Science.gov

Sample records for 18s rrna phylogeny

  1. Investigation of molluscan phylogeny on the basis of 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1996-12-01

    The 18S rRNA sequences of 12 molluscs, representing the extant classes Gastropoda, Bivalvia, Polyplacophora, Scaphopoda, and Caudofoveata, were determined and compared with selected known 18S rRNA sequences of Metazoa, including other Mollusca. These data do not provide support for a close relationship between Platyhelminthes (Turbellaria) and Mollusca, but rather suggest that the latter group belongs to a clade of eutrochozoan coelomates. The 18S rRNA data fail to recover molluscan, bivalve, or gastropod monophyly. However, the branching pattern of the eutrochozoan phyla and classes is unstable, probably due to the explosive Cambrian radiation during which these groups arose. Similarly, the 18S rRNA data do not provide a reliable signal for the molluscan interclass relationships. Nevertheless, we obtained strong preliminary support for phylogenetic inferences at more restricted taxonomic levels, such as the monophyly of Polyplacophora, Caenogastropoda, Euthyneura, Heterodonta, and Arcoida.

  2. Phylogeny of protostome worms derived from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1995-07-01

    The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade.

  3. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded. Copyright 1999 Academic Press.

  4. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models.

    PubMed

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel J P; Delsuc, Frédéric

    2009-08-05

    Salpida and Pyrosomatida within Thaliacea. An updated phylogenetic framework for tunicates is provided based on phylogenetic analyses using the most realistic evolutionary models currently available for ribosomal molecules and an unprecedented taxonomic sampling. Detailed analyses of the 18S rRNA gene allowed a clear definition of the major tunicate groups and revealed contrasting evolutionary dynamics among major lineages. The resolving power of this gene nevertheless appears limited within the clades composed of Phlebobranchia + Thaliacea + Aplousobranchia and Pyuridae + Styelidae, which were delineated as spots of low resolution. These limitations underline the need to develop new nuclear markers in order to further resolve the phylogeny of this keystone group in chordate evolution.

  5. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    PubMed Central

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel JP; Delsuc, Frédéric

    2009-01-01

    -group relationship between Salpida and Pyrosomatida within Thaliacea. Conclusion An updated phylogenetic framework for tunicates is provided based on phylogenetic analyses using the most realistic evolutionary models currently available for ribosomal molecules and an unprecedented taxonomic sampling. Detailed analyses of the 18S rRNA gene allowed a clear definition of the major tunicate groups and revealed contrasting evolutionary dynamics among major lineages. The resolving power of this gene nevertheless appears limited within the clades composed of Phlebobranchia + Thaliacea + Aplousobranchia and Pyuridae + Styelidae, which were delineated as spots of low resolution. These limitations underline the need to develop new nuclear markers in order to further resolve the phylogeny of this keystone group in chordate evolution. PMID:19656395

  6. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    PubMed

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses.

  7. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion.

    PubMed

    Abouheif, E; Zardoya, R; Meyer, A

    1998-10-01

    We document the phylogenetic behavior of the 18S rRNA molecule in 67 taxa from 28 metazoan phyla and assess the effects of among-site rate variation on reconstructing phylogenies of the animal kingdom. This empirical assessment was undertaken to clarify further the limits of resolution of the 18S rRNA gene as a phylogenetic marker and to address the question of whether 18S rRNA phylogenies can be used as a source of evidence to infer the reality of a Cambrian explosion. A notable degree of among-site rate variation exists between different regions of the 18S rRNA molecule, as well as within all classes of secondary structure. There is a significant negative correlation between inferred number of nucleotide substitutions and phylogenetic information, as well as with the degree of substitutional saturation within the molecule. Base compositional differences both within and between taxa exist and, in certain lineages, may be associated with long branches and phylogenetic position. Importantly, excluding sites with different degrees of nucleotide substitution significantly influences the topology and degree of resolution of maximum-parsimony phylogenies as well as neighbor-joining phylogenies (corrected and uncorrected for among-site rate variation) reconstructed at the metazoan scale. Together, these data indicate that the 18S rRNA molecule is an unsuitable candidate for reconstructing the evolutionary history of all metazoan phyla, and that the polytomies, i.e., unresolved nodes within 18S rRNA phylogenies, cannot be used as a single or reliable source of evidence to support the hypothesis of a Cambrian explosion.

  8. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis

    PubMed Central

    Devente, Savannah R.; Kirk, Michelle R.; Seedorf, Henning; Dehority, Burk A.

    2015-01-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. PMID:25616800

  9. Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis.

    PubMed

    Kittelmann, Sandra; Devente, Savannah R; Kirk, Michelle R; Seedorf, Henning; Dehority, Burk A; Janssen, Peter H

    2015-04-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences.

    PubMed

    Chaw, S M; Zharkikh, A; Sung, H M; Lau, T C; Li, W H

    1997-01-01

    To study the evolutionary relationships among the four living gymnosperm orders and the interfamilial relationships in each order, a set of 65 nuclear 18S rRNA sequences from ferns, gymnosperms, and angiosperms was analyzed using the neighbor-joining and maximum-parsimony methods. With Selaginella as the outgroup, the analysis strongly indicates that the seed plants form a monophyletic group with the ferns as a sister group. Within the seed plants the angiosperms are clearly a monophyletic group. Although the bootstrap support for the monophyly of the gymnosperm clade is moderate, the monophyly is further supported by its lack of angiosperm-specific indels. Within the gymnosperms there appear to be three monophyletic clades: Cycadales-Ginkgoales, Gnetales, and Coniferales. The cycad-ginkgo clade is the earliest gymnosperm lineage. Given the strong support for the sister group relationship between Gnetales and Coniferales, it is unlikely that Gnetales is a sister group of the angiosperms, contrary to the view of many plant taxonomists. Within Coniferales, Pinaceae is monophyletic and basal to the remaining conifer families, among which there are three monophyletic clades: Phyllocladaceae-Podocarpaceae, Araucariaceae, and Sciadopityaceae-Taxaceae-Cephalotaxaceae-Taxodiacea e-Cupressaceae. Within the latter clade, Sciadopityaceae may be an outgroup to the other four families. Among the angiosperms, no significant cluster at the level of subclass was found, but there was evidence that Nymphaeaceae branched off first. Within the remaining angiosperms, the monocots included in this study are nested and form a monophyletic group. This study attests to the utility of nuclear 18S rRNA sequences in addressing relationships among living gymnosperms. Considerable variation in substitution rates was observed among the ferns and seed plants.

  11. Predicted secondary structure for 28S and 18S rRNA from Ichneumonoidea (Insecta: Hymenoptera: Apocrita): impact on sequence alignment and phylogeny estimation.

    PubMed

    Gillespie, Joseph J; Yoder, Matthew J; Wharton, Robert A

    2005-07-01

    We utilize the secondary structural properties of the 28S rRNA D2-D10 expansion segments to hypothesize a multiple sequence alignment for major lineages of the hymenopteran superfamily Ichneumonoidea (Braconidae, Ichneumonidae). The alignment consists of 290 sequences (originally analyzed in Belshaw and Quicke, Syst Biol 51:450-477, 2002) and provides the first global alignment template for this diverse group of insects. Predicted structures for these expansion segments as well as for over half of the 18S rRNA are given, with highly variable regions characterized and isolated within conserved structures. We demonstrate several pitfalls of optimization alignment and illustrate how these are potentially addressed with structure-based alignments. Our global alignment is presented online at (http://hymenoptera.tamu.edu/rna) with summary statistics, such as basepair frequency tables, along with novel tools for parsing structure-based alignments into input files for most commonly used phylogenetic software. These resources will be valuable for hymenopteran systematists, as well as researchers utilizing rRNA sequences for phylogeny estimation in any taxon. We explore the phylogenetic utility of our structure-based alignment by examining a subset of the data under a variety of optimality criteria using results from Belshaw and Quicke (2002) as a benchmark.

  12. Phylogeny and classification of the Litostomatea (Protista, Ciliophora), with emphasis on free-living taxa and the 18S rRNA gene.

    PubMed

    Vd'ačný, Peter; Bourland, William A; Orsi, William; Epstein, Slava S; Foissner, Wilhelm

    2011-05-01

    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of species ranging from aerobic, free-living predators to anaerobic endocommensals. This is traditionally reflected by classifying the Litostomatea into the subclasses Haptoria and Trichostomatia. The morphological classifications of the Haptoria conflict with the molecular phylogenies, which indicate polyphyly and numerous homoplasies. Thus, we analyzed the genealogy of 53 in-group species with morphological and molecular methods, including 12 new sequences from free-living taxa. The phylogenetic analyses and some strong morphological traits show: (i) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea and (ii) three distinct lineages (subclasses): the Rhynchostomatia comprising Tracheliida and Dileptida; the Haptoria comprising Lacrymariida, Haptorida, Didiniida, Pleurostomatida and Spathidiida; and the Trichostomatia. The curious Homalozoon cannot be assigned to any of the haptorian orders, but is basal to a clade containing the Didiniida and Pleurostomatida. The internal relationships of the Spathidiida remain obscure because many of them and some "traditional" haptorids form separate branches within the basal polytomy of the order, indicating one or several radiations and convergent evolution. Due to the high divergence in the 18S rRNA gene, the chaeneids and cyclotrichiids are classified incertae sedis. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin.

    PubMed

    Mallatt, Jon M; Garey, James R; Shultz, Jeffrey W

    2004-04-01

    Relationships among the ecdysozoans, or molting animals, have been difficult to resolve. Here, we use nearly complete 28S+18S ribosomal RNA gene sequences to estimate the relations of 35 ecdysozoan taxa, including newly obtained 28S sequences from 25 of these. The tree-building algorithms were likelihood-based Bayesian inference and minimum-evolution analysis of LogDet-transformed distances, and hypotheses were tested wth parametric bootstrapping. Better taxonomic resolution and recovery of established taxa were obtained here, especially with Bayesian inference, than in previous parsimony-based studies that used 18S rRNA sequences (or 18S plus small parts of 28S). In our gene trees, priapulan worms represent the basal ecdysozoans, followed by nematomorphs, or nematomorphs plus nematodes, followed by Panarthropoda. Panarthropoda was monophyletic with high support, although the relationships among its three phyla (arthropods, onychophorans, tardigrades) remain uncertain. The four groups of arthropods-hexapods (insects and related forms), crustaceans, chelicerates (spiders, scorpions, horseshoe crabs), and myriapods (centipedes, millipedes, and relatives)-formed two well-supported clades: Hexapoda in a paraphyletic crustacea (Pancrustacea), and 'Chelicerata+Myriapoda' (a clade that we name 'Paradoxopoda'). Pycnogonids (sea spiders) were either chelicerates or part of the 'chelicerate+myriapod' clade, but not basal arthropods. Certain clades derived from morphological taxonomy, such as Mandibulata, Atelocerata, Schizoramia, Maxillopoda and Cycloneuralia, are inconsistent with these rRNA data. The 28S gene contained more signal than the 18S gene, and contributed to the improved phylogenetic resolution. Our findings are similar to those obtained from mitochondrial and nuclear (e.g., elongation factor, RNA polymerase, Hox) protein-encoding genes, and should revive interest in using rRNA genes to study arthropod and ecdysozoan relationships.

  14. Prasinoxanthin is absent in the green-colored dinoflagellate Lepidodinium chlorophorum strain NIES-1868: pigment composition and 18S rRNA phylogeny.

    PubMed

    Matsumoto, Takuya; Kawachi, Masanobu; Miyashita, Hideaki; Inagaki, Yuji

    2012-11-01

    Green-colored plastids in the dinoflagellates Lepidodinium chlorophorum and L. viride have been widely believed as the remnant of an endosymbiotic prasinophyte. This hypothesis for the origin of the Lepidodinium plastids is solely based on an unpublished result quoted in Elbrächter and Schnepf (Phycologia 35:381-393, 1996) hinting at the presence of a characteristic carotenoid in prasinophytes, prasinoxanthin, in the L. chlorophorum cells. On the other hand, a recent work failed to detect prasinoxanthin in a culture of L. chlorophorum. Unfortunately, we cannot conduct any additional experiments to examine whether the two strains considered in the previous studies are truly of L. chlorophorum, as neither of the two strains is publicly available. We here investigated the pigment composition of L. chlorophorum strain NIES-1868 maintained as a mono-algal culture under laboratory conditions, and detected no sign of prasinoxanthin. The pigment composition of strain NIES-1868 is consistent with previous phylogenetic analyses based on plastid-encoded genes of the same strain, which successfully excluded prasinoxanthin-containing algae from the origin of the L. chlorophorum plastid. We also determined nucleus-encoded 18S ribosomal RNA (rRNA) genes from four Lepidodinium strains (including strain NIES-1868). Analyses of 18S rRNA sequences showed an extremely close relationship among strain NIES-1868 and other Lepidodinium cells/strains originating from different geological locations, suggesting that the cells/strains corresponding to these rRNA sequences lack prasinoxanthin.

  15. New record of Apoholosticha sinica (Ciliophora, Urostylida) from the UK: morphology, 18S rRNA gene phylogeny and notes on morphogenesis.

    PubMed

    Hu, Xiaozhong; Fan, Yangbo; Warren, Alan

    2015-08-01

    The benthic urostylid ciliate Apoholosticha sinicaFan et al., 2014 was isolated from a salt marsh at Blakeney, UK, and reinvestigated using light microscopy and small-subunit rRNA gene sequencing. Morphologically, it corresponds well with the original description. Several stages of divisional morphogenesis and physiological reorganization were also observed from which the following could be deduced: (i) the oral apparatus is completely newly built in the proter; (ii) frontal-ventral-transverse cirral anlage II does not produce a buccal cirrus; (iii) each of the posteriormost three or four anlagen contributes one transverse cirrus at its posterior end; (iv) a row of frontoterminal cirri originates from the rearmost frontal-ventral-transverse cirral anlage; (v) the last midventral row is formed from the penultimate frontal-ventral-transverse cirral anlage. Based on new data, two diagnostic features were added to the genus definition: (i) the midventral complex is composed of midventral pairs and midventral row and (ii) pretransverse ventral cirri are absent. Based on a combination of morphological and morphogenetic data, the genus Apoholosticha is assigned to the recently erected subfamily Nothoholostichinae Paiva et al., 2014, which is consistent with sequence comparison and phylogenetic analyses based on SSU rRNA gene data. It is also concluded that this benthic species, previously reported only from China, is not an endemic form.

  16. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses.

    PubMed

    Nakada, Takashi; Misawa, Kazuharu; Nozaki, Hisayoshi

    2008-07-01

    The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses.

  17. Séance: reference-based phylogenetic analysis for 18S rRNA studies.

    PubMed

    Medlar, Alan; Aivelo, Tuomas; Löytynoja, Ari

    2014-11-30

    Marker gene studies often use short amplicons spanning one or more hypervariable regions from an rRNA gene to interrogate the community structure of uncultured environmental samples. Target regions are chosen for their discriminatory power, but the limited phylogenetic signal of short high-throughput sequencing reads precludes accurate phylogenetic analysis. This is particularly unfortunate in the study of microscopic eukaryotes where horizontal gene flow is limited and the rRNA gene is expected to accurately reflect the species phylogeny. A promising alternative to full phylogenetic analysis is phylogenetic placement, where a reference phylogeny is inferred using the complete marker gene and iteratively extended with the short sequences from a metagenetic sample under study. Based on the phylogenetic placement approach we built Séance, a community analysis pipeline focused on the analysis of 18S marker gene data. Séance combines the alignment extension and phylogenetic placement capabilities of the Pagan multiple sequence alignment program with a suite of tools to preprocess, cluster and visualise datasets composed of many samples. We showcase Séance by analysing 454 data from a longitudinal study of intestinal parasite communities in wild rufous mouse lemurs (Microcebus rufus) as well as in simulation. We demonstrate both improved OTU picking at higher levels of sequence similarity for 454 data and show the accuracy of phylogenetic placement to be comparable to maximum likelihood methods for lower numbers of taxa. Séance is an open source community analysis pipeline that provides reference-based phylogenetic analysis for rRNA marker gene studies. Whilst in this article we focus on studying nematodes using the 18S marker gene, the concepts are generic and reference data for alternative marker genes can be easily created. Séance can be downloaded from http://wasabiapp.org/software/seance/ .

  18. The phylogenetic status of arthropods, as inferred from 18S rRNA sequences.

    PubMed

    Turbeville, J M; Pfeifer, D M; Field, K G; Raff, R A

    1991-09-01

    Partial 18S rRNA sequences of five chelicerate arthropods plus a crustacean, myriapod, insect, chordate, echinoderm, annelid, and platyhelminth were compared. The sequence data were used to infer phylogeny by using a maximum-parsimony method, an evolutionary-distance method, and the evolutionary-parsimony method. The phylogenetic inferences generated by maximum-parsimony and distance methods support both monophyly of the Arthropoda and monophyly of the Chelicerata within the Arthropoda. These results are congruent with phylogenies based on rigorous cladistic analyses of morphological characters. Results support the inclusion of the Arthropoda within a spiralian or protostome coelomate clade that is the sister group of a deuterostome clade, refuting the hypothesis that the arthropods represent the "primitive" sister group of a protostome coelomate clade. Bootstrap analyses and consideration of all trees within 1% of the length of the most parsimonious tree suggest that relationships between the nonchelicerate arthropods and relationships within the chelicerate clade cannot be reliably inferred with the partial 18S rRNA sequence data. With the evolutionary-parsimony method, support for monophyly of the Arthropoda is found in the majority of the combinations analyzed if the coelomates are used as "outgroups." Monophyly of the Chelicerata is supported in most combinations assessed. Our analyses also indicate that the evolutionary-parsimony method, like distance and parsimony, may be biased by taxa with long branches. We suggest that a previous study's inference of the Arthropoda as paraphyletic may be the result of (a) having two few arthropod taxa available for analysis and (b) including long-branched taxa.

  19. Detection of Babesia microti parasites by highly sensitive 18S rRNA reverse transcription PCR.

    PubMed

    Hanron, Amelia E; Billman, Zachary P; Seilie, Annette M; Chang, Ming; Murphy, Sean C

    2017-03-01

    Babesia are increasingly appreciated as a cause of transfusion-transmitted infection. Sensitive methods are needed to screen blood products. We report herein that B. microti 18S rRNA is over 1,000-fold more abundant than its coding genes, making reverse transcription PCR (RT-PCR) much more sensitive than PCR. Babesia 18S rRNA may be useful for screening the blood supply. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. An RNA conformational switch regulates pre-18S rRNA cleavage.

    PubMed

    Lamanna, Allison C; Karbstein, Katrin

    2011-01-07

    To produce mature ribosomal RNAs (rRNAs), polycistronic rRNA transcripts are cleaved in an ordered series of events. We have uncovered the molecular basis for the ordering of two essential cleavage steps at the 3'-end of 18S rRNA. Using in vitro and in vivo structure probing, RNA binding and cleavage experiments, and yeast genetics, we demonstrate that a conserved RNA sequence in the spacer region between the 18S and 5.8S rRNAs base-pairs with the decoding site of 18S rRNA in early assembly intermediates. Nucleolar cleavage at site A(2) excises this sequence element, leading to a conformational switch in pre-18S rRNA, by which the ribosomal decoding site is formed. This conformational switch positions the nuclease Nob1 for cytoplasmic cleavage at the 3'-end of 18S rRNA and is required for the final maturation step of 18S rRNA in vivo and in vitro. More generally, our data show that the intrinsic ability of RNA to form stable structural switches is exploited to order and regulate RNA-dependent biological processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. An RNA Conformational Switch Regulates Pre-18S rRNA Cleavage

    PubMed Central

    Lamanna, Allison C.; Karbstein, Katrin

    2010-01-01

    To produce mature ribosomal RNAs (rRNAs), polycistronic rRNA transcripts are cleaved in an ordered series of events. We have uncovered the molecular basis for the ordering of two essential cleavage steps at the 3′-end of 18S rRNA. Using in vitro and in vivo structure probing, RNA binding and cleavage experiments, and yeast genetics, we demonstrate that a conserved RNA sequence in the spacer region between the 18S and 5.8S rRNAs base pairs with the decoding site of 18S rRNA in early assembly intermediates. Nucleolar cleavage at site A2 excises this sequence element, leading to a conformational switch in pre-18S rRNA by which the ribosomal decoding site is formed. This conformational switch positions the nuclease Nob1 for cytoplasmic cleavage at the 3′-end of 18S rRNA and is required for the final maturation step of 18S rRNA in vivo and in vitro. More generally, our data show that the intrinsic ability of RNA to form stable structural switches is exploited to order and regulate RNA-dependent biological processes. PMID:20934433

  2. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    PubMed

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  3. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  4. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  6. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae.

    PubMed

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-02-27

    Methylation of ribose sugars at the 2'-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2'-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5' central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D' box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae

    PubMed Central

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-01-01

    Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  8. Update on Acanthamoeba jacobsi genotype T15, including full-length 18S rDNA molecular phylogeny.

    PubMed

    Corsaro, Daniele; Köhsler, Martina; Montalbano Di Filippo, Margherita; Venditti, Danielle; Monno, Rosa; Di Cave, David; Berrilli, Federica; Walochnik, Julia

    2017-04-01

    Free-living amoebae of the genus Acanthamoeba are worldwide present in natural and artificial environments, and are also clinically important, as causative agents of diseases in humans and other animals. Acanthamoeba comprises several species, historically assigned to one of the three groups based on their cyst morphology, but presently recognized as at least 20 genotypes (T1-T20) on the basis of their nuclear 18S ribosomal RNA (rRNA) gene (18S rDNA) sequences. While strain identification may usually be achieved targeting short (<500 bp) 18S ribosomal DNA (rDNA) fragments, the use of full-length gene sequences (>2200 bp) is necessary for correct genotype description and reliable molecular phylogenetic inference. The genotype T15, corresponding to Acanthamoeba jacobsi, is the only genotype described on the basis of partial sequences (~1500 bp). While this feature does not prevent the correct identification of the strains, having only partial sequences renders the genotype T15 not completely defined and may furthermore affect its position in the Acanthamoeba molecular tree. Here, we complete this gap, by obtaining full-length 18S rDNA sequences from eight A. jacobsi strains, genotype T15. Morphologies and physiological features of isolated strains are reported. Molecular phylogeny based on full 18S rDNA confirms some previous suggestions for a genetic link between T15 and T13, T16, and T19, with T19 as sister-group to T15.

  9. 18S rRNA processing requires base pairings of snR30 H/ACA snoRNA to eukaryote-specific 18S sequences.

    PubMed

    Fayet-Lebaron, Eléonore; Atzorn, Vera; Henry, Yves; Kiss, Tamás

    2009-05-06

    The H/ACA RNAs represent an abundant, evolutionarily conserved and functionally diverse class of non-coding RNAs. Many H/ACA RNAs direct pseudouridylation of rRNAs and snRNAs, while members of the rapidly growing group of 'orphan' H/ACA RNAs participate in pre-rRNA processing, telomere synthesis and probably, in other nuclear processes. The yeast snR30 'orphan' H/ACA snoRNA has long been known to function in the nucleolytic processing of 18S rRNA, but its molecular role remained unknown. Here, we provide biochemical and genetic evidence demonstrating that during pre-rRNA processing, two evolutionarily conserved sequence elements in the 3'-hairpin of snR30 base-pair with short pre-rRNA sequences located in the eukaryote-specific internal region of 18S rRNA. The newly discovered snR30-18S base-pairing interactions are essential for 18S rRNA production and they constitute a complex snoRNA target RNA transient structure that is novel to H/ACA RNAs. We also demonstrate that besides the 18S recognition motifs, the distal part of the 3'-hairpin of snR30 contains an additional snoRNA element that is essential for 18S rRNA processing and that functions most likely as a snoRNP protein-binding site.

  10. Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S).

    PubMed

    Rix, Michael G; Harvey, Mark S; Roberts, J Dale

    2008-03-01

    The spider family Micropholcommatidae is an enigmatic taxon of uncertain limits and uncertain affinities. Various phylogenetic hypotheses have been proposed for the family, but these hypotheses have never been tested with a robust phylogenetic analysis. The existence of similar Australasian and New World taxa, the possibility of morphological convergence associated with extreme 'smallness', and the apparent paucity of synapomorphic morphological characters, have all clouded generic relationships in this group. We used fragments from two nuclear ribosomal RNA genes (18S and 28S) to test the monophyly and phylogenetic position of the Micropholcommatidae. The analyses incorporated 50 ingroup spider species, including 23 micropholcommatid species and representatives from 14 other spider families. Ribosomal RNA secondary structures were inferred for the V3-V5 region of the 18S rRNA gene, and Domain II of the 28S rRNA gene of Hickmania troglodytes [Higgins, E.T., Petterd, W.F., 1883. Description of a new cave-inhabiting spider, together with notes on mammalian remains from a recently discovered cave in the Chudleigh district. Pap. Proc. R. Soc. Tasman. 1882, 191-192]. These secondary structures were used to guide multiple sequence alignments, and determine the position and nature of indels in different taxa. Secondary structure information was also incorporated into a structurally partitioned rRNA analysis in MrBayes Version 3.1.2, using a doublet model of nucleotide substitution. This structurally partitioned rRNA analysis provided a less resolved but more conservative and informative estimate of phylogeny than an otherwise identical, unpartitioned rDNA analysis. With the exception of the Chilean species Teutoniella cekalovici [Platnick, N.I., Forster, R.R., 1986. On Teutoniella, an American genus of the spider family Micropholcommatidae (Araneae, Palpimanoidea). Am. Mus. Novit. 2854, 1-9], the family Micropholcommatidae was found to be monophyletic with three

  11. Nop9 binds the central pseudoknot region of 18S rRNA

    PubMed Central

    Wang, Bing

    2017-01-01

    Abstract The assembly of eukaryotic ribosomes requires numerous factors that transiently associate with evolving pre-ribosomal particles. The Pumilio repeat-containing protein Nop9 briefly associates with the 90S pre-ribosome during its co-transcriptional assembly. Here, we show that Nop9 specifically binds an 11-nucleotide sequence of 18S rRNA that forms the 3΄ side of the central pseudoknot and helix 28 in the mature subunit. Crystal structures of Nop9 in the free and RNA-bound states reveal a new type of Pumilio repeat protein with a distinct structure, target sequence and RNA-binding mode. Nop9 contains 10 Pumilio repeats arranged into a U-shaped scaffold. The target RNA is recognized by two stretches of repeats in a bipartite manner, and three central bases are unrecognized as a result of the degeneracy of repeats 6 and 7. Our data suggest that Nop9 regulates the folding of 18S rRNA at early assembly stages of 90S. PMID:28053123

  12. Nop9 binds the central pseudoknot region of 18S rRNA.

    PubMed

    Wang, Bing; Ye, Keqiong

    2017-04-07

    The assembly of eukaryotic ribosomes requires numerous factors that transiently associate with evolving pre-ribosomal particles. The Pumilio repeat-containing protein Nop9 briefly associates with the 90S pre-ribosome during its co-transcriptional assembly. Here, we show that Nop9 specifically binds an 11-nucleotide sequence of 18S rRNA that forms the 3΄ side of the central pseudoknot and helix 28 in the mature subunit. Crystal structures of Nop9 in the free and RNA-bound states reveal a new type of Pumilio repeat protein with a distinct structure, target sequence and RNA-binding mode. Nop9 contains 10 Pumilio repeats arranged into a U-shaped scaffold. The target RNA is recognized by two stretches of repeats in a bipartite manner, and three central bases are unrecognized as a result of the degeneracy of repeats 6 and 7. Our data suggest that Nop9 regulates the folding of 18S rRNA at early assembly stages of 90S. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  14. Effect of DNA methylation on 18S rRNA gene sequences during culture of Taxus chinensis cells.

    PubMed

    Xiang, Fu; Li, Liqing; Yin, Rui; Jin, Wenwen; Yu, Longjiang

    2009-01-01

    * Author for correspondence and reprint requests Z. Naturforsch. 64c, 418-420 (2009); received December 15, 2008 Cell suspension culture has rapidly become an alternative source of taxol, an anticancer compound. To investigate the role of DNA methylation in the cultural course of Taxus chinensis cells, analyses of 18S rRNA gene sequences of cultured T chinensis cells and related species were conducted. The phylogenetic analysis of 18S rRNA gene sequences indicated that HG-1 (the cultured T chinensis cells), like T mairei (the natural variety of T chinensis), should be a new variety of T chinensis, and cell culture can change the 18S rRNA gene sequence at the level of species despite 18S rRNA is the most conserved gene. The analyses of the CpG and TpG+CpA relative abundance and GC content of the 18S rRNA gene sequences made clear that DNA methylation contributed to changes of the 18S rRNA gene sequence of HG-1 at the level of species, which can make HG-1 to become a new variety of 7 chinensis.

  15. [Estimation of postmortem interval using microRNA and 18S rRNA degradation in rat cardiac muscle].

    PubMed

    Li, Wen-can; Ma, Kai-jun; Zhang, Ping; Wang, Hui-jun; Shen, Yi-wen; Zhou, Yue-qin; Zhao, Zi-qin; Ma, Duan; Chen, Long

    2010-12-01

    To explore the relationship between the time-dependent level changes of microRNA and 18S rRNA and the different postmortem interval (PMI) in rat cardiac muscle. SD rats were sacrificed by cervical dislocation and placed at ambient temperature 25 degrees C with a humidity of 50%. Total RNA was extracted from the rat cardiac muscle at different time points after death. The levels of miR-1-2 and 18S rRNA were examined using real-time PCR in rat cardiac muscle. The results were expressed by cycle threshold (Ct) value to explore relationship between PMI and Ct value, and the regression functions were established to estimate PMI. The miR-1-2 level in rat myocardial tissue showed no significant changes within 120 h after death, and then began to decline. The 18S rRNA level increased gradually within 96 h after death, and then declined slowly. The nonlinear relationships were established between Ct value (18S rRNA), deltaCt value (difference between 18S rRNA and miR-1-2) and PMI. The R2 of conics fitting were 0.9487 and 0.8072, respectively. Ct value of 18S rRNA and deltaCt value present a good correlation with PMI, and can be markers for estimating early PMI.

  16. 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta.

    PubMed

    Mackey, L Y; Winnepenninckx, B; De Wachter, R; Backeljau, T; Emschermann, P; Garey, J R

    1996-05-01

    The Ento- and Ectoprocta are sometimes placed together in the Bryozoa, which have variously been regarded as proto- or deuterostomes. However, Entoprocta have also been allied to the pseudocoelomates, while Ectoprocta are often united with the Brachiopoda and Phoronida in the (super)phylum Lophophorata. Hence, the phylogenetic relationships of these taxa are still much debated. We determined complete 18S rRNA sequences of two entoprocts, an ectoproct, an inarticulate brachiopod, a phoronid, two annelids, and a platyhelminth. Phylogenetic analyses of these data show that (1) entoprocts and lophophorates have spiralian, protostomous affinities, (2) Ento- and Ectoprocta are not sister taxa, (3) phoronids and brachiopods form a monophyletic clade, and (4) neither Ectoprocta or Annelida appear to be monophyletic. Both deuterostomous and pseudocoelomate features may have arisen at least two times in evolutionary history. These results advocate a Spiralia-Radialia-based classification rather than one based on the Protostomia-Deuterostomia concept.

  17. Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences.

    PubMed

    Yamasaki, Hiroshi; Fujimoto, Shinta; Miyazaki, Katsumi

    2015-01-01

    Loricifera is an enigmatic metazoan phylum; its morphology appeared to place it with Priapulida and Kinorhyncha in the group Scalidophora which, along with Nematoida (Nematoda and Nematomorpha), comprised the group Cycloneuralia. Scarce molecular data have suggested an alternative phylogenetic hypothesis, that the phylum Loricifera is a sister taxon to Nematomorpha, although the actual phylogenetic position of the phylum remains unclear. Ecdysozoan phylogeny was reconstructed through maximum-likelihood (ML) and Bayesian inference (BI) analyses of nuclear 18S and 28S rRNA gene sequences from 60 species representing all eight ecdysozoan phyla, and including a newly collected loriciferan species. Ecdysozoa comprised two clades with high support values in both the ML and BI trees. One consisted of Priapulida and Kinorhyncha, and the other of Loricifera, Nematoida, and Panarthropoda (Tardigrada, Onychophora, and Arthropoda). The relationships between Loricifera, Nematoida, and Panarthropoda were not well resolved. Loricifera appears to be closely related to Nematoida and Panarthropoda, rather than grouping with Priapulida and Kinorhyncha, as had been suggested by previous studies. Thus, both Scalidophora and Cycloneuralia are a polyphyletic or paraphyletic groups. In addition, Loricifera and Nematomorpha did not emerge as sister groups.

  18. Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers

    PubMed Central

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M.; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies. PMID:24516555

  19. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers.

    PubMed

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies.

  20. Analysis of rRNA processing and translation in mammalian cells using a synthetic 18S rRNA expression system.

    PubMed

    Burman, Luke G; Mauro, Vincent P

    2012-09-01

    Analysis of processing, assembly, and function of higher eukaryotic ribosomal RNA (rRNA) has been hindered by the lack of an expression system that enables rRNA to be modified and then examined functionally. Given the potential usefulness of such a system, we have developed one for mammalian 18S rRNA. We inserted a sequence tag into expansion segment 3 of mouse 18S rRNA to monitor expression and cleavage by hybridization. Mutations were identified that confer resistance to pactamycin, allowing functional analysis of 40S ribosomal subunits containing synthetic 18S rRNAs by selectively blocking translation from endogenous (pactamycin-sensitive) subunits. rRNA constructs were suitably expressed in transfected cells, shown to process correctly, incorporate into ≈ 15% of 40S subunits, and function normally based on various criteria. After rigorous analysis, the system was used to investigate the importance of sequences that flank 18S rRNA in precursor transcripts. Although deletion analysis supported the requirement of binding sites for the U3 snoRNA, it showed that a large segment of the 5' external transcribed spacer and the entire first internal transcribed spacer, both of which flank 18S rRNA, are not required. The success of this approach opens the possibility of functional analyses of ribosomes, with applications in basic research and synthetic biology.

  1. Analysis of rRNA processing and translation in mammalian cells using a synthetic 18S rRNA expression system

    PubMed Central

    Burman, Luke G.; Mauro, Vincent P.

    2012-01-01

    Analysis of processing, assembly, and function of higher eukaryotic ribosomal RNA (rRNA) has been hindered by the lack of an expression system that enables rRNA to be modified and then examined functionally. Given the potential usefulness of such a system, we have developed one for mammalian 18S rRNA. We inserted a sequence tag into expansion segment 3 of mouse 18S rRNA to monitor expression and cleavage by hybridization. Mutations were identified that confer resistance to pactamycin, allowing functional analysis of 40S ribosomal subunits containing synthetic 18S rRNAs by selectively blocking translation from endogenous (pactamycin-sensitive) subunits. rRNA constructs were suitably expressed in transfected cells, shown to process correctly, incorporate into ≈15% of 40S subunits, and function normally based on various criteria. After rigorous analysis, the system was used to investigate the importance of sequences that flank 18S rRNA in precursor transcripts. Although deletion analysis supported the requirement of binding sites for the U3 snoRNA, it showed that a large segment of the 5′ external transcribed spacer and the entire first internal transcribed spacer, both of which flank 18S rRNA, are not required. The success of this approach opens the possibility of functional analyses of ribosomes, with applications in basic research and synthetic biology. PMID:22718970

  2. Genus Tetrastemma Ehrenberg, 1831 (Phylum Nemertea)--a natural group? Phylogenetic relationships inferred from partial 18S rRNA sequences.

    PubMed

    Strand, Malin; Sundberg, Per

    2005-10-01

    We investigated the monophyletic status of the hoplonemertean taxon Tetrastemma by reconstructing the phylogeny for 22 specimens assigned to this genus, together with another 25 specimens from closely related hoplonemertean genera. The phylogeny was based on partial 18S rRNA sequences using Bayesian and maximum likelihood analyses. The included Tetrastemma-species formed a well-supported clade, although the within-taxon relationships were unsettled. We conclude that the name Tetrastemma refers to a monophyletic taxon, but that it cannot be defined by morphological synapomorphies, and our results do not imply that all the over 100 species assigned to this genus belong to it. The results furthermore indicate that the genera Amphiporus and Emplectonema are non-monophyletic.

  3. Structural diversity of eukaryotic 18S rRNA and its impact on alignment and phylogenetic reconstruction.

    PubMed

    Xie, Qiang; Lin, Jinzhong; Qin, Yan; Zhou, Jianfu; Bu, Wenjun

    2011-02-01

    Ribosomal RNAs are important because they catalyze the synthesis of peptides and proteins. Comparative studies of the secondary structure of 18S rRNA have revealed the basic locations of its many length-conserved and length-variable regions. In recent years, many more sequences of 18S rDNA with unusual lengths have been documented in GenBank. These data make it possible to recognize the diversity of the secondary and tertiary structures of 18S rRNAs and to identify the length-conserved parts of 18S rDNAs. The longest 18S rDNA sequences of almost every known eukaryotic phylum were included in this study. We illustrated the bioinformatics-based structure to show that, the regions that are more length-variable, regions that are less length-variable, the splicing sites for introns, and the sites of A-minor interactions are mostly distributed in different parts of the 18S rRNA. Additionally, this study revealed that some length-variable regions or insertion positions could be quite close to the functional part of the 18S rRNA of Foraminifera organisms. The tertiary structure as well as the secondary structure of 18S rRNA can be more diverse than what was previously supposed. Besides revealing how this interesting gene evolves, it can help to remove ambiguity from the alignment of eukaryotic 18S rDNAs and to improve the performance of 18S rDNA in phylogenetic reconstruction. Six nucleotides shared by Archaea and Eukaryota but rarely by Bacteria are also reported here for the first time, which might further support the supposed origin of eukaryote from archaeans.

  4. Yeast 18 S rRNA Is Directly Involved in the Ribosomal Response to Stringent AUG Selection during Translation Initiation*

    PubMed Central

    Nemoto, Naoki; Singh, Chingakham Ranjit; Udagawa, Tsuyoshi; Wang, Suzhi; Thorson, Elizabeth; Winter, Zachery; Ohira, Takahiro; Ii, Miki; Valášek, Leoš; Brown, Susan J.; Asano, Katsura

    2010-01-01

    In eukaryotes, the 40 S ribosomal subunit serves as the platform of initiation factor assembly, to place itself precisely on the AUG start codon. Structural arrangement of the 18 S rRNA determines the overall shape of the 40 S subunit. Here, we present genetic evaluation of yeast 18 S rRNA function using 10 point mutations altering the polysome profile. All the mutants reduce the abundance of the mutant 40 S, making it limiting for translation initiation. Two of the isolated mutations, G875A, altering the core of the platform domain that binds eIF1 and eIF2, and A1193U, changing the h31 loop located below the P-site tRNAiMet, show phenotypes indicating defective regulation of AUG selection. Evidence is provided that these mutations reduce the interaction with the components of the preinitiation complex, thereby inhibiting its function at different steps. These results indicate that the 18 S rRNA mutations impair the integrity of scanning-competent preinitiation complex, thereby altering the 40 S subunit response to stringent AUG selection. Interestingly, nine of the mutations alter the body/platform domains of 18 S rRNA, potentially affecting the bridges to the 60 S subunit, but they do not change the level of 18 S rRNA intermediates. Based on these results, we also discuss the mechanism of the selective degradation of the mutant 40 S subunits. PMID:20699223

  5. Exploring human 40S ribosomal proteins binding to the 18S rRNA fragment containing major 3'-terminal domain.

    PubMed

    Gopanenko, Alexander V; Malygin, Alexey A; Karpova, Galina G

    2015-02-01

    Association of ribosomal proteins with rRNA during assembly of ribosomal subunits is an intricate process, which is strictly regulated in vivo. As for the assembly in vitro, it was reported so far only for prokaryotic subunits. Bacterial ribosomal proteins are capable of selective binding to 16S rRNA as well as to its separate morphological domains. In this work, we explored binding of total protein of human 40S ribosomal subunit to the RNA transcript corresponding to the major 3'-domain of 18S rRNA. We showed that the resulting ribonucleoprotein particles contained almost all of the expected ribosomal proteins, whose binding sites are located in this 18S rRNA domain in the 40S subunit, together with several nonspecific proteins. The binding in solution was accompanied with aggregation of the RNA-protein complexes. Ribosomal proteins bound to the RNA transcript protected from chemical modification mostly those 18S rRNA nucleotides that are known to be involved in binding with the proteins in the 40S subunit and thereby demonstrated their ability to selectively bind to the rRNA in vitro. The possible implication of unstructured extensions of eukaryotic ribosomal proteins in their nonspecific binding with rRNA and in subsequent aggregation of the resulting complexes is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Soil DNA Extraction Procedure Influences Protist 18S rRNA Gene Community Profiling Outcome.

    PubMed

    Santos, Susana S; Nunes, Inês; Nielsen, Tue K; Jacquiod, Samuel; Hansen, Lars H; Winding, Anne

    2017-07-01

    Advances in sequencing technologies allow deeper studies of the soil protist diversity and function. However, little attention has been given to the impact of the chosen soil DNA extraction procedure to the overall results. We examined the effect of three acknowledged DNA recovery methods, two manual methods (ISOm-11063, GnS-GII) and one commercial kit (MoBio), on soil protist community structures obtained from different sites with different land uses. Results from 18S rRNA gene amplicon sequencing suggest that DNA extraction method significantly affect the replicate homogeneity, the total number of operational taxonomic units (OTUs) recovered and the overall taxonomic structure and diversity of soil protist communities. However, DNA extraction effects did not overwhelm the natural variation among samples, as the community data still strongly grouped by geographical location. The commercial DNA extraction kit was associated with the highest diversity estimates and with a corresponding higher retrieval of Excavata, Cercozoa and Amoebozoa-related taxa. Overall, our findings indicate that this extraction offers a compromise between rare and dominant taxa representation, while providing high replication reproducibility. A comprehensive understanding of the DNA extraction techniques impact on soil protist diversity can enable more accurate diversity assays. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Identification of new 18S rRNA strains of Babesia canis isolated from dogs with subclinical babesiosis.

    PubMed

    Łyp, P; Adaszek, Ł; Furmaga, B; Winiarczyk, S

    2015-01-01

    In this study, we used PCR to detect and characterize B. canis from naturally infected dogs in Poland with subclinical babesiosis by amplifying and sequencing a portion of the 18S ribosomal RNA (rRNA) gene. Venous blood samples were collected from ten dogs with subclinical babesiosis. A 559-bp fragment of the B. canis 18S rRNA gene was amplified by PCR. Sequencing of the PCR products led to the identification of a new variant of Babesia canis, differing from the previously detected protozoa genotypes (18S rRNA-A and 18S rRNA-B) with nucleotide substitutions in positions 150 and 151 of the tested gene fragment. The results indicate the emergence within the Polish territory of a new, previously unencountered Babesia canis genotype responsible for the development of subclinical babesiosis.

  8. 18S rDNA Phylogeny of Lamproderma and Allied Genera (Stemonitales, Myxomycetes, Amoebozoa)

    PubMed Central

    Fiore-Donno, Anna Maria; Kamono, Akiko; Meyer, Marianne; Schnittler, Martin; Fukui, Manabu; Cavalier-Smith, Thomas

    2012-01-01

    The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (∼600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species. PMID:22530009

  9. 18S rDNA phylogeny of lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa).

    PubMed

    Fiore-Donno, Anna Maria; Kamono, Akiko; Meyer, Marianne; Schnittler, Martin; Fukui, Manabu; Cavalier-Smith, Thomas

    2012-01-01

    The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (~600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.

  10. Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification.

    PubMed

    Buchhaupt, Markus; Sharma, Sunny; Kellner, Stefanie; Oswald, Stefanie; Paetzold, Melanie; Peifer, Christian; Watzinger, Peter; Schrader, Jens; Helm, Mark; Entian, Karl-Dieter

    2014-01-01

    Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2'-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2'-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process.

  11. Partial Methylation at Am100 in 18S rRNA of Baker's Yeast Reveals Ribosome Heterogeneity on the Level of Eukaryotic rRNA Modification

    PubMed Central

    Kellner, Stefanie; Oswald, Stefanie; Paetzold, Melanie; Peifer, Christian; Watzinger, Peter; Schrader, Jens; Helm, Mark; Entian, Karl-Dieter

    2014-01-01

    Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2′-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2′-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process. PMID:24586927

  12. Sequencing and characterization of full-length sequence of 18S rRNA gene from the reniform nematode

    USDA-ARS?s Scientific Manuscript database

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Variation within this gene is rare but it has been observed in few metazoan species. For the first time, we h...

  13. Conservation of the primary structure at the 3' end of 18S rRNA from eucaryotic cells.

    PubMed

    Hagenbüchle, O; Santer, M; Steitz, J A; Mans, R J

    1978-03-01

    DNA sequencing methods have been used to determine a sequence of about 20 nucleotides at the 3' termini of various 18S (small ribosomal subunit) RNA molecules. Polyadenylated rRNA was first synthesized using the enzyme ATP:polynucleotidyl transferase from mainze. Then in the presence of an oligonucleotide primer uniquely complementary to the end of each adenylated rRNA, a cDNA copy was produced using AMV reverse transcriptase. In every case, the cDNA transcript was of finite size, which we ascribe to the appearance of an oligonucleotide containing m62A near the 3' end of the 18S rRNAs. Sequences at the 3' termini of 18S rRNA molecules from the four eucaryotic species examined here (mouse, silk worm, wheat embryo and slime mold) are highly conserved. They also exhibit strong homology to the 3' end of E. coli 16S rRNA. Two important differences, however, are apparent. First, the 16S sequence CCUCC, implicated in mRNA binding by E. coli ribosomes, is absent from each eucaryotic rRNA sequence. Second, a purine-rich region which exhibits extensive complementarity to the 5' noncoding regions of many eucaryotic mRNAs appears consistently.

  14. [Binding of human ribosomal protein S13 to the central domain of 18S rRNA].

    PubMed

    Ivanov, A V; Malygin, A A; Karpova, G G

    2011-01-01

    Human ribosomal protein S13 is a structural element of the small subunit of ribosome. It is a homologue of eubacterial ribosomal protein S15, and, besides, it possesses an extended N-terminal region, characteristic of the S15p family in eukaryotes and archaea. In the present study, we investigated binding of recombinant ribosomal protein S13 and its mutants containing deletions or substitutions of amino acid residues in different regions with an RNA transcript corresponding to a fragment of the central domain of 18S rRNA. We found that replacement of ultra-conservative residues H101 and D108 as well as deletions of either 29 C-terminal or 27 N-terminal residues substantially reduced affinity of the protein to the RNA transcript. Deletion of 54 C-terminal or 80 N-terminal residues completely deprived the protein of binding capacity. Using a footprinting assay, we identified sites in the RNA transcript changing their accessibilities to action of hydroxyl radicals under binding of either full-length protein S13 or its mutant lacking 27 N-terminal residues. It is shown that these sites are located mainly in helix H22 of the 18S rRNA and in the region of its junction with helix H20 and are consistent predominantly with contacts of the rRNA with the conserved part of the protein. We concluded that binding of ribosomal protein S13 to 18S rRNA is provided mainly by conserved motifs of the protein corresponding to those motifs in its eubacterial homologue that are involved in the interaction with 16S rRNA in the 30S subunit. Role of the N-terminal region of the protein in its binding to the central domain of 18S rRNA is discussed.

  15. Metabolism of 18S rRNA in rat liver cells in different functional states of protein-synthesizing apparatus

    SciTech Connect

    Chirkov, G.P.; Druzhinina, M.K.; Todorov, I.N.

    1986-04-10

    The ratio of the absolute radioactivities of 28S and 18S RNAs in the fractions of membrane-bound and free polysomes and the fraction of free rat liver ribosomes was studied under conditions of inhibition of translation by cycloheximide, insulin, and cAMP. It was found that insulin and cAMP, in contrast to cycloheximide, do not induce selective degradation of 18S rRNA. The results are discussed from the standpoint of the possible role of the phosphorylation of protein S6 in the degradation of the 40S ribosomal subunit.

  16. Radiolaria divided into Polycystina and Spasmaria in combined 18S and 28S rDNA phylogeny.

    PubMed

    Krabberød, Anders K; Bråte, Jon; Dolven, Jane K; Ose, Randi F; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis.

  17. Radiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny

    PubMed Central

    Dolven, Jane K.; Ose, Randi F.; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R.; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis. PMID:21853146

  18. Towards an 18S phylogeny of hexapods: accounting for group-specific character covariance in optimized mixed nucleotide/doublet models.

    PubMed

    Misof, Bernhard; Niehuis, Oliver; Bischoff, Inge; Rickert, Andreas; Erpenbeck, Dirk; Staniczek, Arnold

    2007-01-01

    The phylogenetic diversification of Hexapoda is still not fully understood. Morphological and molecular analyses have resulted in partly contradicting hypotheses. In molecular analyses, 18S sequences are the most frequently employed, but it appears that 18S sequences do not contain enough phylogenetic signals to resolve basal relationships of hexapod lineages. Until recently, character interdependence in these data has never been treated seriously, though possibly accounting for the occurrence of biased results. However, software packages are readily available which can incorporate information on character interdependence within a Bayesian approach. Accounting for character covariation derived from a hexapod consensus secondary structure model and applying mixed DNA/RNA substitution models, our Bayesian analysis of 321 hexapod sequences yielded a partly robust tree that depicts many hexapod relationships congruent with morphological considerations. It appears that the application of mixed DNA/RNA models removes many of the anomalies seen in previous studies. We focus on basal hexapod relationships for which unambiguous results are missing. In particular, the strong support for a "Chiastomyaria" clade (Ephemeroptera+Neoptera) obtained in Kjer's [2004. Aligned 18S and insect phylogeny. Syst. Biol. 53, 1-9] study of 18S sequences could not be confirmed by our analysis. The hexapod tree can be rooted with monophyletic Entognatha but not with a clade Ellipura (Collembola+Protura). Compared to previously published contributions, accounting for character interdependence in analyses of rRNA data presents an improvement of phylogenetic resolution. We suggest that an integration of explicit clade-specific rRNA structural refinements is not only possible but an important step in the optimization of substitution models dealing with rRNA data.

  19. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. 18S ribosomal RNA gene sequences of Cochliopodium (Himatismenida) and the phylogeny of Amoebozoa.

    PubMed

    Kudryavtsev, Alexander; Bernhard, Detlef; Schlegel, Martin; Chao, Ema E Y; Cavalier-Smith, Thomas

    2005-08-01

    Cochliopodium is a very distinctive genus of discoid amoebae covered by a dorsal tectum of carbohydrate microscales. Its phylogenetic position is unclear, since although sharing many features with naked "gymnamoebae", the tectum sets it apart. We sequenced 18S ribosomal RNA genes from three Cochliopodium species (minus, spiniferum and Cochliopodium sp., a new species resembling C. minutum). Phylogenetic analysis shows Cochliopodium as robustly holophyletic and within Amoebozoa, in full accord with morphological data. Cochliopodium is always one of the basal branches within Amoebozoa but its precise position is unstable. In Bayesian analysis it is sister to holophyletic Glycostylida, but distance trees mostly place it between Dermamoeba and a possibly artifactual long-branch cluster including Thecamoeba. These positions are poorly supported and basal amoebozoan branching ill-resolved, making it unclear whether Discosea (Glycostylida, Himatismenida, Dermamoebida) is holophyletic; however, Thecamoeba seems not specifically related to Dermamoeba. We also sequenced the small-subunit rRNA gene of Vannella persistens, which constantly grouped with other Vannella species, and two Hartmannella strains. Our trees suggest that Vexilliferidae, Variosea and Hartmannella are polyphyletic, confirming the existence of two very distinct Hartmannella clades: that comprising H. cantabrigiensis and another divergent species is sister to Glaeseria, whilst Hartmannella vermiformis branches more deeply.

  1. Poly(A)-specific ribonuclease is a nuclear ribosome biogenesis factor involved in human 18S rRNA maturation.

    PubMed

    Montellese, Christian; Montel-Lehry, Nathalie; Henras, Anthony K; Kutay, Ulrike; Gleizes, Pierre-Emmanuel; O'Donohue, Marie-Françoise

    2017-04-10

    The poly-A specific ribonuclease (PARN), initially characterized for its role in mRNA catabolism, supports the processing of different types of non-coding RNAs including telomerase RNA. Mutations in PARN are linked to dyskeratosis congenita and pulmonary fibrosis. Here, we show that PARN is part of the enzymatic machinery that matures the human 18S ribosomal RNA (rRNA). Consistent with its nucleolar steady-state localization, PARN is required for 40S ribosomal subunit production and co-purifies with 40S subunit precursors. Depletion of PARN or expression of a catalytically-compromised PARN mutant results in accumulation of 3΄ extended 18S rRNA precursors. Analysis of these processing intermediates reveals a defect in 3΄ to 5΄ trimming of the internal transcribed spacer 1 (ITS1) region, subsequent to endonucleolytic cleavage at site E. Consistent with a function of PARN in exonucleolytic trimming of 18S-E pre-rRNA, recombinant PARN can process the corresponding ITS1 RNA fragment in vitro. Trimming of 18S-E pre-rRNA by PARN occurs in the nucleus, upstream of the final endonucleolytic cleavage by the endonuclease NOB1 in the cytoplasm. These results identify PARN as a new component of the ribosome biogenesis machinery in human cells. Defects in ribosome biogenesis could therefore underlie the pathologies linked to mutations in PARN. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Poly(A)-specific ribonuclease is a nuclear ribosome biogenesis factor involved in human 18S rRNA maturation

    PubMed Central

    Montellese, Christian; Montel-Lehry, Nathalie; Henras, Anthony K.; Kutay, Ulrike

    2017-01-01

    Abstract The poly-A specific ribonuclease (PARN), initially characterized for its role in mRNA catabolism, supports the processing of different types of non-coding RNAs including telomerase RNA. Mutations in PARN are linked to dyskeratosis congenita and pulmonary fibrosis. Here, we show that PARN is part of the enzymatic machinery that matures the human 18S ribosomal RNA (rRNA). Consistent with its nucleolar steady-state localization, PARN is required for 40S ribosomal subunit production and co-purifies with 40S subunit precursors. Depletion of PARN or expression of a catalytically-compromised PARN mutant results in accumulation of 3΄ extended 18S rRNA precursors. Analysis of these processing intermediates reveals a defect in 3΄ to 5΄ trimming of the internal transcribed spacer 1 (ITS1) region, subsequent to endonucleolytic cleavage at site E. Consistent with a function of PARN in exonucleolytic trimming of 18S-E pre-rRNA, recombinant PARN can process the corresponding ITS1 RNA fragment in vitro. Trimming of 18S-E pre-rRNA by PARN occurs in the nucleus, upstream of the final endonucleolytic cleavage by the endonuclease NOB1 in the cytoplasm. These results identify PARN as a new component of the ribosome biogenesis machinery in human cells. Defects in ribosome biogenesis could therefore underlie the pathologies linked to mutations in PARN. PMID:28402503

  3. Compositional properties and thermal adaptation of 18S rRNA in vertebrates

    PubMed Central

    Varriale, Annalisa; Torelli, Giuseppe; Bernardi, Giorgio

    2008-01-01

    In order to investigate the influence of temperature on the GC level of the paired sequences of ribosomal 18S RNAs in vertebrates, we have studied their base composition in cold- and warm-blooded vertebrates using a stem-by-stem comparison. We observed that a number of stems of 18S ribosomal RNAs (rRNAs) are variable among species and that the majority of such stems are GC richer in warm-blooded than in cold-blooded vertebrates. We also constructed the secondary structures of the 18S rRNAs of a polar fish, a marsupial, and a monotreme to compare them with those of temperate/tropical fishes and of eutherians, respectively. In these cases, differences similar to those already mentioned were found. We conclude that there is a correlation between stem stability and body temperature even within the relatively limited temperature range of vertebrates. PMID:18567811

  4. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis

    PubMed Central

    Zorbas, Christiane; Nicolas, Emilien; Wacheul, Ludivine; Huvelle, Emmeline; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2015-01-01

    At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features. PMID:25851604

  5. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells.

