNA of Foraminifera organisms. The tertiary structure as well as the secondary structure of 18S rRNA can be more diverse than what was previously supposed. Besides revealing how this interesting gene evolves, it can help to remove ambiguity from the alignment of eukaryotic 18S rDNAs and to improve the performance of 18S rDNA in phylogenetic reconstruction. Six nucleotides shared by Archaea and Eukaryota but rarely by Bacteria are also reported here for the first time, which might further support the supposed origin of eukaryote from archaeans.

  6. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons

    PubMed Central

    2011-01-01

    Background Urine within the urinary tract is commonly regarded as "sterile" in cultivation terms. Here, we present a comprehensive in-depth study of bacterial 16S rDNA sequences associated with urine from healthy females by means of culture-independent high-throughput sequencing techniques. Results Sequencing of the V1V2 and V6 regions of the 16S ribosomal RNA gene using the 454 GS FLX system was performed to characterize the possible bacterial composition in 8 culture-negative (<100,000 CFU/ml) healthy female urine specimens. Sequences were compared to 16S rRNA databases and showed significant diversity, with the predominant genera detected being Lactobacillus, Prevotella and Gardnerella. The bacterial profiles in the female urine samples studied were complex; considerable variation between individuals was observed and a common microbial signature was not evident. Notably, a significant amount of sequences belonging to bacteria with a known pathogenic potential was observed. The number of operational taxonomic units (OTUs) for individual samples varied substantially and was in the range of 20 - 500. Conclusions Normal female urine displays a noticeable and variable bacterial 16S rDNA sequence richness, which includes fastidious and anaerobic bacteria previously shown to be associated with female urogenital pathology. PMID:22047020

  7. Molecular phylogenetic analysis of the coccidian cephalopod parasites Aggregata octopiana and Aggregata eberthi (Apicomplexa: Aggregatidae) from the NE Atlantic coast using 18S rRNA sequences.

    PubMed

    Castellanos-Martínez, Sheila; Pérez-Losada, Marcos; Gestal, Camino

    2013-08-01

    The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are identified in European waters. Extensive investigation of their morphology resulted in a redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus clarifying confusing descriptions recorded in the past. The present study sequenced the 18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo (NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed between A. octopiana samples from the same two areas, which suggest the existence of two species. Based on previous morphological evidence, host specificity data, and new molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the valid type species.

  8. Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (radiolarians) assessed by high-throughput sequencing.

    PubMed

    Decelle, Johan; Romac, Sarah; Sasaki, Eriko; Not, Fabrice; Mahé, Frédéric

    2014-01-01

    Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism) that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454 pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia, AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the 97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity and richness of protists in the environment.

  9. Intracellular Diversity of the V4 and V9 Regions of the 18S rRNA in Marine Protists (Radiolarians) Assessed by High-Throughput Sequencing

    PubMed Central

    Decelle, Johan; Romac, Sarah; Sasaki, Eriko; Not, Fabrice; Mahé, Frédéric

    2014-01-01

    Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism) that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454 pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia, AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the 97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity and richness of protists in the environment. PMID:25090095

  10. Detecting possibly saturated positions in 18S and 28S sequences and their influence on phylogenetic reconstruction of Annelida (Lophotrochozoa).

    PubMed

    Struck, Torsten H; Nesnidal, Maximilian P; Purschke, Günter; Halanych, Kenneth M

    2008-08-01

    Phylogenetic reconstructions may be hampered by multiple substitutions in nucleotide positions obliterating signal, a phenomenon called saturation. Traditionally, plotting ti/tv ratios against genetic distances has been used to reveal saturation by assessing when ti/tv stabilizes at 1. However, interpretation of results and assessment of comparability between different data sets or partitions are rather subjective. Herein, we present the new C factor, which quantifies convergence of ti/tv ratios, thus allowing comparability. Furthermore, we introduce a comparative value for homoplasy, the O/E ratio, based on alterations of tree length. Simulation studies and an empirical example, based on annelid rRNA-gene sequences, show that the C factor correlates with noise, tree length and genetic distance and therefore is a proxy for saturation. The O/E ratio correlates with the C factor, which does not provide an intrinsic threshold of exclusion, and thus both together can objectively guide decisions to exclude saturated nucleotide positions. However, analyses also showed that, for reconstructing annelid phylogeny using Maximum Likelihood, an increase in numbers of positions improves tree reconstruction more than does the exclusion of saturated positions.

  11. Sequence analysis of the rDNA internal transcribed spacer 2 of five species of South American human malaria mosquitoes.

    PubMed

    Fritz, G N

    1998-03-01

    The rDNA internal transcribed spacer 2 (ITS2) was sequenced for 5 species of mosquitoes that may be important vectors of human malaria in certain regions of South America and are difficult to distinguish by morphology: Anopheles evansae, An. nuneztovari, An. rangeli, An. strodei and An. trinkae. ITS2 sequences from samples collected in Ecuador, Bolivia, Venezuela and Brazil were aligned and compared in order to determine the usefulness of this spacer for the elaboration of species specific primers and DNA probes. The ITS2 was found to be different in size (ranging from 333 to 397 bp) and sequence between all pairs of species. Highly variable regions were found primarily at the 3' end of the spacer and were interspersed with relatively conserved sites. Instraspecific sequence variation was limited to a single transversion between specimens of An. rangeli from distant geographic locations suggesting concerted evolution and homogenization of the ITS2. PMID:10520449

  12. U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production.

    PubMed

    Atzorn, Vera; Fragapane, Paola; Kiss, Tamás

    2004-02-01

    Saccharomyces cerevisiae snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) required for the processing of 18S rRNA. Here, we show that the previously characterized human, reptilian, amphibian, and fish U17 snoRNAs represent the vertebrate homologues of yeast snR30. We also demonstrate that U17/snR30 is present in the fission yeast Schizosaccharomyces pombe and the unicellular ciliated protozoan Tetrahymena thermophila. Evolutionary comparison revealed that the 3'-terminal hairpins of U17/snR30 snoRNAs contain two highly conserved sequence motifs, the m1 (AUAUUCCUA) and m2 (AAACCAU) elements. Mutation analysis of yeast snR30 demonstrated that the m1 and m2 elements are essential for early cleavages of the 35S pre-rRNA and, consequently, for the production of mature 18S rRNA. The m1 and m2 motifs occupy the opposite strands of an internal loop structure, and they are located invariantly 7 nucleotides upstream from the ACA box of U17/snR30 snoRNAs. U17/snR30 is the first identified box H/ACA snoRNA that possesses an evolutionarily conserved role in the nucleolytic processing of eukaryotic pre-rRNA.

  13. Employment of 16 S rDNA gene sequencing techniques to identify culturable environmental eubacteria in a tertiary referral hospital.

    PubMed

    Xu, J; Smyth, C L; Buchanan, J A; Dolan, A; Rooney, P J; Millar, B C; Goldsmith, C E; Elborn, J S; Moore, J E

    2004-05-01

    Universal or 'broad-range' eubacterial polymerase chain reaction (PCR) was performed on 53 isolates from environmental water-associated sites in a haematology unit (N = 22) and the outer surfaces of cleaning lotion containers sited throughout a tertiary referral hospital (N = 31) 16 S rDNA PCR was performed using two sets of universal primers, including the novel reverse primer, XB4, to generate a composite amplicon of 1068 bp, which was sequenced to obtain each isolate's identity. Sequence analysis was able to identify 51 isolates. Most (75% from the haematology unit and 81% from cleaner containers) were Gram-positive. Nine different genera were identified from the haematology unit and 13 from the cleaning lotion containers. This study provides the first reports of Terrabacter spp. and Brachybacterium paraconglomeratum isolated from a hospital environment. As unusual and difficult-to-identify environmental organisms are unlikely to be clinically significant, and molecular identification is costly and labour-intensive, we recommend that molecular methods are only used as an adjunct to first-line phenotypic identification schemes where a definitive identification is required. Where molecular identification methods are justified, partial 16 S rDNA PCR and sequencing employing the novel universal primer XB4, is a valuable and reliable technique.

  14. Phylogeny and rates of molecular evolution of planktonic foraminifera: SSU rDNA sequences compared to the fossil record.

    PubMed

    de Vargas, C; Zaninetti, L; Hilbrecht, H; Pawlowski, J

    1997-09-01

    Planktonic foraminifera are marine protists, whose calcareous shells form oceanic sediments and are widely used for stratigraphic and paleoenvironmental analyses. The fossil record of planktonic foraminifera is compared here to their molecular phylogeny inferred from ribosomal DNA sequences. Eighteen partial SSU rDNA sequences from species representing all modern planktonic families (Globigerinidae, Hastigerinidae, Globorotaliidae, Candeinidae) were obtained and compared to seven sequences representing the major groups of benthic foraminifera. The phylogenetic analyses indicate a polyphyletic origin for the planktonic foraminifera. The Candeinidae, the Globorotaliidae, and the clade Globigerinidae + Hastigerinidae seem to have originated independently, at different epochs in the evolution of foraminifera. Inference of their relationships, however, is limited by substitution rates of heterogeneity. Rates of SSU rDNA evolution vary from 4.0 x 10(-9) substitutions/site/year in the Globigerinidae to less than 1.0 x 10(-9) substitutions/site/year in the Globorotaliidae. These variations may be related to different levels of adaptation to the planktonic mode of life. A clock-like evolution is observed among the Globigerinidae, for which molecular and paleontological data are congruent. Phylogeny of the Globorotaliidae is clearly biased by rapid rates of substitution in two species (G. truncatulinoides and G. menardii). Our study reveals differences in absolute rates of evolution at all taxonomic levels in planktonic foraminifera and demonstrates their effect on phylogenetic reconstructions.

  15. Molecular characterization of dichloromethane-degrading Hyphomicrobium strains using 16S rDNA and DCM dehalogenase gene sequences.

    PubMed

    Nikolausz, Marcell; Kappelmeyer, Uwe; Nijenhuis, Ivonne; Ziller, Katja; Kästner, Matthias

    2005-09-01

    A phylogenetic analysis of 6 strains of dichloromethane (DCM) utilizing bacteria was performed. Based on the almost complete 16S rDNA sequence determination, all strains clustered together and showed high sequence similarity to Hyphomicrobium denitrificans, except for the strain MC8b, which is only moderately related to them and probably represents a distinct species. The 16S rDNA-based phylogenetic tree was compared to the one obtained from the DNA sequence data of the dcmA gene coding DCM dehalogenase, the key enzyme of DCM utilization. The topology of the two trees is in good agreement and may suggest an ancient origin of DCM dehalogenase, but also raises questions about the original role of the enzyme. PMID:16156115

  16. Cytological characterization of sunflower by in situ hybridization using homologous rDNA sequences and a BAC clone containing highly represented repetitive retrotransposon-like sequences.

    PubMed

    Talia, P; Greizerstein, E; Quijano, C Díaz; Peluffo, L; Fernández, L; Fernández, P; Hopp, H E; Paniego, N; Heinz, R A; Poggio, L

    2010-03-01

    In the present work we report new tools for the characterization of the complete chromosome complement of sunflower (Helianthus annuus L.), using a bacterial artificial chromosome (BAC) clone containing repetitive sequences with similarity to retrotransposons and a homologous rDNA sequence isolated from the sunflower genome as probes for FISH. The rDNA signal was found in 3 pairs of chromosomes, coinciding with the location of satellites. The BAC clone containing highly represented retroelements hybridized with all the chromosome complement in FISH, and used together with the rDNA probe allowed the discrimination of all chromosome pairs of sunflower. Their distinctive distribution pattern suggests that these probes could be useful for karyotype characterization and for chromosome identification. The karyotype could be subdivided into 3 clear-cut groups of 12 metacentric pairs, 1 submetacentric pair, and 4 subtelocentric pairs, thus resolving previously described karyotype controversies. The use of BAC clones containing single sequences of specific markers and (or) genes associated with important agricultural traits represents an important tool for future locus-specific identification and physical mapping.

  17. Genus Tetrastemma Ehrenberg, 1831 (Phylum Nemertea)--a natural group? Phylogenetic relationships inferred from partial 18S rRNA sequences.

    PubMed

    Strand, Malin; Sundberg, Per

    2005-10-01

    We investigated the monophyletic status of the hoplonemertean taxon Tetrastemma by reconstructing the phylogeny for 22 specimens assigned to this genus, together with another 25 specimens from closely related hoplonemertean genera. The phylogeny was based on partial 18S rRNA sequences using Bayesian and maximum likelihood analyses. The included Tetrastemma-species formed a well-supported clade, although the within-taxon relationships were unsettled. We conclude that the name Tetrastemma refers to a monophyletic taxon, but that it cannot be defined by morphological synapomorphies, and our results do not imply that all the over 100 species assigned to this genus belong to it. The results furthermore indicate that the genera Amphiporus and Emplectonema are non-monophyletic.

  18. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera).

    PubMed

    Ouvrard, D; Campbell, B C; Bourgoin, T; Chan, K L

    2000-09-01

    A secondary structure model for 18S rRNA of peloridiids, relict insects with a present-day circumantarctic distribution, is constructed using comparative sequence analysis, thermodynamic folding, a consensus method using 18S rRNA models of other taxa, and support of helices based on compensatory substitutions. Results show that probable in vivo configuration of 18S rRNA is not predictable using current free-energy models to fold the entire molecule concurrently. This suggests that refinements in free-energy minimization algorithms are needed. Molecular phylogenetic datasets were created using 18S rRNA nucleotide alignments produced by CLUSTAL and rigorous interpretation of homologous position based on certain secondary substructures. Phylogenetic analysis of a hemipteran data matrix of 18S rDNA sequences placed peloridiids sister to Heteroptera. Resolution of affiliations between the three main euhemipteran lineages was unresolved. The peloridiid 18S RNA model presented here provides the most accurate template to date for aligning homologous nucleotides of hemipteran taxa. Using folded 18S rRNA to infer homology of character as morpho-molecular structures or nucleotides and scoring particular sites or substructures is discussed. PMID:10991793

  19. Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis.

    PubMed

    Snell-Castro, Raúl; Godon, Jean-Jacques; Delgenès, Jean-Philippe; Dabert, Patrick

    2005-04-01

    The microbial community structure of pig manure slurry (PMS) was determined with comparative analysis of 202 bacterial, 44 archaeal and 33 eukaryotic small subunit (SSU) rDNA partial sequences. Based on a criterion of 97% of sequence similarity, the phylogenetic analyses revealed a total of 108, eight and five phylotypes for the Bacteria, Archaea and Eukarya lineages, respectively. Only 36% of the bacterial phylotypes were closely related (>or=97% similarity) to any previously known sequence in databases. The bacterial groups most often represented in terms of phylotype and clone abundance were the Eubacterium (22% of total sequences), the Clostridium (15% of sequences), the Bacillus-Lactobacillus-Streptococcus subdivision (20% of sequences), theMycoplasma and relatives (10% of sequences) and the Flexibacter-Cytophaga-Bacteroides (20% of sequences). The global microbial community structure and phylotype diversity show a close relationship to the pig gastrointestinal tract ecosystem whereas phylotypes from the Acholeplasma-Anaeroplasma and the Clostridium purinolyticum groups appear to be better represented in manure. Archaeal diversity was dominated by three phylotypes clustering with a group of uncultured microorganisms of unknown activity and only distantly related to the Thermoplasmales and relatives. Other Archaea were methanogenic H2/CO2 utilisers. No known acetoclastic Archaea methanogen was found. Eukaryotic diversity was represented by a pluricellular nematode, two Alveolata, a Blastocystis and an Entamoebidae. Manure slurry physico-chemical characteristics were analysed. Possible inhibitory effects of acetate, sulphide and ammonia concentrations on the microbial anaerobic ecosystem are discussed. PMID:16329909

  20. Design and Validation of Four New Primers for Next-Generation Sequencing To Target the 18S rRNA Genes of Gastrointestinal Ciliate Protozoa

    PubMed Central

    Wright, André-Denis G.

    2014-01-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen. PMID:24973070

  1. Design and validation of four new primers for next-generation sequencing to target the 18S rRNA genes of gastrointestinal ciliate protozoa.

    PubMed

    Ishaq, Suzanne L; Wright, André-Denis G

    2014-09-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen.

  2. Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology.

    PubMed

    Turbeville, J M; Field, K G; Raff, R A

    1992-03-01

    Partial 18S rRNA sequence of the nemertine Cerebratulus lacteus was obtained and compared with those of coelomate metazoans and acoelomate platyhelminths to test whether nemertines share a most recent common ancestor with the platyhelminths, as traditionally has been implied, or whether nemertines lie within a protostome coelomate clade, as suggested by more recent morphological analyses. Maximum-parsimony analysis supports the inclusion of the nemertine within a protostome-coelomate clade that falls within a more inclusive coelomate clade. Bootstrap analysis indicates strong support for a monophyletic Coelomata composed of a deuterostome and protostome-coelomate clade. Support for a monophyletic protostome Coelomata is weak. Inference by distance analysis is consistent with that of maximum parsimony. Analysis of down-weighted paired sites by maximum parsimony reveals variation in topology only within the protostome-coelomate clade. The relationships among the protostome coelomates cannot be reliably inferred from the partial sequences, suggesting that coelomate protostomes diversified rapidly. Results with evolutionary parsimony are consistent with the inclusion of the nemertine in a coelomate clade. The molecular inference corroborates recent morphological character analyses that reveal no synapomorphies of nemertines and flatworms but instead suggest that the circulatory system and rhynchocoel of nemertines are homologous to coelomic cavities of protostome coelomates, thus supporting the corresponding hypothesis that nemertines belong within a protostome-coelomate clade. The sequence data provide an independent test of morphological character homology.

  3. Identification of Sarcocystis hominis-like (Protozoa: Sarcocystidae) cyst in water buffalo (Bubalus bubalis) based on 18S rRNA gene sequences.

    PubMed

    Yang, Z Q; Zuo, Y X; Ding, B; Chen, X W; Luo, J; Zhang, Y P

    2001-08-01

    DNA templates were extracted from isolates of Sarcocystis hominis-like cysts collected from cattle and water buffalo, as well as from Sarcocystis fusiformis cysts and Sarcocystis suihominis cysts. The 18S rRNA genes were amplified using DNA from a single cyst as the templates. Approximately 1,367-1,440 bp sequences were obtained. The sequence difference in isolates of Sarcocystis hominis-like cysts from water buffaloes, and isolates of S. hominis cysts from cattle were very low, only about 0.1%, much lower than the lowest value (1.7%) among different species. Combined with their morphological structure, these sequence data indicate that the 4 isolates from cattle and water buffalo might be the same species, i.e., S. hominis, suggesting that both cattle and water buffalo may serve as the intermediate hosts for this parasite. Apparently, this is the first report using a single cyst to do such work and is a useful way to distinguish the Sarcocystis cyst in an intermediate host that may be simultaneously infected by several different Sarcocystis species.

  4. Characterization and physical mapping of 18S and 5S ribosomal genes in Indian major carps (Pisces, Cyprinidae).

    PubMed

    Ravindra Kumar; Kushwaha, Basdeo; Nagpure, Naresh S

    2013-06-01

    Characterization of the major (18S) and minor (5S) ribosomal RNA genes were carried out in three commercially important Indian major carp (IMC) species, viz. Catla catla, Labeo rohita and Cirrhinus mrigala along with their physical localizations using dual colour fluorescence in situ hybridization. The diploid chromosome number in the above carps was confirmed to be 50 with inter-species karyo-morphological variations. The 18S rDNA signals were observed on 3 pair of chromosomes in C. catla and L. rohita, and two pairs in C. mrigala. The 5S rDNA signal was found on single pair of chromosome in all the species with variation in their position on chromosomes. The sequencing of 18S rDNA generated 1804, 1805 and 1805 bp long fragments, respectively, in C. catla, L. rohita and C. mrigala with more than 98% sequence identity among them. Similarly, sequencing of 5S rDNA generated 191 bp long fragments in the three species with 100% identity in coding region and 23.2% overall variability in non-transcribed spacer region. Thus, these molecular markers could be used as species-specific markers for taxonomic identification and might help in understanding the genetic diversity, genome organization and karyotype evolution of these species.

  5. Molecular Taxonomy of Ganoderma cupreum from Southern India Inferred from ITS rDNA Sequences Analysis

    PubMed Central

    2013-01-01

    Ganoderma is a cosmopolitan wood-rot basidiomycete that has been extensively studied for its pathogencity and medicinal properties. Identification of Ganoderma based on macro-microscopic features led to large number of synonyms which resulted in 250 taxonomic names. A Ganoderma species collected from Courtallam, Tamil Nadu was identified as G. cupreum. Phylogenetic analysis inferred from internal transcribed spacer rDNA region resolved the Indian isolate MYC1 as Ganoderma cupreum which clustered with Australian and Asian "cupreum" clade with 85% bootstrap support BS and shared 99% and 98% nucleotide similarity with Malaysian and Australian 'cupreum' respectively. This study represents the first molecular evidence of G. cupreum from Asian origin. PMID:24493948

  6. Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA.

    PubMed

    Hamzeh, Mona; Dayanandan, Selvadurai

    2004-09-01

    The species of the genus Populus, collectively known as poplars, are widely distributed over the northern hemisphere and well known for their ecological, economical, and evolutionary importance. The extensive interspecific hybridization and high morphological diversity in this group pose difficulties in identifying taxonomic units for comparative evolutionary studies and systematics. To understand the evolutionary relationships among poplars and to provide a framework for biosystematic classification, we reconstructed a phylogeny of the genus Populus based on nucleotide sequences of three noncoding regions of the chloroplast DNA (intron of trnL and intergenic regions of trnT-trnL and trnL-trnF) and ITS1 and ITS2 of the nuclear rDNA. The resulting phylogenetic trees showed polyphyletic relationships among species in the sections Tacamahaca and Aigeiros. Based on chloroplast DNA sequence data, P. nigra had a close affinity to species of section Populus, whereas nuclear DNA sequence data suggested a close relationship between P. nigra and species of the section Aigeiros, suggesting a possible hybrid origin for P. nigra. Similarly, the chloroplast DNA sequences of P. tristis and P. szechuanica were similar to that of the species of section Aigeiros, while the nuclear sequences revealed a close affinity to species of the section Tacamahaca, suggesting a hybrid origin for these two Asiatic balsam poplars. The incongruence between phylogenetic trees based on nuclear- and chloroplast-DNA sequence data suggests a reticulate evolution in the genus Populus.

  7. Comparison of eukaryotic phytobenthic community composition in a polluted river by partial 18S rRNA gene cloning and sequencing.

    PubMed

    Dorigo, U; Bérard, A; Humbert, J F

    2002-11-01

    We compared the species composition in phytobenthic communities at different sampling sites in a small French river presenting polluted and unpolluted areas. For each sampling point, the total DNA was extracted and used to construct an 18S rRNA gene clone library after PCR amplification of a ca 400 bp fragment. Phytobenthic community composition was estimated by random sequencing of several clones per library. Most of the sequences corresponded to the Bacillariophyceae and Chlorophyceae groups. By combining phylogenetic and correspondence analyses, we showed that our molecular approach is able to estimate and compare the species composition at different sampling sites in order to assess the environmental impact of xenobiotics on phytobenthic communities. Changes in species composition of these communities were found, but no evident decrease in the diversity. We discuss the significance of these changes with regard to the existing level of pollution and their impact on the functionality of the ecosystem. Our findings suggest that it is now possible to use faster molecular methods (DGGE, ARISA.) to test large numbers of samples in the context of ecotoxicological studies, and thus to assess the impact of pollution in an aquatic ecosystem.

  8. Evolution of the MIDTAL microarray: the adaption and testing of oligonucleotide 18S and 28S rDNA probes and evaluation of subsequent microarray generations with Prymnesium spp. cultures and field samples.

    PubMed

    McCoy, Gary R; Touzet, Nicolas; Fleming, Gerard T A; Raine, Robin

    2015-07-01

    The toxic microalgal species Prymnesium parvum and Prymnesium polylepis are responsible for numerous fish kills causing economic stress on the aquaculture industry and, through the consumption of contaminated shellfish, can potentially impact on human health. Monitoring of toxic phytoplankton is traditionally carried out by light microscopy. However, molecular methods of identification and quantification are becoming more common place. This study documents the optimisation of the novel Microarrays for the Detection of Toxic Algae (MIDTAL) microarray from its initial stages to the final commercial version now available from Microbia Environnement (France). Existing oligonucleotide probes used in whole-cell fluorescent in situ hybridisation (FISH) for Prymnesium species from higher group probes to species-level probes were adapted and tested on the first-generation microarray. The combination and interaction of numerous other probes specific for a whole range of phytoplankton taxa also spotted on the chip surface caused high cross reactivity, resulting in false-positive results on the microarray. The probe sequences were extended for the subsequent second-generation microarray, and further adaptations of the hybridisation protocol and incubation temperatures significantly reduced false-positive readings from the first to the second-generation chip, thereby increasing the specificity of the MIDTAL microarray. Additional refinement of the subsequent third-generation microarray protocols with the addition of a poly-T amino linker to the 5' end of each probe further enhanced the microarray performance but also highlighted the importance of optimising RNA labelling efficiency when testing with natural seawater samples from Killary Harbour, Ireland.

  9. Nuclear rDNA and chloroplast rbcL, rbcS and IGS sequence data, and their implications from the Japanese, Korean, and North American harmful algae, Heterosigma akashiwo (Raphidophyceae)

    SciTech Connect

    Ki, Jang-Seu . E-mail: kijs@hanyang.ac.kr; Han, Myung-Soo

    2007-03-15

    The toxic Heterosigma akashiwo has been found in coastal environments and its algal blooms have been associated with mass mortality in marine organisms and farmed fish. Over the last two decades, H. akashiwo has expanded its geographical range on a worldwide scale, though all populations are suspected to be a single species. To find strong molecular evidence, supporting this hypothesis we determined nuclear 18S , ITS and LSU rDNA, and chloroplast rbcL, rbcS and flanking IGS sequences from six isolates located in North America, Japan and Korea. We compared individual loci from molecular regions (e.g., 26.7 kbp of DNA sequence) and found all the isolates to have an identical genotype. Further, the long sequences allow us to compare all the partial sequences that have been reported from samples obtained in ten countries. All these sequence are nearly identical. This suggests that they have dispersed recently from one location. The sequences revealed here can be used as an additional option for making molecular comparisons of sequences from the same isolate.

  10. Nuclear rDNA and chloroplast rbcL, rbcS and IGS sequence data, and their implications from the Japanese, Korean, and North American harmful algae, Heterosigma akashiwo (Raphidophyceae).

    PubMed

    Ki, Jang-Seu; Han, Myung-Soo

    2007-03-01

    The toxic Heterosigma akashiwo has been found in coastal environments and its algal blooms have been associated with mass mortality in marine organisms and farmed fish. Over the last two decades, H. akashiwo has expanded its geographical range on a worldwide scale, though all populations are suspected to be a single species. To find strong molecular evidence, supporting this hypothesis we determined nuclear 18S, ITS and LSU rDNA, and chloroplast rbcL, rbcS and flanking IGS sequences from six isolates located in North America, Japan and Korea. We compared individual loci from molecular regions (e.g., 26.7kbp of DNA sequence) and found all the isolates to have an identical genotype. Further, the long sequences allow us to compare all the partial sequences that have been reported from samples obtained in ten countries. All these sequence are nearly identical. This suggests that they have dispersed recently from one location. The sequences revealed here can be used as an additional option for making molecular comparisons of sequences from the same isolate. PMID:17049343

  11. Patterns of rDNA and telomeric sequences diversification: contribution to repetitive DNA organization in Phyllostomidae bats.

    PubMed

    Calixto, Merilane da Silva; de Andrade, Izaquiel Santos; Cabral-de-Mello, Diogo Cavalcanti; Santos, Neide; Martins, Cesar; Loreto, Vilma; de Souza, Maria José

    2014-02-01

    Chromosomal organization and the evolution of genome architecture can be investigated by physical mapping of the genes for 45S and 5S ribosomal DNAs (rDNAs) and by the analysis of telomeric sequences. We studied 12 species of bats belonging to four subfamilies of the family Phyllostomidae in order to correlate patterns of distribution of heterochromatin and the multigene families for rDNA. The number of clusters for 45S gene ranged from one to three pairs, with exclusively location in autosomes, except for Carollia perspicillata that had in X chromosome. The 5S gene all the species studied had only one site located on an autosomal pair. In no species the 45S and 5S genes collocated. The fluorescence in situ hybridization (FISH) probe for telomeric sequences revealed fluorescence on all telomeres in all species, except in Carollia perspicillata. Non-telomeric sites in the pericentromeric region of the chromosomes were observed in most species, ranged from one to 12 pairs. Most interstitial telomeric sequences were coincident with heterochromatic regions. The results obtained in the present work indicate that different evolutionary mechanisms are acting in Phyllostomidae genome architecture, as well as the occurrence of Robertsonian fusion during the chromosomal evolution of bats without a loss of telomeric sequences. These data contribute to understanding the organization of multigene families and telomeric sequences on bat genome as well as the chromosomal evolutionary history of Phyllostomidae bats.

  12. Distribution and 16S rDNA sequences of Argas monachus (Acari: Argasidae), a soft tick parasite of Myiopsitta monachus (Aves: Psittacidae).

    PubMed

    Mastropaolo, Mariano; Turienzo, Paola; Di Iorio, Osvaldo; Nava, Santiago; Venzal, José M; Guglielmone, Alberto A; Mangold, Atilio J

    2011-11-01

    Specimens of Argas monachus Keirans et al. were collected from Myiopsitta monachus nests in 42 localities in Argentina and Paraguay from 2006 to 2010. A list of localities where this tick has been found is presented. 16S rDNA sequences of specimens of A. monachus from different localities were compared to confirm whether they belong to the same specific taxon. Argas monachus is present in the phytogeographic provinces of Chaco, Espinal, and Monte, but not in the Pampa (all from de Chaco Domain) where the host is well distributed. No differences were found among 16S rDNA sequences of geographically distant specimens.

  13. Description of the male, redescription of the female and 16S rDNA sequence of Ixodes aulacodi (Ixodidae).

    PubMed

    Chiţimia-Dobler, Lidia; D'Amico, Gianluca; Yao, Patrick Kouassi; Kalmár, Zsuzsa; Gherman, Călin Mircea; Mihalca, Andrei Daniel; Estrada-Peña, Agustin

    2016-04-01

    Ixodes (Afrixodes) aulacodiArthur, 1956 is a poorly known species that has been recorded predominantly in the wet countries of western and central Africa, mainly associated to the greater cane rat Thryonomys swinderianus (Temmink). We herein redescribe the female, describe the male (ascribed to the species from specimens found in copula) and provide the 16S rDNA sequence. We also provide complete illustrations of the adults based on specimens found on greater cane rats in Ivory Coast. Ixodes aulacodi is included in the group of species of the subgenus Afrixodes that have horseshoe shaped anal groove, and which lack auriculae and cornua. The female is easily separated when compared with other species because of a unique combination of characters: All the coxae have internal spurs, coxa II has two external spurs, syncoxae are absent, and trochanters I-III have one spur each. The male has a notched hypostome and lacks syncoxae, auriculae and cornua. PMID:26803353

  14. Surface water-borne multidrug and heavy metal-resistant Staphylococcus isolates characterized by 16S rDNA sequencing.

    PubMed

    Yilmaz, Fadime; Orman, Nazlı; Serim, Gamze; Kochan, Ceren; Ergene, Aysun; Icgen, Bulent

    2013-12-01

    Four Staphylococcus isolates having both multidrug- and multimetal-resistant ability were isolated from surface water. Further identification of the isolates was obtained through biochemical tests and 16S rDNA gene sequencing. One methicillin-resistant and two methicillin-sensitive isolates were determined as Staphylococcus aureus. The other isolate was identified as Staphylococcus warneri. The antibiotic and heavy metal resistance profiles of the Staphylococcus isolates were determined by using 26 antibiotics and 17 heavy metals. S. aureus isolates displayed resistance to most of the β-lactam antibiotics tested. All Staphylococcus isolates were resistant to heavy metals including silver, lithium, and barium. Due to a possible health risk of these pathogenic bacteria, a need exists for an accurate assessment of their acquired resistance to multiple drugs and metals.

  15. Investigating the diversity of the 18S SSU rRNA hyper-variable region of Theileria in cattle and Cape buffalo (Syncerus caffer) from southern Africa using a next generation sequencing approach.

    PubMed

    Mans, Ben J; Pienaar, Ronel; Ratabane, John; Pule, Boitumelo; Latif, Abdalla A

    2016-07-01

    Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene.

  16. Investigating the diversity of the 18S SSU rRNA hyper-variable region of Theileria in cattle and Cape buffalo (Syncerus caffer) from southern Africa using a next generation sequencing approach.

    PubMed

    Mans, Ben J; Pienaar, Ronel; Ratabane, John; Pule, Boitumelo; Latif, Abdalla A

    2016-07-01

    Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene. PMID:27084674

  17. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities. PMID:26224512

  18. Phylogenetic analysis based on 18S rRNA gene sequences of Schellackia parasites (Apicomplexa: Lankesterellidae) reveals their close relationship to the genus Eimeria.

    PubMed

    Megía-Palma, R; Martínez, J; Merino, S

    2013-08-01

    In the present study we detected Schellackia haemoparasites infecting the blood cells of Lacerta schreiberi and Podarcis hispanica, two species of lacertid lizards from central Spain. The parasite morphometry, the presence of a refractile body, the type of infected blood cells, the kind of host species, and the lack of oocysts in the fecal samples clearly indicated these blood parasites belong to the genus Schellackia. Until now, the species of this genus have never been genetically characterized and its taxonomic position under the Lankesterellidae family is based on the lack of the exogenous oocyst stage. However, the phylogenetic analysis performed on the basis of the 18S rRNA gene sequence revealed that species of the genus Schellackia are clustered with Eimeria species isolated from a snake and an amphibian species but not with Lankesterella species. The phylogenetic analysis rejects that both genera share a recent common ancestor. Based on these results we suggest a revision of the taxonomic status of the family Lankesterellidae. PMID:23731491

  19. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities.

  20. Microheterogeneity and coevolution: an examination of rDNA sequence characteristics in Neoparamoeba pemaquidensis and its prokinetoplastid endosymbiont.

    PubMed

    Caraguel, Charles G B; O'Kelly, Charles J; Legendre, Pierre; Frasca, Salvatore; Gast, Rebecca J; Després, Béatrice M; Cawthorn, Richard J; Greenwood, Spencer J

    2007-01-01

    Neoparamoeba pemaquidensis, the etiological agent of amoebic gill disease, has shown surprising sequence variability among different copies of the 18S ribosomal RNA gene within an isolate. This intra-genomic microheterogeneity was confirmed and extended to an analysis of the internal transcribed spacer (ITS) region. High levels of intra-genomic nucleotide diversity (Pi=0.0201-0.0313) were found among sequenced ITS regions from individual host amoeba isolates. In contrast, the ITS region of its endosymbiont revealed significantly lower levels of intra-genomic nucleotide diversity (Pi=0.0028-0.0056) compared with the host N. pemaquidensis. Phylogenetic and ParaFit coevolution analyses involving N. pemaquidensis isolates and their respective endosymbionts confirmed a significant coevolutionary relationship between the two protists. The observation of non-shared microheterogeneity and coevolution emphasizes the complexity of the interactions between N. pemaquidensis and its obligate endosymbiont.

  1. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories.

    PubMed

    Woo, P C Y; Lau, S K P; Teng, J L L; Tse, H; Yuen, K-Y

    2008-10-01

    In the last decade, as a result of the widespread use of PCR and DNA sequencing, 16S rDNA sequencing has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in determining the duration of treatment and infection control procedures. With the use of 16S rDNA sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkongensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 16S rDNA sequencing into routine use in clinical microbiology laboratories is automation of the technology. The only step that can be automated at the moment is input of the 16S rDNA sequence of the bacterial isolate for identification into one of the software packages that will generate the result of the identity of the isolate on the basis of its sequence database. However

  2. Molecular phylogenetics at the Felsenstein zone: approaching the Strepsiptera problem using 5.8S and 28S rDNA sequences.