    PubMed

    Kuchipudi, Suresh V; Tellabati, Meenu; Nelli, Rahul K; White, Gavin A; Perez, Belinda Baquero; Sebastian, Sujith; Slomka, Marek J; Brookes, Sharon M; Brown, Ian H; Dunham, Stephen P; Chang, Kin-Chow

    2012-10-08

    One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA

  6. Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575.

    PubMed

    Figaro, Sabine; Wacheul, Ludivine; Schillewaert, Stéphanie; Graille, Marc; Huvelle, Emmeline; Mongeard, Rémi; Zorbas, Christiane; Lafontaine, Denis L J; Heurgué-Hamard, Valérie

    2012-06-01

    Posttranscriptional and posttranslational modification of macromolecules is known to fine-tune their functions. Trm112 is unique, acting as an activator of both tRNA and protein methyltransferases. Here we report that in Saccharomyces cerevisiae, Trm112 is required for efficient ribosome synthesis and progression through mitosis. Trm112 copurifies with pre-rRNAs and with multiple ribosome synthesis trans-acting factors, including the 18S rRNA methyltransferase Bud23. Consistent with the known mechanisms of activation of methyltransferases by Trm112, we found that Trm112 interacts directly with Bud23 in vitro and that it is required for its stability in vivo. Consequently, trm112Δ cells are deficient for Bud23-mediated 18S rRNA methylation at position G1575 and for small ribosome subunit formation. Bud23 failure to bind nascent preribosomes activates a nucleolar surveillance pathway involving the TRAMP complexes, leading to preribosome degradation. Trm112 is thus active in rRNA, tRNA, and translation factor modification, ideally placing it at the interface between ribosome synthesis and function.

  7. Trm112 Is Required for Bud23-Mediated Methylation of the 18S rRNA at Position G1575

    PubMed Central

    Figaro, Sabine; Wacheul, Ludivine; Schillewaert, Stéphanie; Graille, Marc; Huvelle, Emmeline; Mongeard, Rémi; Zorbas, Christiane

    2012-01-01

    Posttranscriptional and posttranslational modification of macromolecules is known to fine-tune their functions. Trm112 is unique, acting as an activator of both tRNA and protein methyltransferases. Here we report that in Saccharomyces cerevisiae, Trm112 is required for efficient ribosome synthesis and progression through mitosis. Trm112 copurifies with pre-rRNAs and with multiple ribosome synthesis trans-acting factors, including the 18S rRNA methyltransferase Bud23. Consistent with the known mechanisms of activation of methyltransferases by Trm112, we found that Trm112 interacts directly with Bud23 in vitro and that it is required for its stability in vivo. Consequently, trm112Δ cells are deficient for Bud23-mediated 18S rRNA methylation at position G1575 and for small ribosome subunit formation. Bud23 failure to bind nascent preribosomes activates a nucleolar surveillance pathway involving the TRAMP complexes, leading to preribosome degradation. Trm112 is thus active in rRNA, tRNA, and translation factor modification, ideally placing it at the interface between ribosome synthesis and function. PMID:22493060

  8. 18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species.

    PubMed

    Albaina, Aitor; Aguirre, Mikel; Abad, David; Santos, María; Estonba, Andone

    2016-03-01

    The potential of the 18S rRNA V9 metabarcoding approach for diet assessment was explored using MiSeq paired-end (PE; 2 × 150 bp) technology. To critically evaluate the method's performance with degraded/digested DNA, the diets of two zooplanktivorous fish species from the Bay of Biscay, European sardine (Sardina pilchardus) and European sprat (Sprattus sprattus), were analysed. The taxonomic resolution and quantitative potential of the 18S V9 metabarcoding was first assessed both in silico and with mock and field plankton samples. Our method was capable of discriminating species within the reference database in a reliable way providing there was at least one variable position in the 18S V9 region. Furthermore, it successfully discriminated diet between both fish species, including habitat and diel differences among sardines, overcoming some of the limitations of traditional visual-based diet analysis methods. The high sensitivity and semi-quantitative nature of the 18S V9 metabarcoding approach was supported by both visual microscopy and qPCR-based results. This molecular approach provides an alternative cost and time effective tool for food-web analysis.

  9. The rRNA evolution and procaryotic phylogeny

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1986-01-01

    Studies of ribosomal RNA primary structure allow reconstruction of phylogenetic trees for prokaryotic organisms. Such studies reveal major dichotomy among the bacteria that separates them into eubacteria and archaebacteria. Both groupings are further segmented into several major divisions. The results obtained from 5S rRNA sequences are essentially the same as those obtained with the 16S rRNA data. In the case of Gram negative bacteria the ribosomal RNA sequencing results can also be directly compared with hybridization studies and cytochrome c sequencing studies. There is again excellent agreement among the several methods. It seems likely then that the overall picture of microbial phylogeny that is emerging from the RNA sequence studies is a good approximation of the true history of these organisms. The RNA data allow examination of the evolutionary process in a semi-quantitative way. The secondary structures of these RNAs are largely established. As a result it is possible to recognize examples of local structural evolution. Evolutionary pathways accounting for these events can be proposed and their probability can be assessed.

  10. The rRNA evolution and procaryotic phylogeny

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1986-01-01

    Studies of ribosomal RNA primary structure allow reconstruction of phylogenetic trees for prokaryotic organisms. Such studies reveal major dichotomy among the bacteria that separates them into eubacteria and archaebacteria. Both groupings are further segmented into several major divisions. The results obtained from 5S rRNA sequences are essentially the same as those obtained with the 16S rRNA data. In the case of Gram negative bacteria the ribosomal RNA sequencing results can also be directly compared with hybridization studies and cytochrome c sequencing studies. There is again excellent agreement among the several methods. It seems likely then that the overall picture of microbial phylogeny that is emerging from the RNA sequence studies is a good approximation of the true history of these organisms. The RNA data allow examination of the evolutionary process in a semi-quantitative way. The secondary structures of these RNAs are largely established. As a result it is possible to recognize examples of local structural evolution. Evolutionary pathways accounting for these events can be proposed and their probability can be assessed.

  11. Applied genomics: data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA.

    PubMed

    Demas, Allison; Oberstaller, Jenna; DeBarry, Jeremy; Lucchi, Naomi W; Srinivasamoorthy, Ganesh; Sumari, Deborah; Kabanywanyi, Abdunoor M; Villegas, Leopoldo; Escalante, Ananias A; Kachur, S Patrick; Barnwell, John W; Peterson, David S; Udhayakumar, Venkatachalam; Kissinger, Jessica C

    2011-07-01

    Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms.

  12. Detecting morphological convergence in true fungi, using 18S rRNA gene sequence data.

    PubMed

    Berbee, M L; Taylor, J W

    1992-01-01

    For the true fungi, phylogenetic relationships inferred from 18S ribosomal DNA sequence data agree with morphology when (1) the fungi exhibit diagnostic morphological characters, (2) the sequence-based phylogenetic groups are statistically supported, and (3) the ribosomal DNA evolves at roughly the same rate in the lineages being compared. 18S ribosomal RNA gene sequence data and biochemical data provide a congruent definition of true fungi. Sequence data support the traditional fungal subdivisions Ascomycotina and Basidiomycotina. In conflict with morphology, some zygomycetes group with chytrid water molds rather than with other terrestrial fungi, possibly owing to unequal rates of nucleotide substitutions among zygomycete lineages. Within the ascomycetes, the taxonomic consequence of simple or reduced morphology has been a proliferation of mutually incongruent classification systems. Sequence data provide plausible resolution of relationships for some cases where reduced morphology has created confusion. For example, phylogenetic trees from rDNA indicate that those morphologically simple ascomycetes classified as yeasts are polyphyletic and that forcible spore discharge was lost convergently from three lineages of ascomycetes producing flask-like fruiting bodies.

  13. Molecular phylogenetics of subclass Peritrichia (Ciliophora: Oligohymenophorea) based on expanded analyses of 18S rRNA sequences.

    PubMed

    Utz, Laura R P; Eizirik, Eduardo

    2007-01-01

    Phylogenetic relationships among peritrich ciliates remain unclear in spite of recent progress. To expand the analyses performed in previous studies, and to statistically test hypotheses of monophyly, we analyzed a broad sample of 18s rRNA sequences (including 15 peritrich genera), applying a conservative alignment strategy and several phylogenetic approaches. The main results are that: (i) the monophyly of Peritrichia cannot be rejected; (ii) the two main clades of Sessilida do not correspond to formally recognized taxa; (iii) the monophyly of genera Vorticella and Epistylis is significantly rejected; and (iv) morphological structures commonly used in peritrich taxonomy may be evolutionarily labile.

  14. PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries.

    PubMed

    Potvin, Marianne; Lovejoy, Connie

    2009-01-01

    Environmental clone libraries constructed using small subunit ribosomal RNA (rRNA) or other gene-specific primers have become the standard molecular approach for identifying microorganisms directly from their environment. This technique includes an initial polymerase chain reaction (PCR) amplification step of a phylogenetically useful marker gene using universal primers. Although it is acknowledged that such primers introduce biases, there have been few studies if any to date systematically examining such bias in eukaryotic microbes. We investigated some implications of such bias by constructing clone libraries using several universal primer pairs targeting rRNA genes. Firstly, we constructed artificial libraries using a known mix of small cultured pelagic arctic algae with representatives from five major lineages and secondly we investigated environmental samples using several primer pairs. No primer pair retrieved all of the original algae in the artificial clone libraries and all showed a favorable bias toward the dinoflagellate Polarella glacialis and a bias against the prasinophyte Micromonas and a pennate diatom. Several other species were retrieved by only one primer pair tested. Despite this, sequences from nine environmental libraries were diverse and contained representatives from all major eukaryotic clades expected in marine samples. Further, libraries from the same sample grouped together using Bray-Curtis clustering, irrespective of primer pairs. We conclude that environmental PCR-based techniques are sufficient to compare samples, but the total diversity will probably always be underestimated and relative abundance estimates should be treated with caution.

  15. Feasibility of transferring fluorescent in situ hybridization probes to an 18S rRNA gene phylochip and mapping of signal intensities.

    PubMed

    Metfies, Katja; Medlin, Linda K

    2008-05-01

    DNA microarray technology offers the possibility to analyze microbial communities without cultivation, thus benefiting biodiversity studies. We developed a DNA phylochip to assess phytoplankton diversity and transferred 18S rRNA probes from dot blot or fluorescent in situ hybridization (FISH) analyses to a microarray format. Similar studies with 16S rRNA probes have been done determined that in order to achieve a signal on the microarray, the 16S rRNA molecule had to be fragmented, or PCR amplicons had to be <150 bp in length to minimize the formation of a secondary structure in the molecule so that the probe could bind to the target site. We found different results with the 18S rRNA molecule. Four out of 12 FISH probes exhibited false-negative signals on the microarray; eight exhibited strong but variable signals using full-length 18S RNA molecules. A systematic investigation of the probe's accessibility to the 18S rRNA gene was made using Prymenisum parvum as the target. Fourteen additional probes identical to this target covered the regions not tested with existing FISH probes. Probes with a binding site in the first 900 bp of the gene generated positive signals. Six out of nine probes binding in the last 900 bp of the gene produced no signal. Our results suggest that although secondary structure affected probe binding, the effect is not the same for the 18S rRNA gene and the 16S rRNA gene. For the 16S rRNA gene, the secondary structure is stronger in the first half of the molecule, whereas in the 18S rRNA gene, the last half of the molecule is critical. Probe-binding sites within 18S rRNA gene molecules are important for the probe design for DNA phylochips because signal intensity appears to be correlated with the secondary structure at the binding site in this molecule. If probes are designed from the first half of the 18S rRNA molecule, then full-length 18S rRNA molecules can be used in the hybridization on the chip, avoiding the fragmentation and the

  16. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis.

    PubMed

    Zorbas, Christiane; Nicolas, Emilien; Wacheul, Ludivine; Huvelle, Emmeline; Heurgué-Hamard, Valérie; Lafontaine, Denis L J

    2015-06-01

    At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N(6)-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N(7)-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features. © 2015 Zorbas, Nicolas et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth

    PubMed Central

    Bai, Dongmei; Zhang, Jinfang; Li, Tingting; Hang, Runlai; Liu, Yong; Tian, Yonglu; Huang, Dadu; Qu, Linglong; Cao, Xiaofeng; Ji, Jiafu; Zheng, Xiaofeng

    2016-01-01

    Dysfunctions in ribosome biogenesis cause developmental defects and increased cancer susceptibility; however, the connection between ribosome assembly and tumorigenesis remains unestablished. Here we show that hCINAP (also named AK6) is required for human 18S rRNA processing and 40S subunit assembly. Homozygous CINAP−/− mice show embryonic lethality. The heterozygotes are viable and show defects in 18S rRNA processing, whereas no delayed cell growth is observed. However, during rapid growth, CINAP haploinsufficiency impairs protein synthesis. Consistently, hCINAP depletion in fast-growing cancer cells inhibits ribosome assembly and abolishes tumorigenesis. These data demonstrate that hCINAP reduction is a specific rate-limiting controller during rapid growth. Notably, hCINAP is highly expressed in cancers and correlated with a worse prognosis. Genome-wide polysome profiling shows that hCINAP selectively modulates cancer-associated translatome to promote malignancy. Our results connect the role of hCINAP in ribosome assembly with tumorigenesis. Modulation of hCINAP expression may be a promising target for cancer therapy. PMID:27477389

  18. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function.

    PubMed

    Ferreira-Cerca, Sébastien; Pöll, Gisela; Gleizes, Pierre-Emmanuel; Tschochner, Herbert; Milkereit, Philipp

    2005-10-28

    Despite the rising knowledge about ribosome function and structure and how ribosomal subunits assemble in vitro in bacteria, the in vivo role of many ribosomal proteins remains obscure both in pro- and eukaryotes. Our systematic analysis of yeast ribosomal proteins (r-proteins) of the small subunit revealed that most eukaryotic r-proteins fulfill different roles in ribosome biogenesis, making them indispensable for growth. Different r-proteins control distinct steps of nuclear and cytoplasmic pre-18S rRNA processing and, thus, ensure that only properly assembled ribosomes become engaged in translation. Comparative analysis of dynamic and steady-state maturation assays revealed that several r-proteins are required for efficient nuclear export of pre-18S rRNA, suggesting that they form an interaction platform with the export machinery. In contrast, the presence of other r-proteins is mainly required before nuclear export is initiated. Our studies draw a correlation between the in vitro assembly, structural localization, and in vivo function of r-proteins.

  19. Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence.

    PubMed

    Collins, A G

    1998-12-22

    Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians.

  20. Evaluating multiple alternative hypotheses for the origin of Bilateria: An analysis of 18S rRNA molecular evidence

    PubMed Central

    Collins, Allen G.

    1998-01-01

    Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians. PMID:9860990

  1. Molecular Phylogeny of Cypridoid Freshwater Ostracods (Crustacea: Ostracoda), Inferred from 18S and 28S rDNA Sequences.

    PubMed

    Hiruta, Shimpei F; Kobayashi, Norio; Katoh, Toru; Kajihara, Hiroshi

    2016-04-01

    With the aim of exploring phylogenetic relationships within Cypridoidea, the most species-rich superfamily among the podocopidan ostracods, we sequenced nearly the entire 18S rRNA gene (18S) and part of the 28S rRNA gene (28S) for 22 species in the order Podocopida, with representatives from all the major cypridoid families. We conducted phylogenetic analyses using the methods of maximum likelihood, minimum evolution, and Bayesian analysis. Our analyses showed monophyly for Cyprididae, one of the four families currently recognized in Cypridoidea. Candonidae turned out to be paraphyletic, and included three clades corresponding to the subfamilies Candoninae, Paracypridinae, and Cyclocypridinae. We propose restricting the name Candonidae s. str. to comprise what is now Candoninae, and raising Paracypridinae and Cyclocyprininae to family rank within the superfamily Cypridoidea.

  2. First description of heterogeneity in 18S rRNA genes in the haploid genome of Cryptosporidium andersoni Kawatabi type.

    PubMed

    Ikarashi, Makoto; Fukuda, Yasuhiro; Honma, Hajime; Kasai, Kenji; Kaneta, Yoshiyasu; Nakai, Yutaka

    2013-09-01

    The Apicomplexan Cryptosporidium andersoni, is a species of gastric Cryptosporidium, is frequently detected in older calves and adult cattle. Genotyping analyses based on 18S ribosomal RNA gene sequences have been performed on a novel C. andersoni genotype, namely the Kawatabi type, and the oocysts were classified into two distinct groups genotypically: Type A (the sequence in GenBank) and Type B (with a thymine nucleotide insertion not in Type A). This study analyzed 3775 cattle at a slaughterhouse and 310 cattle at a farm using microscopy and found 175 Cryptosporidium-positive animals: 171 from the slaughterhouse and four from the farm, and all infecting parasites were determined to be C. andersoni from 18S rRNA gene sequences determined from fecal DNA. In genotyping analyses with single isolated oocysts, about a half of analyzed ones were clearly classified into well known two genotypes (Type A and B). In addition to these two known genotypes, we have detected some oocysts showing mixed signals of Types A and B in the electropherogram from the automated sequencer (the Type C genotype). To determine the genotypic composition of sporozoites carried by the Type C oocysts, we analyzed their 18S rRNA gene sequences using a single sporozoite isolation procedure. Some sporozoites were classified as either Type A or Type B. However, more than half of the analyzed isolated sporozoites showed a mixed signal identical to that of Type C oocysts, and both the Type A and B signals were surely detectable from such sporozoites after a cloning procedure. In conclusion, C. andersoni carries two different genotypes heterogeneously in its haploid genome. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p.

    PubMed

    Buchhaupt, Markus; Meyer, Britta; Kötter, Peter; Entian, Karl-Dieter

    2006-09-01

    The nucleolar protein Nep1 and its human homologue were previously shown to be involved in the maturation of 18S rRNA and to interfere directly or indirectly with a methylation reaction. Here, we report that the loss-of-function mutation Deltasnr57 and multicopy expression of the ribosomal 40S subunit protein 19 (Rps19p) can partially suppress the Saccharomyces cerevisiae Deltanep1 growth defect. SnR57 mediates 2'-O-ribose-methylation of G(1570) in the 18S rRNA. By performing a three-hybrid screen, we isolated several short RNA sequences with strong binding affinity to Nep1p. All isolated RNAs shared a six-nucleotide consensus motif C/UUCAAC. Furthermore, one of the isolated RNAs exactly corresponded to nucleotides 1553-1577 of the 18S rRNA, which includes G(1570), the site of snR57-dependent 18S rRNA methylation. From protein-protein crosslink data and the cryo-EM map of the S. cerevisiae small ribosomal subunit, we suggest that Rps19p is localized in close vicinity to the Nep1p 18S rRNA binding site. Our results suggest that Nep1p binds adjacent to helix 47 of the 18S rRNA and possibly supports the association of Rps19p to pre-ribosomal particles.

  4. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes.

  5. Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

    PubMed Central

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  6. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data.

  7. The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene.

    PubMed

    Xue, Xiao-Feng; Dong, Yan; Deng, Wei; Hong, Xiao-Yue; Shao, Renfu

    2017-04-01

    Eriophyoid mites (superfamily Eriophyoidea) comprise >4400 species worldwide. Despite over a century of study, the phylogenetic position of these mites within Acariformes is still poorly resolved. Currently, Eriophyoidea is placed in the order Trombidiformes. We inferred the high-level phylogeny of Acari with the mitochondrial (mt) genome sequences of 110 species including four eriophyoid species, and the nuclear small subunit (18S) rRNA gene sequences of 226 species including 25 eriophyoid species. Maximum likelihood (ML), Bayesian inference (BI) and Maximum parsimony (MP) methods were used to analyze the sequence data. Divergence times were estimated for major lineages of Acari using Bayesian approaches. Our analyses consistently recovered the monophyly of Eriophyoidea but rejected the monophyly of Trombidiformes. The eriophyoid mites were grouped with the sarcoptiform mites, or were the sister group of sarcoptiform mites+non-eriophyoid trombidiform mites, depending on data partition strategies. Eriophyoid mites diverged from other mites in the Devonian (384Mya, 95% HPD, 352-410Mya). The origin of eriophyoid mites was dated to the Permian (262Mya, 95% HPD 230-307Mya), mostly prior to the radiation of gymnosperms (Triassic-Jurassic) and angiosperms (early Cretaceous). We propose that the placement of Eriophyoidea in the order Trombidiformes under the current classification system should be reviewed.

  8. Sequence heterogeneity in the 18S rRNA gene within Theileria equi and Babesia caballi from horses in South Africa.

    PubMed

    Bhoora, Raksha; Franssen, Linda; Oosthuizen, Marinda C; Guthrie, Alan J; Zweygarth, Erich; Penzhorn, Barend L; Jongejan, Frans; Collins, Nicola E

    2009-02-05

    A molecular epidemiological survey of the protozoal parasites that cause equine piroplasmosis was conducted using samples collected from horses and zebra from different geographical locations in South Africa. A total of 488 samples were tested for the presence of Theileria equi and/or Babesia caballi using the reverse line blot hybridization assay. Ten percent of the samples hybridized to the Theileria/Babesia genus-specific probe and not to the B. caballi or T. equi species-specific probes, suggesting the presence of a novel species or genotype. The small subunit of rRNA gene (18S; approximately 1600bp) was amplified and sequenced from 33 of these 488 samples. Sequences were compared with published sequences from the public sequence databases. Twelve distinct T. equi and six B. caballi 18S rRNA sequences were identified. Alignments demonstrated extensive sequence variation in the V4 hypervariable region of the 18S rRNA gene within T. equi. Sequence variation was also found in B. caballi 18S rRNA genes, although there was less variation than observed for T. equi. Phylogenetic analysis based on 18S rRNA gene sequences revealed three T. equi clades and two B. caballi clades in South Africa. The extent of sequence heterogeneity detected within T. equi and B. caballi 18S rRNA genes was unexpected since concerted evolution is thought to maintain homogeneity within repeated gene families, including rRNA genes, in eukaryotes. The findings reported here show that careful examination of variants of the 18S rRNA gene of T. equi and B. caballi is required prior to the development of molecular diagnostic tests to detect these parasites in horses. Species-specific probes must be in designed in regions of the gene that are both conserved within and unique to each species.

  9. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis.

  10. Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5' end of the 28S rRNA genes indicates that several genera are polyphyletic.

    PubMed

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825-1,901 bp) and 28S (the 5' end of 646-743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.

  11. Phylogenetic relationships of basal hexapods reconstructed from nearly complete 18S and 28S rRNA gene sequences.

    PubMed

    Gao, Yan; Bu, Yun; Luan, Yun-Xia

    2008-11-01

    This study combined nearly complete 28S and 18S rRNA gene sequences (>4100 nt long) to investigate the phylogenetic relationships of basal hexapods (Protura, Collembola, and Diplura). It sequenced more 28S genes, to expand on a previous study from this lab that used 18S plus only a tiny part of the 28S gene. Sixteen species of basal hexapods, five insects, six crustaceans, two myriapods, and two chelicerates were included in the analyses. Trees were constructed with maximum likelihood, Bayesian analysis, and minimum-evolution analysis of LogDet-transformed distances. All methods yielded consistent results: (1) Hexapoda was monophyletic and nested in a paraphyletic Crustacea, and Hexapoda was divided into Entognatha [Collembola+Nonoculata (Protura plus Diplura)] and Insecta (=Ectognatha), but the Nonoculata clade must be accepted with caution because of its strong nonstationarity of nucleotide composition. (2) Within Diplura, the monophyly of Campodeoidea and of Japygoidea were supported respectively, and all methods united Projapygoidea with Japygoidea. (3) Within Protura, Sinentomidae was the sister group to Acerentomata. (4) Within Collembola, the modern taxonomical hierarchy of Collembola (Poduromorpha, Entomobryomorpha, Symphypleona and Neelipleona) was confirmed.

  12. [Fragment of mRNA coding part that is complementary to region 1638-1650 of wheat 18S rRNA functions as a translational enhancer].

    PubMed

    Zhigaĭlov, A V; Babaĭlova, E S; Polimbetova, N S; Graĭfer, D M; Karpova, G G; Iskakov, B K

    2012-01-01

    Possible involvement of 18S rRNA fragment 1638-1650 including basements of the helices h44 and h28 and nucleotides of the ribosomal decoding site in the cap-independent translation initiation on plant ribosomes is studied. This rRNA fragment is shown to be accessible for complementary interactions within the 40S ribosomal subunit. It is found that the sequence complementary to the 18S rRNA fragment 1638-1650 is able to enhance efficiency of a reporter mRNA translation when placed just after the initiation codon. The results obtained indicate that in the course of the cap-independent translation initiation, complementary interactions can occur between mRNA coding sequence and 18S rRNA fragment in the region of the ribosomal decoding site.

  13. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch.

    PubMed

    Mallatt, Jon; Giribet, Gonzalo

    2006-09-01

    This work expands on a study from 2004 by Mallatt, Garey, and Shultz [Mallatt, J.M., Garey, J.R., Shultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178-191] that evaluated the phylogenetic relationships in Ecdysozoa (molting animals), especially arthropods. Here, the number of rRNA gene-sequences was effectively doubled for each major group of arthropods, and sequences from the phylum Kinorhyncha (mud dragons) were also included, bringing the number of ecdysozoan taxa to over 80. The methods emphasized maximum likelihood, Bayesian inference and statistical testing with parametric bootstrapping, but also included parsimony and minimum evolution. Prominent findings from our combined analysis of both genes are as follows. The fundamental subdivisions of Hexapoda (insects and relatives) are Insecta and Entognatha, with the latter consisting of collembolans (springtails) and a clade of proturans plus diplurans. Our rRNA-gene data provide the strongest evidence to date that the sister group of Hexapoda is Branchiopoda (fairy shrimps, tadpole shrimps, etc.), not Malacostraca. The large, Pancrustacea clade (hexapods within a paraphyletic Crustacea) divided into a few basic subclades: hexapods plus branchiopods; cirripedes (barnacles) plus malacostracans (lobsters, crabs, true shrimps, isopods, etc.); and the basally located clades of (a) ostracods (seed shrimps) and (b) branchiurans (fish lice) plus the bizarre pentastomids (tongue worms). These findings about Pancrustacea agree with a recent study by Regier, Shultz, and Kambic that used entirely different genes [Regier, J.C., Shultz, J.W., Kambic, R.E., 2005a. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395-401]. In Malacostraca, the stomatopod (mantis shrimp) was not at the base of the eumalacostracans

  14. [Ultrastructural observation on nymphal Armillifer sp. by scanning electron microscopy and phylogenetic analysis based on 18S rRNA].

    PubMed

    Li, Jian; Shi, Yun-Liang; Shi, Wei; Fang, Fang; Zhou, Qing-An; Li, Wen-Wen; He, Guo-Sheng; Huang, Wei-Yi

    2012-04-30

    To observe the ultrastructure of nymphal Armillifer sp. isolated from Macaca fascicularis by using scanning electron microscope (SEM), and analyze the phylogenetic relationships based on 18S rRNA gene sequences. The parasite samples stored in 70% alcohol were fixed by glutaraldehyde and osmium peroxide. Ultrastructural characters of those samples were observed under SEM. Amplification and sequencing of the 18S rRNA gene were performed following the extraction of total genome DNA. Sequence analysis was performed based on multiple alignment using ClustalX1.83, while phylogenetic analysis was made by Neighbor-Joining method using MEGA4.0. The nymphs were in cylindrical shape, the body slightly claviform tapering to posterior end. Abdominal annuli were gradually widened from anterior to posterior parts, the 12th-13th abdominal annuli of which were similar in width. The annuli ranged closer in the front half body, whereas in the latter part there were certain gaps between them. The circular-shaped mouth located in the middle of head ventrally. Folds were seen in inner margin of the mouth with a pair of curved hooks on both sides above it which practically disposed in a straight line. Two pairs of large sensory papillae were observed symmetrically over the last thoracic annulus of cephalothoraxs lying below the outer hook, and the first abdominal annulus was near the median ventral line. The number of abdominal annuli was 29, not including 2 incomplete terminal annuli. Rounded sensory papillae were fully distributed on the body surface, except the dorsal side of head and the ventral part of the terminal annulus. Agglomerate-like anus opening was observed at the end of ventral abdominal annuli and distinctly sub-terminal. These morphological features demonstrated that the nymphs were highly similar with that of Armillifer moniliformis Diesing, 1835. A fragment of 18SrRNA gene (1 836 bp) sequences was obtained by PCR combined with sequencing, and was registered to the Gene

  15. Monitoring the mycobiota during Greco di Tufo and Aglianico wine fermentation by 18S rRNA gene sequencing.

    PubMed

    De Filippis, Francesca; La Storia, Antonietta; Blaiotta, Giuseppe

    2017-05-01

    Spontaneous alcoholic fermentation of grape must is a complex process, carried out by indigenous yeast populations arising from the vineyard or the winery environment and therefore representing an autochthonous microbial terroir of the production area. Microbial diversity at species and biotype level is extremely important in order to develop the composite and typical flavour profile of DOCG (Appellation of Controlled and Guaranteed Origin) wines. In this study, we monitored fungal populations involved in spontaneous fermentations of Aglianico and Greco di Tufo grape must by high-throughput sequencing (HTS) of 18S rRNA gene amplicons. We firstly proposed an alternative/addition to ITS as target gene in HTS studies and highlighted consistency between the culture-dependent and -independent approaches. A complex mycobiota was found at the beginning of the fermentation, mainly characterized by non-Saccharomyces yeasts and several moulds, with differences between the two types of grapes. Moreover, Interdelta patterns revealed a succession of several Saccharomyces cerevisiae biotypes and a high genetic diversity within this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba.

    PubMed

    Fuerst, Paul A; Booton, Gregory C; Crary, Monica

    2015-01-01

    Species of Acanthamoeba were first described using morphological characters including cyst structure and cytology of nuclear division. More than 20 nominal species were proposed using these methods. Morphology, especially cyst shape and size, has proven to be plastic and dependent upon culture conditions. The DNA sequence of the nuclear small-subunit (18S) rRNA, the Rns gene, has become the most widely accepted method for rapid diagnosis and classification of Acanthamoeba. The Byers-Fuerst lab first proposed an Rns typing system in 1996. Subsequent refinements, with an increasing DNA database and analysis of diagnostic fragments within the gene, have become widely accepted by the Acanthamoeba research community. The development of the typing system, including its current state of implementation is illustrated by three cases: (i) the division between sequence types T13 and T16; (ii) the diversity within sequence supertype T2/T6, and (iii) verification of a new sequence type, designated T20. Molecular studies make clear the disconnection between phylogenetic relatedness and species names, as applied for the genus Acanthamoeba. Future reconciliation of genetic types with species names must become a priority, but the possible shortcomings of the use of a single gene when reconstructing the evolutionary history of the acanthamoebidae must also be resolved. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  17. Direct chemical probing of the conformation of the 3' functional domain of rabbit 18S rRNA in 40S subunits, 80S ribosomes and polyribosomes

    SciTech Connect

    Rubino, H.M.; Rairkar, A.; Lockard, R.E.

    1987-05-01

    Recent evidence suggests that the 3' minor domain of eukaryotic 18S rRNA, as in prokaryotes, is directly involved in protein biosynthesis. To determine regions of possible functional importance, they have probed the higher order structure of rabbit 18S rRNA in both 40S subunits and 80S ribosomes, as well as polyribosomes using the single-strand specific chemical probes dimethyl sulfate (DMS) and diethyl pyrocarbonate (DEPC) which react with unpaired guanosine and adenosine residues, respectively. The modified 18S rRNA was isolated from these particles and the resultant modified nucleotides identified on polyacrylamide sequencing gels upon either aniline-induced strand scission of /sup 32/P-end-labeled intact rRNA or by DNA primer extension using sequence specific deoxyoligomers with reverse transcriptase. Their results indicate a decreased reactivity of residue C-1692 in rabbit 18S rRNA (corresponding to C-1400 E. coli) within the putative tRNA contact site in polyribosomes as compared with 40S subunits and 80S ribosomes. They have also determined varying reactivities of a number of other residues within specific regions of the 3' functional domain when 40S, 80S, and polyribosomes are compared, which may be important for both subunit association as well as mRNA binding.

  18. [Probable involvement of 3'-terminal segment of 18S rRNA in translation initiation of uncapped mRNAs in plants].

    PubMed

    Zhigaĭlov, A V; Babaĭlova, E S; Polimbetov, N S; Graĭfer, D M; Karpova, G G; Iskakov, B K

    2011-01-01

    A possibility of involvement of 3'-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3-terminal segment (nucleotides 1777-1811) of 18S rRNA including the last hairpin 45 is accessible for complementary interactions in 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA when added to wheat germ cell-free protein synthesizing system were found to specifically inhibit translation of uncapped reporter mRNA coding for beta-glucuronidase, which bears in the 5'-untranslated region (UTR) a leader sequence of potato virus Y (PVY) genomic RNA possessing fragments complementary to the region 1777-1811. It was shown that a sequence corresponding to nucleotides 291-316 of PVY, which is complementary to a major portion of the 3-terminal 18S rRNA segment 1777-1808, when placed into 5'-UTR, is able to enhance translational efficiency of the reporter mRNAs. The results obtained suggest that complementary interactions between mRNA 5'-UTR and 18S rRNA 3'-terminal segment can take place in the course of cap-independent translation initiation.

  19. Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.

    PubMed

    Hedin, Marshal; Bond, Jason E

    2006-11-01

    Mygalomorph spiders, which include the tarantulas, trapdoor spiders, and their kin, represent one of three main spider lineages. Mygalomorphs are currently classified into 15 families, comprising roughly 2500 species and 300 genera. The few published phylogenies of mygalomorph relationships are based exclusively on morphological data and reveal areas of both conflict and congruence, suggesting the need for additional phylogenetic research utilizing new character systems. As part of a larger combined evidence study of global mygalomorph relationships, we have gathered approximately 3.7 kb of rRNA data (18S and 28S) for a sample of 80 genera, representing all 15 mygalomorph families. Taxon sampling was particularly intensive across families that are questionable in composition-Cyrtaucheniidae and Nemesiidae. The following primary results are supported by both Bayesian and parsimony analyses of combined matrices representing multiple 28S alignments: (1) the Atypoidea, a clade that includes the families Atypidae, Antrodiaetidae, and Mecicobothriidae, is recovered as a basal lineage sister to all other mygalomorphs, (2) diplurids and hexathelids form a paraphyletic grade at the base of the non-atypoid clade, but neither family is monophyletic in any of our analyses, (3) a clade consisting of all sampled nemesiids, Microstigmata and the cyrtaucheniid genera Kiama, Acontius, and Fufius is consistently recovered, (4) other sampled cyrtaucheniids are fragmented across three separate clades, including a monophyletic North American Euctenizinae and a South African clade, (5) of the Domiothelina, only idiopids are consistently recovered as monophyletic; ctenizids are polyphyletic and migids are only weakly supported. The Domiothelina is not monophyletic. The molecular results we present are consistent with more recent hypotheses of mygalomorph relationship; however, additional work remains before mygalomorph classification can be formally reassessed with confidence

  20. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  1. Characterization of the vaginal fungal flora in pregnant diabetic women by 18S rRNA sequencing.

    PubMed

    Zheng, N-N; Guo, X-C; Lv, W; Chen, X-X; Feng, G-F

    2013-08-01

    Pregnancy and diabetes are regarded as individual risk factors for vaginal candidiasis. The high prevalence of vaginal candidiasis in pregnant diabetic women can be explained by disruption of the balance of the vaginal normal flora. However, little is known about the overall structure and composition of the vaginal fungal flora in pregnant diabetic women. In the present study, the diversity and richness of the vaginal fungal flora in healthy non-pregnant women (group HN), healthy pregnant women (group HP), women with gestational diabetes mellitus (group GDM), and pregnant women with diabetes mellitus type I (group T1DM) were investigated using an 18S rRNA gene clone library method. Our data demonstrated that the composition of the vaginal fungal flora in the four groups could be divided into two phyla (Ascomycetes, 20/26, and Basidiomycetes, 6/26). The most predominant vaginal fungal species belonged to the Candida and Saccharomyces genera, uncultured fungi, and a large number of low-abundance taxa that were unrecorded or underrepresented in previous studies using cultivation-dependent methods. Variation in operational taxonomic units (OTUs) between the study cohorts was generally high in the clone libraries, as 9, 13, 17, and 20 phylotypes were identified in groups HN, HP, GDM, and T1DM, respectively. The Shannon indices of groups GDM and T1DM (with poorer glycemic control) were significantly higher compared to groups HN and HP (p < 0.05). The data presented here revealed an increased diversity and varied composition of the vaginal fungal flora in pregnant diabetic women and demonstrated that poor glycemic control might be associated with disturbances in the vaginal fungal flora.

  2. Methods of identification of pseudogenes based on functionality: hybridization of 18S rRNA and mRNA during translation.

    PubMed

    Xing, Chuanhua

    2014-01-01

    Protein-coding sequences are characterized by a period-3 free energy signal that arises from the interaction between the 3'-terminal nucleotides of the 18S rRNA and the mRNA. Such a signal is not present in noncoding sequences such as introns and intergenic regions and can be used for pseudogene identification.

  3. Genetic characterization and phylogenetic relationships based on 18S rRNA and ITS1 region of small form of canine Babesia spp. from India.

    PubMed

    Mandal, M; Banerjee, P S; Garg, Rajat; Ram, Hira; Kundu, K; Kumar, Saroj; Kumar, G V P P S Ravi

    2014-10-01

    Canine babesiosis is a vector borne disease caused by intra-erythrocytic apicomplexan parasites Babesia canis (large form) and Babesia gibsoni (small form), throughout the globe. Apart from few sporadic reports on the occurrence of B. gibsoni infection in dogs, no attempt has been made to characterize Babesia spp. of dogs in India. Fifteen canine blood samples, positive for small form of Babesia, collected from northern to eastern parts of India, were used for amplification of 18S rRNA gene (∼1665bp) of Babesia sp. and partial ITS1 region (∼254bp) of B. gibsoni Asian genotype. Cloning and sequencing of the amplified products of each sample was performed separately. Based on sequences and phylogenetic analysis of 18S rRNA and ITS1 sequences, 13 were considered to be B. gibsoni. These thirteen isolates shared high sequence identity with each other and with B. gibsoni Asian genotype. The other two isolates could not be assigned to any particular species because of the difference(s) in 18S rRNA sequence with B. gibsoni and closer identity with Babesiaoccultans and Babesiaorientalis. In the phylogenetic tree, all the isolates of B. gibsoni Asian genotype formed a separate major clade named as Babesia spp. sensu stricto clade with high bootstrap support. The two unnamed Babesia sp. (Malbazar and Ludhiana isolates) clustered close together with B. orientalis, Babesia sp. (Kashi 1 isolate) and B. occultans of bovines. It can be inferred from this study that 18S rRNA gene and ITS1 region are highly conserved among 13 B. gibsoni isolates from India. It is the maiden attempt of genetic characterization by sequencing of 18S rRNA gene and ITS1 region of B. gibsoni from India and is also the first record on the occurrence of an unknown Babesia sp. of dogs from south and south-east Asia. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Molecular epidemiology of Theileria annulata and identification of 18S rRNA gene and ITS regions sequences variants in apparently healthy buffaloes and cattle in Pakistan.

    PubMed

    Khan, Muhammad Kasib; He, Lan; Hussain, Altaf; Azam, Sabita; Zhang, Wen-Jie; Wang, Li-Xia; Zhang, Qing-Li; Hu, Min; Zhou, Yan-Qin; Zhao, Junlong

    2013-01-01

    A molecular epidemiological survey was conducted to determine the prevalence of piroplasms in buffaloes and cattle from Sheikhupura and Okara districts of Punjab, Pakistan using reverse line blot (RLB) hybridization assay. The genetic diversity within 18S rRNA gene and ITS regions sequences of various obtained Theileria species (spp.) was also investigated. Briefly, 102 blood samples from buffaloes and cattle in the study districts were collected on blood collection cards and brought to the laboratory. DNA was extracted; the V4 hypervariable region of 18S rRNA was amplified and analyzed using RLB. Out of total samples analyzed, 61 (59.8%) were hybridized with Babesia/Theileria (B/T) genus-specific probe. Only one species of piroplasm was detected in buffaloes and cattle in study districts, i.e. Theileria (T.) annulata. Six samples only hybridized with B/T genus-specific and Theileria genus-specific probes but not with any species-specific probe indicating the presence of novel species or variants. The sequences of 18S rRNA gene and ITS regions of these six samples revealed the presence of T. annulata variants as confirmed through sequence identity estimation and phylogenetic analyses. Meanwhile, an unexpected sequence variation was observed within the 18S rRNA gene and ITS regions sequences of T. annulata identified in the present study. This is the first report on the simultaneous detection of species of piroplasms infecting buffaloes and cattle in Pakistan and molecular characterization of T. annulata 18S rRNA gene and ITS regions. The present study may address the new insights into the epidemiology of theileriosis which will help researches in designing control strategies and developing various molecular diagnostic tools at national level. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage.

  6. Sequence variation identified in the 18S rRNA gene of Theileria mutans and Theileria velifera from the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2013-01-16

    The African buffalo (Syncerus caffer) is a natural reservoir host for both pathogenic and non-pathogenic Theileria species. These often occur naturally as mixed infections in buffalo. Although the benign and mildly pathogenic forms do not have any significant economic importance, their presence could complicate the interpretation of diagnostic test results aimed at the specific diagnosis of the pathogenic Theileria parva in cattle and buffalo in South Africa. The 18S rRNA gene has been used as the target in a quantitative real-time PCR (qPCR) assay for the detection of T. parva infections. However, the extent of sequence variation within this gene in the non-pathogenic Theileria spp. of the Africa buffalo is not well known. The aim of this study was, therefore, to characterise the full-length 18S rRNA genes of Theileria mutans, Theileria sp. (strain MSD) and T. velifera and to determine the possible influence of any sequence variation on the specific detection of T. parva using the 18S rRNA qPCR. The reverse line blot (RLB) hybridization assay was used to select samples which either tested positive for several different Theileria spp., or which hybridised only with the Babesia/Theileria genus-specific probe and not with any of the Babesia or Theileria species-specific probes. The full-length 18S rRNA genes from 14 samples, originating from 13 buffalo and one bovine from different localities in South Africa, were amplified, cloned and the resulting recombinants sequenced. Variations in the 18S rRNA gene sequences were identified in T. mutans, Theileria sp. (strain MSD) and T. velifera, with the greatest diversity observed amongst the T. mutans variants. This variation possibly explained why the RLB hybridization assay failed to detect T. mutans and T. velifera in some of the analysed samples.

  7. Nob1 binds the single-stranded cleavage site D at the 3'-end of 18S rRNA with its PIN domain.

    PubMed

    Lamanna, Allison C; Karbstein, Katrin

    2009-08-25

    Ribosome assembly is a hierarchical process that involves pre-rRNA folding, modification, and cleavage and assembly of ribosomal proteins. In eukaryotes, this process requires a macromolecular complex comprising over 200 proteins and RNAs. Whereas the rRNA modification machinery is well-characterized, rRNA cleavage to release mature rRNAs is poorly understood, and in yeast, only 2 of 8 endonucleases have been identified. The essential and conserved ribosome assembly factor Nob1 has been suggested to be the endonuclease responsible for generating the mature 3'-end of 18S rRNA by cleaving at site D. Here we provide evidence that recombinant Nob1 forms a tetramer that binds directly to pre-rRNA analogs containing cleavage site D. Analysis of Nob1's affinity to a series of RNA truncations, as well as Nob1-dependent protections of pre-rRNA in vitro and in vivo demonstrate that Nob1's binding site centers around the 3'-end of 18S rRNA, where our data also locate Nob1's suggested active site. Thus, Nob1 is poised for cleavage at the 3'-end of 18S rRNA. Together with prior data, these results strongly implicate Nob1 in cleavage at site D. In addition, our data provide evidence that the cleavage site at the 3'-end of 18S rRNA is single-stranded and not part of a duplex as commonly depicted. Using these results, we have built a model for Nob1's interaction with preribosomes.

  8. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    PubMed

    Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  9. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343

  10. Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo

    PubMed Central

    Matsuda, Daiki; Mauro, Vincent P.

    2014-01-01

    Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example—translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson–Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA–rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine–Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction. PMID:25313046

  11. Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo.

    PubMed

    Matsuda, Daiki; Mauro, Vincent P

    2014-10-28

    Degeneracy in eukaryotic translation initiation is evident in the initiation strategies of various viruses. Hepatitis C virus (HCV) provides an exceptional example--translation of the HCV RNA is facilitated by an internal ribosome entry site (IRES) that can autonomously bind a 40S ribosomal subunit and accurately position it at the initiation codon. This binding involves both ribosomal protein and 18S ribosomal RNA (rRNA) interactions. In this study, we evaluate the functional significance of the rRNA interaction and show that HCV IRES activity requires a 3-nt Watson-Crick base-pairing interaction between the apical loop of subdomain IIId in the IRES and helix 26 in 18S rRNA. Mutations of these nucleotides in either RNA dramatically disrupted IRES activity. The activities of the mutated HCV IRESs could be restored by compensatory mutations in the 18S rRNA. The effects of the 18S rRNA mutations appeared to be specific inasmuch as ribosomes containing these mutations did not support translation mediated by the wild-type HCV IRES, but did not block translation mediated by the cap structure or other viral IRESs. The present study provides, to our knowledge, the first functional demonstration of mRNA-rRNA base pairing in mammalian cells. By contrast with other rRNA-binding sites in mRNAs that can enhance translation as independent elements, e.g., the Shine-Dalgarno sequence in prokaryotes, the rRNA-binding site in the HCV IRES functions as an essential component of a more complex interaction.

  12. A Single Acetylation of 18 S rRNA Is Essential for Biogenesis of the Small Ribosomal Subunit in Saccharomyces cerevisiae*

    PubMed Central

    Ito, Satoshi; Akamatsu, Yu; Noma, Akiko; Kimura, Satoshi; Miyauchi, Kenjyo; Ikeuchi, Yoshiho; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Biogenesis of eukaryotic ribosome is a complex event involving a number of non-ribosomal factors. During assembly of the ribosome, rRNAs are post-transcriptionally modified by 2′-O-methylation, pseudouridylation, and several base-specific modifications, which are collectively involved in fine-tuning translational fidelity and/or modulating ribosome assembly. By mass-spectrometric analysis, we demonstrated that N4-acetylcytidine (ac4C) is present at position 1773 in the 18 S rRNA of Saccharomyces cerevisiae. In addition, we found an essential gene, KRE33 (human homolog, NAT10), that we renamed RRA1 (ribosomal RNA cytidine acetyltransferase 1) encoding an RNA acetyltransferase responsible for ac4C1773 formation. Using recombinant Rra1p, we could successfully reconstitute ac4C1773 in a model rRNA fragment in the presence of both acetyl-CoA and ATP as substrates. Upon depletion of Rra1p, the 23 S precursor of 18 S rRNA was accumulated significantly, which resulted in complete loss of 18 S rRNA and small ribosomal subunit (40 S), suggesting that ac4C1773 formation catalyzed by Rra1p plays a critical role in processing of the 23 S precursor to yield 18 S rRNA. When nuclear acetyl-CoA was depleted by inactivation of acetyl-CoA synthetase 2 (ACS2), we observed temporal accumulation of the 23 S precursor, indicating that Rra1p modulates biogenesis of 40 S subunit by sensing nuclear acetyl-CoA concentration. PMID:25086048

  13. Ribosomal protein S18e as a putative molecular staple for the 18S rRNA 3'-major domain core.

    PubMed

    Ilin, Aleksey A; Malygin, Alexey A; Karpova, Galina G

    2011-04-01

    Ribosomal protein S18e is a structural constituent of the 40S ribosomal subunit. We obtained recombinant human ribosomal protein S18e and studied its structural and functional properties. With the use of CD spectroscopy we showed that the protein secondary structure is mainly helical and stable in the neutral pH range and at low urea concentrations. Applying multiple sequence alignment, we revealed that the protein structure has characteristics of the eukaryotic members of the ribosomal protein S13p family with additional extensions in the N-terminal and central parts that contain α-helices according to our prediction. S18e binds specifically and independently to an RNA transcript corresponding to the evolutionary core of the 3'-major domain of 18S rRNA. Hydroxyl radical footprinting showed that the binding site of S18e on the 18S rRNA is similar in general to the binding site of S13p on the 16S rRNA in the 30S ribosomal subunit, albeit the rRNA regions attributed to binding of the eukaryote-specific extensions of S18e were also detected. With magnesium ion concentration close to cellular conditions (2mM), protein binding caused substantial rearrangements in the rRNA transcript making it compact in such a manner that helices H29/H30 and H41-H43 form a bundle resembling their arrangement in the ribosome. Thus, S18e seems to act as a molecular staple fixing the 18S rRNA 3'-major domain core. 2011 Elsevier B.V. All rights reserved.

  14. HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation.

    PubMed

    Malygin, Alexey A; Kossinova, Olga A; Shatsky, Ivan N; Karpova, Galina G

    2013-10-01

    Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES-rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors.

  15. A nanodiagnostic colorimetric assay for 18S rRNA of Leishmania pathogens using nucleic acid sequence-based amplification and gold nanorods.

    PubMed

    Niazi, Alireza; Jorjani, Oghol-Niaz; Nikbakht, Hassan; Gill, Pooria

    2013-12-01

    We describe here a nanodiagnostic colorimetric assay for 18S rRNA of Leishmania pathogens that uses nucleic acid sequence-based amplification (NASBA) and gold nanorods (GNRs). NASBA primers targeting 18S rRNA were used for amplification of RNA in an isothermal process. The electrostatic interactions between the phosphate groups of the RNA amplicons and the cetyl trimethylammonium bromide layer on the GNRs resulting in their aggregation. This phenomenon changes the color of the GNR solution from red to purple. Our data showed 100% sensitivity and 80% specificity with the colorimetric assay compared with results using reverse transcription polymerase chain reaction. The nanodiagnostic method we describe simplifies the detection of NASBA amplicons without the need for gel electrophoresis.

  16. Phylogenetic relationships among Linguatula serrata isolates from Iran based on 18S rRNA and mitochondrial cox1 gene sequences.

    PubMed

    Ghorashi, Seyed Ali; Tavassoli, Mousa; Peters, Andrew; Shamsi, Shokoofeh; Hajipour, Naser

    2016-01-01

    The phylogenetic relationships among seven Linguatula serrata (L. serrata) isolates collected from cattle, goats, sheep, dogs and camels in different geographical locations of Iran were investigated using partial 18S ribosomal RNA (rRNA) and partial mitochondrial cytochrome c oxidase subunit 1 (cox1) gene sequences. The nucleotide sequences were analysed in order to determine the phylogenetic relationships between the isolates. Higher sequence diversity and intraspecies variation was observed in the cox1 gene compared to 18S rRNA sequences. Phylogenetic analysis of the cox1 gene placed all L. serrata isolates in a sister clade to L. arctica. The Mantel regression analysis revealed no association between genetic variations and host species or geographical location, perhaps due to the small sample size. However, genetic variations between L. serrata isolates in Iran and those isolated in other parts of the world may exist and could reveal possible evolutionary relationships.

  17. Identification of Theileria parva and Theileria sp. (buffalo) 18S rRNA gene sequence variants in the African Buffalo (Syncerus caffer) in southern Africa.

    PubMed

    Chaisi, Mamohale E; Sibeko, Kgomotso P; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2011-12-15

    Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the

  18. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development

    PubMed Central

    Pagano, Johanna F.B.; Girard, Geneviève; Ensink, Wim A.; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Spaink, Herman P.; Rauwerda, Han; Jonker, Martijs J.; Dekker, Rob J.; Breit, Timo M.

    2017-01-01

    There is mounting evidence that the ribosome is not a static translation machinery, but a cell-specific, adaptive system. Ribosomal variations have mostly been studied at the protein level, even though the essential transcriptional functions are primarily performed by rRNAs. At the RNA level, oocyte-specific 5S rRNAs are long known for Xenopus. Recently, we described for zebrafish a similar system in which the sole maternal-type 5S rRNA present in eggs is replaced completely during embryonic development by a somatic-type. Here, we report the discovery of an analogous system for the 45S rDNA elements: 5.8S, 18S, and 28S. The maternal-type 5.8S, 18S, and 28S rRNA sequences differ substantially from those of the somatic-type, plus the maternal-type rRNAs are also replaced by the somatic-type rRNAs during embryogenesis. We discuss the structural and functional implications of the observed sequence differences with respect to the translational functions of the 5.8S, 18S, and 28S rRNA elements. Finally, in silico evidence suggests that expansion segments (ES) in 18S rRNA, previously implicated in ribosome–mRNA interaction, may have a preference for interacting with specific mRNA genes. Taken together, our findings indicate that two distinct types of ribosomes exist in zebrafish during development, each likely conducting the translation machinery in a unique way. PMID:28500251

  19. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development.