    PubMed

    Hwang, U W; Kim, W; Tautz, D; Friedrich, M

    1998-06-01

    Recent efforts to reconstruct the phylogenetic position of the insect order Strepsiptera have elicited a major controversy in molecular phylogenetics. We sequenced the 5.8S rDNA and major parts of the 28S rDNA 5' region of the strepsipteran species Stylops melittae. Their evolutionary dynamics were analyzed together with previously published insect rDNA sequences to identify tree estimation bias risks and to explore additional sources of phylogenetic information. Several major secondary structure changes were found as being autapomorphic for the Diptera, the Strepsiptera, or the Archaeognatha. Besides elevated substitution rates a significant AT bias was present in dipteran and strepsipteran 28S rDNA which, however, was restricted to stem sites in the Diptera while also affecting single-stranded sites in the Strepsiptera. When dipteran taxa were excluded from tree estimation all methods consistently supported the placement of Strepsiptera to within the Holometabola. When dipteran taxa were included maximum likelihood continued to favor a sister-group relationship of Strepsiptera with Mecoptera while remaining methods strongly supported a sister-group relationship with Diptera. Parametric bootstrap analysis revealed maximum likelihood as a consistent estimator if rate heterogeneity across sites was taken into account. Though the position of Strepsiptera within Holometabola remains elusive, we conclude that the evolution of dipteran and strepsipteran rDNA involved similar yet independent changes of substitution parameters. PMID:9667995

  3. Free-living protozoa in two unchlorinated drinking water supplies, identified by phylogenic analysis of 18S rRNA gene sequences.

    PubMed

    Valster, Rinske M; Wullings, Bart A; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick

    2009-07-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20 degrees C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa.

  4. Chromosomal localization of the 18S-28S and 5S rRNA genes and (TTAGGG)n sequences of butterfly lizards (Leiolepis belliana belliana and Leiolepis boehmei, Agamidae, Squamata).

    PubMed

    Srikulnath, Kornsorn; Uno, Yoshinobu; Matsubara, Kazumi; Thongpan, Amara; Suputtitada, Saowanee; Apisitwanich, Somsak; Nishida, Chizuko; Matsuda, Yoichi

    2011-10-01

    Chromosomal mapping of the butterfly lizards Leiolepis belliana belliana and L. boehmei was done using the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences. The karyotype of L. b. belliana was 2n = 36, whereas that of L. boehmei was 2n = 34. The 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, while the 5S rRNA genes were found in the pericentromeric region of chromosome 6 in both species. Hybridization signals for the (TTAGGG)n sequence were observed at the telomeric ends of all chromosomes, as well as interstitially at the same position as the 18S-28S rRNA genes in L. boehmei. This finding suggests that in L. boehmei telomere-to-telomere fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located or, alternatively, at the secondary constriction of chromosome 1. The absence of telomeric sequence signals in chromosome 1 of L. b. belliana suggested that its chromosomes may have only a few copies of the (TTAGGG)n sequence or that there may have been a gradual loss of the repeat sequences during chromosomal evolution.

  5. Polymorphism of Paramecium pentaurelia (Ciliophora, Oligohymenophorea) strains revealed by rDNA and mtDNA sequences.

    PubMed

    Przyboś, Ewa; Tarcz, Sebastian; Greczek-Stachura, Magdalena; Surmacz, Marta

    2011-05-01

    Paramecium pentaurelia is one of 15 known sibling species of the Paramecium aurelia complex. It is recognized as a species showing no intra-specific differentiation on the basis of molecular fingerprint analyses, whereas the majority of other species are polymorphic. This study aimed at assessing genetic polymorphism within P. pentaurelia including new strains recently found in Poland (originating from two water bodies, different years, seasons, and clones of one strain) as well as strains collected from distant habitats (USA, Europe, Asia), and strains representing other species of the complex. We compared two DNA fragments: partial sequences (349 bp) of the LSU rDNA and partial sequences (618 bp) of cytochrome B gene. A correlation between the geographical origin of the strains and the genetic characteristics of their genotypes was not observed. Different genotypes were found in Kraków in two types of water bodies (Opatkowice-natural pond; Jordan's Park-artificial pond). Haplotype diversity within a single water body was not recorded. Likewise, seasonal haplotype differences between the strains within the artificial water body, as well as differences between clones originating from one strain, were not detected. The clustering of some strains belonging to different species was observed in the phylogenies.

  6. Molecular identification of Hysterothylacium aduncum specimens isolated from commercially important fish species of Eastern Mediterranean Sea using mtDNA cox1 and ITS rDNA gene sequences.

    PubMed

    Keskin, Emre; Koyuncu, Cafer Erkin; Genc, Ercument

    2015-04-01

    The presence of a Raphidascarid parasitic nematode Hysterothylacium aduncum (Rudolphi, 1802) in two sparid fish (Sparus aurata and Diplodus vulgaris) and one soleid fish (Solea solea) was investigated in this study. A total of 868 individuals; 385 S. aurata, 437 D. vulgaris and 46 S. solea were collected from the Mersin Bay between February 2013 and January 2014 and examined. Variations in the prevalence, mean intensity, and mean abundance of the parasite were 14.55%, 2.05, and 0.30 for S. aurata, 4.12%, 2.44, and 0.10 for D. vulgaris, and 15.22%, 3.29, and 0.50 for S. sole respectively. Nucleotide sequences of 1398 base pair long fragment of 18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA region and 641 base pair long fragment of mtDNA cytochrome c oxidase I (cox1) gene were used in molecular identification of isolated parasites at species level. All the parasite samples were identified as H. aduncum based on nucleotide sequence comparisons. Both ITS rDNA and mtDNA cox1 sequences revealed a genetic variation among H. aduncum specimens isolated from different fish species, while only mtDNA cox1 sequences were indicating a mean genetic distance of 0.010 among H. aduncum specimens of the same host species. PMID:25543079

  7. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences.

    PubMed

    Backor, Martin; Peksa, Ondrej; Skaloud, Pavel; Backorová, Miriam

    2010-05-01

    The photobiont is considered as the more sensitive partner of lichen symbiosis in metal pollution. For this reason the presence of a metal tolerant photobiont in lichens may be a key factor of ecological success of lichens growing on metal polluted substrata. The photobiont inventory was examined for terricolous lichen community growing in Cu mine-spoil heaps derived by historical mining. Sequences of internal transcribed spacer (ITS) were phylogenetically analyzed using maximum likelihood analyses. A total of 50 ITS algal sequences were obtained from 22 selected lichen taxa collected at three Cu mine-spoil heaps and two control localities. Algae associated with Cladonia and Stereocaulon were identified as members of several Asterochloris lineages, photobionts of cetrarioid lichens clustered with Trebouxia hypogymniae ined. We did not find close relationship between heavy metal content (in localities as well as lichen thalli) and photobiont diversity. Presence of multiple algal genotypes in single lichen thallus has been confirmed. PMID:20031214

  8. The phylogeny of the genus Yersinia based on 16S rDNA sequences.

    PubMed

    Ibrahim, A; Goebel, B M; Liesack, W; Griffiths, M; Stackebrandt, E

    1993-12-01

    The inter- and intrageneric relationships of the genus Yersinia were investigated by sequence analysis of the 16S rRNA gene. A stretch of approximately 1450 nucleotides was sequenced from representatives of ten of the eleven validly described species. Phylogenetic analysis revealed that yersinae form a coherent cluster within the gamma subgroup of Proteobacteria. The intrageneric relationship was characterized by five sublines with Y. enterocolitica, Y. rohdei, and Y. ruckeri forming separate sublines each represented by a single species. A separate subline was formed by Y. pestis, Y pseudotuberculosis and Y. kristensenii, while Y. mollaretii, Y. intermedia, Y. bercovieri, Y. aldovae, and Y. kristensenii formed a fifth subline. The phylogenetic distinctness of the yersiniae sublines is compared to published phenotypic properties and results of DNA-DNA similarity studies.

  9. [An intriguing model for 5S rDNA sequences dispersion in the genome of freshwater stingray Potamotrygon motoro (Chondrichthyes: Potamotrygonidae)].

    PubMed

    Cruz, V P; Oliveira, C; Foresti, F

    2015-01-01

    5S rDNA genes of the stingray Potamotrygon motoro were PCR replicated, purified, cloned and sequenced. Two distinct classes of segments of different sizes were obtained. The smallest, with 342 bp units, was classified as class I, and the largest, with 1900 bp units, was designated as class II. Alignment with the consensus sequences for both classes showed changes in a few bases in the 5S rDNA genes. TATA-like sequences were detected in the nontranscribed spacer (NTS) regions of class I and a microsatellite (GCT) 10 sequence was detected in the NTS region of class II. The results obtained can help to understand the molecular organization of ribosomal genes and the mechanism of gene dispersion.

  10. [An intriguing model for 5S rDNA sequences dispersion in the genome of freshwater stingray Potamotrygon motoro (Chondrichthyes: Potamotrygonidae)].

    PubMed

    Cruz, V P; Oliveira, C; Foresti, F

    2015-01-01

    5S rDNA genes of the stingray Potamotrygon motoro were PCR replicated, purified, cloned and sequenced. Two distinct classes of segments of different sizes were obtained. The smallest, with 342 bp units, was classified as class I, and the largest, with 1900 bp units, was designated as class II. Alignment with the consensus sequences for both classes showed changes in a few bases in the 5S rDNA genes. TATA-like sequences were detected in the nontranscribed spacer (NTS) regions of class I and a microsatellite (GCT) 10 sequence was detected in the NTS region of class II. The results obtained can help to understand the molecular organization of ribosomal genes and the mechanism of gene dispersion. PMID:26107907

  11. The phylogenetic position of the pelobiont Mastigamoeba balamuthi based on sequences of rDNA and translation elongation factors EF-1alpha and EF-2.

    PubMed

    Arisue, Nobuko; Hashimot, Tetsuo; Lee, Jennifer A; Moore, Dorothy V; Gordon, Paul; Sensen, Christoph W; Gaasterland, Terry; Hasegawa, Masami; Müller, Miklós

    2002-01-01

    The taxonomic position and phylogenetic relationships of the Pelobionta, an amitochondriate amoeboflagellate group, are not yet completely settled. To provide more information, we obtained sequences for the large subunit rDNA gene, the gene for translation elongation factor 1alpha, and for a large part of the gene encoding translation elongation factor 2 from a representative of this group, Mastigamoeba balamuthi (formerly Phreatamoeba balamuthi). The gene for the large subunit rDNA was unusually large compared to those of other protists, a phenomenon that had previously been observed for the gene encoding the small subunit rDNA. Phylogenetic reconstruction using a maximum likelihood method was performed with these sequences, as well as the gene encoding the small subunit rDNA. When evaluated individually, the M. balamuthi genes for the small and large subunit rDNAs and elongation factor 1alpha had a most recent common ancestor with either the Mycetozoa (slime molds) or with Entamoeba histolytica. A clade formed by M. balamuthi, E. histolytica, and Mycetozoa was not rejected statistically for any of the sequences. A combined maximum likelihood analysis using 3,935 positions from all molecules suggested that these three taxonomic units form a robust clade. We were unable to resolve the closest group to this clade using the combined analysis. These findings support the notion, which had previously been proposed primarily on cytological evidence, that both M. balamuthi and E. histolytica are closely related to the Mycetozoa and that these three together represent a major eukaryotic lineage.

  12. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    PubMed Central

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  13. Aligned 18S for Zoraptera (Insecta): phylogenetic position and molecular evolution.

    PubMed

    Yoshizawa, Kazunori; Johnson, Kevin P

    2005-11-01

    The order Zoraptera (angel insects) is one of the least known insect groups, containing only 32 extant species. The phylogenetic position of Zoraptera is poorly understood, but it is generally thought to be closely related to either Paraneoptera (hemipteroid orders: booklice, lice, thrips, and bugs), Dictyoptera (blattoid orders: cockroaches, termites, and mantis), or Embioptera (web spinners). We inferred the phylogenetic position of Zoraptera by analyzing nuclear 18S rDNA sequences, which we aligned according to a secondary structure model. Maximum likelihood and Bayesian analyses both supported a close relationship between Zoraptera and Dictyoptera with relatively high posterior probability. The 18S sequences of Zoraptera exhibited several unusual properties: (1) a dramatically increased substitution rate, which resulted in very long branches; (2) long insertions at helix E23; and (3) modifications of secondary structures at helices 12 and 18.

  14. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences.

    PubMed Central

    Black, W C; Piesman, J

    1994-01-01

    Ticks are parasitiform mites that are obligate hematophagous ectoparasites of amphibians, reptiles, birds, and mammals. A phylogeny for tick families, subfamilies, and genera has been described based on morphological characters, life histories, and host associations. To test the existing phylogeny, we sequenced approximately 460 bp from the 3' end of the mitochondrial 16S rRNA gene (rDNA) in 36 hard- and soft-tick species; a mesostigmatid mite, Dermanyssus gallinae, was used as an outgroup. Phylogenies derived using distance, maximum-parsimony, or maximum-likelihood methods were congruent. The existing phylogeny was largely supported with four exceptions. In hard ticks (Ixodidae), members of Haemaphysalinae were monophyletic with the primitive Amblyomminae and members of Hyalomminae grouped within the Rhipicephalinae. In soft ticks (Argasidae), the derived phylogeny failed to support a monophyletic relationship among members of Ornithodorinae and supported placement of Argasinae as basal to the Ixodidae, suggesting that hard ticks may have originated from an Argas-like ancestor. Because most Argas species are obligate bird octoparasites, this result supports earlier suggestions that hard ticks did not evolve until the late Cretaceous. PMID:7937832

  15. Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences.

    PubMed

    Jeewon, Rajesh; Liew, Edward C Y; Hyde, Kevin D

    2003-12-01

    The Amphisphaeriaceae is an important family of ascomycetes within the Xylariales. There has been, however, disagreement regarding the taxonomic placement of many genera within this family and whether it should be confined to ascomycetes producing Pestalotiopsis-like anamorphs. In this study, phylogenetic relationships among members of the Amphisphaeriaceae are investigated using partial sequences of the 28S rDNA. Molecular data provided further evidence to support the association of several coelomycetous genera with the ascomycetous Amphisphaeriaceae. Phylogenetic analyses also show that all ascomycetous genera possessing Pestalotiopsis-like anamorphs are monophyletic and confirm the anamorphic-teleomorphic connections of some. There is, however, insufficient evidence to support the restriction of Amphisphaeriaceae to genera, which produce Pestalotiopsis-like anamorphs, because the phylogenetic placement of Amphisphaeria umbrina is not fully resolved and its affinities with other members received low bootstrap support. The results also indicate that Iodosphaeria and Arecophila should be excluded from the Amphisphaeriaceae. The placement of Lanceispora in the Amphisphaeriaceae is doubtful. A broad concept of the family Amphisphaeriaceae is advocated until further data are available.

  16. The phylogeny of native and exotic scallops cultured in China based on 16S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Baozhong; Dong, Bo; Xiang, Jianhai; Wang, Zaizhao

    2007-01-01

    Scallops of the Family Pectinidae are a valuable resource in marine industry of the world. Understanding the phylogeny of the family is important for the development of the industry. In this study, partial 16S mitochondrial rDNA genes were obtained from 8 scallop species that are commonly cultured indigenous and transplanted species in China. Phylogenetic relationships of Pectinidae were analyzed based on the 8 sequences and other 5 published ones in GenBank, representing 9 genera of the family. The molecular phylogeny trees were constructed using 3 methods with software PHYLIP. The results showe that total 13 species of scallops clustered in 4 clades. Pecten maximus joins P. jacobaeus then Amusium pleuronectes in cluster, indicating close relationship of genus Amusium with Pecten in evolution. P. yessoensis is close to Chlamys farreri and C. islandica. No enough material was available to single out genus Patinopecten as an independent monophyletic subfamily. The position of Adamussium colbecki indicates that it is far from genus Pecten but near to genus Chlamys in evolution.

  17. Phylogenetic relationships of Brazilian isolates of Pythium insidiosum based on ITS rDNA and cytochrome oxidase II gene sequences.

    PubMed

    Azevedo, M I; Botton, S A; Pereira, D I B; Robe, L J; Jesus, F P K; Mahl, C D; Costa, M M; Alves, S H; Santurio, J M

    2012-09-14

    Pythium insidiosum is an aquatic oomycete that is the causative agent of pythiosis. Advances in molecular methods have enabled increased accuracy in the diagnosis of pythiosis, and in studies of the phylogenetic relationships of this oomycete. To evaluate the phylogenetic relationships among isolates of P. insidiosum from different regions of Brazil, and also regarding to other American and Thai isolates, in this study a total of thirty isolates of P. insidiosum from different regions of Brazil was used and had their ITS1, 5.8S rRNA and ITS2 rDNA (ITS) region and the partial sequence of cytochrome oxidase II (COX II) gene sequenced and analyzed. The outgroup consisted of six isolates of other Pythium species and one of Lagenidium giganteum. Phylogenetic analyses of ITS and COX II genes were conducted, both individually and in combination, using four different methods: Maximum parsimony (MP); Neighbor-joining (NJ); Maximum likelihood (ML); and Bayesian analysis (BA). Our data supported P. insidiosum as monophyletic in relation to the other Pythium species, and COX II showed that P. insidiosum appears to be subdivided into three major polytomous groups, whose arrangement provides the Thai isolates as paraphyletic in relation to the Brazilian ones. The molecular analyses performed in this study suggest an evolutionary proximity among all American isolates, including the Brazilian and the Central and North America isolates, which were grouped together in a single entirely polytomous clade. The COX II network results presented signals of a recent expansion for the American isolates, probably originated from an Asian invasion source. Here, COX II showed higher levels bias, although it was the source of higher levels of phylogenetic information when compared to ITS. Nevertheless, the two markers chosen for this study proved to be entirely congruent, at least with respect to phylogenetic relationships between different isolates of P. insidiosum. PMID:22483240

  18. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences.

    PubMed

    Ajitkumar, Praseeda; Barkema, Herman W; De Buck, Jeroen

    2012-03-23

    Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with

  19. Phylogenetic analyses among octocorals (Cnidaria): mitochondrial and nuclear DNA sequences (lsu-rRNA, 16S and ssu-rRNA, 18S) support two convergent clades of branching gorgonians.

    PubMed

    Armando Sánchez, Juan; Lasker, Howard R; Taylor, Derek J

    2003-10-01

    Gorgonian octocorals lack corroborated hypotheses of phylogeny. This study reconstructs genealogical relationships among some octocoral species based on published DNA sequences from the large ribosomal subunit of the mitochondrial RNA (lsu-rRNA, 16S: 524bp and 21 species) and the small subunit of the nuclear RNA (ssu-rRNA, 18S: 1815bp and 13 spp) using information from insertions-deletions (INDELS) and the predicted secondary structure of the lsu-rRNA (16S). There were seven short (3-10bp) INDELS in the 18S with consistent phylogenetic information. The INDELS in the 16S corresponded to informative signature sequences homologous to the G13 helix found in Escherichia coli. We found two main groups of gorgonian octocorals using a maximum parsimony analysis of the two genes. One group corresponds to deep-water taxa including species from the suborders Calcaxonia and Scleraxonia characterized by an enlargement of the G13 helix. The second group has species from Alcyoniina, Holaxonia and again Scleraxonia characterized by insertions in the 18S. Gorgonian corals, branching colonies with a gorgonin-containing flexible multilayered axis (Holaxonia and Calcaxonia), do not form a monophyletic group. These corroborated results from maternally inherited (16S) and biparentally inherited (18S) genes support a hypothesis of independent evolution of branching in the two octocoral clades.

  20. Molecular confirmation of the genomic constitution of Douglasdeweya (Triticeae: Poaceae): demonstration of the utility of the 5S rDNA sequence as a tool for haplome identification.

    PubMed

    Baum, Bernard R; Johnson, Douglas A

    2008-06-01

    A new genus Douglasdeweya containing the two species, Douglasdeweya deweyi and D. wangii was published in 2005 by Yen et al. based upon the results of cytogenetical and morphological findings. The genome constitution of Douglasdeweya-PPStSt-allowed its segregation from the genus Pseudoroegneria which contains the StSt or StStStSt genomes. Our previous work had demonstrated the utility of using 5S rDNA units, especially the non-transcribed spacer sequence variation, for the resolution of genomes (haplomes) previously established by cytology. Here, we show that sequence analysis of the 5S DNA units from these species strongly supports the proposed species relationships of Yen et al. (Can J Bot 83:413-419, 2005), i.e., the PP genome from Agropyron and the StSt genome from Pseudoroegneria. Analysis of the 5S rDNA units constitutes a powerful tool for genomic research especially in the Triticeae. PMID:18421479

  1. Intraspecific Genetic Variation and Phylogenetic Analysis of Dirofilaria immitis Samples from Western China Using Complete ND1 and 16S rDNA Gene Sequences

    PubMed Central

    Liu, Tianyu; Liang, Yinan; Zhong, Xiuqin; Wang, Ning; Hu, Dandan; Zhou, Xuan; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    Dirofilaria immitis (heartworm) is the causative agent of an important zoonotic disease that is spread by mosquitoes. In this study, molecular and phylogenetic characterization of D. immitis were performed based on complete ND1 and 16S rDNA gene sequences, which provided the foundation for more advanced molecular diagnosis, prevention, and control of heartworm diseases. The mutation rate and evolutionary divergence in adult heartworm samples from seven dogs in western China were analyzed to obtain information on genetic diversity and variability. Phylogenetic relationships were inferred using both maximum parsimony (MP) and Bayes methods based on the complete gene sequences. The results suggest that D. immitis formed an independent monophyletic group in which the 16S rDNA gene has mutated more rapidly than has ND1. PMID:24639299

  2. [Analysis of DNA homology and 16S rDNA sequence of rhizobia, a new phenotypic subgroup, isolated from Xizang Autonomous Region of China].

    PubMed

    Wang, Su-ying; Yang, Xiao-li; Li, Hai-feng; Liu, Jie

    2006-02-01

    Based on the studies of numerical taxonomy, the seven rhizobial strains isolated from the root nodules of leguminous plants Trigonella spp. and Astragalus spp. growing in the Xizang Autonomous Region of China constituted a new phenotypic subgroup, where wide phenotypic and genotypic diversity among legume crops had been reported due to complex terrain and various climate. The new phenotypic subgroup were further identified to clarify its taxonomic position by DNA homology analysis and 16S rDNA gene sequencing. The mol% G + C ratio of the DNA among members of the new subgroup ranged from 59.5 to 63.3 mol% as determined by T (m) assay. The levels of DNA relatedness, determined by using the DNA liquid hybridization method, among the members of the new subgroup were between 74.3% and 92.3%, while level of DNA relatedness between the central strains XZ2-3 of the new subgroup and the type strains of known species of Rhizobium was less than 47.4%. These results indicated that the new phenotypic subgroup is a DNA homological group different from described species of Rhizobium. Therefore, this new phenotypic subgroup was supposed to be a new species in the genus of Rhizobium since the strains in the same species generally exhibit levels of DNA homology ranging from 70 to 100%. A systematic identification method-16S rDNA gene sequence comparison was carried out to determine the phylogenetic relationships of the new subgroup with the described species of Rhizobium. The GenBank accession number for the 16S rDNA sequence of the central strain XZ2-3 of the new subgroup is DQ099745. The full-length 16S rDNA gene sequence were sequenced by chain terminator techniques and analyzed with PHYLIP. The phylogenetic trees were constructed by using the programs DRAWTREE. The phylogenetic analysis indicated that new subgroup occupy a independent sub-branch in phylogenetic tree. The sequence similarities between the center strain XZ2-3 and the closest relatives, strain R. leguminosarum USDA

  3. Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae: Triatominae), vectors of Trypanosoma cruzi.

    PubMed

    Marcilla, A; Bargues, M D; Abad-Franch, F; Panzera, F; Carcavallo, R U; Noireau, F; Galvão, C; Jurberg, J; Miles, M A; Dujardin, J P; Mas-Coma, S

    2002-05-01

    Panstrongylus species are widely distributed throughout the Americas, where they act as vectors of Trypanosoma cruzi, agent of Chagas disease. Their intraspecific relationships, taxonomic position and phylogeny in relation to other Triatomini were explored using ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS-2) sequence polymorphisms and maximum parsimony, distance and maximum likelihood analyses of 10 populations representing six species of the genus (P. megistus, P. geniculatus, P. rufotuberculatus, P. lignarius, P. herreri and P. chinai). At the subspecific level, P. megistus appeared more homogeneous than P. rufotuberculatus and P. geniculatus (both with broader distribution). Several dinucleotide microsatellites were detected in the sequences of given species. Many of these microsatellites (GC, TA, GT and AT) showed different number of repeats in different populations and thus, may be very useful for population differentiation and dynamics analyses in future studies. The sequences of P. lignarius (considered sylvatic) and P. herreri (a major disease vector in Peru) were identical, suggesting that these species should be synonymised. Intrageneric analysis showed a clear separation of P. rufotuberculatus, with closest relationships between P. geniculatus and P. chinai, and P. megistus occupying a separate branch. Genetic distances between Panstrongylus species (0.11585-0.22131) were higher than those between Panstrongylus and other Triatomini (16 species from central and North America and South America) (0.08617-0.11039). The distance between P. megistus and P. lignarius/herreri (0.22131) was the largest so far recorded in the tribe. The pronounced differences in length and nucleotide composition suggest a relatively old divergence of Panstrongylus species. P. rufotuberculatus was closer to Mesoamerican Triatoma, Meccus and Dipetalogaster species than to other Panstrongylus. All Panstrongylus clustered with the Mesoamerican clade; P. rufotuberculatus

  4. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Luo, Zhu-Hua; Guo, Shuangshuang; Pang, Ka-Lai

    2016-03-01

    We investigated the diversity of fungal communities in 6 different deep-sea sediment samples of the Pacific Ocean based on three different types of clone libraries, including internal transcribed spacer (ITS), 18S rDNA, and 28S rDNA regions. A total of 1978 clones were generated from 18 environmental clone libraries, resulting in 140 fungal operational taxonomic units (OTUs), including 18 OTUs from ITS, 44 OTUs from 18S rDNA, and 78 OTUs from 28S rDNA gene primer sets. The majority of the recovered sequences belonged to diverse phylotypes of the Ascomycota and Basidiomycota. Additionally, our study revealed a total of 46 novel fungal phylotypes, which showed low similarities (<97%) with available fungal sequences in the GenBank, including a novel Zygomycete lineage, suggesting possible new fungal taxa occurring in the deep-sea sediments. The results suggested that 28S rDNA is an efficient target gene to describe fungal community in deep-sea environment.

  5. Studies on Lethrinitrema Lim & Justine, 2011 (Monogenea: Dactylogyridae), with the description of two new species, a key to the genus and a phylogenetic analysis based on rDNA sequences.

    PubMed

    Sun, Yuan; Li, Min; Yang, Tingbao

    2014-06-01

    Six species of Lethrinitrema Lim & Justine, 2011, including two new taxa, are described from the gills of Lethrinus nebulosus (Forsskål) from the South China Sea. Lethrinitrema nebulosum n. sp. differs from all other members of the genus in possessing a copulatory organ with a short, distally recurved tube, a cup-shaped base and a thin accessory piece, arising from distal end of tube, junction inconspicuous. Lethrinitrema zhanjiangense n. sp. can be distinguished from its congeners by possessing a copulatory organ with a C-shaped tube, a cup-shaped base and without accessory piece. Lethrinitrema grossecurvitubum (Li & Chen, 2005) n. comb. and Lethrinitrema austrosinense (Li & Chen, 2005) n. comb., previously included in Haliotrema Johnston & Tiegs, 1922, are transferred to Lethrinitrema and redescribed with additional details, including the intestinal caeca that unite posterior to gonads and continue posteriorly as two diverticula, and the elongate tubular distal end of each haptoral reservoir bifurcating prior to entering a superficial lateral groove on each side of the ventral anchor. The sclerotised parts of two unidentified species of Lethrinitrema are also described. Lethrinitrema sp. 1 differs from the other Lethrinitrema spp. in possessing a male copulatory organ consisting of a short tapered tube with a robust cup-shaped base and in lacking accessory piece. Lethrinitrema sp. 2 differs from its congeners in possessing a copulatory organ comprised of a short slender tube and without accessory piece, delicate ventral and dorsal bars, and poorly developed outer roots of the anchors. Sequences of partial 28S rDNA (domains D1-D2) and complete 18S rDNA for 27 dactylogyrids including five species of Lethrinitrema, i.e. Lethrinitrema fleti (Young, 1968) Lim & Justine, 2011, L. nebulosum, L. zhanjiangense, L. grossecurvitubum and Lethrinitrema sp. 1 were used to assess the monophyly of Lethrinitrema which was supported by high bootstrap values.

  6. Loop-mediated isothermal amplification assay for detection of Histomonas meleagridis infection in chickens targeting the 18S rRNA sequences.

    PubMed

    Xu, Jinjun; Qu, Chanbao; Tao, Jianping

    2014-01-01

    Histomonas meleagridis is the causative agent of histomonosis, a disease of gallinaceous fowl characterized by necrotic typhlitis, hepatitis, and high mortality. To develop a rapid and sensitive method for specific detection of H. meleagridis, an assay based on loop-mediated isothermal amplification (LAMP) targeting the 18S rRNA gene was established. The detection limit of the LAMP assay was 10 copies for standard plasmids containing an 18S rRNA gene fragment, which was superior to that of a classical PCR method. Specificity tests revealed that there was no cross-reaction with other protozoa such as Trichomonas gallinae, Blastocytis sp, Tetratrichomonas gallinarum, Plasmodium gallinaceum, Toxoplasma gondii, Eimeria tenella, Leucocytozoon caulleryi and Leucocytozoon sabrazesi. The assay was evaluated for its diagnostic utility using liver and caeca samples collected from suspected field cases, the detection rate was 100 and 97.92%, respectively. These results indicate that the LAMP assay may be a useful tool for rapid detection and identification of H. meleagridis in poultry. PMID:24320623

  7. Identification of the Bacterial Community of Maple Sap by Using Amplified Ribosomal DNA (rDNA) Restriction Analysis and rDNA Sequencing

    PubMed Central

    Lagacé, L.; Pitre, M.; Jacques, M.; Roy, D.

    2004-01-01

    The bacterial community of maple sap was characterized by analysis of samples obtained at the taphole of maple trees for the 2001 and 2002 seasons. Among the 190 bacterial isolates, 32 groups were formed according to the similarity of the banding patterns obtained by amplified ribosomal DNA restriction analysis (ARDRA). A subset of representative isolates for each ARDRA group was identified by 16S rRNA gene fragment sequencing. Results showed a wide variety of organisms, with 22 different genera encountered. Pseudomonas and Ralstonia, of the γ- and β-Proteobacteria, respectively, were the most frequently encountered genera. Gram-positive bacteria were also observed, and Staphylococcus, Plantibacter, and Bacillus were the most highly represented genera. The sampling period corresponding to 50% of the cumulative sap flow percentage presented the greatest bacterial diversity according to its Shannon diversity index value (1.1). γ-Proteobacteria were found to be dominant almost from the beginning of the season to the end. These results are providing interesting insights on maple sap microflora that will be useful for further investigation related to microbial contamination and quality of maple products and also for guiding new strategies on taphole contamination control. PMID:15066796

  8. ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs

    PubMed Central

    Akbergenov, R. Zh.; Zhanybekova, S. Sh.; Kryldakov, R. V.; Zhigailov, A.; Polimbetova, N. S.; Hohn, T.; Iskakov, B. K.

    2004-01-01

    The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation-enhancing property of these sequences. To verify this notion, we designed β-glucuronidase (GUS) mRNAs differing only in the nature of 10 nt inserts in the center of their 41 base leaders. These were complementary to consecutive domains of plant 18S rRNA. Sucrose gradient analysis revealed that leaders with inserts complementary to regions 1105–1114 and 1115–1124 (‘ARC-1’) of plant 18S rRNA bound most efficiently to the 40S ribosomal subunit after dissociation from 80S ribosomes under conditions of high ionic strength, a treatment known to remove translation initiation factors. Using wheat germ cell-free extracts, we could demonstrate that mRNAs with these leaders were translated more than three times more efficiently than a control lacking such a complementarity. Three linked copies of the insert enhanced translation of reporter mRNA to levels comparable with those directed by the natural translation enhancing leaders of tobacco mosaic virus and potato virus Y RNAs. Moreover, inserting the same leaders as intercistronic sequences in dicistronic mRNAs substantially increased translation of the second cistron, thereby revealing internal ribosome entry site activity. Thus, for plant systems, the complementary interaction between mRNA leader and the central region of 18S rRNA allows cap-independent binding of mRNA to the 43S pre-initiation complex without assistance of translation initiation factors. PMID:14718549

  9. Polyamine stimulation of eEF1A synthesis based on the unusual position of a complementary sequence to 18S rRNA in eEF1A mRNA.

    PubMed

    Terui, Yusuke; Sakamoto, Akihiko; Yoshida, Taketo; Kasahara, Takuma; Tomitori, Hideyuki; Higashi, Kyohei; Igarashi, Kazuei; Kashiwagi, Keiko

    2015-02-01

    It is thought that Shine-Dalgarno-like sequences, which exhibit complementarity to the nucleotide sequences at the 3'-end of 18S rRNA, are not present in eukaryotic mRNAs. However, complementary sequences consisting of more than 5 nucleotides to the 3'-end of 18S rRNA, i.e., a CR sequence, are present at -17 to -32 upstream from the initiation codon AUG in 18 mRNAs involved in protein synthesis except eEF1A mRNA. Thus, effects of the CR sequence in mRNAs and polyamines on protein synthesis were examined using control and polyamine-reduced FM3A and NIH3T3 cells. Polyamines did not stimulate protein synthesis encoded by 18 mRNAs possessing a normal CR sequence. When the CR sequence was deleted, protein synthetic activities decreased to less than 70% of intact mRNAs. In eEF1A mRNA, the CR sequence was located at -33 to -39 upstream from the initiation codon AUG, and polyamines stimulated eEF1A synthesis about threefold. When the CR sequence was shifted to -22 to -28 upstream from the AUG, eEF1A synthesis increased in polyamine-reduced cells and the degree of polyamine stimulation decreased greatly. The results indicate that the CR sequence exists in many eukaryotic mRNAs, and the location of a CR sequence in mRNAs influences polyamine stimulation of protein synthesis.

  10. Protist 18S rRNA gene Sequence Analysis Reveals Multiple Sources of Organic Matter Contributing to Turbidity Maxima of the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Zuber, Peter A.

    2011-10-05

    The Columbia River estuary is traditionally considered a detritus-based ecosystem fueled in summer by organic matter (OM) from expired freshwater diatoms. Since Estuarine Turbidity Maxima (ETM) are sites of accumulation and transformation of this phytoplankton-derived OM, to further characterize the ETM protist assemblage, we collected in August 2007 bottom waters throughout an ETM event, as well as surface water during the peak of bottom turbidity, and performed biogeochemical, microscopic and molecular (18S rRNA gene clone libraries) analyses. These data confirmed that the majority of the particulate OM in ETMs is derived from chlorophyll a-poor particulate organic carbon tagged by DNA too damaged to be detected by molecular analysis.

  11. Molecular approaches to differentiate three species of Nematodirus in sheep and goats from China based on internal transcribed spacer rDNA sequences.

    PubMed

    Zhao, G H; Jia, Y Q; Bian, Q Q; Nisbet, A J; Cheng, W Y; Liu, Y; Fang, Y Q; Ma, X T; Yu, S K

    2015-05-01

    Internal transcribed spacer (ITS) rDNA sequences of three Nematodirus species from naturally infected goats or sheep in two endemic provinces of China were analysed to establish an effective molecular approach to differentiate Nematodirus species in small ruminants. The respective intra-specific genetic variations in ITS1 and ITS2 rDNA regions were 0.3-1.8% and 0-0.4% in N. spathiger, 0-6.5% and 0-5.4% in N. helvetianus, and 0-4.4% and 0-6.1% in N. oiratianus from China. The respective intra-specific variations of ITS1 and ITS2 were 1.8-4.4% and 1.6-6.1% between N. oiratianus isolates from China and Iran, 5.7-7.1% and 6.3-8.3% between N. helvetianus samples from China and America. For N. spathiger, compared with samples from China, sequence differences in ITS1 rDNA were 0.3-2.4% in isolates from America, 0.3-2.9% in New Zealand and 2.1-2.4% in Australia. Genetic variations in ITS2 rDNA of N. spathiger were 0-0.4% between samples from China and America, and 0-0.8% between samples from China and New Zealand. Using mutation sites, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and specific PCR techniques were developed to differentiate these three Nematodirus species. The specific PCR assay allowed the accurate identification of N. oiratianus from other common nematodes with a sensitivity of 0.69 pg and further examination of Nematodirus samples demonstrated the reliability of these two molecular methods.

  12. DNA authentication of Plantago Herb based on nucleotide sequences of 18S-28S rRNA internal transcribed spacer region.

    PubMed

    Sahin, Fatma Pinar; Yamashita, Hiromi; Guo, Yahong; Terasaka, Kazuyoshi; Kondo, Toshiya; Yamamoto, Yutaka; Shimada, Hiroshi; Fujita, Masao; Kawasaki, Takeshi; Sakai, Eiji; Tanaka, Toshihiro; Goda, Yukihiro; Mizukami, Hajime

    2007-07-01

    Internal transcribed spacer (ITS) regions of nuclear ribosomal RNA gene were amplified from 23 plant- and herbarium specimens belonging to eight Plantago species (P. asiatica, P. depressa, P. major, P. erosa, P. hostifolia, P. camtschatica, P. virginica and P. lanceolata). Sequence comparison indicated that these Plantago species could be identified based on the sequence type of the ITS locus. Sequence analysis of the ITS regions amplified from the crude drug Plantago Herb obtained in the markets indicated that all the drugs from Japan were derived from P. asiatica whereas the samples obtained in China were originated from various Plantago species including P. asiatica, P. depressa, P. major and P. erosa.

  13. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb.

    PubMed

    Wang, Wencai; Ma, Lu; Becher, Hannes; Garcia, Sònia; Kovarikova, Alena; Leitch, Ilia J; Leitch, Andrew R; Kovarik, Ales

    2016-09-01

    In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome.

  14. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb.

    PubMed

    Wang, Wencai; Ma, Lu; Becher, Hannes; Garcia, Sònia; Kovarikova, Alena; Leitch, Ilia J; Leitch, Andrew R; Kovarik, Ales

    2016-09-01

    In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome. PMID:26637996

  15. Phylogenetic position of the enigmatic clawless eutardigrade genus Apodibius Dastych, 1983 (Tardigrada), based on 18S and 28S rRNA sequence data from its type species A. confusus.

    PubMed

    Dabert, Miroslawa; Dastych, Hieronymus; Hohberg, Karin; Dabert, Jacek

    2014-01-01

    The systematics of Eutardigrada, the largest lineage among the three classes of the phylum Tardigrada, is based mainly on the morphology of the leg claws and of the buccal apparatus. However, three members of the rarely recorded and poorly known limno-terrestrial eutardigrade genus Apodibius have no claws on their strongly reduced legs, a unique character among all tardigrades. This absence of all claws makes the systematic position of Apodibius one of the most enigmatic among the whole class. Until now all known associates of the genus Apodibius have been located in the incertae sedis species group or, quite recently, included into the Necopinatidae family. In the present study, phylogenetic analyses of 18S and 28S rRNA sequence data from 31 tardigrade species representing four parachelan superfamilies (Isohypsibioidea, Hypsibioidea, Macrobiotoidea, Eohypsibioidea), the apochelan Milnesium tardigradum, and the type species of the genus Apodibius, A. confusus, indicated close relationship of the Apodibius with tardigrade species recently included in the superfamily Isohypsibioidea. This result was well-supported and consistent across all markers (separate 18S rRNA, 28S rRNA, and combined 18S rRNA+28S rRNA datasets) and methods (MP, ML) applied.

  16. Phylogenetic position of the enigmatic clawless eutardigrade genus Apodibius Dastych, 1983 (Tardigrada), based on 18S and 28S rRNA sequence data from its type species A. confusus.

    PubMed

    Dabert, Miroslawa; Dastych, Hieronymus; Hohberg, Karin; Dabert, Jacek

    2014-01-01

    The systematics of Eutardigrada, the largest lineage among the three classes of the phylum Tardigrada, is based mainly on the morphology of the leg claws and of the buccal apparatus. However, three members of the rarely recorded and poorly known limno-terrestrial eutardigrade genus Apodibius have no claws on their strongly reduced legs, a unique character among all tardigrades. This absence of all claws makes the systematic position of Apodibius one of the most enigmatic among the whole class. Until now all known associates of the genus Apodibius have been located in the incertae sedis species group or, quite recently, included into the Necopinatidae family. In the present study, phylogenetic analyses of 18S and 28S rRNA sequence data from 31 tardigrade species representing four parachelan superfamilies (Isohypsibioidea, Hypsibioidea, Macrobiotoidea, Eohypsibioidea), the apochelan Milnesium tardigradum, and the type species of the genus Apodibius, A. confusus, indicated close relationship of the Apodibius with tardigrade species recently included in the superfamily Isohypsibioidea. This result was well-supported and consistent across all markers (separate 18S rRNA, 28S rRNA, and combined 18S rRNA+28S rRNA datasets) and methods (MP, ML) applied. PMID:24071560

  17. Sequence-Based Identification of Mycobacterium Species Using the MicroSeq 500 16S rDNA Bacterial Identification System

    PubMed Central

    Patel, Jean Baldus; Leonard, Debra G. B.; Pan, Xai; Musser, James M.; Berman, Richard E.; Nachamkin, Irving

    2000-01-01

    We evaluated the MicroSeq 500 16S rDNA Bacterial Sequencing Kit (PE Applied Biosystems), a 500-bp sequence-based identification system, for its ability to identify clinical Mycobacterium isolates. The organism identity was determined by comparing the 16S rDNA sequence to the MicroSeq database, which consists primarily of type strain sequences. A total of 113 isolates (18 different species), previously recovered and identified by routine methods from two clinical laboratories, were analyzed by the MicroSeq method. Isolates with discordant results were analyzed by hsp65 gene sequence analysis and in some cases repeat phenotypic identification, AccuProbe rRNA hybridization (Gen-Probe, Inc., San Diego, Calif.), or high-performance liquid chromatography of mycolic acids. For 93 (82%) isolates, the MicroSeq identity was concordant with the previously reported identity. For 18 (16%) isolates, the original identification was discordant with the MicroSeq identification. Of the 18 discrepant isolates, 7 (six unique sequences) were originally misidentified by phenotypic analysis or the AccuProbe assay but were correctly identified by the MicroSeq assay. Of the 18 discrepant isolates, 11 (seven unique sequences) were unusual species that were difficult to identify by phenotypic methods and, in all but one case, by molecular methods. The remaining two isolates (2%) failed definitive phenotypic identification, but the MicroSeq assay was able to definitively identify one of these isolates. The MicroSeq identification system is an accurate and rapid method for the identification of Mycobacterium spp. PMID:10618095

  18. Genetic diversity of Histoplasma capsulatum strains isolated from Argentina based on nucleotide sequence variations in the internal transcribed spacer regions of rDNA.

    PubMed

    Landaburu, Fernanda; Cuestas, María Luján; Rubio, Andrea; Elías, Nahuel Alejandro; Daneri, Gabriela Lopez; Veciño, Cecilia; Iovannitti, Cristina A; Mujica, María Teresa

    2014-05-01

    The internal transcribed spacer (ITS) regions of rDNA genes of 49 Histoplasma capsulatum (48 from clinical samples and one from soil) isolates were examined. Nucleotide sequence heterogeneity within this region was useful for phylogenetic classification of H. capsulatum and species identification. Thus, in 45 of 49 isolates we observed higher percentages of identity in the nucleotide sequences of ITS regions when the isolates studied herein were compared with those reported in our country in the South America B clade. Phylogenetic analyses of rDNA sequences corresponding to the 537 bp of the ITS region obtained from H. capsulatum isolates assigned South America type B clade (45 isolates), North America type 1 and Asia clade (2 isolates each one). H. capsulatum strains isolated from soil and from patients living in Argentina (45 of 49) clustered together with the H. capsulatum isolates of the South America B clade. The high level of genetic similarity among our isolates suggests that almost one genetic population is present in the microenvironment. Isolates described as H. capsulatum var. capsulatum or var. farciminosum (2 isolates) did not form a monophyletic group and were found in the Asia clade. Subsequent studies are needed to properly identify these isolates.

  19. Genetic diversity of Histoplasma capsulatum strains isolated from Argentina based on nucleotide sequence variations in the internal transcribed spacer regions of rDNA.

    PubMed

    Landaburu, Fernanda; Cuestas, María Luján; Rubio, Andrea; Elías, Nahuel Alejandro; Daneri, Gabriela Lopez; Veciño, Cecilia; Iovannitti, Cristina A; Mujica, María Teresa

    2014-05-01

    The internal transcribed spacer (ITS) regions of rDNA genes of 49 Histoplasma capsulatum (48 from clinical samples and one from soil) isolates were examined. Nucleotide sequence heterogeneity within this region was useful for phylogenetic classification of H. capsulatum and species identification. Thus, in 45 of 49 isolates we observed higher percentages of identity in the nucleotide sequences of ITS regions when the isolates studied herein were compared with those reported in our country in the South America B clade. Phylogenetic analyses of rDNA sequences corresponding to the 537 bp of the ITS region obtained from H. capsulatum isolates assigned South America type B clade (45 isolates), North America type 1 and Asia clade (2 isolates each one). H. capsulatum strains isolated from soil and from patients living in Argentina (45 of 49) clustered together with the H. capsulatum isolates of the South America B clade. The high level of genetic similarity among our isolates suggests that almost one genetic population is present in the microenvironment. Isolates described as H. capsulatum var. capsulatum or var. farciminosum (2 isolates) did not form a monophyletic group and were found in the Asia clade. Subsequent studies are needed to properly identify these isolates. PMID:24299459

  20. 5S rDNA genome regions of Lens species.

    PubMed

    Fernández, M; Ruiz, M L; Linares, C; Fominaya, A; Pérez de la Vega, M

    2005-10-01

    The length variability of the nontranscribed spacer (NTS) of the 5S rDNA repeats was analyzed in species of the genus Lens by means of PCR amplification. The NTS ranged from approximately 227 to approximately 952 bp. The polymorphism detected was higher than previous NTS polymorphisms described in this genus. Three NTS length variants from Lens culinaris subsp. culinaris and 2 from Lens culinaris subsp. orientalis were sequenced. The culinaris NTS fragment lengths were 239, 371, and 838 bp, whereas the orientalis ones were 472 bp and 506 bp, respectively. As a result of sequence similarities, 2 families of sequences were distinguished, 1 including the sequences of 838 and 506 bp, and others with the sequences of 239, 371, and 472 bp. The 1st family was characterized by the presence of a repeated sequence designated A, whereas the 2nd family showed a single A sequence and other repeated sequences designated B, C, and D. The presence of an (AT)n microsatellite was also observed in the 2nd family of sequences. The fragments, which included the 239-bp and 838-bp NTS sequences, as well as the intergenic spacer (IGS) of the 18S-5.8S-26S ribosomal DNA also from L. culinaris subsp. culinaris, were used to localize the nucleolar organizer region (NOR) and the 5S rDNA loci in the chromosomes of several species of the genus Lens by means of fluorescence in situ hybridization (FISH). The selective hybridization of the 2 NTS probes allowed us to distinguish between different 5S rDNA chromosomal loci.

  1. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern United States, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA gene (SSU rRNA). Howe...

  2. Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima

    PubMed Central

    Boutte, Julien; Aliaga, Benoît; Lima, Oscar; Ferreira de Carvalho, Julie; Ainouche, Abdelkader; Macas, Jiri; Rousseau-Gueutin, Mathieu; Coriton, Olivier; Ainouche, Malika; Salmon, Armel

    2015-01-01

    Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies. PMID:26530424

  3. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored. PMID:17380356

  4. Cellular identity of a novel small subunit rDNA sequence clade of apicomplexans: description of the marine parasite Rhytidocystis polygordiae n. sp. (host: Polygordius sp., Polychaeta).

    PubMed

    Leander, Brian S; Ramey, Patricia A

    2006-01-01

    A new species of Rhytidocystis (Apicomplexa) is characterized from North American waters of the Atlantic Ocean using electron microscopy and phylogenetic analyses of small subunit (SSU) rDNA sequences. Rhytidocystis polygordiae n. sp. is a parasite of the polychaete Polygordius sp. and becomes the fourth described species within this genus. The trophozoites of R. polygordiae were relatively small oblong cells (L=35-55 microm; W=20-25 microm) and distinctive in possessing subterminal indentations at both ends of the cell. The surface of the trophozoites had six to eight longitudinal series of small transverse folds and several micropores arranged in short linear rows. The trophozoites of R. polygordiae were positioned beneath the brush border of the intestinal epithelium but appeared to reside between the epithelial cells within the extracellular matrix rather than within the cells. The trophozoites possessed a uniform distribution of paraglycogen granules, putative apicoplasts, mitochondria with tubular cristae, and a centrally positioned nucleus. The trophozoites were non-motile and lacked a mucron and an apical complex. Intracellular sporozoites of R. polygordiae had a conoid, a few rhoptries, micronemes, dense granules, and a posteriorly positioned nucleus. Phylogenies inferred from SSU rDNA sequences demonstrated a close relationship between R. polygordiae and the poorly known parasite reported from the hemolymph of the giant clam Tridacna crocea. The rhytidocystid clade diverged early in the apicomplexan radiation and showed a weak affinity to a clade consisting of cryptosporidian parasites, monocystids, and neogregarines.

  5. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored.

  6. Isolation and identification of spoilage microorganisms using food-based media combined with rDNA sequencing: ranch dressing as a model food.

    PubMed

    Waite, Joy G; Jones, Joseph M; Yousef, Ahmed E

    2009-05-01

    Investigating microbial spoilage of food is hampered by the lack of suitable growth media and protocols to characterize the causative agents. Microbial spoilage of salad dressing is sporadic and relatively unpredictable, thus processors struggle to develop strategies to minimize or prevent spoilage of this product. The objectives of this study were to (i) induce and characterize spoilage events in ranch-style dressing as a model food, and (ii) isolate and identify the causative microorganisms using traditional and food-based media, coupled with rDNA sequence analysis. Ranch dressing (pH 4.4) was prepared and stored at 25 degrees C for 14 d and microbial populations were recovered on MRS agar and ranch dressing agar (RDA), a newly formulated food-based medium. When isolates suspected as the spoilage agents were inoculated into ranch dressing and held at 25 degrees C for 9-10 d, three unique spoilage events were characterized. Using rDNA sequence comparisons, spoilage organisms were identified as Lactobacillus brevis, Pediococcus acidilactici, and Torulaspora delbrueckii. P. acidilactici produced flat-sour spoilage, whereas Lb. brevis resulted in product acidification and moderate gas production. The RDA medium allowed for optimum recovery of the excessive gas-producing spoilage yeast, T. delbrueckii. The isolation and identification strategy utilized in this work should assist in the characterization of spoilage organisms in other food systems.

  7. Identification of Hortaea werneckii Isolated from mangrove plant Aegiceras comiculatum based on morphology and rDNA sequences.

    PubMed

    Chen, Juan; Xing, Xiao-Ke; Zhang, Li-Chun; Xing, Yong-Mei; Guo, Shun-Xing

    2012-12-01

    Hortaea werneckii is a black yeast-like ascomycetous fungi associated with the human superficial infection tinea nigra, which commonly occurs in tropical and subtropical countries. Now, this fungus has been found in the halophilic environment all over the world and recognized as a new model organism in exploring the mechanisms of salt tolerance in eukaryotes. During a survey of endophytic fungi of mangrove forest at South China Sea, two isolates of H. werneckii were recovered from medicinal plant of Aegiceras comiculatum. The isolates were identified by morphological characters and phylogenetic analyses (e.g., ITS rDNA, LSU rDNA and translation elongation factor EF1α). Some physiological tests such as thermotolerance, acid tolerance (pH) and NaCl tolerance as well as pathogenicity test in vitro for the strains of Hortaea were performed. It is the first report that H. werneckii was isolated from medicinal plant of A. comiculatum in south sea of China as the endophytic fungi.

  8. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae).

    PubMed

    Rosser, Thomas G; Griffin, Matt J; Quiniou, Sylvie M A; Khoo, Lester H; Pote, Linda M

    2014-12-01

    In the southeastern USA, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. However, only two of these have confirmed life cycles that involve the oligochaete Dero digitata as the definitive host. During a health screening of farm-raised channel catfish, several fish presented with deformed primary lamellae. Lamellae harbored large, nodular, white pseudocysts 1.25 mm in diameter, and upon rupturing, these pseudocysts released Henneguya myxospores, with a typical lanceolate-shaped spore body, measuring 17.1 ± 1.0 μm (mean ± SD; range = 15.0-19.3 μm) in length and 4.8 ± 0.4 μm (3.7-5.6 μm) in width. Pyriform-shaped polar capsules were 5.8 ± 0.3 μm in length (5.1-6.4 μm) and 1.7 ± 0.1 μm (1.4-1.9 μm) in width. The two caudal processes were 40.0 ± 5.1 μm in length (29.5-50.0 μm) with a spore length of 57.2 ± 4.7 (46.8-66.8 μm). The contiguous SSU rRNA gene sequence obtained from myxospores of five excised cysts did not match any Henneguya sp. in GenBank. The greatest sequence homology (91% over 1,900 bp) was with Henneguya pellis, associated with blister-like lesions on the skin of blue catfish Ictalurus furcatus. Based on the unique combination of pseudocyst and myxospore morphology, tissue location, host, and SSU rRNA gene sequence data, we report this isolate to be a previously unreported species, Henneguya bulbosus sp. nov.

  9. Sequence Analysis of the Second Internal Transcribed Spacer (ITS2) Region of rDNA for Species Identification of Trichostrongylus Nematodes Isolated From Domestic Livestock in Iran

    PubMed Central

    Ghasemikhah, R; Sharbatkhori, M; Mobedi, I; Kia, EB; Harandi, M Fasihi; Mirhendi, H

    2012-01-01

    Background Infectivity of herbivores with Trichostrongylus nematodes is widespread in many countries, having a major economic impact on breeding, survivability, and productivity of domestic livestock. This study was carried out on Trichostrongylus species isolated from domestic livestock in order to develop an easy-to-perform method for species identification. Methods Trichostrongylus isolates were collected from sheep, goat, cattle, and buffaloes in Khuzestan Province, southwest Iran. Primary species identification was carried out based on morphological characterization of male worms. PCR amplification of ITS2-rDNA region was performed on genomic DNA and the products were sequenced. Phylogenetic analysis of the nucleotide sequence data was conducted employing Bayesian Inference approach. Consequently, a restriction fragment length polymorphism (RFLP) profile was designed to differentiate Trichostrongylus species. Results A consensus sequence of 238 nucleotides was deposited in the GenBank for Iranian isolates of Trichostrongylus species including T. colubriformis, T. capricola, T. probolurus and T. vitrinus. The designated RFLP using restriction enzyme TasI could readily differentiate among species having different ITS2 sequence. The molecular analysis was in concordance with morphological findings. Conclusion Phylogenetic analysis indicated a close relationship among the sequences obtained in this study and reference sequence of relevant species. ITS2-RFLP with TasI is recommended for molecular differentiation of common Trichostrongylus species. PMID:23109944

  10. Morphology and small subunit rDNA gene sequence of Pseudoamphisiella quadrinucleata n. sp. (Ciliophora, Urostylida) from the South China Sea.

    PubMed

    Shen, Zhuo; Lin, Xiaofeng; Long, Hongan; Miao, Miao; Liu, Hongbin; Al-Rasheid, Khaled A S; Song, Weibo

    2008-01-01

    The urosylid genus Pseudoamphisiella was established by Song (1996) with hitherto only two known congeners. In the present work, the morphology and infraciliature of a new member, Pseudoamphisiella quadrinucleata n. sp., a form with conspicuous alveolar layer and four macronuclear nodules isolated from the coastal waters both near Hong Kong and near Guangzhou, South China were investigated using living observation and protargol silver impregnation methods. Pseudoamphisiella quadrinucleata differs from other two known forms mainly by the number of macronuclear nodules: constantly four vs. two in Pseudoamphisiella alveolata and 24-57 in Pseudoamphisiella lacazei. To support this, the sequence of the small subunit rDNA of P. quadrinucleata n. sp. showed 14 and 74 nucleotides in comparison with that of the two known congeners, respectively, which hence firmly supports the validity of the new species.

  11. Mutation scanning analysis of sequence heterogeneity in the second internal transcribed spacer (rDNA) within some members of the Hypodontus macropi (Nematoda: Strongyloidea) complex.

    PubMed

    Gasser, R B; Zhu, X; Beveridge, I; Chilton, N

    2001-04-01

    Single-strand conformation polymorphism analysis was employed to investigate sequence variation in the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA within and among individuals representing three operational taxonomic units (OTUs) of Hypodontus macropi from different species of Australian macropodid marsupials. Of the 96 nematodes analysed, totals of 3 (OTU1 from Petrogale persephone), 10 (OTU2 from Macropus robustus) and 7 (OTU9 from Macropus rufus) representative individuals were selected for DNA sequencing to characterise and estimate the magnitude of nucleotide variation in the ITS-2. While no unequivocal nucleotide difference in the ITS-2 was detectable within OTU1, most sequence variation (3/44.7%) detected within OTU2 and OTU9 was related chiefly to dinucleotide (CA, TA, or a combination of both) differences. This microsatellite variability in some H. macropi OTUs suggests that the ITS-2 rDNA may be subjected to slippage events during DNA replication, resulting in short dinucleotide repeat tracts being dispersed throughout the ITS-2 lineages, or possibly transposition and/or crossing-over events. Nucleotide variation in the ITS-2 of individual OTUs was related to the proposed secondary structure for the precursor ribosomal RNAs. Most of the sequence heterogeneity or polymorphism within OTU2 and OTU9 occurred in loops or bulges of the predicted secondary structure, which appear not to be under functional constraint. The findings of this study have implications for investigating speciation events and population differentiation in nematodes at the molecular level.

  12. Chromosome Mapping of 18S Ribosomal RNA Genes in Eleven Hypostomus Species (Siluriformes, Loricariidae): Diversity Analysis of the Sites.

    PubMed

    Rubert, Marceléia; da Rosa, Renata; Zawadzki, Claudio H; Mariotto, Sandra; Moreira-Filho, Orlando; Giuliano-Caetano, Lucia

    2016-08-01

    We investigated the chromosomal distribution of 18S ribosomal DNA (rDNA) in different populations of 11 species of Hypostomus collected in important Brazilian basins, namely South Atlantic, Upper Paraná, and Paraguay applying the fluorescence in situ hybridization (FISH). Hypostomus cochliodon, Hypostomus commersoni, Hypostomus hermanni, Hypostomus regani, Hypostomus albopunctatus, Hypostomus paulinus, Hypostomus aff. paulinus, Hypostomus iheringii, and Hypostomus mutucae presented multiple 18S rDNA sites while Hypostomus strigaticeps and Hypostomus nigromaculatus exhibited a single pair of chromosomes with 18S rDNA sites. The studied species presented variations in the number and position of these sites. The results accomplished were similar to those obtained by the analysis of AgNORs, revealing the same interspecific variability. Each species exhibited distinctive patterns of AgNOR and 18S rDNA distribution, which can be considered cytogenetic markers in each species of the genus and help improve the discussions on the phylogeny of the group.

  13. The European vectors of Bluetongue virus: are there species complexes, single species or races in Culicoides obsoletus and C. pulicaris detectable by sequencing ITS-1, ITS-2 and 18S-rDNA?

    PubMed

    Kiehl, Ernst; Walldorf, Volker; Klimpel, Sven; Al-Quraishy, Saleh; Mehlhorn, Heinz

    2009-08-01

    When studying the vectorship of Culicoides species during the outbreak of Bluetongue disease (BTD) in Central Europe, the question arose whether the most common species and additionally proven vectors of BTV (C. obsoletus and C. pulicaris) are definitive species or do they belong to so-called complexes, since the determination based on morphological criteria is not very significant and knowledge on the life cycles is poor or even absent. Therefore, the present molecular biological study on their ITS-1, ITS-2 and 18SrDNA characteristics was initiated to investigate specimens, which had been determined by their wing morphology during an entomological monitoring in the years 2007 and 2008 at 91 farms in Germany (Mehlhorn et al. 2009). This study revealed novel types respectively different forms, which appeared very similar to Culicoides obsoletus, but showed slightly varying wing patterns. The molecular biological data were compared to those in data banks and combined to provisional dendrograms. The ITS-1 and ITS-2 analysis showed that the specimens determined in the monitoring as C. obsoletus inclusive those with different wing pattern correlate significantly with the data of C. obsoletus in the data banks and surrounded the data bank specifications of C. montanus and C. scoticus so closely that the latter might be only hardly separate species. A similar interpretation can also be drawn when looking at the 18S rDNA dendrogram. Thus, C. scoticus and C. montanus might be races of C. obsoletus rather than separate species. With respect to the ITS-1 and ITS-2 characteristics of C. pulicaris females, which morphologically and by size can be significantly differentiated from C. obsoletus, it was seen that this species is significantly situated on another rame of the dendrograms and in very close relationship to C. punctatus and C. lupicaris, so that the latter might also be only races of C. pulicaris. One of the two other most common species found in Northrhine

  14. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    SciTech Connect

    Tuskan, Gerald A; Gunter, Lee E; DiFazio, Stephen P

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  15. Detection of Cryptosporidium species in feces or gastric contents from snakes and lizards as determined by polymerase chain reaction analysis and partial sequencing of the 18S ribosomal RNA gene.

    PubMed

    Richter, Barbara; Nedorost, Nora; Maderner, Anton; Weissenböck, Herbert

    2011-05-01

    Cryptosporidiosis is a well-known gastrointestinal disease of snakes and lizards. In the current study, 672 samples (feces and/or gastric contents or regurgitated food items) of various snakes and lizards were examined for the presence of cryptosporidia by polymerase chain reaction (PCR) assay targeting a part of the 18S ribosomal RNA gene. A consecutive sequencing reaction was used to identify the cryptosporidian species present in PCR-positive samples. Cryptosporidium varanii (saurophilum) was detected in 17 out of 106 (16%) samples from corn snakes (Pantherophis guttatus) and in 32 out of 462 (7%) samples from leopard geckos (Eublepharis macularius). Cryptosporidium serpentis was found in 8 out of 462 (2%) leopard gecko samples, but in no other reptile. The Cryptosporidium sp. "lizard genotype" was present in 1 leopard gecko sample, and 1 sample from a corn snake showed a single nucleotide mismatch to this genotype. Pseudoparasitic cryptosporidian species were identified in 5 out of 174 (3%) ophidian samples, but not in lizards. Other sequences did not show complete similarity to previously published Cryptosporidium sequences. The results stress the importance for diagnostic methods to be specific for Cryptosporidium species especially in snakes and show a relatively high prevalence of C. varanii in leopard geckos and corn snakes.

  16. Molecular Profiling of Microbial Communities from Contaminated Sources: Use of Subtractive Cloning Methods and rDNA Spacer Sequences

    SciTech Connect

    Robb, Frank T.

    2001-04-10

    The major objective of this research was to provide appropriate sequences and assemble a DNA array of oligonucleotides to be used for rapid profiling of microbial populations from polluted areas and other areas of interest. The sequences to be assigned to the DNA array were chosen from cloned genomic DNA taken from groundwater sites having well characterized pollutant histories at Hanford Nuclear Plant and Lawrence Livermore Site 300. Glass-slide arrays were made and tested; and a new multiplexed, bead-based method was developed that uses nucleic acid hybridization on the surface of microscopic polystyrene spheres to identify specific sequences in heterogeneous mixtures of DNA sequences. The test data revealed considerable strain variation between sample sites showing a striking distribution of sequences. It also suggests that diversity varies greatly with bioremediation, and that there are many bacterial intergenic spacer region sequences that can indicate its effects. The bead method exhibited superior sequence discrimination and has features for easier and more accurate measurement.

  17. Epitheliocystis hyperinfection in captive spotted eagle rays Aetobatus narinari associated with a novel Chlamydiales 16S rDNA signature sequence.

    PubMed

    Camus, Alvin; Soto, Esteban; Berliner, Aimee; Clauss, Tonya; Sanchez, Susan

    2013-04-29

    This report details 2 cases of epitheliocystis in spotted eagle rays Aetobatus narinari associated with a novel Chlamydiales 16S rDNA signature sequence. Epitheliocystis is a common disease of variable severity affecting >50 species of wild and cultured freshwater and marine teleosts. Disease in elasmobranchs is rarely reported and descriptions are limited. Occurring in gill and skin epithelium, lesions are characterized by large hypertrophied cells with basophilic inclusions containing Gram-negative, chlamydia-like bacteria. Acute lethargy, labored respiration, and abnormal swimming developed in a captive spotted eagle ray following an uneventful quarantine period, and mild epitheliocystis lesions were found microscopically. Three months later, a second animal exhibited similar signs. A gill clip revealed myriad spherical bodies identical to the previous case, and treatment with chloramphenicol and oxytetracycline was initiated. Despite therapy, respiration became irregular and euthanasia was elected. Histologically, epitheliocystis inclusions up to 200 µm filled approximately 80% of lamellar troughs. Multifocal mild hypertrophy and hyperplasia of lamellar tips was accompanied by mild to moderate infiltrates of granulocytes and lymphocytes. Electron microscopy revealed a homogeneous population of elongate chlamydia-like bacterial forms similar in size and morphology to the primary long cells described in teleosts. Immunohistochemical staining with a polyclonal anti-chlamydial lipopolysaccharide antibody was positive. Sequence analysis of a unique 296 bp Chlamydiales signature sequence amplicon isolated from the rays showed greatest homology (85 to 87%) to 'Candidatus Piscichlamydia salmonis'. PMID:23670076

  18. Evaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water.

    PubMed

    Hansen, Trine; Skånseng, Beate; Hoorfar, Jeffrey; Löfström, Charlotta

    2013-09-01

    Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorganisms in samples. This work presents a metagenomics-based direct-sequencing approach for detecting unknown microorganisms, using Bacillus cereus (as a model organism for B. anthracis) in bottled water as an example. Total DNA extraction and 16S rDNA gene sequencing were used in combination with principle component analysis and multicurve resolution to study detection level and possibility for identification. Results showed a detection level of 10(5) to 10(6) CFU/L. Using this method, it was possible to separate 2 B. cereus strains by the principal component plot, despite the close sequence resemblance. A linear correlation between the artificial contamination level and the relative amount of the Bacillus artificial contaminant in the metagenome was observed, and a relative amount value above 0.5 confirmed the presence of Bacillus. The analysis also revealed that background flora in the bottled water varied between the different water types that were included in the study. This method has the potential to be adapted to other biological matrices and bacterial pathogens for fast screening of unknown bacterial threats in outbreak situations.

  19. Evaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water.

    PubMed

    Hansen, Trine; Skånseng, Beate; Hoorfar, Jeffrey; Löfström, Charlotta

    2013-09-01

    Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorganisms in samples. This work presents a metagenomics-based direct-sequencing approach for detecting unknown microorganisms, using Bacillus cereus (as a model organism for B. anthracis) in bottled water as an example. Total DNA extraction and 16S rDNA gene sequencing were used in combination with principle component analysis and multicurve resolution to study detection level and possibility for identification. Results showed a detection level of 10(5) to 10(6) CFU/L. Using this method, it was possible to separate 2 B. cereus strains by the principal component plot, despite the close sequence resemblance. A linear correlation between the artificial contamination level and the relative amount of the Bacillus artificial contaminant in the metagenome was observed, and a relative amount value above 0.5 confirmed the presence of Bacillus. The analysis also revealed that background flora in the bottled water varied between the different water types that were included in the study. This method has the potential to be adapted to other biological matrices and bacterial pathogens for fast screening of unknown bacterial threats in outbreak situations. PMID:23971801

  20. Monitoring of Fasciola Species Contamination in Water Dropwort by cox1 Mitochondrial and ITS-2 rDNA Sequencing Analysis.

    PubMed

    Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha

    2015-10-01

    Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples.

  1. Monitoring of Fasciola Species Contamination in Water Dropwort by cox1 Mitochondrial and ITS-2 rDNA Sequencing Analysis

    PubMed Central

    Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha

    2015-01-01

    Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples. PMID:26537044

  2. Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences.

    PubMed

    Martínez-Aquino, Andrés; Reyna-Fabián, Miriam E; Rosas-Valdez, Rogelio; Razo-Mendivil, Ulises; de León, Gerardo Pérez-Ponce; García-Varela, Martín

    2009-10-01

    Neoechinorhynchus golvani is an intestinal parasite of freshwater and brackish water fishes distributed in Mexico. The genetic variability of 40 samples representing 12 populations from north, south, and central Mexico, and 1 from Costa Rica, was estimated by sequencing 2 nuclear genes (ITS1, 5.8S, ITS2, and LSU rDNA, including the domain D2 + D3). The length of both genes ranged from 700 to 779 base pairs (bp) and from 813 to 821 bp, for ITSs and LSU, respectively. The genetic divergence among populations ranged from 19.5 to 35.3% with ITSs and from 9.28 to 19.58% with LSU. Maximum likelihood and maximum parsimony analyses were performed for each data set and also for 2 combined data sets (ITSs + LSU rDNA with and without outgroups), showing strong similarities among trees, with high bootstrap support in all cases. Genetic divergence, in combination with phylogenetic analyses, suggested that the acanthocephalan N. golvani represents a complex of cryptic species, which is composed of at least 3 lineages. The first lineage, corresponding with N. golvani, shows a wide distribution, including localities from northeastern Mexico, southwards through central and southeastern Mexico, and further down to Costa Rica. This lineage is associated with cichlid fishes in strictly freshwater environments. Lineages 2 and 3 are distributed in brackish water systems along the Gulf of Mexico and Pacific slopes, respectively; both are associated with eleotrid fishes, and apparently represent 2 cryptic species. The diversification of the eleotrid and cichlid lineages seems to be the result of independent host-switching events from the ancestral population.

  3. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system.

    PubMed

    Zhang, Xueli; Yan, Xing; Gao, Pingping; Wang, Linghua; Zhou, Zhihua; Zhao, Liping

    2005-01-01

    Sequence retrieval from single bands of polymerase chain reaction (PCR)-denaturing gel electrophoresis (DGE) profiles is an important but often difficult step for molecular diversity analysis of complex microbial communities such as activated sludge systems. We analyzed the temperature gradient gel electrophoresis (TGGE) profiles of PCR-amplified 16S rDNA fragments from an activated sludge sample of a coking wastewater treatment plant. Single bands were excised, and a clone library was constructed for each. Sequence heterogeneity in each single band was found to be significantly overestimated due to single-stranded DNA (ssDNA) contamination formed during the PCR amplification, since only 10-60% of library clones of each single TGGE band had identical migration behavior compared with the parent band. Three methods, digestion with mung bean nuclease, optimization of PCR amplification, and purification via denatured polyacrylamide gel electrophoresis (d-PAGE), were compared for their ability to minimize ssDNA contamination, with the last one being the most efficient. After using d-PAGE to minimize ssDNA to a nearly nondetectable level, 70-100% of library clones for each single TGGE band had identical migration compared with the parent band. Several sequences were found in each of six single bands, and this co-migration could be predicted with the Poland software. The predominant bacteria of the activated sludge were assessed via a combination of sequence retrieval from each single TGGE band and band intensity analysis. Only beta and alpha subclasses of the Proteobacteria were detected, 93.8% and 6.2%, respectively. Our work suggests that prior to constructing a clone library to retrieve the actual sequence diversity of a single DGE band, it is advisable to minimize ssDNA contamination to a nondetectable level.