    PubMed

    Locati, Mauro D; Pagano, Johanna F B; Girard, Geneviève; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Spaink, Herman P; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-08-01

    There is mounting evidence that the ribosome is not a static translation machinery, but a cell-specific, adaptive system. Ribosomal variations have mostly been studied at the protein level, even though the essential transcriptional functions are primarily performed by rRNAs. At the RNA level, oocyte-specific 5S rRNAs are long known for Xenopus. Recently, we described for zebrafish a similar system in which the sole maternal-type 5S rRNA present in eggs is replaced completely during embryonic development by a somatic-type. Here, we report the discovery of an analogous system for the 45S rDNA elements: 5.8S, 18S, and 28S. The maternal-type 5.8S, 18S, and 28S rRNA sequences differ substantially from those of the somatic-type, plus the maternal-type rRNAs are also replaced by the somatic-type rRNAs during embryogenesis. We discuss the structural and functional implications of the observed sequence differences with respect to the translational functions of the 5.8S, 18S, and 28S rRNA elements. Finally, in silico evidence suggests that expansion segments (ES) in 18S rRNA, previously implicated in ribosome-mRNA interaction, may have a preference for interacting with specific mRNA genes. Taken together, our findings indicate that two distinct types of ribosomes exist in zebrafish during development, each likely conducting the translation machinery in a unique way. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Genetic variation and identification of cultivated Fallopia multiflora and its wild relatives by using chloroplast matK and 18S rRNA gene sequences.

    PubMed

    Yan, Ping; Pang, Qi-Hua; Jiao, Xu-Wen; Zhao, Xuan; Shen, Yan-Jing; Zhao, Shu-Jin

    2008-10-01

    FALLOPIA MULTIFLORA (Thunb.) Harald . has been widely and discriminatingly used in China for the study and treatment of anemia, swirl, deobstruent, pyrosis, insomnia, amnesia, atheroma and also for regulating immune functions. However, there is still confusion about the herbal drug's botanical origins and the phylogenetic relationship between the cultivars and the wild relatives. In order to develop an efficient method for identification, a molecular analysis was performed based on 18 S rRNA gene and partial MATK gene sequences. The 18 S rRNA gene sequences of F. MULTIFLORA were 1809 bp in length and were highly conserved, indicating that the cultivars and the wild F. MULTIFLORA have the same botanical origin. Based on our 18 S rRNA gene sequences analysis, F. MULTIFLORA could be easily distinguished at the DNA level from adulterants and some herbs with similar components. The MATK gene partial sequences were found to span 1271 bp. The phylogenetic relation of F. MULTIFLORA based on the MATK gene showed that all samples in this paper were divided into four clades. The sequences of the partial MATK gene had many permutations, which were related to the geographical distributions of the samples. MATK gene sequences provided valuable information for the identification of F. MULTIFLORA. New taxonomic information could be obtained to authenticate the botanical origin of the F. MULTIFLORA, the species and the medicines made of it.

  1. Multiplex RT-PCR detection of Cucumber mosaic virus subgroups and Tobamoviruses infecting Tomato using 18S rRNA as an internal control.

    PubMed

    Chen, Shaoning; Gu, Hao; Wang, Xiaoming; Chen, Jishuang; Zhu, Weimin

    2011-06-01

    A multiplex reverse-transcription polymerase chain reaction (RT-PCR) protocol was developed for simultaneous detection and discrimination of subgroups of Cucumber mosaic virus (CMV), including its satellite RNA, Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV), using 18S rRNA as an internal control. Species- and subgroups-specific primers designed to differentiate CMV subgroups I and II, ToMV and TMV, were assessed using the cDNA clones of viral genomes, CMV satellite RNA and 18S rRNA gene from tomato (Solanum lycopersicum L.) or tobacco (Nicotiana tobacum). Using total RNA extracted from artificial mixture of tomato leaf tissues infected by each virus, the reaction components and cycling parameters were optimized and a multiplex RT-PCR procedure was established. Six fragments of 704, 593, 512, 421, 385, 255 bp, specific to CMV subgroup II, CMV subgroup I, ToMV, TMV, satellite RNA and 18S rRNA, respectively, were simultaneously amplified. The sensitivity of the multiplex RT-PCR method for detecting CMV was 100 times higher than that of double-antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA). This method was successfully used for field detection. Among 141 samples collected from East China through tomato growth seasons, 106 single infections with one of the above isolates were detected and 13 mixed infections were found. The results showed the potential use of this method for investigating the epidemiology of viral diseases infecting tomato.

  2. The HIV-1 Nef protein interacts with two components of the 40S small ribosomal subunit, the RPS10 protein and the 18S rRNA.

    PubMed

    Abbas, Wasim; Dichamp, Isabelle; Herbein, Georges

    2012-07-10

    Human immunodeficiency virus type 1 (HIV-1) Nef-encoded protein plays key functions at almost all stages of the viral life cycle, but its role in translation is largely unknown. To determine the effect of Nef on translation we used an in vitro translation assay. The detection of Nef/RPS10 complexes and the presence of 18S rRNA and tRNAs in the complexes were performed by coimmunoprecipitation and RT-PCR assay. We observed that the HIV-1 Nef protein specifically impaired translation in vitro. We observed the interaction of Nef with RPS10 by coimmunoprecipitation assay. In addition 18S rRNA and tRNAs were present in the Nef/RPS10 complexes. Our results are consistent with a model in which the Nef protein by binding to two components of the 40S small ribosomal subunit, RPS10 and 18S rRNA, and to a lesser extent to tRNAs, could lead to decreased protein synthesis.

  3. Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana.

    PubMed

    Sikorski, Pawel J; Zuber, Hélène; Philippe, Lucas; Sement, François M; Canaday, Jean; Kufel, Joanna; Gagliardi, Dominique; Lange, Heike

    2015-09-01

    The biosynthesis of ribosomal RNA and its incorporation into functional ribosomes is an essential and intricate process that includes production of mature ribosomal RNA from large precursors. Here, we analyse the contribution of the plant exosome and its co-factors to processing and degradation of 18S pre-RNAs in Arabidopsis thaliana. Our data show that, unlike in yeast and humans, an RRP6 homologue, the nucleolar exoribonuclease RRP6L2, and the exosome complex, together with RRP44, function in two distinct steps of pre-18S rRNA processing or degradation in Arabidopsis. In addition, we identify TRL (TRF4/5-like) as the terminal nucleotidyltransferase that is mainly responsible for oligoadenylation of rRNA precursors in Arabidopsis. We show that TRL is required for efficient elimination of the excised 5' external transcribed spacer and of 18S maturation intermediates that escaped 5' processing. Our data also suggest involvement of additional nucleotidyltransferases, including terminal uridylyltransferase(s), in modifying rRNA processing intermediates in plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. Identification of Entamoeba polecki with Unique 18S rRNA Gene Sequences from Celebes Crested Macaques and Pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia.

    PubMed

    Tuda, Josef; Feng, Meng; Imada, Mihoko; Kobayashi, Seiki; Cheng, Xunjia; Tachibana, Hiroshi

    2016-09-01

    Unique species of macaques are distributed across Sulawesi Island, Indonesia, and the details of Entamoeba infections in these macaques are unknown. A total of 77 stool samples from Celebes crested macaques (Macaca nigra) and 14 stool samples from pigs were collected in Tangkoko Nature Reserve, North Sulawesi, and the prevalence of Entamoeba infection was examined by PCR. Entamoeba polecki was detected in 97% of the macaques and all of the pigs, but no other Entamoeba species were found. The nucleotide sequence of the 18S rRNA gene in E. polecki from M. nigra was unique and showed highest similarity with E. polecki subtype (ST) 4. This is the first case of identification of E. polecki ST4 from wild nonhuman primates. The sequence of the 18S rRNA gene in E. polecki from pigs was also unique and showed highest similarity with E. polecki ST1. These results suggest that the diversity of the 18S rRNA gene in E. polecki is associated with differences in host species and geographic localization, and that there has been no transmission of E. polecki between macaques and pigs in the study area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  5. Molecular characterization of Argulus bengalensis and Argulus siamensis (Crustacea: Argulidae) infecting the cultured carps in West Bengal, India using 18S rRNA gene sequences

    PubMed Central

    Patra, Avijit; Mondal, Anjan; Banerjee, Sayani; Adikesavalu, Harresh; Joardar, Siddhartha Narayan; Abraham, Thangapalam Jawahar

    2016-01-01

    The present study characterized Argulus spp. infecting the cultured carps using 18S rRNA gene sequences, estimated the genetic similarity among Argulus spp. and established their phylogenetic relationship. Of the 320 fish samples screened, 34 fish (10.6%) had Argulus infection. The parasitic frequency index (PFI) was observed to be high (20%) in Hypophthalmichthys molitrix and Labeo bata. The frequency of infection was high in September (PFI: 17%) and October (PFI: 12.9%). The 18S rRNA sequences of five A. bengalensis (KF583878, KF192316, KM016968, KM016969, and KM016970) and one A. siamensis (KF583879) of this study showed genetic heterogeneity and exhibited 77-99% homology among the 18S rRNA gene sequences of Argulus spp. of NCBI GenBank database. Among the Indian Argulus spp. the sequence homology was 87–100%. Evolutionary pair-wise distances between Indian Argulus spp. and other Argulus spp. ranged from 0 to 20.20%. In the phylogenetic tree, all the crustaceans were clustered together as a separate clade with two distinct lineages. The lineage-1 comprised exclusive of Branchiura (Argulus spp.). All Argulus bengalensis clustered together and A. siamensis (KF583879) was closely related to Argulus sp. JN558648. The results of the present study provided baseline data for future work on population structure analysis of Indian Argulus species. PMID:28097169

  6. Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA.

    PubMed

    Preti, Milena; O'Donohue, Marie-Françoise; Montel-Lehry, Nathalie; Bortolin-Cavaillé, Marie-Line; Choesmel, Valérie; Gleizes, Pierre-Emmanuel

    2013-04-01

    Defects in ribosome biogenesis trigger stress response pathways, which perturb cell proliferation and differentiation in several genetic diseases. In Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia, mutations in ribosomal protein genes often interfere with the processing of the internal transcribed spacer 1 (ITS1), the mechanism of which remains elusive in human cells. Using loss-of-function experiments and extensive RNA analysis, we have defined the precise position of the endonucleolytic cleavage E in the ITS1, which generates the 18S-E intermediate, the last precursor to the 18S rRNA. Unexpectedly, this cleavage is followed by 3'-5' exonucleolytic trimming of the 18S-E precursor during nuclear export of the pre-40S particle, which sets a new mechanism for 18S rRNA formation clearly different from that established in yeast. In addition, cleavage at site E is also followed by 5'-3' exonucleolytic trimming of the ITS1 by exonuclease XRN2. Perturbation of this step on knockdown of the large subunit ribosomal protein RPL26, which was recently associated to DBA, reveals the putative role of a highly conserved cis-acting sequence in ITS1 processing. These data cast new light on the original mechanism of ITS1 elimination in human cells and provide a mechanistic framework to further study the interplay of DBA-linked ribosomal proteins in this process.

  7. Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA

    PubMed Central

    Preti, Milena; O'Donohue, Marie-Françoise; Montel-Lehry, Nathalie; Bortolin-Cavaillé, Marie-Line; Choesmel, Valérie; Gleizes, Pierre-Emmanuel

    2013-01-01

    Defects in ribosome biogenesis trigger stress response pathways, which perturb cell proliferation and differentiation in several genetic diseases. In Diamond–Blackfan anemia (DBA), a congenital erythroblastopenia, mutations in ribosomal protein genes often interfere with the processing of the internal transcribed spacer 1 (ITS1), the mechanism of which remains elusive in human cells. Using loss-of-function experiments and extensive RNA analysis, we have defined the precise position of the endonucleolytic cleavage E in the ITS1, which generates the 18S-E intermediate, the last precursor to the 18S rRNA. Unexpectedly, this cleavage is followed by 3′–5′ exonucleolytic trimming of the 18S-E precursor during nuclear export of the pre-40S particle, which sets a new mechanism for 18S rRNA formation clearly different from that established in yeast. In addition, cleavage at site E is also followed by 5′–3′ exonucleolytic trimming of the ITS1 by exonuclease XRN2. Perturbation of this step on knockdown of the large subunit ribosomal protein RPL26, which was recently associated to DBA, reveals the putative role of a highly conserved cis-acting sequence in ITS1 processing. These data cast new light on the original mechanism of ITS1 elimination in human cells and provide a mechanistic framework to further study the interplay of DBA-linked ribosomal proteins in this process. PMID:23482395

  8. Highly purified spermatozoal RNA obtained by a novel method indicates an unusual 28S/18S rRNA ratio and suggests impaired ribosome assembly.

    PubMed

    Cappallo-Obermann, Heike; Schulze, Wolfgang; Jastrow, Holger; Baukloh, Vera; Spiess, Andrej-Nikolai

    2011-11-01

    Human spermatozoal RNA features special characteristics such as a significantly reduced quantity within spermatozoa compared with somatic cells is described as being devoid of ribosomal RNAs and is difficult to isolate due to a massive excess of genomic DNA in the lysates. Using a novel two-round column-based protocol for human ejaculates delivering highly purified spermatozoal RNA, we uncovered a heterogeneous, but specific banding pattern in microelectrophoresis with 28S ribosomal RNA being indicative for the amount of round cell contamination. Ejaculates with different round cell quantities and density-purified spermatozoa revealed that 18S rRNA but not 28S rRNA is inherent to a pure spermatozoal fraction. Transmission electron microscopy showed monoribosomes and polyribosomes in spermatozoal cytoplasm, while immunohistochemical results suggest the presence of proteins from small and large ribosomal subunits in retained spermatozoal cytoplasm irrespective of 28S rRNA absence.

  9. A molecular phylogeny of eurytomid wasps inferred from DNA sequence data of 28S, 18S, 16S, and COI genes.

    PubMed

    Chen, Yan; Xiao, Hui; Fu, Jinzhong; Huang, Da-Wei

    2004-04-01

    Using partial DNA sequence data from nuclear 28S and 18S genes and mitochondrial 16S and COI genes, we reconstructed a phylogeny of the family Eurytomidae. Both maximum parsimony and Bayesian methods were employed. The analysis revealed a significant incongruence between the mitochondrial genes and the nuclear genes, and we chose the results from the nuclear genes as our preferred hypothesis. Our phylogeny suggested that the family Eurytomidae is not a monophyletic group; neither are the genera Eurytoma and Bruchophagus. The monophyly of genera Sycophila and Plutarchia was well supported, as was the close association of the genera Aiolomorphus, Tenuipetiolus, Bephratelloides, and Phylloxeroxenus. Our phylogeny also revealed an anticipated pattern, in which species groups from the genera Eurytoma and Bruchophagus are often more closely related to other small genera than to other species groups of the same genus. Subsequent taxonomic revisions include elevating the subfamily Rileyinae to a family status and the divisions of the genera Eurytoma and Bruchophagus.

  10. Gene cloning of the 18S rRNA of an ancient viable moss from the permafrost of northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Marsic, Damien; Hoover, Richard B.; Gilichinsky, David A.; Ng, Joseph D.

    1999-12-01

    A moss plant dating as much as 40,000 years old was collected from the permafrost of the Kolyma Lowlands of Northeastern Siberia. The plant tissue was revived and cultured for the extraction of its genomic DNA. Using the polymerase chain reaction technique, the 18S ribosomal RNA gene was cloned and its sequence studied. Comparative sequence analysis of the cloned ribosomal DNA to other known 18S RNA showed very high sequence identity and was revealed to be closest to the moss specie, Aulacomnium turgidum. The results of this study also show the ability of biological organisms to rest dormant in deep frozen environments where they can be revived and cultured under favorable conditions. This is significant in the notion that celestial icy bodies can be media to preserve biological function and genetic material during long term storage or transport.

  11. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia.

    PubMed

    Hugerth, Luisa W; Muller, Emilie E L; Hu, Yue O O; Lebrun, Laura A M; Roume, Hugo; Lundin, Daniel; Wilmes, Paul; Andersson, Anders F

    2014-01-01

    High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.

  12. [Mg2+ ions affect the structure of the central domain of the 18S rRNA in the vicinity of the ribosomal protein S13 binding site].

    PubMed

    Ivanov, A V; Malygin, A A; Karpova, G G

    2013-01-01

    It is known that Mg2+ ions at high concentrations stabilize the structure of the 16S rRNA in a conformation favorable for binding to the ribosomal proteins in the course of the eubacterial 30S ribosomal subunits assembly in vitro. Effect of Mg2+ on the formation of the 18S rRNA structure at the 40S subunit assembly remains poorly explored. In this paper, we show that the sequentional increase of the Mg2+ concentration from 0.5 mM to 20 mM leads to a significant decrease of the affinity of recombinant human ribosomal protein S13 (rpS13e) to a RNA transcript corresponding to the central domain fragment of the 18S rRNA (18SCD). The regions near the rpS13e binding site in 18SCD (including the nucleotides of helices H20 and H22), whose availabilities to hydroxyl radicals were dependent on the Mg2+ concentration, were determined. It was found that increase of the concentrations of Mg2+ results in the enhanced accessibilities of nucleotides G933-C937 and C1006-A1009 in helix H22 and reduces those of nucleotides A1023, A1024, and A1028-S1026 in the helix H20. Comparison of the results obtained with the crystallographic data on the structure of the central domain of 18S rRNA in the 40S ribosomal subunit led to conclusion that increase of Mg2+ concentrations results in the reorientation of helices H20 and H24 relatively helices H22 and H23 to form a structure, in which these helices are positioned the same way as in 40S subunits. Hence, saturation of the central domain of 18S rRNA with coordinated Mg2+ ions causes the same changes in its structure as rpS13e binding does, and leads to decreasing of this domain affinity to the protein.

  13. A Local Role for the Small Ribosomal Subunit Primary Binder rpS5 in Final 18S rRNA Processing in Yeast

    PubMed Central

    Neueder, Andreas; Jakob, Steffen; Pöll, Gisela; Linnemann, Jan; Deutzmann, Rainer; Tschochner, Herbert; Milkereit, Philipp

    2010-01-01

    In vivo depletion of the yeast small ribosomal subunit (SSU) protein S5 (rpS5) leads to nuclear degradation of nascent SSUs and to a perturbed global assembly state of the SSU head domain. Here, we report that rpS5 plays an additional local role at the head/platform interface in efficient SSU maturation. We find that yeast small ribosomal subunits which incorporated an rpS5 variant lacking the seven C-terminal amino acids have a largely assembled head domain and are exported to the cytoplasm. On the other hand, 3′ processing of 18S rRNA precursors is inhibited in these ribosomal particles, although they associate with the putative endonuclease Nob1p and other late acting 40S biogenesis factors. We suggest that the SSU head component rpS5 and platform components as rpS14 are crucial constituents of a highly defined spatial arrangement in the head – platform interface of nascent SSUs, which is required for efficient processing of the therein predicted SSU rRNA 3′ end. Positioning of rpS5 in nascent SSUs, including its relative orientation towards platform components in the head-platform cleft, will depend on the general assembly and folding state of the head domain. Therefore, the suggested model can explain 18S precursor rRNA 3′ processing phenotypes observed in many eukaryotic SSU head assembly mutants. PMID:20419091

  14. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation

    PubMed Central

    Pánek, Josef; Kolář, Michal; Vohradský, Jiří; Shivaya Valášek, Leoš

    2013-01-01

    There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA–rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5′ untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5′ UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5′ UTRs of mRNAs. PMID:23804757

  15. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5' UTRs and its implications for eukaryotic gene translation regulation.

    PubMed

    Pánek, Josef; Kolár, Michal; Vohradský, Jirí; Shivaya Valásek, Leos

    2013-09-01

    There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA-rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5' untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5' UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5' UTRs of mRNAs.

  16. Chromosomal mapping of 18S-28S and 5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species.

    PubMed

    Fontana, Francesco; Lanfredi, Massimo; Congiu, Leonardo; Leis, Marilena; Chicca, Milvia; Rossi, Remigio

    2003-06-01

    The number and distribution of the 18S-28S and 5S rRNA (rDNA) gene sequences were examined on mitotic chromosomes of six sturgeon species by two-colour in situ hybridization. Four of the six species, Huso huso, Acipenser stellatus, Acipenser sturio, and Acipenser ruthenus, with about 120 chromosomes, showed from six to eight 18S-28S rDNA signals, while 5S rDNA signals were on only one chromosome pair. The two species with 250-270 chromosomes, Acipenser baerii and Acipenser transmontanus, showed from 10 to 12 18S-28S sites and two chromosome pairs bearing 5S rDNA signals. In all examined species, the rather intense 5S rDNA signals apparently overlapped those of 18S-28S rDNA. These data support the diploid-tetraploid relationships between the two chromosome groups of sturgeons. The close association between the two rDNA families in species belonging to an ancestral fish order, such as Acipenseriformes, supports the hypothesis that the association represents a primitive condition.

  17. 18S rRNA Gene Variation among Common Airborne Fungi, and Development of Specific Oligonucleotide Probes for the Detection of Fungal Isolates

    PubMed Central

    Wu, Zhihong; Tsumura, Yoshihiko; Blomquist, Göran; Wang, Xiao-Ru

    2003-01-01

    In this study, we sequenced 18S rRNA genes (rDNA) from 49 fungal strains representing 31 species from 15 genera. Most of these species are common airborne fungi and pathogens that may cause various public health concerns. Sequence analysis revealed distinct divergence between Zygomycota and Ascomycota. Within Ascomycota, several strongly supported clades were identified that facilitate the taxonomic placement of several little-studied fungi. Wallemia appeared as the group most diverged from all the other Ascomycota species. Based on the 18S rDNA sequence variation, 108 oligonucleotide probes were designed for each genus and species included in this study. After homology searches and DNA hybridization evaluations, 33 probes were verified as genus or species specific. The optimal hybridization temperatures to achieve the best specificity for these 33 probes were determined. These new probes can contribute to the molecular diagnostic research for environmental monitoring. PMID:12957927

  18. Detection of genetic homogeneity of Panax notoginseng cultivars by sequencing nuclear 18S rRNA and plastid matK genes.

    PubMed

    Zhang, Ying; Zhang, Jin-Chao; Huang, Ming-Hui; Yang, Meng-Su; Cao, Hui

    2006-07-01

    The nuclear 18S rRNA and chloroplast MATK genes of 18 samples of Panax notoginseng and its processed material Sanqi (Radix Notoginseng) were analyzed. The two genes, regardless of cultivar origin, were found to be identical to genotype R1 and M1, respectively, of the published sequences (GenBank accession no. D85171 and AB027526). This phenomenon implies that the species is highly conserved, which is probably caused by the use of the same strain in cultivation and the lack of active mutation in these two genes.

  19. Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency.

    PubMed

    Badhai, Jitendra; Fröjmark, Anne-Sophie; Razzaghian, Hamid Reza; Davey, Edward; Schuster, Jens; Dahl, Niklas

    2009-06-18

    Ribosomal protein S19 (RPS19) is mutated in patients with Diamond-Blackfan anemia (DBA). We hypothesized that decreased levels of RPS19 lead to a coordinated down-regulation of other ribosomal (r-)proteins at the subunit level. We show that small interfering RNA (siRNA) knock-down of RPS19 results in a relative decrease of small subunit (SSU) r-proteins (S20, S21 and S24) when compared to large subunit (LSU) r-proteins (L3, L9, L30 and L38). This correlates with a relative decrease in 18S rRNA with respect to 28S rRNA. The r-protein mRNA levels remain relatively unchanged indicating a post transcriptional regulation of r-proteins at the level of subunit formation.

  20. Interactions of human ribosomal proteins S16 and S5 with an 18S rRNA fragment containing their binding sites.

    PubMed

    Malygin, Alexey A; Yanshina, Darya D; Karpova, Galina G

    2009-09-01

    Human ribosomal proteins S5e and S16e are the homologues of prokaryotic S7p and S9p, respectively. It was shown that S5e and S16e are capable of the specific binding with a rRNA transcript corresponding to the region of human 18S rRNA containing helices H28-30 and H41-43 (3Dm), which is homologous to the region in 16S rRNA containing the entire binding site for S7p and the major part of the site for S9p. We have studied binding of S5e and S16e to 3Dm and demonstrated that while each of them is able to bind to the rRNA transcript independently, their simultaneous binding has a noticeable synergetic effect. Using enzymatic footprinting, we showed that these proteins protect 3Dm against hydrolysis with RNases mainly in the regions homologous to the sites of S7p and S9p binding on the 16S rRNA. At the same time, we found regions that correspond to 16S rRNA fragments distant from the binding sites of the respective homologous prokaryotic proteins. Comparison of these results with the data on 3Dm footprinting in binary complexes with S5e or S16e revealed that each of these proteins affects binding of another one to 3Dm, which is displayed in significant expansion of 3Dm sites protected by the proteins against hydrolysis in the ternary complex.

  1. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation.

    PubMed Central

    Gulli, M P; Girard, J P; Zabetakis, D; Lapeyre, B; Melese, T; Caizergues-Ferrer, M

    1995-01-01

    Several nucleolar proteins, such as nucleolin, NOP1/fibrillarin, SSB1, NSR1 and GAR1 share a common glycine and arginine rich structural motif called the GAR domain. To identify novel nucleolar proteins from fission yeast we screened Schizosaccharomyces pombe genomic DNA libraries with a probe encompassing the GAR structural motif. Here we report the identification and characterization of a S.pombe gene coding for a novel nucleolar protein, designated gar2. The structure of the fission yeast gar2 is reminiscent of that of nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. In addition, like these proteins, gar2 has a nucleolar localisation. The disruption of the gar2+ gene affects normal cell growth, leads to an accumulation of 35S pre-rRNA and a decrease of mature 18S rRNA steady state levels. Moreover, ribosomal profiles of the mutant show an increase of free 60S ribosomal subunits and an absence of free 40S ribosomal subunits. gar2 is able to rescue a S.cerevisiae mutant lacking NSR1, thus establishing gar2 as a functional homolog of NSR1. We propose that gar2 helps the assembly of pre-ribosomal particles containing 18S rRNA. Images PMID:7596817

  2. Loop-mediated isothermal amplification assay for detection of Histomonas meleagridis infection in chickens targeting the 18S rRNA sequences.

    PubMed

    Xu, Jinjun; Qu, Chanbao; Tao, Jianping

    2013-12-11

    Histomonas meleagridis is the causative agent of histomonosis, a disease of gallinaceous fowl characterized by necrotic typhlitis, hepatitis, and high mortality. To develop a rapid and sensitive method for specific detection of H. meleagridis, an assay based on loop-mediated isothermal amplification (LAMP) targeting the 18S rRNA gene was established. The detection limit of the LAMP assay was 10 copies for standard plasmids containing an 18S rRNA gene fragment, which was superior to that of a classical PCR method. Specificity tests revealed that there was no cross-reaction with other protozoa such as Trichomonas gallinae, Blastocytis sp, Tetratrichomonas gallinarum, Plasmodium gallinaceum, Toxoplasma gondii, Eimeria tenella, Leucocytozoon caulleryi, and Leucocytozoon sabrazesi. The assay was evaluated for its diagnostic utility using field liver and caeca samples collected from suspected cases, the detection rate was 100 and 97.92%, respectively. These results indicate that the LAMP assay may be a useful tool for rapid detection and identification of H. meleagridis in poultry.

  3. Loop-mediated isothermal amplification assay for detection of Histomonas meleagridis infection in chickens targeting the 18S rRNA sequences.

    PubMed

    Xu, Jinjun; Qu, Chanbao; Tao, Jianping

    2014-01-01

    Histomonas meleagridis is the causative agent of histomonosis, a disease of gallinaceous fowl characterized by necrotic typhlitis, hepatitis, and high mortality. To develop a rapid and sensitive method for specific detection of H. meleagridis, an assay based on loop-mediated isothermal amplification (LAMP) targeting the 18S rRNA gene was established. The detection limit of the LAMP assay was 10 copies for standard plasmids containing an 18S rRNA gene fragment, which was superior to that of a classical PCR method. Specificity tests revealed that there was no cross-reaction with other protozoa such as Trichomonas gallinae, Blastocytis sp, Tetratrichomonas gallinarum, Plasmodium gallinaceum, Toxoplasma gondii, Eimeria tenella, Leucocytozoon caulleryi and Leucocytozoon sabrazesi. The assay was evaluated for its diagnostic utility using liver and caeca samples collected from suspected field cases, the detection rate was 100 and 97.92%, respectively. These results indicate that the LAMP assay may be a useful tool for rapid detection and identification of H. meleagridis in poultry.

  4. Molecular phylogenetic analysis of the coccidian cephalopod parasites Aggregata octopiana and Aggregata eberthi (Apicomplexa: Aggregatidae) from the NE Atlantic coast using 18S rRNA sequences.

    PubMed

    Castellanos-Martínez, Sheila; Pérez-Losada, Marcos; Gestal, Camino

    2013-08-01

    The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are identified in European waters. Extensive investigation of their morphology resulted in a redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus clarifying confusing descriptions recorded in the past. The present study sequenced the 18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo (NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed between A. octopiana samples from the same two areas, which suggest the existence of two species. Based on previous morphological evidence, host specificity data, and new molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the valid type species. Published by Elsevier GmbH.

  5. HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation

    PubMed Central

    Malygin, Alexey A.; Kossinova, Olga A.; Shatsky, Ivan N.; Karpova, Galina G.

    2013-01-01

    Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES–rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors. PMID:23873958

  6. The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing.

    PubMed

    Dutca, Laura M; Gallagher, Jennifer E G; Baserga, Susan J

    2011-07-01

    The synthesis of ribosomal subunits in the nucleolus is a conserved, essential process that results in cytoplasmic ribosomes with precisely processed and folded rRNAs assembled with ribosomal proteins. It has been proposed, but never directly demonstrated, that the U3 small nucleolar RNA (snoRNA), a nucleolar component required for ribosome biogenesis, is a chaperone for pre-18S rRNA folding. To test this, we used in vivo chemical probing with dimethyl sulfate to detect changes in pre-rRNA structure upon genetic manipulation of the yeast, Saccharomyces cerevisiae. Based on changes in nucleotide reactivity, we found that the U3 snoRNA is indeed required for folding of the pre-18S rRNA. Furthermore, we detected a new essential base pairing interaction that is likely the initial anchor that recruits the U3 snoRNA to the pre-rRNA, is a prerequisite for the subsequent interactions, and is required for the small subunit processome formation. Substitution of the 5'-ETS nucleotides of the pre-rRNA involved in this initial base pairing interaction is lethal, but growth is restored when a complementary U3 snoRNA is expressed. The U3 snoRNP, via base pairing, and its associated proteins, are part of the required machinery that orchestrates the folding of pre-rRNA that results in the assembly of the small ribosomal subunit.

  7. Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials.

    PubMed

    Nakacwa, R; Kiggundu, A; Talwana, H; Namaganda, J; Lilley, C; Tushemereirwe, W; Atkinson, H

    2013-10-01

    Information on relatedness in nematodes is commonly obtained by DNA sequencing of the ribosomal internal transcribed spacer region. However, the level of diversity at this locus is often insufficient for reliable species differentiation. Recent findings suggest that the sequences of a fragment of the small subunit nuclear ribosomal DNA (18S rRNA or SSU), identify genera of soil nematodes and can also distinguish between species in some cases. A database of soil nematode genera in a Ugandan soil was developed using 18S rRNA sequences of individual nematodes from a GM banana confined field trial site at the National Agricultural Research Laboratories, Kawanda in Uganda. The trial was planted to evaluate transgenic bananas for resistance to black Sigatoka disease. Search for relatedness of the sequences gained with entries in a public genomic database identified a range of 20 different genera and sometimes distinguished species. Molecular markers were designed from the sequence information to underpin nematode faunal analysis. This approach provides bio-indicators for disturbance of the soil environment and the condition of the soil food web. It is being developed to support environmental biosafety analysis by detecting any perturbance by transgenic banana or other GM crops on the soil environment.

  8. The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing

    PubMed Central

    Dutca, Laura M.; Gallagher, Jennifer E. G.; Baserga, Susan J.

    2011-01-01

    The synthesis of ribosomal subunits in the nucleolus is a conserved, essential process that results in cytoplasmic ribosomes with precisely processed and folded rRNAs assembled with ribosomal proteins. It has been proposed, but never directly demonstrated, that the U3 small nucleolar RNA (snoRNA), a nucleolar component required for ribosome biogenesis, is a chaperone for pre-18S rRNA folding. To test this, we used in vivo chemical probing with dimethyl sulfate to detect changes in pre-rRNA structure upon genetic manipulation of the yeast, Saccharomyces cerevisiae. Based on changes in nucleotide reactivity, we found that the U3 snoRNA is indeed required for folding of the pre-18S rRNA. Furthermore, we detected a new essential base pairing interaction that is likely the initial anchor that recruits the U3 snoRNA to the pre-rRNA, is a prerequisite for the subsequent interactions, and is required for the small subunit processome formation. Substitution of the 5′-ETS nucleotides of the pre-rRNA involved in this initial base pairing interaction is lethal, but growth is restored when a complementary U3 snoRNA is expressed. The U3 snoRNP, via base pairing, and its associated proteins, are part of the required machinery that orchestrates the folding of pre-rRNA that results in the assembly of the small ribosomal subunit. PMID:21349877

  9. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia.

    PubMed

    Cooper, Madalyn K; Phalen, David N; Donahoe, Shannon L; Rose, Karrie; Šlapeta, Jan

    2016-01-30

    Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Molecular analysis of 18S rRNA gene of Cryptosporidium parasites from patients living in Iran, Malawi, Nigeria and Vietnam.

    PubMed

    Ghaffari, Salman; Kalantari, Narges

    2012-01-01

    Cryptosporidium species are one of the most common causes of gastrointestinal infection in humans around the world. This study has aimed to investigate the hyper variable region of the 18S rRNA gene in Cryptosporidium for exact parasite identification. DNA was extracted from 26 fecal samples from which initially Cryptosporidium oocysts were identified by Ziehl-Neelsen acid-fast , Auramine phenol and ELISA techniques. Nested PCR, targeting the most polymorphic region of the 18S rRNA gene and genotyping was performed by restriction endonuclease digestion of the PCR product followed by nucleotide sequencing and phylogenic analysis. Among 26 isolates analyzed, three species of Cryptosporidium were identified; 38.5% of the isolates were C. hominis while 53.8% of the isolates were C. parvum and 7.7% of the isolates were C. meleagridis, which the last two species have the potentially zoonotic transmission. The only 11T subtype of C. hominis was demonstrated. These strains clustered distinctly into either human or animal origin regardless of the geographical origin, age, or immunity status of the patients. In summary, this work is the first report of C. meleagridis infecting human in Iran. Moreover, it suggested that multi-locus study of Cryptosporidium species in developing countries would be necessary to determine the extent of transmission of cryptosporidiosis in the populations.

  11. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci.

    PubMed

    Paparini, Andrea; Gofton, Alexander; Yang, Rongchang; White, Nicole; Bunce, Michael; Ryan, Una M

    2015-01-01

    Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are

  12. Phylogenetic analysis based on 18S rRNA gene and matK gene sequences of Panax vietnamensis and five related species.

    PubMed

    Komatsu, K; Zhu, S; Fushimi, H; Qui, T K; Cai, S; Kadota, S

    2001-07-01

    Panax vietnamensis was discovered recently in Vietnam. Its bamboo-like rhizomes, called Vietnamese Ginseng, have attracted considerable attention because of their specific pharmacological activities. In order to define the taxonomic position of this new species and include it in the molecular authentication of Ginseng drugs, the 18S ribosomal RNA gene and matK gene sequences of P. vietnamensis were determined and compared with those of its related taxa, P. japonicus var. major and P. pseudo-ginseng subsp. himalaicus, besides previously reported P. ginseng, P. japonicus and P. quinquefolius. The 18S rRNA gene sequences were found to be 1809 bps in length. The sequence of P. vietnamensis was identical to that of P. quinquefolius, and presented one base substitution from those of both P. japonicus var. major and P. pseudo-ginseng subsp. himalaicus. The matK gene sequences of 6 taxa were found to be 1509 bps in length. The sequence of P. vietnamensis differed from those of P. japonicus var. major, P. pseudo-ginseng subsp. himalaicus, P. ginseng, P. japonicus and P. quinquefolius at 4, 5, 9, 9 and 10 nucleotide positions, respectively. The phylogenetic tree reconstructed by the combined 18S rRNA-matK gene analysis using the maximum parsimony method showed that P. vietnamensis was sympatric with other Panax species and had a close relationship with P. japonicus var. major and P. pseudo-ginseng subsp. himalaicus.

  13. A PCR method based on 18S rRNA gene for detection of malaria parasite in Balochistan.

    PubMed

    Shahwani, Zubeda; Aleem, Abdul; Ahmed, Nazeer; Mushtaq, Muhammad; Afridi, Sarwat

    2016-12-01

    To establish a polymerase chain reaction method based on 18S ribosomal ribonucleic acid gene for the detection of plasmodium deoxyribonucleic acid in patients suffering from malaria symptoms. This cross-sectional study was conducted from September 2013 to October 2014 in district Quetta of Pakistan's Balochistan province. Blood samples were collected from patients suffering from general symptoms of malaria. A polymerase chain reaction-based technique was applied for the diagnosis of malaria and detection of responsible species in the patients who were suspected to carry the parasite. Performance of this polymerase chain reaction method was compared against the microscopy results. Parasite number was also calculated for microscopy positive samples.All samples after the genomic deoxyribonucleic acid isolation were subjected to polymerase chain reaction amplification and agarose gel electrophoresis. Of the 200 samples, 114(57%) were confirmed as positive and 86(43%) as negative for malaria by microscopy. Polymerase chain reaction identified 124(62%) samples as positive and 76(38%) as negative for malaria. The comparative analysis of both diagnostic methods confirmed 109(54.5%) samples as positive by both techniques. Besides, 5(6.58%) samples were identified as false positive and 15(12.1%) samples as false negative by polymerase chain reaction. Sensitivity, specificity and positive predictive values for polymerase chain reaction in comparison to microscopy were 87.98%, 93.42% and 96%, respectively. Polymerase chain reaction-based methods in malaria diagnosis and species identification were found to be more effective than other techniques.

  14. Molecular Phylogeny and Barcoding of Caulerpa (Bryopsidales) Based on the tufA, rbcL, 18S rDNA and ITS rDNA Genes

    PubMed Central

    Kazi, Mudassar Anisoddin; Reddy, C. R. K.; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  15. Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes.

    PubMed

    Kazi, Mudassar Anisoddin; Reddy, C R K; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters.

  16. Multiple origins of the ascidian-Prochloron symbiosis: molecular phylogeny of photosymbiotic and non-symbiotic colonial ascidians inferred from 18S rDNA sequences.

    PubMed

    Yokobori, Shin-Ichi; Kurabayashi, Atsushi; Neilan, Brett A; Maruyama, Tadashi; Hirose, Euichi

    2006-07-01

    In the tropics, certain didemnid ascidians harbor the prokaryotic photosymbiont Prochloron. To date, this photosymbiosis has been found in four didemnid genera that include non-symbiotic species. Here, we report the molecular phylogeny of symbiotic and non-symbiotic didemnids based on their 18S rDNA sequences. The data cover all four genera containing symbiotic species and one other genus comprised of only non-symbiotic species. Near-complete nucleotide sequences of 18S rDNAs were determined for four non-didemnid species and 52 didemnid samples (five genera), including 48 photosymbiotic samples collected from the Ryukyu Archipelago, the Great Barrier Reef, Hawaii, and Bali. Our phylogenetic trees indicated a monophyletic origin of the family Didemnidae, as well as each of the didemnid genera. The results strongly support the hypothesis that establishment of the ascidian-Prochloron symbiosis occurred independently in the Didemnidae lineage at least once in each of the genera that possess symbiotic species.

  17. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity

    PubMed Central

    2010-01-01

    Background The 18S rRNA gene is one of the most important molecular markers, used in diverse applications such as molecular phylogenetic analyses and biodiversity screening. The Mollusca is the second largest phylum within the animal kingdom and mollusks show an outstanding high diversity in body plans and ecological adaptations. Although an enormous amount of 18S data is available for higher mollusks, data on some early branching lineages are still limited. Despite of some partial success in obtaining these data from Solenogastres, by some regarded to be the most "basal" mollusks, this taxon still remained problematic due to contamination with food organisms and general amplification difficulties. Results We report here the first authentic 18S genes of three Solenogastres species (Mollusca), each possessing a unique sequence composition with regions conspicuously rich in guanine and cytosine. For these GC-rich regions we calculated strong secondary structures. The observed high intra-molecular forces hamper standard amplification and appear to increase formation of chimerical sequences caused by contaminating foreign DNAs from potential prey organisms. In our analyses, contamination was avoided by using RNA as a template. Indication for contamination of previously published Solenogastres sequences is presented. Detailed phylogenetic analyses were conducted using RNA specific models that account for compensatory substitutions in stem regions. Conclusions The extreme morphological diversity of mollusks is mirrored in the molecular 18S data and shows elevated substitution rates mainly in three higher taxa: true limpets (Patellogastropoda), Cephalopoda and Solenogastres. Our phylogenetic tree based on 123 species, including representatives of all mollusk classes, shows limited resolution at the class level but illustrates the pitfalls of artificial groupings formed due to shared biased sequence composition. PMID:20214780

  18. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity.

    PubMed

    Meyer, Achim; Todt, Christiane; Mikkelsen, Nina T; Lieb, Bernhard

    2010-03-09

    The 18S rRNA gene is one of the most important molecular markers, used in diverse applications such as molecular phylogenetic analyses and biodiversity screening. The Mollusca is the second largest phylum within the animal kingdom and mollusks show an outstanding high diversity in body plans and ecological adaptations. Although an enormous amount of 18S data is available for higher mollusks, data on some early branching lineages are still limited. Despite of some partial success in obtaining these data from Solenogastres, by some regarded to be the most "basal" mollusks, this taxon still remained problematic due to contamination with food organisms and general amplification difficulties. We report here the first authentic 18S genes of three Solenogastres species (Mollusca), each possessing a unique sequence composition with regions conspicuously rich in guanine and cytosine. For these GC-rich regions we calculated strong secondary structures. The observed high intra-molecular forces hamper standard amplification and appear to increase formation of chimerical sequences caused by contaminating foreign DNAs from potential prey organisms. In our analyses, contamination was avoided by using RNA as a template. Indication for contamination of previously published Solenogastres sequences is presented. Detailed phylogenetic analyses were conducted using RNA specific models that account for compensatory substitutions in stem regions. The extreme morphological diversity of mollusks is mirrored in the molecular 18S data and shows elevated substitution rates mainly in three higher taxa: true limpets (Patellogastropoda), Cephalopoda and Solenogastres. Our phylogenetic tree based on 123 species, including representatives of all mollusk classes, shows limited resolution at the class level but illustrates the pitfalls of artificial groupings formed due to shared biased sequence composition.

  19. Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast

    PubMed Central

    Thomson, Emma; Rappsilber, Juri; Tollervey, David

    2007-01-01

    Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete. PMID:17956976

  20. Crystal Structure of Rcl1 an Essential Component of the Eukaryal pre-rRNA Processosome Implicated in 18s rRNA Biogenesis

    SciTech Connect

    T Tanaka; P Smith; S Shuman

    2011-12-31

    Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3'-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 {angstrom} crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.

  1. Crystal structure of Rcl1, an essential component of the eukaryal pre-rRNA processosome implicated in 18s rRNA biogenesis.

    PubMed

    Tanaka, Naoko; Smith, Paul; Shuman, Stewart

    2011-04-01

    Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3'-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 Å crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.

  2. Protist 18S rRNA gene Sequence Analysis Reveals Multiple Sources of Organic Matter Contributing to Turbidity Maxima of the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Zuber, Peter A.

    2011-10-05

    The Columbia River estuary is traditionally considered a detritus-based ecosystem fueled in summer by organic matter (OM) from expired freshwater diatoms. Since Estuarine Turbidity Maxima (ETM) are sites of accumulation and transformation of this phytoplankton-derived OM, to further characterize the ETM protist assemblage, we collected in August 2007 bottom waters throughout an ETM event, as well as surface water during the peak of bottom turbidity, and performed biogeochemical, microscopic and molecular (18S rRNA gene clone libraries) analyses. These data confirmed that the majority of the particulate OM in ETMs is derived from chlorophyll a-poor particulate organic carbon tagged by DNA too damaged to be detected by molecular analysis.

  3. DIVERSITY OF THE TYPE 1 INTRON-ITS REGION OF THE 18S rRNA GENE IN PSEUDOGYMNOASCUS SPECIES FROM THE RED HILLS OF KANSAS.

    PubMed

    Chen, Xi; Crupper, Scott S

    2016-09-01

    Gypsum caves found throughout the Red Hills of Kansas have the state's most diverse and largest population of cave-roosting bats. White-nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans, which threatens all temperate bat species, has not been previously detected in the gypsum caves as this disease moves westward from the eastern United States. Cave soil was obtained from the gypsum caves, and using the polymerase chain reaction, a 624-nucleotide DNA fragment specific to the Type 1 intron-internal transcribed spacer region of the 18S rRNA gene from Pseudogymnoascus species was amplified. Subsequent cloning and DNA sequencing indicated P. destructans DNA was present, along with 26 uncharacterized Pseudogymnoascus DNA variants. However, no evidence of WNS was observed in bat populations residing in these caves.

  4. Comparative analysis of eukaryotic marine microbial assemblages from 18S rRNA gene and gene transcript clone libraries by using different methods of extraction.

    PubMed

    Koid, Amy; Nelson, William C; Mraz, Amy; Heidelberg, Karla B

    2012-06-01

    Eukaryotic marine microbes play pivotal roles in biogeochemical nutrient cycling and ecosystem function, but studies that focus on the protistan biogeography and genetic diversity lag-behind studies of other microbes. 18S rRNA PCR amplification and clone library sequencing are commonly used to assess diversity that is culture independent. However, molecular methods are not without potential biases and artifacts. In this study, we compare the community composition of clone libraries generated from the same water sample collected at the San Pedro Ocean Time Series (SPOTs) station in the northwest Pacific Ocean. Community composition was assessed using different cell lysis methods (chemical and mechanical) and the extraction of different nucleic acids (DNA and RNA reverse transcribed to cDNA) to build Sanger ABI clone libraries. We describe specific biases for ecologically important phylogenetic groups resulting from differences in nucleic acid extraction methods that will inform future designs of eukaryotic diversity studies, regardless of the target sequencing platform planned.

  5. Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (radiolarians) assessed by high-throughput sequencing.

    PubMed

    Decelle, Johan; Romac, Sarah; Sasaki, Eriko; Not, Fabrice; Mahé, Frédéric

    2014-01-01

    Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism) that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454 pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia, AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the 97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity and richness of protists in the environment.

  6. Detection and Discovery of Crustacean Parasites in Blue Crabs (Callinectes sapidus) by Using 18S rRNA Gene-Targeted Denaturing High-Performance Liquid Chromatography▿ †

    PubMed Central

    Troedsson, Christofer; Lee, Richard F.; Walters, Tina; Stokes, Vivica; Brinkley, Karrie; Naegele, Verena; Frischer, Marc E.

    2008-01-01

    Recently, we described a novel denaturing high-performance liquid chromatography (DHPLC) approach useful for initial detection and identification of crustacean parasites. Because this approach utilizes general primers targeted to conserved regions of the 18S rRNA gene, a priori genetic sequence information on eukaryotic parasites is not required. This distinction provides a significant advantage over specifically targeted PCR assays that do not allow for the detection of unknown or unsuspected parasites. However, initial field evaluations of the DHPLC assay suggested that because of PCR-biased amplification of dominant host genes it was not possible to detect relatively rare parasite genes in infected crab tissue. Here, we describe the use of a peptide nucleic acid (PNA) PCR hybridization blocking probe in association with DHPLC (PNA-PCR DHPLC) to overcome inherent PCR bias associated with amplification of rare target genes by use of generic primers. This approach was utilized to detect infection of blue crabs (Callinectes sapidus) by the parasitic dinoflagellate Hematodinium sp. Evaluation of 76 crabs caught in Wassaw Sound, GA, indicated a 97% correspondence between detection of the parasite by use of a specific PCR diagnostic assay and that by use of PNA-PCR DHPLC. During these studies, we discovered one crab with an association with a previously undescribed protist symbiont. Phylogenetic analysis of the amplified symbiont 18S rRNA gene indicated that it is most closely related to the free-living kinetoplastid parasite Procryptobia sorokini. To our knowledge, this is the first report of this parasite group in a decapod crab and of this organism exhibiting a presumably parasitic life history. PMID:18502913

  7. Genetic diversity among Babesia rossi detected in naturally infected dogs in Abeokuta, Nigeria, based on 18S rRNA gene sequences.

    PubMed

    Takeet, Michael I; Oyewusi, Adeoye J; Abakpa, Simon A V; Daramola, Olukayode O; Peters, Sunday O

    2017-03-01

    Adequate knowledge of the genetic diversity among Babesia species infecting dogs is necessary for a better understanding of the epidemiology and control of canine babesiosis. Hence, this study determined the genetic diversity among the Babesia rossi detected in dogs presented for routine examination in Veterinary Hospitals in Abeokuta, Nigeria. Blood were randomly collected from 209 dogs. Field-stained thin smears were made and DNA extracted from the blood. Partial region of the 18S small subunit ribosomal RNA (rRNA) gene was amplified, sequenced and analysed. Babesia species was detected in 16 (7.7%) of the dogs by microscopy. Electrophoresed PCR products from 39 (18.66%) dogs revealed band size of 450 bp and 2 (0.95%) dogs had band size of 430 bp. The sequences obtained from 450 bp amplicon displayed homology of 99.74% (387/388) with partial sequences of 18S rRNA gene of Babesia rossi in the GeneBank. Of the two sequences that had 430 bp amplicon, one was identified as T. annulata and second as T. ovis. A significantly (p<0.05) higher prevalence of B. rossi was detected by PCR compared to microscopy. The mean PCV of Babesia infected dogs was significantly (p<0.05) lower than non-infected dogs. Phylogenetic analysis revealed minimal diversity among B. rossi with the exception of one sequence that was greatly divergent from the others. This study suggests that more than one genotype of B. rossi may be in circulation among the dog population in the study area and this may have potential implication on clinical outcome of canine babesiosis.

  8. Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

    PubMed Central

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered. PMID:25289639

  9. Development of a cob-18S rRNA gene real-time PCR assay for quantifying Pfiesteria shumwayae in the natural environment.

    PubMed

    Zhang, Huan; Lin, Senjie

    2005-11-01

    Despite the fact that the heterotrophic dinoflagellate Pfiesteria shumwayae is an organism of high interest due to alleged toxicity, its abundance in natural environments is poorly understood. To address this inadequacy, a real-time quantitative PCR assay based on mitochondrial cytochrome b (cob) and 18S rRNA gene was developed and P. shumwayae abundance was investigated in several geographic locations. First, cob and its 5'-end region were isolated from a P. shumwayae culture, revealing three different copies, each consisting of an identical cob coding region and an unidentified region (X) of variable length and sequence. The unique sequences in cob and the X region were then used to develop a P. shumwayae-specific primer set. This primer set was used with reported P. shumwayae-specific 18S primers in parallel real-time PCRs to investigate P. shumwayae abundance from Maine to North Carolina along the U.S. east coast and along coasts in Chile, Hawaii, and China. Both genes generally gave similar results, indicating that this species was present, but at low abundance (mostly <10 cells x ml(-1)), in all the American coast locations investigated (with the exception of Long Island Sound, where which both genes gave negative results). Genetic variation was detected by use of both genes in most of the locations, and while cob consistently detected P. shumwayae or close genetic variants, some of the 18S PCR products were unrelated to P. shumwayae. We conclude that (i) the real-time PCR assay developed is useful for specific quantification of P. shumwayae, and (ii) P. shumwayae is distributed widely at the American coasts, but normally only as a minor component of plankton even in high-risk estuaries (Neuse River and the Chesapeake Bay).

  10. Development of a cob-18S rRNA Gene Real-Time PCR Assay for Quantifying Pfiesteria shumwayae in the Natural Environment†

    PubMed Central

    Zhang, Huan; Lin, Senjie

    2005-01-01

    Despite the fact that the heterotrophic dinoflagellate Pfiesteria shumwayae is an organism of high interest due to alleged toxicity, its abundance in natural environments is poorly understood. To address this inadequacy, a real-time quantitative PCR assay based on mitochondrial cytochrome b (cob) and18S rRNA gene was developed and P. shumwayae abundance was investigated in several geographic locations. First, cob and its 5′-end region were isolated from a P. shumwayae culture, revealing three different copies, each consisting of an identical cob coding region and an unidentified region (X) of variable length and sequence. The unique sequences in cob and the X region were then used to develop a P. shumwayae-specific primer set. This primer set was used with reported P. shumwayae-specific 18S primers in parallel real-time PCRs to investigate P. shumwayae abundance from Maine to North Carolina along the U.S. east coast and along coasts in Chile, Hawaii, and China. Both genes generally gave similar results, indicating that this species was present, but at low abundance (mostly <10 cells · ml−1), in all the American coast locations investigated (with the exception of Long Island Sound, where which both genes gave negative results). Genetic variation was detected by use of both genes in most of the locations, and while cob consistently detected P. shumwayae or close genetic variants, some of the 18S PCR products were unrelated to P. shumwayae. We conclude that (i) the real-time PCR assay developed is useful for specific quantification of P. shumwayae, and (ii) P. shumwayae is distributed widely at the American coasts, but normally only as a minor component of plankton even in high-risk estuaries (Neuse River and the Chesapeake Bay). PMID:16269741

  11. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    PubMed

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification.

  12. RRP20, a component of the 90S preribosome, is required for pre-18S rRNA processing in Saccharomyces cerevisiae

    PubMed Central

    Senapin, Saengchan; Desmond Clark-Walker, G.; Jie Chen, Xin; Séraphin, Bertrand; Daugeron, Marie-Claire

    2003-01-01

    A strain of Saccharomyces cerevisiae, defective in small subunit ribosomal RNA processing, has a mutation in YOR145c ORF that converts Gly235 to Asp. Yor145c is a nucleolar protein required for cell viability and has been reported recently to be present in 90S pre-ribosomal particles. The Gly235Asp mutation in YOR145c is found in a KH-type RNA-binding domain and causes a marked deficiency in 18S rRNA production. Detailed studies by northern blotting and primer extension analyses show that the mutant strain impairs the early pre-rRNA processing cleavage essentially at sites A1 and A2, leading to accumulation of a 22S dead-end processing product that is found in only a few rRNA processing mutants. Furthermore, U3, U14, snR10 and snR30 snoRNAs, involved in early pre-rRNA cleavages, are not destabilized by the YOR145c mutation. As the protein encoded by YOR145c is found in pre-ribosomal particles and the mutant strain is defective in ribosomal RNA processing, we have renamed it as RRP20. PMID:12736301

  13. RRP20, a component of the 90S preribosome, is required for pre-18S rRNA processing in Saccharomyces cerevisiae.

    PubMed

    Senapin, Saengchan; Clark-Walker, G Desmond; Chen, Xin Jie; Séraphin, Bertrand; Daugeron, Marie-Claire

    2003-05-15

    A strain of Saccharomyces cerevisiae, defective in small subunit ribosomal RNA processing, has a mutation in YOR145c ORF that converts Gly235 to Asp. Yor145c is a nucleolar protein required for cell viability and has been reported recently to be present in 90S pre-ribosomal particles. The Gly235Asp mutation in YOR145c is found in a KH-type RNA-binding domain and causes a marked deficiency in 18S rRNA production. Detailed studies by northern blotting and primer extension analyses show that the mutant strain impairs the early pre-rRNA processing cleavage essentially at sites A1 and A2, leading to accumulation of a 22S dead-end processing product that is found in only a few rRNA processing mutants. Furthermore, U3, U14, snR10 and snR30 snoRNAs, involved in early pre-rRNA cleavages, are not destabilized by the YOR145c mutation. As the protein encoded by YOR145c is found in pre-ribosomal particles and the mutant strain is defective in ribosomal RNA processing, we have renamed it as RRP20.