  4. Morphology and morphogenesis of a novel mangrove ciliate, Sterkiella subtropica sp. nov. (Protozoa, Ciliophora, Hypotrichia), with phylogenetic analyses based on small-subunit rDNA sequence data.

    PubMed

    Chen, Xumiao; Gao, Feng; Al-Farraj, Saleh A; Al-Rasheid, Khaled A S; Xu, Kuidong; Song, Weibo; Song, Weibo

    2015-07-01

    A novel marine hypotrichous ciliate, Sterkiella subtropica sp. nov., was recently isolated from a mangrove wetland in Hong Kong. Its morphology, morphogenesis and systematic position have been investigated. The novel species is diagnosed by combined features of morphology, ciliature and nuclear apparatus, while its ontogenetic events present a stable pattern: (i) the six streaks of the undulating membrane (UM) and cirral anlagen are segmented in a 1 : 3 : 3 : 3 : 4 : 4 pattern from left to right, and form three frontal, four frontoventral, one buccal, five ventral and five transverse cirri; (ii) the dorsal structure is similar to most other oxytrichids; that is, in a '4+2' pattern with three caudal cirri being formed. Based on the small-subunit rDNA sequence, the novel species is different from its congeners by between 21 and 35 bp, with sequence identities from 0.978 to 0.987. All molecular trees exhibited a similar topology: the monophyly of species of the genus Sterkiella is not completely supported in our analyses, and approximately unbiased tests (both including and excluding the novel species) also reject the possibility that Sterkiella is a monophyletic lineage, as indicated by the morphology-based classification. PMID:25872955

  5. Molecular phylogenetic studies based on rDNA ITS, cpDNA trnL intron sequence and cladode characteristics in nine Protasparagus taxa.

    PubMed

    Saha, Partha Sarathi; Ray, Sudipta; Sengupta, Mainak; Jha, Sumita

    2015-07-01

    The genus Asparagus comprises three subgenera of cladode bearing plants: Protasparagus, Asparagus, and Myrsiphyllum. The interspecific delimitation of the subgenus Protasparagus is ill-defined till date. In the present study, interspecific phylogenetic relationships among nine taxa of Protasparagus based on ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2) sequence and the chloroplast DNA trnL intron sequence conservation with their cladode morphology, anatomy, and stomatal characteristics have been analyzed for the first time. The monophyletic subgenus Protasparagus could be resolved into four strongly supported distinct subclades (I, II, III and IV) suggesting that the rDNA and cpDNA molecular phylogenies are explicitly congruent with the cladode characteristics of the subgenus Protasparagus. The present study also confirms the existing subgeneric classification of the genus Asparagus with the monophyletic origin of the dioecious subgenus Asparagus. The present work brings out phylogenetic and taxonomic relationships within the studied taxa of the subgenus Protasparagus therefore providing important background information for further studies on biogeography of a wide range of species. PMID:25534258

  6. Morphology and SSU rDNA sequence analysis of two hypotrichous ciliates (Protozoa, Ciliophora, Hypotrichia) including the new species Metaurostylopsis parastruederkypkeae n. sp.

    NASA Astrophysics Data System (ADS)

    Lu, Borong; Wang, Chundi; Huang, Jie; Shi, Yuhong; Chen, Xiangrui

    2016-10-01

    The morphology and phylogeny of two hypotrichous ciliates, Metaurostylopsis parastruederkypkeae n. sp. and Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013 were investigated based on morphology, infraciliature and the small subunit (SSU) ribosomal RNA gene (rRNA) sequence. The new species, M. parastruederkypkeae n. sp. was identified according to its characteristics: body shape ellipsoidal, size about (165-200) × (45-60) μm in vivo, cell color reddish; two types of cortical granules including wheat grain-like and yellow-greenish larger ones along the marginal cirri rows and dorsal kineties and dot-like and reddish smaller ones, grouped around marginal cirri on ventral side and arranged in short lines on dorsal side; 26-41 adoral membranelles; three frontal and one parabuccal, five to seven frontoterminal, one buccal, and three to six transverse cirri; seven to thirteen midventral pairs; five to nine unpaired ventral cirri, five to seven left and three to five right marginal rows; and three complete dorsal kineties. Phylogenetic analysis based on SSU rDNA sequences showed that both Metaurostylopsis and Neourostylopsis are monophyletic. As the internal relationship between and within both genera are not clear, further studies on the species in these two genera are necessary. The key characteristics of all known twelve Metaurostylopsis-Apourostylopsis-Neourostylopsis species complex were updated.

  7. Morphology and SSU rDNA sequence analysis of two hypotrichous ciliates (Protozoa, Ciliophora, Hypotrichia) including the new species Metaurostylopsis parastruederkypkeae n. sp.

    NASA Astrophysics Data System (ADS)

    Lu, Borong; Wang, Chundi; Huang, Jie; Shi, Yuhong; Chen, Xiangrui

    2016-05-01

    The morphology and phylogeny of two hypotrichous ciliates, Metaurostylopsis parastruederkypkeae n. sp. and Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013 were investigated based on morphology, infraciliature and the small subunit (SSU) ribosomal RNA gene (rRNA) sequence. The new species, M. parastruederkypkeae n. sp. was identified according to its characteristics: body shape ellipsoidal, size about (165-200) × (45-60) μm in vivo, cell color reddish; two types of cortical granules including wheat grain-like and yellow-greenish larger ones along the marginal cirri rows and dorsal kineties and dot-like and reddish smaller ones, grouped around marginal cirri on ventral side and arranged in short lines on dorsal side; 26-41 adoral membranelles; three frontal and one parabuccal, five to seven frontoterminal, one buccal, and three to six transverse cirri; seven to thirteen midventral pairs; five to nine unpaired ventral cirri, five to seven left and three to five right marginal rows; and three complete dorsal kineties. Phylogenetic analysis based on SSU rDNA sequences showed that both Metaurostylopsis and Neourostylopsis are monophyletic. As the internal relationship between and within both genera are not clear, further studies on the species in these two genera are necessary. The key characteristics of all known twelve Metaurostylopsis-Apourostylopsis-Neourostylopsis species complex were updated.

  8. Phylogenetic relationships of the soybean sudden death syndrome pathogen Fusarium solani f. sp. phaseoli inferred from rDNA sequence data and PCR primers for its identification.

    PubMed

    O'Donnell, K; Gray, L E

    1995-01-01

    Phylogenetic relationships of several species within the Fusarium solani-complex were investigated using characters from the nuclear ribosomal DNA. Genetic variation within 24 isolates, including 5 soybean sudden death syndrome (SDS) strains, was assessed using rDNA sequence data and restriction fragment length polymorphic markers. By these techniques, the causal agent of soybean SDS was identified as F. solani f. sp. phaseoli. In separate cladistic analyses, Plectosphaerella cucumerina and Nectria cinnabarina or F. ventricosum were used for rooting purposes. Monophyly of the F. solani-complex was strongly supported by bootstrap and decay analyses. Parsimony analysis indicates that this complex is composed of a number of phylogenetically distinct species, including Neocosmospora vasinfecta, F. solani f. sp. phaseoli, and biological species designated as MPI, MPV, and MPVI of N. haematococca. The results demonstrate complete congruence between biological and phylogenetic species within the N. haematococca-complex. In addition, DNA sequence data were used to design a PCR primer pair which could specifically amplify DNA from isolates of the SDS pathogen from infected plants. PMID:7579615

  9. A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification.

    PubMed

    Romanelli, A M; Fu, J; Herrera, M L; Wickes, B L

    2014-10-01

    Accurate identification of fungal pathogens using a sequence-based approach requires an extraction method that yields template DNA pure enough for polymerase chain reaction (PCR) or other types of amplification. Therefore, the objective of this study was to develop and standardise a rapid, inexpensive DNA extraction protocol applicable to the major fungal phyla, which would yield sufficient template DNA pure enough for PCR and sequencing. A total of 519 clinical and culture collection strains, comprised of both yeast and filamentous fungi, were prepared using our extraction method to determine its applicability for PCR, which targeted the ITS and D1/D2 regions in a single PCR amplicon. All templates were successfully amplified and found to yield the correct strain identification when sequenced. This protocol could be completed in approximately 30 min and utilised a combination of physical and chemical extraction methods but did not require organic solvents nor ethanol precipitation. The method reduces the number of tube manipulations and yielded suitable template DNA for PCR amplification from all phyla that were tested.

  10. PHYLOGENY OF FOUR DINOPHYSIACEAN GENERA (DINOPHYCEAE, DINOPHYSIALES) BASED ON rDNA SEQUENCES FROM SINGLE CELLS AND ENVIRONMENTAL SAMPLES(1).

    PubMed

    Handy, Sara M; Bachvaroff, Tsvetan R; Timme, Ruth E; Wayne Coats, D; Kim, Sunju; Delwiche, Charles F

    2009-10-01

    Dinoflagellates are a highly diverse and environmentally important group of protists with relatively poor resolution of phylogenetic relationships, particularly among heterotrophic species. We examined the phylogeny of several dinophysiacean dinoflagellates using samples collected from four Atlantic sites. As a rule, 3.5 kb of sequence including the nuclear ribosomal genes SSU, 5.8S, LSU, plus their internal transcribed spacer (ITS) 1 and 2 regions were determined for 26 individuals, including representatives of two genera for which molecular data were previously unavailable, Ornithocercus F. Stein and Histioneis F. Stein. In addition, a clone library targeting the dinophysiacean ITS2 and LSU sequences was constructed from bulk environmental DNA from three sites. Three phylogenetic trees were inferred from the data, one using data from this study for cells identified to genus or species (3.5 kb, 28 taxa); another containing dinoflagellate SSU submissions from GenBank and the 12 new dinophysiacean sequences (1.9 kb, 56 taxa) from this study; and the third tree combing data from identified taxa, dinophysiacean GenBank submissions, and the clone libraries from this study (2.1 kb, 136 taxa). All trees were congruent and indicated a distinct division between the genera Phalacroma F. Stein and Dinophysis Ehrenb. The cyanobionts containing genera Histioneis and Ornithocercus were also monophyletic. This was the largest molecular phylogeny of dinophysoid taxa performed to date and was consistent with the view that the genus Phalacroma may not be synonymous with Dinophysis.

  11. Cryptic diversity of free-living parabasalids, Pseudotrichomonas keilini and Lacusteria cypriaca n. g., n. sp., as inferred from small subunit rDNA sequences.

    PubMed

    Yubuki, Naoji; Céza, Vít; Cepicka, Ivan; Yabuki, Akinori; Inagaki, Yuji; Nakayama, Takeshi; Inouye, Isao; Leander, Brian S

    2010-01-01

    Ultrastructural and molecular phylogenetic evidence indicate that the Parabasalia consists of seven main subgroups: the Trichomonadida, Honigbergiellida, Hypotrichomonadida, Tritrichomonadida, Cristamonadida, Spirotrichonymphida, and Trichonymphida. Only five species of free-living parabasalids are known: Monotrichomonas carabina, Ditrichomonas honigbergii, Honigbergiella sp., Tetratrichomonas undula, and Pseudotrichomonas keilini. Phylogenetic analyses show that free-living species do not form a clade and instead branch in several different positions within the context of their parasitic relatives. Because the diversity of free-living parabasalids is poorly understood, the systematics of these lineages is in a significant state of disarray. In order to better understand the phylogenetic distribution of free-living parabasalids, we sequenced the small subunit rDNA from three different strains reminiscent of P. keilini; the strains were isolated from different geographical locations: (1) mangrove sediments in Japan and (2) sediments in Cyprus. These data demonstrated that the free-living parabasalids P. keilini and Lacusteria cypriaca n. g., n. sp., form a paraphyletic assemblage near the origin of a clade consisting mostly of parasitic trichomonadids (e.g. Trichomonas vaginalis). This paraphyletic distribution of similar morphotypes indicates that free-living trichomonadids represent a compelling example of morphostasis that provides insight into the suite of features present in the most recent free-living ancestor of their parasitic relatives. PMID:20880033

  12. [Phylogenetic relations of Salix L. subg. Salix species (Salicaceae) according to sequencing data of intergenic spacers of chloroplasic genomes and ITS rDNA].

    PubMed

    Barkalov, V Iu; Kozyrenko, M M

    2014-08-01

    A phylogenetic analysis based on a comparison of nucleotide sequences of six regions from cpDNA and ITS rDNA (petN-psbM, trnD-trnT, trnC-petN, psaA-ycf3, petG-trnP, and rpoB-trnC) allowed for elucidating the relationship among species and sections belonging to the Salix subgenus and, more generally, to the Salix genus, as well as revealing the relations of the Chosenia genus. The definition of the subgenera of Pleuradenia (including the Urbanianea genus and the Chosenia genus), Salix (without the Triandrae section), Triandrae, and Longifoliae is essentially consistent with current classification schemes of the Salix genus. The previously defined genera of Chosenia and Toisusu (Urbanianea) are not only joined with the Salix genus but are also closely related between themselves. The Protitea subgenus only corresponds to the American species of the Humboldtianae section (S. humboldtiana, S. amygdaloides, S. gooddingii). The relationship of S. chaenomeloides, which is a nomenclatural type of this subgenus, as well as the relationship of the Wilsonia section, remains unresolved. The Humboldtianae section should be interpreted more narrowly, apparently, separating the Acmophillae and Tetraspermae sections from it. The monotypic American Floridanae section is related to the Salix, Salicaster, Tetraspermae, and Wilsonia.

  13. Molecular phylogenetics of Floridosentis ward, 1953 (Acanthocephala: Neoechinorhynchidae) parasites of mullets (Osteichthyes) from Mexico, using 28S rDNA sequences.

    PubMed

    Rosas-Valdez, Rogelio; Morrone, Juan J; García-Varela, Martín

    2012-08-01

    Species of Floridosentis (Acanthocephala) are common parasites of mullets (Mugil spp., Mugilidae) found in tropical marine and brackish water in the Americas. Floridosentis includes 2 species distributed in Mexico, i.e., Floridosentis pacifica, restricted to the Pacific Ocean near Salina Cruz, Oaxaca, and Floridosentis mugilis, distributed along the coast of the Pacific Ocean and the Gulf of Mexico. We sampled 18 populations of F. mugilis and F. pacifica (12 from the Pacific and 6 from the Gulf of Mexico) and sequenced a fragment of the rDNA large subunit to evaluate phylogenetic relationships of populations of Floridosentis spp. from Mexico. Species identification of museum specimens of F. mugilis from the Pacific Ocean was confirmed by examination of morphology traits. Phylogenetic trees inferred with maximum parsimony, maximum likelihood, and Bayesian inference indicate that Floridosentis is monophyletic comprising of 2 major well-supported clades, the first clade corresponding to F. mugilis from the Gulf of Mexico, and the second to F. pacifica from the Pacific Ocean. Genetic divergence between species ranged from 7.68 to 8.60%. Intraspecific divergence ranged from 0.14 to 0.86% for F. mugilis and from 1.72 to 4.49% for F. pacifica. Data obtained from diagnostic characters indicate that specimens from the Pacific Ocean in Mexico have differences in some traits among locations. These results are consistent with the phylogenetic hypothesis, indicating that F. pacifica is distributed in the Pacific Ocean in Mexico with 3 major lineages.

  14. Interstitial Telomeric Sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura)

    PubMed Central

    2014-01-01

    Background The combination of classical cytogenetics with molecular techniques represents a powerful approach for the comparative analysis of the genome, providing data for the systematic identification of chromosomal homologies among species and insights into patterns of chromosomal evolution within phylogenetically related groups. Here, we present cytogenetic data on four species of Neotropical treefrogs of the genus Phyllomedusa (P. vaillantii, P. tarsius, P. distincta, and P. bahiana), collected in Brazil and Ecuador, with the aim of contributing to the understanding of the chromosomal diversification of this genus. Results With the exception of P. tarsius, which presented three telocentric pairs, all the species analyzed had conservative karyotypic features. Heterochromatic patterns in the genomes of these species revealed by C-banding and fluorochrome staining indicated the presence of a large number of non-centromeric blocks. Using the Ag-NOR method and FISH with an rDNA 28S probe, we detected NOR in the pericentromeric region of the short arm of pair 7 in P. vaillantii, pair 1 in P. tarsius, chromosomes 1 and 9 in P. distincta, and in chromosome 9 in P. bahiana, in addition to the presence of NOR in one homologue of chromosome pair 10 in some individuals of this species. As expected, the telomeric probe detected the terminal regions of the chromosomes of these four species, although it also detected Interstitial Telomeric Sequences (ITS) in some chromosomes of the P. vaillantii, P. distincta and P. bahiana karyotypes. Conclusion A number of conservative chromosomal structures permitted the recognition of karyotypic homologies. The data indicate that the presence of a NOR-bearing chromosome in pair 9 is the plesiomorphic condition in the P. burmeisteri group. The interspecific and intraspecific variation in the number and location of rDNA sites reflects the rapid rate of evolution of this character in Phyllomedusa. The ITS detected in this study does not

  15. Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences.

    PubMed

    Schneider, J A; Foighil, D O

    1999-10-01

    We have performed the first DNA molecular phylogenetic analysis of giant clams. An approximately 462-nucleotide fragment of the mitochondrial large ribosomal subunit (16S) was sequenced for all eight species of giant clams and two species of an outgroup taxon, the edible cockle Cerastoderma. The data were analyzed using a maximum parsimony approach and a single most parsimonious tree was found. The resulting phylogenetic hypothesis indicates that the genera Hippopus and Tridacna are monophyletic sister taxa. Tridacna (Chametrachea) is the sister taxon to (T. tevoroa (T. derasa + T. gigas)), with these latter three taxa all being placed in a single subgenus, Tridacna (Tridacna). The number of recognized giant clam species has increased by one-third over the last two decades with the discovery of two rare new species having restricted geographic ranges: H. porcellanus (Palau and the Sulu Archipelago) and T. tevoroa (Tonga and Fiji). These two species lack a known fossil record but exhibit greater genetic distances from sister taxa than do extant giant clam species pairs which are recognizable in Neogene strata, e.g., T. gigas/T. derasa and T. maxima/T. squamosa. We propose that the two new species represent ancient relict lineages of Miocene origin.

  16. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis.

    PubMed

    Hwang, Ok-Hwa; Raveendar, Sebastian; Kim, Young-Ju; Kim, Ji-Hun; Choi, Jung-Woo; Kim, Tae-Hun; Choi, Dong-Yoon; Jeon, Che Ok; Cho, Sung-Back; Lee, Kyung-Tai

    2014-11-01

    The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05). PMID:25359269

  17. Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences.

    PubMed

    Dietrich, C H; Rakitov, R A; Holmes, J L; Black, W C

    2001-02-01

    Analysis of sequences from a 3.5-kb region of the nuclear ribosomal 28S DNA gene spanning divergent domains D2-D10 supports the hypothesis, based on fossil, biogeographic, and behavioral evidence, that treehoppers (Aetalionidae and Membracidae) are derived from leafhoppers (Cicadellidae). Maximum-parsimony analysis indicated that treehoppers are the sister group of a lineage comprising the currently recognized cicadellid subfamilies Agalliinae, Megophthalminae, Adelungiinae, and Ulopinae. Based on this phylogenetic estimate, the derivation of treehoppers approximately coincided with shifts in physiology and behavior, including loss of brochosome production and a reversal from active, jumping nymphs to sessile, nonjumping nymphs. Myerslopiidae, traditionally placed as a tribe of the cicadellid subfamily Ulopinae, represented a basal lineage distinct from other extant membracoids. The analysis recovered a large leafhopper lineage comprising a polyphyletic Deltocephalinae (sensu stricto) and its apparent derivatives Koebeliinae, Eupelicinae (polyphyletic), Selenocephalinae, and Penthimiinae. Clades comprising Macropsinae, Neocoelidiinae, Scarinae, Iassinae, Coelidiinae, Eurymelinae + Idiocerinae, Evacanthini + Pagaroniini, Aphrodinae + Ledrinae (in part), Stenocotini + Tartessinae, and Cicadellini + Proconiini were also recovered with moderate to high branch support. Cicadellinae (sensu lato), Ledrinae, Typhlocybinae, and Xestocephalinae were consistently polyphyletic on the most-parsimonious topologies, but constraining these groups to be monophyletic did not significantly increase the length of the cladograms. Relationships among the major lineages received low branch support, suggesting that more data are needed to provide a robust phylogenetic estimate.

  18. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis.

    PubMed

    Hwang, Ok-Hwa; Raveendar, Sebastian; Kim, Young-Ju; Kim, Ji-Hun; Choi, Jung-Woo; Kim, Tae-Hun; Choi, Dong-Yoon; Jeon, Che Ok; Cho, Sung-Back; Lee, Kyung-Tai

    2014-11-01

    The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05).

  19. Characterization of the Complete Nuclear Ribosomal DNA Sequences of Paramphistomum cervi

    PubMed Central

    Zheng, Xu; Chang, Qiao-Cheng; Zhang, Yan; Tian, Si-Qin; Lou, Yan; Duan, Hong; Guo, Dong-Hui; Wang, Chun-Ren; Zhu, Xing-Quan

    2014-01-01

    Sequences of the complete nuclear ribosomal DNA (rDNA) gene from five individual Paramphistomum cervi were determined for the first time. The five complete rDNA sequences, which included the 18S rDNA, the internal transcribed spacer 1 (ITS1), the 5.8S rDNA, the internal transcribed spacer 2 (ITS2), the 28S rDNA, and the intergenic spacer (IGS) regions, had a length range of 8,493–10,221 bp. The lengths of the investigated 18S, ITS1, 5.8S, ITS2, and 28S rDNA sequences, which were 1,994 bp, 1,293 bp, 157 bp, 286 bp, and 4,186 bp, respectively, did not vary. However, the IGS rDNA sequences had a length range of 577–2,305 bp. The 5.8S and ITS-2 rDNA sequences had 100% identity among the five investigated samples, while the identities among the IGS had a range of 53.7–99.8%. A comparative analysis revealed that different types and numbers of repeats were found within each ITS1 and IGS region, which may be related to the length polymorphism of IGS. The phylogenetic position of P. cervi in Paramphistomatidae was analyzed based on the 18S rDNA sequences. These results will aid in studying the intra- and interspecific variation of the Paramphistomatidae and the systematics and phylogenetics of Digenea. PMID:25140347

  20. DNA sequence heterogeneity in the three copies of the long 16S-23S rDNA spacer of Enterococcus faecalis isolates.

    PubMed

    Gürtler, V; Rao, Y; Pearson, S R; Bates, S M; Mayall, B C

    1999-07-01

    The possibility of intragenic heterogeneity between copies of the long intergenic (16S-23S rDNA) spacer region (LISR) was investigated by specific amplification of this region from 21 Enterococcus faecalis isolates. Three copies of the LISR (rrnA, B and C) were demonstrated by hybridization of the LISR to genomic DNA cleaved with I-Ceul and SmaI. When the LISR amplicon was digested with Tsp509I, two known nucleotide substitutions were detected, one 4 nt upstream from the 5' end of the tRNA(ala) gene (allele rrnB has the Tsp509I site and rrnA and C do not) and the other 22 nt downstream from the 3' end of the tRNA(ala) gene (rrnC has the Tsp509I site). Sequence differences at these sites were detected at the allelic level (alleles rrnA, B and C) and different combinations of these alleles were designated Tsp Types. Using densitometry to analyse bands from electrophoresis gels, the intra-isolate ratios of the separate alleles (rrnA:rrnB:rrnC) were determined in each Tsp Type: I (0:3:0), II (1:2:0), III (2:0:1), IV (3:0:0), V (2:1:0) and VI (1:1:1). Sequence variation between the three copies of the LISR was confirmed by the detection of at least five other intra-isolate nucleotide substitutions using heteroduplex analysis by conformation-sensitive gel electrophoresis (CSGE) that were not detected by Tsp509I cleavage. Perpendicular denaturing gradient gel electrophoresis was capable of resolving homoduplexes; six to seven out of a possible nine curves were obtained in some isolates. In the isolate where seven curves were obtained one or more further nucleotide substitutions, not detected by Tsp509I cleavage or CSGE, were detected. On the basis of LISR sequence heterogeneity, isolates were categorized into homogeneous (only one allele sequence present) and heterogeneous (two or three allele sequences present). The transition between homogeneous and heterogeneous LISRs may be useful in studying evolutionary mechanisms between E. faecalis isolates.

  1. Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 16S rDNA regions.

    PubMed

    Aloisio, Irene; Quagliariello, Andrea; De Fanti, Sara; Luiselli, Donata; De Filippo, Carlotta; Albanese, Davide; Corvaglia, Luigi Tommaso; Faldella, Giacomo; Di Gioia, Diana

    2016-06-01

    Different factors are known to influence the early gut colonization in newborns, among them the perinatal use of antibiotics. On the other hand, the effect on the baby of the administration of antibiotics to the mother during labor, referred to as intrapartum antibiotic prophylaxis (IAP), has received less attention, although routinely used in group B Streptococcus positive women to prevent the infection in newborns. In this work, the fecal microbiota of neonates born to mothers receiving IAP and of control subjects were compared taking advantage for the first time of high-throughput DNA sequencing technology. Seven different 16S rDNA hypervariable regions (V2, V3, V4, V6 + V7, V8, and V9) were amplified and sequenced using the Ion Torrent Personal Genome Machine. The results obtained showed significant differences in the microbial composition of newborns born to mothers who had received IAP, with a lower abundance of Actinobacteria and Bacteroidetes as well as an overrepresentation of Proteobacteria. Considering that the seven hypervariable regions showed different discriminant ability in the taxonomic identification, further analyses were performed on the V4 region evidencing in IAP infants a reduced microbial richness and biodiversity, as well as a lower number of bacterial families with a predominance of Enterobacteriaceae members. In addition, this analysis pointed out a significant reduction in Bifidobacterium spp. strains. The reduced abundance of these beneficial microorganisms, together with the increased amount of potentially pathogenic bacteria, may suggest that IAP infants are more exposed to gastrointestinal or generally health disorders later in age. PMID:26971496

  2. Megraft: A software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metagenomic libraries represent subsamples of the total DNA found at a study site and offer unprecedented opportunities to study ecological and functional aspects of microbial communities. To examine the depth of the sequencing effort, rarefaction analysis of the ribosomal small sub-unit (SSU/16S/18...

  3. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    PubMed Central

    Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  4. Dracula ant phylogeny as inferred by nuclear 28S rDNA sequences and implications for ant systematics (Hymenoptera: Formicidae: Amblyoponinae).

    PubMed

    Saux, Corrie; Fisher, Brian L; Spicer, Greg S

    2004-11-01

    Ants are one of the most ecologically and numerically dominant families of organisms in almost every terrestrial habitat throughout the world, though they include only about 1% of all described insect species. The development of eusociality is thought to have been a driving force in the striking diversification and dominance of this group, yet we know little about the evolution of the major lineages of ants and have been unable to clearly determine their primitive characteristics. Ants within the subfamily Amblyoponinae are specialized arthropod predators, possess many anatomically and behaviorally primitive characters and have been proposed as a possible basal lineage within the ants. We investigate the phylogenetic relationships among the members of the subfamily, using nuclear 28S rDNA sequence data. Outgroups for the analysis include members of the poneromorph and leptanillomorph (Apomyrma, Leptanilla) ant subfamilies, as well as three wasp families. Parsimony, maximum likelihood, and Bayesian analyses provide strong support for the monophyly of a clade containing the two genera Apomyrma+Mystrium (100% bpp; 97% ML bs; and 97% MP bs), and moderate support for the monophyly of the Amblyoponinae as long as Apomyrma (Apomyrminae) is included (87% bpp; 57% ML bs; and 76% MP bs). Analyses did not recover evidence of monophyly of the Amblyopone genus, while the monophyly of the other genera in the subfamily is supported. Based on these results we provide a morphological diagnosis of the Amblyoponinae that includes Apomyrma. Among the outgroup taxa, Typhlomyrmex grouped consistently with Ectatomma, supporting the recent placement of Typhlomyrmex in the Ectatomminae. The results of this present study place the included ant subfamilies into roughly two clades with the basal placement of Leptanilla unclear. One clade contains all the Amblyoponinae (including Apomyrma), Ponerinae, and Proceratiinae (Poneroid clade). The other clade contains members from subfamilies

  5. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    PubMed

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.

  6. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya.

    PubMed

    Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169

  7. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    PubMed Central

    2010-01-01

    Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement. PMID:20051104

  8. Phylogenetic Analysis of Rhinosporidium seeberi’s 18S Small-Subunit Ribosomal DNA Groups This Pathogen among Members of the Protoctistan Mesomycetozoa Clade

    PubMed Central

    Herr, Roger A.; Ajello, Libero; Taylor, John W.; Arseculeratne, Sarath N.; Mendoza, Leonel

    1999-01-01

    For the past 100 years the phylogenetic affinities of Rhinosporidium seeberi have been controversial. Based on its morphological features, it has been classified as a protozoan or as a member of the kingdom Fungi. We have amplified and sequenced nearly a full-length 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence from R. seeberi. Using phylogenetic analysis, by parsimony and distance methods, of R. seeberi’s 18S SSU rDNA and that of other eukaryotes, we found that this enigmatic pathogen of humans and animals clusters with a novel group of fish parasites referred to as the DRIP clade (Dermocystidium, rossete agent, Ichthyophonus, and Psorospermium), near the animal-fungal divergence. Our phylogenetic analyses also indicate that R. seeberi is the sister taxon of the two Dermocystidium species used in this study. This molecular affinity is remarkable since members of the genus Dermocystidium form spherical structures in infected hosts, produce endospores, have not been cultured, and possess mitochondria with flat cristae. With the addition of R. seeberi to this clade, the acronym DRIP is no longer appropriate. We propose to name this monophyletic clade Mesomycetozoa to reflect the group’s phylogenetic association within the Eucarya. PMID:10449446

  9. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.

    PubMed

    Brightwell, Gale; Boerema, Jackie; Mills, John; Mowat, Eilidh; Pulford, David

    2006-05-25

    We examined the bacterial community present on an Intralox conveyor belt system in an operating lamb boning room by sequencing the 16S ribosomal DNA (rDNA) of bacteria extracted in the presence or absence of cultivation. RFLP patterns for 16S rDNA clone library and cultures were generated using HaeIII and MspI restriction endonucleases. 16S rDNA amplicons produced 8 distinct RFLP pattern groups. RFLP groups I-IV were represented in the clone library and RFLP groups I and V-VIII were represented amongst the cultured isolates. Partial DNA sequences from each RFLP group revealed that all group I, II and VIII representatives were Pseudomonas spp., group III were Sphingomonas spp., group IV clones were most similar to an uncultured alpha proteobacterium, group V was similar to a Serratia spp., group VI with an Alcaligenes spp., and group VII with Microbacterium spp. Sphingomonads were numerically dominant in the culture-independent clone library and along with the group IV alpha proteobacterium were not represented amongst the cultured isolates. Serratia, Alcaligenes and Microbacterium spp. were only represented with cultured isolates. Pseudomonads were detected by both culture-dependent (84% of isolates) and culture-independent (12.5% of clones) methods and their presence at high frequency does pose the risk of product spoilage if transferred onto meat stored under aerobic conditions. The detection of sphingomonads in large numbers by the culture-independent method demands further analysis because sphingomonads may represent a new source of meat spoilage that has not been previously recognised in the meat processing environment. The 16S rDNA collections generated by both methods were important at representing the diversity of the bacterial population associated with an Intralox conveyor belt system.

  10. Variability of 18rDNA loci in four lace bug species (Hemiptera, Tingidae) with the same chromosome number

    PubMed Central

    Golub, Natalia V.; Golub, Viktor B.; Kuznetsova, Valentina G.

    2015-01-01

    Abstract Male karyotypes of Elasmotropis testacea (Herrich-Schaeffer, 1835), Tingis cardui (Linnaeus, 1758), Tingis crispata (Herrich-Schaeffer, 1838), and Agramma femorale Thomson, 1871 (Heteroptera, Cimicomorpha, Tingidae) were analyzed using conventional chromosome staining and FISH with 18S rDNA and (TTAGG)n telomeric probes. The FISH technique was applied for the first time in the Tingidae. In spite of the fact that all species showed the same chromosome number (2n = 12 + XY), they have significant differences in the number and position of rDNA loci. FISH with the classical insect (TTAGG)n probe produced no signals on chromosomes suggesting telomeres in lace bugs to be of some other molecular composition. Tingidae share absence of the (TTAGG)n telomeric sequence with all so far studied taxa of the advanced true bug infraorders Cimicomorpha and Pentatomomorpha. PMID:26753071

  11. Cytogenetic analysis in Polypterus ornatipinnis (Actinopterygii, Cladistia, Polypteridae) and 5S rDNA.

    PubMed

    Morescalchi, Maria Alessandra; Stingo, Vincenzo; Capriglione, Teresa

    2011-03-01

    Polypteridae is a family of archaic freshwater African fish that constitute an interesting subject for the study of the karyological evolution in vertebrates, on account of their primitive morphological characters and peculiar relationships with lower Osteichthyans. In this paper, a cytogenetic analysis on twenty specimens of both sexes of Polypterus ornatipinnis the ornate "bichir", coming from the Congo River basin, was performed by using both classical and molecular techniques. The karyotypic formula (2n=36; FN=72) was composed of 26 M+10 SM. The Alu I banding, performed to characterize heterochromatin in this species, was mainly centromeric. Both the chromosome location of the ribosomal 5S and 18S rRNA genes were examined by using Ag-NOR, classical C-banding, CMA(3) staining and FISH. CMA(3) marked all centromerical regions and showed the presence of two GC rich regions on the p arm of the chromosome pair n°1 and on the q arm of the pair n°14. Staining with Ag-NOR marked the only telomeric region of the chromosome n°1 p arm. After PCR, the 5S rDNA in this species was cloned, sequenced and analyzed. In the 665bp 5S rDNA sequence of P.ornatipinnis, a conserved 120bp gene region for the 5S rDNA was identified, followed by a non-transcribed variable spacer (NTS) which included simple repeats, microsatellites and a fragment of a non-LTR retrotransposon R-TEX. FISH with 5S rDNA marked the subtelomeric region of the q arm of the chromosome pair n°14, previously marked by CMA(3). FISH with 18S rDNA marked the telomeric region of the p arm of the pair n°1, previously marked both by Ag-NOR and CMA(3). The (GATA)(7) repeats marked the telomeric regions of all chromosome pairs, with the exclusion of the n°1, n°3 and n°14; hybridization with telomeric probes (TTAGGG)(n) showed signals at the end of all chromosomes. Karyotype evolution in Polypterus genus was finally discussed, including the new data obtained.

  12. Cytogenetic analysis in Polypterus ornatipinnis (Actinopterygii, Cladistia, Polypteridae) and 5S rDNA.

    PubMed

    Morescalchi, Maria Alessandra; Stingo, Vincenzo; Capriglione, Teresa

    2011-03-01

    Polypteridae is a family of archaic freshwater African fish that constitute an interesting subject for the study of the karyological evolution in vertebrates, on account of their primitive morphological characters and peculiar relationships with lower Osteichthyans. In this paper, a cytogenetic analysis on twenty specimens of both sexes of Polypterus ornatipinnis the ornate "bichir", coming from the Congo River basin, was performed by using both classical and molecular techniques. The karyotypic formula (2n=36; FN=72) was composed of 26 M+10 SM. The Alu I banding, performed to characterize heterochromatin in this species, was mainly centromeric. Both the chromosome location of the ribosomal 5S and 18S rRNA genes were examined by using Ag-NOR, classical C-banding, CMA(3) staining and FISH. CMA(3) marked all centromerical regions and showed the presence of two GC rich regions on the p arm of the chromosome pair n°1 and on the q arm of the pair n°14. Staining with Ag-NOR marked the only telomeric region of the chromosome n°1 p arm. After PCR, the 5S rDNA in this species was cloned, sequenced and analyzed. In the 665bp 5S rDNA sequence of P.ornatipinnis, a conserved 120bp gene region for the 5S rDNA was identified, followed by a non-transcribed variable spacer (NTS) which included simple repeats, microsatellites and a fragment of a non-LTR retrotransposon R-TEX. FISH with 5S rDNA marked the subtelomeric region of the q arm of the chromosome pair n°14, previously marked by CMA(3). FISH with 18S rDNA marked the telomeric region of the p arm of the pair n°1, previously marked both by Ag-NOR and CMA(3). The (GATA)(7) repeats marked the telomeric regions of all chromosome pairs, with the exclusion of the n°1, n°3 and n°14; hybridization with telomeric probes (TTAGGG)(n) showed signals at the end of all chromosomes. Karyotype evolution in Polypterus genus was finally discussed, including the new data obtained. PMID:21429462

  13. Evolution of rDNA in Nicotiana Allopolyploids: A Potential Link between rDNA Homogenization and Epigenetics

    PubMed Central

    Kovarik, Ales; Dadejova, Martina; Lim, Yoong K.; Chase, Mark W.; Clarkson, James J.; Knapp, Sandra; Leitch, Andrew R.

    2008-01-01

    Background The evolution and biology of rDNA have interested biologists for many years, in part, because of two intriguing processes: (1) nucleolar dominance and (2) sequence homogenization. We review patterns of evolution in rDNA in the angiosperm genus Nicotiana to determine consequences of allopolyploidy on these processes. Scope Allopolyploid species of Nicotiana are ideal for studying rDNA evolution because phylogenetic reconstruction of DNA sequences has revealed patterns of species divergence and their parents. From these studies we also know that polyploids formed over widely different timeframes (thousands to millions of years), enabling comparative and temporal studies of rDNA structure, activity and chromosomal distribution. In addition studies on synthetic polyploids enable the consequences of de novo polyploidy on rDNA activity to be determined. Conclusions We propose that rDNA epigenetic expression patterns established even in F1 hybrids have a material influence on the likely patterns of divergence of rDNA. It is the active rDNA units that are vulnerable to homogenization, which probably acts to reduce mutational load across the active array. Those rDNA units that are epigenetically silenced may be less vulnerable to sequence homogenization. Selection cannot act on these silenced genes, and they are likely to accumulate mutations and eventually be eliminated from the genome. It is likely that whole silenced arrays will be deleted in polyploids of 1 million years of age and older. PMID:18310159

  14. Nuclear rDNA pseudogenes in Chagas disease vectors: evolutionary implications of a new 5.8S+ITS-2 paralogous sequence marker in triatomines of North, Central and northern South America.

    PubMed

    Bargues, M Dolores; Zuriaga, M Angeles; Mas-Coma, Santiago

    2014-01-01

    A pseudogene, paralogous to rDNA 5.8S and ITS-2, is described in Meccus dimidiata dimidiata, M. d. capitata, M. d. maculippenis, M. d. hegneri, M. sp. aff. dimidiata, M. p. phyllosoma, M. p. longipennis, M. p. pallidipennis, M. p. picturata, M. p. mazzottii, Triatoma mexicana, Triatoma nitida and Triatoma sanguisuga, covering North America, Central America and northern South America. Such a nuclear rDNA pseudogene is very rare. In the 5.8S gene, criteria for pseudogene identification included length variability, lower GC content, mutations regarding the functional uniform sequence, and relatively high base substitutions in evolutionary conserved sites. At ITS-2 level, criteria were the shorter sequence and large proportion of insertions and deletions (indels). Pseudogenic 5.8S and ITS-2 secondary structures were different from the functional foldings, different one another, showing less negative values for minimum free energy (mfe) and centroid predictions, and lower fit between mfe, partition function, and centroid structures. A complete characterization indicated a processed pseudogenic unit of the ghost type, escaping from rDNA concerted evolution and with functionality subject to constraints instead of evolving free by neutral drift. Despite a high indel number, low mutation number and an evolutionary rate similar to the functional ITS-2, that pseudogene distinguishes different taxa and furnishes coherent phylogenetic topologies with resolution similar to the functional ITS-2. The discovery of a pseudogene in many phylogenetically related species is unique in animals and allowed for an estimation of its palaeobiogeographical origin based on molecular clock data, inheritance pathways, evolutionary rate and pattern, and geographical spread. Additional to the technical risk to be considered henceforth, this relict pseudogene, designated as "ps(5.8S+ITS-2)", proves to be a valuable marker for specimen classification, phylogenetic analyses, and systematic

  15. Using mitogenomic and nuclear ribosomal sequence data to investigate the phylogeny of the Xiphinema americanum species complex.

    PubMed

    Zasada, Inga A; Peetz, Amy; Howe, Dana K; Wilhelm, Larry J; Cheam, Daravuth; Denver, Dee R; Smythe, Ashleigh B

    2014-01-01

    Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum species complex is controversial, with the number of putative species being the subject of debate. Accurate phylogenetic knowledge of this group is highly desirable as it may ultimately reveal genetic differences between species. For this study, nematodes belonging to the X. americanum species complex, including potentially mixed species populations, were collected from 12 geographically disparate locations across the U.S. from different crops and in varying association with nepoviruses. At least four individuals from each population were analyzed. A portion of the 18S nuclear ribosomal DNA (rDNA) gene was sequenced for all individuals while the internal transcribed spacer region 1 (ITS1) of rDNA was cloned and 2 to 6 clones per individual were sequenced. Mitochondrial genomes for numerous individuals were sequenced in parallel using high-throughput DNA sequencing (HTS) technology. Phylogenetic analysis of the 18S rDNA revealed virtually identical sequences across all populations. Analysis of ITS1 rDNA sequences revealed several well-supported clades, with some degree of congruence with geographic location and viral transmission, but also numerous presumably paralogous sequences that failed to form clades with other sequences from the same population. Analysis of mitochondrial DNA (mtDNA) indicated the presence of three distinct monophyletic clades of X. americanum species complex nematodes. Two clades contained nematodes found in association with nepovirus and the third contained divergent mtDNA sequences from three nematode populations from the western U.S. where nepovirus was absent. The inherent heterogeneity in ITS1 rDNA sequence data and lack of informative sites in 18S rDNA analysis suggests that mtDNA may be more useful in sorting out the

  16. Using Mitogenomic and Nuclear Ribosomal Sequence Data to Investigate the Phylogeny of the Xiphinema americanum Species Complex

    PubMed Central

    Zasada, Inga A.; Peetz, Amy; Howe, Dana K.; Wilhelm, Larry J.; Cheam, Daravuth; Denver, Dee R.; Smythe, Ashleigh B.

    2014-01-01

    Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum species complex is controversial, with the number of putative species being the subject of debate. Accurate phylogenetic knowledge of this group is highly desirable as it may ultimately reveal genetic differences between species. For this study, nematodes belonging to the X. americanum species complex, including potentially mixed species populations, were collected from 12 geographically disparate locations across the U.S. from different crops and in varying association with nepoviruses. At least four individuals from each population were analyzed. A portion of the 18S nuclear ribosomal DNA (rDNA) gene was sequenced for all individuals while the internal transcribed spacer region 1 (ITS1) of rDNA was cloned and 2 to 6 clones per individual were sequenced. Mitochondrial genomes for numerous individuals were sequenced in parallel using high-throughput DNA sequencing (HTS) technology. Phylogenetic analysis of the 18S rDNA revealed virtually identical sequences across all populations. Analysis of ITS1 rDNA sequences revealed several well-supported clades, with some degree of congruence with geographic location and viral transmission, but also numerous presumably paralogous sequences that failed to form clades with other sequences from the same population. Analysis of mitochondrial DNA (mtDNA) indicated the presence of three distinct monophyletic clades of X. americanum species complex nematodes. Two clades contained nematodes found in association with nepovirus and the third contained divergent mtDNA sequences from three nematode populations from the western U.S. where nepovirus was absent. The inherent heterogeneity in ITS1 rDNA sequence data and lack of informative sites in 18S rDNA analysis suggests that mtDNA may be more useful in sorting out the

  17. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution.

    PubMed

    Morard, Raphaël; Darling, Kate F; Mahé, Frédéric; Audic, Stéphane; Ujiié, Yurika; Weiner, Agnes K M; André, Aurore; Seears, Heidi A; Wade, Christopher M; Quillévéré, Frédéric; Douady, Christophe J; Escarguel, Gilles; de Garidel-Thoron, Thibault; Siccha, Michael; Kucera, Michal; de Vargas, Colomban

    2015-11-01

    Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent. PMID:25828689

  18. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution.

    PubMed

    Morard, Raphaël; Darling, Kate F; Mahé, Frédéric; Audic, Stéphane; Ujiié, Yurika; Weiner, Agnes K M; André, Aurore; Seears, Heidi A; Wade, Christopher M; Quillévéré, Frédéric; Douady, Christophe J; Escarguel, Gilles; de Garidel-Thoron, Thibault; Siccha, Michael; Kucera, Michal; de Vargas, Colomban

    2015-11-01

    Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent.

  19. Checklist of the species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) in fishes and turtles in Middle-America, and their delimitation based on sequences of the 28S rDNA.

    PubMed

    Pinacho-Pinacho, Carlos Daniel; Sereno-Uribe, Ana L; De León, Gerardo Pérez-Ponce; García-Varela, Martín

    2015-07-09

    Among the acanthocephalans, Neoechinorhynchus is one of the most speciose genera, with 116 described species distributed worldwide. The adults of Neoechinorhynchus are found in the intestine of freshwater and brackish water fish, as well as in freshwater turtles. In this study, a checklist of the congeneric species of Neoechinorhynchus occurring in Middle-American fish and turtles is presented. The checklist contains the records established in all published accounts, as well as novel data from survey work conducted in the region comprising Neotropical areas of Mexico, as well as some localities in Central America. The species delimitation criteria used to discriminate among species is based on molecular data. In the last years, a large database derived from sequences of the D2 + D3 domains of the large subunit of rDNA (28S) was generated for 262 specimens corresponding to nine species of Neoechinorhynchus. This molecular marker has shown to be useful in establishing species limits within Neoechinorhynchus and in resolving phylogenetic relationships at species level. Based on our results, the domains D2 + D3 of the 28S rDNA could be considered as potential DNA barcodes to complement mitochondrial DNA to discriminate among acanthocephalan species.

  20. Checklist of the species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) in fishes and turtles in Middle-America, and their delimitation based on sequences of the 28S rDNA.

    PubMed

    Pinacho-Pinacho, Carlos Daniel; Sereno-Uribe, Ana L; De León, Gerardo Pérez-Ponce; García-Varela, Martín

    2015-01-01

    Among the acanthocephalans, Neoechinorhynchus is one of the most speciose genera, with 116 described species distributed worldwide. The adults of Neoechinorhynchus are found in the intestine of freshwater and brackish water fish, as well as in freshwater turtles. In this study, a checklist of the congeneric species of Neoechinorhynchus occurring in Middle-American fish and turtles is presented. The checklist contains the records established in all published accounts, as well as novel data from survey work conducted in the region comprising Neotropical areas of Mexico, as well as some localities in Central America. The species delimitation criteria used to discriminate among species is based on molecular data. In the last years, a large database derived from sequences of the D2 + D3 domains of the large subunit of rDNA (28S) was generated for 262 specimens corresponding to nine species of Neoechinorhynchus. This molecular marker has shown to be useful in establishing species limits within Neoechinorhynchus and in resolving phylogenetic relationships at species level. Based on our results, the domains D2 + D3 of the 28S rDNA could be considered as potential DNA barcodes to complement mitochondrial DNA to discriminate among acanthocephalan species. PMID:26250025

  1. Real-time PCR and sequencing assays for rapid detection and identification of avian schistosomes in environmental samples.

    PubMed

    Jothikumar, Narayanan; Mull, Bonnie J; Brant, Sara V; Loker, Eric S; Collinson, Jeremy; Secor, W Evan; Hill, Vincent R

    2015-06-15

    Cercarial dermatitis, also known as swimmer's itch, is an allergenic skin reaction followed by intense itching caused by schistosome cercariae penetrating human skin. Cercarial dermatitis outbreaks occur globally and are frequently associated with freshwater lakes and are occasionally associated with marine or estuarine waters where birds reside year-round or where migratory birds reside. In this study, a broadly reactive TaqMan assay targeting 18S rRNA gene (ribosomal DNA [rDNA]) sequences that was based on a genetically diverse panel of schistosome isolates representing 13 genera and 20 species (the 18S rDNA TaqMan assay) was developed. A PCR assay was also developed to amplify a 28S rDNA region for subsequent sequencing to identify schistosomes. When applied to surface water samples seeded with Schistosoma mansoni cercariae, the 18S rDNA TaqMan assay enabled detection at a level of 5 S. mansoni cercariae in 100 liters of lake water. The 18S rDNA TaqMan and 28S rDNA PCR sequencing assays were also applied to 100-liter water samples collected from lakes in Nebraska and Wisconsin where there were reported dermatitis outbreaks. Avian schistosome DNA was detected in 11 of 34 lake water samples using the TaqMan assay. Further 28S rDNA sequence analysis of positive samples confirmed the presence of avian schistosome DNA and provided a preliminary identification of the avian schistosomes in 10 of the 11 samples. These data indicate that the broadly schistosome-reactive TaqMan assay can be effective for rapid screening of large-volume water samples for detection of avian schistosomes, thereby facilitating timely response actions to mitigate or prevent dermatitis outbreaks. Additionally, samples positive by the 18S rDNA TaqMan assay can be further assayed using the 28S rDNA sequencing assay to both confirm the presence of schistosomes and contribute to their identification.

  2. Real-Time PCR and Sequencing Assays for Rapid Detection and Identification of Avian Schistosomes in Environmental Samples

    PubMed Central

    Mull, Bonnie J.; Brant, Sara V.; Loker, Eric S.; Collinson, Jeremy; Secor, W. Evan; Hill, Vincent R.

    2015-01-01

    Cercarial dermatitis, also known as swimmer's itch, is an allergenic skin reaction followed by intense itching caused by schistosome cercariae penetrating human skin. Cercarial dermatitis outbreaks occur globally and are frequently associated with freshwater lakes and are occasionally associated with marine or estuarine waters where birds reside year-round or where migratory birds reside. In this study, a broadly reactive TaqMan assay targeting 18S rRNA gene (ribosomal DNA [rDNA]) sequences that was based on a genetically diverse panel of schistosome isolates representing 13 genera and 20 species (the 18S rDNA TaqMan assay) was developed. A PCR assay was also developed to amplify a 28S rDNA region for subsequent sequencing to identify schistosomes. When applied to surface water samples seeded with Schistosoma mansoni cercariae, the 18S rDNA TaqMan assay enabled detection at a level of 5 S. mansoni cercariae in 100 liters of lake water. The 18S rDNA TaqMan and 28S rDNA PCR sequencing assays were also applied to 100-liter water samples collected from lakes in Nebraska and Wisconsin where there were reported dermatitis outbreaks. Avian schistosome DNA was detected in 11 of 34 lake water samples using the TaqMan assay. Further 28S rDNA sequence analysis of positive samples confirmed the presence of avian schistosome DNA and provided a preliminary identification of the avian schistosomes in 10 of the 11 samples. These data indicate that the broadly schistosome-reactive TaqMan assay can be effective for rapid screening of large-volume water samples for detection of avian schistosomes, thereby facilitating timely response actions to mitigate or prevent dermatitis outbreaks. Additionally, samples positive by the 18S rDNA TaqMan assay can be further assayed using the 28S rDNA sequencing assay to both confirm the presence of schistosomes and contribute to their identification. PMID:25862226

  3. Identification of airborne bacterial and fungal species in the clinical microbiology laboratory of a university teaching hospital employing ribosomal DNA (rDNA) PCR and gene sequencing techniques.

    PubMed

    Nagano, Yuriko; Walker, Jim; Loughrey, Anne; Millar, Cherie; Goldsmith, Colin; Rooney, Paul; Elborn, Stuart; Moore, John

    2009-06-01

    Universal or "broad-range" PCR-based ribosomal DNA (rDNA) was performed on a collection of 58 isolates (n = 30 bacteria + 28 fungi), originating from environmental air from several locations within a busy clinical microbiology laboratory, supporting a university teaching hospital. A total of 10 bacterial genera were identified including both Gram-positive and Gram-negative genera. Gram-positive organisms accounted for 27/30 (90%) of total bacterial species, consisting of seven genera and included (in descending order of frequency) Staphylococcus, Micrococcus, Corynebacterium, Paenibacillus, Arthrobacter, Janibacter and Rothia. Gram-negative organisms were less frequently isolated 3/30 (10%) and comprised three genera, including Moraxella, Psychrobacter and Haloanella. Eight fungal genera were identified among the 28 fungal organisms isolated, including (in descending order of frequency) Cladosporium, Penicillium, Aspergillus, Thanatephorus, Absidia, Eurotium, Paraphaeosphaeria and Tritirachium, with Cladosporium accounting for 10/28 (35.7%) of the total fungal isolates. In conclusion, this study identified the presence of 10 bacterial and eight fungal genera in the air within the laboratory sampled. Although this reflected diversity of the microorganisms present, none of these organisms have been described previously as having an inhalational route of laboratory-acquired infection. Therefore, we believe that the species of organisms identified and the concentration levels of these airborne contaminants determined, do not pose a significant health and safety threat for immunocompotent laboratory personnel and visitors. PMID:20183192

  4. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis.

    PubMed

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.

  5. Cellular identity of an 18S rRNA gene sequence clade within the class Kinetoplastea: the novel genus Actuariola gen. nov. (Neobodonida) with description of the type species Actuariola framvarensis sp. nov.

    PubMed

    Stoeck, Thorsten; Schwarz, M V Julian; Boenigk, Jens; Schweikert, Michael; von der Heyden, Sophie; Behnke, Anke

    2005-11-01

    Environmental molecular surveys of microbial diversity have uncovered a vast number of novel taxonomic units in the eukaryotic tree of life that are exclusively known by their small-subunit (SSU) rRNA gene signatures. In this study, we reveal the cellular and taxonomic identity of a novel eukaryote SSU rRNA gene sequence clade within the Kinetoplastea. Kinetoplastea are ubiquitously distributed flagellated protists of high ecological and medical importance. We isolated an organism from the oxic-anoxic interface of the anoxic Framvaren Fjord (Norway), which branches within an unidentified kinetoplastean sequence clade. Ultrastructural studies revealed a typical cellular organization that characterized the flagellated isolate as a member of the order Neobodonida Vickerman 2004, which contains five genera. The isolate differed in several distinctive characters from Dimastigella, Cruzella, Rhynchobodo and Rhynchomonas. The arrangement of the microtubular rod that supports the apical cytostome and the cytopharynx differed from the diagnosis of the fifth described genus (Neobodo Vickerman 2004) within the order Neobodonida. On the basis of both molecular and microscopical data, a novel genus within the order Neobodonida, Actuariola gen. nov., is proposed. Here, we characterize its type species, Actuariola framvarensis sp. nov., and provide an in situ tool to access the organism in nature and study its ecology.

  6. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  7. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics.

    PubMed

    Chernoff, Y O; Vincent, A; Liebman, S W

    1994-02-15

    Mutations have been created in the Saccharomyces cerevisiae 18S rRNA gene that correspond to those known to be involved in the control of translational fidelity or antibiotic resistance in prokaryotes. Yeast strains, in which essentially all chromosomal rDNA repeats are deleted and all cellular rRNAs are encoded by plasmid, have been constructed that contain only mutant 18S rRNA. In Escherichia coli, a C-->U substitution at position 912 of the small subunit rRNA causes streptomycin resistance. Eukaryotes normally carry U at the corresponding position and are naturally resistant to streptomycin. We show that a U-->C transition (rdn-4) at this position of the yeast 18S rRNA gene decreases resistance to streptomycin. The rdn-4 mutation also increases resistance to paromomycin and G-418, and inhibits nonsense suppression induced by paromomycin. The same phenotypes, as well as a slow growth phenotype, are also associated with rdn-2, whose prokaryotic counterpart, 517 G-->A, manifests itself as a suppressor rather than an antisuppressor. Neither rdn-2- nor rdn-4-related phenotypes could be detected in the presence of the normal level of wild-type rDNA repeats. Our data demonstrate that eukaryotic rRNA is involved in the control of translational fidelity, and indicate that rRNA features important for interactions with aminoglycosides have been conserved throughout evolution.

  8. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    PubMed

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  9. Molecular profiling of microbial communities from contaminated sources: Use of subtractive cloning methods and rDNA spacer sequences. 1998 annual progress report

    SciTech Connect

    Robb, F.T.

    1998-06-01

    'The major objective of the research is to provide appropriate sequences and to assemble a high-density DNA array of oligonucleotides that can be used for rapid profiling of microbial populations from polluted areas. The sequences to be assigned to the DNA array are chosen from from cloned genomic DNA sequences (the ribosomal operon, described below) from groundwater at DOE sites containing organic solvents. The sites, Hanford Nuclear Plant and Lawrence Livermore Site 300, have well characterized pollutant histories, which have been provided by the collaborators. At this mid-point of the project, over 60 unique sequence classes of intergenic spacer region have been idedntified from the first sample site. The use of these sequences as hybridization probes, and their frequency of occurrence, allow a clear distinction between bacterial communities before and after remediation by acetate/nitrate pumping. The authors have developed the hybridization conditions for identifying PCR products in a 96 well format, a versatile alignment and visualization program (acronym: MALIGN) developed by Dr. Dennis Maeder, has been used to align the ISRs, which are variable in length and sometimes in position of the tRNAs. Finally, in collaboration with Dr. W. Chen and Dr. J. Zhou at ORNL, they have significant evidence that mass spectrometer analysis can be used to determine the lengths of PCR amplified intergenic spacer DNA.'

  10. High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera).

    PubMed

    Panzera, Y; Pita, S; Ferreiro, M J; Ferrandis, I; Lages, C; Pérez, R; Silva, A E; Guerra, M; Panzera, F

    2012-01-01

    In this paper, we determine by fluorescent in situ hybridization the variability in the chromosomal location of 45S rDNA clusters in 38 species belonging to 7 genera of the Triatominae subfamily, using a triatomine-specific 18S rDNA probe. Our results show a striking variability at the inter- and intraspecific level, never reported so far in holocentric chromosomes, revealing the extraordinary genomic dynamics that occurred during the evolution in this group of insects. Our results also demonstrate that the chromosomal position of rDNA clusters is an important marker to disclose chromosomal differentiation in species karyotypically homogenous in their chromosome number.

  11. Phylogenetic relationships among microsporidia based on rDNA sequence data, with particular reference to fish-infecting Microsporidium balbiani 1884 species.

    PubMed

    Bell, A S; Aoki, T; Yokoyama, H

    2001-01-01

    Recently, large discrepancies have been identified between microsporidian systematics based on molecular and traditional characteristics. In the current study the 530f-580r region of the rRNA gene of eight microsporidian species was cloned and sequenced. Included were two unclassified species of Microsporidium Balbiani, 1884 and an unidentified microsporidian that infects the musculature of different sea bream species. Sequence identities in excess of 98% indicated that these three species almost certainly are members of the same genus. Phylogenetic analyses of all microsporidian sequence data available for this region of the gene (20 species) and for partial small subunit sequences (51 species of 21 genera) revealed these species to be distinct from the family Pleistophoridae Doflein, 1901 and closely related them to the genus Sproguea Weissenberg, 1976. This clade was found to comprise a sister taxon to that containing the vast majority of fish-infecting species. Broad cladistic divisions were found between terrestrial insect-infecting and fish-infecting species, which together are distant from the aquatic insect-infecting microsporidia. The rRNA gene of certain fish-infecting genera was found to be more highly conserved than previously reported. This has implications for its utility in diagnostic assays and phylogenetic studies at, or close to, the species level.

  12. Phylogenetic reconstruction using secondary structures and sequence motifs of ITS2 rDNA of Paragonimus westermani (Kerbert, 1878) Braun, 1899 (Digenea: Paragonimidae) and related species

    PubMed Central

    2009-01-01

    Background Most phylogenetic studies using current methods have focused on primary DNA sequence information. However, RNA secondary structures are particularly useful in systematics because they include characteristics that give "morphological" information, not found in the primary sequence. In several mountainous regions of Northeastern India, foci of Paragonimus (lung fluke) infection reportedly involve species that are known to prevail in neighbouring countries. The present study was undertaken to demonstrate the sequence analysis of the ribosomal DNA (ITS2) of the infective (metacercarial) stage of the lung fluke collected from the edible crab hosts that are abundant in a mountain stream of the area (Miao, Changlang District in Arunachal Pradesh) and to construct its phylogeny. Using the approach of molecular morphometrics that is based on ITS2 secondary structure homologies, phylogenetic relationships of the various isolates of Paragonimus species that are prevalent in the neighbouring Near-eastern countries have been discussed. Results Initially, ten predicted RNA secondary structures were reconstructed and the topology based only on the predicted RNA secondary structure of the ITS2 region resolved most relationships among the species studied. We obtained three similar topologies for seven species of the genus Paragonimus on the basis of traditional primary sequence analysis using MEGA and a Bayesian analysis of the combined data. The latter approach allowed us to include both primary sequence and RNA molecular morphometrics; each data partition was allowed to have a different evolution rate. Paragonimus westermani was found to group with P. siamensis of Thailand; this was best supported by both the molecular morphometrics and combined analyses. P. heterotremus, P. proliferus, P. skrjabini, P. bangkokensis and P. harinasutai formed a separate clade in the molecular phylogenies, and were reciprocally monophyletic with respect to other species. ITS2 sequence

  13. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants.

    PubMed

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes.

  14. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants

    PubMed Central

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A.

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  15. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants.

    PubMed

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  16. PAGE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence similarity and rDNA complexity.

    PubMed

    Espejo, R T; Feijóo, C G; Romero, J; Vásquez, M

    1998-06-01

    Analysis of the 16S rRNA genes retrieved directly from different environments has proven to be a powerful tool that has greatly expanded our knowledge of microbial diversity and phylogeny. It is shown here that sequence similarity between 80 and 100% among 16S rDNAs can be estimated by the electrophoretic migration of their heteroduplexes. This was measured by hybridization and electrophoresis in polyacrylamide gels of the product obtained after PCR amplification of almost the entire 16S rRNA gene from different bacterial species. These heteroduplexes were also observed after amplification of samples containing DNA from two or more bacterial species and a procedure was applied to identify reliably heteroduplexes among the amplification products. The electrophoretic migration of the heteroduplexes observed after PCR was used to detect the presence of 16S rDNAs with different sequences in DNA extracted from both a mixture of two bacterial species and samples containing a natural bacterial community.

  17. Analysis of the 16S-23S rDNA intergenic spacers (IGSs) of marine vibrios for species-specific signature DNA sequences.

    PubMed

    Lee, Simon K Y; Wang, H Z; Law, Sheran H W; Wu, Rudolf S S; Kong, Richard Y C

    2002-05-01

    Vibrios are widespread in the marine environment and a few pathogenic species are known to be commonly associated with outbreaks of diarrheal diseases in humans due to the consumption of raw or improperly cooked seafood. However, there are also many Vibrio species which are potentially pathogenic to vertebrate and invertebrate aquatic animals, and of which little is known. In an attempt to develop rapid PCR detection methods for these latter class of vibrios, we have examined the 16S-23S intergenic spacers (IGSs) of 10 lesser-known Vibrio species and successfully developed species-specific primers for eight of them--Vibrio costicola, V. diazotrophicus, V. fluvialis, V. nigripulchritudo, V. proteolyticus, V. salmonicida, V. splendidus and V. tubiashii. The IGS amplicons were amplified using primers complementary to conserved regions of the 16S and 23S rRNA genes, and cloned into plasmid vectors and sequenced. Analysis of the IGS sequences showed that 37 ribosomal RNA (rrn) operons representing seven different IGS types have been cloned from the 10 vibrios. The three IGS types--IGS(0), IGS(IA) and IGS(Glu)--were the most prevalent forms detected. Multiple alignment of representative sequences of these three IGS types from different Vibrio species revealed several domains of high sequence variability, which were used to design species-specific primers for PCR. The specificity of the primers were evaluated using total DNA prepared from different Vibrio species and bacterial genera. The results showed that the PCR method can be used to reliably detect eight of the 10 Vibrio species in marine waters in this study.

  18. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region

    PubMed Central

    Arif, Chatchanit; Daniels, Camille; Bayer, Till; Banguera-Hinestroza, Eulalia; Barbrook, Adrian; Howe, Christopher J; LaJeunesse, Todd C; Voolstra, Christian R

    2014-01-01

    The persistence of coral reef ecosystems relies on the symbiotic relationship between scleractinian corals and intracellular, photosynthetic dinoflagellates in the genus Symbiodinium. Genetic evidence indicates that these symbionts are biologically diverse and exhibit discrete patterns of environmental and host distribution. This makes the assessment of Symbiodinium diversity critical to understanding the symbiosis ecology of corals. Here, we applied pyrosequencing to the elucidation of Symbiodinium diversity via analysis of the internal transcribed spacer 2 (ITS2) region, a multicopy genetic marker commonly used to analyse Symbiodinium diversity. Replicated data generated from isoclonal Symbiodinium cultures showed that all genomes contained numerous, yet mostly rare, ITS2 sequence variants. Pyrosequencing data were consistent with more traditional denaturing gradient gel electrophoresis (DGGE) approaches to the screening of ITS2 PCR amplifications, where the most common sequences appeared as the most intense bands. Further, we developed an operational taxonomic unit (OTU)-based pipeline for Symbiodinium ITS2 diversity typing to provisionally resolve ecologically discrete entities from intragenomic variation. A genetic distance cut-off of 0.03 collapsed intragenomic ITS2 variants of isoclonal cultures into single OTUs. When applied to the analysis of field-collected coral samples, our analyses confirm that much of the commonly observed SymbiodiniumITS2 diversity can be attributed to intragenomic variation. We conclude that by analysing Symbiodinium populations in an OTU-based framework, we can improve objectivity, comparability and simplicity when assessing ITS2 diversity in field-based studies. PMID:25052021

  19. Physical mapping of 18S and 5S genes in pelagic species of the genera Caranx and Carangoides (Carangidae).

    PubMed

    Jacobina, U P; Bertollo, L A C; Bello Cioffi, M; Molina, W F

    2014-11-14

    In Carangidae, Caranx is taxonomically controversial because of slight morphological differences among species, as well as because of its relationship with the genus Carangoides. Cytogenetic data has contributed to taxonomic and phylogenetic classification for some groups of fish. In this study, we examined the chromosomes of Caranx latus, Caranx lugubris, and Carangoides bartholomaei using classical methods, including conventional staining, C-banding, silver staining for nuclear organizer regions, base-specific fluorochrome, and 18S and 5S ribosomal sequence mapping using in situ hybridization. These 3 species showed chromosome numbers of 2n = 48, simple nuclear organizer regions (pair 1), and mainly centromeric heterochomatin. However, C. latus (NF = 50) and C. bartholomaei (NF = 50) showed a structurally conserved karyotype compared with C. lugubris (NF = 54), with a larger number of 2-armed chromosomes. The richness of GC-positive heterochromatic segments and sites in 5S rDNA in specific locations compared to the other 2 species reinforce the higher evolutionary dynamism in C. lugubris. Cytogenetic aspects shared between C. latus and C. bartholomaei confirm the remarkable phylogenetic proximity between these genera.

  20. Morphology and morphogenesis of a soil ciliate, Rigidohymena candens (Kahl, 1932) Berger, 2011 (Ciliophora, Hypotricha, Oxytrichidae), with notes on its molecular phylogeny based on small-subunit rDNA sequence data.

    PubMed

    Chen, Xumiao; Yan, Ying; Hu, Xiaozhong; Zhu, Mingzhuang; Ma, Honggang; Warren, Alan

    2013-05-01

    The morphology and morphogenesis of the stylonychine hypotrich Rigidohymena candens (Kahl, 1932) Berger, 2011, isolated from garden soil in Qingdao, China, were investigated using live observation and protargol impregnation methods. The Qingdao isolate possesses all diagnostic morphological characters of R. candens. The main events during binary fission are as follows: (i) the proter retains the parental adoral zone of membranelles entirely, whereas the old undulating membranes dedifferentiate into an anlage that gives rise to the leftmost frontal cirrus and the new undulating membranes of the proter; (ii) five streaks of fronto-ventral-transverse cirral anlagen are segmented in the pattern 3 : 3 : 3 : 4 : 4 from left to right, which form two frontal, four frontoventral, one buccal, five ventral and five transverse cirri, respectively; (iii) dorsal morphogenesis is in the typical Oxytricha pattern; (iv) three caudal cirri are formed, one at the posterior end of each of dorsal kineties 1, 2 and 4; and (v) the postoral ventral cirrus V/3 is not involved in primordia formation. The morphological and morphogenetic observations and phylogenetic analyses based on the small-subunit rDNA sequence data support the validity of Rigidohymena Berger, 2011 and its systematic position in the subfamily Stylonychinae. PMID:23456808

  1. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae).

    PubMed

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country's economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 'Azul', Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies. PMID:24260700

  2. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae)

    PubMed Central

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Abstract Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country’s economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 ‘Azul’, Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies. PMID:24260700

  3. Detection and phylogenetic relationships of Puccinia emaculata and Uromyces graminicola (Pucciniales) on switchgrass in New York State using rDNA sequence information.

    PubMed

    Kenaley, Shawn C; Hudler, George W; Bergstrom, Gary C

    2016-05-01

    The species of rust fungi (Pucciniales) inciting disease on switchgrass (Panicum virgatum) grown in bioenergy feedstock systems across the north-central and eastern United States remain unclear. In the present study, the species number and phylogenetic relationships of rust species affecting switchgrass were examined in 2011-2013 at two sites in New York State as well as selected sites in Alabama, Iowa, Nebraska, Pennsylvania, South Dakota, and West Virginia using ribosomal RNA gene data (partial internal transcribed spacer [ITS] 1, complete 5.8 subunit [S] and ITS2, and partial 28S). Uredinial group and teliospore morphology were also utilized to delimit taxa in collection years 2012 and 2013. Maximum likelihood, maximum parsimony, and Bayesian analyses demonstrated two monophyletic clades. Clade I consisted of Puccinia emaculata and included the majority of single-sorus samples across sites, whereas, Clade II included multiple samples from Iowa, Nebraska, and South Dakota. Single-telial samples for Clade I possessed only two-celled teliospores while Clade II samples possessed only one-celled teliospores, and hence, were readily diagnosed morphologically to P. emaculata and Uromyces graminicola, respectively. No U. graminicola sequences exist in GenBank to compare with our Clade II samples; however, based on teliospore morphology, the identity of Clade II taxa is U. graminicola. PMID:27109375

  4. Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildew pathogens with pyriform haustoria based on Bayesian analysis of partial LSU rDNA sequence data.

    PubMed

    Voglmayr, Hermann; Riethmüller, Alexandra; Göker, Markus; Weiss, Michael; Oberwinkler, Franz

    2004-09-01

    Bayesian and maximum parsimony phylogenetic analyses of 92 collections of the genera Basidiophora, Bremia, Paraperonospora, Phytophthora and Plasmopara were performed using nuclear large subunit ribosomal DNA sequences containing the D1 and D2 regions. In the Bayesian tree, two main clades were apparent: one clade containing Plasmopara pygmaea s. lat., Pl. sphaerosperma, Basidiophora, Bremia and Paraperonospora, and a clade containing all other Plasmopara species. Plasmopara is shown to be polyphyletic, and Pl. sphaerosperma is transferred to a new genus, Protobremia, for which also the oospore characteristics are described. Within the core Plasmopara clade, all collections originating from the same host family except from Asteraceae and Geraniaceae formed monophyletic clades; however, higher-level phylogenetic relationships lack significant branch support. A sister group relationship of Pl. sphaerosperma with Bremia lactucae is highly supported. Within Bremia lactucae s. l., three distinct clades are evident, which only partly conform to the published host specificity groups. All species of the genera Basidiophora, Bremia, Paraperonospora and Plasmopara included in the present study were investigated for haustorial morphology, and all had ellipsoid to pyriform haustoria, which are regarded as a diagnostic synapomorphy of the whole clade. Aspects of coevolution and cospeciation within the downy mildew pathogens with ellipsoid to pyriform haustoria are briefly discussed.