  14. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans.

    PubMed

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L J; Wöhnert, Jens; Entian, Karl-Dieter

    2016-05-19

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Bms1p, a G-domain-containing protein, associates with Rcl1p and is required for 18S rRNA biogenesis in yeast.

    PubMed Central

    Wegierski, T; Billy, E; Nasr, F; Filipowicz, W

    2001-01-01

    Maturation of 18S rRNA and biogenesis of the 40S ribosomes in yeast requires a large number of trans-acting factors, including the U3 small nucleolar ribonucleoprotein (U3 snoRNP), and the recently characterized cyclase-like protein Rcl1p. U3 snoRNP is a key particle orchestrating early 35S rRNA cleavage events. A unique property of Rcl1p is that it specifically associates with U3 snoRNP, but this association appears to occur only at the level of nascent ribosomes and not with the U3 monoparticle. Here we report the characterization of Bms1p, a protein that associates with Rcl1p in multiple structures, including a specific complex sedimenting at around 10S. Like Rcl1p, Bms1p is an essential, evolutionarily conserved, nucleolar protein, and its depletion interferes with processing of the 35S pre-rRNA at sites A0, A1, and A2, and the formation of 40S subunits. The N-terminal domain of Bms1p has structural features found in regulatory GTPases and we demonstrate that mutations of amino acids implicated in GTP/GDP binding affect Bms1p activity in vivo. The results indicate that Bms1p may act as a molecular switch during maturation of the 40S ribosomal subunit in the nucleolus. PMID:11565748

  16. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans

    PubMed Central

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L. J.; Wöhnert, Jens; Entian, Karl-Dieter

    2016-01-01

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m1acp3Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. PMID:27084949

  17. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1

    PubMed Central

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L.J.

    2015-01-01

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson–Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. PMID:25653167

  18. Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities

    PubMed Central

    2016-01-01

    ABSTRACT The use of high-throughput sequencing technologies with the 16S rRNA gene for characterization of bacterial and archaeal communities has become routine. However, the adoption of sequencing methods for eukaryotes has been slow, despite their significance to natural and engineered systems. There are large variations among the target genes used for amplicon sequencing, and for the 18S rRNA gene, there is no consensus on which hypervariable region provides the most suitable representation of diversity. Additionally, it is unclear how much PCR/sequencing bias affects the depiction of community structure using current primers. The present study amplified the V4 and V8-V9 regions from seven microalgal mock communities as well as eukaryotic communities from freshwater, coastal, and wastewater samples to examine the effect of PCR/sequencing bias on community structure and membership. We found that degeneracies on the 3′ end of the current V4-specific primers impact read length and mean relative abundance. Furthermore, the PCR/sequencing error is markedly higher for GC-rich members than for communities with balanced GC content. Importantly, the V4 region failed to reliably capture 2 of the 12 mock community members, and the V8-V9 hypervariable region more accurately represents mean relative abundance and alpha and beta diversity. Overall, the V4 and V8-V9 regions show similar community representations over freshwater, coastal, and wastewater environments, but specific samples show markedly different communities. These results indicate that multiple primer sets may be advantageous for gaining a more complete understanding of community structure and highlight the importance of including mock communities composed of species of interest. IMPORTANCE The quantification of error associated with community representation by amplicon sequencing is a critical challenge that is often ignored. When target genes are amplified using currently available primers, differential

  19. Molecular characterization and phylogeny of Linguatula serrata (Pentastomida: Linguatulidae) based on the nuclear 18S rDNA and mitochondrial cytochrome c oxidase I gene

    PubMed Central

    MOHANTA, Uday Kumar; ITAGAKI, Tadashi

    2016-01-01

    Linguatula serrata, a cosmopolitan parasite, is commonly known as tongue worm belonging to the subclass Pentastomida.We collected the nymphal stage of the worm from mesenteric lymph nodes of cattle and identified these as L. serrata based on morphology and morphometry. The 18S rDNA sequences showed no intraspecific variation, although cox1 sequences showed 99.7–99.9% homology. In the phylogenies inferred from both gene loci, members of the genus Linguatula (order Porocephalida) were closer to those of the order Cephalobaenida than to those of Porocephalida, reflecting a mismatch with the corresponding morphology-based taxonomy. Accordingly, analyses of additional gene loci using a larger number of taxa across the Pentastomida should be undertaken to determine an accurate phylogenetic position within the Arthropoda. PMID:27941305

  20. Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences.

    PubMed Central

    Giribet, G; Carranza, S; Riutort, M; Baguñà, J; Ribera, C

    1999-01-01

    The internal phylogeny of the 'myriapod' class Chilopoda is evaluated for 12 species belonging to the five extant centipede orders, using 18S rDNA complete gene sequence and 28S rDNA partial gene sequence data. Equally and differentially weighted parsimony, neighbour-joining and maximum-likelihood were used for phylogenetic reconstruction, and bootstrapping and branch support analyses were performed to evaluate tree topology stability. The results show that the Chilopoda constitute a monophyletic group that is divided into two lines, Notostigmophora (= Scutigeromorpha) and Pleurostigmophora, as found in previous morphological analyses. The Notostigmophora are markedly modified for their epigenic mode of life. The first offshoot of the Pleurostigmophora are the Lithobiomorpha, followed by the Craterostigmomorpha and by the Epimorpha s. str. (= Scolopendromorpha + Geophilomorpha), although strong support for the monophyly of the Epimorpha s. lat. (= Craterostigmomorpha + Epimorpha s. str.) is only found in the differentially weighted parsimony analysis. PMID:10087567

  1. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes.

    PubMed

    Létoquart, Juliette; Huvelle, Emmeline; Wacheul, Ludivine; Bourgeois, Gabrielle; Zorbas, Christiane; Graille, Marc; Heurgué-Hamard, Valérie; Lafontaine, Denis L J

    2014-12-23

    The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N(7)-methylguanosine (m(7)G) introduced at position 1575 on 18S rRNA by Bud23-Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23-Trm112 in the apo and S-adenosyl-L-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23-Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23-Trm112 binds precursor ribosomes at an early nucleolar stage, m(7)G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23-Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23-Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction.

  2. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades.

  3. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA Sequences.

    PubMed

    Rivadavia, Fernando; Kondo, Katsuhiko; Kato, Masahiro; Hasebe, Mitsuyasu

    2003-01-01

    The sundew genus Drosera consists of carnivorous plants with active flypaper traps and includes nearly 150 species distributed mainly in Australia, Africa, and South America, with some Northern Hemisphere species. In addition to confused intrageneric classification of Drosera, the intergeneric relationships among the Drosera and two other genera in the Droseraceae with snap traps, Dionaea and Aldrovanda, are problematic. We conducted phylogenetic analyses of DNA sequences of the chloroplast rbcL gene for 59 species of Drosera, covering all sections except one. These analyses revealed that five of 11 sections, including three monotypic sections, are polyphyletic. Combined rbcL and 18S rDNA sequence data were used to infer phylogenetic relationships among Drosera, Dionaea, and Aldrovanda. This analysis revealed that all Drosera species form a clade sister to a clade including Dionaea and Aldrovanda, suggesting that the snap traps of Aldrovanda and Dionaea are homologous despite their morphological differences. MacClade reconstructions indicated that multiple episodes of aneuploidy occurred in a clade that includes mainly Australian species, while the chromosome numbers in the other clades are not as variable. Drosera regia, which is native to South Africa, and most species native to Australia, were clustered basally, suggesting that Drosera originated in Africa or Australia. The rbcL tree indicates that Australian species expanded their distribution to South America and then to Africa. Expansion of distribution to the Northern Hemisphere from the Southern Hemispere occurred in a few different lineages.

  4. Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology.

    PubMed

    Turbeville, J M; Field, K G; Raff, R A

    1992-03-01

    Partial 18S rRNA sequence of the nemertine Cerebratulus lacteus was obtained and compared with those of coelomate metazoans and acoelomate platyhelminths to test whether nemertines share a most recent common ancestor with the platyhelminths, as traditionally has been implied, or whether nemertines lie within a protostome coelomate clade, as suggested by more recent morphological analyses. Maximum-parsimony analysis supports the inclusion of the nemertine within a protostome-coelomate clade that falls within a more inclusive coelomate clade. Bootstrap analysis indicates strong support for a monophyletic Coelomata composed of a deuterostome and protostome-coelomate clade. Support for a monophyletic protostome Coelomata is weak. Inference by distance analysis is consistent with that of maximum parsimony. Analysis of down-weighted paired sites by maximum parsimony reveals variation in topology only within the protostome-coelomate clade. The relationships among the protostome coelomates cannot be reliably inferred from the partial sequences, suggesting that coelomate protostomes diversified rapidly. Results with evolutionary parsimony are consistent with the inclusion of the nemertine in a coelomate clade. The molecular inference corroborates recent morphological character analyses that reveal no synapomorphies of nemertines and flatworms but instead suggest that the circulatory system and rhynchocoel of nemertines are homologous to coelomic cavities of protostome coelomates, thus supporting the corresponding hypothesis that nemertines belong within a protostome-coelomate clade. The sequence data provide an independent test of morphological character homology.

  5. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA

    PubMed Central

    Zhang, Jun; McCann, Kathleen L.; Qiu, Chen; Gonzalez, Lauren E.; Baserga, Susan J.; Hall, Traci M. Tanaka

    2016-01-01

    Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C'-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease, Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins. PMID:27725644

  6. Structure of a human pre-40S particle points to a role for RACK1 in the final steps of 18S rRNA processing

    PubMed Central

    Larburu, Natacha; Montellese, Christian; O'Donohue, Marie-Françoise; Kutay, Ulrike; Gleizes, Pierre-Emmanuel; Plisson-Chastang, Célia

    2016-01-01

    Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3′-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation. PMID:27530427

  7. Structure of a human pre-40S particle points to a role for RACK1 in the final steps of 18S rRNA processing.

    PubMed

    Larburu, Natacha; Montellese, Christian; O'Donohue, Marie-Françoise; Kutay, Ulrike; Gleizes, Pierre-Emmanuel; Plisson-Chastang, Célia

    2016-09-30

    Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3'-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The phylogenetic position of Myxoboluscarnaticus (Myxozoa, Myxosporea, Bivalvulida) infecting gill lamellae of Cirrhinus mrigala (Hamilton, 1822) based on 18S rRNA sequence analysis.

    PubMed

    Banerjee, Sayani; Patra, Avijit; Adikesavalu, Harresh; Mondal, Anjan; Jawahar Abraham, Thangapalam

    2015-09-01

    Myxozoans are an economically important group of microscopic parasites best known for the diseases they cause in commercially important fish hosts. The classification of myxosporeans is generally based on the morphology of their myxospores. Without molecular data, it is very difficult to identify new or existing species. DNA sequence information is therefore, a prerequisite to taxonomic and phylogenic studies of myxosporeans. In the present study, a myxozoan parasite, Myxobolus carnaticus, infecting the gill lamellae of mrigal carp, Cirrhinus mrigala, was characterized by the 18S rRNA gene sequence. The DNA sequence of M. carnaticus clustered phylogenetically with other gill infecting Myxobolus spp. of freshwater clades, forming a dichotomy with closely related M. pavlovskii (HM991164) that infects the gill lamellae epithelium of silver carp, Hypophthalmichthys molitrix with 95% similarity. Evolutionary pair-wise distances among M. carnaticus and other species of myxosporeans indicated high genetic diversity among myxosporeans. The present study demonstrated that tissue tropism, host specificity and habitat play important roles in phylogenetic relationships among myxozoan species.

  9. Prevalence of infection and 18S rRNA gene sequences of Cytauxzoon species in Iberian lynx (Lynx pardinus) in Spain.

    PubMed

    Millán, J; Naranjo, V; Rodríguez, A; de la Lastra, J M Pérez; Mangold, A J; de la Fuente, J

    2007-07-01

    The Iberian lynx (Lynx pardinus) is the most endangered felid in the world. Only about 160 individuals remain in 2 separate metapopulations in Southern Spain (Sierra Morena and Doñana). We obtained blood samples of 20 lynxes captured from 2004 to 2006, and determined the prevalence of infection and genetic diversity of Cytauxzoon spp. using 18S rRNA PCR and sequence analysis. Prevalence of infection was 15% (3 of 20). Cytauxzoon sp. was only detected in Sierra Morena. For phylogenetic analysis, we used the sequences reported in the present study and those characterized in different domestic and wild felids and ticks from North and South America, Asia and Europe. Three different Cytauxzoon sp. sequences were obtained. They were closely related to that obtained from a Spanish cat, but diverged in up to 1.0% with respect to the only previously reported sequence from an Iberian lynx. Conversely, the latter sequence clustered together with C. manul sequences obtained from Pallas cats (Otocolobus manul) in Mongolia. Our analysis yields a separate cluster of C. felis sequences from cats, wild felids and ticks in the United States and Brazil. These results suggest that at least 2 different Cytauxzoon spp. may be present in Iberian lynx. The apparent absence in one of the areas, together with the possibility of fatal cytauxzoonosis in lynxes makes necessary disease risks to be taken into account in management conservation strategies, such as translocations and re-introductions.

  10. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. The phylogenetic position of Myxobolus carnaticus (Myxozoa, Myxosporea, Bivalvulida) infecting gill lamellae of Cirrhinus mrigala (Hamilton, 1822) based on 18S rRNA sequence analysis

    PubMed Central

    Banerjee, Sayani; Patra, Avijit; Adikesavalu, Harresh; Mondal, Anjan; Jawahar Abraham, Thangapalam

    2015-01-01

    Myxozoans are an economically important group of microscopic parasites best known for the diseases they cause in commercially important fish hosts. The classification of myxosporeans is generally based on the morphology of their myxospores. Without molecular data, it is very difficult to identify new or existing species. DNA sequence information is therefore, a prerequisite to taxonomic and phylogenic studies of myxosporeans. In the present study, a myxozoan parasite, Myxobolus carnaticus, infecting the gill lamellae of mrigal carp, Cirrhinus mrigala, was characterized by the 18S rRNA gene sequence. The DNA sequence of M. carnaticus clustered phylogenetically with other gill infecting Myxobolus spp. of freshwater clades, forming a dichotomy with closely related M. pavlovskii (HM991164) that infects the gill lamellae epithelium of silver carp, Hypophthalmichthys molitrix with 95% similarity. Evolutionary pair-wise distances among M. carnaticus and other species of myxosporeans indicated high genetic diversity among myxosporeans. The present study demonstrated that tissue tropism, host specificity and habitat play important roles in phylogenetic relationships among myxozoan species. PMID:27844004

  12. Design and validation of four new primers for next-generation sequencing to target the 18S rRNA genes of gastrointestinal ciliate protozoa.

    PubMed

    Ishaq, Suzanne L; Wright, André-Denis G

    2014-09-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Molecular Characterization of Cryptosporidium spp. in Wild Rodents of Southwestern Iran Using 18s rRNA Gene Nested-PCR-RFLP and Sequencing Techniques

    PubMed Central

    Saki, Jasem; Asadpouri, Reza

    2016-01-01

    Background. Rodents could act as reservoir for Cryptosporidium spp. specially C. parvum, a zoonotic agent responsible for human infections. Since there is no information about Cryptosporidium infection in rodents of Ahvaz city, southwest of Iran, hence, this survey was performed to determine the prevalence and molecular characterization of Cryptosporidium spp. in this region. Materials and Methods. One hundred rodents were trapped from different regions of Ahvaz city. Intestine contents and fecal specimens of rodents were studied using both microscopy examination to identify oocyst and nested-polymerase chain reaction (PCR) technique for 18s rRNA gene detection. Eventually restriction fragment length polymorphism (RFLP) method using SspI and VspI restriction enzymes was carried out to genotype the species and then obtained results were sequenced. Results. Three out of 100 samples were diagnosed as positive and overall prevalence of Cryptosporidium spp. was 3% using both modified Ziehl-Neelsen staining under light microscope and nested-PCR (830 bp) methods. Afterwards, PCR-RFLP was performed on positive samples and C. parvum pattern was identified. Finally PCR-RFLP findings were sequenced and presence of C. parvum was confirmed again. Conclusions. Our study showed rodents could be potential reservoir for C. parvum. So an integrated program for control and combat with them should be adopted and continued. PMID:27956905

  14. Design and Validation of Four New Primers for Next-Generation Sequencing To Target the 18S rRNA Genes of Gastrointestinal Ciliate Protozoa

    PubMed Central

    Wright, André-Denis G.

    2014-01-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen. PMID:24973070

  15. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA

    SciTech Connect

    Zhang, Jun; McCann, Kathleen L.; Qiu, Chen; Gonzalez, Lauren E.; Baserga, Susan J.; Hall, Traci M. Tanaka

    2016-10-11

    Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C’-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease, Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins.

  16. Chromosomal localization of the 18S-28S and 5S rRNA genes and (TTAGGG)n sequences of butterfly lizards (Leiolepis belliana belliana and Leiolepis boehmei, Agamidae, Squamata).

    PubMed

    Srikulnath, Kornsorn; Uno, Yoshinobu; Matsubara, Kazumi; Thongpan, Amara; Suputtitada, Saowanee; Apisitwanich, Somsak; Nishida, Chizuko; Matsuda, Yoichi

    2011-10-01

    Chromosomal mapping of the butterfly lizards Leiolepis belliana belliana and L. boehmei was done using the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences. The karyotype of L. b. belliana was 2n = 36, whereas that of L. boehmei was 2n = 34. The 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, while the 5S rRNA genes were found in the pericentromeric region of chromosome 6 in both species. Hybridization signals for the (TTAGGG)n sequence were observed at the telomeric ends of all chromosomes, as well as interstitially at the same position as the 18S-28S rRNA genes in L. boehmei. This finding suggests that in L. boehmei telomere-to-telomere fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located or, alternatively, at the secondary constriction of chromosome 1. The absence of telomeric sequence signals in chromosome 1 of L. b. belliana suggested that its chromosomes may have only a few copies of the (TTAGGG)n sequence or that there may have been a gradual loss of the repeat sequences during chromosomal evolution.

  17. Investigating the diversity of the 18S SSU rRNA hyper-variable region of Theileria in cattle and Cape buffalo (Syncerus caffer) from southern Africa using a next generation sequencing approach.

    PubMed

    Mans, Ben J; Pienaar, Ronel; Ratabane, John; Pule, Boitumelo; Latif, Abdalla A

    2016-07-01

    Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1.

    PubMed

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L J

    2015-02-27

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson-Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Time-series of water column alkenones and 18S rRNA confirm that Uk'37 is a viable SST proxy in Narragansett Bay, RI

    NASA Astrophysics Data System (ADS)

    Salacup, J.; Theroux, S.; Herbert, T.; Prell, W. L.

    2011-12-01

    Alkenones, produced in the sunlit mixed layer by specific Haptophyte algae, are a well-established and widely-applied proxy for sea surface temperature (SST) in the world's open-oceans. However, the proxy's utility in estuarine environments remains largely untested. A reliable SST proxy is needed to identify the estuary's sensitivity and response to past and present global change because SST can exert strong control on stratification and circulation patterns, and thus oxygenation and ecosystem health, in these shallow basins. Knowing the estuaries response should help local managers and policy-makers plan mitigation and adaptation strategies. Additionally, the rapid deposition of both marine and terrestrial organic and inorganic material in estuarine systems makes them potential archives of high-resolution paleo-environmental information. A previous investigation of estuarine alkenones suggested that the Uk'37 proxy may be sensitive to the composition of the alkenone-producing Haptophyte population, which may be affected by local nutrient and fresh water fluxes. In particular, low-salinity coastal Haptophytes such as Isochrysis galbana may have a different relationship to SST than higher-salinity open-ocean Haptophytes and their presence may complicate interpretations of the Uk'37 proxy in estuaries. To better understand how the alkenone-based Uk'37 SST proxy is produced in estuarine systems, we present a two-year time-series (monthly-to-thrice-weekly resolution) of alkenone concentrations in particulate organic matter from Narragansett Bay. Alkenone concentrations are coupled with 18S ribosomal RNA (rRNA) measurements to identify the alkenone-producing population. Highest concentrations of alkenones are detected at different times in the upper and lower Bay such that the highest alkenone concentrations occur in the winter-spring (upper Bay) and summer/fall (lower Bay). This result is consistent with the established seasonal blooms and seasonal changes in nutrient

  20. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data.

    PubMed

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  1. Free-Living Protozoa in Two Unchlorinated Drinking Water Supplies, Identified by Phylogenic Analysis of 18S rRNA Gene Sequences▿ †

    PubMed Central

    Valster, Rinske M.; Wullings, Bart A.; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick

    2009-01-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20°C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa. PMID:19465529

  2. [Common features in arrangements of ribosomal protein S26e binding sites on its own pre-mRNA and the 18S rRNA].

    PubMed

    Ivanov, A V; Malygin, A A; Karpova, G G

    2014-01-01

    It is known that human ribosomal protein (rp) S26e can bind to the first intron of its own pre-mRNA and thereby inhibit its splicing. In this work, hydroxyl radical footprinting was applied for detailed mapping of the rpS26e binding site on an RNA transcript corresponding to the rpS26e pre-mRNA fragment containing the first intron flanked by the first exon and a part of the second exon sequences. Nucleotides of this RNA protected from hydroxyl radical attack in the presence of rpS26e were identified. Most of them are found in the region of the 3'-splice site of the first intron within a purine-rich sequence, which forms a loop connecting two helices in the predicted secondary structure of the rpS26e pre-mRNA fragment, and the remaining nucleotides are located near the 5'-splice site. Comparison of arrangements of rpS26e binding sites on the pre-mRNA and 18S rRNA secondary structures reveals similar elements in the organization of these sites. It was found that both sites contain a structural motif, represented by an extended purine-rich loop between two helices, which could be recognized by rpS26e upon binding to these RNAs. The data obtained shed light on the structural aspects of RNA-protein interactions underlying autoregulation of human RPS26e gene expression at the splicing step.

  3. Free-living protozoa in two unchlorinated drinking water supplies, identified by phylogenic analysis of 18S rRNA gene sequences.

    PubMed

    Valster, Rinske M; Wullings, Bart A; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick

    2009-07-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20 degrees C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa.

  4. Investigating Microbial Eukaryotic Diversity from a Global Census: Insights from a Comparison of Pyrotag and Full-Length Sequences of 18S rRNA Genes

    PubMed Central

    Liu, Zhenfeng; Hu, Sarah K.; Jones, Adriane C.; Kim, Diane Y.; Countway, Peter D.; Amaral-Zettler, Linda A.; Cary, S. Craig; Sherr, Evelyn B.; Sherr, Barry F.; Gast, Rebecca J.; Caron, David A.

    2014-01-01

    Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages. PMID:24814788

  5. Use of 18S rRNA gene-based PCR assay for diagnosis of acanthamoeba keratitis in non-contact lens wearers in India.

    PubMed

    Pasricha, Gunisha; Sharma, Savitri; Garg, Prashant; Aggarwal, Ramesh K

    2003-07-01

    Identification of Acanthamoeba cysts and trophozoites in ocular tissues requires considerable expertise and is often time-consuming. An 18S rRNA gene-based PCR test, highly specific for the genus Acanthamoeba, has recently been reported in the molecular diagnosis of Acanthamoeba keratitis. This PCR assay was compared with conventional microbiological tests for the diagnosis of Acanthamoeba keratitis. In a pilot study, the PCR conditions with modifications were first tested on corneal scrapings from patients with culture-proven non-contact lens-related Acanthamoeba, bacterial, and fungal keratitis. This was followed by testing of corneal scrapings from 53 consecutive cases of microbial keratitis to determine sensitivity, specificity, and predictive values of the assay. All corneal scrapings from patients with proven Acanthamoeba keratitis showed a 463-bp amplicon, while no amplicon was obtained from patients with bacterial or fungal keratitis. Some of these amplified products were sequenced and compared with EMBL database reference sequences to validate these to be of Acanthamoeba origin. Out of 53 consecutive cases of microbial keratitis included for evaluating the PCR, 10 (18.9%) cases were diagnosed as Acanthamoeba keratitis on the basis of combined results of culture, smear, and PCR of corneal scrapings. Based on culture results as the "gold standard," the sensitivity of PCR was the same as that of the smear (87.5%); however, the specificity and the positive and negative predictive values of PCR were marginally higher than the smear examination (97.8 versus 95.6%, 87.5 versus 77.8%, and 97.8 versus 97.7%) although the difference was not significant. This study confirms the efficacy of the PCR assay and is the first study to evaluate a PCR-based assay against conventional methods of diagnosis in a clinical setting.

  6. Use of 18S rRNA Gene-Based PCR Assay for Diagnosis of Acanthamoeba Keratitis in Non-Contact Lens Wearers in India

    PubMed Central

    Pasricha, Gunisha; Sharma, Savitri; Garg, Prashant; Aggarwal, Ramesh K.

    2003-01-01

    Identification of Acanthamoeba cysts and trophozoites in ocular tissues requires considerable expertise and is often time-consuming. An 18S rRNA gene-based PCR test, highly specific for the genus Acanthamoeba, has recently been reported in the molecular diagnosis of Acanthamoeba keratitis. This PCR assay was compared with conventional microbiological tests for the diagnosis of Acanthamoeba keratitis. In a pilot study, the PCR conditions with modifications were first tested on corneal scrapings from patients with culture-proven non-contact lens-related Acanthamoeba, bacterial, and fungal keratitis. This was followed by testing of corneal scrapings from 53 consecutive cases of microbial keratitis to determine sensitivity, specificity, and predictive values of the assay. All corneal scrapings from patients with proven Acanthamoeba keratitis showed a 463-bp amplicon, while no amplicon was obtained from patients with bacterial or fungal keratitis. Some of these amplified products were sequenced and compared with EMBL database reference sequences to validate these to be of Acanthamoeba origin. Out of 53 consecutive cases of microbial keratitis included for evaluating the PCR, 10 (18.9%) cases were diagnosed as Acanthamoeba keratitis on the basis of combined results of culture, smear, and PCR of corneal scrapings. Based on culture results as the “gold standard,” the sensitivity of PCR was the same as that of the smear (87.5%); however, the specificity and the positive and negative predictive values of PCR were marginally higher than the smear examination (97.8 versus 95.6%, 87.5 versus 77.8%, and 97.8 versus 97.7%) although the difference was not significant. This study confirms the efficacy of the PCR assay and is the first study to evaluate a PCR-based assay against conventional methods of diagnosis in a clinical setting. PMID:12843065

  7. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

    PubMed Central

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  8. Phylogenetic position of the enigmatic clawless eutardigrade genus Apodibius Dastych, 1983 (Tardigrada), based on 18S and 28S rRNA sequence data from its type species A. confusus.

    PubMed

    Dabert, Miroslawa; Dastych, Hieronymus; Hohberg, Karin; Dabert, Jacek

    2014-01-01

    The systematics of Eutardigrada, the largest lineage among the three classes of the phylum Tardigrada, is based mainly on the morphology of the leg claws and of the buccal apparatus. However, three members of the rarely recorded and poorly known limno-terrestrial eutardigrade genus Apodibius have no claws on their strongly reduced legs, a unique character among all tardigrades. This absence of all claws makes the systematic position of Apodibius one of the most enigmatic among the whole class. Until now all known associates of the genus Apodibius have been located in the incertae sedis species group or, quite recently, included into the Necopinatidae family. In the present study, phylogenetic analyses of 18S and 28S rRNA sequence data from 31 tardigrade species representing four parachelan superfamilies (Isohypsibioidea, Hypsibioidea, Macrobiotoidea, Eohypsibioidea), the apochelan Milnesium tardigradum, and the type species of the genus Apodibius, A. confusus, indicated close relationship of the Apodibius with tardigrade species recently included in the superfamily Isohypsibioidea. This result was well-supported and consistent across all markers (separate 18S rRNA, 28S rRNA, and combined 18S rRNA+28S rRNA datasets) and methods (MP, ML) applied.

  9. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements.

    PubMed

    Saldarriaga, J F; Taylor, F J; Keeling, P J; Cavalier-Smith, T

    2001-09-01

    Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow.

  10. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode.

  11. ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs

    PubMed Central

    Akbergenov, R. Zh.; Zhanybekova, S. Sh.; Kryldakov, R. V.; Zhigailov, A.; Polimbetova, N. S.; Hohn, T.; Iskakov, B. K.

    2004-01-01

    The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation-enhancing property of these sequences. To verify this notion, we designed β-glucuronidase (GUS) mRNAs differing only in the nature of 10 nt inserts in the center of their 41 base leaders. These were complementary to consecutive domains of plant 18S rRNA. Sucrose gradient analysis revealed that leaders with inserts complementary to regions 1105–1114 and 1115–1124 (‘ARC-1’) of plant 18S rRNA bound most efficiently to the 40S ribosomal subunit after dissociation from 80S ribosomes under conditions of high ionic strength, a treatment known to remove translation initiation factors. Using wheat germ cell-free extracts, we could demonstrate that mRNAs with these leaders were translated more than three times more efficiently than a control lacking such a complementarity. Three linked copies of the insert enhanced translation of reporter mRNA to levels comparable with those directed by the natural translation enhancing leaders of tobacco mosaic virus and potato virus Y RNAs. Moreover, inserting the same leaders as intercistronic sequences in dicistronic mRNAs substantially increased translation of the second cistron, thereby revealing internal ribosome entry site activity. Thus, for plant systems, the complementary interaction between mRNA leader and the central region of 18S rRNA allows cap-independent binding of mRNA to the 43S pre-initiation complex without assistance of translation initiation factors. PMID:14718549

  12. Seasonal diversity of planktonic protists in Southwestern Alberta rivers over a 1-year period as revealed by terminal restriction fragment length polymorphism and 18S rRNA gene library analyses.

    PubMed

    Thomas, Matthew C; Selinger, L Brent; Inglis, G Douglas

    2012-08-01

    The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure.

  13. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA.

    PubMed

    Haag, Sara; Kretschmer, Jens; Bohnsack, Markus T

    2015-02-01

    Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2'-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams-Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3'-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3' ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3'-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N(7)-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase. © 2015 Haag et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat's spleen.

    PubMed

    Lv, Ye-hui; Ma, Kai-jun; Zhang, Heng; He, Meng; Zhang, Ping; Shen, Yi-wen; Jiang, Nan; Ma, Duan; Chen, Long

    2014-09-01

    Determining the postmortem interval (PMI) is important in criminal, civil, and forensic cases. We examined the feasibility of using the transcript abundances of mRNAs, 18S rRNA, U6 snRNA, and microRNAs as a means to estimate the PMI. We removed spleen tissues from rats at different PMIs under 4°C or 25°C and examined gene transcript abundances in these samples by RT-qPCR. Using the algorithm geNorm, we found that microRNAs to be appropriate control markers because they were less affected by PMI and temperature. We also characterized relationships between observed PMI and the transcript levels of the above-mentioned RNAs. GAPDH1 and ACTB1 fluctuated slightly like cubic curves, while GAPDH2 and ACTB2 decreased rapidly. 18S rRNA transcript level exhibited a parabolic-like trend at 25°C and exponential growth at 4°C, while U6 transcript level exhibited exponential decay at 25°C and a parabolic-like trend at 4°C. Following validation, we conclude that GAPDH2, ACTB2, and 18S rRNA are suitable makers in the accurate determination of PMI. © 2014 American Academy of Forensic Sciences.

  15. Seasonal Diversity of Planktonic Protists in Southwestern Alberta Rivers over a 1-Year Period as Revealed by Terminal Restriction Fragment Length Polymorphism and 18S rRNA Gene Library Analyses

    PubMed Central

    Thomas, Matthew C.; Selinger, L. Brent

    2012-01-01

    The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure. PMID:22685143

  16. TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification.

    PubMed

    Pinto, C Miguel; Kalko, Elisabeth K V; Cottontail, Iain; Wellinghausen, Nele; Cottontail, Veronika M

    2012-08-01

    We report TcBat, a recently described genetic lineage of Trypanosoma cruzi, in fruit-eating bats Artibeus from Panama. Infections were common (11.6% prevalence), but no other T. cruzi cruzi genotypes were detected. Phylogenetic analyses show an unambiguous association with Brazilian TcBat, but raise questions about the phylogenetic placement of this genotype using the 18S rRNA gene alone. However, analyses with three concatenated genes (18S rRNA, cytb, and H2B) moderately support TcBat as sister to the discrete typing unit (DTU) TcI. We demonstrate that short fragments (>500 bp) of the 18S rRNA gene are useful for identification of DTUs of T. cruzi, and provide reliable phylogenetic signal as long as they are analyzed within a matrix with reference taxa containing additional informative genes. TcBat forms a very distinctive monophyletic group that may be recognized as an additional DTU within T. cruzi cruzi. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA

    PubMed Central

    Haag, Sara; Kretschmer, Jens

    2015-01-01

    Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2′-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams–Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3′-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3′ ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3′-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N7-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase. PMID:25525153

  18. Taxonomic redescriptions of two ciliates, Protogastrostyla pulchra n. g., n. comb. and Hemigastrostyla enigmatica (ciliophora: spirotrichea, stichotrichia), with phylogenetic analyses based on 18S and 28S rRNA gene sequences.

    PubMed

    Gong, Jun; Kim, Se-Joo; Kim, Sun-Young; Min, Gi-Sik; Roberts, David McL; Warren, Alan; Choi, Joong-Ki

    2007-01-01

    The morphology and infraciliature of two stichotrichid ciliates, Gastrostyla pulchra(Perejaslawzewa 1886) Kahl, 1932 and Hemigastrostyla enigmatica(Dragesco and Dragesco-Kernéis 1986) Song & Wilbert, 1997, collected from marine and brackish sediments, were investigated by using living observations and protargol impregnations. Both 18S and 28S rRNA genes of these two species were sequenced. The 18S rDNA show high similarities (98.4%-99.7%) among populations of each species. There is about 94% similarity in 18S rDNA genes between G. pulchra and Gastrostyla steinii, the type species of the genus, which has been confirmed to be an oxytrichid by previous studies. In the phylogenetic trees of 18S, 28S, and combined 18S and 28S rDNA, both G. pulchra and H. enigmatica are consistently placed outside the well-established oxytrichid clade. Based on our analyses and previous ontogenetic data, we conclude that these two species may represent some lower groups in the subclass Stichotrichia, and that G. pulchra should represent a new genus, Protogastrostyla n. g. This new genus, which is morphologically similar to Gastrostyla, differs in its morphogenesis: the apical part of the old AZM is retained combining with the newly built membranelles that develop from the proter's oral primordium; the primary primordia of the dorsal kinety; and marginal primordia commence de novo without a definite contribution from the old structure.

  19. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae)

    USDA-ARS?s Scientific Manuscript database

    In the southeastern United States, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA gene (SSU rRNA). Howe...

  20. Effects of antioxidant supplementation on mRNA expression of glucose-6-phosphate dehydrogenase, β-actin and 18S rRNA in the anterior capsule of the lens in cataract patients.

    PubMed

    Hayashi, Rijo; Hayashi, Shimmin; Arai, Kiyomi; Chikuda, Makoto; Obara, Yositaka

    2012-03-01

    This was a preliminary study of the effects of antioxidant supplementation on the peroxidation status of the lens by investigating mRNA expression of anti-oxidative enzymes in the lens. The mRNA expression levels of glucose-6-phosphate dehydrogenase (G6PDH), β-actin (β-ACT) and 18S rRNA (18S) were measured in this study because they are common reference genes for measuring mRNA levels by means of a real-time reverse transcription polymerase chain reaction (RT-PCR) in various tissues. Thirteen patients with binocular cataracts of the same grade were included in the study after giving informed consent. A piece of the anterior capsule, along with a sample of lenticular epithelial cells (LECs), was collected as a pre-intake sample during cataract surgery. Ocuvite + Lutein(®), an antioxidant supplement, was administered orally beginning the day after surgery. Six weeks later, a piece of the anterior capsule along with a sample of LECs, was collected as a post-intake sample during cataract surgery of the opposite eye. RNA was purified from the homogenized samples, and cDNA was reverse transcribed to measure mRNA levels. The expression levels of G6PDH, 18S and β-ACT were measured using RT-PCR. The expression levels of G6PDH and 18S were significantly higher in the post-intake samples than they were in the pre-intake samples. Significant positive correlations between the expression levels of G6PDH and 18S were observed in both the pre- and post-intake samples. Following gender-specific analyses, the expression levels of G6PDH and 18S in the post-intake samples were found to be significantly higher among the female patients. A significant positive correlation between the expression levels of G6PDH and 18S was observed in the post-intake samples from the male patients. There were no significant changes in the gene expression levels of β-ACT after supplementation among male or female patients. β-ACT has been verified for use as a reference gene for measuring the

  1. Chromosomal mapping of 18S-28S rRNA genes and 10 cDNA clones of human chromosome 1 in the musk shrew (Suncus murinus).

    PubMed

    Kuroiwa, A; Matsubara, K; Nagase, T; Nomura, N; Seong, J K; Ishikawa, A; Anunciado, R V; Tanaka, K; Yamagata, T; Masangkay, J S; Dang, V B; Namikawa, T; Matsuda, Y

    2001-01-01

    The direct R-banding fluorescence in situ hybridization (FISH) method was used to map 18S-28S ribosomal RNA genes and 10 human cDNA clones on the chromosomes of the musk shrew (Suncus murinus). The chromosomal locations of 18S-28S ribosomal RNA genes were examined in the five laboratory lines and wild animals captured in the Philippines and Vietnam, and the genes were found on chromosomes 5, 6, 9, and 13 with geographic variation. The comparative mapping of 10 cDNA clones of human chromosome 1 demonstrated that human chromosome 1 consisted of at least three segments homologous to Suncus chromosomes (chromosomes 7, 10, and 14). This approach with the direct R-banding FISH method is useful for constructing comparative maps between human and insectivore species and for explicating the process of chromosomal rearrangements during the evolution of mammals.

  2. Analysis of Fungal Diversity in the Wheat Rhizosphere by Sequencing of Cloned PCR-Amplified Genes Encoding 18S rRNA and Temperature Gradient Gel Electrophoresis

    PubMed Central

    Smit, Eric; Leeflang, Paula; Glandorf, Boet; Dirk van Elsas, Jan; Wernars, Karel

    1999-01-01

    Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic

  3. Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase.

    PubMed Central

    Tokuhisa, J G; Vijayan, P; Feldmann, K A; Browse, J A

    1998-01-01

    Poikilothermic organisms require mechanisms that allow survival at chilling temperatures (2 to 15 degreesC). We have isolated chilling-sensitive mutants of Arabidopsis, a plant that is very chilling resistant, and are characterizing them to understand the genes involved in chilling resistance. The T-DNA-tagged mutant paleface1 (pfc1) grows normally at 22 degrees C but at 5 degrees C exhibits a pattern of chilling-induced chlorosis consistent with a disruption of chloroplast development. Genomic DNA flanking the T-DNA was cloned and used to isolate wild-type genomic and cDNA clones. The PFC1 transcript is present at a low level in wild-type plants and was not detected in pfc1 plants. Wild-type Arabidopsis expressing antisense constructs of PFC1 grew normally at 22 degrees C but showed chilling-induced chlorosis, confirming that the gene is essential for low-temperature development of chloroplasts. The deduced amino acid sequence of PFC1 has identity with rRNA methylases found in bacteria and yeast that modify specific adenosines of pre-rRNA transcripts. The pfc1 mutant does not have these modifications in the small subunit rRNA of the plastid. PMID:9596631

  4. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae).

    PubMed

    Rosser, Thomas G; Griffin, Matt J; Quiniou, Sylvie M A; Khoo, Lester H; Pote, Linda M

    2014-12-01

    In the southeastern USA, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. However, only two of these have confirmed life cycles that involve the oligochaete Dero digitata as the definitive host. During a health screening of farm-raised channel catfish, several fish presented with deformed primary lamellae. Lamellae harbored large, nodular, white pseudocysts 1.25 mm in diameter, and upon rupturing, these pseudocysts released Henneguya myxospores, with a typical lanceolate-shaped spore body, measuring 17.1 ± 1.0 μm (mean ± SD; range = 15.0-19.3 μm) in length and 4.8 ± 0.4 μm (3.7-5.6 μm) in width. Pyriform-shaped polar capsules were 5.8 ± 0.3 μm in length (5.1-6.4 μm) and 1.7 ± 0.1 μm (1.4-1.9 μm) in width. The two caudal processes were 40.0 ± 5.1 μm in length (29.5-50.0 μm) with a spore length of 57.2 ± 4.7 (46.8-66.8 μm). The contiguous SSU rRNA gene sequence obtained from myxospores of five excised cysts did not match any Henneguya sp. in GenBank. The greatest sequence homology (91% over 1,900 bp) was with Henneguya pellis, associated with blister-like lesions on the skin of blue catfish Ictalurus furcatus. Based on the unique combination of pseudocyst and myxospore morphology, tissue location, host, and SSU rRNA gene sequence data, we report this isolate to be a previously unreported species, Henneguya bulbosus sp. nov.

  5. Mutation of EMG1 causing Bowen–Conradi syndrome results in reduced cell proliferation rates concomitant with G2/M arrest and 18S rRNA processing delay

    PubMed Central

    Armistead, Joy; Hemming, Richard; Patel, Nehal; Triggs-Raine, Barbara

    2014-01-01

    Bowen–Conradi syndrome (BCS) is a lethal autosomal recessive disorder caused by a D86G substitution in the protein, Essential for Mitotic Growth 1 (EMG1). EMG1 is essential for 18S rRNA maturation and 40S ribosome biogenesis in yeast, but no studies of its role in ribosome biogenesis have been done in mammals. To assess the effect of the EMG1 mutation on cell growth and ribosomal biogenesis in humans, we employed BCS patient cells. The D86G substitution did not interfere with EMG1 nucleolar localization. In BCS patient lymphoblasts, cells accumulated in G2/M, resulting in reduced proliferation rates; however, patient fibroblasts showed normal proliferation. The rate of 18S rRNA processing was consistently delayed in patient cells, although this did not lead to a difference in the levels of 40S ribosomes, or a change in protein synthesis rates. These results demonstrate that as in yeast, EMG1 in mammals has a role in ribosome biogenesis. The obvious phenotype in lymphoblasts compared to fibroblasts suggests a greater need for EMG1 in rapidly dividing cells. Tissue-specific effects have been seen in other ribosomal biogenesis disorders, and it seems likely that the impact of EMG1 deficiency would be larger in the rapidly proliferating cells of the developing embryo. PMID:26676230

  6. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    PubMed Central

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  7. 16S rRNA Phylogeny of Sponge-Associated Cyanobacteria

    PubMed Central

    Steindler, Laura; Huchon, Dorothée; Avni, Adi; Ilan, Micha

    2005-01-01

    Phylogenetic analyses of 16S rRNA sequences of sponge-associated cyanobacteria showed them to be polyphyletic, implying that they derived from multiple independent symbiotic events. Most of the symbiont sequences were affiliated to a group of Synechococcus and Prochlorococcus species. However, other symbionts were related to different groups, such as the Oscillatoriales. PMID:16000832

  8. Targeting single-nucleotide polymorphisms in the 18S rRNA gene to differentiate Cyclospora species from Eimeria species by multiplex PCR.

    PubMed

    Orlandi, Palmer A; Carter, Laurenda; Brinker, Anna Marie; da Silva, Alexandre J; Chu, Dan-My; Lampel, Keith A; Monday, Steven R

    2003-08-01

    Cyclospora cayetanensis is a coccidian parasite that causes protracted diarrheal illness in humans. C. cayetanensis is the only species of this genus thus far associated with human illness, although Cyclospora species from other primates have been named. The current method to detect the parasite uses a nested PCR assay to amplify a 294-bp region of the small subunit rRNA gene, followed by restriction fragment length polymorphism (RFLP) or DNA sequence analysis. Since the amplicons generated from C. cayetanensis and Eimeria species are the same size, the latter step is required to distinguish between these different species. The current PCR-RFLP protocol, however, cannot distinguish between C. cayetanensis and these new isolates. The differential identification of such pathogenic and nonpathogenic parasites is essential in assessing the risks to human health from microorganisms that may be potential contaminants in food and water sources. Therefore, to expand the utility of PCR to detect and identify these parasites in a multiplex assay, a series of genus- and species-specific forward primers were designed that are able to distinguish sites of limited sequence heterogeneity in the target gene. The most effective of these unique primers were those that identified single-nucleotide polymorphisms (SNPs) at the 3' end of the primer. Under more stringent annealing and elongation conditions, these SNP primers were able to differentiate between C. cayetanensis, nonhuman primate species of Cyclospora, and Eimeria species. As a diagnostic tool, the SNP PCR protocol described here presents a more rapid and sensitive alternative to the currently available PCR-RFLP detection method. In addition, the specificity of these diagnostic primers removes the uncertainty that can be associated with analyses of foods or environmental sources suspected of harboring potential human parasitic pathogens.

  9. Conformation of yeast 18S rRNA. Direct chemical probing of the 5' domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible.

    PubMed Central

    Lempereur, L; Nicoloso, M; Riehl, N; Ehresmann, C; Ehresmann, B; Bachellerie, J P

    1985-01-01

    The structure of the 5' domain of yeast 18S rRNA has been probed by dimethyl sulfate (DMS), either in "native" deproteinized molecules or in the 40S ribosomal subunits. DMS-reacted RNA has been used as a template for reverse transcription and a large number of reactive sites, corresponding to all types of bases have been mapped by a primer extension procedure, taking advantage of blocks in cDNA elongation immediately upstream from bases methylated at atom positions involved in the base-pair recognition of the template. Since the same atom positions are protected from DMS in base-paired nucleotides, the secondary structure status of each nucleotide can be directly assessed in this procedure, thus allowing to evaluate the potential contribution of proteins in modulating subunit rRNA conformation. While the DMS probing of deproteinized rRNA confirms a number of helical stems predicted by phylogenetic comparisons, it is remarkable that a few additional base-pairings, while proven by the comparative analysis, appear to require the presence of the bound ribosomal subunit proteins to be stabilized. Images PMID:2417197

  10. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.

    PubMed

    Whiting, M F; Carpenter, J C; Wheeler, Q D; Wheeler, W C

    1997-03-01

    Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of

  11. Phylogeny of Metschnikowia species estimated from partial rRNA sequences.

    PubMed

    Mendonça-Hagler, L C; Hagler, A N; Kurtzman, C P

    1993-04-01

    Phylogenetic relationships of species assigned to the genus Metschnikowia were estimated from the extents of divergence among partial sequences of rRNA. The data suggest that the aquatic species (Metschnikowia australis, Metschnikowia bicuspidata, Metschnikowia krissii, and Metschnikowia zobellii) and the terrestrial species (Metschnikowia hawaiiensis, Metschnikowia lunata, Metschnikowia pulcherrima, and Metschnikowia reukaufii) form two groups within the genus. M. lunata and M. hawaiiensis are well separated from other members of the genus, and M. hawaiiensis may be sufficiently divergent that it could be placed in a new genus. Species of the genus Metschnikowia are unique compared with other ascomycetous yeasts because they have a deletion in the large-subunit rRNA sequence that includes nucleotides 434 to 483.

  12. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences.

    PubMed

    Sun, Sang-Mi; Yang, Seung Hwan; Golokhvast, Kirill S; Le, Bao; Chung, Gyuhwa

    2016-01-01

    Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia.

  13. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA.

    PubMed

    Meyer, Britta; Wurm, Jan Philip; Kötter, Peter; Leisegang, Matthias S; Schilling, Valeska; Buchhaupt, Markus; Held, Martin; Bahr, Ute; Karas, Michael; Heckel, Alexander; Bohnsack, Markus T; Wöhnert, Jens; Entian, Karl-Dieter

    2011-03-01

    The Nep1 (Emg1) SPOUT-class methyltransferase is an essential ribosome assembly factor and the human Bowen-Conradi syndrome (BCS) is caused by a specific Nep1(D86G) mutation. We recently showed in vitro that Methanocaldococcus jannaschii Nep1 is a sequence-specific pseudouridine-N1-methyltransferase. Here, we show that in yeast the in vivo target site for Nep1-catalyzed methylation is located within loop 35 of the 18S rRNA that contains the unique hypermodification of U1191 to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouri-dine (m1acp3Ψ). Specific (14)C-methionine labelling of 18S rRNA in yeast mutants showed that Nep1 is not required for acp-modification but suggested a function in Ψ1191 methylation. ESI MS analysis of acp-modified Ψ-nucleosides in a Δnep1-mutant showed that Nep1 catalyzes the Ψ1191 methylation in vivo. Remarkably, the restored growth of a nep1-1(ts) mutant upon addition of S-adenosylmethionine was even observed after preventing U1191 methylation in a Δsnr35 mutant. This strongly suggests a dual Nep1 function, as Ψ1191-methyltransferase and ribosome assembly factor. Interestingly, the Nep1 methyltransferase activity is not affected upon introduction of the BCS mutation. Instead, the mutated protein shows enhanced dimerization propensity and increased affinity for its RNA-target in vitro. Furthermore, the BCS mutation prevents nucleolar accumulation of Nep1, which could be the reason for reduced growth in yeast and the Bowen-Conradi syndrome.

  14. Polyamine stimulation of eEF1A synthesis based on the unusual position of a complementary sequence to 18S rRNA in eEF1A mRNA.

    PubMed

    Terui, Yusuke; Sakamoto, Akihiko; Yoshida, Taketo; Kasahara, Takuma; Tomitori, Hideyuki; Higashi, Kyohei; Igarashi, Kazuei; Kashiwagi, Keiko

    2015-02-01

    It is thought that Shine-Dalgarno-like sequences, which exhibit complementarity to the nucleotide sequences at the 3'-end of 18S rRNA, are not present in eukaryotic mRNAs. However, complementary sequences consisting of more than 5 nucleotides to the 3'-end of 18S rRNA, i.e., a CR sequence, are present at -17 to -32 upstream from the initiation codon AUG in 18 mRNAs involved in protein synthesis except eEF1A mRNA. Thus, effects of the CR sequence in mRNAs and polyamines on protein synthesis were examined using control and polyamine-reduced FM3A and NIH3T3 cells. Polyamines did not stimulate protein synthesis encoded by 18 mRNAs possessing a normal CR sequence. When the CR sequence was deleted, protein synthetic activities decreased to less than 70% of intact mRNAs. In eEF1A mRNA, the CR sequence was located at -33 to -39 upstream from the initiation codon AUG, and polyamines stimulated eEF1A synthesis about threefold. When the CR sequence was shifted to -22 to -28 upstream from the AUG, eEF1A synthesis increased in polyamine-reduced cells and the degree of polyamine stimulation decreased greatly. The results indicate that the CR sequence exists in many eukaryotic mRNAs, and the location of a CR sequence in mRNAs influences polyamine stimulation of protein synthesis.

  15. Phylogenetic position of Linguatula arctica and Linguatula serrata (Pentastomida) as inferred from the nuclear 18S rRNA gene and the mitochondrial cytochrome c oxidase subunit I gene.

    PubMed

    Gjerde, Bjørn

    2013-10-01

    Genomic DNA was isolated from a Linguatula serrata female expelled from a dog imported to Norway from Romania and from four Linguatula arctica females collected from semi-domesticated reindeer from northern Norway and subjected to PCR amplification of the complete nuclear 18S rRNA gene and a 1,045-bp portion of the mitochondrial cytochrome c oxidase subunit I gene (cox1). The two species differed at two of 1,830 nucleotide positions (99.9% identity) of the complete 18S rRNA gene sequences and at 102 of 1,045 nucleotide positions (90.2% identity) of the partial cox1 sequences. The four isolates of L. arctica showed no genetic variation in either gene. The new cox1 primers may facilitate the diagnosis of various developmental stages of L. arctica and L. serrata in their hosts. In separate phylogenetic analyses using the maximum likelihood method on sequence data from either gene, L. arctica and L. serrata clustered with members of the order Cephalobaenida rather than with members of the order Porocephalida, in which the genus Linguatula is currently placed based on morphological characters. The phylogenetic relationship of L. arctica, L. serrata and other pentastomids to other metazoan groups could not be clearly resolved, but the pentastomids did not seem to have a sister relationship to crustaceans of the subclass Branchiura as found in other studies. A more extensive taxon sampling, including molecular characterisation of more pentastomid taxa across different genera, seems to be necessary in order to estimate the true relationship of the Pentastomida to other metazoan groups.

  16. Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences.

    PubMed

    Dorsch, M; Lane, D; Stackebrandt, E

    1992-01-01

    The inter- and intrageneric relationships of the genus Vibrio were investigated by performing a comparative analysis of the 16S rRNAs of 10 species, including four pathogenic representatives. The results of immunological and 5S rRNA studies were confirmed in that the genus is a neighboring taxon of the family Enterobacteriaceae. With regard to the intrageneric structure, Vibrio alginolyticus, Vibrio campbellii, Vibrio natriegens, Vibrio harveyi, Vibrio proteolyticus, Vibrio parahaemolyticus, and Vibrio vulnificus form the core of the genus, while Vibrio (Listonella) anguillarum, Vibrio diazotrophicus, and Vibrio hollisae are placed on the outskirts of the genus. Variable regions around positions 80, 180, and 450 could be used as target sites for genus- and species-specific oligonucleotide probes and polymerase chain reaction primers to be used in molecular identification.

  17. Phylogeny of freshwater parasitic copepods in the Ergasilidae (Copepoda: Poecilostomatoida) based on 18S and 28S rDNA sequences.