  5. Phylogeny and Biogeography of the Genus Ainsliaea (Asteraceae) in the Sino-Japanese Region based on Nuclear rDNA and Plastid DNA Sequence Data

    PubMed Central

    Mitsui, Yuki; Chen, Shao-Tien; Zhou, Zhe-Kun; Peng, Ching-I.; Deng, Yun-Fei; Setoguchi, Hiroaki

    2008-01-01

    Background and Aims The flora of the Sino-Japanese plant region of eastern Asia is distinctively rich compared with other floristic regions in the world. However, knowledge of its floristic evolution is fairly limited. The genus Ainsliaea is endemic to and distributed throughout the Sino-Japanese region. Its interspecific phylogenetic relationships have not been resolved. The aim is to provide insight into floristic evolution in eastern Asia on the basis of a molecular phylogenetic analysis of Ainsliaea species. Methods Cladistic analyses of the sequences of two nuclear (ITS, ETS) and one plastid (ndhF) regions were carried out individually and using the combined data from the three markers. Key Results Phylogenetic analyses of three DNA regions confirmed that Ainsliaea is composed of three major clades that correspond to species distributions. Evolution of the three lineages was estimated to have occurred around 1·1 MYA during the early Pleistocene. Conclusions The results suggest that Ainsliaea species evolved allopatrically and that the descendants were isolated in the eastern (between SE China and Japan, through Taiwan and the Ryukyu Islands) and western (Yunnan Province and its surrounding areas, including the Himalayas, the temperate region of Southeast Asia, and Sichuan Province) sides of the Sino-Japanese region. The results suggest that two distinct lineages of Ainsliaea have independently evolved in environmentally heterogeneous regions within the Sino-Japanese region. These regions have maintained rich and original floras due to their diverse climates and topographies. PMID:17981878

  6. Molecular profiling of microbial communities from contaminated sources: Use of substractive cloning methods and rDNA spacer sequences. 1997 annual progress report

    SciTech Connect

    1997-12-01

    'This project is to develop molecular methods for rapid characterization of microbial communities in contaminated ecosystems. The authors are exploring the use of {sup 16}s ribosomal DNA intergenic spacer regions (ISRs) to profile community composition. The choice proves to be a good one: there are 200--550 bases of 1 to 3 variable regions from which to choose species-specific probes, as well as 2--4 stretches of conserved sequence from which to develop universal PCR (polymerase chain reaction) primers. Preliminary community characterization is complete, and several types of arrays are under development to determine the types of bacteria present and the status of the ground water. Profiling the community composition of polluted groundwater will impact the broad field of microbial ecology as well as mixed-waste bioremediation. Results The samples the authors have been analysing were provided by Dr. Fred Brockman from Pacific Northwest Laboratory, and were collected at the US DOE Hanford site, Washington state. The samples were microbial filtrates from ground water polluted with 2 mg/L carbon tetrachloride and 250 mg/L nitrate and subjected to enrichment (acetate + nitrate) and recirculation. This project is described in some detail in PNNL-11113, Accelerated In Situ Bioremediation of Groundwater, by M.J. Truex, B.S. Hooker, and D.B. Anderson, July 1996.'

  7. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2006-11-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MEL) was undertaken based on the analysis of ribosomal DNA sequences on the yeast strains of the genus Pseudozyma. Pseudozyma rugulosa NBRC 10877 was found to produce a large amount of glycolipids from soybean oil. Fluorescence microscopic observation also demonstrated that the strain significantly accumulates polar lipids in the cells. The structure of the glycolipids produced by the strain was analyzed by (1)H and (13)C nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as MEL produced by Pseudozyma antarctica, a well-known MEL producer. The major fatty acids of the present MEL consisted of C8 and C10 acids. Based on high performance liquid chromatography, the composition of the produced MEL was as follows: MEL-A (68%), MEL-B (12%), and MEL-C (20%). To enhance the production of MEL by the novel strain, factors affecting the production, such as carbon and nitrogen sources, were further examined. Soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. The supplementation of a MEL precursor, such as erythritol, drastically enhanced the production yield from soybean oil at a rate of 70 to 90%. Under the optimal conditions in a shake culture, a maximum yield, productivity, and yield coefficient (on a weight basis to soybean oil supplied) of 142 g l(-1), 5.0 g l(-1) day(-1), and 0.5 g g(-1) were achieved by intermittent feeding of soybean oil and erythritol using the yeast.

  8. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2006-11-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MEL) was undertaken based on the analysis of ribosomal DNA sequences on the yeast strains of the genus Pseudozyma. Pseudozyma rugulosa NBRC 10877 was found to produce a large amount of glycolipids from soybean oil. Fluorescence microscopic observation also demonstrated that the strain significantly accumulates polar lipids in the cells. The structure of the glycolipids produced by the strain was analyzed by (1)H and (13)C nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as MEL produced by Pseudozyma antarctica, a well-known MEL producer. The major fatty acids of the present MEL consisted of C8 and C10 acids. Based on high performance liquid chromatography, the composition of the produced MEL was as follows: MEL-A (68%), MEL-B (12%), and MEL-C (20%). To enhance the production of MEL by the novel strain, factors affecting the production, such as carbon and nitrogen sources, were further examined. Soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. The supplementation of a MEL precursor, such as erythritol, drastically enhanced the production yield from soybean oil at a rate of 70 to 90%. Under the optimal conditions in a shake culture, a maximum yield, productivity, and yield coefficient (on a weight basis to soybean oil supplied) of 142 g l(-1), 5.0 g l(-1) day(-1), and 0.5 g g(-1) were achieved by intermittent feeding of soybean oil and erythritol using the yeast. PMID:16733733

  9. Performance of 18S rRNA in littorinid phylogeny (Gastropoda: Caenogastropoda).

    PubMed

    Winnepenninckx, B M; Reid, D G; Backeljau, T

    1998-11-01

    In the past, 18S rRNA sequences have proved to be very useful for tracing ancient divergences but were rarely used for resolving more recent ones. Moreover, it was suggested that the molecule does not contain useful information to resolve divergences which took place during less than 40 Myr. The present paper takes littorinid phylogeny as a case study to reevaluate the utility of the molecule for resolving recent divergences. Two data sets for nine species of the snail family Littorinidae were analyzed, both separately and combined. One data set comprised 7 new complete 18S rRNA sequences aligned with 2 published littorinid sequences; the other comprised 12 morphological, 1 biochemical, and 2 18S rRNA secondary structure characters. On the basis of its ability to confirm generally accepted relationships and the congruence of results derived from the different data sets, it is concluded that 18S rRNA sequences do contain information to resolve "rapid" cladogenetic events, provided that they occurred in the not too distant past. 18S rRNA sequences yielded support for (1) the branching order (L. littorea, (L. obtusata, (L. saxatilis, L. compressa))) and (2) the basal position of L. striata in the Littorina clade. PMID:9797409

  10. Modified nucleotides in T1 RNase oligonucleotides of 18S ribosomal RNA of the Novikoff hepatoma.

    PubMed

    Choi, Y C; Busch, H

    1978-06-27

    The primary structure of 18S rRNA of the Novikoff hepatoma cells was investigated. Regardless of whether the primary sequence of 18S rRNA is finally determined by RNA sequencing methods or DNA sequencing methods, it is important to identify numbers and types of the modified nucleotides and accordingly the present study was designed to localize the modified regions in T1 RNase derived oligonucleotide. Modified nucleotides found in 66 different oligonucleotide sequences included 2 m62A, 1 m6A, 1 m7G, 1m1cap3psi, 7 Cm, 13 Am, 9 Gm, 11 Um, and 38 psi residues. A number of these modified nucleotides are now placed in defined sequences of T1 RNase oligonucleotides which are now being searched for in larger fragments derived from partial T1 RNase digests of 18S rRNA. Improved homochromatography fingerprinting (Choi et al. (1976) Cancer Res. 36, 4301) of T1 RNase derived oligonucleotides provided a distinctive pattern for 18S rRNA of Novikoff hepatoma ascites cells. The 116 spots obtained by homochromatography contain 176 oligonucleotide sequences. PMID:209819

  11. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  12. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  13. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    PubMed

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  14. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae.

    PubMed

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-02-27

    Methylation of ribose sugars at the 2'-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2'-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5' central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D' box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications.

  15. Identification of new 18S rRNA strains of Babesia canis isolated from dogs with subclinical babesiosis.

    PubMed

    Łyp, P; Adaszek, Ł; Furmaga, B; Winiarczyk, S

    2015-01-01

    In this study, we used PCR to detect and characterize B. canis from naturally infected dogs in Poland with subclinical babesiosis by amplifying and sequencing a portion of the 18S ribosomal RNA (rRNA) gene. Venous blood samples were collected from ten dogs with subclinical babesiosis. A 559-bp fragment of the B. canis 18S rRNA gene was amplified by PCR. Sequencing of the PCR products led to the identification of a new variant of Babesia canis, differing from the previously detected protozoa genotypes (18S rRNA-A and 18S rRNA-B) with nucleotide substitutions in positions 150 and 151 of the tested gene fragment. The results indicate the emergence within the Polish territory of a new, previously unencountered Babesia canis genotype responsible for the development of subclinical babesiosis. PMID:26618590

  16. Identification of new 18S rRNA strains of Babesia canis isolated from dogs with subclinical babesiosis.

    PubMed

    Łyp, P; Adaszek, Ł; Furmaga, B; Winiarczyk, S

    2015-01-01

    In this study, we used PCR to detect and characterize B. canis from naturally infected dogs in Poland with subclinical babesiosis by amplifying and sequencing a portion of the 18S ribosomal RNA (rRNA) gene. Venous blood samples were collected from ten dogs with subclinical babesiosis. A 559-bp fragment of the B. canis 18S rRNA gene was amplified by PCR. Sequencing of the PCR products led to the identification of a new variant of Babesia canis, differing from the previously detected protozoa genotypes (18S rRNA-A and 18S rRNA-B) with nucleotide substitutions in positions 150 and 151 of the tested gene fragment. The results indicate the emergence within the Polish territory of a new, previously unencountered Babesia canis genotype responsible for the development of subclinical babesiosis.

  17. Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid.

    PubMed

    Zhu, Hua Ping; Lu, Mai Xin; Gao, Feng Ying; Huang, Zhang Han; Yang, Li Ping; Gui, Jian Fang

    2010-08-01

    In this study, classical and molecular cytogenetic analyses were performed in tilapia fishes, Oreochromis mossambicus (XX/XY sex determination system), O. urolepis hornorum (WZ/ZZ sex determination system) and their hybrid by crossing O. mossambicus female x O. u. hornorum male. An identical karyotype ((2n = 44, NF (total number of chromosomal arms) = 50) was obtained from three examined tilapia samples. Genomic organization analysis of 5S rDNA revealed two different types of 5S rDNA sequences, 5S type I and 5S type II. Moreover, fluorescence in situ hybridization (FISH) with 5S rDNA probes showed six positive fluorescence signals on six chromosomes of all the analysed metaphases from the three tilapia samples. Subsequently, 45S rDNA probes were also prepared, and six positive fluorescence signals were observed on three chromosome pairs in all analysed metaphases of the three tilapia samples. The correlation between 45 rDNA localization and nucleolar organizer regions (NORs) was confirmed by silver nitrate staining in tilapia fishes. Further, different chromosomal localizations of 5S rDNA and 45S rDNA were verified by two different colour FISH probes. Briefly, the current data provide an insights for hybridization projects and breeding improvement of tilapias.

  18. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes).

    PubMed

    Ribeiro, Leila Braga; Matoso, Daniele Aparecida; Feldberg, Eliana

    2014-03-01

    The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum. PMID:24688290

  19. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes)

    PubMed Central

    Ribeiro, Leila Braga; Matoso, Daniele Aparecida; Feldberg, Eliana

    2014-01-01

    The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum. PMID:24688290

  20. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    PubMed Central

    Garcia, S; Kovařík, A

    2013-01-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008

  1. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates.

    PubMed

    Gong, Jun; Dong, Jun; Liu, Xihan; Massana, Ramon

    2013-05-01

    The copy number and sequence variation of the ribosomal DNA (rDNA) operon are of functional significance in evolution and ecology of organisms. However, the relationship between copy number and sequence variation of rDNA in protists has been rarely studied. Here we quantified rDNA copy numbers of oligotrich and peritrich ciliate species using single-cell quantitative PCR. We also examined the rDNA sequence variation by using single-cell PCR, cloning, and sequencing of multiple clones. We found that the rDNA copy numbers per cell were extremely high and different among even congeners, with the highest record of about 310,000. There was substantial intraindividual haplotype diversity and nucleotide diversity for the rDNA markers, with sequence differences primarily characterized by single nucleotide polymorphisms. Haplotype and nucleotide diversity was positively correlated to the rDNA copy number. Our findings provide evidence that: (1) ciliates generally have much higher rDNA copy numbers than other protists and fungi, which could lead to overestimation of the relative abundance of ciliates in environmental samples when rDNA sequence-based methodologies are used; and that (2) the rDNA might not always evolve in a strictly concerted manner in ciliates, which may raise problems in rDNA-based inference of species richness and phylogeny.

  2. Analysis of 5S rDNA organization and variation in polyploid hybrids from crosses of different fish subfamilies.

    PubMed

    Qin, Qinbo; He, Weiguo; Liu, Shaojun; Wang, Jing; Xiao, Jun; Liu, Yun

    2010-07-15

    In this article, sequence analysis of the coding region (5S) and adjacent nontranscribed spacer (NTS) were conducted in red crucian carp (RCC), blunt snout bream (BSB), and their polyploid offspring. Three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) of RCC were characterized by distinct NTS types (designated NTS-I, II, and III for the 83, 220, and 357 bp monomers, respectively). In BSB, only one monomeric 5S rDNA was observed (designated class IV: 188 bp), which was characterized by one NTS type (designated NTS-IV: 68 bp). In the polyploid offspring, the tetraploid (4nRB) hybrids partially inherited 5S rDNA classes from their female parent (RCC); however, they also possessed a unique 5S rDNA sequence (designated class I-L: 203 bp) with a novel NTS sequence (designated NTS-I-L: 83 bp). The characteristic paternal 5S rDNA sequences (class IV) were not observed. The 5S rDNA of triploid (3nRB) hybrids was completely inherited from the parental species, and generally preserved the parental 5S rDNA structural organization. These results first revealed the influence of polyploidy on the organization and evolution of the multigene family of 5S rDNA of fish, and are also useful in clarifying aspects of vertebrate genome evolution.

  3. Molecular dissection of the rDNA array and of the 5S rDNA gene in Meloidogyne artiellia: phylogenetic and diagnostic implications.

    PubMed

    Veronico, Pasqua; De Luca, Francesca; De Giorgi, Carla

    2004-06-01

    The sequence of a 13.423 nucleotide genomic fragment has been determined for the plant parasitic nematode Meloidogyne artiellia. It contains an entire rDNA cluster, the bordering intergenic regions and portions of the flanking coding regions. The sequence analysis of the rDNA repeats suggests homogeneity in M. artiellia, thus providing a further indication of the usefulness of these genes for the diagnostic identification of this species. The comparison of the secondary structures of the internal transcribed spacer 2 region in several Meloidogyne species indicates that RNA folding predictions can be used as a tool of potential diagnostic relevance. The other ribosomal gene, 5S rDNA, has been demonstrated to be functional and located near the trans-spliced leader sequences, in the same arrangement found in the distantly related nematode Caenorhabditis elegans but never in other Meloidogyne thus providing species-specific markers for the identification of several Thylenchida parasitic nematodes. PMID:15135452

  4. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-08-24

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon.

  5. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  6. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  7. Two F-18s in Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This 32 second video clip shows two F-18s in NASA's Autonomous Formation Flight (AFF) program. The aircraft use smoke contrails to gather data on wingtip vortices. Flight research attempts to utilize the energy in the vortices for more efficient flight.

  8. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues.

    PubMed

    Bower, Susan M; Carnegie, Ryan B; Goh, Benjamin; Jones, Simon R; Lowe, Geoffrey J; Mak, Michelle W

    2004-01-01

    A "universal non-metazoan" polymerase chain reaction (UNonMet-PCR) that selectively amplifies a segment of nonmetazoan Small Subunit (SSU) rDNA gene was validated. The primers used were: 18S-EUK581-F (5'-GTGCCAGCAGCCGCG-3') and 18S-EUK1134-R (5'-TTTAAGTTTCAGCCTTGCG-3') with specificity provided by the 19-base reverse primer. Its target site is highly conserved across the Archaea, Bacteria, and eukaryotes (including fungi), but not most Metazoa (except Porifera, Ctenophora, and Myxozoa) which have mismatches at bases 14 and 19 resulting in poor or failed amplification. During validation, UNonMet-PCR amplified SSU rDNA gene fragments from all assayed protists (n = 16 from 7 higher taxa, including two species of marine phytoplankton) and Fungi (n = 3) but amplified very poorly or not at all most assayed Metazoa (n = 13 from 8 higher taxa). When a nonmetazoan parasite was present in a metazoan host, the parasite DNA was preferentially amplified. For example, DNA from the parasite Trypanosoma danilewskyi was preferentially amplified in mixtures containing up to 1,000 x more goldfish Carassius auratus (host) DNA. Also, the weak amplification of uninfected host (Chionoecetes tanneri) SSU rDNA did not occur in the presence of a natural infection with a parasite (Hematodinium sp.). Only Hematodinium sp. SSU rDNA was amplified in samples from infected C. tanneri. This UNonMet-PCR is a powerful tool for amplifying SSU rDNA from non-metazoan pathogens or symbionts that have not been isolated from metazoan hosts.

  9. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    PubMed Central

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  10. Satellite DNA derived from 5S rDNA in Physalaemus cuvieri (Anura, Leiuperidae).

    PubMed

    Vittorazzi, S E; Lourenço, L B; Del-Grande, M L; Recco-Pimentel, S M

    2011-01-01

    In the present study, we describe for the first time a family of 190-bp satellite DNA related to 5S rDNA in anurans and the existence of 2 forms of 5S rDNA, type I (201 bp) and type II (690 bp). The sequences were obtained from genomic DNA of Physalaemus cuvieri from Palmeiras, State of Bahia, Brazil. Analysis of the nucleotide sequence revealed that the satellite DNA obtained by digestion with EcoRI, called PcP190EcoRI, is 70% similar to the coding region of type I 5S rDNA and 66% similar to the coding region of type II 5S rDNA. Membrane hybridization and PCR amplification of the sequence showed that PcP190EcoRI is tandemly repeated. The satellite DNA as well as type I and type II 5S rDNA were localized in P. cuvieri chromosomes by fluorescent in situ hybridization. The PcP190EcoRI sequence was found in the centromeres of chromosomes 1-5 and in the pericentromeric region of chromosome 3. Type I 5S rDNA was detected in chromosome 3, coincident with the site of PcP190EcoRI. Type II 5S rDNA was located interstitially in the long arm of chromosome 5. None of these sequences co-localized with nucleolar organizer regions. Our data suggests that this satellite DNA originates from the 5S ribosomal multigene family, probably by gene duplication, nucleotide divergence and sequence dispersion in the genome.

  11. Physical mapping of 5S rDNA in two species of Knifefishes: Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes).

    PubMed

    da Silva, M; Matoso, D A; Vicari, M R; de Almeida, M C; Margarido, V P; Artoni, R F

    2011-01-01

    Physical mapping of 5S rDNA in 2 species of knifefishes, Gymnotuspantanal and G. paraguensis (Gymnotiformes), was performed using fluorescence in situ hybridization with a 5S rDNA probe. The 5S rDNA PCR product from the genomes of both species was also sequenced and aligned to determine non-transcribed spacer sequences (NTS). Both species under study had different patterns of 5S rDNA gene cluster distribution. While in the karyotype of G. pantanal two 5S rDNA-bearing pairs were observed, the karyotype of G. paraguensis possessed as many as 19 such pairs. Such multiplication of 5S rDNA gene clusters might be caused by the involvement of transposable elements because the NTS of G. paraguensis was 400 bp long with high identity (90%) with a mobile transposable element called Tc1-like transposon, described from the cyprinid fish Labeo rohita.

  12. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit. PMID:27106499

  13. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.

  14. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae

    PubMed Central

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-01-01

    Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  15. JENUFA GEN. NOV.: A NEW GENUS OF COCCOID GREEN ALGAE (CHLOROPHYCEAE, INCERTAE SEDIS) PREVIOUSLY RECORDED BY ENVIRONMENTAL SEQUENCING(1).

    PubMed

    Němcová, Yvonne; Eliáš, Marek; Škaloud, Pavel; Hodač, Ladislav; Neustupa, Jiří

    2011-08-01

    The diversity of eukaryotic microorganisms is far from fully described, as indicated by the vast number of unassigned genotypes retrieved by environmental sequencing or metagenomics. We isolated several strains of unicellular green algae from algal biofilms growing on tree bark in a Southeast Asian tropical rainforest and determined them to be relatives of an unidentified lineage of environmental 18S rDNA sequences, thus uncovering its cellular identity. Light, confocal, and electron microscope observations and sequencing the 18S rRNA gene revealed that the strains represent two different species within an apparently new genus, described here as Jenufa gen. nov. Both species formed minute coccoid cells with an irregular globular outline, a smooth cell wall, and a single parietal chloroplast without a pyrenoid. The two species, described herein as J. perforata and J. minuta, differed in chloroplast morphology and cell wall structure. Phylogenetic analyses of 18S rRNA gene sequences showed a firm relationship between the two species and placed the Jenufa lineage in an unresolved position within the CS clade (Chlamydomonadales + Sphaeropleales) of the class Chlorophyceae, although possible affinities to the genus Golenkinia were suggested both by maximum-likelihood (ML) and Bayesian methods. Furthermore, two almost identical environmental 18S rDNA sequences from an endolithic microbial community occurring in dolomite rock in the central Alps turned out to be specifically related to, yet apparently distinct from, the sequence of J. minuta, indicating the existence of an undescribed Jenufa species occurring in the temperate zone. PMID:27020027

  16. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers.

    PubMed

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies.

  17. Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers

    PubMed Central

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M.; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies. PMID:24516555

  18. Complementarity between the mRNA 5' untranslated region and 18S ribosomal RNA can inhibit translation.

    PubMed

    Verrier, S B; Jean-Jean, O

    2000-04-01

    In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.

  19. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera.

    PubMed

    Campo, Daniel; García-Vázquez, Eva

    2012-01-01

    The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).

  20. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex

    PubMed Central

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  1. Characterization of Sarcocystis fusiformis based on sequencing and PCR-RFLP in water buffalo (Bubalus bubalis) in Iran.

    PubMed

    Oryan, Ahmad; Sharifiyazdi, Hassan; Khordadmehr, Monire; Larki, Sara

    2011-12-01

    Four Sarcocystis species, i.e., Sarcocystis fusiformis and Sarcocystis buffalonis with cats as definitive hosts, Sarcocystis levinei with dogs as definitive host, and Sarcocystis dubeyi with unknown definitive host, have previously been described from water buffalo (Bubalus bubalis). The aim of the present study was genetic characterization of the causative agent(s) of water buffalo sarcocystosis in Khuzestan Province, western Iran. RFLP-PCR and partial sequence analysis of 18S rDNA gene were used for the genetic characterization of the specimens directly obtained from water buffalo. In RFLP-PCR, four restriction enzymes (Dra1, Ssp1, Fok1 and Bsl1) were used for species discrimination of Sarcocystis spp. in this host. Comparison of the molecular sequencing results and RFLP-PCR pattern of the samples obtained in the present study with those previously reported for different Sarcocystis spp. revealed that all positive Sarcocystis samples represented S. fusiformis. To our knowledge, this is the first demonstration of the existence of S. fusiformis in the Iranian water buffalo population by a genetic approach. In addition, comparison between the alignments between the Iranian 18S rDNA sequences (HQ703791), made in this study, and those previously reported for S. fusiformis in different geographical location (accession nos. AF176927, AF176926, and U03071) showed the occurrence of local genetic polymorphisms and heterogeneity in this ribosomal locus. Despite the occurrence of some genetic variations in the hypervariable regions of the 18S rDNA in S. fusiformis, Dra I restriction site was conserved among all sequences available. According to the present study, it seems that cats have a more significant epidemiological role than dogs in transmission of sarcocystosis agent to water buffalo in Iran.

  2. Characterization of the rDNA unit and sequence analysis of the small subunit rRNA and 5.8S rRNA genes from Tritrichomonas foetus.

    PubMed

    Chakrabarti, D; Dame, J B; Gutell, R R; Yowell, C A

    1992-05-01

    The ribosomal RNA gene unit of the protozoan parasite Tritrichomonas foetus has been cloned and analyzed. Southern blot analysis of the genomic DNA showed that the ribosomal RNA gene unit is organized as a tandem head to tail repeat with a unit length of 6 kb. By Northern analysis a primary transcript of 5.8 kb was detected. Copy number analysis showed the presence of 12 copies of the ribosomal RNA gene unit. The lengths of the small subunit ribosomal RNA and 5.8S ribosomal RNA are 1571 bp and 159 bp, respectively, as determined by sequence analysis. The T. foetus small subunit ribosomal RNA sequence is one of the shortest eukaryotic small subunit rRNA sequences, similar in length to those from 2 other amitochondrial protists. Although shorter than the majority of the eukaryotic small subunit ribosomal RNAs, this sequence maintains the primary and secondary structure common to all eukaryotic small subunit ribosomal RNA structures, while truncating sequences found within the eukaryotic variable regions. The length of the large subunit ribosomal RNA was measured at 2.5 kb.

  3. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    PubMed

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment. PMID:22556029

  4. Utility of internally transcribed spacer region of rDNA (ITS) and β-tubulin gene sequences to infer genetic diversity and migration patterns of Colletotrichum truncatum infecting Capsicum spp.

    PubMed

    Rampersad, Kandyce; Ramdial, Hema; Rampersad, Sephra N

    2016-01-01

    Anthracnose is among the most economically important diseases affecting pepper (Capsicum spp.) production in the tropics and subtropics. Of the three species of Colletotrichum implicated as causal agents of pepper anthracnose, C. truncatum is considered to be the most destructive in agro-ecosystems worldwide. However, the genetic variation and the migration potential of C. truncatum infecting pepper are not known. Five populations were selected for study and a two-locus (internally transcribed spacer region, ITS1-5.8S-ITS2, and β-tubulin, β-TUB) sequence data set was generated and used in the analyses. Sequences of the ITS region were less informative than β -tubulin gene sequences based on comparisons of DNA polymorphism indices. Trinidad had the highest genetic diversity and also had the largest effective population size in pairwise comparisons with the other populations. The Trinidad population also demonstrated significant genetic differentiation from the other populations. AMOVA and STRUCTURE analyses both suggested significant genetic variation within populations more so than among populations. A consensus Maximum Likelihood tree based on β-TUB gene sequences revealed very little intraspecific diversity for all isolates except for Trinidad. Two clades consisting solely of Trinidad isolates may have diverged earlier than the other isolates. There was also evidence of directional migration among the five populations. These findings may have a direct impact on the development of integrated disease management strategies to control C. truncatum infection in pepper. PMID:26843942

  5. Sequence arrangement of the rRNA genes of the dipteran Sarcophaga bullata.

    PubMed

    French, C K; Fouts, D L; Manning, J E

    1981-06-11

    Velocity sedimentation studies of RNA of Sarcophaga bullata show that the major rRNA species have sedimentation values of 26S and 18S. Analysis of the rRNA under denaturing conditions indicates that there is a hidden break centrally located in the 26S rRNA species. Saturation hybridization studies using total genomic DNA and rRNA show that 0.08% of the nuclear DNA is occupied by rRNA coding sequences and that the average repetition frequency of these coding sequences is approximately 144. The arrangement of the rRNA genes and their spacer sequences on long strands of purified rDNA was determined by the examination of the structure of rRNa:DNA hybrids in the electron microscope. Long DNA strands contain several gene sets (18S + 26S) with one repeat unit containing the following sequences in order given: (a) An 18S gene of length 2.12 kb, (b) an internal transcribed spacer of length 2.01 kb, which contains a short sequence that may code for a 5.8S rRNA, (c) A 26S gene of length 4.06 kb which, in 20% of the cases, contains an intron with an average length of 5.62 kb, and (d) an external spacer of average length of 9.23 kb.

  6. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  7. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice.

    PubMed

    Allen, Julie M; Burleigh, J Gordon; Light, Jessica E; Reed, David L

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  8. Gene cloning of the 18S rRNA of an ancient viable moss from the permafrost of northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Marsic, Damien; Hoover, Richard B.; Gilichinsky, David A.; Ng, Joseph D.

    1999-12-01

    A moss plant dating as much as 40,000 years old was collected from the permafrost of the Kolyma Lowlands of Northeastern Siberia. The plant tissue was revived and cultured for the extraction of its genomic DNA. Using the polymerase chain reaction technique, the 18S ribosomal RNA gene was cloned and its sequence studied. Comparative sequence analysis of the cloned ribosomal DNA to other known 18S RNA showed very high sequence identity and was revealed to be closest to the moss specie, Aulacomnium turgidum. The results of this study also show the ability of biological organisms to rest dormant in deep frozen environments where they can be revived and cultured under favorable conditions. This is significant in the notion that celestial icy bodies can be media to preserve biological function and genetic material during long term storage or transport.

  9. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded. PMID:10603259

  10. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded.

  11. Phylogenetics and systematics of Angiostrongylus lungworms and related taxa (Nematoda: Metastrongyloidea) inferred from the nuclear small subunit (SSU) ribosomal DNA sequences.

    PubMed

    Eamsobhana, P; Lim, P E; Yong, H S

    2015-05-01

    The Angiostrongylus lungworms are of public health and veterinary concern in many countries. At the family level, the Angiostrongylus lungworms have been included in the family Angiostrongylidae or the family Metastrongylidae. The present study was undertaken to determine the usefulness and suitability of the nuclear 18S (small subunit, SSU) rDNA sequences for differentiating various taxa of the genus Angiostrongylus, as well as to determine the systematics and phylogenetic relationship of Angiostrongylus species and other metastrongyloid taxa. This study revealed six 18S (SSU) haplotypes in A. cantonensis, indicating considerable genetic diversity. The uncorrected pairwise 'p' distances among A. cantonensis ranged from 0 to 0.86%. The 18S (SSU) rDNA sequences unequivocally distinguished the five Angiostrongylus species, confirmed the close relationship of A. cantonensis and A. malaysiensis and that of A. costaricensis and A. dujardini, and were consistent with the family status of Angiostrongylidae and Metastrongylidae. In all cases, the congeneric metastrongyloid species clustered together. There was no supporting evidence to include the genus Skrjabingylus as a member of Metastrongylidae. The genera Aelurostrongylus and Didelphostrongylus were not recovered with Angiostrongylus, indicating polyphyly of the Angiostrongylidae. Of the currently recognized families of Metastrongyloidea, only Crenosomatidae appeared to be monophyletic. In view of the unsettled questions regarding the phylogenetic relationships of various taxa of the metastrongyloid worms, further analyses using more markers and more taxa are warranted.

  12. Phylogenetic position of Magnivitellinum Kloss, 1966 and Perezitrema Baruš & Moravec, 1967 (Trematoda: Plagiorchioidea: Macroderoididae) inferred from partial 28S rDNA sequences, with the establishment of Alloglossidiidae n. fam.

    PubMed

    Hernández-Mena, David Iván; Mendoza-Garfias, Berenit; Ornelas-García, Claudia Patricia; Pérez-Ponce de León, Gerardo

    2016-07-01

    The systematic position of two genera of Macroderoididae McMullen, 1937, Perezitrema Baruš & Moravec, 1967 and Magnivitellinum Kloss, 1966 is reviewed based on a phylogenetic analysis of the interrelationships of 15 species of the family allocated into six genera, along with 44 species of plagiorchioid trematodes, using partial sequences of the 28S rRNA gene. Sequences were analysed through parsimony, maximum likelihood and Bayesian inference. The obtained topologies show Perezitrema as the sister taxon of three species of Macroderoides Pearse, 1924; the latter genus appears to be paraphyletic since another three species are not included in this group. Instead, Magnivitellinum was placed as the sister taxon of Alloglossidium Simer, 1929. These relationships are well supported by high bootstrap and posterior probability values. The resulting trees demonstrate that the family Macroderoididae, as currently conceived in taxonomic treatments, is not monophyletic. Magnivitellinum simplex Kloss, 1966 and Alloglossidium spp. were nested as sister taxa of members of the family Leptophallidae Dayal, 1938, whereas Perezitrema bychowskii Baruš & Moravec, 1967 and species of Macroderoides and Paramacroderoides Venard, 1941 were grouped with Auridistomum chelydrae (Stafford, 1900), a monotypic member of Auridistomidae Stunkard, 1924. Based on our results, a new family, Alloglossidiidae n. fam. was established to accommodate the genera Magnivitellinum and Alloglossidium. PMID:27307166

  13. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene.

    PubMed

    Urata, Makoto

    2015-06-01

    Seven nuclear and mitochondrial DNA markers were examined in 12 specimens of Ptychodera flava, a model acorn worm used in molecular biology, collected in Japan from three local populations with different modes of living. A comparison of intraspecific results did not show genetically isolated populations despite the species' enclave habitats and asexual reproduction. Moreover, both the nuclear 18S ribosomal RNA gene and mitochondrial 16S ribosomal RNA gene sequences were identical to those from Moorea in French Polynesia, nearly 10,000 kilometers away from Japan. I also provide the first definitive information regarding polymorphisms in 18S ribosomal RNA gene, the external transcribed spacer (ETS), internal transcribed spacers (ITS), and mitochondrial cytochrome c oxidase subunit 1 (mtCO1) sequence in hemichordates using newly designed primer sets, and I show both high larval vagility and certain criteria for the molecular identification of this species. PMID:26003987

  14. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene.

    PubMed

    Urata, Makoto

    2015-06-01

    Seven nuclear and mitochondrial DNA markers were examined in 12 specimens of Ptychodera flava, a model acorn worm used in molecular biology, collected in Japan from three local populations with different modes of living. A comparison of intraspecific results did not show genetically isolated populations despite the species' enclave habitats and asexual reproduction. Moreover, both the nuclear 18S ribosomal RNA gene and mitochondrial 16S ribosomal RNA gene sequences were identical to those from Moorea in French Polynesia, nearly 10,000 kilometers away from Japan. I also provide the first definitive information regarding polymorphisms in 18S ribosomal RNA gene, the external transcribed spacer (ETS), internal transcribed spacers (ITS), and mitochondrial cytochrome c oxidase subunit 1 (mtCO1) sequence in hemichordates using newly designed primer sets, and I show both high larval vagility and certain criteria for the molecular identification of this species.

  15. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    PubMed

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci.

  16. Shifts in rDNA levels act as a genome buffer promoting chromosome homeostasis.

    PubMed

    Deregowska, Anna; Adamczyk, Jagoda; Kwiatkowska, Aleksandra; Gurgul, Artur; Skoneczny, Marek; Skoneczna, Adrianna; Szmatola, Tomasz; Jasielczuk, Igor; Magda, Michal; Rawska, Ewa; Pabian, Sylwia; Panek, Anita; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2015-01-01

    The nucleolus is considered to be a stress sensor and rDNA-based regulation of cellular senescence and longevity has been proposed. However, the role of rDNA in the maintenance of genome integrity has not been investigated in detail. Using genomically diverse industrial yeasts as a model and array-based comparative genomic hybridization (aCGH), we show that chromosome level may be balanced during passages and as a response to alcohol stress that may be associated with changes in rDNA pools. Generation- and ethanol-mediated changes in genes responsible for protein and DNA/RNA metabolism were revealed using next-generation sequencing. Links between redox homeostasis, DNA stability, and telomere and nucleolus states were also established. These results suggest that yeast genome is dynamic and chromosome homeostasis may be controlled by rDNA. PMID:26566866

  17. Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster.

    PubMed

    Coen, E S; Dover, G A

    1983-07-01

    We have examined the molecular basis of the response of individuals of D. melanogaster to artificial selection for high and low abdominal bristles. By monitoring the fate of particular rDNA spacer length variants associated with individually isolated X and Y chromosomes, we show that flies from the low bristle number selection lines have undergone an unequal exchange between the X and Y rDNA arrays. Such exchanges result in translocations between X and Y chromosomes, visualised as X.Y compound chromosomes at mitosis. Transfer of few copies of a length variant between X and Y indicates a clustering of variants. Flies that have reverted back to wild-type seemingly have undergone a second unequal exchange, giving rise to a compound X.Y chromosome containing Y rDNA of normal amounts. Unequal exchanges between X and Y rDNA arrays could contribute to the observed coevolution of rDNA sequences on these chromosomes. The biological significance of this outcome is discussed.

  18. High diversity of bacterial pathogens and antibiotic resistance in salmonid fish farm pond water as determined by molecular identification employing 16S rDNA PCR, gene sequencing and total antibiotic susceptibility techniques.

    PubMed

    Moore, John E; Huang, Junhua; Yu, Pengbo; Ma, Chaofeng; Moore, Peter Ja; Millar, Beverley C; Goldsmith, Colin E; Xu, Jiru

    2014-10-01

    The aim of this study was to examine the microbiological and related parameters (antibiotic resistance and pathogen identification) of water at two salmonid fish farms in Northern Ireland. Total Bacterial Counts at the Movanagher Fish Farm was 1730 colony forming units (cfu)/ml water (log10 3.24cfu/ml) and 3260cfu/ml (log10 3.51cfu/ml) at the Bushmills Salmon Station. Examination of resulting organisms revealed 10 morphological phenotypes, which were subsequently sequenced to determine their identification. All these organisms were Gram-negative and no Gram-positive organisms were isolated from any water sample. From these phenotypes, eight different genera were identified including Acinetobacter, Aeromonas, Chryseobacterium, Erwinia, Flavobacterium, Pseudomonas and Rheinheimera. One unnamed novel taxon was identified from water at the Movanagher Fish Farm, belonging to the genus Acinetobacter and has been tentatively named Acinetobacter movanagherensis. No other novel taxa were observed. All but one of these environmental organisms (Erwinia) are potential pathogens of fish disease. Total antibiotic resistance was observed to varying degrees in water specimens. The most resistant populations were observed in water taken from the Bushmills Salmon Station inlet, followed by water from the Movanagher Fish Farm. No resistance was observed against tetracycline and there was only one occurrence of resistance against ciprofloxacin. Overall, this study indicates that potential fish pathogens made up the majority of environmental organisms identified, even in the absence of recorded fish disease. There was also relatively high levels of total antibiotic resistance in the bacterial water populations examined, where tetracycline was the only antibiotic with zero resistance. These data indicate that the threat of bacterial disease is relatively close due to the indigenous colonization of farm water and that husbandry standards should be maintained at a high standard to avert

  19. High diversity of bacterial pathogens and antibiotic resistance in salmonid fish farm pond water as determined by molecular identification employing 16S rDNA PCR, gene sequencing and total antibiotic susceptibility techniques.

    PubMed

    Moore, John E; Huang, Junhua; Yu, Pengbo; Ma, Chaofeng; Moore, Peter Ja; Millar, Beverley C; Goldsmith, Colin E; Xu, Jiru

    2014-10-01

    The aim of this study was to examine the microbiological and related parameters (antibiotic resistance and pathogen identification) of water at two salmonid fish farms in Northern Ireland. Total Bacterial Counts at the Movanagher Fish Farm was 1730 colony forming units (cfu)/ml water (log10 3.24cfu/ml) and 3260cfu/ml (log10 3.51cfu/ml) at the Bushmills Salmon Station. Examination of resulting organisms revealed 10 morphological phenotypes, which were subsequently sequenced to determine their identification. All these organisms were Gram-negative and no Gram-positive organisms were isolated from any water sample. From these phenotypes, eight different genera were identified including Acinetobacter, Aeromonas, Chryseobacterium, Erwinia, Flavobacterium, Pseudomonas and Rheinheimera. One unnamed novel taxon was identified from water at the Movanagher Fish Farm, belonging to the genus Acinetobacter and has been tentatively named Acinetobacter movanagherensis. No other novel taxa were observed. All but one of these environmental organisms (Erwinia) are potential pathogens of fish disease. Total antibiotic resistance was observed to varying degrees in water specimens. The most resistant populations were observed in water taken from the Bushmills Salmon Station inlet, followed by water from the Movanagher Fish Farm. No resistance was observed against tetracycline and there was only one occurrence of resistance against ciprofloxacin. Overall, this study indicates that potential fish pathogens made up the majority of environmental organisms identified, even in the absence of recorded fish disease. There was also relatively high levels of total antibiotic resistance in the bacterial water populations examined, where tetracycline was the only antibiotic with zero resistance. These data indicate that the threat of bacterial disease is relatively close due to the indigenous colonization of farm water and that husbandry standards should be maintained at a high standard to avert

  20. Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis.

    PubMed

    Kittelmann, Sandra; Devente, Savannah R; Kirk, Michelle R; Seedorf, Henning; Dehority, Burk A; Janssen, Peter H

    2015-04-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups.

  1. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis

    PubMed Central

    Devente, Savannah R.; Kirk, Michelle R.; Seedorf, Henning; Dehority, Burk A.

    2015-01-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. PMID:25616800

  2. Contrasting patterns of the 5S and 45S rDNA evolutions in the Byblis liniflora complex (Byblidaceae).

    PubMed

    Fukushima, Kenji; Imamura, Kaori; Nagano, Katsuya; Hoshi, Yoshikazu

    2011-03-01

    To clarify the evolutionary dynamics of ribosomal RNA genes (rDNAs) in the Byblis liniflora complex (Byblidaceae), we investigated the 5S and 45S rDNA genes through (1) chromosomal physical mapping by fluorescence in situ hybridization (FISH) and (2) phylogenetic analyses using the nontranscribed spacer of 5S rDNA (5S-NTS) and the internal transcribed spacer of 45S rDNA (ITS). In addition, we performed phylogenetic analyses based on rbcL and trnK intron. The complex was divided into 2 clades: B. aquatica-B. filifolia and B. guehoi-B. liniflora-B. rorida. Although members of the complex had conservative symmetric karyotypes, they were clearly differentiated on chromosomal rDNA distribution patterns. The sequence data indicated that ITS was almost homogeneous in all taxa in which two or four 45S rDNA arrays were frequently found at distal regions of chromosomes in the somatic karyotype. ITS homogenization could have been prompted by relatively distal 45S rDNA positions. In contrast, 2-12 5S rDNA arrays were mapped onto proximal/interstitial regions of chromosomes, and some paralogous 5S-NTS were found in the genomes harboring 4 or more arrays. 5S-NTS sequence type-specific FISH analysis showed sequence heterogeneity within and between some 5S rDNA arrays. Interlocus homogenization may have been hampered by their proximal location on chromosomes. Chromosomal location may have affected the contrasting evolutionary dynamics of rDNAs in the B. liniflora complex.

  3. Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis.

    PubMed

    Pandya, P R; Singh, K M; Parnerkar, S; Tripathi, A K; Mehta, H H; Rank, D N; Kothari, R K; Joshi, C G

    2010-01-01

    Bacterial communities in buffalo rumen were characterized using a culture-independent approach for a pooled sample of rumen fluid from 3 adult Surti buffaloes. Buffalo rumen is likely to include species of various bacterial phyla, so 16S rDNA sequences were amplified and cloned from the sample. A total of 191 clones were sequenced and similarities to known 16S rDNA sequences were examined. About 62.82% sequences (120 clones) had >90% similarity to the 16S rDNA database sequences. Furthermore, about 34.03% of the sequences (65 clones) were 85-89% similar to 16S rDNA database sequences. For the remaining 3.14%; the similarity was lower than 85% Phylogenetic analyses were also used to infer the makeup of bacterial communities in the rumen of Surti buffalo. As a result, we distinguished 42 operational taxonomic units (OTUs) based on unique 16S r DNA sequences: 19 OTUs affiliated to an unidentified group (45.23% of total OTUs), 11 OTUs of the phylum Firmicutes, also known as the low G+C group (26.19%), 7 OTUs of the Cytophaga-Flexibacter-Bacteroides phylum (16.66%), 4 OTUs of Spirochaetes (9.52%), and 1 OTU of Actinobacteria (2.38%). These include 10 single-clone OTUs, so Good's coverage (94.76%) of 16S rRNA libraries indicated that sequences identified in the libraries represent the majority of bacterial diversity present in rumen. PMID:20720314

  4. Analysis of Mammalian rDNA Internal Transcribed Spacers

    PubMed Central

    Coleman, Annette W.

    2013-01-01

    Nuclear rDNA Internal Transcribed Spacers, ITS1 and ITS2, are widely used for eukaryote phylogenetic studies from the ordinal level to the species level, and there is even a database for ITS2 sequences. However, ITS regions have been ignored in mammalian phylogenetic studies, and only a few rodent and ape sequences are represented in GenBank. The reasons for this dearth, and the remedies, are described here. We have recovered these sequences, mostly >1 kb in length, for 36 mammalian species. Sequence alignment and transcript folding comparisons reveal the rRNA transcript secondary structure. Mammalian ITS regions, though quite long, still fold into the recognizable secondary structure of other eukaryotes. The ITS2 in particular bears the four standard helix loops, and loops II and III have the hallmark characters universal to eukaryotes. Both sequence and insertions/deletions of transcript secondary structure helices observed here support the four superorder taxonomy of Placentalia. On the family level, major unique indels, neatly excising entire helices, will be useful when additional species are represented, resulting in significant further understanding of the details of mammalian evolutionary history. Furthermore, the identification of a highly conserved element of ITS1 common to warm-blooded vertebrates may aid in deciphering the complex mechanism of RNA transcript processing. This is the last major group of terrestrial vertebrates for which rRNA ITS secondary structure has been resolved. PMID:24260162

  5. 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta.

    PubMed

    Mackey, L Y; Winnepenninckx, B; De Wachter, R; Backeljau, T; Emschermann, P; Garey, J R

    1996-05-01

    The Ento- and Ectoprocta are sometimes placed together in the Bryozoa, which have variously been regarded as proto- or deuterostomes. However, Entoprocta have also been allied to the pseudocoelomates, while Ectoprocta are often united with the Brachiopoda and Phoronida in the (super)phylum Lophophorata. Hence, the phylogenetic relationships of these taxa are still much debated. We determined complete 18S rRNA sequences of two entoprocts, an ectoproct, an inarticulate brachiopod, a phoronid, two annelids, and a platyhelminth. Phylogenetic analyses of these data show that (1) entoprocts and lophophorates have spiralian, protostomous affinities, (2) Ento- and Ectoprocta are not sister taxa, (3) phoronids and brachiopods form a monophyletic clade, and (4) neither Ectoprocta or Annelida appear to be monophyletic. Both deuterostomous and pseudocoelomate features may have arisen at least two times in evolutionary history. These results advocate a Spiralia-Radialia-based classification rather than one based on the Protostomia-Deuterostomia concept.

  6. Differential identification of Entamoeba spp. based on the analysis of 18S rRNA.

    PubMed

    Santos, Helena Lúcia Carneiro; Bandea, Rebecca; Martins, Luci Ana Fernandes; de Macedo, Heloisa Werneck; Peralta, Regina Helena Saramago; Peralta, Jose Mauro; Ndubuisi, Mackevin I; da Silva, Alexandre J

    2010-03-01

    Entamoeba histolytica is known to cause intestinal and extra-intestinal disease while the other Entamoeba species are not considered to be pathogenic. However, all Entamoeba spp. should be reported when identified in clinical samples. Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanii can be differentiated morphologically from E. histolytica, but some of their diagnostic morphologic features overlap. E. histolytica, Entamoeba dispar, and Entamoeba moshkovskii are morphologically identical but can be differentiated using molecular tools. We developed a polymerase chain reaction (PCR) procedure followed by DNA sequencing of specific regions of 18S rRNA gene to differentiate the Entamoeba spp. commonly found in human stools. This approach was used to analyze 45 samples from cases evaluated for the presence of Entamoeba spp. by microscopy and a real-time PCR method capable of differential detection of E. histolytica and E. dispar. Our results demonstrated an agreement of approximately 98% (45/44) between the real-time PCR for E. histolytica and E. dispar and the 18S rRNA analysis described here. Five previously negative samples by microscopy revealed the presence of E. dispar, E. hartmanii, or E. coli DNA. In addition, we were able to detect E. hartmanii in a stool sample that had been previously reported as negative for Entamoeba spp. by microscopy. Further microscopic evaluation of this sample revealed the presence of E. hartmanii cysts, which went undetected during the first microscopic evaluation. This PCR followed by DNA sequencing will be useful to refine the diagnostic detection of Entamoeba spp. in stool and other clinical specimens.

  7. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection

    PubMed Central

    2011-01-01

    Background The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. Results The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. Conclusions These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection. PMID:22004418

  8. Chromosomal mapping of repetitive DNAs in Gobionellus oceanicus and G. stomatus (Gobiidae; Perciformes): A shared XX/XY system and an unusual distribution of 5S rDNA sites on the Y chromosome.

    PubMed

    Lima-Filho, Paulo A; Amorim, Karlla D J; Cioffi, Marcelo B; Bertollo, Luiz A C; Molina, Wagner F

    2014-01-01

    With nearly 2,000 species, Gobiidae is the most specious family of the vertebrates. This high level of speciation is accompanied by conspicuous karyotypic modifications, where the role of repetitive sequences remains largely unknown. This study analyzed the karyotype of 2 species of the genus Gobionellus and mapped 18S and 5S ribosomal RNA genes and (CA)15 microsatellite sequences onto their chromosomes. G. oceanicus (2n = 56; ♂ 12 metacentrics (m) + 4 submetacentrics (sm) + 1 subtelocentric (st) + 39 acrocentrics (a); ♀ 12m + 4sm + 2st + 38a) and G. stomatus (2n = 56; ♂ 20m + 14sm + 1st + 21a; ♀ 20m + 14sm + 2st + 20a) possess the highest diploid chromosome number among the Gobiidae and have different karyotypes. Both species share an XX/XY sex chromosome system with a large subtelocentric X and a small acrocentric Y chromosome which is rich in (CA)15 sequences and bears 5S rRNA sites. Although coding and noncoding repetitive DNA sequences may be involved in the genesis or differentiation of the sex chromosomes, the exclusive presence of 5S rDNA sites on the Y, but not on the X chromosome of both species, represents a novelty in fishes. In summary, the karyotypic differences, as well as new data on the sex chromosome systems in these 2 Gobiidae species, confirm the high chromosomal dynamism observed in this family.

  9. First description of heterogeneity in 18S rRNA genes in the haploid genome of Cryptosporidium andersoni Kawatabi type.

    PubMed

    Ikarashi, Makoto; Fukuda, Yasuhiro; Honma, Hajime; Kasai, Kenji; Kaneta, Yoshiyasu; Nakai, Yutaka

    2013-09-01

    The Apicomplexan Cryptosporidium andersoni, is a species of gastric Cryptosporidium, is frequently detected in older calves and adult cattle. Genotyping analyses based on 18S ribosomal RNA gene sequences have been performed on a novel C. andersoni genotype, namely the Kawatabi type, and the oocysts were classified into two distinct groups genotypically: Type A (the sequence in GenBank) and Type B (with a thymine nucleotide insertion not in Type A). This study analyzed 3775 cattle at a slaughterhouse and 310 cattle at a farm using microscopy and found 175 Cryptosporidium-positive animals: 171 from the slaughterhouse and four from the farm, and all infecting parasites were determined to be C. andersoni from 18S rRNA gene sequences determined from fecal DNA. In genotyping analyses with single isolated oocysts, about a half of analyzed ones were clearly classified into well known two genotypes (Type A and B). In addition to these two known genotypes, we have detected some oocysts showing mixed signals of Types A and B in the electropherogram from the automated sequencer (the Type C genotype). To determine the genotypic composition of sporozoites carried by the Type C oocysts, we analyzed their 18S rRNA gene sequences using a single sporozoite isolation procedure. Some sporozoites were classified as either Type A or Type B. However, more than half of the analyzed isolated sporozoites showed a mixed signal identical to that of Type C oocysts, and both the Type A and B signals were surely detectable from such sporozoites after a cloning procedure. In conclusion, C. andersoni carries two different genotypes heterogeneously in its haploid genome.

  10. Methanogen diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Parnerkar, S; Rank, D N; Kothari, R K; Joshi, C G

    2012-06-01

    The methanogenic communities in buffalo rumen were characterized using a culture-independent approach of a pooled sample of rumen fluid from three adult Surti buffaloes. Buffalo rumen is likely to include species of various methanogens, so 16S rDNA sequences were amplified and cloned from the sample. A total of 171 clones were sequenced to examine 16S rDNA sequence similarity. About 52.63% sequences (90 clones) had ≥ 90% similarity, whereas, 46.78% of the sequences (81 clones) were 75-89% similar to 16S rDNA database sequences, respectively. Phylogenetic analyses were also used to infer the makeup of methanogenic communities in the rumen of Surti buffalo. As a result, we distinguished 23 operational taxonomic units (OTUs) based on unique 16S rDNA sequences: 12 OTUs (52.17%) affiliated to Methanomicrobiales order, 10 OTUs (43.47%) of the order Methanobacteriales and one OTU (4.34%) of Methanosarcina barkeri like clone, respectively. In addition, the population of Methanomicrobiales and Methabacteriales orders were also observed, accounting 4% and 2.17% of total archea. This study has revealed the largest assortment of hydrogenotrophic methanogens phylotypes ever identified from rumen of Surti buffaloes. PMID:21507441

  11. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.

    PubMed

    Klindworth, Anna; Pruesse, Elmar; Schweer, Timmy; Peplies, Jörg; Quast, Christian; Horn, Matthias; Glöckner, Frank Oliver

    2013-01-01

    16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.

  12. A new set of primers directed to 18S rRNA gene for molecular identification of Cryptosporidium spp. and their performance in the detection and differentiation of oocysts shed by synanthropic rodents.

    PubMed

    Silva, Sheila O S; Richtzenhain, Leonardo J; Barros, Iracema N; Gomes, Alessandra M M C; Silva, Aristeu V; Kozerski, Noemila D; de Araújo Ceranto, Jaqueline B; Keid, Lara B; Soares, Rodrigo M

    2013-11-01

    Cryptosporidium spp. are cosmopolitan protozoa that infect fishes, reptiles, amphibians, birds and mammals. More than 20 species are recognized within this genus. Rodents are a group of abundant and ubiquitous organisms that have been considered reservoirs of Cryptosporidium for humans and livestock. The aim of this study was to design specific primers for the gene encoding 18S rRNA, potentially capable of amplifying any species or genotype of Cryptosporidium spp. and evaluate the diagnostic attributes of the nested-PCR based on such probes. The primers were designed to amplify the shortest segment as possible to maximize the sensitivity of the test, but preserving the discriminatory potential of the amplified sequences for phylogenetic inferences. The nested-PCR standardized in this study (nPCR-SH) was compared in terms of sensitivity with another similar assay (nPCR-XIAO) that has been largely used for the detection and identification of Cryptosporidium spp. worldwide. We also aimed to molecularly characterize samples of Cryptosporidum spp. isolated from synanthropic rodents using these probes. Forty-five rodents were captured in urban areas of the municipality of Umuarama, Paraná State, Brazil. Fecal samples were submitted to three molecular tests (nested-PCRs), two of them targeted to the 18S rDNA gene (nPCR-SH and nPCR-XIAO) and the third targeted to the gene encoding actin (nPCR-actin). The nPCR-SH was tested positive on samples of Cryptosporidum parvum, Cryptosporidum andersoni, Cryptosporidum meleagridis, Cryptosporidum hominis, Cryptosporidum canis, and Cryptosporidum serpentis. Sixteen samples of rodents were positive by nPCR-SH, six by nPCR-XIAO and five by nPCR-actin. Sequencing of amplified fragments allowed the identification of Cryptosporidum muris in three samples of Rattus rattus, and two genotypes of Cryptosporidium, the genotypes mouse II and III. Cryptosporidium genotype mouse II was found in one sample of Mus musculus and genotype mouse III

  13. Basic cytogenetics and physical mapping of 5S and 18S ribosomal genes in Hoplias malabaricus (Osteichthyes, Characiformes, Erythrinidae) from isolated natural lagoons: a conserved karyomorph along the Iguaçu river basin.

    PubMed

    Gemi, Gisele; Lui, Roberto Laridondo; Treco, Fernando Rodrigo; Paiz, Leonardo Marcel; Moresco, Rafaela Maria; Margarido, Vladimir Pavan

    2014-01-01

    Erythrinidae include Neotropical teleost fish that are widely distributed in South America. Hoplias Gill, 1903 include two large groups: H. malabaricus Bloch, 1794 and H. lacerdae Miranda Ribeiro, 1908. Hoplias malabaricus is characterized by remarkable karyotype diversity, with some karyomorphs widely distributed geographically while others are more restricted to certain river basins. Cytogenetic analyzes were performed in a population of Hoplias malabaricus from the Wildlife Refuge of Campos de Palmas, the Iguaçu River basin. The specimens showed diploid number of 42 chromosomes (24m+18sm) without differentiated sex chromosomes system. The impregnation by silver nitrate showed multiple AgNORs. Seven pairs (4, 7, 10, 13, 16, 20 and 21) carrying 18S rDNA were detected by FISH. Heterochromatin was verified in the centromeric and pericentromeric region of most chromosomes and the terminal region of some pairs. FISH with 5S rDNA probes showed two chromosome pairs carrying these sites in the interstitial region (8 and 14). The data obtained in this study are similar to those found for two other populations of H. malabaricus already studied in the basin of the Iguaçu River, confirming the hypothesis that this species is natural, not having been introduced, as well as having an intrinsic characteristic, such as the largest number of sites of 18S rDNA.

  14. [Fragment of mRNA coding part that is complementary to region 1638-1650 of wheat 18S rRNA functions as a translational enhancer].

    PubMed

    Zhigaĭlov, A V; Babaĭlova, E S; Polimbetova, N S; Graĭfer, D M; Karpova, G G; Iskakov, B K

    2012-01-01

    Possible involvement of 18S rRNA fragment 1638-1650 including basements of the helices h44 and h28 and nucleotides of the ribosomal decoding site in the cap-independent translation initiation on plant ribosomes is studied. This rRNA fragment is shown to be accessible for complementary interactions within the 40S ribosomal subunit. It is found that the sequence complementary to the 18S rRNA fragment 1638-1650 is able to enhance efficiency of a reporter mRNA translation when placed just after the initiation codon. The results obtained indicate that in the course of the cap-independent translation initiation, complementary interactions can occur between mRNA coding sequence and 18S rRNA fragment in the region of the ribosomal decoding site.

  15. Evolutionary Dynamics of rDNA Clusters in Chromosomes of Five Clam Species Belonging to the Family Veneridae (Mollusca, Bivalvia)

    PubMed Central

    Pérez-García, Concepción; Hurtado, Ninoska S.; Morán, Paloma; Pasantes, Juan J.

    2014-01-01

    The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae. PMID:24967400

  16. Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation

    PubMed Central

    Zhou, Hong; Wang, Yapei; Lv, Qiongying; Zhang, Juan; Wang, Qing; Gao, Fei; Hou, Haoli; Zhang, Hao; Zhang, Wei; Li, Lijia

    2016-01-01

    The ribosomal RNA (rRNA) gene encodes rRNA for protein synthesis. Aberrant expression of the rRNA gene has been generally observed in tumor cells and levels of its promoter methylation as an epigenetic regulator affect rRNA gene transcription. The possible relationship between expression and promoter methylation of rDNA has not been examined in human clinical cervical cancer. Here we investigate rRNA gene expression by quantitative real time PCR, and promoter methylation levels by HpaII/MspI digestion and sodium bisulfite sequencing in the development of human cervical cancer. We find that indeed rRNA levels are elevated in most of cervical intraepithelial neoplasia (CIN) specimens as compared with non-cancer tissues. The rDNA promoter region in cervical intraepithelial neoplasia (CIN) tissues reveals significant hypomethylation at cytosines in the context of CpG dinucleotides, accompanied with rDNA chromatin decondensation. Furthermore treatment of HeLa cells with the methylation inhibitor drug 5-aza-2’-deoxycytidine (DAC) demonstrates the negative correlation between the expression of 45S rDNA and the methylation level in the rDNA promoter region. These data suggest that a decrease in rDNA promoter methylation levels can result in an increase of rRNA synthesis in the development of human cervical cancer. PMID:27695092

  17. Direct identification of slowly growing Mycobacterium species by analysis of the intergenic 16S-23S rDNA spacer region (ISR) using a GelCompar II database containing sequence based optimization for restriction fragment site polymorphisms (RFLPs) for 12 enzymes.

    PubMed

    Gürtler, Volker; Harford, Cate; Bywater, Judy; Mayall, Barrie C

    2006-02-01

    To obtain Mycobacterium species identification directly from clinical specimens and cultures, the 16S-23S rDNA spacer (ISR) was amplified using previously published primers that detect all Mycobacterium species. The restriction enzyme that could potentially produce the most restriction fragment length polymorphisms (RFLPs) was determined from all available ISR DNA sequences in GenBank to produce a novel data set of RFLPs for 31 slowly growing Mycobacterium species. Subsequently a GelCompar II database was constructed from RFLPs for 10 enzymes that have been used in the literature to differentiate slowly growing Mycobacterium species. The combination of Sau96I and HaeIII were the best choice of enzymes for differentiating clinically relevant slowly growing Mycobacterium species. A total of 392 specimens were studied by PCR with 195 negative and 197 positive specimens. The ISR-PCR product was digested with HaeIII (previously reported) and Sau96I (new to this study) to obtain a Mycobacterium species identification based on the ISR-RFLPs. The species identification obtained by ISR-RFLP was confirmed by DNA sequencing (isolate numbers are shown in parentheses) for M. avium (3), M. intracellulare (4), M. avium complex (1), M. gordonae (2) and M. tuberculosis (1). The total number of specimens (99) identified were from culture (67), Bactectrade mark 12B culture bottles (11), EDTA blood (3), directly from smear positive specimens (13), tissue (4) and urine (1). Direct species identification was obtained from all 13/13 smear positive specimens. The total number of specimens (99) were identified as M. tuberculosis (41), M. avium (7), M. avium complex (11), M. intracellulare MIN-A (20), M. flavescens (2), M. fortuitum (10), M. gordonae (4), M. shimoidei (1), M. ulcerans (1) and M. chelonae (2). This method reduces the time taken for Mycobacterium species identification from 8-10 weeks for culture and biochemical identification; to 4-6 weeks for culture and ISR-RFLP; to 2 days

  18. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data.

    PubMed

    Agrawal, Saumya; Ganley, Austen R D

    2016-01-01

    The ribosomal RNA genes (rDNA) encode the major rRNA species of the ribosome, and thus are essential across life. These genes are highly repetitive in most eukaryotes, forming blocks of tandem repeats that form the core of nucleoli. The primary role of the rDNA in encoding rRNA has been long understood, but more recently the rDNA has been implicated in a number of other important biological phenomena, including genome stability, cell cycle, and epigenetic silencing. Noncoding elements, primarily located in the intergenic spacer region, appear to mediate many of these phenomena. Although sequence information is available for the genomes of many organisms, in almost all cases rDNA repeat sequences are lacking, primarily due to problems in assembling these intriguing regions during whole genome assemblies. Here, we present a method to obtain complete rDNA repeat unit sequences from whole genome assemblies. Limitations of next generation sequencing (NGS) data make them unsuitable for assembling complete rDNA unit sequences; therefore, the method we present relies on the use of Sanger whole genome sequence data. Our method makes use of the Arachne assembler, which can assemble highly repetitive regions such as the rDNA in a memory-efficient way. We provide a detailed step-by-step protocol for generating rDNA sequences from whole genome Sanger sequence data using Arachne, for refining complete rDNA unit sequences, and for validating the sequences obtained. In principle, our method will work for any species where the rDNA is organized into tandem repeats. This will help researchers working on species without a complete rDNA sequence, those working on evolutionary aspects of the rDNA, and those interested in conducting phylogenetic footprinting studies with the rDNA. PMID:27576718

  19. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin

    PubMed Central

    2011-01-01

    Background Scarabaeinae beetles show a high level of macro-chromosomal variability, although the karyotypic organization of heterochromatin and multigene families (rDNAs and histone genes) is poorly understood in this group. To better understand the chromosomal organization and evolution in this group, we analyzed the karyotypes, heterochromatin distribution and chromosomal locations of the rRNAs and histone H3 genes in beetles belonging to eight tribes from the Scarabaeinae subfamily (Coleoptera, Scarabaeidae). Results The number of 18S rRNA gene (a member of the 45S rDNA unit) sites varied from one to 16 and were located on the autosomes, sex chromosomes or both, although two clusters were most common. Comparison of the 45S rDNA cluster number and the diploid numbers revealed a low correlation value. However, a comparison between the number of 45S rDNA sites per genome and the quantity of heterochromatin revealed (i) species presenting heterochromatin restricted to the centromeric/pericentromeric region that contained few rDNA sites and (ii) species with a high quantity of heterochromatin and a higher number of rDNA sites. In contrast to the high variability for heterochromatin and 45S rDNA cluster, the presence of two clusters (one bivalent cluster) co-located on autosomal chromosomes with the 5S rRNA and histone H3 genes was highly conserved. Conclusions Our results indicate that the variability of the 45S rDNA chromosomal clusters is not associated with macro-chromosomal rearrangements but are instead related to the spread of heterochromatin. The data obtained also indicate that both heterochromatin and the 45S rDNA loci could be constrained by similar evolutionary forces regulating spreading in the distinct Scarabaeinae subfamily lineages. For the 5S rRNA and the histone H3 genes, a similar chromosomal organization could be attributed to their association/co-localization in the Scarabaeinae karyotypes. These data provide evidence that different evolutionary

  20. Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and beta-tubulin.

    PubMed

    Leander, Brian S; Clopton, Richard E; Keeling, Patrick J

    2003-01-01

    Gregarines are thought to be deep-branching apicomplexans. Accordingly, a robust inference of gregarine phylogeny is crucial to any interpretation of apicomplexan evolution, but molecular sequences from gregarines are restricted to a small number of small-subunit (SSU) rDNA sequences from derived taxa. This work examines the usefulness of SSU rDNA and beta-tubulin sequences for inferring gregarine phylogeny. SSU rRNA genes from Lecudina (Mingazzini) sp., Monocystis agilis Stein, Leidyana migrator Clopton and Gregarina polymorpha Dufour, as well as the beta-tubulin gene from Leidyana migrator, were sequenced. The results of phylogenetic analyses of alveolate taxa using both genes were consistent with an early origin of gregarines and the putative 'sister' relationship between gregarines and Cryptosporidium, but neither phylogeny was strongly supported. In addition, two SSU rDNA sequences from unidentified marine eukaryotes were found to branch among the gregarines: one was a sequence derived from the haemolymph parasite of the giant clam, Tridacna crocea, and the other was a sequence misattributed to the foraminiferan Ammonium beccarii. In all of our analyses, the SSU rDNA sequence from Colpodella sp. clustered weakly with the apicomplexans, which is consistent with ultrastructural data. Altogether, the exact position of gregarines with respect to Cryptosporidium and other apicomplexans remains to be confirmed, but the congruence of SSU rDNA and beta-tubulin trees with one another and with morphological data does suggest that further sampling of molecular data will eventually put gregarine diversity into a phylogenetic context.

  1. Nucleolar association and transcriptional inhibition through 5S rDNA in mammals.

    PubMed

    Fedoriw, Andrew M; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2012-01-01

    Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals.

  2. Evolutionary pattern of rDNA following polyploidy in Leymus (Triticeae: Poaceae).

    PubMed

    Fan, Xing; Liu, Jing; Sha, Li-Na; Sun, Gen-Lou; Hu, Zhi-Qin; Zeng, Jian; Kang, Hou-Yang; Zhang, Hai-Qin; Wang, Yi; Wang, Xiao-Li; Zhang, Li; Ding, Chun-Bang; Yang, Rui-Wu; Zheng, You-Liang; Zhou, Yong-Hong

    2014-08-01

    Ribosomal ITS polymorphism and its ancestral genome origin of polyploid Leymus were examined to infer the evolutionary outcome of rDNA gene following allopolyploid speciation and to elucidate the geographic pattern of ITS variation. The results demonstrated that different polyploids have experienced varying fates, including maintenance or homogenization of divergent arrays, occurrence of chimeric repeats and potential pseudogenes. Our data suggested that (1) the Ns, P/F, and St genomic types in Leymus were originated from Psathyrostachys, Agropyron/Eremopyrum, and Pseudoroegneria, respectively; (2) the occurrence of a higher proportion of Leymus species with predominant uniparental rDNA type might associate with the segmental allopolyploid origin, nucleolar dominance of alloploids, and rapid radiation of Leymus; (3) maintenance of multiple parental ITS types in allopolyploid might result from long generation times associated to vegetative multiplication, number and chromosomal location of ribosomal loci and/or recurrent hybridization; (4) the rDNA genealogical structure of Leymus species might associate with the geographic origins; and (5) ITS sequence clade shared by Leymus species from Central Asia, North America, and Nordic might be an outcome of ancestral ITS homogenization. Our results shed new light on understanding evolutionary outcomes of rDNA following allopolyploid speciation and geographic isolation. PMID:24780748

  3. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage. PMID:26319789

  4. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage.

  5. Genetic characterization and phylogenetic relationships based on 18S rRNA and ITS1 region of small form of canine Babesia spp. from India.

    PubMed

    Mandal, M; Banerjee, P S; Garg, Rajat; Ram, Hira; Kundu, K; Kumar, Saroj; Kumar, G V P P S Ravi

    2014-10-01

    Canine babesiosis is a vector borne disease caused by intra-erythrocytic apicomplexan parasites Babesia canis (large form) and Babesia gibsoni (small form), throughout the globe. Apart from few sporadic reports on the occurrence of B. gibsoni infection in dogs, no attempt has been made to characterize Babesia spp. of dogs in India. Fifteen canine blood samples, positive for small form of Babesia, collected from northern to eastern parts of India, were used for amplification of 18S rRNA gene (∼1665bp) of Babesia sp. and partial ITS1 region (∼254bp) of B. gibsoni Asian genotype. Cloning and sequencing of the amplified products of each sample was performed separately. Based on sequences and phylogenetic analysis of 18S rRNA and ITS1 sequences, 13 were considered to be B. gibsoni. These thirteen isolates shared high sequence identity with each other and with B. gibsoni Asian genotype. The other two isolates could not be assigned to any particular species because of the difference(s) in 18S rRNA sequence with B. gibsoni and closer identity with Babesiaoccultans and Babesiaorientalis. In the phylogenetic tree, all the isolates of B. gibsoni Asian genotype formed a separate major clade named as Babesia spp. sensu stricto clade with high bootstrap support. The two unnamed Babesia sp. (Malbazar and Ludhiana isolates) clustered close together with B. orientalis, Babesia sp. (Kashi 1 isolate) and B. occultans of bovines. It can be inferred from this study that 18S rRNA gene and ITS1 region are highly conserved among 13 B. gibsoni isolates from India. It is the maiden attempt of genetic characterization by sequencing of 18S rRNA gene and ITS1 region of B. gibsoni from India and is also the first record on the occurrence of an unknown Babesia sp. of dogs from south and south-east Asia.

  6. Polymorphism and recombination for rDNA in the putatively asexual microsporidian Nosema ceranae, a pathogen of honeybees.

    PubMed

    Sagastume, Soledad; del Aguila, Carmen; Martín-Hernández, Raquel; Higes, Mariano; Henriques-Gil, Nuno

    2011-01-01

    Nosema ceranae is currently one of the major pathogens of honeybees, related to the worldwide colony losses phenomenon. The genotyping of strains based on ribosomal DNA (rDNA) can be misleading if the repeated units are not identical. The analysis of cloned rDNA fragments containing the intergenic spacer (IGS) and part of the rDNA small-subunit (SSU) gene, from N. ceranae isolates from different European and Central Asia populations, revealed a high diversity of sequences. The variability involved single-nucleotide polymorphisms and insertion/deletions, resulting in 79 different haplotypes. Two sequences from the same isolate could be as different as any pair of sequences from different samples; in contrast, identical haplotypes were also found in very different geographical origins. Consequently, haplotypes cannot be organized in a consistent phylogenetic tree, clearly indicating that rDNA is not a reliable marker for the differentiation of N. ceranae strains. The results indicate that recombination between different sequences may produce new variants, which is quite surprising in microsporidia, usually considered to have an asexual mode of reproduction. The diversity of sequences and their geographical distribution indicate that haplotypes of different lineages may occasionally be present in a same cell and undergo homologue recombination, therefore suggesting a sexual haplo-diploid cycle.