    PubMed

    Song, Y; Wang, G T; Yao, W J; Gao, Q; Nie, P

    2008-01-01

    The phylogenetic relationships among the Ergasilidae genera are poorly understood. In this study, 14 species from four genera in the Ergasilidae including Sinergasilus, Ergasilus, Pseudergasilus, and Paraergasilus were collected in China, and their phylogenetic relationships were examined using neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods based on partial sequences of 18S and 28S ribosomal deoxyribonucleic acid, respectively. All the analyses suggest that the Sinergasilus and Paraergasilus are both monophyletic, but the Ergasilus is polyphyletic rather than monophyletic. Considering the relationships among the four genera, the phylogenetic analyses and subsequent hypothesis tests all suggest that Pseudergasilus clustered with some Ergasilus species may have a closer relationship with Sinergasilus rather than with Paraergasilus. It is proposed that the Sinergasilus and the Pseudergasilus species might have evolved from Ergasilus species.

  18. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences.

    PubMed Central

    Escalante, A A; Ayala, F J

    1994-01-01

    Malaria is among mankind's worst scourges, affecting many millions of people, particularly in the tropics. Human malaria is caused by several species of Plasmodium, a parasitic protozoan. We analyze the small subunit rRNA gene sequences of 11 Plasmodium species, including three parasitic to humans, to infer their evolutionary relationships. Plasmodium falciparum, the most virulent of the human species, is closely related to Plasmodium reichenowi, which is parasitic to chimpanzee. The estimated time of divergence of these two Plasmodium species is consistent with the time of divergence (6-10 million years ago) between the human and chimpanzee lineages. The falciparum-reichenowi clade is only remotely related to two other human parasites, Plasmodium malariae and Plasmodium vivax, which are also only remotely related to each other. Thus, the parasitic associations of the Plasmodium species with their human hosts are phylogenetically independent. The remote phylogenetic relationship between the two bird parasites, Plasmodium gallinaceum and Plasmodium lophurae, and any of the human parasites provides no support for the hypothesis that infection by Plasmodium falciparum is a recent acquisition of humans, possibly coincident with the onset of agriculture. PMID:7972067

  19. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  20. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements.

    PubMed

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-10-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  1. Structural and functional studies of Bud23–Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes

    PubMed Central

    Létoquart, Juliette; Huvelle, Emmeline; Wacheul, Ludivine; Bourgeois, Gabrielle; Zorbas, Christiane; Graille, Marc; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2014-01-01

    The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N7-methylguanosine (m7G) introduced at position 1575 on 18S rRNA by Bud23–Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23–Trm112 in the apo and S-adenosyl-l-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23–Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23–Trm112 binds precursor ribosomes at an early nucleolar stage, m7G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23–Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23–Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction. PMID:25489090

  2. Quantitative detection of Cryptosporidium oocyst in water source based on 18S rRNA by alternately binding probe competitive reverse transcription polymerase chain reaction (ABC-RT-PCR).

    PubMed

    Kishida, Naohiro; Miyata, Ryo; Furuta, Atsushi; Izumiyama, Shinji; Tsuneda, Satoshi; Sekiguchi, Yuji; Noda, Naohiro; Akiba, Michihiro

    2012-01-01

    We describe an assay for simple and cost-effective quantification of Cryptosporidium oocysts in water samples using a recently developed quantification method named alternately binding probe competitive PCR (ABC-PCR). The assay is based on the detection of 18S rRNA specific for Cryptosporidium oocysts. The standard curve of the ABC-PCR assay had a good fitting to a rectangular hyperbola with a correlation coefficient (R) of 0.9997. Concentrations of Cryptosporidium oocysts in real river water samples were successfully quantified by the ABC-reverse transcription (RT)-PCR assay. The quantified values by the ABC-RT-PCR assay very closely resemble those by the real-time RT-PCR assay. In addition, the quantified concentration in most water samples by the ABC-RT-PCR assay was comparable to that by conventional microscopic observation. Thus, Cryptosporidium oocysts in water samples can be accurately and specifically determined by the ABC-RT-PCR assay. As the only equipment that is needed for this end-point fluorescence assay is a simple fluorometer and a relatively inexpensive thermal cycler, this method can markedly reduce time and cost to quantify Cryptosporidium oocysts and other health-related water microorganisms.

  3. Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Lu, Xinxin; Mou, Xiaozhen; Ashbolt, Nicholas J

    2014-05-01

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, yet knowledge about the microbial composition of DW biofilms developed on common in-premise plumbing material is limited. Utilizing 16S and 18S rRNA gene pyrosequencing, this study characterized the microbial community structure within DW biofilms established on unplasticized polyvinyl chloride (uPVC) and copper (Cu) surfaces and the impact of introducing Legionella pneumophila (Lp) and Acanthamoeba polyphaga. Mature (> 1 year old) biofilms were developed before inoculation with sterilized DW (control, Con), Lp, or Lp and A. polyphaga (LpAp). Comparison of uPVC and Cu biofilms indicated significant differences between bacterial (P = 0.001) and eukaryotic (P < 0.01) members attributable to the unique presence of several family taxa: Burkholderiaceae, Characeae, Epistylidae, Goniomonadaceae, Paramoebidae, Plasmodiophoridae, Plectidae, Sphenomonadidae, and Toxariaceae within uPVC biofilms; and Enterobacteriaceae, Erythrobacteraceae, Methylophilaceae, Acanthamoebidae, and Chlamydomonadaceae within Cu biofilms. Introduction of Lp alone or with A. polyphaga had no effect on bacterial community profiles (P > 0.05) but did affect eukaryotic members (uPVC, P < 0.01; Cu, P = 0.001). Thus, established DW biofilms host complex communities that may vary based on substratum matrix and maintain consistent bacterial communities despite introduction of Lp, an environmental pathogen.

  4. Phylogeny and divergence times of some racerunner lizards (Lacertidae: Eremias) inferred from mitochondrial 16S rRNA gene segments.

    PubMed

    Guo, Xianguang; Dai, Xin; Chen, Dali; Papenfuss, Theodore J; Ananjeva, Natalia B; Melnikov, Daniel A; Wang, Yuezhao

    2011-11-01

    Eremias, or racerunners, is a widespread lacertid genus occurring in China, Mongolia, Korea, Central Asia, Southwest Asia and Southeast Europe. It has been through a series of taxonomic revisions, but the phylogenetic relationships among the species and subgenera remain unclear. In this study, a frequently studied region of the mitochondrial 16S rRNA was used to (i) reassess the phylogenetic relationships of some Eremias species, (ii) test if the viviparous species form a monophyletic group, and (iii) estimate divergence time among lineages using a Bayesian relaxed molecular-clock approach. The resulting phylogeny supports monophyly of Eremias sensu Szczerbak and a clade comprising Eremias, Acanthodactylus and Latastia. An earlier finding demonstrating monophyly of the subgenus Pareremias is corroborated, with Eremias argus being the sister taxon to Eremias brenchleyi. We present the first evidence that viviparous species form a monophyletic group. In addition, Eremias przewalskii is nested within Eremias multiocellata, suggesting that the latter is likely a paraphyletic species or a species complex. Eremias acutirostris and Eremias persica form a clade that is closely related to the subgenus Pareremias. However, the subgenera Aspidorhinus, Scapteira, and Rhabderemias seem not to be monophyletic, respectively. The Bayesian divergence-time estimation suggests that Eremias originated at about 9.9 million years ago (with the 95% confidence interval ranging from 7.6 to 12 Ma), and diversified from Late Miocene to Pleistocene. Specifically, the divergence time of the subgenus Pareremias was dated to about 6.3 million years ago (with the 95% confidence interval ranging from 5.3 to 8.5 Ma), which suggests that the diversification of this subgenus might be correlated with the evolution of an East Asian monsoon climate triggered by the rapid uplift of the Tibetan Plateau approximately 8 Ma. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. A new set of primers directed to 18S rRNA gene for molecular identification of Cryptosporidium spp. and their performance in the detection and differentiation of oocysts shed by synanthropic rodents.

    PubMed

    Silva, Sheila O S; Richtzenhain, Leonardo J; Barros, Iracema N; Gomes, Alessandra M M C; Silva, Aristeu V; Kozerski, Noemila D; de Araújo Ceranto, Jaqueline B; Keid, Lara B; Soares, Rodrigo M

    2013-11-01

    Cryptosporidium spp. are cosmopolitan protozoa that infect fishes, reptiles, amphibians, birds and mammals. More than 20 species are recognized within this genus. Rodents are a group of abundant and ubiquitous organisms that have been considered reservoirs of Cryptosporidium for humans and livestock. The aim of this study was to design specific primers for the gene encoding 18S rRNA, potentially capable of amplifying any species or genotype of Cryptosporidium spp. and evaluate the diagnostic attributes of the nested-PCR based on such probes. The primers were designed to amplify the shortest segment as possible to maximize the sensitivity of the test, but preserving the discriminatory potential of the amplified sequences for phylogenetic inferences. The nested-PCR standardized in this study (nPCR-SH) was compared in terms of sensitivity with another similar assay (nPCR-XIAO) that has been largely used for the detection and identification of Cryptosporidium spp. worldwide. We also aimed to molecularly characterize samples of Cryptosporidum spp. isolated from synanthropic rodents using these probes. Forty-five rodents were captured in urban areas of the municipality of Umuarama, Paraná State, Brazil. Fecal samples were submitted to three molecular tests (nested-PCRs), two of them targeted to the 18S rDNA gene (nPCR-SH and nPCR-XIAO) and the third targeted to the gene encoding actin (nPCR-actin). The nPCR-SH was tested positive on samples of Cryptosporidum parvum, Cryptosporidum andersoni, Cryptosporidum meleagridis, Cryptosporidum hominis, Cryptosporidum canis, and Cryptosporidum serpentis. Sixteen samples of rodents were positive by nPCR-SH, six by nPCR-XIAO and five by nPCR-actin. Sequencing of amplified fragments allowed the identification of Cryptosporidum muris in three samples of Rattus rattus, and two genotypes of Cryptosporidium, the genotypes mouse II and III. Cryptosporidium genotype mouse II was found in one sample of Mus musculus and genotype mouse III

  6. Molecular phylogeny of kinorhynchs.

    PubMed

    Yamasaki, Hiroshi; Hiruta, Shimpei F; Kajihara, Hiroshi

    2013-05-01

    We reconstructed kinorhynch phylogeny using maximum-likelihood and Bayesian analyses of nuclear 18S and 28S rRNA gene sequences from 30 species in 13 genera (18S) and 23 species in 12 genera (28S), representing eight families and both orders (Cyclorhagida and Homalorhagida) currently recognized in the phylum. We analyzed the two genes individually (18S and 28S datasets) and in combination (18S+28S dataset). We detected four main clades (I-IV). Clade I consisted of family Echinoderidae. Clade II contained representatives of Zelinkaderidae, Antygomonidae, Semnoderidae, Centroderes, and Condyloderes, the latter two currently classified in Centroderidae; within Clade II, Zelinkaderidae, Antygomonidae, and Semnoderidae comprised a clade with strong nodal support. Clade III contained only two species in Campyloderes, also currently classified in the Centroderidae, indicating polyphyly for this family. Clades I-III, containing all representatives of Cyclorhagida included in the analysis except for Dracoderes abei, formed a clade with high nodal support in the 28S and 18S+28S trees. Clade IV, resolved in the 18S and 18S+28S trees with high nodal support, contained only species in order Homalorhagida, with the exception of the cyclorhagid Dracoderes abei. Order Cyclorhagida as it currently stands is thus polyphyletic, and order Homalorhagida paraphyletic. Our results indicate that Dracoderidae has been misplaced in Cyclorhagida based on homoplasious characters. Our analyses did not resolve the relationships among Clades I-III within Cyclorhagida. Neither gene alone nor the combined dataset resolved all nodes in trees, indicating that additional markers will be needed to reconstruct kinorhynch phylogeny. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis

    PubMed Central

    Zuo, Guanghong; Xu, Zhao; Hao, Bailin

    2015-01-01

    A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1) the whole-genome-based and alignment-free CVTree using 179 genomes; (2) the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3) the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation. PMID:25789552

  8. Phylogeny and evolutionary genetics of Frankia strains based on 16S rRNA and nifD-K gene sequences.

    PubMed

    Mishra, Arun Kumar; Singh, Pawan Kumar; Singh, Prashant; Singh, Anumeha; Singh, Satya Shila; Srivastava, Amrita; Srivastava, Alok Kumar; Sarma, Hridip Kumar

    2015-08-01

    16S rRNA and nifD-nifK sequences were used to study the molecular phylogeny and evolutionary genetics of Frankia strains isolated from Hippöphae salicifolia D. Don growing at different altitudes (ecologically classified as riverside and hillside isolates) of the Eastern Himalayan region of North Sikkim, India. Genetic information for the small subunit rRNA (16S rRNA) revealed that the riverside Frankia isolates markedly differed from the hillside isolates suggesting that the riverside isolates are genetically compact. Further, for enhanced resolutions, the partial sequence of nifD (3' end), nifK (5' end) and nifD-K IGS region have been investigated. The sequences obtained, failed to separate riverside isolates and hillside isolates, thus suggesting a possible role of genetic transfer events either from hillside to riverside or vice versa. The evolutionary genetic analyses using evogenomic extrapolations of gene sequence data obtained from 16S rRNA and nifD-K provided differing equations with the pace of evolution being more appropriately, intermediate. Values of recombination frequency (R), nucleotide diversity per site (Pi), and DNA divergence estimates supported the existence of an intermixed zone where spatial isolations occurred in sync with the temporal estimates. J. Basic Microbiol. 2015, 54, 1-9. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. What an rRNA Secondary Structure Tells about Phylogeny of Fungi in Ascomycota with Emphasis on Evolution of Major Types of Ascus

    PubMed Central

    Zhuang, Wen-Ying; Liu, Chao-Yang

    2012-01-01

    Background RNA secondary structure is highly conserved throughout evolution. The higher order structure is fundamental in establishing important structure-function relationships. Nucleotide sequences from ribosomal RNA (rRNA) genes have made a great contribution to our understanding of Ascomycota phylogeny. However, filling the gaps between molecular phylogeny and morphological assumptions based on ascus dehiscence modes and type of fruitbodies at the higher level classification of the phylum remains an unfulfilled task faced by mycologists. Methodology/Principal Findings We selected some major groups of Ascomycota to view their phylogenetic relationships based on analyses of rRNA secondary structure. Using rRNA secondary structural information, here, we converted nucleotide sequences into the structure ones over a 20-symbol code. Our structural analyses together with ancestral character state reconstruction produced reasonable phylogenetic position for the class Geoglossomycetes as opposed to the classic nucleotide analyses. Judging from the secondary structure analyses with consideration of mode of ascus dehiscence and the ability of forming fruitbodies, we draw a clear picture of a possible evolutionary route for fungal asci and some major groups of fungi in Ascomycota. The secondary structure trees show a more reasonable phylogenetic position for the class Geoglossomycetes. Conclusions Our results illustrate that asci lacking of any dehiscence mechanism represent the most primitive type. Passing through the operculate and Orbilia-type asci, bitunicate asci occurred. The evolution came to the most advanced inoperculate type. The ascus-producing fungi might be derived from groups lacking of the capacity to form fruitbodies, and then evolved multiple times. The apothecial type of fruitbodies represents the ancestral state, and the ostiolar type is advanced. The class Geoglossomycetes is closely related to Leotiomycetes and Sordariomycetes having a similar ascus

  10. Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16s rRNA gene sequence analyses.

    PubMed

    Lee, I M; Bartoszyk, I M; Gundersen-Rindal, D E; Davis, R E

    1997-07-01

    A phylogenetic analysis by parsimony of 16S rRNA gene sequences (16S rDNA) revealed that species and subspecies of Clavibacter and Rathayibacter form a discrete monophyletic clade, paraphyletic to Corynebacterium species. Within the Clavibacter-Rathayibacter clade, four major phylogenetic groups (subclades) with a total of 10 distinct taxa were recognized: (I) species C. michiganensis; (II) species C. xyli; (III) species R. iranicus and R. tritici; and (IV) species R. rathayi. The first three groups form a monophyletic cluster, paraphyletic to R. rathayi. On the basis of the phylogeny inferred, reclassification of members of Clavibacter-Rathayibacter group is proposed. A system for classification of taxa in Clavibacter and Rathayibacter was developed based on restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S rDNA sequences. The groups delineated on the basis of RFLP patterns of 16S rDNA coincided well with the subclades delineated on the basis of phylogeny. In contrast to previous classification systems, which are based primarily on phenotypic properties and are laborious, the RFLP analyses allow for rapid differentiation among species and subspecies in the two genera.

  11. Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16s rRNA gene sequence analyses.

    PubMed Central

    Lee, I M; Bartoszyk, I M; Gundersen-Rindal, D E; Davis, R E

    1997-01-01

    A phylogenetic analysis by parsimony of 16S rRNA gene sequences (16S rDNA) revealed that species and subspecies of Clavibacter and Rathayibacter form a discrete monophyletic clade, paraphyletic to Corynebacterium species. Within the Clavibacter-Rathayibacter clade, four major phylogenetic groups (subclades) with a total of 10 distinct taxa were recognized: (I) species C. michiganensis; (II) species C. xyli; (III) species R. iranicus and R. tritici; and (IV) species R. rathayi. The first three groups form a monophyletic cluster, paraphyletic to R. rathayi. On the basis of the phylogeny inferred, reclassification of members of Clavibacter-Rathayibacter group is proposed. A system for classification of taxa in Clavibacter and Rathayibacter was developed based on restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S rDNA sequences. The groups delineated on the basis of RFLP patterns of 16S rDNA coincided well with the subclades delineated on the basis of phylogeny. In contrast to previous classification systems, which are based primarily on phenotypic properties and are laborious, the RFLP analyses allow for rapid differentiation among species and subspecies in the two genera. PMID:9212413

  12. Morphology, ontogenetic features and SSU rRNA gene-based phylogeny of a soil ciliate, Bistichella cystiformans spec. nov. (Protista, Ciliophora, Stichotrichia).

    PubMed

    Fan, Yangbo; Hu, Xiaozhong; Gao, Feng; Al-Farraj, Saleh A; Al-Rasheid, Khaled A S

    2014-12-01

    The morphology, ontogeny and SSU rRNA gene-based phylogeny of Bistichella cystiformans spec. nov., isolated from the slightly saline soil of a mangrove wetland in Zhanjiang, southern China, were investigated. The novel species was characterized by having five to eight buccal cirri arranged in a row, three to five transverse cirri, four macronuclear nodules aligned, and 17-32 and 20-34 cirri in frontoventral rows V and VI, respectively, both extending to the transverse cirri. The main ontogenetic features of the novel species were as follows: (1) the parental adoral zone of the membranelles is completely inherited by the proter; (2) the frontoventral and transverse cirri are formed in a six-anlagen mode; (3) basically, the frontal-ventral-transverse cirral anlagen II-V generate one transverse cirrus each at their posterior ends, while anlage VI provides no transverse cirrus; (4) both marginal rows and dorsal kineties develop intrakinetally, no dorsal kinety fragment is formed; and (5) the macronuclear nodules fuse into a single mass at the middle stage. Phylogenetic analyses based on the SSU rRNA gene showed that the novel species groups with the clade containing Bistichella variabilis, Parabistichella variabilis, Uroleptoides magnigranulosus and two species of the genus Orthoamphisiella. Given present knowledge, it was considered to be still too early to come to a final conclusion regarding the familial classification of the genus Bistichella; further investigations of key taxa with additional molecular markers are required.

  13. Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages.

    PubMed

    Masuda, R; Lopez, J V; Slattery, J P; Yuhki, N; O'Brien, S J

    1996-12-01

    Molecular phylogeny of the cat family Felidae is derived using two mitochondrial genes, cytochrome b and 12S rRNA. Phylogenetic methods of weighted maximum parsimony and minimum evolution estimated by neighbor-joining are employed to reconstruct topologies among 20 extant felid species. Sequence analyses of 363 bp of cytochrome b and 376 bp of the 12S rRNA genes yielded average pair-wise similarity values between felids ranging from 94 to 99% and from 85 to 99%, respectively. Phylogenetic reconstruction supports more recent, intralineage associations but fails to completely resolve interlineage relationships. Both genes produce a monophyletic group of Felis species but vary in the placement of the pallas cat. The ocelot lineage represents an early divergence within the Felidae, with strong associations between ocelot and margay, Geoffroy's cat and kodkod, and pampas cat and tigrina. Implications of the relative recency of felid evolution, presence of ancestral polymorphisms, and influence of outgroups in placement of the topological root are discussed.

  14. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    PubMed

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies.

  15. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey; Sogin, Mitchell L.

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  16. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA.

    PubMed

    Medina, M; Collins, A G; Silberman, J D; Sogin, M L

    2001-08-14

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  17. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    PubMed Central

    Medina, Mónica; Collins, Allen G.; Silberman, Jeffrey D.; Sogin, Mitchell L.

    2001-01-01

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino–Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira–Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny. PMID:11504944

  18. Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA sequences.

    PubMed

    Burger, Thomas D; Shao, Renfu; Labruna, Marcelo B; Barker, Stephen C

    2014-03-01

    The genus-level classification of soft ticks (Argasidae) is controversial. A previous phylogenetic analysis of morphological and developmental characters found that the genus Ornithodoros was paraphyletic and raised a new genus, Carios, for species previously in the genera Antricola, Argas, Ornithodoros, and Nothoaspis (Klompen and Oliver, 1993). Genetic analyses of soft ticks to date have been limited to 16S rRNA, which is not highly phylogenetically informative for this group. We sequenced the entire mitochondrial genomes of 7 species of soft ticks, and the partial mitochondrial genomes of a further 5 species of soft ticks. We used these sequences to test the genus-level classification of soft ticks. Our analyses strongly support a clade of Neotropical species (mostly bat-associated) within the subfamily Ornithodorinae. This clade, which we call Neotropical Ornithodorinae, has species from 2 genera, Antricola and Nothoaspis, and 2 subgenera, Ornithodoros (Alectorobius) and Ornithodoros (Subparmatus). We also addressed the phylogenetic position of Ornithodoros savignyi, the type species of the genus Ornithodoros. Our analysis strongly supports a clade consisting of Ornithodoros savignyi and 4 other Ornithodoros species: Or. brasiliensis, Or. moubata, Or. porcinus, and Or. rostratus. This clade, Ornithodoros sensu stricto, did not contain the Alectorobius and Subparmatus species, Or. (Alectorobius) fonsecai, Or. (Alectorobius) capensis, and Or. (Subparmatus) marinkellei, which in traditional classification schemes have been placed in the genus Ornithodoros. Our comparison of mitochondrial rRNA, nuclear rRNA, and mitochondrial genome analyses show that only mitochondrial genome sequences have the potential to resolve the controversial phylogenetic relationships within the major soft tick lineages, such as the taxonomic status of Carios sensu Klompen and Oliver (1993). Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  19. Identification and phylogeny of Arabian snakes: Comparison of venom chromatographic profiles versus 16S rRNA gene sequences

    PubMed Central

    Al Asmari, Abdulrahman; Manthiri, Rajamohammed Abbas; Khan, Haseeb Ahmad

    2014-01-01

    Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species. PMID:25313278

  20. Identification and phylogeny of Arabian snakes: Comparison of venom chromatographic profiles versus 16S rRNA gene sequences.

    PubMed

    Al Asmari, Abdulrahman; Manthiri, Rajamohammed Abbas; Khan, Haseeb Ahmad

    2014-11-01

    Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species.

  1. Crude Extracts, Flavokawain B and Alpinetin Compounds from the Rhizome of Alpinia mutica Induce Cell Death via UCK2 Enzyme Inhibition and in Turn Reduce 18S rRNA Biosynthesis in HT-29 Cells

    PubMed Central

    Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir

    2017-01-01

    Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer. PMID:28103302

  2. Crude Extracts, Flavokawain B and Alpinetin Compounds from the Rhizome of Alpinia mutica Induce Cell Death via UCK2 Enzyme Inhibition and in Turn Reduce 18S rRNA Biosynthesis in HT-29 Cells.

    PubMed

    Malami, Ibrahim; Abdul, Ahmad Bustamam; Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir

    2017-01-01

    Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer.

  3. Molecular phylogeny of the genus Dicronocephalus (Coleoptera, Scarabaeidae, Cetoniinae) based on mtCOI and 16S rRNA genes

    PubMed Central

    Lee, Ga-Eun; Han, Taeman; Jeong, Jongchel; Kim, Seong-Hyun; Park, In Gyun; Park, Haechul

    2015-01-01

    Abstract The seven species belonging to the genus Dicronocephalus are a very interesting group with a unique appearance and distinct sexual dimorphism. Only one species among them, Dicronocephalus adamsi, has been known in the Korean fauna. This species is recognized as having a wide distribution from Tibet to Korean Peninsula and is currently represented by two subspecies that have separated geographical ranges. The phylogenetic relationships of Dicronocephalus adamsi were still unclear. The phylogeny of Dicronocephalus is reconstructed with a phylogenetic study of five species including four subspecies based on a molecular approach using mitochondrial COI and 16S rRNA genes. Our results are compared with the results obtained by previous authors based on morphological characters. They show that the tested taxa are divided into two major clades. Clade A consists of two species (Dicronocephalus adamsi + Dicranocephalus yui) and Clade B includes the others (Dicronocephalus dabryi + Dicranocephalus uenoi + Dicranocephalus wallichii). This result generally supports Kurosawa’s proposal except that Dicronocephalus dabryi and Dicranocephalus uenoi are newly recognized as members of a monophyletic group. We propose that Dicronocephalus adamsi drumonti is a junior subjective synonym of Dicronocephalus adamsi adamsi. These results show that three members of the Dicranocephalus wallichii group should be treated as species rather than subspecies. However, further research including analyses of different genetic markers is needed to reconfirm our results. PMID:25987879

  4. Diversity and phylogeny of bacteria on Zimbabwe tobacco leaves estimated by 16S rRNA sequence analysis.

    PubMed

    Su, Can; Gu, Wen; Zhe, Wei; Zhang, Ke-Qin; Duan, Yanqing; Yang, Jinkui

    2011-12-01

    Microorganisms play important roles in the tobacco aging process. However, microbial communities on flue-cured tobacco leaves (FCTL) remain largely unknown. In this study, the total microbial genomic DNA of unaged and aging FCTL from Zimbabwe were isolated using a culture-independent method, and the bacterial communities were investigated through analyzing two 16S rRNA gene libraries. Eighty-four and 65 operational taxonomic units were obtained from the libraries of the unaged and aging FCTL, respectively. The following genera were represented more than 4% in both libraries (aging and unaged library): Sphingomonas (4.84%, 4.18%), Stenotrophomonas (4.84%, 5.23%), Erwinia (5.81%, 4.88%), Pantoea (19.35%, 18.47%), and Pseudomonas (21.29%, 24.04%). The dominant species varied between the two libraries. Specifically, several dominant species in unaged FCTL including Pseudomonas fulva, Pseudomonas sp. (AM909658), Klebsiella sp. (HM584796), and Pantoea sp. (AY501386) were not identified in aging FCTL, while several dominant species in aging FCTL such as Pantoea sp. (GU566350), Pseudomonas sp. (EF157292), and Buttiauxella izardii were not found in unaged FCTL. The phylogenetic analysis showed that bacteria from unaged and aging FCTL were divided into two clades, and two unique subclades were identified in aging FCTL. Our results revealed for the first time the bacterial diversities on Zimbabwe tobacco, and provided a basis for clarifying the roles of bacteria in aging process of FCTL.

  5. Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples

    PubMed Central

    Balzano, Sergio; Marie, Dominique; Gourvil, Priscillia; Vaulot, Daniel

    2012-01-01

    The composition of photosynthetic pico and nanoeukaryotes was investigated in the North East Pacific and the Arctic Ocean with special emphasis on the Beaufort Sea during the MALINA cruise in summer 2009. Photosynthetic populations were sorted using flow cytometry based on their size and pigment fluorescence. Diversity of the sorted photosynthetic eukaryotes was determined using terminal-restriction fragment length polymorphism analysis and cloning/sequencing of the 18S ribosomal RNA gene. Picoplankton was dominated by Mamiellophyceae, a class of small green algae previously included in the prasinophytes: in the North East Pacific, the contribution of an Arctic Micromonas ecotype increased steadily northward becoming the only taxon occurring at most stations throughout the Beaufort Sea. In contrast, nanoplankton was more diverse: North Pacific stations were dominated by Pseudo-nitzschia sp. whereas those in the Beaufort Sea were dominated by two distinct Chaetoceros species as well as by Chrysophyceae, Pelagophyceae and Chrysochromulina spp.. This study confirms the importance of Arctic Micromonas within picoplankton throughout the Beaufort Sea and demonstrates that the photosynthetic picoeukaryote community in the Arctic is much less diverse than at lower latitudes. Moreover, in contrast to what occurs in warmer waters, most of the key pico- and nanoplankton species found in the Beaufort Sea could be successfully established in culture. PMID:22278671

  6. Cytogenetic analysis of the tamaraw (Bubalus mindorensis): a comparison of R-banded karyotype and chromosomal distribution of centromeric satellite DNAs, telomeric sequence, and 18S-28S rRNA genes with domestic water buffaloes.

    PubMed

    Tanaka, K; Matsuda, Y; Masangkay, J S; Solis, C D; Anunciado, R V; Kuro-o, M; Namikawa, T

    2000-01-01

    The karyotype of the tamaraw (Bubalus mindorensis, 2n = 46) was investigated by RBG-banding technique and compared with those of the river and the swamp cytotypes of domestic water buffalo (B. bubalis). The tamaraw karyotype consisted of 6 submetacentric and 16 acrocentric autosome pairs (NAA = 56), and X and Y chromosomes. The RBG-banded karyotype of the three taxa had a high degree of homology, and the tamaraw karyotype could be explained by a Robertsonian translocation between chromosomes 7 and 15 and by a telomere-centromere tandem fusion between chromosomes 4p and 12 of the standardized river buffalo cytotype (2n = 50, NAA = 58). The buffalo satellite I and II DNAs were localized to the centromeric regions of all the tamaraw chromosomes. The biarmed chromosome 2 of the tamaraw resulting from the fusion between chromosomes 7 and 15 of the standard contained much larger amounts of the satellite I DNA than the other biarmed chromosomes, suggesting that this chromosome was formed by a relatively recent Robertsonian fusion. The (TTAGGG)n telomeric sequence was specifically localized to the telomeric region of all the buffalo chromosomes. The 18S + 28S rDNA was localized to the telomeric regions of the chromosomes 5p, 7, 19, 21, and 22 of the tamaraw and of their homologous chromosomes in the river and swamp buffalo cytotypes.

  7. Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction.

    PubMed

    Mallatt, Jon; Craig, Catherine Waggoner; Yoder, Matthew J

    2010-04-01

    This study (1) uses nearly complete rRNA-gene sequences from across Metazoa (197 taxa) to reconstruct animal phylogeny; (2) presents a highly annotated, manual alignment of these sequences with special reference to rRNA features including paired sites (http://purl.oclc.org/NET/rRNA/Metazoan_alignment) and (3) tests, after eliminating as few disruptive, rogue sequences as possible, if a likelihood framework can recover the main metazoan clades. We found that systematic elimination of approximately 6% of the sequences, including the divergent or unstably placed sequences of cephalopods, arrowworm, symphylan and pauropod myriapods, and of myzostomid and nemertodermatid worms, led to a tree that supported Ecdysozoa, Lophotrochozoa, Protostomia, and Bilateria. Deuterostomia, however, was never recovered, because the rRNA of urochordates goes (nonsignificantly) near the base of the Bilateria. Counterintuitively, when we modeled the evolution of the paired sites, phylogenetic resolution was not increased over traditional tree-building models that assume all sites in rRNA evolve independently. The rRNA genes of non-bilaterians contain a higher % AT than do those of most bilaterians. The rRNA genes of Acoela and Myzostomida were found to be secondarily shortened, AT-enriched, and highly modified, throwing some doubt on the location of these worms at the base of Bilateria in the rRNA tree--especially myzostomids, which other evidence suggests are annelids instead. Other findings are marsupial-with-placental mammals, arrowworms in Ecdysozoa (well supported here but contradicted by morphology), and Placozoa as sister to Cnidaria. Finally, despite the difficulties, the rRNA-gene trees are in strong concordance with trees derived from multiple protein-coding genes in supporting the new animal phylogeny.

  8. Conservation of RNA sequence and cross-linking ability in ribosomes from a higher eukaryote: photochemical cross-linking of the anticodon of P site bound tRNA to the penultimate cytidine of the UACACACG sequence in Artemia salina 18S rRNA.

    PubMed

    Ciesiolka, J; Nurse, K; Klein, J; Ofengand, J

    1985-06-18

    The complex of Artemia salina ribosomes and Escherichia coli acetylvalyl-tRNA could be cross-linked by irradiation with near-UV light. Cross-linking required the presence of the codon GUU, GUA being ineffective. The acetylvalyl group could be released from the cross-linked tRNA by treatment with puromycin, demonstrating that cross-linking had occurred at the P site. This was true both for pGUU- and also for poly(U2,G)-dependent cross-linking. All of the cross-linking was to the 18S rRNA of the small ribosomal subunit. Photolysis of the cross-link at 254 nm occurred with the same kinetics as that for the known cyclobutane dimer between this tRNA and Escherichia coli 16S rRNA. T1 RNase digestion of the cross-linked tRNA yielded an oligonucleotide larger in molecular weight than any from un-cross-linked rRNA or tRNA or from a prephotolyzed complex. Extended electrophoresis showed this material to consist of two oligomers of similar mobility, a faster one-third component and a slower two-thirds component. Each oligomer yielded two components on 254-nm photolysis. The slower band from each was the tRNA T1 oligomer CACCUCCCUVACAAGp, which includes the anticodon. The faster band was the rRNA 9-mer UACACACCGp and its derivative UACACACUG. Unexpectedly, the dephosphorylated and slower moving 9-mer was derived from the faster moving dimer. Deamination of the penultimate C to U is probably due to cyclobutane dimer formation and was evidence for that nucleotide being the site of cross-linking. Direct confirmation of the cross-linking site was obtained by "Z"-gel analysis [Ehresmann, C., & Ofengand, J. (1984) Biochemistry 23, 438-445].(ABSTRACT TRUNCATED AT 250 WORDS)

  9. The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia.

    PubMed

    Yan, Hongbin; Lou, Zhongzi; Li, Li; Ni, Xingwei; Guo, Aijiang; Li, Hongmin; Zheng, Yadong; Dyachenko, Viktor; Jia, Wanzhong

    2013-03-01

    Most species of the genus Taenia are of considerable medical and veterinary significance. In this study, complete nuclear 18S rRNA gene sequences were obtained from seven members of genus Taenia [Taenia multiceps, Taenia saginata, Taenia asiatica, Taenia solium, Taenia pisiformis, Taenia hydatigena, and Taenia taeniaeformis] and a phylogeny inferred using these sequences. Most of the variable sites fall within the variable regions, V1-V5. We show that sequences from the nuclear 18S ribosomal RNA gene have considerable promise as sources of phylogenetic information within the genus Taenia. Furthermore, given that almost all the variable sites lie within defined variable portions of that gene, it will be appropriate and economical to sequence only those regions for additional species of Taenia.

  10. Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid degraders.

    PubMed

    Baelum, Jacob; Jacobsen, Carsten S; Holben, William E

    2010-03-01

    31 different bacterial strains isolated using the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole source of carbon, were investigated for their ability to mineralize 2,4-D and the related herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). Most of the strains mineralize 2,4-D considerably faster than MCPA. Three novel primer sets were developed enabling amplification of full-length coding sequences (CDS) of the three known tfdA gene classes known to be involved in phenoxy acid degradation. 16S rRNA genes were also sequenced; and in order to investigate possible linkage between tfdA gene classes and bacterial species, tfdA and 16S rRNA gene phylogeny was compared. Three distinctly different classes of tfdA genes were observed, with class I tfdA sequences further partitioned into the two sub-classes I-a and I-b based on more subtle differences. Comparison of phylogenies derived from 16S rRNA gene sequences and tfdA gene sequences revealed that most class II tfdA genes were encoded by Burkholderia sp., while class I-a, I-b and III genes were found in a more diverse array of bacteria. Copyright 2010 Elsevier GmbH. All rights reserved.

  11. Ultrastructure and 18S rDNA phylogeny of Apoikia lindahlii comb. nov. (Chrysophyceae) and its epibiontic protists, Filos agilis gen. et sp. nov. (Bicosoecida) and Nanos amicus gen. et sp. nov. (Bicosoecida).

    PubMed

    Kim, Eunsoo; Yubuki, Naoji; Leander, Brian S; Graham, Linda E

    2010-04-01

    Three heterotrophic stramenopiles--Apoikia lindahlii comb. nov. (Chrysophyceae), Filos agilis gen. et sp. nov. (Bicosoecida), and Nanos amicus gen. et sp. nov. (Bicosoecida)--were isolated from acidic peat bogs. The biflagellate A. lindahlii forms loose irregular colonies from which swimming cells may detach, and produces extensive mucilaginous material containing bacterial cells. Phylogenetic analyses of small subunit rDNA sequences demonstrated that A. lindahlii branches within the Chrysophyceae. While A. lindahlii is an obligate heterotroph, ultrastructural observations revealed a leukoplast in the perinuclear region. The pico-sized uniflagellates F. agilis and N. amicus were isolated from separate lakes and within the mucilage of A. lindahlii, suggesting their close associations in natural habitats. In SSU rDNA phylogenies, F. agilis and N. amicus were closely related to the bicosoecids Adriamonas, Siluania, Paramonas, and Nerada. While Filos, Nanos, and Siluania are similar in light microscopic features, their SSU rDNA gene sequences differed significantly (>8% differences) and were not monophyletic. Both F. agilis and N. amicus have a cytostome/cytopharynx particle ingestion apparatus. Bacterial cells and material similar to the mucilage of A. lindahlii occurred within the food vacuole of F. agilis and N. amicus. The nature of association between A. lindahlii and its epibiontic bicosoecids is discussed.

  12. Complete rRNA sequence, arrangement of tandem repeated units and phylogeny of Nosema fumiferanae from spruce budworm, Choristoneura fumiferana (Clemens).

    PubMed

    Kyei-Poku, George; Gauthier, Debbie; van-Frankenhuyzen, Kees

    2012-01-01

    We provide molecular systematics of a microporidian species, Nosema fumiferanae, one of the most common natural enemies of spruce budworm, Choristoneura fumiferana. The uncharacterized flanking region upstream of the large subunit (LSU) rRNA and the complete rRNA cistron of N. fumiferanae was 4,769 bp long. The organization of the rRNA gene was 5'-LSU rRNA-ITS-SSU rRNA-IGS-5S-3' and corresponded primarily to most insect (i.e. lepidopteran) Nosema species identified and classified to date. Phylogenetic analysis based on the complete rRNA cistron indicated that N. fumiferanae is closely related to Nosema plutellae and is correctly assigned to the "true" Nosema group. Suggestions were provided on a criterion to delineate the "true" Nosema from other microsporidian species.

  13. Redescriptions of three trachelocercid ciliates (Protista, Ciliophora, Karyorelictea), with notes on their phylogeny based on small subunit rRNA gene sequences.

    PubMed

    Yan, Ying; Xu, Yuan; Yi, Zhenzhen; Warren, Alan

    2013-09-01

    Three trachelocercid ciliates, Kovalevaia sulcata (Kovaleva, 1966) Foissner, 1997, Trachelocerca sagitta (Müller, 1786) Ehrenberg, 1840 and Trachelocerca ditis (Wright, 1982) Foissner, 1996, isolated from two coastal habitats at Qingdao, China, were investigated using live observation and silver impregnation methods. Data on their infraciliature and morphology are supplied. The small subunit rRNA (SSU rRNA) genes of K. sulcata and Trachelocerca sagitta were sequenced for the first time. Phylogenetic analyses based on SSU rRNA gene sequence data indicate that both organisms, and the previously sequenced Trachelocerca ditis, are located within the trachelocercid assemblage and that K. sulcata is sister to an unidentified taxon forming a clade that is basal to the core trachelocercids.

  14. Isolation and cultivation of endosymbiotic algae from green hydra and phylogenetic analysis of 18S rDNA sequences.

    PubMed

    Kovacević, Goran; Franjević, Damjan; Jelencić, Biserka; Kalafatić, Mirjana

    2010-01-01

    Symbiotic associations are of wide significance in evolution and biodiversity. The green hydra is a typical example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors the individuals of a unicellular green algae. Endosymbiotic algae from green hydra have been successfully isolated and permanently maintained in a stable clean lab culture for the first time. We reconstructed the phylogeny of isolated endosymbiotic algae using the 18S rRNA gene to clarify its current status and to validate the traditional inclusion of these endosymbiotic algae within the Chlorella genus. Molecular analyses established that different genera and species of unicellular green algae could be present as symbionts in green hydra, depending on the natural habitat of a particular strain of green hydra.

  15. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis.

    PubMed

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.

  16. Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis

    PubMed Central

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities. PMID:24594623

  17. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns*

    PubMed Central

    Atherly, Todd; Ziemer, Cherie J

    2014-01-01

    One-hundred-and-three isolates of Bacteroides ovatus,B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. PMID:24532571

  18. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns.

    PubMed

    Atherly, Todd; Ziemer, Cherie J

    2014-04-01

    One-hundred-and-three isolates of Bacteroides ovatus, B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera).

    PubMed

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia

    2015-08-25

    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research.

  20. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. [Calyptogena magnifica; Bathymodiolus thermophilus; Lucinoma annulata; Lucinoma aequizonata; Codakia orbicularis

    SciTech Connect

    Distel, D.L.; Lane, D.J.; Olsen, G.J.; Giovannoni, S.J.; Pace, B.; Pace, N.R.; Stahl, D.A.; Felbeck, H.

    1988-06-01

    The 16S rRNAs from the bacterial endosymbionts of six marine invertebrates from diverse environments were isolated and partially sequenced. These symbionts included the trophosome symbiont of Riftia pachyptila, the gill symbionts of Calyptogena magnifica and Bathymodiolus thermophilus (from deep-sea hydrothermal vents), and the gill symbionts of Lucinoma annulata, Lucinoma aequizonata, and Codakia orbicularis (from relatively shallow coastal environments). Only one type of bacterial 16S rRNA was detected in each symbiosis. Using nucleotide sequence comparisons, we showed that each of the bacterial symbionts is distinct from the others and that all fall within a limited domain of the gamma subdivision of the purple bacteria (one of the major eubacterial divisions previously defined by 16S rRNA analysis. Two host specimens were analyzed in five of the symbioses; in each case, identical bacterial rRNA sequences were obtained from conspecific host specimens. These data indicate that the symbioses examined are species specific and that the symbiont species are unique to and invariant within their respective host species.

  1. Eumalacostracan phylogeny and total evidence: limitations of the usual suspects

    PubMed Central

    Jenner, Ronald A; Dhubhghaill, Ciara Ní; Ferla, Matteo P; Wills, Matthew A

    2009-01-01

    Background The phylogeny of Eumalacostraca (Crustacea) remains elusive, despite over a century of interest. Recent morphological and molecular phylogenies appear highly incongruent, but this has not been assessed quantitatively. Moreover, 18S rRNA trees show striking branch length differences between species, accompanied by a conspicuous clustering of taxa with similar branch lengths. Surprisingly, previous research found no rate heterogeneity. Hitherto, no phylogenetic analysis of all major eumalacostracan taxa (orders) has either combined evidence from multiple loci, or combined molecular and morphological evidence. Results We combined evidence from four nuclear ribosomal and mitochondrial loci (18S rRNA, 28S rRNA, 16S rRNA, and cytochrome c oxidase subunit I) with a newly synthesized morphological dataset. We tested the homogeneity of data partitions, both in terms of character congruence and the topological congruence of inferred trees. We also performed Bayesian and parsimony analyses on separate and combined partitions, and tested the contribution of each partition. We tested for potential long-branch attraction (LBA) using taxon deletion experiments, and with relative rate tests. Additionally we searched for molecular polytomies (spurious clades). Lastly, we investigated the phylogenetic stability of taxa, and assessed their impact on inferred relationships over the whole tree. We detected significant conflict between data partitions, especially between morphology and molecules. We found significant rate heterogeneity between species for both the 18S rRNA and combined datasets, introducing the possibility of LBA. As a test case, we showed that LBA probably affected the position of Spelaeogriphacea in the combined molecular evidence analysis. We also demonstrated that several clades, including the previously reported and surprising clade of Amphipoda plus Spelaeogriphacea, are 'supported' by zero length branches. Furthermore we showed that different sets of

  2. Metazoan phylogeny and the Cambrian radiation.

    PubMed

    Erwin, D H

    1991-04-01

    Sequence analysis of small-subunit ribosomal RNA (18S rRNA) has provided important new pieces for the great puzzle of metazoan phylogeny and has generated new perspectives on the Precambrian-Cambrian fossil record of the metazoan radiation. While the puzzle is far from resolved and the early results are plagued by difficulties in data analysis, intriguing insights have appeared. Early results suggest that molluscs and lophophorates are protostomes, and that deuterostomes may be derived from protostomes. More speculatively, annelids and molluscs may be derived from arthropods or an arthropod ancestor. The molecular evidence further strengthens paleontological arguments for an explosive metazoan radiation near the Vendian-Cambrian boundary, rather than a lengthy, but hidden, period of Precambrian diversification. Copyright © 1991. Published by Elsevier Ltd.

  3. SSU rRNA GENE PHYLOGENY OF MORPHOSPECIES AFFILIATED TO THE BIOASSAY ALGA "SELENASTRUM CAPRICORNUTUM" RECOVERED THE POLYPHYLETIC ORIGIN OF CRESCENT-SHAPED CHLOROPHYTA(1).

    PubMed

    Krienitz, Lothar; Bock, Christina; Nozaki, Hisayoshi; Wolf, Matthias

    2011-08-01

    The generic concept of coccoid green algae exhibiting a crescent-shaped morphotype is evaluated using SSU rRNA gene sequence analyses and light and electron microscopical observations. These common chlorophytes evolved polyphyletically in 10 different clades of the Chlorophyceae and three clades of the Trebouxiophyceae. Six clades are assigned to known genera of Selenastraceae: Kirchneriella, Nephrochlamys, Raphidocelis, Rhombocystis, Selenastrum, and Tetranephris. Four other clades, named following their present genus designation as Ankistrodesmus-like I and II and Monoraphidium-like I and II, require further investigation. One crescent-shaped morphotype, which evolved within the Trebouxiophyceae, is designated as Neocystis mucosa sp. nov. The other two lineages containing trebouxiophycean algae with this morphotype are the Elliptochloris and the Watanabea clades. The taxonomic placement of the widely used bioassay strain "Selenastrum capricornutum" NIVA-CHL 1 in the genus Raphidocelis (species name Raphidocelis subcapitata) is indicated by molecular data. © 2011 Phycological Society of America.

  4. Evolution of mitochondrial SSU-rDNA variable domain sequences and rRNA secondary structures, and phylogeny of the Agrocybe aegerita multispecies complex.

    PubMed

    Uhart, Marina; Sirand-Pugnet, Pascal; Labarère, Jacques

    2007-04-01

    Mitochondrial small subunit (mtSSU) rDNA variable (V1, V2, V4, V6, V8 and V9) domain sequences and rRNA secondary structures evidenced eight molecular groups within 32 strains of the Agrocybe aegerita multispecies complex from different continents. mtSSU-rRNA secondary structure evolution occurred mainly by insertion/deletion of sequences from 8 to 57nt long. Preferential insertion/deletion sites correlated with loops of the mtSSU-rRNA secondary structures, and suggested that these events occurred in regions without interactions in the ribosomal-protein assembly. Indels modified the stem length (V1 and V4 domains) or the size and loop number (V6 and V9 domains). Three indels inserted in the V1 and V4 domains had 76.5% to 94.7% identity with short sequences of the mitochondrial cytochrome c oxidase gene; this fact and the presence of inverted repeated motifs within indel sequences suggested a mechanism of evolution based on insertion/deletion of sequences from another region of the mitochondrial genome. Phylogenetic relationships inferred using both ribosomal DNA sequences and rRNA secondary structures were congruent and evidenced three clades within the A. aegerita complex: European, Argentinean, and a more distant Asian-American clade including A. aegerita and A. chaxingu strains. These results suggested that numerous genetic exchanges occurred between Asian-American strains after isolation of the European clade. V4-V6-V9 concatenated sequences of European and Argentinean clades had 86.1% identity, similar to the value calculated between two Agrocybe closely related species, suggesting that these clades could represent different species. A cleaved amplified polymorphic sequence test for rapid characterization of strains was developed.

  5. Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences.

    PubMed

    Guo, Xianguang; He, Shunping; Zhang, Yaoguang

    2005-05-01

    The family Sisoridae is one of the largest and most diverse Asiatic catfish families, most species occurring in the water systems of the Qinhai-Tibetan Plateau and East Himalayas. To date published morphological and molecular phylogenetics hypotheses of sisorid catfishes are part congruent, and there are some areas of significant disagreement with respect to intergeneric relationships. We used mitochondrial cytochrome b and 16S rRNA gene sequences to clarify existing gaps in phylogenetics and to test conflicting vicariant and dispersal biogeographical hypotheses of Chinese sisorids using dispersal-vicariance analysis and weighted ancestral area analysis in combination with palaeogeographical data as well as molecular clock calibration. Our results suggest that: (1) Chinese sisorid catfishes form a monophyletic group with two distinct clades, one represented by (Gagata (Bagarius, Glyptothorax)) and the other by (glyptosternoids, Pseudecheneis); (2) the glyptosternoid is a monophyletic group and Glyptosternum, Glaridoglanis, and Exostoma are three basal species having a primitive position among it; (3) a hypothesis referring to Pseudecheneis as the sister group of the glyptosternoids, based on morphological evidence, is supported; (4) the genus Pareuchiloglanis, as presently defined, is not monophyletic; (5) congruent with previous hypotheses, the uplift of Qinghai-Tibetan Plateau played a primary role in the speciation and radiation of the Chinese sisorids; and (6) an evolutionary scenario combining aspects of both vicariance and dispersal theory is necessary to explain the distribution pattern of the glyptosternoids. In addition, using a cytochrome b substitution rate of 0.91% per million years and 0.23% for 16S rRNA, we tentatively date that the glyptosternoids most possibly originated in Oligocene-Miocene boundary (19-24Myr), and radiated from Miocene to Pleistocene, along with a center of origin in the Irrawaddy-Tsangpo drainages and several rapid speciation in

  6. Authentication of Curcuma species (Zingiberaceae) based on nuclear 18S rDNA and plastid trnK sequences.

    PubMed

    Cao, Hui; Sasaki, Yohei; Fushimi, Hirotoshi; Komatsu, Katsuko

    2010-07-01

    Curcuma drugs have been used discriminatingly for invigorating blood circulation, promoting digestion, and as a cholagogic in China. However, there is confusion about the drug's botanical origins and clinical uses because of morphological similarity of Curcuma plants and drugs. Comparative sequencing of the 18S rRNA gene in nuclear ribosomal DNA (rDNA) and trnK gene in chloroplast DNA (cpDNA) was carried out in order to examine interspecies phylogeny and to identify ultimately Curcuma species. A total of a hundred of accessions of eighteen species were analyzed. This resulted in an aligned matrix of 1810 bp for 18S rDNA and 2 800 bp for trnK. 18S rDNA sequence divergence within the ingroup ranged from 0-0.05%, trnK ranged from 0-0.19%. One base transversion-substituted site (from cytosine to thymine) was observed from the upstream of 18S rDNA at nucleotide position 234 in C. kwangsiensis and Japanese population of C. zedoaria which have separated genetic distance to other Curcuma taxa. Two noncoding regions embedded in trnK intron showed higher variability, including nucleotide substitutions, repeat insertion and deletions. Based on consensus of relationship, eighteen major lineages within Curcuma are recognized at the species level. The results suggest that Curcuma is monophyletic with 100% bootstrap support and sister to the genera Hedychium and Zingiber. The trnK sequences showed considerable variations between Curcuma species and thus were revealed as a promising candidate for barcoding of Curcuma species, which provide valuable characters for inferring relationship within species but are insufficient to resolve relationships among closely related taxa.

  7. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data.

    PubMed

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-12-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.

  8. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data

    PubMed Central

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-01-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862

  9. Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences.

    PubMed Central

    Dewhirst, F E; Paster, B J; Olsen, I; Fraser, G J

    1992-01-01

    Virtually complete 16S rRNA sequences were determined for 54 representative strains of species in the family Pasteurellaceae. Of these strains, 15 were Pasteurella, 16 were Actinobacillus, and 23 were Haemophilus. A phylogenetic tree was constructed based on sequence similarity, using the Neighbor-Joining method. Fifty-three of the strains fell within four large clusters. The first cluster included the type strains of Haemophilus influenzae, H. aegyptius, H. aphrophilus, H. haemolyticus, H. paraphrophilus, H. segnis, and Actinobacillus actinomycetemcomitans. This cluster also contained A. actinomycetemcomitans FDC Y4, ATCC 29522, ATCC 29523, and ATCC 29524 and H. aphrophilus NCTC 7901. The second cluster included the type strains of A. seminis and Pasteurella aerogenes and H. somnus OVCG 43826. The third cluster was composed of the type strains of Pasteurella multocida, P. anatis, P. avium, P. canis, P. dagmatis, P. gallinarum, P. langaa, P. stomatis, P. volantium, H. haemoglobinophilus, H. parasuis, H. paracuniculus, H. paragallinarum, and A. capsulatus. This cluster also contained Pasteurella species A CCUG 18782, Pasteurella species B CCUG 19974, Haemophilus taxon C CAPM 5111, H. parasuis type 5 Nagasaki, P. volantium (H. parainfluenzae) NCTC 4101, and P. trehalosi NCTC 10624. The fourth cluster included the type strains of Actinobacillus lignieresii, A. equuli, A. pleuropneumoniae, A. suis, A. ureae, H. parahaemolyticus, H. parainfluenzae, H. paraphrohaemolyticus, H. ducreyi, and P. haemolytica. This cluster also contained Actinobacillus species strain CCUG 19799 (Bisgaard taxon 11), A. suis ATCC 15557, H. ducreyi ATCC 27722 and HD 35000, Haemophilus minor group strain 202, and H. parainfluenzae ATCC 29242. The type strain of P. pneumotropica branched alone to form a fifth group. The branching of the Pasteurellaceae family tree was quite complex. The four major clusters contained multiple subclusters. The clusters contained both rapidly and slowly evolving

  10. Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences.

    PubMed

    Dewhirst, F E; Paster, B J; Olsen, I; Fraser, G J

    1992-03-01

    Virtually complete 16S rRNA sequences were determined for 54 representative strains of species in the family Pasteurellaceae. Of these strains, 15 were Pasteurella, 16 were Actinobacillus, and 23 were Haemophilus. A phylogenetic tree was constructed based on sequence similarity, using the Neighbor-Joining method. Fifty-three of the strains fell within four large clusters. The first cluster included the type strains of Haemophilus influenzae, H. aegyptius, H. aphrophilus, H. haemolyticus, H. paraphrophilus, H. segnis, and Actinobacillus actinomycetemcomitans. This cluster also contained A. actinomycetemcomitans FDC Y4, ATCC 29522, ATCC 29523, and ATCC 29524 and H. aphrophilus NCTC 7901. The second cluster included the type strains of A. seminis and Pasteurella aerogenes and H. somnus OVCG 43826. The third cluster was composed of the type strains of Pasteurella multocida, P. anatis, P. avium, P. canis, P. dagmatis, P. gallinarum, P. langaa, P. stomatis, P. volantium, H. haemoglobinophilus, H. parasuis, H. paracuniculus, H. paragallinarum, and A. capsulatus. This cluster also contained Pasteurella species A CCUG 18782, Pasteurella species B CCUG 19974, Haemophilus taxon C CAPM 5111, H. parasuis type 5 Nagasaki, P. volantium (H. parainfluenzae) NCTC 4101, and P. trehalosi NCTC 10624. The fourth cluster included the type strains of Actinobacillus lignieresii, A. equuli, A. pleuropneumoniae, A. suis, A. ureae, H. parahaemolyticus, H. parainfluenzae, H. paraphrohaemolyticus, H. ducreyi, and P. haemolytica. This cluster also contained Actinobacillus species strain CCUG 19799 (Bisgaard taxon 11), A. suis ATCC 15557, H. ducreyi ATCC 27722 and HD 35000, Haemophilus minor group strain 202, and H. parainfluenzae ATCC 29242. The type strain of P. pneumotropica branched alone to form a fifth group. The branching of the Pasteurellaceae family tree was quite complex. The four major clusters contained multiple subclusters. The clusters contained both rapidly and slowly evolving

  11. Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons.

    PubMed

    Marin, Birger; Melkonian, Michael

    2010-04-01

    Molecular phylogenetic analyses of the Mamiellophyceae classis nova, a ubiquitous group of largely picoplanktonic green algae comprising scaly and non-scaly prasinophyte unicells, were performed using single and concatenated gene sequence comparisons of the nuclear- and plastid-encoded rRNA operons. The study resolved all major clades within the class, identified molecular signature sequences for most clades through an exhaustive search for non-homoplasious synapomorphies [Marin et al. (2003): Protist 154: 99-145] and incorporated these signatures into the diagnoses of two novel orders, Monomastigales ord nov., Dolichomastigales ord. nov., and four novel families, Monomastigaceae fam. nov., Dolichomastigaceae fam. nov., Crustomastigaceae fam. nov., and Bathycoccaceae fam. nov., within a revised classification of the class. A database search for the presence of environmental rDNA sequences in the Monomastigales and Dolichomastigales identified an unexpectedly large genetic diversity of Monomastigales confined to freshwater, a novel clade (Dolicho_B) in the Dolichomastigaceae from deep sea sediments and a novel freshwater clade in the Crustomastigaceae. The Mamiellophyceae represent one of the ecologically most successful groups of eukaryotic, photosynthetic picoplankters in marine and likely also freshwater environments.

  12. Chemical probing of adenine residues within the secondary structure of rabbit /sup 18/S ribosomal RNA

    SciTech Connect

    Rairkar, A.; Rubino, H.M.; Lockard, R.E.

    1988-01-26

    The location of unpaired adenine residues within the secondary structure of rabbit /sup 18/S ribosomal RNA was determined by chemical probing. Naked /sup 18/S rRNA was first prepared by digestion of purified 40S subunits with matrix-bound proteinase K in sodium dodecyl sulfate, thereby omitting the use of nucleic acid denaturants. Adenines within naked /sup 18/S rRNA were chemically probed by using either diethyl pyrocarbonate or dimethyl sulfate, which specifically react with unpaired nucleotides. Adenine modification sites were identified by polyacrylamide sequencing gel electrophoresis either upon aniline-induced strand scission of /sup 32/P-end-labeled intact and fragmented rRNA or by primer extension using sequence-specific DNA oligomers with reverse transcriptase. The data indicate good agreement between the general pattern of adenine reactivity and the location of unpaired regions in /sup 18/S rRNA determined by comparative sequence analysis. The overall reactivity of adenine residues toward single-strand-specific chemical probes was, also, similar for both rabbit and Escherichia coli small rRNA. The number of strongly reactive adenines appearing within phylogenetically determined helical segments, however, was greater in rabbit /sup 18/S rRNA than for E. coli /sup 16/S rRNA. Some of these adenines were found clustered in specific helices. Such differences suggest a greater irregularity of many of the helical elements within mammalian /sup 18/S rRNA, as compared with prokaryotic /sup 16/S rRNA. These helical irregularities could be important for protein association and also may represent biologically relevant flexible regions of the molecule.

  13. Molecular phylogeny of the order Euryalida (Echinodermata: Ophiuroidea), based on mitochondrial and nuclear ribosomal genes.

    PubMed

    Okanishi, Masanori; O'Hara, Timothy D; Fujita, Toshihiko

    2011-11-01

    The existing taxonomy of Euryalida, one of the two orders of the Ophiuroidea (Echinodermata), is uncertain and characterized by controversial delimitation of taxonomic ranks from genus to family-level. Their phylogeny was not studied in detail until now. We investigated a dataset of sequence from a mitochondrial gene (16S rRNA) and two nucleic genes (18S rRNA and 28S rRNA) for 49 euryalid ophiuroids and four outgroup species from the order Ophiurida. The monophyly of the order Euryalida was supported as was the monophyly of Asteronychidae, Gorgonocephalidae and an Asteroschematidae+Euryalidae clade. However, the group currently known as the Asteroschematidae was paraphyletic with respect to the Euryalidae. The Asteroschematidae+Euryalidae clade, which we recognise as an enlarged Euryalidae, contains three natural groups: the Asteroschematinae (Asteroschema and Ophiocreas), a new subfamily Astrocharinae (Astrocharis) and the Euryalinae with remaining genera. These subfamilies can be distinguished by internal ossicle morphology.

  14. 16S rRNA gene phylogeny and tfdA gene analysis of 2,4-D-degrading bacteria isolated in China.

    PubMed

    Han, Lizhen; Liu, Yanbo; He, Aigong; Zhao, Degang

    2014-10-01

    Twenty-two 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial isolates were collected from agricultural soils at three sites in China. Sequence analysis of the 16S rRNA genes indicated that the isolates were phylogenetically grouped into four categories: Ochrobactrum anthropi, in the Alpha- class of the phylum Proteobacteria (3 out of 22 isolates), Cupriavidus sp., of the Betaproteobacteria (3 out of 22), Pseudomonas sp. and Stenotrophomonas sp., which are Gammaproteobacteria (7 out of 22), and Bacillus sp., of the phylum Firmicutes (9 out of 22). Primers were designed to amplify the conserved domain of tfdA, which is known to be involved in the degradation of 2,4-D. Results showed that the tfdA genes of all 22 strains were most similar to that of Cupriavidus necator JMP134, which belongs to the 2,4-D/α-ketoglutarate dioxygenase TfdA protein family, indicating that the JMP134-type tfdA gene is likely to be almost universal among the 2,4-D-degrading bacteria isolated from China. Degradation abilities of these 22 strains were investigated in assays using 2,4-D as the sole source of carbon and energy. Thirteen strains degraded >60 % of the available 2,4-D (500 mg l(-1)) over a 1-week incubation period, while a further nine Bacillus sp. strains degraded 50-81 % of the available 2,4-D. None of these nine strains degraded other selected herbicides, such as mecoprop, 2-methyl-4-chlorophenoxyacetic acid, quizalofop, and fluroxypyr. This is the first report of 2,4-D-degradation by Bacilli.

  15. Progress in nemertean biology: development and phylogeny.

    PubMed

    Turbeville, J M

    2002-07-01

    This paper reviews progress in developmental biology and phylogeny of the Nemertea, a common but poorly studied spiralian taxon of considerable ecological and evolutionary significance. Analyses of reproductive biology (including calcium dynamics during fertilization and oocyte maturation), larval morphology and development and developmental genetics have significantly extended our knowledge of spiralian developmental biology. Developmental genetics studies have in addition provided characters useful for reconstructing metazoan phylogeny. Reinvestigation of the cell lineage of Cerebratulus lacteus using fluorescent tracers revealed that endomesoderm forms from the 4d cell as in other spiralians and that ectomesoderm is derived from the 3a and 3b cells as in annelids, echiurans and molluscs. Studies examining blastomere specification show that cell fates are established precociously in direct developers and later in indirect developers. Morphological characters used to estimate the phylogenetic position of nemerteans are critically re-evaluated, and cladistic analyses of morphology reveal that conflicting hypotheses of nemertean relationships result because of different provisional homology statements. Analyses that include disputed homology statements (1, gliointerstitial cell system 2, coelomic circulatory system) suggest that nemerteans form the sister taxon to the coelomate spiralian taxa rather than the sister taxon to Platyhelminthes. Analyses of small subunit rRNA (18S rDNA) sequences alone or in combination with morphological characters support the inclusion of the nemerteans in a spiralian coelomate clade nested within a more inclusive lophotrochozoan clade. Ongoing evaluation of nemertean relationships with mitochondrial gene rearrangements and other molecular characters is discussed.

  16. Phylogeny of the Genus Nocardia Based on Reassessed 16S rRNA Gene Sequences Reveals Underspeciation and Division of Strains Classified as Nocardia asteroides into Three Established Species and Two Unnamed Taxons

    PubMed Central

    Roth, Andreas; Andrees, Sebastian; Kroppenstedt, Reiner M.; Harmsen, Dag; Mauch, Harald

    2003-01-01

    Conventional identification of Nocardia in the routine laboratory remains problematic due to a paucity of reliable phenotypic tests and due to the yet-unresolved taxonomy of strains classified as belonging to the species Nocardia asteroides, which comprises the type strain and isolates with drug pattern types II and VI. The 16S rRNA gene of 74 representative strains of the genus Nocardia, encompassing 25 established species, was sequenced in order to provide a molecular basis for accurate species identification and with the aim of reassessing the phylogeny of taxons assigned to the species N. asteroides. The result of this phylogenetic analysis confirms that the interspecies heterogeneity of closely related nocardial species can be considerably low (a sequence divergence of only 0.5% was found between N. paucivorans and N. brevicatena). We observed a sequence microheterogeneity (sequence divergence of fewer than five bases) in 8 of 11 species of which more than one strain in the species was studied. At least 10 taxons were found that merit description as new species. Strains previously classified as N. asteroides fell into five distinct phylogenetic groups: the type strain cluster (N. asteroides sensu strictu), N. abscessus, N. cyriacigeorgica, and two clusters closely related to N. carnea or N. flavorosea. The strains within the latter two groups probably represent new species, pending further genetic and phenotypic evaluation. Restricted phenotypic data revealed that N. abscessus, N. cyriacigeorgica, and the two Nocardia species taxons are equivalent to drug patterns I, VI, and II, respectively. In the future, these data will help in finding species-specific markers after adoption of a more precise nomenclature for isolates closely related to N. asteroides and unravel confusing phenotypic data obtained in the past for unresolved groups of strains that definitely belong to separate taxons from a phylogenetic point of view. PMID:12574299

  17. Mixed heterolobosean and novel gregarine lineage genes from culture ATCC 50646: Long-branch artefacts, not lateral gene transfer, distort α-tubulin phylogeny.

    PubMed

    Cavalier-Smith, Thomas

    2015-04-01

    Contradictory and confusing results can arise if sequenced 'monoprotist' samples really contain DNA of very different species. Eukaryote-wide phylogenetic analyses using five genes from the amoeboflagellate culture ATCC 50646 previously implied it was an undescribed percolozoan related to percolatean flagellates (Stephanopogon, Percolomonas). Contrastingly, three phylogenetic analyses of 18S rRNA alone, did not place it within Percolozoa, but as an isolated deep-branching excavate. I resolve that contradiction by sequence phylogenies for all five genes individually, using up to 652 taxa. Its 18S rRNA sequence (GQ377652) is near-identical to one from stained-glass windows, somewhat more distant from one from cooling-tower water, all three related to terrestrial actinocephalid gregarines Hoplorhynchus and Pyxinia. All four protein-gene sequences (Hsp90; α-tubulin; β-tubulin; actin) are from an amoeboflagellate heterolobosean percolozoan, not especially deeply branching. Contrary to previous conclusions from trees combining protein and rRNA sequences or rDNA trees including Eozoa only, this culture does not represent a major novel deep-branching eukaryote lineage distinct from Heterolobosea, and thus lacks special significance for deep eukaryote phylogeny, though the rDNA sequence is important for gregarine phylogeny. α-Tubulin trees for over 250 eukaryotes refute earlier suggestions of lateral gene transfer within eukaryotes, being largely congruent with morphology and other gene trees. Copyright © 2015. Published by Elsevier GmbH.

  18. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    PubMed

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  19. Differential stability of 28s and 18s rat liver ribosomal ribonucleic acids.

    PubMed

    Venkov, P V; Hadjiolov, A A

    1969-10-01

    Rat liver ribosomal RNA (rRNA) free from nuclease contaminants was isolated by a modification of the phenol technique. The 28s and 18s rRNA species were separated by preparative agar-gel electrophoresis. The two rRNA species were heated at different temperatures under various conditions and the amount of undegraded rRNA was determined by analytical agar-gel electrophoresis. The 18s rRNA remained unaltered after heating for up to 10min. at 90 degrees in water, acetate buffer, pH5.0, or phosphate buffer, pH7.0. Under similar or milder conditions 28s rRNA was partially degraded, giving rise to a well-delimited 6s peak and a heterogeneous material located in the zone between 28s and 6s. The dependence of degradation of 28s rRNA on the temperature and the ionic strength of the medium was studied. The greatest extent of degradation of 28s rRNA was observed on heating at 90 degrees in water. It is suggested that the instability of rat liver 28s rRNA is due to two factors: the presence of hidden breaks in the polymer chain and a higher susceptibility of some phosphodiester bonds to thermal hydrolysis.

  20. Phylogenetic Analysis of Myobia musculi (Schranck, 1781) by Using the 18S Small Ribosomal Subunit Sequence

    PubMed Central

    Feldman, Sanford H; Ntenda, Abraham M

    2011-01-01

    We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574

  1. Phylogenetic analysis of Myobia musculi (Schranck, 1781) by using the 18S small ribosomal subunit sequence.

    PubMed

    Feldman, Sanford H; Ntenda, Abraham M

    2011-12-01

    We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1,5.8S rRNA, ITS2, and a portion of the 5'-end of the 28S rRNA. M. musculi's 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea.

  2. Phylogeny of Kinorhyncha Based on Morphology and Two Molecular Loci

    PubMed Central

    Sørensen, Martin V.; Dal Zotto, Matteo; Rho, Hyun Soo; Herranz, Maria; Sánchez, Nuria; Pardos, Fernando; Yamasaki, Hiroshi

    2015-01-01

    The phylogeny of Kinorhyncha was analyzed using morphology and the molecular loci 18S rRNA and 28S rRNA. The different datasets were analyzed separately and in combination, using maximum likelihood and Bayesian Inference. Bayesian inference of molecular sequence data in combination with morphology supported the division of Kinorhyncha into two major clades: Cyclorhagida comb. nov. and Allomalorhagida nom. nov. The latter clade represents a new kinorhynch class, and accommodates Dracoderes, Franciscideres, a yet undescribed genus which is closely related with Franciscideres, and the traditional homalorhagid genera. Homalorhagid monophyly was not supported by any analyses with molecular sequence data included. Analysis of the combined molecular and morphological data furthermore supported a cyclorhagid clade which included all traditional cyclorhagid taxa, except Dracoderes that no longer should be considered a cyclorhagid genus. Accordingly, Cyclorhagida is divided into three main lineages: Echinoderidae, Campyloderidae, and a large clade, ‘Kentrorhagata’, which except for species of Campyloderes, includes all species with a midterminal spine present in adult individuals. Maximum likelihood analysis of the combined datasets produced a rather unresolved tree that was not regarded in the following discussion. Results of the analyses with only molecular sequence data included were incongruent at different points. However, common for all analyses was the support of several major clades, i.e., Campyloderidae, Kentrorhagata, Echinoderidae, Dracoderidae, Pycnophyidae, and a clade with Paracentrophyes + New Genus and Franciscideres (in those analyses where the latter was included). All molecular analyses including 18S rRNA sequence data furthermore supported monophyly of Allomalorhagida. Cyclorhagid monophyly was only supported in analyses of combined 18S rRNA and 28S rRNA (both ML and BI), and only in a restricted dataset where taxa with incomplete information from 28S

  3. Phylogeny of Kinorhyncha Based on Morphology and Two Molecular Loci.

    PubMed

    Sørensen, Martin V; Dal Zotto, Matteo; Rho, Hyun Soo; Herranz, Maria; Sánchez, Nuria; Pardos, Fernando; Yamasaki, Hiroshi

    2015-01-01

    The phylogeny of Kinorhyncha was analyzed using morphology and the molecular loci 18S rRNA and 28S rRNA. The different datasets were analyzed separately and in combination, using maximum likelihood and Bayesian Inference. Bayesian inference of molecular sequence data in combination with morphology supported the division of Kinorhyncha into two major clades: Cyclorhagida comb. nov. and Allomalorhagida nom. nov. The latter clade represents a new kinorhynch class, and accommodates Dracoderes, Franciscideres, a yet undescribed genus which is closely related with Franciscideres, and the traditional homalorhagid genera. Homalorhagid monophyly was not supported by any analyses with molecular sequence data included. Analysis of the combined molecular and morphological data furthermore supported a cyclorhagid clade which included all traditional cyclorhagid taxa, except Dracoderes that no longer should be considered a cyclorhagid genus. Accordingly, Cyclorhagida is divided into three main lineages: Echinoderidae, Campyloderidae, and a large clade, 'Kentrorhagata', which except for species of Campyloderes, includes all species with a midterminal spine present in adult individuals. Maximum likelihood analysis of the combined datasets produced a rather unresolved tree that was not regarded in the following discussion. Results of the analyses with only molecular sequence data included were incongruent at different points. However, common for all analyses was the support of several major clades, i.e., Campyloderidae, Kentrorhagata, Echinoderidae, Dracoderidae, Pycnophyidae, and a clade with Paracentrophyes + New Genus and Franciscideres (in those analyses where the latter was included). All molecular analyses including 18S rRNA sequence data furthermore supported monophyly of Allomalorhagida. Cyclorhagid monophyly was only supported in analyses of combined 18S rRNA and 28S rRNA (both ML and BI), and only in a restricted dataset where taxa with incomplete information from 28S rRNA

  4. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data.

    PubMed

    Giribet, Gonzalo; Edgecombe, Gregory D; Wheeler, Ward C; Babbitt, Courtney

    2002-02-01

    The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones.

  5. Constructing Phylogenies.

    ERIC Educational Resources Information Center

    Bilardello, Nicholas; Valdes, Linda

    1998-01-01

    Introduces a method for constructing phylogenies using molecular traits and elementary graph theory. Discusses analyzing molecular data and using weighted graphs, minimum-weight spanning trees, and rooted cube phylogenies to display the data. (DDR)

  6. Constructing Phylogenies.

    ERIC Educational Resources Information Center

    Bilardello, Nicholas; Valdes, Linda

    1998-01-01

    Introduces a method for constructing phylogenies using molecular traits and elementary graph theory. Discusses analyzing molecular data and using weighted graphs, minimum-weight spanning trees, and rooted cube phylogenies to display the data. (DDR)

  7. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    PubMed Central

    Meli, Marina L.; Novacco, Marilisa; Borel, Nicole

    2016-01-01

    The 18S ribosomal RNA (rRNA) gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal) DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR) analysis. We compared (i) samples from various animal species, tissues, and sample types, including swabs; (ii) multiple DNA extraction methods; and (iii) both fresh and formalin-fixed paraffin-embedded (FFPE) samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects. PMID:27672657

  8. The differential expression of ribosomal 18S RNA paralog genes from the chaetognath Spadella cephaloptera.

    PubMed

    Barthélémy, Roxane-Marie; Grino, Michel; Pontarotti, Pierre; Casanova, Jean-Paul; Faure, Eric

    2007-01-01

    Chaetognaths constitute a small marine phylum of approximately 120 species. Two classes of both 18S and 28S rRNA gene sequences have been evidenced in this phylum, even though significant intraindividual variation in the sequences of rRNA genes is unusual in animal genomes. These observations led to the hypothesis that this unusual genetic characteristic could play one or more physiological role(s). Using in situ hybridization on the frontal sections of the chaetognath Spadella cephaloptera, we found that the 18S Class I genes are expressed in the whole body, with a strong expression throughout the gut epithelium, whereas the expression of the 18S Class II genes is restricted to the oocytes. Our results could suggest that the paralog products of the 18S Class I genes are probably the "housekeeping" 18S rRNAs, whereas those of class II would only be essential in specific tissues. These results provide support for the idea that each type of 18S paralog is important for specific cellular functions and is under the control of selective factors.

  9. Multigene phylogeny resolves deep branching of Amoebozoa.

    PubMed

    Cavalier-Smith, Thomas; Fiore-Donno, Anna Maria; Chao, Ema; Kudryavtsev, Alexander; Berney, Cédric; Snell, Elizabeth A; Lewis, Rhodri

    2015-02-01

    Amoebozoa is a key phylum for eukaryote phylogeny and evolutionary history, but its phylogenetic validity has been questioned since included species are very diverse: amoebo-flagellate slime-moulds, naked and testate amoebae, and some flagellates. 18S rRNA gene trees have not firmly established its internal topology. To rectify this we sequenced cDNA libraries for seven diverse Amoebozoa and conducted phylogenetic analyses for 109 eukaryotes (17-18 Amoebozoa) using 60-188 genes. We conducted Bayesian inferences with the evolutionarily most realistic site-heterogeneous CAT-GTR-Γ model and maximum likelihood analyses. These unequivocally establish the monophyly of Amoebozoa, showing a primary dichotomy between the previously contested subphyla Lobosa and Conosa. Lobosa, the entirely non-flagellate lobose amoebae, are robustly partitioned into the monophyletic classes Tubulinea, with predominantly tube-shaped pseudopodia, and Discosea with flattened cells and different locomotion. Within Conosa 60/70-gene trees with very little missing data show a primary dichotomy between the aerobic infraphylum Semiconosia (Mycetozoa and Variosea) and secondarily anaerobic Archamoebae. These phylogenetic features are entirely congruent with the most recent major amoebozoan classification emphasising locomotion modes, pseudopodial morphology, and ultrastructure. However, 188-gene trees where proportionally more taxa have sparser gene-representation weakly place Archamoebae as sister to Macromycetozoa instead, possibly a tree reconstruction artefact of differentially missing data.

  10. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    PubMed

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  11. A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences

    PubMed Central

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967

  12. Time-calibrated molecular phylogeny of pteropods.

    PubMed

    Burridge, Alice K; Hörnlein, Christine; Janssen, Arie W; Hughes, Martin; Bush, Stephanie L; Marlétaz, Ferdinand; Gasca, Rebeca; Pierrot-Bults, Annelies C; Michel, Ellinor; Todd, Jonathan A; Young, Jeremy R; Osborn, Karen J; Menken, Steph B J; Peijnenburg, Katja T C A

    2017-01-01

    Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely suitable for study of long-term evolutionary processes in the open ocean because they are the only living metazoan plankton with a good fossil record. Pteropods have been proposed as bioindicators to monitor the impacts of ocean acidification and in consequence have attracted considerable research interest, however, a robust evolutionary framework for the group is still lacking. Here we reconstruct their phylogenetic relationships and examine the evolutionary history of pteropods based on combined analyses of Cytochrome Oxidase I, 28S, and 18S ribosomal rRNA sequences and a molecular clock calibrated using fossils and the estimated timing of the formation of the Isthmus of Panama. Euthecosomes with uncoiled shells were monophyletic with Creseis as the earliest diverging lineage, estimated at 41-38 million years ago (mya). The coiled euthecosomes (Limacina, Heliconoides, Thielea) were not monophyletic contrary to the accepted morphology-based taxonomy; however, due to their high rate heterogeneity no firm conclusions can be drawn. We found strong support for monophyly of most euthecosome genera, but Clio appeared as a polyphyletic group, and Diacavolinia grouped within Cavolinia, making the latter genus paraphyletic. The highest evolutionary rates were observed in Heliconoides inflatus and Limacina bulimoides for both 28S and 18S partitions. Using a fossil-calibrated phylogeny that sets the first occurrence of coiled euthecosomes at 79-66 mya, we estimate that uncoiled euthecosomes evolved 51-42 mya and that most extant uncoiled genera originated 40-15 mya. These findings are congruent with a molecular clock analysis using the Isthmus of Panama formation as an independent calibration. Although not all phylogenetic relationships could be resolved based on three molecular markers, this study provides a useful resource to study pteropod diversity and provides general insight into the

  13. Time-calibrated molecular phylogeny of pteropods

    PubMed Central

    Hörnlein, Christine; Janssen, Arie W.; Hughes, Martin; Bush, Stephanie L.; Marlétaz, Ferdinand; Gasca, Rebeca; Pierrot-Bults, Annelies C.; Michel, Ellinor; Todd, Jonathan A.; Young, Jeremy R.; Osborn, Karen J.; Menken, Steph B. J.

    2017-01-01

    Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely suitable for study of long-term evolutionary processes in the open ocean because they are the only living metazoan plankton with a good fossil record. Pteropods have been proposed as bioindicators to monitor the impacts of ocean acidification and in consequence have attracted considerable research interest, however, a robust evolutionary framework for the group is still lacking. Here we reconstruct their phylogenetic relationships and examine the evolutionary history of pteropods based on combined analyses of Cytochrome Oxidase I, 28S, and 18S ribosomal rRNA sequences and a molecular clock calibrated using fossils and the estimated timing of the formation of the Isthmus of Panama. Euthecosomes with uncoiled shells were monophyletic with Creseis as the earliest diverging lineage, estimated at 41–38 million years ago (mya). The coiled euthecosomes (Limacina, Heliconoides, Thielea) were not monophyletic contrary to the accepted morphology-based taxonomy; however, due to their high rate heterogeneity no firm conclusions can be drawn. We found strong support for monophyly of most euthecosome genera, but Clio appeared as a polyphyletic group, and Diacavolinia grouped within Cavolinia, making the latter genus paraphyletic. The highest evolutionary rates were observed in Heliconoides inflatus and Limacina bulimoides for both 28S and 18S partitions. Using a fossil-calibrated phylogeny that sets the first occurrence of coiled euthecosomes at 79–66 mya, we estimate that uncoiled euthecosomes evolved 51–42 mya and that most extant uncoiled genera originated 40–15 mya. These findings are congruent with a molecular clock analysis using the Isthmus of Panama formation as an independent calibration. Although not all phylogenetic relationships could be resolved based on three molecular markers, this study provides a useful resource to study pteropod diversity and provides general insight

  14. Molecular phylogeny of Arthrotardigrada (Tardigrada).

    PubMed

    Jørgensen, Aslak; Faurby, Søren; Hansen, Jesper G; Møbjerg, Nadja; Kristensen, Reinhardt M

    2010-03-01

    Tardigrades are microscopic ecdysozoans with a worldwide distribution covering marine, limnic and terrestrial habitats. They are regarded as a neglected phylum with regard to studies of their phylogeny. During the last decade molecular data have been included in the investigation of tardigrades. However, the marine arthrotardigrades are still poorly sampled due to their relative rarity, difficult identification and minute size even for tardigrades. In the present study, we have sampled various arthrotardigrades and sequenced the 18S and partial 28S ribosomal subunits. The phylogenetic analyses based on Bayesian inference and maximum parsimony inferred Heterotardigrada (Arthrotardigrada+Echiniscoidea) and Eutardigrada to be monophyletic. Arthrotardigrada was inferred to be paraphyletic as the monophyletic Echiniscoidea is included within the arthrotardigrades. The phylogenetic positions of Stygarctidae and Batillipedidae are poorly resolved with low branch support. The Halechiniscidae is inferred to be polyphyletic as the currently recognized Styraconyxinae is not part of the family. Archechiniscus is the sister-group to the Halechiniscidae and Orzeliscus is placed as one of the basal halechiniscids. The phylogeny of the included eutardigrade taxa resembles the current molecular phylogenies. The genetic diversity within Arthrotardigrada is much larger (18S 15.1-26.5%, 28S 7.2-20.7%) than within Eutardigrada (18S 1.0-12.6%, 28S 1.3-8.2%). This can be explained by higher substitution rates in the arthrotardigrades or by a much younger evolutionary age of the sampled eutardigrades.

  15. Phylogeny of ladybirds (Coleoptera: Coccinellidae): are the subfamilies monophyletic?

    PubMed

    Magro, A; Lecompte, E; Magné, F; Hemptinne, J-L; Crouau-Roy, B

    2010-03-01

    The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known because of their use as biocontrol agents, and are the subject of many ecological studies. However, little is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is needed for the family. This paper provides the first phylogenetic reconstruction of the relationships within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relationships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic. The tribe Chilocorini is identified as the sister-group of the Coccinellinae for the first time. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Phylogeny and evolution of developmental mode in temnopleurid echinoids.

    PubMed

    Jeffery, Charlotte H; Emlet, Richard B; Littlewood, D T J

    2003-07-01

    The phylogenetic relationships of 24 nominal species of temnopleurid echinoid were established using molecular and morphological data sets. The analysis combined sequence data from mitochondrial 16S rRNA and cytochrome c oxidase subunit I genes and the nuclear 18S-like small subunit rRNA gene with morphological data concerning coronal, lantern, spine, and pedicellarial traits. All four data sets contain similar phylogenetic information, although each provides support at a different taxonomic level. Two data congruence tests (Templeton's test and the incongruence length difference test) suggested no significant heterogeneity between the data sets, and all data were combined in a total evidence analysis. The resulting well-resolved phylogeny suggests that Microcyphus, Amblypneustes, and Holopneustes are not monophyletic genera, and that Temnopleurus (Temnopleurus) and Temnopleurus (Toreumatica) are not closely related and should not be regarded as subgenera. In contrast to previous morphological analyses, Mespilia is found to be more closely related to Temnotrema and Toreumatica than it is to Microcyphus. The phylogeny was used to test a series of hypotheses about the evolution of developmental patterns. All species of Amblypneustes, Holopneustes, and Microcyphus are lecithotrophic, and many of these taxa are restricted to southern Australia. Planktotrophy is the ancestral condition for the temnopleurids, and the 11 instances of lecithotrophic nonplanktotrophy in this clade can be accounted for by a single developmental transition that occurred an estimated 4.4-7.4 million years ago, apparently before the migration of Microcyphus to southern Australia. The switch to a nonplanktotrophic mode of development is unidirectional with no evidence of reversals.

  17. Molecular phylogeny of an Indian population of Kleinstyla dorsicirrata (Foissner, 1982) Foissner et al., 2002. comb. nov. (Hypotrichia, Oxytrichidae): an oxytrichid with incomplete dorsal kinety fragmentation.

    PubMed

    Singh, Jasbir; Kamra, Komal

    2014-01-01

    Kleinstyla dorsicirrata (Foissner, 1982) Foissner et al., 2002. comb. nov. (basionym: Gastrostyla dorsicirrata) is a slightly flexible oxytrichid, measuring about 88-115 × 27-46 μm in life and possesses cortical granules. Kleinstyla dorsicirrata is the only oxytrichid known so far with incompletely fragmented dorsal kinety. Morphological and morphogenetic data recognise K. dorsicirrata as nonstylonychine oxytrichid. Molecular phylogeny of an Indian population was inferred using 18S rRNA gene sequences and was examined with respect to oxytrichids exhibiting variation in dorsal kinety fragmentation. Kleinstyla dorsicirrata clusters with Oxytricha lanceolata; this proximity is quite significant as both show deviation from typical oxytrichid fragmentation of dorsal kinety. Molecular phylogeny of Indian population confirms its nonstylonychine oxytrichid status. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  18. Studying sources of incongruence in arthropod molecular phylogenies: sea spiders (Pycnogonida) as a case study.

    PubMed

    Arabi, Juliette; Cruaud, Corinne; Couloux, Arnaud; Hassanin, Alexandre

    2010-05-01

    In this report, we analyze the phylogeny of Pycnogonida using the three nuclear and three mitochondrial markers currently sequenced for studying inter- and intrafamilial relationships within Arthropoda: 18S and 28S rRNA genes, Histone H3, cytochrome c oxidase subunit 1 (CO1), 12S and 16S rRNA genes. We identify several problems in previous studies, due to the use of inappropriate sequences (taxonomic misidentification, DNA contamination, sequencing errors, missing data) or taxa (outgroup choice). Our analyses show that most markers are not powerful to study the phylogeny of sea spiders. The results suggest however a recent diversification of the group (Mesozoic rather than Paleozoic) and the early divergence of Austrodecidae, followed by Colossendeidae, Pycnogonidae and Rhynchothoracidae. Except Ammotheidae and Callipallenidae, all other families were recovered as monophyletic. Analyses of synonymous sites in CO1 sequences reveal an extreme heterogeneity of nucleotide composition within sea spiders, as six unrelated species show a reverse strand-specific bias. We therefore suggest that several independent reversals of asymmetric mutational constraints occurred during the evolution of Pycnogonida, as a consequence of genomic inversions involving either the control region or a fragment containing the CO1 gene. These hypotheses are supported by the comparison of two complete mitochondrial genomes of sea spiders (Achelia bituberculata and Nymphon gracile) with that of Limulus.

  19. Phylogeny of Oedogoniales, Chaetophorales and Chaetopeltidales (Chlorophyceae): inferences from sequence-structure analysis of ITS2

    PubMed Central

    Buchheim, Mark A.; Sutherland, Danica M.; Schleicher, Tina; Förster, Frank; Wolf, Matthias

    2012-01-01

    Background and Aims The green algal class Chlorophyceae comprises five orders (Chlamydomonadales, Sphaeropleales, Chaetophorales, Chaetopeltidales and Oedogoniales). Attempts to resolve the relationships among these groups have met with limited success. Studies of single genes (18S rRNA, 26S rRNA, rbcL or atpB) have largely failed to unambiguously resolve the relative positions of Oedogoniales, Chaetophorales and Chaetopeltidales (the OCC taxa). In contrast, recent genomics analyses of plastid data from OCC exemplars provided a robust phylogenetic analysis that supports a monophyletic OCC alliance. Methods An ITS2 data set was assembled to independently test the OCC hypothesis and to evaluate the performance of these data in assessing green algal phylogeny at the ordinal or class level. Sequence-structure analysis designed for use with ITS2 data was employed for phylogenetic reconstruction. Key Results Results of this study yielded trees that were, in general, topologically congruent with the results from the genomic analyses, including support for the monophyly of the OCC alliance. Conclusions Not all nodes from the ITS2 analyses exhibited robust support, but our investigation demonstrates that sequence-structure analyses of ITS2 provide a taxon-rich means of testing phylogenetic hypotheses at high taxonomic levels. Thus, the ITS2 data, in the context of sequence-structure analysis, provide an economical supplement or alternative to the single-marker approaches used in green algal phylogeny. PMID:22028463

  20. Chicken rRNA Gene Cluster Structure.

    PubMed

    Dyomin, Alexander G; Koshel, Elena I; Kiselev, Artem M; Saifitdinova, Alsu F; Galkina, Svetlana A; Fukagawa, Tatsuo; Kostareva, Anna A; Gaginskaya, Elena R

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5'ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3'ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity.

  1. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  2. Technical considerations in the use of 18s rRNA in gene expression studies

    EPA Science Inventory

    Gene expression analysis is now commonly used in ecotoxicological studies to indicate exposure of an organism to xenobiotics. For example, the vitellogenin gene is used to diagnose exposure of fish to environmental estrogens. Reverse transcription polymerase chain reaction (RT-PC...

  3. Technical considerations in the use of 18s rRNA in gene expression studies

    EPA Science Inventory

    Gene expression analysis is now commonly used in ecotoxicological studies to indicate exposure of an organism to xenobiotics. For example, the vitellogenin gene is used to diagnose exposure of fish to environmental estrogens. Reverse transcription polymerase chain reaction (RT-PC...

  4. Haptophyte Diversity and Vertical Distribution Explored by 18S and 28S Ribosomal RNA Gene Metabarcoding and Scanning Electron Microscopy.

    PubMed

    Gran-Stadniczeñko, Sandra; Šupraha, Luka; Egge, Elianne D; Edvardsen, Bente

    2017-07-01

    Haptophyta encompasses more than 300 species of mostly marine pico- and nanoplanktonic flagellates. Our aims were to investigate the Oslofjorden haptophyte diversity and vertical distribution by metabarcoding, and to improve the approach to study haptophyte community composition, richness and proportional abundance by comparing two rRNA markers and scanning electron microscopy (SEM). Samples were collected in August 2013 at the Outer Oslofjorden, Norway. Total RNA/cDNA was amplified by haptophyte-specific primers targeting the V4 region of the 18S, and the D1-D2 region of the 28S rRNA. Taxonomy was assigned using curated haptophyte reference databases and phylogenetic analyses. Both marker genes showed Chrysochromulinaceae and Prymnesiaceae to be the families with highest number of Operational Taxonomic Units (OTUs), as well as proportional abundance. The 18S rRNA data set also contained OTUs assigned to eight supported and defined clades consisting of environmental sequences only, possibly representing novel lineages from family to class. We also recorded new species for the area. Comparing coccolithophores by SEM with metabarcoding shows a good correspondence with the 18S rRNA gene proportional abundances. Our results contribute to link morphological and molecular data and 28S to 18S rRNA gene sequences of haptophytes without cultured representatives, and to improve metabarcoding methodology. © 2016 The Authors Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  5. Secondary structure of rabbit 18S ribosomal RNA determined from biochemical and phylogenetic data

    SciTech Connect

    Rairkar, A.; Rubino, H.; Lockard, R.E.

    1986-05-01

    To understand the functional role of 18S rRNA in the eukaryotic 40S subunit, its higher order structure must first be determined. Native deproteinized 18S rRNA was isolated from purified rabbit 40S subunits, fractionated on SDS-sucrose density gradients and concentrated using centricon-30 microconcentrators. The structure of native 18S rRNA was probed chemically with both diethylpyrocarbonate (DEPC) and dimethyl sulfate (DMS) which react with unpaired adenosine and guanosine residues, respectively. After /sup 32/P-end-labeling of intact and fragmented RNA, the modified nucleotides were identified by polyacrylamide sequencing gel electrophoresis upon aniline induced strand scission. On the basis of both the biochemical and phylogenetic data, a secondary structure model is proposed which includes the two major G + C rich insertion elements. A comparison of the structure data with previously published phylogenetic models suggests an instability of certain predicted helices. These unstable helices may normally be stabilized by ribosomal proteins and could represent the flexible elements involved in biologically significant conformational switches within 40S subunit.

  6. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals.

    PubMed

    Kournoutou, Georgia G; Giannopoulou, Panagiota C; Sazakli, Eleni; Leotsinidis, Michel; Kalpaxis, Dimitrios L

    2017-09-06

    Numerous studies have shown the ability of trace metals to accumulate in marine organisms and cause oxidative stress that leads to perturbations in many important intracellular processes, including protein synthesis. This study is mainly focused on the exploration of structural changes, like base modifications, scissions, and conformational changes, caused in 18S and 5S ribosomal RNA (rRNA) isolated from the mussel Mytilus galloprovincialis exposed to 40μg/L Cu, 30μg/L Hg, or 100μg/L Cd, for 5 or 15days. 18S rRNA and 5S rRNA are components of the small and large ribosomal subunit, respectively, found in complex with ribosomal proteins, translation factors and other auxiliary components (metal ions, toxins etc). 18S rRNA plays crucial roles in all stages of protein synthesis, while 5S rRNA serves as a master signal transducer between several functional regions of 28S rRNA. Therefore, structural changes in these ribosomal constituents could affect the basic functions of ribosomes and hence the normal metabolism of cells. Especially, 18S rRNA along with ribosomal proteins forms the decoding centre that ensures the correct codon-anticodon pairing. As exemplified by ELISA, primer extension analysis and DMS footprinting analysis, each metal caused oxidative damage to rRNA, depending on the nature of metal ion and the duration of exposure. Interestingly, exposure of mussels to Cu or Hg caused structural alterations in 5S rRNA, localized in paired regions and within loops A, B, C, and E, leading to a continuous progressive loss of the 5S RNA structural integrity. In contrast, structural impairments of 5S rRNA in mussels exposed to Cd were accumulating for the initial 5days, and then progressively decreased to almost the normal level by day 15, probably due to the parallel elevation of metallothionein content that depletes the pools of free Cd. Regions of interest in 18S rRNA, such as the decoding centre, sites implicated in the binding of tRNAs (A- and P-sites) or

  7. Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae.

    PubMed

    Hajibabaei, Mehrdad; Xia, Junnan; Drouin, Guy

    2006-07-01

    The phylogenetic position of gnetophytes has long been controversial. We sequenced parts of the genes coding for the largest subunit of nuclear RNA polymerase I, II, and III and combined these sequences with those of four chloroplast genes, two mitochondrial genes, and 18S rRNA genes to address this issue. Both maximum likelihood and maximum parsimony analyses of the sites not affected by high substitution levels strongly support a phylogeny where gymnosperms and angiosperms are monophyletic, where cycads are at the base of gymnosperm tree and are followed by ginkgos, and where gnetophytes are grouped within conifers as the sister group of pines. The evolution of several morphological and molecular characters of gnetophytes and conifers will therefore need to be reinterpreted.

  8. Phylogenetic analysis based on 28S rRNA of Babesia spp. in ruminants in China.

    PubMed

    Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze; Yin, Hong; Luo, Jianxun

    2013-04-01

    Molecular phylogenetic analyses are mainly based on the small ribosomal RNA subunit (18S rRNA), internal transcribed spacer regions, and other molecular markers. We compared the phylogenetic relationships of Babesia spp. using large subunit ribosomal RNA, i.e., 28S rRNA, and the united 28S + 18S rRNA sequence fragments from 11 isolates of Babesia spp. collected in China. Due to sequence length and variability, the 28S rRNA gene contained more information than the 18S rRNA gene and could be used to elucidate the phlyogenetic relationships of B. motasi, B. major, and B. bovis. Thus, 28S rRNA is another candidate marker that can be used for the phylogenetic analysis of Babesia spp. However, the united fragment (28S + 18S) analysis provided better supported phylogenetic relationships than single genes for Babesia spp. in China.

  9. Chromosome Mapping of 18S Ribosomal RNA Genes in Eleven Hypostomus Species (Siluriformes, Loricariidae): Diversity Analysis of the Sites.

    PubMed

    Rubert, Marceléia; da Rosa, Renata; Zawadzki, Claudio H; Mariotto, Sandra; Moreira-Filho, Orlando; Giuliano-Caetano, Lucia

    2016-08-01

    We investigated the chromosomal distribution of 18S ribosomal DNA (rDNA) in different populations of 11 species of Hypostomus collected in important Brazilian basins, namely South Atlantic, Upper Paraná, and Paraguay applying the fluorescence in situ hybridization (FISH). Hypostomus cochliodon, Hypostomus commersoni, Hypostomus hermanni, Hypostomus regani, Hypostomus albopunctatus, Hypostomus paulinus, Hypostomus aff. paulinus, Hypostomus iheringii, and Hypostomus mutucae presented multiple 18S rDNA sites while Hypostomus strigaticeps and Hypostomus nigromaculatus exhibited a single pair of chromosomes with 18S rDNA sites. The studied species presented variations in the number and position of these sites. The results accomplished were similar to those obtained by the analysis of AgNORs, revealing the same interspecific variability. Each species exhibited distinctive patterns of AgNOR and 18S rDNA distribution, which can be considered cytogenetic markers in each species of the genus and help improve the discussions on the phylogeny of the group.

  10. Reconsideration of systematic relationships within the order Euplotida (Protista, Ciliophora) using new sequences of the gene coding for small-subunit rRNA and testing the use of combined data sets to construct phylogenies of the Diophrys-complex.

    PubMed

    Yi, Zhenzhen; Song, Weibo; Clamp, John C; Chen, Zigui; Gao, Shan; Zhang, Qianqian

    2009-03-01

    Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the "typical" euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae-Certesiidae-Aspidiscidae-Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information.

  11. Dual Symbiosis in a Bathymodiolus sp. Mussel from a Methane Seep on the Gabon Continental Margin (Southeast Atlantic): 16S rRNA Phylogeny and Distribution of the Symbionts in Gills

    PubMed Central

    Duperron, Sébastien; Nadalig, Thierry; Caprais, Jean-Claude; Sibuet, Myriam; Fiala-Médioni, Aline; Amann, Rudolf; Dubilier, Nicole

    2005-01-01

    Deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae) harbor symbiotic bacteria in their gills and are among the dominant invertebrate species at cold seeps and hydrothermal vents. An undescribed Bathymodiolus species was collected at a depth of 3,150 m in a newly discovered cold seep area on the southeast Atlantic margin, close to the Zaire channel. Transmission electron microscopy, comparative 16S rRNA analysis, and fluorescence in situ hybridization indicated that this Bathymodiolus sp. lives in a dual symbiosis with sulfide- and methane-oxidizing bacteria. A distinct distribution pattern of the symbiotic bacteria in the gill epithelium was observed, with the thiotrophic symbiont dominating the apical region and the methanotrophic symbiont more abundant in the basal region of the bacteriocytes. No variations in this distribution pattern or in the relative abundances of the two symbionts were observed in mussels collected from three different mussel beds with methane concentrations ranging from 0.7 to 33.7 μM. The 16S rRNA sequence of the methanotrophic symbiont is most closely related to those of known methanotrophic symbionts from other bathymodiolid mussels. Surprisingly, the thiotrophic Bathymodiolus sp. 16S rRNA sequence does not fall into the monophyletic group of sequences from thiotrophic symbionts of all other Bathymodiolus hosts. While these mussel species all come from vents, this study describes the first thiotrophic sequence from a seep mussel and shows that it is most closely related (99% sequence identity) to an environmental clone sequence obtained from a hydrothermal plume near Japan. PMID:15811991

  12. Dual symbiosis in a Bathymodiolus sp. mussel from a methane seep on the Gabon continental margin (Southeast Atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills.

    PubMed

    Duperron, Sébastien; Nadalig, Thierry; Caprais, Jean-Claude; Sibuet, Myriam; Fiala-Médioni, Aline; Amann, Rudolf; Dubilier, Nicole

    2005-04-01

    Deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae) harbor symbiotic bacteria in their gills and are among the dominant invertebrate species at cold seeps and hydrothermal vents. An undescribed Bathymodiolus species was collected at a depth of 3,150 m in a newly discovered cold seep area on the southeast Atlantic margin, close to the Zaire channel. Transmission electron microscopy, comparative 16S rRNA analysis, and fluorescence in situ hybridization indicated that this Bathymodiolus sp. lives in a dual symbiosis with sulfide- and methane-oxidizing bacteria. A distinct distribution pattern of the symbiotic bacteria in the gill epithelium was observed, with the thiotrophic symbiont dominating the apical region and the methanotrophic symbiont more abundant in the basal region of the bacteriocytes. No variations in this distribution pattern or in the relative abundances of the two symbionts were observed in mussels collected from three different mussel beds with methane concentrations ranging from 0.7 to 33.7 microM. The 16S rRNA sequence of the methanotrophic symbiont is most closely related to those of known methanotrophic symbionts from other bathymodiolid mussels. Surprisingly, the thiotrophic Bathymodiolus sp. 16S rRNA sequence does not fall into the monophyletic group of sequences from thiotrophic symbionts of all other Bathymodiolus hosts. While these mussel species all come from vents, this study describes the first thiotrophic sequence from a seep mussel and shows that it is most closely related (99% sequence identity) to an environmental clone sequence obtained from a hydrothermal plume near Japan.

  13. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data

    NASA Technical Reports Server (NTRS)

    Giribet, Gonzalo; Edgecombe, Gregory D.; Wheeler, Ward C.; Babbitt, Courtney

    2002-01-01

    The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones. c2002 The Willi Hennig Society.

  14. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data

    NASA Technical Reports Server (NTRS)

    Giribet, Gonzalo; Edgecombe, Gregory D.; Wheeler, Ward C.; Babbitt, Courtney

    2002-01-01

    The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones. c2002 The Willi Hennig Society.

  15. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks

    EPA Science Inventory

    The goal of this study was to characterize microbial eukaryotes over a 12 month period, so as to provide insight into the occurrence of potentially important predators and bacterial hosts in hot and cold premise plumbing. Nearly 6,300 partial (600 bp) 18S rRNA gene sequences from...

  16. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks

    EPA Science Inventory

    The goal of this study was to characterize microbial eukaryotes over a 12 month period, so as to provide insight into the occurrence of potentially important predators and bacterial hosts in hot and cold premise plumbing. Nearly 6,300 partial (600 bp) 18S rRNA gene sequences from...

  17. Postmortem interval determination using 18S-rRNA and microRNA.

    PubMed

    Li, Wen-Can; Ma, Kai-Jun; Lv, Ye-Hui; Zhang, Ping; Pan, Hui; Zhang, Heng; Wang, Hui-Jun; Ma, Duan; Chen, Long

    2014-07-01

    The importance of determining postmortem interval (PMI) is crucial to criminal, civil and forensic cases. The precise estimation of PMI is a critical step in many death investigations. A technique exploiting the level of RNA, 18S rRNA and microRNA to estimate PMI was investigated. 18S-rRNA is a main ribosomal RNA presented as part of the ribosomal protein complex, while microRNA is a class of small non-coding single-stranded RNA, only 21-25 nucleotides, which has a strong conservation between different species. In this study, heart tissues were removed from adult rats at various postmortem intervals. An efficient extraction and detection protocol to analyze the level of 18S-rRNA and microRNA in postmortem tissue was carried out. The process consists of total RNA extraction, transcription and visualization by quantitative real time PCR. The result indicates a characteristic parabola relationship between postmortem period and Ct values for 18S-rRNA in dead rat hearts. The result indicates that the degradation pattern of tissue 18S-rRNA and microRNA is useful in the determination of the postmortem interval within seven days. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Redescription and molecular phylogeny of the type species for two main metopid genera, Metopus es (Müller, 1776) Lauterborn, 1916 and Brachonella contorta (Levander, 1894) Jankowski, 1964 (Metopida, Ciliophora), based on broad geographic sampling.

    PubMed

    Bourland, William; Rotterova, Johana; Čepička, Ivan

    2017-06-01

    Metopid ciliates occupy terrestrial, freshwater, and marine habitats worldwide, playing important roles as predominant consumers of bacteria, flagellates, algae, and diatoms in hypoxic environments. Metopus and Brachonella are the most species-rich metopid genera, however most of their species have not been studied by modern methods Here, we report the morphologic, morphometric and molecular characterization, and phylogeny of Metopus es and Brachonella contorta, both types of their respective genera, collected in a broad global sampling effort. Five strains of M. es and three strains of B. contorta were studied in detail, providing the first correlation of morphology, morphometrics, and 18S rRNA gene sequencing for both. We submitted 29 new 18S rRNA gene sequences to GenBank. Phylogenetic analyses yielded trees of similar topology. A strongly supported Metopus es clade is sister to the Brachonella contorta clade. Our analysis shows genus Metopus is not monophyletic. The monophyly of Brachonella cannot yet be determined due to lack of sequences for other species of this genus in molecular databases. Both species appear to have a global distribution. Metopus es was not found in Africa, probably reflecting low sampling effort. Strains of both species showed low 18S rRNA gene sequence divergence despite wide geographic separation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution.

    PubMed

    Cavalier-Smith, Thomas; Chao, Ema E-Y

    2003-05-01

    The primary diversification of eukaryotes involved protozoa, especially zooflagellates-flagellate protozoa without plastids. Understanding the origins of the higher eukaryotic kingdoms (two purely heterotrophic, Animalia and Fungi, and two primarily photosynthetic, Plantae and Chromista) depends on clarifying evolutionary relationships among the phyla of the ancestral kingdom Protozoa. We therefore sequenced 18S rRNA genes from 10 strains from the protozoan phyla Choanozoa and Apusozoa. Eukaryote diversity is encompassed by three early-radiating, arguably monophyletic groups: Amoebozoa, opisthokonts, and bikonts. Our taxon-rich rRNA phylogeny for eukaryotes allowing for intersite rate variation strongly supports the opisthokont clade (animals, Choanozoa, Fungi). It agrees with the view that Choanozoa are sisters of or ancestral to animals and reveals a novel nonflagellate choanozoan lineage, Ministeriida, sister either to choanoflagellates, traditionally considered animal ancestors, or to animals. Maximum likelihood trees suggest that within animals Placozoa are derived from medusozoan Cnidaria (we therefore place Placozoa as a class within subphylum Medusozoa of the Cnidaria) and hexactinellid sponges evolved from demosponges. The bikont and amoebozoan radiations are both very ill resolved. Bikonts comprise the kingdoms Plantae and Chromista and three major protozoan groups: alveolates, excavates, and Rhizaria. Our analysis weakly suggests that Apusozoa, represented by Ancyromonas and the apusomonads ( Apusomonas and the highly diverse and much more ancient genus Amastigomonas, from which it evolved), are not closely related to other Rhizaria and may be the most divergent bikont lineages. Although Ancyromonas and apusomonads appear deeply divergent in 18S rRNA trees, the trees neither refute nor support the monophyly of Apusozoa. The bikont phylum Cercozoa weakly but consistently appears as sister to Retaria (Foraminifera; Radiolaria), together forming a hitherto

  20. Sensitivity of Ribosomal RNA Character Sampling in the Phylogeny of Rhabditida

    PubMed Central

    Holovachov, Oleksandr; Camp, Lauren; Nadler, Steven A.