  7. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones. PMID:24681200

  8. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones.

  9. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    PubMed Central

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel JP; Delsuc, Frédéric

    2009-01-01

    Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1) Phlebobranchia + Thaliacea + Aplousobranchia, 2) Appendicularia, and 3) Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models suggest a sister

  10. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group).

    PubMed

    Niu, Qingli; Valentin, Charlotte; Bonsergent, Claire; Malandrin, Laurence

    2014-12-01

    Rhoptry-associated-protein 1 (RAP-1) is considered as a potential vaccine candidate due to its involvement in red blood cell invasion by parasites in the genus Babesia. We examined its value as a vaccine candidate by studying RAP-1 conservation in isolates of Babesia sp. BQ1 Ningxian, Babesia sp. Tianzhu and Babesia sp. Hebei, responsible for ovine babesiosis in different regions of China. The rap-1 locus in these isolates has very similar features to those described for Babesia sp. BQ1 Lintan, another Chinese isolate also in the B. motasi-like phylogenetic group, namely the presence of three types of rap-1 genes (rap-1a, rap-1b and rap-1c), multiple conserved rap-1b copies (5) interspaced with more or less variable rap-1a copies (6), and the 3' localization of one rap-1c. The isolates Babesia sp. Tianzhu, Babesia sp. BQ1 Lintan and Ningxian were almost identical (average nucleotide identity of 99.9%) over a putative locus of about 31 Kb, including the intergenic regions. Babesia sp. Hebei showed a similar locus organization but differed in the rap-1 locus sequence, for each gene and intergenic region, with an average nucleotide identity of 78%. Our results are in agreement with 18S rDNA phylogenetic studies performed on these isolates. However, in extremely closely related isolates the rap-1 locus seems more conserved (99.9%) than the 18S rDNA (98.7%), whereas in still closely related isolates the identities are much lower (78%) compared with the 18S rDNA (97.7%). The particularities of the rap-1 locus in terms of evolution, phylogeny, diagnosis and vaccine development are discussed.

  11. Scale evolution in Paraphysomonadida (Chrysophyceae): Sequence phylogeny and revised taxonomy of Paraphysomonas, new genus Clathromonas, and 25 new species

    PubMed Central

    Scoble, Josephine Margaret; Cavalier-Smith, Thomas

    2014-01-01

    Heterotrophic chrysomonads of the genus Paraphysomonas are ubiquitous phagotrophs with diverse silica scale morphology. Over 50 named species have been described by electron microscopy from uncultured environmental samples. Sequence data exist for very few, but the literature reveals misidentification or lumping of most previously sequenced. For critically integrating scale and sequence data, 59 clonal cultures were studied light microscopically, by sequencing 18S ribosomal DNA, and recording scale morphology by transmission electron microscopy. We found strong congruence between variations in scale morphology and rDNA sequences, and unexpectedly deep genetic diversity. We now restrict Paraphysomonas to species with nail-like spine scales, establishing 23 new species and eight subspecies (Paraphysomonadidae). Species having base-plates with dense margins form three distinct subclades; those with a simple margin only two. We move 29 former Paraphysomonas species with basket scales into a new genus, Clathromonas, and describe two new species. Clathromonas belongs to a very distinct rDNA clade (Clathromonadidae fam. n.), possibly distantly sister to Paraphysomonas. Molecular and morphological data are mutually reinforcing; both are needed for evaluating paraphysomonad diversity and confirm excessive past lumping. Former Paraphysomonas species with neither nail-like nor basket scales are here excluded from Paraphysomonas and will be assigned to new genera elsewhere. PMID:25456313

  12. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome.

    PubMed

    Yakisich, J S; Kapler, G M

    2006-01-01

    During macronuclear development the Tetrahymena thermophila ribosomal RNA gene is excised from micronuclear chromosome 1 by site-specific cleavage at chromosome breakage sequence (Cbs) elements, rearranged into a 'palindromic' 21 kb minichromosome and extensively amplified. Gene amplification initiates from origins in the 5' non-transcribed spacer, and forks moving toward the center of the palindrome arrest at a developmentally regulated replication fork barrier (RFB). The RFB is inactive during vegetative cell divisions, suggesting a role in the formation or amplification of macronuclear rDNA. Using micronuclear (germline) transformation, we show that the RFB region facilitates Cbs-mediated excision. Deletion of the RFB inhibits chromosome breakage in a sub-population of developing macronuclei and promotes alternative processing by a Cbs-independent mechanism. Remarkably, the RFB region prevents spontaneous breakage of chromosome 1 in the diploid micronucleus. Strains heterozygous for DeltaRFB and wild-type rDNA lose the DeltaRFB allele and distal left arm of chromosome 1 during vegetative propagation. The wild-type chromosome is subsequently fragmented near the rDNA locus, and both homologs are progressively eroded, suggesting that broken micronuclear chromosomes are not 'healed' by telomerase. Deletion of this 363 bp segment effectively creates a fragile site in the micronuclear genome, providing the first evidence for a non-telomere cis-acting determinant that functions to maintain the structural integrity of a mitotic eukaryotic chromosome.

  13. Diversity and Inheritance of Intergenic Spacer Sequences of 45S Ribosomal DNA among Accessions of Brassica oleracea L. var. capitata

    PubMed Central

    Yang, Kiwoung; Robin, Arif Hasan Khan; Yi, Go-Eun; Lee, Jonghoon; Chung, Mi-Young; Yang, Tae-Jin; Nou, Ill-Sup

    2015-01-01

    Ribosomal DNA (rDNA) of plants is present in high copy number and shows variation between and within species in the length of the intergenic spacer (IGS). The 45S rDNA of flowering plants includes the 5.8S, 18S and 25S rDNA genes, the internal transcribed spacer (ITS1 and ITS2), and the intergenic spacer 45S-IGS (25S-18S). This study identified six different types of 45S-IGS, A to F, which at 363 bp, 1121 bp, 1717 bp, 1969 bp, 2036 bp and 2111 bp in length, respectively, were much shorter than the reported reference IGS sequences in B. oleracea var. alboglabra. The shortest two IGS types, A and B, lacked the transcription initiation site, non-transcribed spacer, and external transcribed spacer. Functional behavior of those two IGS types in relation to rRNA synthesis is a subject of further investigation. The other four IGSs had subtle variations in the transcription termination site, guanine-cytosine (GC) content, and number of tandem repeats, but the external transcribed spacers of these four IGSs were quite similar in length. The 45S IGSs were found to follow Mendelian inheritance in a population of 15 F1s and their 30 inbred parental lines, which suggests that these sequences could be useful for development of new breeding tools. In addition, this study represents the first report of intra-specific (within subspecies) variation of the 45S IGS in B. oleracea. PMID:26633391

  14. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications

    PubMed Central

    2012-01-01

    Background 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of the distribution of these sites along the chromosome in several genera has suggested some bias in their distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of some chromosomal and karyotypic features on the distribution of these sites, a database was built with the position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant species. Results In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted. The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm. The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families. Conclusions The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but some hypotheses are considered and the observed trends are discussed. PMID:23181612

  15. Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of Mycoplasma species

    PubMed Central

    Stakenborg, Tim; Vicca, Jo; Butaye, Patrick; Maes, Dominiek; De Baere, Thierry; Verhelst, Rita; Peeters, Johan; de Kruif, Aart; Haesebrouck, Freddy; Vaneechoutte, Mario

    2005-01-01

    Background Mycoplasmas are present worldwide in a large number of animal hosts. Due to their small genome and parasitic lifestyle, Mycoplasma spp. require complex isolation media. Nevertheless, already over 100 different species have been identified and characterized and their number increases as more hosts are sampled. We studied the applicability of amplified rDNA restriction analysis (ARDRA) for the identification of all 116 acknowledged Mycoplasma species and subspecies. Methods Based upon available 16S rDNA sequences, we calculated and compared theoretical ARDRA profiles. To check the validity of these theoretically calculated profiles, we performed ARDRA on 60 strains of 27 different species and subspecies of the genus Mycoplasma. Results In silico digestion with the restriction endonuclease AluI (AG^CT) was found to be most discriminative and generated from 3 to 13 fragments depending on the Mycoplasma species. Although 73 Mycoplasma species could be differentiated using AluI, other species gave undistinguishable patterns. For these, an additional restriction digestion, typically with BfaI (C^TAG) or HpyF10VI (GCNNNNN^NNGC), was needed for a final identification. All in vitro obtained restriction profiles were in accordance with the calculated fragments based on only one 16S rDNA sequence, except for two isolates of M. columbinum and two isolates of the M. mycoides cluster, for which correct ARDRA profiles were only obtained if the sequences of both rrn operons were taken into account. Conclusion Theoretically, restriction digestion of the amplified rDNA was found to enable differentiation of all described Mycoplasma species and this could be confirmed by application of ARDRA on a total of 27 species and subspecies. PMID:15955250

  16. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp × topmouth culter.

    PubMed

    He, Weiguo; Qin, Qinbo; Liu, Shaojun; Li, Tangluo; Wang, Jing; Xiao, Jun; Xie, Lihua; Zhang, Chun; Liu, Yun

    2012-01-01

    Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCC♀, Cyprininae, 2n = 100) × topmouth culter (Erythroculter ilishaeformis Bleeker, TC♂, Cultrinae, 2n = 48) were successfully produced. Diploid hybrids possessed 74 chromosomes with one set from RCC and one set from TC; triploid hybrids harbored 124 chromosomes with two sets from RCC and one set from TC; tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from TC. The 5S rDNA of the three different ploidy-level hybrids and their parents were sequenced and analyzed. There were three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) in RCC and two monomeric 5S rDNA classes (designated class IV: 188 bp, and class V: 286 bp) in TC. In the hybrid offspring, diploid hybrids inherited three 5S rDNA classes from their female parent (RCC) and only class IV from their male parent (TC). Triploid hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent (TC). Tetraploid hybrids gained class II and class III from their female parent (RCC), and generated a new 5S rDNA sequence (designated class I-N). The specific paternal 5S rDNA sequence of class V was not found in the hybrid offspring. Sequence analysis of 5S rDNA revealed the influence of hybridization and polyploidization on the organization and variation of 5S rDNA in fish. This is the first report on the coexistence in vertebrates of viable diploid, triploid and tetraploid hybrids produced by crossing parents with different chromosome numbers, and these new hybrids are novel specimens for studying the genomic variation in the first generation of interspecific hybrids, which has significance for evolution and fish genetics.

  17. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections.

    PubMed

    Yang, Rongchang; Palermo, Cindy; Chen, Linda; Edwards, Amanda; Paparini, Andrea; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una

    2015-12-15

    Cryptosporidium is an enteric parasite that infects humans and a wide range of animals. Relatively little is known about the epidemiology and taxonomy of Cryptosporidium in fish. In the present study, a total of 775 fish, belonging to 46 species and comprising ornamental fish, marine fish and freshwater fish were screened for the prevalence of Cryptosporidium by PCR. The overall prevalence of Cryptosporidium in fish was 5.3% (41/775), with prevalences ranging from 1.5 to 100% within individual host species. Phylogenetic analysis of these Cryptosporidium isolates as well as 14 isolates from previous studies indicated extensive genetic diversity as well as evidence for mixed infections. At the 18S locus the following species were identified; Cryptosporidium molnari-like genotype (n=14), Cryptosporidium huwi (n=8), piscine genotype 2 (n=4), piscine genotype 3-like (n=1), piscine genotype 4 (n=2), piscine genotype 5 (n=13), piscine genotype 5-like (n=1) and five novel genotypes (n=5). At the actin locus, species identification agreed with the 18S locus for only 52.3% of isolates sequenced, indicating high levels of mixed infections. Future studies will need to employ both morphological characterization and deep sequencing amplicon-based technologies to better understand the epidemiological and phylogenetic relationships of piscine-derived Cryptosporidium species and genotypes, particularly when mixed infections are detected.

  18. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections.

    PubMed

    Yang, Rongchang; Palermo, Cindy; Chen, Linda; Edwards, Amanda; Paparini, Andrea; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una

    2015-12-15

    Cryptosporidium is an enteric parasite that infects humans and a wide range of animals. Relatively little is known about the epidemiology and taxonomy of Cryptosporidium in fish. In the present study, a total of 775 fish, belonging to 46 species and comprising ornamental fish, marine fish and freshwater fish were screened for the prevalence of Cryptosporidium by PCR. The overall prevalence of Cryptosporidium in fish was 5.3% (41/775), with prevalences ranging from 1.5 to 100% within individual host species. Phylogenetic analysis of these Cryptosporidium isolates as well as 14 isolates from previous studies indicated extensive genetic diversity as well as evidence for mixed infections. At the 18S locus the following species were identified; Cryptosporidium molnari-like genotype (n=14), Cryptosporidium huwi (n=8), piscine genotype 2 (n=4), piscine genotype 3-like (n=1), piscine genotype 4 (n=2), piscine genotype 5 (n=13), piscine genotype 5-like (n=1) and five novel genotypes (n=5). At the actin locus, species identification agreed with the 18S locus for only 52.3% of isolates sequenced, indicating high levels of mixed infections. Future studies will need to employ both morphological characterization and deep sequencing amplicon-based technologies to better understand the epidemiological and phylogenetic relationships of piscine-derived Cryptosporidium species and genotypes, particularly when mixed infections are detected. PMID:26527238

  19. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900) (Hemiptera: Reduviidae: Hammacerinae)

    PubMed Central

    Poggio, María Georgina; Bressa, María José; Papeschi, Alba Graciela

    2011-01-01

    Abstract In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900) by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y), including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in Microtomus conspicillaris (Drury, 1782) (2n=28+XY). However, Microtomus lunifer has a multiple sex chromosome system X1X2Y (male) that could have originated by fragmentation of the ancestral X chromosome. Taking into account that Microtomus conspicillaris and Microtomus lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in Microtomus lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity. PMID:24260616

  20. Polymorphism of genes coding for nuclear 18S rRNA indicates genetic distinctiveness of anastomosis group 10 from other groups in the Rhizoctonia solani species complex.

    PubMed

    Liu, Z L; Domier, L L; Sinclair, J B

    1995-07-01

    DNA polymorphism in the 18S nuclear rRNA gene region was investigated by using 11 restriction endonucleases for 161 isolates of 25 intraspecific groups (ISGs) representing 11 reported anastomosis groups (AGs) of Rhizoctonia solani. A PCR-based restriction mapping method in which enzymatically amplified DNA fragments and subfragments were digested with one or two restriction enzymes was employed. Four types of DNA restriction maps of this region were constructed for these 25 ISGs. Map type I of the 18S rDNA region was represented by isolates of a majority of R. solani ISGs. Map types II and III, represented by ISG 2E and 9 isolates and 5C isolates, respectively, differed from map I by the absence of one (map type II) or two (map type III) restriction sites. Map type IV, represented by ISG 10A and B (or AG 10) isolates, showed significant restriction site variations, with five enzymes in this region compared with those of the remaining ISGs or AGs. Ten of the 25 restriction sites in the 18S rRNA gene region were informative and selected for analysis. Previously reported restriction maps of the 5.8S rRNA gene region, including the internal transcribed spacers, were aligned with each other, and 12 informative restriction sites were identified. These data were used alone and in combination to evaluate group relationships. Analyses derived from these data sets by maximum parsimony and likelihood methods showed that AG 10 isolates were distinct and distantly related to the majority isolates of the other AGs of this species complex.

  1. When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine × schulzii trigenomic allopolyploid.

    PubMed

    Zozomová-Lihová, Judita; Mandáková, Terezie; Kovaříková, Alena; Mühlhausen, Andreas; Mummenhoff, Klaus; Lysak, Martin A; Kovařík, Aleš

    2014-09-01

    Recently formed allopolyploids represent an excellent system to study the impacts of hybridization and genomic duplication on genome structure and evolution. Here we explored the 35SrRNA genes (rDNA) in the Cardamine × schulzii allohexaploid that was formed by two subsequent hybridization events within the past c. 150 yr. The rDNA loci were analyzed by cloning, next generation sequencing (NGS), RT-PCR and FISH methods. The primary C. × insueta triploid hybrid derived from C. rivularis (♀) and C. amara (♂) had gene ratios highly skewed towards maternal sequences. Similarly, C. × schulzii, originating from the secondary hybridization event involving C. × insueta (♀) and C. pratensis (♂), showed a reduction in paternal rDNA homeologs despite an excess of chromosomes inherited from C. pratensis. We also identified novel rDNA loci in C. × schulzii, suggesting that lost loci might be slowly reinstalled by translocation (but not recombination) of genes from partner genomes. Prevalent clonal propagation of allopolyploids, C. × insueta and C. × schulzii, indicates that concerted evolution of rDNA may occur in the absence of extensive meiotic cycles. Adoption of NGS in rDNA variant analysis is highly informative for deciphering the evolutionary histories of allopolyploid species with ongoing homogenization processes. PMID:24916080

  2. Molecular organization of the 5S rDNA gene type II in elasmobranchs

    PubMed Central

    Castro, Sergio I.; Hleap, Jose S.; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    ABSTRACT The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS. PMID:26488198

  3. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    PubMed

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.

  4. Direct evidence for redundant segmental replacement between multiple 18S rRNA genes in a single Prototheca strain.

    PubMed

    Ueno, Ryohei; Huss, Volker A R; Urano, Naoto; Watabe, Shugo

    2007-11-01

    Informational genes such as those encoding rRNAs are related to transcription and translation, and are thus considered to be rarely subject to lateral gene transfer (LGT) between different organisms, compared to operational genes having metabolic functions. However, several lines of evidence have suggested or confirmed the occurrence of LGT of DNA segments encoding evolutionarily variable regions of rRNA genes between different organisms. In the present paper, we show, for the first time to our knowledge, that variable regions of the 18S rRNA gene are segmentally replaced by multiple copies of different sequences in a single strain of the green microalga Prototheca wickerhamii, resulting in at least 17 genotypes, nine of which were actually transcribed. Recombination between different 18S rRNA genes occurred in seven out of eight variable regions (V1-V5 and V7-V9) of eukaryotic small subunit (SSU) rRNAs. While no recombination was observed in V1, one to three different recombination loci were demonstrated for the other regions. Such segmental replacement was also implicated for helix H37, which is defined as V6 of prokaryotic SSU rRNAs. Our observations provide direct evidence for redundant recombination of an informational gene, which encodes a component of mature ribosomes, in a single strain of one organism.

  5. Evaluating multiple alternative hypotheses for the origin of Bilateria: An analysis of 18S rRNA molecular evidence

    PubMed Central

    Collins, Allen G.

    1998-01-01

    Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians. PMID:9860990

  6. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  7. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    PubMed Central

    Meli, Marina L.; Novacco, Marilisa; Borel, Nicole

    2016-01-01

    The 18S ribosomal RNA (rRNA) gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal) DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR) analysis. We compared (i) samples from various animal species, tissues, and sample types, including swabs; (ii) multiple DNA extraction methods; and (iii) both fresh and formalin-fixed paraffin-embedded (FFPE) samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects.

  8. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    PubMed Central

    Meli, Marina L.; Novacco, Marilisa; Borel, Nicole

    2016-01-01

    The 18S ribosomal RNA (rRNA) gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal) DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR) analysis. We compared (i) samples from various animal species, tissues, and sample types, including swabs; (ii) multiple DNA extraction methods; and (iii) both fresh and formalin-fixed paraffin-embedded (FFPE) samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects. PMID:27672657

  9. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes.

    PubMed

    Fukui, K; Nakayama, S; Ohmido, N; Yoshiaki, H; Yamabe, M

    1998-03-01

    Chromosomes of the three diploid Brassica species, B. rapa (AA), B. nigra (BB) and B. oleracea (CC), were identified based on their morphological characteristics, especially on the condensation pattern appearing at the somatic pro-metaphase stage. The morphological features of the pro-metaphase chromosomes of the three Brassica spp. were quantified by imaging methods using chromosome image analyzing system II (CHIAS 2). As a result, quantitative chromosome maps or idiograms of the three diploid Brassica spp. were developed. The fluorescence in situ hybridization (FISH) method revealed the location of 45s rDNA (the 26s-5.8s-18s ribosomal RNA gene cluster) on the chromosomes involved. The number of 45s rDNA loci in the B. rapa, B. nigra and B. oleracea are five, three and two, respectively. The loci detected were systematically mapped on the idiograms of the three Brassica spp.

  10. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba.

    PubMed

    Fuerst, Paul A; Booton, Gregory C; Crary, Monica

    2015-01-01

    Species of Acanthamoeba were first described using morphological characters including cyst structure and cytology of nuclear division. More than 20 nominal species were proposed using these methods. Morphology, especially cyst shape and size, has proven to be plastic and dependent upon culture conditions. The DNA sequence of the nuclear small-subunit (18S) rRNA, the Rns gene, has become the most widely accepted method for rapid diagnosis and classification of Acanthamoeba. The Byers-Fuerst lab first proposed an Rns typing system in 1996. Subsequent refinements, with an increasing DNA database and analysis of diagnostic fragments within the gene, have become widely accepted by the Acanthamoeba research community. The development of the typing system, including its current state of implementation is illustrated by three cases: (i) the division between sequence types T13 and T16; (ii) the diversity within sequence supertype T2/T6, and (iii) verification of a new sequence type, designated T20. Molecular studies make clear the disconnection between phylogenetic relatedness and species names, as applied for the genus Acanthamoeba. Future reconciliation of genetic types with species names must become a priority, but the possible shortcomings of the use of a single gene when reconstructing the evolutionary history of the acanthamoebidae must also be resolved. PMID:25284310

  11. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba.

    PubMed

    Fuerst, Paul A; Booton, Gregory C; Crary, Monica

    2015-01-01

    Species of Acanthamoeba were first described using morphological characters including cyst structure and cytology of nuclear division. More than 20 nominal species were proposed using these methods. Morphology, especially cyst shape and size, has proven to be plastic and dependent upon culture conditions. The DNA sequence of the nuclear small-subunit (18S) rRNA, the Rns gene, has become the most widely accepted method for rapid diagnosis and classification of Acanthamoeba. The Byers-Fuerst lab first proposed an Rns typing system in 1996. Subsequent refinements, with an increasing DNA database and analysis of diagnostic fragments within the gene, have become widely accepted by the Acanthamoeba research community. The development of the typing system, including its current state of implementation is illustrated by three cases: (i) the division between sequence types T13 and T16; (ii) the diversity within sequence supertype T2/T6, and (iii) verification of a new sequence type, designated T20. Molecular studies make clear the disconnection between phylogenetic relatedness and species names, as applied for the genus Acanthamoeba. Future reconciliation of genetic types with species names must become a priority, but the possible shortcomings of the use of a single gene when reconstructing the evolutionary history of the acanthamoebidae must also be resolved.

  12. PCR amplification of a multi-copy mitochondrial gene (cox3) improves detection of Cytauxzoon felis infection as compared to a ribosomal gene (18S).

    PubMed

    Schreeg, Megan E; Marr, Henry S; Griffith, Emily H; Tarigo, Jaime L; Bird, David M; Reichard, Mason V; Cohn, Leah A; Levy, Michael G; Birkenheuer, Adam J

    2016-07-30

    Cytauxzoon felis is a tick-transmitted protozoan parasite that infects felids. Clinical disease caused by acute C. felis infection rapidly progresses in domestic cats, leading to high morbidity and mortality. Accurately diagnosing cytauxzoonosis as soon as possible during acute infection would allow for earlier initiation of antiprotozoal therapy which could lead to higher survival rates. Molecular detection of parasite rRNA genes (18S) by PCR has previously been shown to be a sensitive method of diagnosing C. felis infections. Based on evidence from related apicomplexan species, we hypothesized that C. felis mitochondrial genes would exist at higher copy numbers than 18S and would be a more sensitive diagnostic target. In this study we have designed a PCR assay targeting the C. felis mitochondrial gene cytochrome c oxidase subunit III (cox3). Herein we demonstrate that (1) the cox3 PCR can detect as low as 1 copy of DNA target and can detect C. felis in samples with known mitochondrial sequence heterogeneity, (2) cox3 copy number is increased relative to 18S in blood and tissue samples from acutely infected cats, and (3) the cox3 PCR is more sensitive than 18S PCR for detection of C. felis during early infections.

  13. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  14. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes.

  15. Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

    PubMed Central

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  16. Abridged 5S rDNA units in sea beet (Beta vulgaris subsp. maritima).

    PubMed

    Turner, Daniel J; Brown, Terence A

    2005-04-01

    Amplification by polymerase chain reaction of the 5S rDNA repeat units of Beta vulgaris subsp. maritima resulted in a 350-bp product corresponding to the full-length 5S unit, but also revealed 4 abridged unit classes, each with a deletion that removed most of the spacer and 12-76 bp of the coding sequence. Each abridged type lacks at least 1 of the conserved elements involved in transcription of the 5S gene, and so appear to be nonfunctional. Network analysis revealed that the abridged units are evolving in the same manner as the full-length versions.

  17. Evolutionary dynamics of the 5S rDNA gene family in the mussel Mytilus: mixed effects of birth-and-death and concerted evolution.

    PubMed

    Freire, Ruth; Arias, Alberto; Insua, Ana M; Méndez, Josefina; Eirín-López, José M

    2010-05-01

    In higher eukaryotes, the gene family encoding the 5S ribosomal RNA (5S rRNA) has been used (together with histones) to showcase the archetypal example of a gene family subject to concerted evolution. However, recent studies have revealed conspicuous features challenging the predictions of this model, including heterogeneity of repeat units, the presence of functional 5S gene variants as well as the existence of 5S rDNA divergent pseudogenes lacking traces of homogenization. In the present work, we have broadened the scope in the evolutionary study of ribosomal gene families by studying the 5S rRNA family in mussels, a model organism which stands out among other animals due to the heterogeneity it displays regarding sequence and organization. To this end, 48 previously unknown 5S rDNA units (coding and spacer regions) were sequenced in five mussel species, leading to the characterization of two new types of units (referred to here as small-beta 5S rDNA and gamma-5S rDNA) coexisting in the genome with alpha and beta rDNA units. The intense genetic dynamics of this family is further supported by the first description of an association between gamma-5S rDNA units and tRNA genes. Molecular evolutionary and phylogenetic analyses revealed an extensive lack of homology among spacer sequences belonging to different rDNA types, suggesting the presence of independent evolutionary pathways leading to their differentiation. Overall, our results suggest that the long-term evolution of the 5S rRNA gene family in mussels is most likely mediated by a mixed mechanism involving the generation of genetic diversity through birth-and-death, followed by a process of local homogenization resulting from concerted evolution in order to maintain the genetic identities of the different 5S units, probably after their transposition to independent chromosomal locations.

  18. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates.

    PubMed

    Thornhill, Daniel J; Lajeunesse, Todd C; Santos, Scott R

    2007-12-01

    Molecular approaches have revolutionized our ability to study the ecology and evolution of micro-organisms. Among the most widely used genetic markers for these studies are genes and spacers of the rDNA operon. However, the presence of intragenomic rDNA variation, especially among eukaryotes, can potentially confound estimates of microbial diversity. To test this hypothesis, bacterially cloned PCR products of the internal transcribed spacer (ITS) region from clonal isolates of Symbiodinium, a large genus of dinoflagellates that live in symbiosis with many marine protists and invertebrate metazoa, were sequenced and analysed. We found widely differing levels of intragenomic sequence variation and divergence in representatives of Symbiodinium clades A to E, with only a small number of variants attributed to Taq polymerase/bacterial cloning error or PCR chimeras. Analyses of 5.8S-rDNA and ITS2 secondary structure revealed that some variants possessed base substitutions and/or indels that destabilized the folded form of these molecules; given the vital nature of secondary structure to the function of these molecules, these likely represent pseudogenes. When similar controls were applied to bacterially cloned ITS sequences from a recent survey of Symbiodinium diversity in Hawaiian Porites spp., most variants (approximately 87.5%) possessed unstable secondary structures, had unprecedented mutations, and/or were PCR chimeras. Thus, data obtained from sequencing of bacterially cloned rDNA genes can substantially exaggerate the level of eukaryotic microbial diversity inferred from natural samples if appropriate controls are not applied. These considerations must be taken into account when interpreting sequence data generated by bacterial cloning of multicopy genes such as rDNA.

  19. Primary and secondary structure analyses of the rDNA group-I introns of the Zygnematales (Charophyta).

    PubMed

    Bhattacharya, D; Damberger, S; Surek, B; Melkonian, M

    1996-02-01

    The Zygnematales (Charophyta) contain a group-I intron (subgroupIC1) within their nuclear-encoded small subunit ribosomal DNA (SSU rDNA) coding region. This intron, which is inserted after position 1506 (relative to the SSU rDNA of Escherichia coli), is proposed to have been vertically inherited since the origin of the Zygnematales approximately 350-400 million years ago. Primary and secondary structure analyses were carried out to model group-I intron evolution in the Zygnematales. Secondary structure analyses support genetic data regarding sequence conservation within regions known to be functionally important for in vitro self-splicing of group-I introns. Comparisons of zygnematalean group-I intron secondary structures also provided some new insights into sequences that may have important roles in in vivo RNA splicing. Sequence analyses showed that sequence divergence rates and the nucleotide compositions of introns and coding regions within any one taxon varied widely, suggesting that the "1506" group-I introns and rDNA coding regions in the Zygnematales evolve independently.

  20. Diversity and distribution of unicellular opisthokonts along the European coast analyzed using high-throughput sequencing

    PubMed Central

    del Campo, Javier; Mallo, Diego; Massana, Ramon; de Vargas, Colomban; Richards, Thomas A.; Ruiz-Trillo, Iñaki

    2015-01-01

    Summary The opisthokonts are one of the major super-groups of eukaryotes. It comprises two major clades: 1) the Metazoa and their unicellular relatives and 2) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non-metazoan and non-fungal opisthokonts. Here we begin to address this gap by analyzing high throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyze the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant role of the ichthyosporeans and the uncultured marine opisthokonts (MAOP). Furthermore, we describe a new lineage of marine fonticulids (MAFO) that appears to be abundant in sediments. Therefore, our work points to a greater potential ecological role for unicellular opisthokonts than previously appreciated in marine environments, both in water column and sediments, and also provides evidence of novel opisthokont phylogenetic lineages. This study highlights the importance of high throughput sequencing approaches to unravel the diversity and distribution of both known and novel eukaryotic lineages. PMID:25556908

  1. Diversity and distribution of unicellular opisthokonts along the European coast analysed using high-throughput sequencing.

    PubMed

    Del Campo, Javier; Mallo, Diego; Massana, Ramon; de Vargas, Colomban; Richards, Thomas A; Ruiz-Trillo, Iñaki

    2015-09-01

    The opisthokonts are one of the major super groups of eukaryotes. It comprises two major clades: (i) the Metazoa and their unicellular relatives and (ii) the Fungi and their unicellular relatives. There is, however, little knowledge of the role of opisthokont microbes in many natural environments, especially among non-metazoan and non-fungal opisthokonts. Here, we begin to address this gap by analysing high-throughput 18S rDNA and 18S rRNA sequencing data from different European coastal sites, sampled at different size fractions and depths. In particular, we analyse the diversity and abundance of choanoflagellates, filastereans, ichthyosporeans, nucleariids, corallochytreans and their related lineages. Our results show the great diversity of choanoflagellates in coastal waters as well as a relevant representation of the ichthyosporeans and the uncultured marine opisthokonts (MAOP). Furthermore, we describe a new lineage of marine fonticulids (MAFO) that appears to be abundant in sediments. Taken together, our work points to a greater potential ecological role for unicellular opisthokonts than previously appreciated in marine environments, both in water column and sediments, and also provides evidence of novel opisthokont phylogenetic lineages. This study highlights the importance of high-throughput sequencing approaches to unravel the diversity and distribution of both known and novel eukaryotic lineages.

  2. Complete structure of nuclear rDNA of the obligate plant parasite Plasmodiophora brassicae: intraspecific polymorphisms in the exon and group I intron of the large subunit rDNA.

    PubMed

    Niwa, Rieko; Kawahara, Ai; Murakami, Hiroharu; Tanaka, Shuhei; Ezawa, Tatsuhiro

    2011-07-01

    Plasmodiophora brassicae is a soil-borne obligate intracellular parasite in the phylum Cercozoa of the Rhizaria that causes clubroot disease of crucifer crops. To control the disease, understanding the distribution and infection routes of the pathogen is essential, and thus development of reliable molecular markers to discriminate geographic populations is required. In this study, the nuclear ribosomal RNA gene (rDNA) repeat unit of P. brassicae was determined, with particular emphasis on the structure of large subunit (LSU) rDNA, in which polymorphic regions were expected to be present. The complete rDNA complex was 9513bp long, which included the small subunit, 5.8S and LSU rDNAs as well as the internal transcribed spacer and intergenic spacer regions. Among eight field populations collected from throughout Honshu Island, Japan, a 1.1 kbp region of the LSU rDNA, including the divergent 8 domain, exhibited intraspecific polymorphisms that reflected geographic isolation of the populations. Two new group I introns were found in this region in six out of the eight populations, and the sequences also reflected their geographic isolation. The polymorphic region found in this study may have potential for the development of molecular markers for discrimination of field populations/isolates of this organism.

  3. Complete structure of nuclear rDNA of the obligate plant parasite Plasmodiophora brassicae: intraspecific polymorphisms in the exon and group I intron of the large subunit rDNA.

    PubMed

    Niwa, Rieko; Kawahara, Ai; Murakami, Hiroharu; Tanaka, Shuhei; Ezawa, Tatsuhiro

    2011-07-01

    Plasmodiophora brassicae is a soil-borne obligate intracellular parasite in the phylum Cercozoa of the Rhizaria that causes clubroot disease of crucifer crops. To control the disease, understanding the distribution and infection routes of the pathogen is essential, and thus development of reliable molecular markers to discriminate geographic populations is required. In this study, the nuclear ribosomal RNA gene (rDNA) repeat unit of P. brassicae was determined, with particular emphasis on the structure of large subunit (LSU) rDNA, in which polymorphic regions were expected to be present. The complete rDNA complex was 9513bp long, which included the small subunit, 5.8S and LSU rDNAs as well as the internal transcribed spacer and intergenic spacer regions. Among eight field populations collected from throughout Honshu Island, Japan, a 1.1 kbp region of the LSU rDNA, including the divergent 8 domain, exhibited intraspecific polymorphisms that reflected geographic isolation of the populations. Two new group I introns were found in this region in six out of the eight populations, and the sequences also reflected their geographic isolation. The polymorphic region found in this study may have potential for the development of molecular markers for discrimination of field populations/isolates of this organism. PMID:21497131

  4. Comparative cytogenetics of giant trahiras Hoplias aimara and H. intermedius (Characiformes, Erythrinidae): chromosomal characteristics of minor and major ribosomal DNA and cross-species repetitive centromeric sequences mapping differ among morphologically identical karyotypes.

    PubMed

    Blanco, D R; Lui, R L; Vicari, M R; Bertollo, L A C; Moreira-Filho, O

    2011-01-01

    Karyotype and cytogenetic characteristics of 2 species of giant trahiras, Hopliasintermedius, São Francisco river basin, and Hopliasaimara, Arinos river (Amazon basin), were examined by conventional (C-banding, Ag-NOR, DAPI/CMA(3) double-staining) and fluorescent in situ hybridization (FISH) with 5S, 18S rDNA probes and cross-species Cot-1 DNA probing. Both species invariably had diploid chromosome number 2n = 50 and identical karyotypes composed of 10 pairs of metacentric and 15 pairs of submetacentric chromosomes. On the other hand, staining with base-specific fluorochr