    2015-01-01

    Near-full-length 18S and 28S rRNA gene sequences were obtained for 33 nematode species. Datasets were constructed based on secondary structure and progressive multiple alignments, and clades were compared for phylogenies inferred by Bayesian and maximum likelihood methods. Clade comparisons were also made following removal of ambiguously aligned sites as determined using the program ProAlign. Different alignments of these data produced tree topologies that differed, sometimes markedly, when analyzed by the same inference method. With one exception, the same alignment produced an identical tree topology when analyzed by different methods. Removal of ambiguously aligned sites altered the tree topology and also reduced resolution. Nematode clades were sensitive to differences in multiple alignments, and more than doubling the amount of sequence data by addition of 28S rRNA did not fully mitigate this result. Although some individual clades showed substantially higher support when 28S data were combined with 18S data, the combined analysis yielded no statistically significant increases in the number of clades receiving higher support when compared to the 18S data alone. Secondary structure alignment increased accuracy in positional homology assignment and, when used in combination with paired-site substitution models, these structural hypotheses of characters and improved models of character state change yielded high levels of phylogenetic resolution. Phylogenetic results included strong support for inclusion of Daubaylia potomaca within Cephalobidae, whereas the position of Fescia grossa within Tylenchina varied depending on the alignment, and the relationships among Rhabditidae, Diplogastridae, and Bunonematidae were not resolved. PMID:26941463

  1. Phylogeny of chloromonas (chlorophyceae): A study of 18S ribosomal RNA gene sequences

    SciTech Connect

    Buchheim, M.A.; Buchheim, J.A.; Chapman, R.L.

    1997-04-01

    The unicellular, biflagellate genus Chloromonas differs from its ally, Chlamydomonas, primarily by the absence of pyrenoids in the vegetative stage of the former. As with most green flagellate genera, little is known about phylogenetic affinities within and among Chloromonas species. Phylogenetic analyses of nuclear-encoded small-subunit ribosomal RNA gene sequences demonstrate that a sampling of five Chloromonas taxa, obtained from major culture collections, do not form a monophyletic group. However, only three of these isolates, Chloromonas clathrata, Chloromonas serbinowi, and Chloromonas rosae, are diagnosable morphologically as Chloromonas species by the absence of a pyrenoid in the vegetative stage. The three diagnosable Chloromonas taxa form an alliance with two pyrenoid-bearing chlamydomonads, Chlamydomonas augustae and Chlamydomonas macrostellata. With the exception of Chloromonas serbinowi, which represents the basal lineage within the clade, each of the diagnosable Chloromonas taxa and their pyrenoid-bearing Chlamydomonas allies were isolated originally from mountain soils, snow, or cold peat. These observations suggest that hibitat, independent of pyrenoid status, may be most closely linked to the natural history of this clade of chlamydomonad flagellates. 51 refs., 3 figs., 3 tabs.

  2. Description of Eurystomatella sinica n. gen., n. sp., with establishment of a new family Eurystomatellidae n. fam. (Protista, Ciliophora, Scuticociliatia) and analyses of its phylogeny inferred from sequences of the small-subunit rRNA gene.

    PubMed

    Miao, Miao; Wang, Yangang; Song, Weibo; Clamp, John C; Al-Rasheid, Khaled A S

    2010-02-01

    Recently, an undescribed marine ciliate was isolated from China. Investigation of its morphology and infraciliature revealed it as an undescribed species representing a new genus, Eurystomatella n. gen., the type of the new family Eurystomatellidae n. fam. The new family is defined by close-set, apically positioned oral membranelles and a dominant buccal field that is surrounded by an almost completely circular paroral membrane. The new genus is defined by having a small oral membranelle 1 (M1), bipartite M2 and well-developed M3, a body surface faintly sculptured with a silverline system in a quadrangular, reticulate pattern and a cytostome located at the anterior third of a large buccal field. The type species of the new genus, Eurystomatella sinica n. sp., is a morphologically unique form that is defined mainly by the combination of a conspicuously flattened body, several caudal cilia, extremely long cilia associated with the buccal apparatus and a contractile vacuole located subcaudally. According to phylogenetic analyses of small-subunit (SSU) rRNA gene sequences, Eurystomatella clusters with the genus Cyclidium, as a sister group to the family Pleuronematidae. The great divergence in both buccal and somatic ciliature between Eurystomatella and all other known scuticociliates supports the establishment of a new family for Eurystomatella.

  3. Phylogeny of filamentous ascomycetes

    NASA Astrophysics Data System (ADS)

    Lumbsch, H. T.

    Phylogenetic studies of higher ascomycetes are enhanced by the introduction of molecular markers. Most studies employed sequences of the SSU rRNA gene, but recently data from additional genes (RPB2, LSU rRNA) have become available. Several groups defined by their ascoma-type, such as Pyrenomycetes, are supported while others, like the Discomycetes, appear to be paraphyletic. The Pezizales with operculate asci are basal to other eu-ascomycetes, while other Discomycetes appear to be derived eu-ascomycetes. The re-evaluation of classical characters using molecular data is discussed using three examples. Ascus types are often regarded as being of major importance in ascomycete systematics, but prototunicate asci were found to be of poor taxonomic value, since ascomycetes with prototunicate asci are polyphyletic. The independence of the Agyriales, assumed from their morphological characters, is supported by sequence data but the relationship to supposed sister groups remains dubious. The phylogeny of ascolocularous fungi and their circumscription requires further study. While a circumscription based on bitunicate asci can be rejected, it remains unclear whether fungi with ascolocularous ascoma development represent a monophyletic entity.

  4. [Phylogenetic relationships of Amur sturgeon Acipenser schrenckii Brandt, 1869 based on 18S rDNA sequensing data].

    PubMed

    Rozhkovan, K V; Chelomina, G N; Ivanov, S A

    2009-01-01

    The analysis of phylogenetic relationships based on 18S rDNA sequences of Amur sturgeon Acipenser schrenckii Brandt, 1869 with other acipenseriform species was performed in this study. Complete sequences (1746 b. p.) in seven individual clones of A. schrenckii 18S rRNA were determined. Mutation profile of Amur sturgeon 18S rDNA demonstrated high similarity with that of Lake Sturgeon A. fulvescens. Both presumably functional sequence and the specific mutation (insertion of adenine after position 658) of Amur sturgeon 18S rDNA were identified by structural-functional analyses. Phylogenetic reconstructions performed using different methods (NJ, MP, ML and Bayesian) support monophyly of the genus Acipenser and point to: 1) closer relationships Amur sturgeon with sterlet, than Baltic sturgeon, which is in agreement with Artyukhin's eco-morphological classification (Artyukhin, 1995, 2006); 2) sufficiently high differentiation between North-American (A. fulvescens) and Eurasian (A. schrenckii, A. ruthenus and A. sturio) sturgeons.

  5. Nuclear and mitochondrial genes for inferring Trichuris phylogeny.

    PubMed

    Callejón, Rocío; Cutillas, Cristina; Nadler, Steven A

    2015-12-01

    Nucleotide sequences of the triose phosphate isomerase (TPI) gene (624 bp) and mitochondrial cytochrome b (cob) gene (520 bp) were obtained by PCR and evaluated for utility in inferring the phylogenetic relationships among Trichuris species. Published sequences of one other nuclear gene (18S or SSU rRNA, 1816-1846 bp) and one additional mitochondrial (mtDNA) gene (cytochrome oxidase 1, cox1, 342 bp) were also analyzed. Maximum likelihood and Bayesian inference methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data (two genes), the combined nuclear data (two genes), and the total evidence (four gene) dataset. Few Trichuris clades were uniformly resolved across separate analyses of individual genes. For the mtDNA, the cob gene trees had greater phylogenetic resolution and tended to have higher support values than the cox1 analyses. For nuclear genes, the SSU gene trees had slightly greater resolution and support values than the TPI analyses, but TPI was the only gene with reliable support for the deepest nodes in the tree. Combined analyses of genes yielded strongly supported clades in most cases, with the exception of the relationship among Trichuris clades 1, 2, and 3, which showed conflicting results between nuclear and mitochondrial genes. Both the TPI and cob genes proved valuable for inferring Trichuris relationships, with greatest resolution and support values achieved through combined analysis of multiple genes. Based on the phylogeny of the combined analysis of nuclear and mitochondrial genes, parsimony mapping of definitive host utilization depicts artiodactyls as the ancestral hosts for these Trichuris, with host-shifts into primates, rodents, and Carnivora.

  6. Localization of 18S + 28S and 5S ribosomal RNA genes in the dog by fluorescence in situ hybridization.

    PubMed

    Mäkinen, A; Zijlstra, C; de Haan, N A; Mellink, C H; Bosma, A A

    1997-01-01

    The gene clusters encoding 18S + 28S and 5S rRNA in the dog (Canis familiaris) have been localized by using GTG-banding and fluorescence in situ hybridization. The 18S + 28S rDNA maps to chromosome regions 7q2.5-->q2.7, 17q1.7, qter of a medium-sized, not yet numbered autosome, and Yq1.2-->q1.3. Our data show that there is one cluster of 5S rDNA in the dog, which maps to chromosome region 4q1.4.

  7. Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes.

    PubMed

    Khan, H A; Arif, I A; Al Farhan, A H; Al Homaidan, A A

    2008-10-28

    We conducted a comparative evaluation of 12S rRNA and 16S rRNA genes of the mitochondrial genome for molecular differentiation among three oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) with respect to two closely related outgroups, addax and roan. Our findings showed the failure of 12S rRNA gene to differentiate between the genus Oryx and addax, whereas a 342-bp partial sequence of 16S rRNA accurately grouped all five taxa studied, suggesting the utility of 16S rRNA segment for molecular phylogeny of oryx at the genus and possibly species levels.

  8. Molecular Phylogenies Support Homoplasy of Multiple Morphological Characters Used in the Taxonomy of Heteroscleromorpha (Porifera: Demospongiae)

    PubMed Central

    Morrow, Christine C.; Redmond, Niamh E.; Picton, Bernard E.; Thacker, Robert W.; Collins, Allen G.; Maggs, Christine A.; Sigwart, Julia D.; Allcock, A. Louise

    2013-01-01

    Sponge classification has long been based mainly on morphocladistic analyses but is now being greatly challenged by more than 12 years of accumulated analyses of molecular data analyses. The current study used phylogenetic hypotheses based on sequence data from 18S rRNA, 28S rRNA, and the CO1 barcoding fragment, combined with morphology to justify the resurrection of the order Axinellida Lévi, 1953. Axinellida occupies a key position in different morphologically derived topologies. The abandonment of Axinellida and the establishment of Halichondrida Vosmaer, 1887 sensu lato to contain Halichondriidae Gray, 1867, Axinellidae Carter, 1875, Bubaridae Topsent, 1894, Heteroxyidae Dendy, 1905, and a new family Dictyonellidae van Soest et al., 1990 was based on the conclusion that an axially condensed skeleton evolved independently in separate lineages in preference to the less parsimonious assumption that asters (star-shaped spicules), acanthostyles (club-shaped spicules with spines), and sigmata (C-shaped spicules) each evolved more than once. Our new molecular trees are congruent and contrast with the earlier, morphologically based, trees. The results show that axially condensed skeletons, asters, acanthostyles, and sigmata are all homoplasious characters. The unrecognized homoplasious nature of these characters explains much of the incongruence between molecular-based and morphology-based phylogenies. We use the molecular trees presented here as a basis for re-interpreting the morphological characters within Heteroscleromorpha. The implications for the classification of Heteroscleromorpha are discussed and a new order Biemnida ord. nov. is erected. PMID:23753661

  9. Molecular phylogenies support homoplasy of multiple morphological characters used in the taxonomy of Heteroscleromorpha (Porifera: Demospongiae).

    PubMed

    Morrow, Christine C; Redmond, Niamh E; Picton, Bernard E; Thacker, Robert W; Collins, Allen G; Maggs, Christine A; Sigwart, Julia D; Allcock, A Louise

    2013-09-01

    Sponge classification has long been based mainly on morphocladistic analyses but is now being greatly challenged by more than 12 years of accumulated analyses of molecular data analyses. The current study used phylogenetic hypotheses based on sequence data from 18S rRNA, 28S rRNA, and the CO1 barcoding fragment, combined with morphology to justify the resurrection of the order Axinellida Lévi, 1953. Axinellida occupies a key position in different morphologically derived topologies. The abandonment of Axinellida and the establishment of Halichondrida Vosmaer, 1887 sensu lato to contain Halichondriidae Gray, 1867, Axinellidae Carter, 1875, Bubaridae Topsent, 1894, Heteroxyidae Dendy, 1905, and a new family Dictyonellidae van Soest et al., 1990 was based on the conclusion that an axially condensed skeleton evolved independently in separate lineages in preference to the less parsimonious assumption that asters (star-shaped spicules), acanthostyles (club-shaped spicules with spines), and sigmata (C-shaped spicules) each evolved more than once. Our new molecular trees are congruent and contrast with the earlier, morphologically based, trees. The results show that axially condensed skeletons, asters, acanthostyles, and sigmata are all homoplasious characters. The unrecognized homoplasious nature of these characters explains much of the incongruence between molecular-based and morphology-based phylogenies. We use the molecular trees presented here as a basis for re-interpreting the morphological characters within Heteroscleromorpha. The implications for the classification of Heteroscleromorpha are discussed and a new order Biemnida ord. nov. is erected.

  10. Phylogeny of Tetillidae (Porifera, Demospongiae, Spirophorida) based on three molecular markers.

    PubMed

    Szitenberg, Amir; Becking, Leontine E; Vargas, Sergio; Fernandez, Júlio C C; Santodomingo, Nadiezhda; Wörheide, Gert; Ilan, Micha; Kelly, Michelle; Huchon, Dorothée

    2013-05-01

    Tetillidae are spherical to elliptical cosmopolitan demosponges. The family comprises eight genera: namely, Acanthotetilla Burton, 1959, Amphitethya Lendenfeld, 1907, CinachyraSollas, 1886, CinachyrellaWilson, 1925, Craniella Schmidt, 1870, Fangophilina Schmidt, 1880, Paratetilla Dendy, 1905, and Tetilla Schmidt, 1868. These genera are characterized by few conflicting morphological characters, resulting in an ambiguity of phylogenetic relationships. The phylogeny of tetillid genera was investigated using the cox1, 18S rRNA and 28S rRNA (C1-D2 domains) genes in 88 specimens (8 genera, 28 species). Five clades were identified: (i) Cinachyrella, Paratetilla and Amphitethya species, (ii) Cinachyrella levantinensis, (iii) Tetilla, (iv) Craniella, Cinachyra and Fangophilina and (v) Acanthotetilla. Consequently, the phylogenetic analysis supports the monophyly of Tetilla, a genus lacking any known morphological synapomorphy. Acanthotetilla is also recovered. In contrast, within the first clade, species of the genera Paratetilla and Amphitethya were nested within Cinachyrella. Similarly, within the fourth clade, species of the genera Cinachyra and Fangophilina were nested within Craniella. As previously postulated by taxonomists, the loss of ectodermal specialization (i.e., a cortex) has occurred several times independently. Nevertheless, the presence or absence of a cortex and its features carry a phylogenetic signal. Surprisingly, the common view that assumes close relationships among sponges with porocalices (i.e., surface depressions) is refuted. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Apical Groove Type and Molecular Phylogeny Suggests Reclassification of Cochlodinium geminatum as Polykrikos geminatum

    PubMed Central

    Qiu, Dajun; Huang, Liangmin; Liu, Sheng; Zhang, Huan; Lin, Senjie

    2013-01-01

    Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium). Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages. PMID:23990946

  12. Functional Phylogeny: the Use of the Sensitivity of Ribosomes to Protein Synthesis Inhibitors as a Tool to Study the Evolution of Organisms

    NASA Astrophysics Data System (ADS)

    Briones, Carlos; Koroutchev, Kostadin; Amils, Ricardo

    1998-10-01

    In order to study the functional phylogeny of organisms, forty different protein synthesis inhibitors with diverse domain and funcional specificities have been used to analyze forty archaeal, bacterial and eukaryotic translational systems. The inhibition curves generated with the different ribosome-antibiotic pairs have shown very interesting similarities among organisms belonging to the same phylogenetic group, confirming the feasibility of using such information in the development of evolutionary studies. A new method to extract most of the information contained in the inhibition curves is presented. Using a statistical treatment based on the principal components analysis of the data, we have defined coordinates for the organisms which have allowed us to perform a functional clustering of them. The phenograms obtained are very similar to those generated by 16/18S rRNA sequence comparison. These results prove the phylogenetic value of our functional analysis and suggest an interesting intersection between genotypic and phenotypic (functional) information.

  13. Phylogeny of Eutardigrada: new molecular data and their morphological support lead to the identification of new evolutionary lineages.

    PubMed

    Bertolani, Roberto; Guidetti, Roberto; Marchioro, Trevor; Altiero, Tiziana; Rebecchi, Lorena; Cesari, Michele

    2014-07-01

    An extensive study of the phylogeny of Eutardigrada, the largest class of Tardigrada, has been performed analyzing one hundred and forty sequences (eighty of which newly obtained) representative of one hundred and twenty-nine specimens belonging to all families (except Necopinatidae) of this class. The molecular (18S and 28S rRNA) results were compared with new and previous morphological data, allowing us to find new phylogenetic relationships, to identify new phylogenetic lineages, to erect new taxa for some lineages, and to find several morphological synapomorphies supporting the identified clusters. The class Eutardigrada has been confirmed and, within it, the orders Apochela and Parachela, the superfamilies Macrobiotoidea, Hypsibioidea, Isohypsibioidea, and Eohypsibioidea, and all the families and subfamilies considered, although with emended diagnoses in several cases. In addition, new taxa have been erected: the new subfamily Pilatobiinae (Hypsibiidae) with the new genus Pilatobius, as well as an upgrading of Diphascon and Adropion to genus level, previously considered subgenera of Diphascon. Our results demonstrate that while molecular analysis is an important tool for understanding phylogeny, an integrative and comparative approach using both molecular and morphological data is necessary to better elucidate evolutionary relationships. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. ITS1 sequence variabilities correlate with 18S rDNA sequence types in the genus Acanthamoeba (Protozoa: Amoebozoa).

    PubMed

    Köhsler, Martina; Leitner, Brigitte; Blaschitz, Marion; Michel, Rolf; Aspöck, Horst; Walochnik, Julia

    2006-01-01

    The subgenus classification of the ubiquitously spread and potentially pathogenic acanthamoebae still poses a great challenge. Fifteen 18S rDNA sequence types (T1-T15) have been established, but the vast majority of isolates fall into sequence type T4, and so far, there is no means to reliably differentiate within T4. In this study, the first internal transcribed spacer (ITS1), a more variable region than the 18S rRNA gene, was sequenced, and the sequences of 15 different Acanthamoeba isolates were compared to reveal if ITS1 sequence variability correlates with 18S rDNA sequence typing and if the ITS1 sequencing allows a differentiation within T4. It was shown that the variability in ITS1 is tenfold higher than in the 18S rDNA, and that ITS1 clusters correlate with the 18S rDNA clusters and thus corroborate the Acanthamoeba sequence type system. Moreover, high sequence dissimilarities and distinctive microsatellite patterns could enable a more detailed differentiation within T4.

  15. Sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Demodex and phylogenetic analysis of Acari based on 18S and 28S rDNA.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping; Hu, Li; Xu, Yang; Wang, Zheng-Hang; Liu, Wen-Yan

    2012-11-01

    Due to the difficulty of DNA extraction for Demodex, few studies dealt with the identification and the phyletic evolution of Demodex at molecular level. In this study, we amplified, sequenced, and analyzed a complete (Demodex folliculorum) and an almost complete (D12 missing) (Demodex brevis) ribosomal DNA (rDNA) sequence and also analyzed the primary sequences of divergent domains in small-subunit ribosomal RNA (rRNA) of 51 species and in large-subunit rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea, and Ixodoidea). The results revealed that 18S rDNA sequence was relatively conserved in rDNA-coding regions and was not evolving as rapidly as 28S rDNA sequence. The evolutionary rates of transcribed spacer regions were much higher than those of the coding regions. The maximum parsimony trees of 18S and 28S rDNA appeared to be almost identical, consistent with their morphological classification. Based on the fact that the resolution capability of sequence length and the divergence of the 13 segments (D1-D6, D7a, D7b, and D8-D12) of 28S rDNA were stronger than that of the nine variable regions (V1-V9) of 18S rDNA, we were able to identify Demodex (Cheyletoidea) by the indels occurring in D2, D6, and D8.

  16. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria.

    PubMed

    Asai, T; Zaporojets, D; Squires, C; Squires, C L

    1999-03-02

    Current global phylogenies are built predominantly on rRNA sequences. However, an experimental system for studying the evolution of rRNA is not readily available, mainly because the rRNA genes are highly repeated in most experimental organisms. We have constructed an Escherichia coli strain in which all seven chromosomal rRNA operons are inactivated by deletions spanning the 16S and 23S coding regions. A single E. coli rRNA operon carried by a multicopy plasmid supplies 16S and 23S rRNA to the cell. By using this strain we have succeeded in creating microorganisms that contain only a foreign rRNA operon derived from either Salmonella typhimurium or Proteus vulgaris, microorganisms that have diverged from E. coli about 120-350 million years ago. We also were able to replace the E. coli rRNA operon with an E. coli/yeast hybrid one in which the GTPase center of E. coli 23S rRNA had been substituted by the corresponding domain from Saccharomyces cerevisiae. These results suggest that, contrary to common belief, coevolution of rRNA with many other components in the translational machinery may not completely preclude the horizontal transfer of rRNA genes.

  17. Two F-18s in Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This 32 second video clip shows two F-18s in NASA's Autonomous Formation Flight (AFF) program. The aircraft use smoke contrails to gather data on wingtip vortices. Flight research attempts to utilize the energy in the vortices for more efficient flight.

  18. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms.

    PubMed

    Lemaire, Benny; Huysmans, Suzy; Smets, Erik; Merckx, Vincent

    2011-09-01

    Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected.

  19. A molecular phylogeny of the Littorininae (Gastropoda: Littorinidae): unequal evolutionary rates, morphological parallelism, and biogeography of the Southern Ocean.

    PubMed

    Williams, S T; Reid, D G; Littlewood, D T J

    2003-07-01

    A molecular phylogeny is presented for the subfamily Littorininae (including representatives of all subgeneric taxa and all members of a group of southern-temperate species formerly classified as 'Nodilittorina'), based on sequence data from two nuclear (18S rRNA, 28S rRNA) and two mitochondrial (12S rRNA, CO1) genes. The phylogeny shows considerable disagreement with earlier hypotheses derived from morphological data. In particular, 'Nodilittorina' is polyphyletic and is here divided into four genera (Echinolittorina, Austrolittorina, Afrolittorina new genus, and the monotypic Nodilittorina s.s.). The phylogenetic relationships of 'Littorina' striata have been controversial and it is here transferred to the genus Tectarius, a surprising relationship for which there is little morphological support. The relationships of the enigmatic Mainwaringia remain poorly resolved, but it is not a basal member of the subfamily. The two living species of Mainwaringia are remarkable for a greatly elevated rate of evolution in all four genes examined; it is suggested that this may be connected with their protandrous hermaphroditism, which is unique in the family. The molecular phylogeny provides a new framework for the adaptive radiation of the Littorininae, showing more frequent shifts between habitats and climatic regimes than previously suspected, and striking parallelism of morphological characters. The fossil record of littorinids is poor, but ages of clades are estimated using a calibration based on a Lower Eocene age of the genus Littoraria. Using these estimates, the antitropical distribution of Littorina and Afrolittorina is an ancient pattern of possibly Cretaceous age. The five members of Austrolittorina show a Gondwanan distribution in Australia, New Zealand, and South America. Based on the morphological uniformity within this clade, relatively recent (Plio-Pleistocene) trans-Pacific dispersal events seemed a likely explanation, as proposed for numerous other

  20. Cystoisospora spp. from dogs in China and phylogenetic analysis of its 18S and ITS1 gene.

    PubMed

    He, Pengfei; Li, Jianhua; Gong, Pengtao; Huang, Jingui; Zhang, Xichen

    2012-11-23

    Cystoisospora spp. oocysts isolated from dog feces in Changchun, China were morphologically similar to those of Cystoisospora ohioensis and Cystoisospora sp. 1-MM recently isolated from dogs in Japanese. Sequencing results of the 18S subunit RNA gene from isolates in the present study were compared to other Cystoisospora spp. and the results suggested that Cystoisospora spp. from dogs in Changchun was homologous to C. ohioensis and Cystoisospora sp. 1-MM. Phylogenetic analysis of the 18S rRNA sequences showed that the Cystoisospora sp. ChangChun 1 and Cystoisospora sp. ChangChun 2 were nested in a clade with other Cystoisospora spp., including C. ohioensis, Cystoisospora belli, Cystoisospora suis, Isospora sp. Harbin/01/08 and C. orlovi,. Cystoisospora sp. ChangChun 2 was confirmed as C. ohioensis, and the other isolate was in a separate clade but the genetic relationship was relatively close to C. suis after analysis of the ITS-1gene.

  1. Berkleasmium crunisia sp. nov. and its phylogenetic affinities to the Pleosporales based on 18S and 28S rDNA sequence analyses.

    PubMed

    Pinnoi, Aom; Jeewon, Rajesh; Sakayaroj, Jariya; Hyde, Kevin D; Jones, E B Gareth

    2007-01-01

    Berkleasmium crunisia sp. nov. is described from a decaying rachis of Calamus sp. (Arecaceae) from Khuan Ka Long, Satun Province, Thailand. This Berkleasmium species differs morphologically from other species in possessing subtending cells and larger conidia. The phylogenetic relationship of the genus Berkleasmium among sexual ascomycetes also was examined. Sequence analyses from 18S, 28S and ITS-5.8S rDNA were analyzed phylogenetically under maximum parsimony, Bayesian and neighbor joining criteria. Phylogenies revealed that Berkleasmium is not monophyletic. Berkleasmium micronesicum and B. nigroapicale are related to Westerdykella cylindrica and Sporormia australis, which are members of the family Sporormiaceae (Pleosporales). Other species, including our new taxon, appear to share phylogenetic affinities with other anamorphic fungi, whose classification within the Pleosporales is still obscure. Analyses of 18S, 28S, ITS (+5.8S) rDNA and combined (18S+28S) gene sequences fail to give sufficient phylogenetic resolution within the Pleosporales.

  2. Does phylogeny control U37K -temperature sensitivity? Implications for lacustrine alkenone paleothermometry

    NASA Astrophysics Data System (ADS)

    D'Andrea, William J.; Theroux, Susanna; Bradley, Raymond S.; Huang, Xiaohui

    2016-02-01

    Alkenone paleothermometry (via the U37K and U37K‧ indices) has long been used to reconstruct sea surface temperature and has more recently been proven effective in lacustrine settings. Genetic analyses indicate that there is a diversity of different alkenone-producing lacustrine haptophytes, and differences among U37K -temperature calibrations suggest that unique calibrations might be required to quantify past temperature variation from individual lakes. The only term necessary to quantify U37K -inferred temperature relative to a reference period (e.g., modern temperature 20th Century mean) is the slope of the calibration regression, the U37K -temperature sensitivity (i.e., the change in U37K per °C temperature change). Here, we bring together all of the existing U37K -temperature calibrations in order to compare the variability among U37K -temperature sensitivities. We also report a new in situ U37K -temperature calibration along with environmental genomic analysis based on the 18S rRNA gene of an alkenone producing haptophyte from lake Vikvatnet in Norway. We propose and test the hypothesis that U37K -temperature sensitivity is controlled by phylogeny and that this term can be used to quantify past temperature variation from lake sediments if the genetic identity of the lake's alkenone-producer is known. Using the existing calibration data sets, we determine four phylotype-specific U37K -temperature sensitivities for use in cases where in situ calibration is unavailable but the phylogeny of the alkenone producers is known.

  3. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA.

    PubMed Central

    Kowalchuk, G A; Gerards, S; Woldendorp, J W

    1997-01-01

    Marram grass (Ammophila arenaria L.), a sand-stabilizing plant species in coastal dune areas, is affected by a specific pathosystem thought to include both plant-pathogenic fungi and nematodes. To study the fungal component of this pathosystem, we developed a method for the cultivation-independent detection and characterization of fungi infecting plant roots based on denaturing gradient gel electrophoresis (DGGE) of specifically amplified DNA fragments coding for 18S rRNA (rDNA). A nested PCR strategy was employed to amplify a 569-bp region of the 18S rRNA gene, with the addition of a 36-bp GC clamp, from fungal isolates, from roots of test plants infected in the laboratory, and from field samples of marram grass roots from both healthy and degenerating stands from coastal dunes in The Netherlands. PCR products from fungal isolates were subjected to DGGE to examine the variation seen both between different fungal taxa and within a single species. DGGE of the 18S rDNA fragments could resolve species differences from fungi used in this study yet was unable to discriminate between strains of a single species. The 18S rRNA genes from 20 isolates of fungal species previously recovered from A. arenaria roots were cloned and partially sequenced to aid in the interpretation of DGGE data. DGGE patterns recovered from laboratory plants showed that this technique could reliably identify known plant-infecting fungi. Amplification products from field A. arenaria roots also were analyzed by DGGE, and the major bands were excised, reamplified, sequenced, and subjected to phylogenetic analysis. Some recovered 18S rDNA sequences allowed for phylogenetic placement to the genus level, whereas other sequences were not closely related to known fungal 18S rDNA sequences. The molecular data presented here reveal fungal diversity not detected in previous culture-based surveys. PMID:9327549

  4. Molecular phylogeny and biogeography of an ancient Holarctic lineage of mygalomorph spiders (Araneae: Antrodiaetidae: Antrodiaetus).

    PubMed

    Hendrixson, Brent E; Bond, Jason E

    2007-03-01

    The mygalomorph spider genera Antrodiaetus and Atypoides (Antrodiaetidae) belong to an ancient lineage that has persisted since at least the Cretaceous. These spiders display a classic disjunct Holarctic distribution with species in the eastern Palaearctic plus the western and eastern Nearctic. Prior phylogenetic analyses of this group have been proposed on the basis of morphology, but lack strong support and independent corroboration. Here we present the first phylogenetic analysis of species-level relationships based on molecular data obtained from the mitochondrial (cytochrome c oxidase subunit I) and nuclear (18S and 28S rRNA) genomes. Analyses corroborate earlier findings that Atypoides forms a paraphyletic grade with respect to Antrodiaetus, and consequently, that genus is formally synonymized under Antrodiaetus. In addition, our results support the relatively early divergence of Antrodiaetus roretzi. Antrodiaetus pacificus is "paraphyletic" with respect to the A. lincolnianus group and is likely an assemblage of numerous species. The final topology based on a combined molecular dataset, in conjunction with two different molecular dating techniques (penalized likelihood plus a Bayesian approach) and ancestral distribution reconstructions, was used to infer the historical biogeography of these spiders. Trans-Beringian and trans-Atlantic routes appear to account for the present-day distribution of Antrodiaetus in Japan and North America. Future studies on Antrodiaetus phylogeny will be used to address questions regarding morphological stasis and the evolution of quantitative morphological characters.

  5. First Record of Raillietina celebensis (Cestoda: Cyclophyllidea) in South America: Redescription and Phylogeny.

    PubMed

    de Oliveira Simões, Raquel; Simões, Susana Balmant Enrique; Luque, José Luis; Iñiguez, Alena Mayo; Júnior, Arnaldo Maldonado

    2017-08-01

    Raillietina celebensis is a cestode that parasitizes the small intestine of rats and humans. Here, we detail the morphology and morphometry of R. celebensis based on specimens collected from Rattus norvegicus in the municipality of São Gonçalo, state of Rio de Janeiro, Brazil, by light and confocal scanning laser microscopies and also report the results of molecular phylogenetic analyses to determine its relationships within the family Davaineidae. Analysis of the number and size of testes, number and shape of rostellar hooks, cirrus sac length, capsules and eggs per capsule, and morphology of the mature proglottid allowed concluding that the present specimens constitute a new record of R. celebensis in South America. Our genetic and phylogenetic analyses, based on the partial small subunit 18S rRNA gene, revealed R. celebensis to be in the family Davaineidae within the genus Raillietina, in agreement with the morphological taxonomy. Phylogenetic trees obtained by neighbor-joining and maximum likelihood methods demonstrated R. celebensis as a unique taxonomic unit, and also demonstrated some taxonomic inconsistences. The incorporation of Brazilian R. celebensis sequences derived from mammals in the phylogeny of davaineids is consistent with the assertion that neither Raillietina nor Fuhrmannetta can be supported as distinct genera.

  6. Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida).

    PubMed

    Cornils, Astrid; Blanco-Bercial, Leocadio

    2013-12-01

    The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. First molecular phylogeny of the circumtropical bivalve family Pinnidae (Mollusca, Bivalvia): evidence for high levels of cryptic species diversity.

    PubMed

    Lemer, Sarah; Buge, Barbara; Bemis, Amanda; Giribet, Gonzalo

    2014-06-01

    The family Pinnidae Leach, 1819, includes approximately 50 species of large subtidal and coastal marine bivalves. These commercially important species occur in tropical and temperate waters around the world and are most frequently found in seagrass meadows. The taxonomy of the family has been revised a number of times since the early 20th Century, the most recent revision recognizing 55 species distributed in three genera: Pinna, Atrina and Streptopinna, the latter being monotypic. However, to date no phylogenetic analysis of the family has been conducted using morphological or molecular data. The present study analyzed 306 pinnid specimens from around the world, comprising the three described genera and ca. 25 morphospecies. We sequenced the mitochondrial genes 16S rRNA and cytochrome c oxidase subunit I, and the nuclear ribosomal genes 18S rRNA and 28S rRNA. Phylogenetic analysis of the data revealed monophyly of the genus Atrina but also that the genus Streptopinna is nested within Pinna. Based on the strong support for this relationship we propose a new status for Streptopinna Martens, 1880 and treat it as a subgenus (status nov.) of Pinna Linnaeus, 1758. The phylogeny and the species delimitation analyses suggest the presence of cryptic species in many morphospecies displaying a wide Indo-Pacific distribution, including Pinna muricata, Atrina assimilis, A. exusta and P. (Streptopinna) saccata but also in the Atlantic species A. rigida. Altogether our results highlight the challenges associated with morphological identifications in Pinnidae due to the presence of both phenotypic plasticity and morphological stasis and reveal that many pinnid species are not as widely distributed as previously thought. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Early diagnosis of Exophiala CAPD peritonitis by 18S ribosomal RNA gene sequencing and its clinical significance.

    PubMed

    Lau, Susanna K P; Woo, Patrick C Y; Chiu, Siu-kau; Leung, Kit-wah; Yung, Raymond W H; Yuen, Kwok-yung

    2003-06-01

    Phenotypic identification of fungi in clinical microbiology laboratories is often difficult and late, especially for slow growing and rarely encountered fungi. We describe the application of 18S ribosomal RNA (rRNA) gene sequencing in the early diagnosis of a case of Exophiala peritonitis. A yeast-like fungus was isolated from the dialysate fluid of a 66-year-old man undergoing continuous ambulatory peritoneal dialysis. It grew slowly after 12 days of incubation to yield mature cultures to permit recognition of microscopic features resembling those of Exophiala, a dematiacerous mold. 18S rRNA gene sequencing provided results 12 days earlier than phenotypic identification and revealed 15 base difference (0.9%) between the isolate and Exophiala sp. strain GHP 1205 (GenBank Accession no. AJ232954), indicating that the isolate most closely resembles a strain of Exophiala species. The patient responded to 4 weeks of intravenous amphotericin B therapy. Early identification of the fungus was important for the choice of anti-fungal regimen. As opportunistic fungal infections in immunocompromised patients are globally emerging problems, the development of molecular techniques for fungal identification is crucial for early diagnosis and appropriate treatment.

  9. Performance of 18S rDNA helix E23 for phylogenetic relationships within and between the Rotifera-Acanthocephala clades.

    PubMed

    Miquelis, A; Martin, J F; Carson, E W; Brun, G; Gilles, A

    2000-10-01

    The species diversity of the phylum Rotifera has been largely studied on the basis of morphological characters. However, cladistic relationships within this group are poorly resolved due to extensive homoplasy in morphological traits, substantial phenotypic plasticity and a poor fossil record. We undertook this study to determine if a phylogeny based on partial 18S rDNA, which included the helix E23 of 18S rDNA sequence, was concordant with established taxonomic relationships within the order Ploimida (class: Monogononta). We also estimated the level of polymorphism within clones and populations of Ploimida 'species'. Finally, we included the Cycliophora Symbion pandora as outgroup and the variable helix E23 region to examine the influence of their signal on the evolutionary relationships among Acanthocephala, Bdelloidea and Ploimida. Phylogenetic reconstruction was performed using maximum parsimony, neighbour joining and maximum likelihood methods. We found 1) that morphologically similar Ploimida 'species' show vastly different 18S E23 rDNA sequences; 2) inclusion of the helix E23 of 18S rDNA and its secondary structure analysis results in better resolution of family level relationships within the Ploimida; 3) an impact of Symbion pandora as an outgroup with inclusion of the helix E23 on the relationships between the Rotifera and the Acanthocephala; and 4) partial incongruence and differential substitution rate between conserved region and helix E23 region of the 18S rDNA gene depending on the taxomic group studied.

  10. 18S ribosomal DNA-based PCR for diagnosis of Trichomonas vaginalis.

    PubMed

    Mayta, H; Gilman, R H; Calderon, M M; Gottlieb, A; Soto, G; Tuero, I; Sanchez, S; Vivar, A

    2000-07-01

    Trichomonas vaginalis remains the most common sexually transmitted parasite in the world and is considered a major risk factor in the transmission of the human immunodeficiency virus. A PCR technique using primers targeting a specific region of the 18S rRNA gene of T. vaginalis was developed. The PCR test was standardized using 15 reference strains, giving a single product of 312 bp in all strains. No amplification was observed when DNA from related organisms or human DNA was used as a target. The test was evaluated on 372 vaginal swab specimens and 361 urine samples from women attending infertility and obstetric clinics at two separate hospitals in Lima, Peru. Compared to T. vaginalis culture, the overall sensitivity and specificity of PCR of vaginal swab samples was 100% and 98%, respectively. The PCR of urine samples was 100% sensitive and 99.7% specific compared to culture of vaginal swab, but the sensitivity drops to 83.3% when compared to PCR of vaginal swabs. All culture-positive samples were found to be positive by PCR in either urine or vaginal secretion. None of the PCR-negative samples were positive by culture. The origin of the amplification was confirmed by digestion of PCR products with HaeIII. This PCR assay, which is easy to perform and has a high sensitivity and specificity, should be useful for routine diagnosis of T. vaginalis infection.

  11. Phylogeny and taxonomy of Chlorobiaceae.

    PubMed

    Imhoff, Johannes F; Thiel, Vera

    2010-06-01

    Based on phylogenetic relationships found according to gene sequences of the 16S rRNA and the FMO (Fenna-Matthews-Olson protein) genes, and supported by the G + C content of the DNA and sequence signatures, the strains and species of green sulfur bacteria have been grouped into a phylogenetic system. Since properties used previously for classification such as cell morphology, photosynthetic pigments and substrate utilization do not conform with their phylogeny, a reassignment of strains to species, and a rearrangement among the species were necessary. The comparison of the traditional classification system of these bacteria with their phylogenetic relationship yielded a confusing picture. As a consequence of this rearrangement, species of the green sulfur bacteria were classified into the genera Chlorobium, Chlorobaculum, Prosthecochloris, and Chloroherpeton. Strains were assigned to the species according to their phylogenetic similarity and a number of new combinations, and new species were defined. New isolates and also environmental gene sequences fit very well into the established groups or may form new species, some of which have been described and others are awaiting their description. New strains and available gene sequences are included into the phylogenetic system, and a taxonomic classification on the species level is proposed.

  12. A molecular genetic analysis of Eragrostis tef (Zucc.) Trotter: non-coding regions of chloroplast DNA, 18S rDNA and the transcription factor VP1.

    PubMed

    Espelund, M; Bekele, E; Holst-Jensen, A; Jakobsen, K S; Nordal, I

    2000-01-01

    The non-coding chloroplast DNA sequences of the trnL (UAA) intron and the trnL-trnF (GAA) intergeneric spacer (IGS), the coding sequences of nuclear 18S rDNA, and the transcription factor Vp1 of the cereal tef (Eragrostis tef (Zucc.) Trotter) were studied. No intraspecific variation was found among the 6 studied tef varieties. However, the study displayed that Eragrostis tef has a number of unique traits compared to other grasses. Phylogenetic analysis of the chloroplast DNA gave three grass clades, joining Eragrostis with sorghum and maize in one. In the analysis of the 18S rDNA sequences, the three grass species were joined in a monophyletic trichotomy in the cladogram, in which maize is the most divergent, rice the least and tef intermediate. The Vp1 is highly conserved. The Vp1 phylogeny showed that the tef Vp1-sequence is the hitherto most divergent Vp1-sequence reported from a grass.

  13. Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari.

    PubMed

    Zhao, Ya-E; Wang, Zheng-Hang; Xu, Yang; Wu, Li-Ping; Hu, Li

    2013-10-01

    According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata.

  15. The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatilis: bearings on the phylogeny of cyclostomes.

    PubMed

    Delarbre, C; Escriva, H; Gallut, C; Barriel, V; Kourilsky, P; Janvier, P; Laudet, V; Gachelin, G

    2000-04-01

    There are two competing theories about the interrelationships of craniates: the cyclostome theory assumes that lampreys and hagfishes are a clade, the cyclostomes, whose sister group is the jawed vertebrates (gnathostomes); the vertebrate theory assumes that lampreys and gnathostomes are a clade, the vertebrates, whose sister group is hagfishes. The vertebrate theory is best supported by a number of unique anatomical and physiological characters. Molecular sequence data from 18S and 28S rRNA genes rather support the cyclostome theory, but mtDNA sequence of Myxine glutinosa rather supports the vertebrate theory. Additional molecular data are thus needed to elucidate this three-taxon problem. We determined the complete nucleotide sequence of the mtDNA of the lamprey Lampetra fluviatilis. The mtDNA of L. fluviatilis possesses the same genomic organization as Petromyzon marinus, which validates this gene order as a synapomorphy of lampreys. The mtDNA sequence of L. fluviatilis was used in combination with relevant mtDNA sequences for an approach to the hagfish/lamprey relationships using the maximum-parsimony, neighbor-joining, and maximum-likelihood methods. Although trees compatible with our present knowledge of the phylogeny of craniates can be reconstructed by using the three methods, the data collected do not support the vertebrate or the cyclostome hypothesis. The present data set does not allow the resolution of this three-taxon problem, and new kinds of data, such as nuclear DNA sequences, need to be collected.

  16. New molecular phylogeny of Lucinidae: increased taxon base with focus on tropical Western Atlantic species (Mollusca: Bivalvia).

    PubMed

    Taylor, John D; Glover, Emily A; Smith, Lisa; Ikebe, Chiho; Williams, Suzanne T

    2016-11-23

    A new molecular phylogeny of the Lucinidae using 18S and 28S rRNA and cytochrome b genes includes many species from the tropical Western Atlantic as well as additional taxa from the Indo-West Pacific. This study provides a phylogenetic framework for a new taxonomy of tropical Western Atlantic lucinids. The analysis confirmed five major clades-Pegophyseminae, Leucosphaerinae, Myrteinae, Codakiinae and Lucininae, with Monitilorinae and Fimbriinae represented by single species. The Leucosphaerinae are expanded and include Callucina winckworthi and the W. Atlantic Myrtina pristiphora that groups with several Indo-West Pacific Myrtina species. Within the Codakiinae two abundant species of Ctena from the Western Atlantic with similar shells are discriminated as C. orbiculata and C. imbricatula, while in the Indo-West Pacific Ctena bella is a probable species complex. The Lucininae is the most species rich and disparate subfamily with several subclades apparent. Three species of Lucina are recognized in the W. Atlantic L. aurantia, L. pensylvanica and L. roquesana. Pleurolucina groups near to Cavilinga and Lucina, while Lucinisca muricata is more closely related to the E. Pacific L. fenestrata than to the Atlantic L. nassula. A new species of Parvilucina is identified from molecular analyses having been confounded with Parvilucina pectinata but differs in ligament structure. Also, the former Parvilucina clenchi is more distant and assigned to Guyanella.

  17. Baculovirus phylogeny and evolution.

    PubMed

    Herniou, Elisabeth A; Jehle, Johannes A

    2007-10-01

    The family Baculoviridae represents one of the largest and most diverse groups of viruses and a unique model for studying the forces driving the evolution and biodiversity of double-stranded DNA viruses with large genomes. With the advent of comparative genomics, the phylogenetic relationships of baculoviruses have been put on solid bases. This, as well as improved bioinformatic approaches, has provided a detailed picture of baculovirus phylogeny and evolution. According to the present knowledge, baculoviruses can be classified into at least four evolutionary lineages: the most ancestral dipteran nucleopolyhedroviruses, the hymenopteran nucleopolyhedroviruses and the lepidopteran nucleopolyhedroviruses and granuloviruses. Despite the growing understanding of baculovirus phylogeny and macro-evolution, our knowledge of the micro-evolutionary processes within baculovirus species and virus populations is still limited. Here we present the state of the art on baculovirus phylogeny and evolution.

  18. The mitogenome phylogeny of Adephaga (Coleoptera).

    PubMed

    López-López, Alejandro; Vogler, Alfried P

    2017-09-01

    The beetle suborder Adephaga consists of several aquatic ('Hydradephaga') and terrestrial ('Geadephaga') families whose relationships remain poorly known. In particular, the position of Cicindelidae (tiger beetles) appears problematic, as recent studies have found them either within the Hydradephaga based on mitogenomes, or together with several unlikely relatives in Geadephaga based on 18S rRNA genes. We newly sequenced nine mitogenomes of representatives of Cicindelidae and three ground beetles (Carabidae), and conducted phylogenetic analyses together with 29 existing mitogenomes of Adephaga. Our results support a basal split of Geadephaga and Hydradephaga, and reveal Cicindelidae, together with Trachypachidae, as sister to all other Geadephaga, supporting their status as Family. We show that alternative arrangements of basal adephagan relationships coincide with increased rates of evolutionary change and with nucleotide compositional bias, but these confounding factors were overcome by the CAT-Poisson model of PhyloBayes. The mitogenome + 18S rRNA combined matrix supports the same topology only after removal of the hypervariable expansion segments. Densely sampled mitogenomes, analyzed with site heterogeneous mixture models, support a plausible hypothesis of basal relationships in the Adephaga. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  20. Phylogenetic placement of the spider genus Nephila (Araneae: Araneoidea) inferred from rRNA and MaSp1 gene sequences.

    PubMed

    Pan, Hong-Chun; Zhou, Kai-Ya; Song, Da-Xiang; Qiu, Yang

    2004-03-01

    The family status of the genus Nephila, which belongs to Tetragnathidae currently but Araneidae formerly, was reexamined based on molecular phylogenetic analyses. In the present study, 12S and 18S rRNA gene fragments of eight species of spiders were amplified and sequenced. In addition, 3'-end partial cDNA of major ampullate spidroin-1 (MaSp1) gene of Argiope amoena was cloned and sequenced, and the 3'-end non-repetitive region's cDNA sequence of MaSp1 gene and the predicted amino acid sequence of C-terminal non-repetitive region of MaSp1 were aligned with some previously known sequences. The resulting phylogeny showed that Araneidae and Tetragnathidae are not a sister group in the superfamily Araneoidea, and the genus Nephila is closer to the genera of the family Araneidae rather than to those of Tetragnathidae. We suggest that the genus Nephila should be transferred back to Araneidae. Or the subfamily Nephilinae might be elevated to family level after it was redefined and redelimited. Furthermore, the study showed that 3'-end non-repetitive region's cDNA sequence of MaSp1 gene and C-terminal non-repetitive region's amino acid sequence of MaSp1 are useful molecular markers for phylogenetic analysis of spiders.

  1. Probing the secondary structure of expansion segment ES6 in 18S ribosomal RNA.

    PubMed

    Alkemar, Gunnar; Nygård, Odd

    2006-07-04

    Expansion segment ES6 in 18S ribosomal RNA is, unlike many other expansion segments, present in all eukaryotes. The available data suggest that ES6 is located on the surface of the small ribosomal subunit. Here we have analyzed the secondary structure of the complete ES6 sequence in intact ribosomes from three eukaryotes, wheat, yeast, and mouse, representing different eukaryotic kingdoms. The availability of the ES6 sequence for modification and cleavage by structure sensitive chemicals and enzymatic reagents was analyzed by primer extension and gel electrophoresis on an ABI 377 automated DNA sequencer. The experimental results were used to restrict the number of possible secondary structure models of ES6 generated by the folding software MFOLD. The modification data obtained from the three experimental organisms were very similar despite the sequence variation. Consequently, similar secondary structure models were obtained for the ES6 sequence in wheat, yeast, and mouse ribosomes. A comparison of sequence data from more than 6000 eukaryotes showed that similar structural elements could also be formed in other organisms. The comparative analysis also showed that the extent of compensatory base changes in the suggested helices was low. The in situ structure analysis was complemented by a secondary structure analysis of wheat ES6 transcribed and folded in vitro. The obtained modification data indicate that the secondary structure of the in vitro transcribed sequence differs from that observed in the intact ribosome. These results suggest that chaperones, ribosomal proteins, and/or tertiary rRNA interactions could be involved in the in vivo folding of ES6.

  2. 3-Nitropropionic acid modifies neurotrophin mRNA expression in the mouse striatum: 18S-rRNA is a reliable control gene for studies of the striatum.

    PubMed

    Espíndola, S; Vilches-Flores, A; Hernández-Echeagaray, E

    2012-10-01

    The aim of the present study was to determine the changes in the mRNA levels of neurotrophins and their receptors in the striatal tissue of mice treated with 3-nitropropionic acid (3-NP). At 1 and 48 h after the last drug administration, the mRNA expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 as well as their receptors p75, TrkA, TrkB and TrkC, was evaluated using semi-quantitative (semi-Q) and real-time RT-PCR. β-actin mRNA and ribosomal 18S (18S rRNA) were tested as internal controls. 3-NP treatment did not affect mRNA expression of all neurotrophins and their respective receptors equally. Also, differences in neurotrophin and receptor mRNA expression were observed between semi-Q and real-time RT-PCR. Real-time RT-PCR was more accurate in evaluating the mRNA expression of the neurotrophins than semi-Q, and 18S rRNA was more reliable than β-actin as an internal control. Neurotrophins and their receptors expression is differentially affected by neuronal damage produced by inhibition of mitochondrial respiration with 3-NP treatment in low, sub-chronic doses in vivo.

  3. Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization.

    PubMed

    Liu, Z-L; Zhang, D; Hong, D-Y; Wang, X-R

    2003-01-01

    Fluorescence in situ hybridization (FISH) was employed on mitotic metaphase chromosome preparations of five Asian Pinus species: Pinus tabuliformis, Pinus yunnanensis, Pinus densata, Pinus massoniana and Pinus merkusii, using simultaneously DNA probes of the 18S rRNA gene and the 5S rRNA gene including the non-transcribed spacer sequences. The number and location of 18S rDNA sites varied markedly (5-10 pairs of strong signals) among the five pines. A maximum of 20 major 18S rDNA sites was observed in the diploid genome (2n = 24) of P. massoniana. The 5S rDNA FISH pattern was less variable, with one major site and one minor site commonly observed in each species. The differentiation of rDNA sites on chromosomes among the five pines correlates well with their phylogenic positions in Pinus as reconstructed from other molecular data. P. densata, a species of hybrid origin, resembles its parents ( P. tabuliformis and P. yunnanensis), including some components characteristic of each parent in its pattern. However, the species is unique, showing new features resulting possibly from recombination and genome reorganization.

  4. Building a Twig Phylogeny

    ERIC Educational Resources Information Center

    Flinn, Kathryn M.

    2015-01-01

    In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…

  5. Building a Twig Phylogeny

    ERIC Educational Resources Information Center

    Flinn, Kathryn M.

    2015-01-01

    In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…

  6. The phylogenetic position of Allocreadiidae (Trematoda: Digenea) from partial sequences of the 18S and 28S ribosomal RNA genes.

    PubMed

    Choudhury, Anindo; Rosas Valdez, Rogelio; Johnson, Ryan C; Hoffmann, Brian; Pérez-Ponce de León, Gerardo

    2007-02-01

    Species of Allocreadiidae are an important component of the parasite fauna of freshwater vertebrates, particularly fishes, and yet their systematic relationships with other trematodes have not been clarified. Partial sequences of the 18S and 28S ribosomal RNA genes from 3 representative species of Allocreadiidae, i.e., Crepidostomum cooperi, Bunodera mediovitellata, and Polylekithum ictaluri, and from 79 other taxa representing 78 families of trematodes obtained from GenBank, were used in a phylogenetic analysis to address the relationships of Allocreadiidae with other plagiorchiiforms/plagiorchiidans. Maximum parsimony and Bayesian analyses of combined 18S and 28S rRNA gene sequence data place 2 of the allocreadiids, Crepidostomum cooperi and Bunodera mediovitellata, in a clade with species of Callodistomidae and Gorgoderidae, which, in turn is sister to a clade containing Polylekithum ictaluri and representatives of Encyclometridae, Dicrocoelidae, and Orchipedidae, a grouping supported by high bootstrap values. These results suggest that Polylekithum ictaluri is not an allocreadiid, a conclusion that is supported by reported differences between its cercaria and that of other allocreadiids. Although details of the life cycle of callodistomids, the sister taxon to Allocreadiidae, remain unknown, the relationship of Allocreadiidae and Gorgoderidae is consistent with their larval development in bivalve, rather than gastropod, molluscs, and with their host relationships (predominantly freshwater vertebrates). The results also indicate that, whereas Allocreadiidae is not a basal taxon, it is not included within the suborder Plagiorchiata. No support was found for a direct relationship between allocreadiids and opecoelids either.

  7. Evolutionary dynamics of rRNA gene clusters in cichlid fish

    PubMed Central

    2012-01-01

    Background Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and convergent adaptive radiation, which has led to extensive ecological diversity. Results The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22 African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids. The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome. Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds. The rRNA genes were frequently flanked by transposable elements (TEs) and spread throughout the genome, complementing the FISH analysis that detect only clustered copies of rRNA genes. Conclusions The organization of rRNA gene clusters seems to reflect their intense and particular evolutionary pathway and not the evolutionary history of the associated taxa. The possible role of TEs as one source of rRNA gene movement, that could generates the spreading of ribosomal clusters/copies, is discussed. The present paper reinforces the notion that the integration of cytogenetic data and genomic analysis provides a more complete picture for

  8. 16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”

    PubMed Central

    Auchtung, Thomas A.; Takacs-Vesbach, Cristina D.; Cavanaugh, Colleen M.

    2006-01-01

    The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity. PMID:16820509

  9. Genotypic heterogeneity based on 18S-rRNA gene sequences among Acanthamoeba isolates from clinical samples in Italy.

    PubMed

    Di Cave, David; D' Alfonso, Rossella; Dussey Comlavi, Kodjo A; D' Orazi, Carlo; Monno, Rosa; Berrilli, Federica

    2014-11-01

    Acanthamoeba keratitis (AK) is an ocular disease caused by members of a genus of free-living amoebae and it is associated predominantly with contact lens (CL) use. This study reports 55 cases of AK diagnosed in Italy. Genotype identification was carried out by PCR assay followed by sequence analysis of the 18S rRNA gene using the genus specific primers JDP1 and JDP2. Genotype assignment was based on phenetic analysis of the ASA.S1 subset of the small-subunit rRNA gene sequences. The material has been collected at the Polyclinic Tor Vergata of Rome for a total of 19 isolates and at the Polyclinic Hospital of Bari (36 isolates). Thirty-three out of the 55 genetically characterized isolates were assigned to the genotype T4. Ten isolates were identified as belonging to the genotype T15 thus confirming the first association between the genotype T15 and human amoebic keratitis previously described from the same area. We underline the occurrence of the genotype T3 and T11 identified for the first time in the country. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Cytogenetic mapping of 5S and 18S rRNAs and H3 histone genes in 4 ancient Proscopiidae grasshopper species: contribution to understanding the evolutionary dynamics of multigene families.

    PubMed

    Cabral-de-Mello, D C; Martins, C; Souza, M J; Moura, R C

    2011-01-01

    This paper reports on the chromosomal location of 18S rRNA, 5S rRNA and H3 histone multigene families in 4 species of a relatively ancient and diversified group of grasshoppers belonging to the family Proscopiidae. The 5S rRNA and H3 histone genes were highly conserved in the number of sites and chromosomal position in the 4th chromosome pair in all species analyzed, whereas the 18S rRNA genes showed slightly more variation because they were present on one or 2 chromosome pairs, depending on the species. The 5S and 18S rRNA gene families occurred in different chromosomes; in contrast, H3 histone and 5S rRNA genes co-localized in the same chromosomal position, with an apparently interspersed organization. Considering that the Proscopiidae family is a relatively ancient group compared with the Acrididae family, the association of the H3 histone and 5S rRNA multigene families can represent a basal condition for grasshoppers, although more research is needed on other representatives of this insect group to confirm this statement. The presence of such an association of 5S rDNA and H3 histone in mussels and arthropods (beetles, grasshoppers and crustaceans) suggests that this linked configuration could represent an ancestral pattern for invertebrates. These results provide new insights into the understanding of the genome organization and the evolution of multigene families in grasshoppers and in insects as a whole. Copyright © 2010 S. Karger AG, Basel.

  11. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

    PubMed Central

    Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.

    2015-01-01

    Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239

  12. Phylogeny of the Highly Divergent Echinosteliales (Amoebozoa).

    PubMed

    Kretzschmar, Martin; Kuhnt, Andreas; Bonkowski, Michael; Fiore-Donno, Anna Maria

    2016-07-01

    Myxomycetes or plasmodial slime molds are widespread and very common soil amoebae with the ability to form macroscopic fruiting bodies. Even if their phylogenetic position as a monophyletic group in Amoebozoa is well established, their internal relationships are still not entirely resolved. At the base of the most intensively studied dark-spored clade lies the order Echinosteliales, whose highly divergent small subunit ribosomal (18S) RNA genes represent a challenge for phylogenetic reconstructions. This is because they are characterized by unusually long variable helices of unknown secondary structure and a high inter- and infraspecific divergence. Current classification recognizes two families: the monogeneric Echinosteliaceae and the Clastodermataceae with the genera Barbeyella and Clastoderma. To better resolve the phylogeny of the Echinosteliales, we obtained three new small subunit ribosomal (18S) RNA gene sequences of Clastoderma and Echinostelium corynophorum. Our phylogenetic analyses suggested the polyphyly of the family Clastodermataceae, as Barbeyella was more closely related to Echinostelium arboreum than to Clastoderma, while Clastoderma debaryanum was the earliest branching clade in Echinosteliales. We also found that E. corynophorum was the closest relative of the enigmatic Semimorula liquescens, a stalkless-modified Echinosteliales. We discuss possible evolutionary pathways in dark-spored Myxomycetes and propose a taxonomic update. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  13. Molecular phylogeny of the Siphonocladales (Chlorophyta: Cladophorophyceae).

    PubMed

    Leliaert, Frederik; De Clerck, Olivier; Verbruggen, Heroen; Boedeker, Christian; Coppejans, Eric

    2007-09-01

    The Siphonocladales are tropical to warm-temperate, marine green macro-algae characterized by a wide variety of thallus morphologies, ranging from branched filaments to pseudo-parenchymatous plants. Phylogenetic analyses of partial large subunit (LSU) rDNA sequences sampled from 166 isolates revealed nine well-supported siphonocladalean clades. Analyses of a concatenated dataset of small subunit (SSU) and partial LSU rDNA sequences greatly clarified the phylogeny of the Siphonocladales. However, the position of the root of the Siphonocladales could not be determined unambiguously, as outgroup rooting and molecular clock rooting resulted in a different root placement. Different phylogenetic methods (likelihood, parsimony and distance) yielded similar tree topologies with comparable internal node resolution. Likewise, analyses under more realistic models of sequence evolution, taking into account differences in evolution between stem and loop regions of rRNA, did not differ markedly from analyses using standard four-state models. The molecular phylogeny revealed that all siphonocladalean architectures may be derived from a single Cladophora-like ancestor. Parallel and convergent evolution of various morphological characters (including those traditionally employed to circumscribe the families and genera) have occurred in the Siphonocladales. Consequently, incongruence with traditional classifications, including non-monophyly in all families and most genera, was shown.

  14. Comparing host and parasite phylogenies: gyrodactylus flatworms jumping from goby to goby.

    PubMed

    Huyse, Tine; Volckaert, Filip A M

    2005-10-01

    The combination of exceptionally high species diversity, high host specificity, and a complex reproduction system raises many questions about the underlying mechanisms triggering speciation in the flatworm genus Gyrodactylus. The coevolutionary history with their goby hosts was investigated using both topology- and distance-based approaches; phylogenies were constructed of the V4 region of the 18S rRNA and the complete ITS rDNA region for the parasites, and 12S and 16S mtDNA fragments for the hosts. The overall fit between both trees was significant according to the topology-based programs (TreeMap 1.0, 2.0 beta and TreeFitter), but not according to the timed analysis in TreeMap 2.0 beta and the distance-based method (ParaFit). An absolute timing of speciation events in host and parasite ruled out the possibility of synchronous speciation for the gill parasites, favouring the distance-based result. Based on this information together with the biological background of host and parasite, the following TreeMap solution was selected. The group of gill parasites evolved from a host switch from G. arcuatus, parasitizing the three-spined stickleback onto the gobies, followed by several host-switching events among the respective goby hosts. The timing of these events is estimated to date back to the Late Pleistocene, suggesting a role for refugia-mediated mixing of parasite species. In contrast, it is suggested that co-speciation in the fin-parasites resulted in several host-associated species complexes. This illustrates that phylogenetically conserved host-switching mimics the phylogenetic signature of co-speciation, confounding topology-based programs.

  15. Physical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae)

    PubMed Central

    Kharrat-Souissi, Amina; Siljak-Yakovlev, Sonja; Pustahija, Fatima; Chaieb, Mohamed

    2012-01-01

    Abstract The Buffelgrass (Cenchrus ciliaris L., Poaceae) is one of the most important pasturage grasses due to its high productivity and good forage qualities. This species possess a high adaptability to bioclimatic constraints of arid zones and may be used for the restoration of degraded arid ecosystems. Tunisian populations present three ploidy levels (4x, 5x and 6x) with a basic chromosome number x=9. This study reported for the first time the distribution of the ribosomal genes (rRNA) for pentaploid and hexaploid cytotypes of Cenchrus ciliaris. Molecular cytogenetic study using double fluorescence in situ hybridization has shown that the two rDNA families, 5S and 18S-5.8S-26S (18S), displayed intraspecific variation in number of loci among different ploidy levels. Each ploidy level was characterized by specific number of both 5S and 18S rDNA loci (two loci in tetraploid, five in pentaploid and six in hexaploid level). For three studied cytotypes (4x, 5x and 6x) all 5S rDNA loci were localized on the subcentromeric region of chromosomes, while 18S loci were situated on the telomeric region of short chromosome arms. Data of the FISH experiments show proportional increase of ribosomal loci number during polyploidization processes. PMID:24260668

  16. Mitochondrial phylogeny of the Chrysisignita (Hymenoptera: Chrysididae) species group based on simultaneous Bayesian alignment and phylogeny reconstruction.

    PubMed

    Soon, Villu; Saarma, Urmas

    2011-07-01

    The ignita species group within the genus Chrysis includes over 100 cuckoo wasp species, which all lead a parasitic lifestyle and exhibit very similar morphology. The lack of robust, diagnostic morphological characters has hindered phylogenetic reconstructions and contributed to frequent misidentification and inconsistent interpretations of species in this group. Therefore, molecular phylogenetic analysis is the most suitable approach for resolving the phylogeny and taxonomy of this group. We present a well-resolved phylogeny of the Chrysis ignita species group based on mitochondrial sequence data from 41 ingroup and six outgroup taxa. Although our emphasis was on European taxa, we included samples from most of the distribution range of the C. ignita species group to test for monophyly. We used a continuous mitochondrial DNA sequence consisting of 16S rRNA, tRNA(Val), 12S rRNA and ND4. The location of the ND4 gene at the 3' end of this continuous sequence, following 12S rRNA, represents a novel mitochondrial gene arrangement for insects. Due to difficulties in aligning rRNA genes, two different Bayesian approaches were employed to reconstruct phylogeny: (1) using a reduced data matrix including only those positions that could be aligned with confidence; or (2) using the full sequence dataset while estimating alignment and phylogeny simultaneously. In addition maximum-parsimony and maximum-likelihood analyses were performed to test the robustness of the Bayesian approaches. Although all approaches yielded trees with similar topology, considerably more nodes were resolved with analyses using the full data matrix. Phylogenetic analysis supported the monophyly of the C. ignita species group and divided its species into well-supported clades. The resultant phylogeny was only partly in accordance with published subgroupings based on morphology. Our results suggest that several taxa currently treated as subspecies or names treated as synonyms may in fact constitute

  17. Constructing computer virus phylogenies

    SciTech Connect

    Goldberg, L.A.; Goldberg, P.W.; Phillips, C.A.; Sorkin, G.B.

    1996-03-01

    There has been much recent algorithmic work on the problem of reconstructing the evolutionary history of biological species. Computer virus specialists are interested in finding the evolutionary history of computer viruses--a virus is often written using code fragments from one or more other viruses, which are its immediate ancestors. A phylogeny for a collection of computer viruses is a directed acyclic graph whose nodes are the viruses and whose edges map ancestors to descendants and satisfy the property that each code fragment is ``invented`` only once. To provide a simple explanation for the data, we consider the problem of constructing such a phylogeny with a minimal number of edges. In general, this optimization problem cannot be solved in quasi-polynomial time unless NQP=QP; we present positive and negative results for associated approximated problems. When tree solutions exist, they can be constructed and randomly sampled in polynomial time.

  18. Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes.

    PubMed

    Zrzavý, Jan; Ríha, Pavel; Piálek, Lubomír; Janouskovec, Jan

    2009-08-06

    Annelida is one of the major protostome phyla, whose deep phylogeny is very poorly understood. Recent molecular phylogenies show that Annelida may include groups once considered separate phyla (Pogonophora, Echiurida, and Sipunculida) and that Clitellata are derived polychaetes. SThe "total-evidence" analyses combining morphological and molecular characters have been published for a few annelid taxa. No attempt has yet been made to analyse simultaneously morphological and molecular information concerning the Annelida as a whole. Phylogenetic relationships within Annelida were analysed on the basis of 93 morphological characters and sequences of six genes (18S, 28S, and 16S rRNA, EF1alpha, H3, COI), altogether, 87 terminals of all annelid "families" and 3,903 informative characters, by Bayesian and maximum-parsimony methods. The analysis of the combined dataset yields the following scheme of relationships: Phyllodocida and Eunicida are monophyletic groups, together probably forming monophyletic Aciculata (incl. Orbiniidae and Parergodrilidae that form a sister group of the Eunicida). The traditional "Scolecida" and "Canalipalpata" are both polyphyletic, forming instead two clades: one including Cirratuliformia and the "sabelloid-spionoid clade" (incl. Sternaspis, Sabellidae-Serpulidae, Sabellariidae, Spionida s.str.), the other ("terebelloid-capitelloid clade") including Terebelliformia, Arenicolidae-Maldanidae, and Capitellidae-Echiurida. The Clitellata and "clitellate-like polychaetes" (Aeolosomatidae, Potamodrilidae, Hrabeiella) form a monophyletic group. The position of the remaining annelid groups is uncertain--the most problematic taxa are the Opheliidae-Scalibregmatidae clade, the Amphinomida-Aberranta clade, Apistobranchus, Chaetopteridae, Myzostomida, the Sipunculida-Dinophilidae clade, and the "core Archiannelida" (= Protodrilidae, Nerillidae, Polygordiidae, Saccocirridae). The combined ("total-evidence") phylogenetic analysis provides a modified view of

  19. Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes

    PubMed Central

    Zrzavý, Jan; Říha, Pavel; Piálek, Lubomír; Janouškovec, Jan

    2009-01-01

    Background Annelida is one of the major protostome phyla, whose deep phylogeny is very poorly understood. Recent molecular phylogenies show that Annelida may include groups once considered separate phyla (Pogonophora, Echiurida, and Sipunculida) and that Clitellata are derived polychaetes. SThe "total-evidence" analyses combining morphological and molecular characters have been published for a few annelid taxa. No attempt has yet been made to analyse simultaneously morphological and molecular information concerning the Annelida as a whole. Results Phylogenetic relationships within Annelida were analysed on the basis of 93 morphological characters and sequences of six genes (18S, 28S, and 16S rRNA, EF1α, H3, COI), altogether, 87 terminals of all annelid "families" and 3,903 informative characters, by Bayesian and maximum-parsimony methods. The analysis of the combined dataset yields the following scheme of relationships: Phyllodocida and Eunicida are monophyletic groups, together probably forming monophyletic Aciculata (incl. Orbiniidae and Parergodrilidae that form a sister group of the Eunicida). The traditional "Scolecida" and "Canalipalpata" are both polyphyletic, forming instead two clades: one including Cirratuliformia and the "sabelloid-spionoid clade" (incl. Sternaspis, Sabellidae-Serpulidae, Sabellariidae, Spionida s.str.), the other ("terebelloid-capitelloid clade") including Terebelliformia, Arenicolidae-Maldanidae, and Capitellidae-Echiurida. The Clitellata and "clitellate-like polychaetes" (Aeolosomatidae, Potamodrilidae, Hrabeiella) form a monophyletic group. The position of the remaining annelid groups is uncertain – the most problematic taxa are the Opheliidae-Scalibregmatidae clade, the Amphinomida-Aberranta clade, Apistobranchus, Chaetopteridae, Myzostomida, the Sipunculida-Dinophilidae clade, and the "core Archiannelida" (= Protodrilidae, Nerillidae, Polygordiidae, Saccocirridae). Conclusion The combined ("total-evidence") phylogenetic analysis

  20. Secondary structure models of 18S and 28S rRNAs of the true bugs based on complete rDNA sequences of Eurydema maracandica Oshanin, 1871 (Heteroptera, Pentatomidae)

    PubMed Central

    Yu, Shasha; Wang, Yanhui; Rédei, Dávid; Xie, Qiang; Bu, Wenjun

    2013-01-01

    Abstract The sequences of 18S and 28S rDNAs have been used as molecular markers to resolve phylogenetic relationships of Heteroptera for two decades. The complete sequences of 18S rDNAs have been used in many studies, while in most studies only partial sequences of 28S rDNAs have been used due to technical difficulties of amplifying the complete lengths. In this study, we amplified the complete 18S and 28S rDNA sequences of Eurydema maracandica Oshanin, 1871, and reconstructed the secondary structure models of the corresponding rRNAs. In addition, and more importantly, all of the length variable regions of 18S rRNA were compared among 37 families of Heteroptera based on 140 sequences, and the D3 region of 28S rRNA was compared among 51 families based on 84 sequences. It was found that 8 length variable regions could potentially serve as molecular synapomorphies for some monophyletic groups. Therefore discoveries of more molecular synapomorphies for specific clades can be anticipated from amplification of complete 18S and 28S rDNAs of more representatives of Heteroptera. PMID:24039531

  1. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome

    PubMed Central

    Bulygin, Konstantin N.; Bartuli, Yulia S.; Malygin, Alexey A.; Graifer, Dmitri M.; Frolova, Ludmila Yu.; Karpova, Galina G.

    2016-01-01

    Translation termination in eukaryotes is mediated by release factors: eRF1, which is responsible for stop codon recognition and peptidyl-tRNA hydrolysis, and GTPase eRF3, which stimulates peptide release. Here, we have utilized ribose-specific probes to investigate accessibility of rRNA backbone in complexes formed by association of mRNA- and tRNA-bound human ribosomes with eRF1•eRF3•GMPPNP, eRF1•eRF3•GTP, or eRF1 alone as compared with complexes where the A site is vacant or occupied by tRNA. Our data show which rRNA ribose moieties are protected from attack by the probes in the complexes with release factors and reveal the rRNA regions increasing their accessibility to the probes after the factors bind. These regions in 28S rRNA are helices 43 and 44 in the GTPase associated center, the apical loop of helix 71, and helices 89, 92, and 94 as well as 18S rRNA helices 18 and 34. Additionally, the obtained data suggest that eRF3 neither interacts with the rRNA ribose-phosphate backbone nor dissociates from the complex after GTP hydrolysis. Taken together, our findings provide new information on architecture of the eRF1 binding site on mammalian ribosome at various translation termination steps and on conformational rearrangements induced by binding of the release factors. PMID:26655225

  2. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome.

    PubMed

    Bulygin, Konstantin N; Bartuli, Yulia S; Malygin, Alexey A; Graifer, Dmitri M; Frolova, Ludmila Yu; Karpova, Galina G

    2016-02-01

    Translation termination in eukaryotes is mediated by release factors: eRF1, which is responsible for stop codon recognition and peptidyl-tRNA hydrolysis, and GTPase eRF3, which stimulates peptide release. Here, we have utilized ribose-specific probes to investigate accessibility of rRNA backbone in complexes formed by association of mRNA- and tRNA-bound human ribosomes with eRF1•eRF3•GMPPNP, eRF1•eRF3•GTP, or eRF1 alone as compared with complexes where the A site is vacant or occupied by tRNA. Our data show which rRNA ribose moieties are protected from attack by the probes in the complexes with release factors and reveal the rRNA regions increasing their accessibility to the probes after the factors bind. These regions in 28S rRNA are helices 43 and 44 in the GTPase associated center, the apical loop of helix 71, and helices 89, 92, and 94 as well as 18S rRNA helices 18 and 34. Additionally, the obtained data suggest that eRF3 neither interacts with the rRNA ribose-phosphate backbone nor dissociates from the complex after GTP hydrolysis. Taken together, our findings provide new information on architecture of the eRF1 binding site on mammalian ribosome at various translation termination steps and on conformational rearrangements induced by binding of the release factors. © 2016 Bulygin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    PubMed

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  4. Whole Genome Phylogeny of Bacillus by Feature Frequency Profiles (FFP)

    PubMed Central

    Wang, Aisuo; Ash, Gavin J.

    2015-01-01

    Fifty complete Bacillus genome sequences and associated plasmids were compared using the “feature frequency profile” (FFP) method. The resulting whole-genome phylogeny supports the placement of three Bacillus species (B. thuringiensis, B. anthracis and B. cereus) as a single clade. The monophyletic status of B. anthracis was strongly supported by the analysis. FFP proved to be more effective in inferring the phylogeny of Bacillus than methods based on single gene sequences [16s rRNA gene, GryB (gyrase subunit B) and AroE (shikimate-5-dehydrogenase)] analyses. The findings of FFP analysis were verified using kSNP v2 (alignment-free sequence analysis method) and Harvest suite (core genome sequence alignment method).

  5. Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?

    NASA Technical Reports Server (NTRS)

    Viscogliosi, E.; Edgcomb, V. P.; Gerbod, D.; Noel, C.; Delgado-Viscogliosi, P.; Sogin, M. L. (Principal Investigator)

    1999-01-01

    The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.

  6. Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?

    NASA Technical Reports Server (NTRS)

    Viscogliosi, E.; Edgcomb, V. P.; Gerbod, D.; Noel, C.; Delgado-Viscogliosi, P.; Sogin, M. L. (Principal Investigator)

    1999-01-01

    The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.

  7. Gene arrangement and sequence of the 5S rRNA in Filobasidiella neoformans (Cryptococcus neoformans) as a phylogenetic indicator.

    PubMed

    Kwon-Chung, K J; Chang, Y C

    1994-04-01

    We cloned the 5S rRNA gene and determined its organization in the four genes encoding rRNAs in a ribosomal DNA repeat unit of Filobasidiella neoformans, the teleomorph of Cryptococcus neoformans. The 5S rRNA gene contained 118 nucleotides and was located 1 kb upstream from the 18S rRNA gene within the 8.6-kb fragment of the ribosomal DNA repeat unit. The sequence of the 5S rRNA gene from F. neoformans was more similar to the sequence of the 5S rRNA gene from Tremella mesenterica than to the sequences of the 5S rRNA genes from Filobasidium species. The arrangement of the rRNA genes in F. neoformans closely resembles the arrangement of the rRNA genes in mushrooms such as Schizophyllum commune, Agaricus bisporus, and Coprinus cinereus in that the 5S rRNA-coding region not only is located within the repeat unit that encodes the other rRNAs but also is transcribed in the same direction as the other rRNA genes. This is the first description of the arrangement of rRNA genes in a species belonging to the Heterobasidiomycetes.

  8. Phylogeny of culturable cyanobacteria from Brazilian mangroves.

    PubMed

    Silva, Caroline Souza Pamplona; Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2014-03-01

    The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches.

  9. Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae).

    PubMed

    Adams, S P; Leitch, I J; Bennett, M D; Chase, M W; Leitch, A R

    2000-11-01

    All Aloe taxa (∼400 species) share a conserved bimodal karyotype with a basic genome of four large and three small submetacentric/acrocentric chromosomes. We investigated the physical organization of 18S-5.8S-26S and 5S ribosomal DNA (rDNA) using fluorescent in situ hybridization (FISH) to 13 Aloe species. The organization was compared with a phylogenetic tree of 28 species (including the 13 used for FISH) constructed by sequence analysis of the internal transcribed spacer (ITS) of 18S-5.8S-26S rDNA. The phylogeny showed little divergence within Aloe, although distinct, well-supported clades were found. FISH analysis of 5S rDNA distribution showed a similar interstitial location on a large chromosome in all species examined. In contrast, the distribution of 18S-5.8S-26S rDNA was variable, with differences in number, location, and size of loci found between species. Nevertheless, within well-supported clades, all species had the same organizational patterns. Thus, despite the striking stability of karyotype structure and location of 5S rDNA, the distribution of 18S-5.8S-26S rDNA is not so constrained and has clearly changed during Aloe speciation.

  10. Using a five-gene phylogeny to test morphology-based hypotheses of Smittium and allies, endosymbiotic gut fungi (Harpellales) associated with arthropods.

    PubMed

    Wang, Yan; Tretter, Eric D; Johnson, Eric M; Kandel, Prasanna; Lichtwardt, Robert W; Novak, Stephen J; Smith, James F; White, Merlin M

    2014-10-01

    Smittium, one of the first described genera of gut fungi, is part of a larger group of endosymbiotic microorganisms (Harpellales) that live predominantly in the digestive tracts of aquatic insects. As a diverse and species-rich taxon, Smittium has helped to advance our understanding of the gut fungi, in part due to the relative success of attempts to culture species of Smittium as compared to other members of Harpellales. Approximately 40% of the 81 known species of Smittium have been cultured. This is the first Smittium multigene dataset and phylogenetic analysis, using the 18S and 28S rRNA genes, as well as RPB1, RPB2, and MCM7 translated protein sequences. Several well-supported clades were recovered within Smittium. One includes the epitype S. mucronatum (the "True Smittium" clade), and another contains many species including S. simulii and S. orthocladii (the "Parasmittium" clade). Ancestral states were reconstructed for holdfast shape, thallus branching type, as well as asexual (trichospore) and sexual (zygospore) spore morphology. Two of these characters, holdfast shape and trichospore morphology, supported the split of the two main clades revealed by the molecular phylogeny, suggesting these are natural clades and these traits may have evolutionary and perhaps ecological significance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Molecular phylogeny of Urosomoida agilis, and new combinations: Hemiurosomoida longa gen. nov., comb. nov., and Heterourosomoida lanceolata gen. nov., comb. nov. (Ciliophora, Hypotricha).

    PubMed

    Singh, Jasbir; Kamra, Komal

    2015-02-01

    For years, systematics of three species, Urosomoida agilis (Engelmann, 1862) Hemberger in Foissner, 1982, Urosomoida longa (Gelei and Szabados, 1950) Foissner et al., 1991 and Oxytricha lanceolata Shibuya, 1930, has remained unresolved due to lack of adequate molecular data. Though, it is known since several years that the three species are not very closely related. In the present paper, 18S rRNA gene sequences for two key species, U. agilis and U. longa, and their morphology and morphometry have been analyzed. Molecular phylogeny inferred from maximum likelihood, neighbour joining and maximum parsimony methods has adequately removed ambiguity over their systematics. In phylogenetic trees, U. agilis clustered consistently with non-stylonychine oxytrichids. Both Urosomoida longa and Oxytricha lanceolata clustered consistently away from U. agilis and O. granulifera, the type species of the genera Urosomoida and Oxytricha, respectively. As a result of the current molecular phylogenetic investigation and based on previously inferred morphological and morphogenetic data it is proposed to remove Urosomoida longa and Oxytricha lanceolata from Urosomoida and incertae sedis in Oxytricha, respectively, and establish two new generic combinations, Hemiurosomoida longa gen. nov., comb. nov. and Heterourosomoida lanceolata gen. nov., comb. nov. for them.

  12. Hippopotamus and whale phylogeny.

    PubMed

    Geisler, Jonathan H; Theodor, Jessica M

    2009-03-19

    Thewissen et al. describe new fossils from India that apparently support a phylogeny that places Cetacea (that is, whales, dolphins, porpoises) as the sister group to the extinct family Raoellidae, and Hippopotamidae as more closely related to pigs and peccaries (that is, Suina) than to cetaceans. However, our reanalysis of a modified version of the data set they used differs in retaining molecular characters and demonstrates that Hippopotamidae is the closest extant family to Cetacea and that raoellids are the closest extinct group, consistent with previous phylogenetic studies. This topology supports the view that the aquatic adaptations in hippopotamids and cetaceans are inherited from their common ancestor.

  13. Phylogeny of gammaproteobacteria.

    PubMed

    Williams, Kelly P; Gillespie, Joseph J; Sobral, Bruno W S; Nordberg, Eric K; Snyder, Eric E; Shallom, Joshua M; Dickerman, Allan W

    2010-05-01

    The phylogeny of the large bacterial class Gammaproteobacteria has been difficult to resolve. Here we apply a telescoping multiprotein approach to the problem for 104 diverse gammaproteobacterial genomes, based on a set of 356 protein families for the whole class and even larger sets for each of four cohesive subregions of the tree. Although the deepest divergences were resistant to full resolution, some surprising patterns were strongly supported. A representative of the Acidithiobacillales routinely appeared among the outgroup members, suggesting that in conflict with rRNA-based phylogenies this order does not belong to Gammaproteobacteria; instead, it (and, independently, "Mariprofundus") diverged after the establishment of the Alphaproteobacteria yet before the betaproteobacteria/gammaproteobacteria split. None of the orders Alteromonadales, Pseudomonadales, or Oceanospirillales were monophyletic; we obtained strong support for clades that contain some but exclude other members of all three orders. Extreme amino acid bias in the highly A+T-rich genome of Candidatus Carsonella prevented its reliable placement within Gammaproteobacteria, and high bias caused artifacts that limited the resolution of the relationships of other insect endosymbionts, which appear to have had multiple origins, although the unbiased genome of the endosymbiont Sodalis acted as an attractor for them. Instability was observed for the root of the Enterobacteriales, with nearly equal subsets of the protein families favoring one or the other of two alternative root positions; the nematode symbiont Photorhabdus was identified as a disruptor whose omission helped stabilize the Enterobacteriales root.

  14. Phylogeny of Gammaproteobacteria▿ §

    PubMed Central

    Williams, Kelly P.; Gillespie, Joseph J.; Sobral, Bruno W. S.; Nordberg, Eric K.; Snyder, Eric E.; Shallom, Joshua M.; Dickerman, Allan W.

    2010-01-01

    The phylogeny of the large bacterial class Gammaproteobacteria has been difficult to resolve. Here we apply a telescoping multiprotein approach to the problem for 104 diverse gammaproteobacterial genomes, based on a set of 356 protein families for the whole class and even larger sets for each of four cohesive subregions of the tree. Although the deepest divergences were resistant to full resolution, some surprising patterns were strongly supported. A representative of the Acidithiobacillales routinely appeared among the outgroup members, suggesting that in conflict with rRNA-based phylogenies this order does not belong to Gammaproteobacteria; instead, it (and, independently, “Mariprofundus”) diverged after the establishment of the Alphaproteobacteria yet before the betaproteobacteria/gammaproteobacteria split. None of the orders Alteromonadales, Pseudomonadales, or Oceanospirillales were monophyletic; we obtained strong support for clades that contain some but exclude other members of all three orders. Extreme amino acid bias in the highly A+T-rich genome of Candidatus Carsonella prevented its reliable placement within Gammaproteobacteria, and high bias caused artifacts that limited the resolution of the relationships of other insect endosymbionts, which appear to have had multiple origins, although the unbiased genome of the endosymbiont Sodalis acted as an attractor for them. Instability was observed for the root of the Enterobacteriales, with nearly equal subsets of the protein families favoring one or the other of two alternative root positions; the nematode symbiont Photorhabdus was identified as a disruptor whose omission helped stabilize the Enterobacteriales root. PMID:20207755

  15. Molecular phylogeny of extant Holothuroidea (Echinodermata).

    PubMed

    Miller, Allison K; Kerr, Alexander M; Paulay, Gustav; Reich, Mike; Wilson, Nerida G; Carvajal, Jose I; Rouse, Greg W

    2017-06-01

    Sea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa. Currently five holothuroid taxa of ordinal rank are accepted. We find that three of the five orders are non-monophyletic, and we revise the taxonomy of the groups accordingly. Apodida is sister to the rest of Holothuroidea, here considered Actinopoda. Within Actinopoda, Elasipodida in part is sister to the remaining Actinopoda. This latter clade, comprising holothuroids with respiratory trees, is now called Pneumonophora. The traditional Aspidochirotida is paraphyletic, with representatives from three orders (Molpadida, Dendrochirotida, and Elasipodida in part) nested within. Therefore, we discontinue the use of Aspidochirotida and instead erect Holothuriida as the sister group to the remaining Pneumonophora, here termed Neoholothuriida. We found four well-supported major clades in Neoholothuriida: Dendrochirotida, Molpadida and two new clades, Synallactida and Persiculida. The mapping of traditionally-used morphological characters in holothuroid systematics onto the phylogeny revealed marked homoplasy in most characters demonstrating that further taxonomic revision of Holothuroidea is required. Two time-tree analyses, one based on calibrations for uncontroversial crown group dates for Eleutherozoa, Echinozoa and Holothuroidea and another using these calibrations plus four more from within Holothuroidea, showed major discrepancies, suggesting that fossils of Holothuroidea may need reassessment in terms of placing these forms with existing crown

  16. RNase L-Independent Specific 28S rRNA Cleavage in Murine Coronavirus-Infected Cells

    PubMed Central

    Banerjee, Sangeeta; An, Sungwhan; Zhou, Aimin; Silverman, Robert H.; Makino, Shinji

    2000-01-01

    We characterized a novel 28S rRNA cleavage in cells infected with the murine coronavirus mouse hepatitis virus (MHV). The 28S rRNA cleavage occurred as early as 4 h postinfection (p.i.) in MHV-infected DBT cells, with the appearance of subsequent cleavage products and a decrease in the amount of intact 28S rRNA with increasing times of infection; almost all of the intact 28S rRNA disappeared by 24 h p.i. In contrast, no specific 18S rRNA cleavage was detected in infected cells. MHV-induced 28S rRNA cleavage was detected in all MHV-susceptible cell lines and all MHV strains tested. MHV replication was required for the 28S rRNA cleavage, and mature cytoplasmic 28S rRNA underwent cleavage. In certain combination of cells and viruses, pretreatment of virus-infected cells with interferon activates a cellular endoribonuclease, RNase L, that causes rRNA degradation. No interferon was detected in the inoculum used for MHV infection. Addition of anti-interferon antibody to MHV-infected cells did not inhibit 28S rRNA cleavage. Furthermore, 28S rRNA cleavage occurred in an MHV-infected mouse embryonic fibroblast cell line derived from RNase L knockout mice. Thus, MHV-induced 28S rRNA cleavage was independent of the activation of RNase L. MHV-induced 28S rRNA cleavage was also different from apoptosis-related rRNA degradation, which usually occurs concomitantly with DNA fragmentation. In MHV-infected 17Cl-1 cells, 28S rRNA cleavage preceded DNA fragmentation by at least 18 h. Blockage of apoptosis in MHV-infected 17Cl-1 cells by treatment with a caspase inhibitor did not block 28S rRNA cleavage. Furthermore, MHV-induced 28S rRNA cleavage occurred in MHV-infected DBT cells that do not show apoptotic signs, including activation of caspase-3 and DNA fragmentation. Thus, MHV-induced 28S rRNA cleavage appeared to differ from any rRNA degradation mechanism described previously. PMID:10982321

  17. Correct identification of species makes the amoebozoan rRNA tree congruent with morphology for the order Leptomyxida Page 1987; with description of Acramoeba dendroida n. g., n. sp., originally misidentified as 'Gephyramoeba sp.'.

    PubMed

    Smirnov, Alexey V; Nassonova, Elena S; Cavalier-Smith, Thomas

    2008-02-01

    Morphological identification of protists remains an expert task, especially for little known and poorly described species. Culture collections normally accept organisms under the name provided by depositors and are not responsible for identification. Uncritical acceptance of these names by molecular phylogeneticists may result in serious errors of interpretation of phylogenetic trees based on DNA sequences, making them appear more incongruent with morphology than they really are. Several cases of misidentification in a major culture collection have recently been reported. Here we provide evidence for misidentifications of two more gymnamoebae. The first concerns "Gephyramoeba sp." ATCC 50654; it is not Gephyramoeba, a leptomyxid with lobose pseudopods, but a hitherto undescribed branching amoeba with fine, filamentous subpseudopods named here Acramoeba dendroida gen. et sp. nov. We also sequenced 18S rRNA of Page's strain of Rhizamoeba saxonica (CCAP 1570/2) and show that it is the most deeply branching leptomyxid and is not phylogenetically close to 'Rhizamoeba saxonica' ATCC 50742, which was misidentified. Correcting these misidentifications improves the congruence between morphological diversity of Amoebozoa and their rRNA-based phylogenies, both for Leptomyxida and for the Acramoeba part of the tree. On morphological grounds we transfer Gephyramoebidae from Varipodida back to Leptomyxida and remove Flamella from Leptomyxida; sequences are needed to confirm these two revisions.

  18. Archaebacterial phylogeny: perspectives on the urkingdoms

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Olsen, G. J.

    1986-01-01

    Comparisons of complete 16S ribosomal RNA sequences have been used to confirm, refine and extend earlier concepts of archaebacterial phylogeny. The archaebacteria fall naturally into two major branches or divisions, I--the sulfur-dependent thermophilic archaebacteria, and II--the methanogenic archaebacteria and their relatives. Division I comprises a relatively closely related and phenotypically homogeneous collection of thermophilic sulfur-dependent species--encompassing the genera Sulfolobus, Thermoproteus, Pyrodictium and Desulfurococcus. The organisms of Division II, however, form a less compact grouping phylogenetically, and are also more diverse in phenotype. All three of the (major) methanogen groups are found in Division II, as are the extreme halophiles and two types of thermoacidophiles, Thermoplasma acidophilum and Thermococcus celer. This last species branches sufficiently deeply in the Division II line that it might be considered to represent a separate, third Division. However, both the extreme halophiles and Tp. acidophilum branch within the cluster of methanogens. The extreme halophiles are specifically related to the Methanomicrobiales, to the exclusion of both the Methanococcales and the Methanobacteriales. Tp. acidophilum is peripherally related to the halophile-Methanomicrobiales group. By 16S rRNA sequence measure the archaebacteria constitute a phylogenetically coherent grouping (clade), which excludes both the eubacteria and the eukaryotes--a conclusion that is supported by other sequence evidence as well. Alternative proposals for archaebacterial phylogeny, not based upon sequence evidence, are discussed and evaluated. In particular, proposals to rename (reclassify) various subgroups of the archaebacteria as new kingdoms are found wanting, for both their lack of proper experimental support and the taxonomic confusion they introduce.

  19. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Struewing, Ian T; Ashbolt, Nicholas J

    2013-09-01

    The goal of this study was to characterize microbial eukaryotes over a 12-month period to provide insight into the occurrence of potential bacterial predators and hosts in premise plumbing. Nearly 6,300 partial 18S rRNA gene sequences from 24 hot (36.9-39.0 °C) and cold (6.8-29.1 °C) drinking water samples were analyzed and classified into major eukaryotic groups. Each major group, consisting of free-living amoebae (FLA)/protozoa, algae, copepods, dinoflagellates, fungi, nematodes, and unique uncultured eukaryotic sequences, showed limited diversity dominated by a few distinct populations, which may be characteristic of oligotrophic environments. Changes in the relative abundance of predators such as nematodes, copepods, and FLA appear to be related to temperature and seasonal changes in water quality. Sequences nearly identical to FLA such as Hartmannella vermiformis, Echinamoeba thermarmum, Pseudoparamoeba pagei, Protacanthamoeba bohemica, Platyamoeba sp., and Vannella sp. were obtained. In addition to FLA, various copepods, rotifers, and nematodes have been reported to internalize viral and bacterial pathogens within drinking water systems thus potentially serving as transport hosts; implications of which are discussed further. Increasing the knowledge of eukaryotic occurrence and their relationship with potential pathogens should aid in assessing microbial risk associated with various eukaryotic organisms in drinking water.

  20. Diverse and Unique Picocyanobacteria in Chesapeake Bay, Revealed by 16S-23S rRNA Internal Transcribed Spacer Sequences†§

    PubMed Central

    Chen, Feng; Wang, Kui; Kan, Jinjun; Suzuki, Marcelino T.; Wommack, K. Eric

    2006-01-01

    rRNA internal transcribed spacer phylogeny showed that Chesapeake Bay is populated with diverse Synechococcus strains, including members of the poorly studied marine cluster B. Marine cluster B prevailed in the upper bay, while marine cluster A was common in the lower bay. Interestingly, marine cluster B Synechococcus included phycocyanin- and phycoerythrin-rich strains. PMID:16517680

  1. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity.

    PubMed

    Sun, Dong-Lei; Jiang, Xuan; Wu, Qinglong L; Zhou, Ning-Yi

    2013-10-01

    Ever since Carl Woese introduced the use of 16S rRNA genes for determining the phylogenetic relationships of prokaryotes, this method has been regarded as the "gold standard" in both microbial phylogeny and ecology studies. However, intragenomic heterogeneity within 16S rRNA genes has been reported in many investigations and is believed to bias the estimation of prokaryotic diversity. In the current study, 2,013 completely sequenced genomes of bacteria and archaea were analyzed and intragenomic heterogeneity was found in 952 genomes (585 species), with 87.5% of the divergence detected being below the 1% level. In particular, some extremophiles (thermophiles and halophiles) were found to harbor highly divergent 16S rRNA genes. Overestimation caused by 16S rRNA gene intragenomic heterogeneity was evaluated at different levels using the full-length and partial 16S rRNA genes usually chosen as targets for pyrosequencing. The result indicates that, at the unique level, full-length 16S rRNA genes can produce an overestimation of as much as 123.7%, while at the 3% level, an overestimation of 12.9% for the V6 region may be introduced. Further analysis showed that intragenomic heterogeneity tends to concentrate in specific positions, with the V1 and V6 regions suffering the most intragenomic heterogeneity and the V4 and V5 regions suffering the least intragenomic heterogeneity in bacteria. This is the most up-to-date overview of the diversity of 16S rRNA genes within prokaryotic genomes. It not only provides general guidance on how much overestimation can be introduced when applying 16S rRNA gene-based methods, due to its intragenomic heterogeneity, but also recommends that, for bacteria, this overestimation be minimized using primers targeting the V4 and V5 regions.

  2. Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium.

    PubMed

    Parker, Matthew A; Lafay, Benedicte; Burdon, Jeremy J; van Berkum, Peter

    2002-08-01

    Major differences in evolutionary relationships of the 16S rRNA gene and the nitrogenase alpha-subunit gene (nifD) were observed among 38 strains of Bradyrhizobium sp. nodule bacteria from North America, Central America, Asia and Australia. Two lineages were evident in the 16S rRNA phylogeny representing strains related to Bradyrhizobium japonicum (29 isolates) or Bradyrhizobium elkanii (9 isolates). Both clades were distributed across most or all of the geographic regions sampled. By contrast, in the nifD tree almost all isolates were placed into one of three groups each exclusively composed of taxa from a single geographic region (North Temperate, Central America or Australia). Isolates that were closely related or identical in gene sequence at one locus often had divergent sequences at the other locus and a partition homogeneity test indicated that the 16S rRNA and nifD phylogenies were significantly incongruent. No evidence for any gene duplication of nifD was found by Southern hybridization analysis on a subset of the strains, so unrecognized paralogy is not likely to be responsible for the discrepancy between 16S rRNA and nifD tree topologies. These results are consistent with a model whereby geographic areas were initially colonized by several diverse 16S rRNA lineages, with subsequent horizontal gene transfer of nifD leading to increased nifD sequence homogeneity within each regional population.

  3. Molecular phylogeny of the bamboo sharks (Chiloscyllium spp.).

    PubMed

    Masstor, Noor Haslina; Samat, Abdullah; Nor, Shukor Md; Md-Zain, Badrul Munir

    2014-01-01

    Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN) Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences' lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate) that can clearly be used to differentiate each species.

  4. Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida).

    PubMed

    Smirnov, Alexey; Nassonova, Elena; Geisen, Stefan; Bonkowski, Michael; Kudryavtsev, Alexander; Berney, Cedric; Glotova, Anna; Bondarenko, Natalya; Dyková, Iva; Mrva, Martin; Fahrni, Jose; Pawlowski, Jan

    2016-10-26

    We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other.

  5. Molecular Phylogeny of the Bamboo Sharks (Chiloscyllium spp.)

    PubMed Central

    Masstor, Noor Haslina; Samat, Abdullah; Nor, Shukor Md; Md-Zain, Badrul Munir

    2014-01-01

    Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN) Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences' lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate) that can clearly be used to differentiate each species. PMID:25013766

  6. rRNA Pseudogenes in Filamentous Ascomycetes as Revealed by Genome Data

    PubMed Central

    Li, Yi; Yang, Rui-Heng; Jiang, Lan; Hu, Xiao-Di; Wu, Zu-Jian; Yao, Yi-Jian

    2017-01-01

    The nuclear ribosomal DNA (rDNA) is considered as a paradigm of concerted evolution. Components of the rDNA tandem repeats (45S) are widely used in phylogenetic studies of different organisms and the internal transcribed spacer (ITS) region was recently selected as a fungal DNA bar code. However, rRNA pseudogenes, as one kind of escape from concerted evolution, were reported in a wide range of organisms, especially in plants and animals. Moreover, large numbers of 5S rRNA pseudogenes were identified in several filamentous ascomycetes. To study whether rDNA evolves in a strict concerted manner and test whether rRNA pseudogenes exist in more species of ascomycetes, intragenomic rDNA polymorphisms were analyzed using whole genome sequences. Divergent rDNA paralogs were found to coexist within a single genome in seven filamentous ascomycetes examined. A great number of paralogs were identified as pseudogenes according to the mutation and secondary structure analyses. Phylogenetic analyses of the three rRNA coding regions of the 45S rDNA repeats, i.e., 18S, 5.8S, and 28S, revealed an interspecies clustering pattern of those different rDNA paralogs. The identified rRNA pseudogenic sequences were validated using specific primers designed. Mutation analyses revealed that the repeat-induced point (RIP) mutation was probably responsible for the formation of those rRNA pseudogenes. PMID:28637809

  7. rRNA Pseudogenes in Filamentous Ascomycetes as Revealed by Genome Data.

    PubMed

    Li, Yi; Yang, Rui-Heng; Jiang, Lan; Hu, Xiao-Di; Wu, Zu-Jian; Yao, Yi-Jian

    2017-08-07

    The nuclear ribosomal DNA (rDNA) is considered as a paradigm of concerted evolution. Components of the rDNA tandem repeats (45S) are widely used in phylogenetic studies of different organisms and the internal transcribed spacer (ITS) region was recently selected as a fungal DNA bar code. However, rRNA pseudogenes, as one kind of escape from concerted evolution, were reported in a wide range of organisms, especially in plants and animals. Moreover, large numbers of 5S rRNA pseudogenes were identified in several filamentous ascomycetes. To study whether rDNA evolves in a strict concerted manner and test whether rRNA pseudogenes exist in more species of ascomycetes, intragenomic rDNA polymorphisms were analyzed using whole genome sequences. Divergent rDNA paralogs were found to coexist within a single genome in seven filamentous ascomycetes examined. A great number of paralogs were identified as pseudogenes according to the mutation and secondary structure analyses. Phylogenetic analyses of the three rRNA coding regions of the 45S rDNA repeats, i.e., 18S, 5.8S, and 28S, revealed an interspecies clustering pattern of those different rDNA paralogs. The identified rRNA pseudogenic sequences were validated using specific primers designed. Mutation analyses revealed that the repeat-induced point (RIP) mutation was probably responsible for the formation of those rRNA pseudogenes. Copyright © 2017 Li et al.

  8. Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGG) n repeat in eight species of true bugs (Hemiptera, Heteroptera)

    PubMed Central

    Grozeva, S.; Kuznetsova, V.G.; Anokhin, B.A.

    2011-01-01

    Abstract Eight species belonging to five true bug families were analyzed using DAPI/CMA3-staining and fluorescence in situ hybridization (FISH) with telomeric (TTAGG)n and 18S rDNA probes. Standard chromosomal complements are reported for the first time for Deraeocoris rutilus (Herrich-Schäffer, 1838) (2n=30+2m+XY) and Deraeocoris ruber(Linnaeus, 1758) (2n=30+2m+XY) from the family Miridae. Using FISH, the location of a 18S rDNA cluster was detected in these species and in five more species: Megaloceroea recticornis (Geoffroy, 1785) (2n=30+XY) from the Miridae; Oxycarenus lavaterae (Fabricius, 1787) (2n=14+2m+XY) from the Lygaeidae s.l.; Pyrrhocoris apterus (Linnaeus, 1758) (2n=22+X) from the Pyrrhocoridae; Eurydema oleracea (Linnaeus, 1758) (2n=12+XY) and Graphosoma lineatum (Linnaeus, 1758) (2n=12+XY) from the Pentatomidae. The species were found to differ with respect to location of a 18S rRNA gene cluster which resides on autosomes in Oxycarenus lavaterae and Pyrrhocoris apterus, whereas it locates on sex chromosomes in other five species. The 18S rDNA location provides the first physical landmark of the genomes of the species studied. The insect consensus telomeric pentanucleotide (TTAGG)n was demonstrated to be absent in all the species studied in this respect, Deraeocoris rutilus, Megaloceroea recticornis, Cimex lectularius Linnaeus, 1758 (Cimicidae), Eurydema oleracea, and Graphosoma lineatum, supporting the hypothesis that this motif was lost in early evolution of the Heteroptera and secondarily replaced with another motif (yet unknown) or the alternative telomerase-independent mechanisms of telomere maintenance. Dot-blot hybridization analysis of the genomic DNA from Cimex lectularius, Nabis sp. and Oxycarenus lavaterae with (TTAGG)n and six other telomeric probes likewise provided a negative result. PMID:24260641

  9. Morphology, ultrastructure, and molecular phylogeny of the ciliate Sonderia vorax with insights into the systematics of order Plagiopylida

    PubMed Central

    2013-01-01

    Background Ciliates of the family Sonderiidae are common members of the eukaryotic communities in various anoxic environments. They host both ecto- and endosymbiotic prokaryotes (the latter associated with hydrogenosomes) and possess peculiar morpho-ultrastructural features, whose functions and homologies are not known. Their phylogenetic relationships with other ciliates are not completely resolved and the available literature, especially concerning electron microscopy and molecular studies, is quite scarce. Results Sonderia vorax Kahl, 1928 is redescribed from an oxygen-deficient, brackish-water pond along the Ligurian Sea coastlines of Italy. Data on morphology, morphometry, and ultrastructure are reported. S. vorax is ovoid-ellipsoid in shape, dorsoventrally flattened, 130 x 69 μm (mean in vivo); it shows an almost spherical macronucleus, and one relatively large micronucleus. The ventral kinetom has a “secant system” including fronto-ventral and fronto-lateral kineties. A distinctive layer of bacteria laying between kineties covers the ciliate surface. Two types of extrusomes and hydrogenosomes-endosymbiotic bacteria assemblages are present in the cytoplasm. The phylogeny based on 18S rRNA gene sequences places S. vorax among Plagiopylida; Sonderiidae clusters with Plagiopylidae, although lower-level relationships remain uncertain. The studied population is fixed as neotype and the ciliate is established as type species of the genus, currently lacking. Conclusions This is the first description of a representative of Sonderiidae performed with both morphological and molecular data. To sum up, many previous hypotheses on this interesting, poorly known taxon are confirmed but confusion and contradictory data are as well highlighted. PMID:23418998

  10. DNA authentication of Plantago Herb based on nucleotide sequences of 18S-28S rRNA internal transcribed spacer region.

    PubMed

    Sahin, Fatma Pinar; Yamashita, Hiromi; Guo, Yahong; Terasaka, Kazuyoshi; Kondo, Toshiya; Yamamoto, Yutaka; Shimada, Hiroshi; Fujita, Masao; Kawasaki, Takeshi; Sakai, Eiji; Tanaka, Toshihiro; Goda, Yukihiro; Mizukami, Hajime

    2007-07-01

    Internal transcribed spacer (ITS) regions of nuclear ribosomal RNA gene were amplified from 23 plant- and herbarium specimens belonging to eight Plantago species (P. asiatica, P. depressa, P. major, P. erosa, P. hostifolia, P. camtschatica, P. virginica and P. lanceolata). Sequence comparison indicated that these Plantago species could be identified based on the sequence type of the ITS locus. Sequence analysis of the ITS regions amplified from the crude drug Plantago Herb obtained in the markets indicated that all the drugs from Japan were derived from P. asiatica whereas the samples obtained in China were originated from various Plantago species including P. asiatica, P. depressa, P. major and P. erosa.

  11. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae)

    PubMed Central

    2014-01-01

    Background The Triatomini and Rhodniini (Hemiptera: Reduviidae) tribes include the most diverse Chagas disease vectors; however, the phylogenetic relationships within the tribes remain obscure. This study provides the most comprehensive phylogeny of Triatomini reported to date. Methods The relationships between all of the Triatomini genera and representatives of the three Rhodniini species groups were examined in a novel molecular phylogenetic analysis based on the following six molecular markers: the mitochondrial 16S; Cytochrome Oxidase I and II (COI and COII) and Cytochrome B (Cyt B); and the nuclear 18S and 28S. Results Our results show that the Rhodnius prolixus and R. pictipes groups are more closely related to each other than to the R. pallescens group. For Triatomini, we demonstrate that the large complexes within the paraphyletic Triatoma genus are closely associated with their geographical distribution. Additionally, we observe that the divergence within the spinolai and flavida complex clades are higher than in the other Triatoma complexes. Conclusions We propose that the spinolai and flavida complexes should be ranked under the genera Mepraia and Nesotriatoma. Finally, we conclude that a thorough morphological investigation of the paraphyletic genera Triatoma and Panstrongylus is required to accurately assign queries to natural genera. PMID:24685273

  12. Higher classification and phylogeny of Euglenozoa.

    PubMed

    Cavalier-Smith, Thomas

    2016-10-01

    Discoveries of numerous new taxa and advances in ultrastructure and sequence phylogeny (including here the first site-heterogeneous 18S rDNA trees) require major improvements to euglenozoan higher-level taxonomy. I therefore divide Euglenozoa into three subphyla of substantially different body plans: Euglenoida with pellicular strips; anaerobic Postgaardia (class Postgaardea) dependent on surface bacteria and with uniquely modified feeding apparatuses; and new subphylum Glycomonada characterised by glycosomes (Kinetoplastea, Diplonemea). Euglenoida comprise two new infraphyla: Entosiphona with three feeding rods and Dipilida ancestrally with two. Dipilida comprise basal superclass Rigimonada with longitudinal rigid strips [i.e. new classes Stavomonadea (Petalomonadida, Decastavida and new order Heterostavida) and Ploeotarea (Ploeotiida) with contrasting oral cytoskeletons] and derived superclass Spirocuta with more numerous spirally arranged, often slideable, strips (clade Peranemea/Euglenophyceae) and a different, highly conserved microtubule pattern at strip joints. Peranemea comprise four orders: Peranemida (anterior gliding, protrusible rods), and three new, Anisonemida (posterior gliders), Natomonadida (swimmers including phagotrophic new suborder Metanemina and osmotrophic suborder Rhabdomonadina), and Acroglissida (anterior gliders with cytoproct). I establish orders Entosiphonida, Rapazida, Bihospitida; and seven new euglenoid families (Entosiphonidae, peranemean Neometanemidae, Rapazidae, two stavomonad, two ploeotiid) and three new postgaardian, and three kinetoplastid families (Neobodonidae, Rhynchomonadidae, Parabodonidae), plus new diplonemid family Hemistasiidae for Hemistasia.

  13. A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences.

    PubMed

    Hahn, William J

    2002-02-01

    Notoriously slow rates of molecular evolution and convergent evolution among some morphological characters have limited phylogenetic resolution for the palm family (Arecaceae). This study adds nuclear DNA (18S SSU rRNA) and chloroplast DNA (cpDNA; atpB and rbcL) sequence data for 65 genera of palms and characterizes molecular variation for each molecule. Phylogenetic relationships were estimated with maximum likelihood and maximum parsimony techniques for the new data and for previously published molecular data for 45 palm genera. Maximum parsimony analysis was also used to compare molecular and morphological data for 33 palm genera. Incongruence among datasets was detected between cpDNA and 18S data and between molecular and morphological data. Most conflict between nuclear and cpDNA data was associated with the genus Nypa. Several