Science.gov

Sample records for 18s small subunit

  1. Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs.

    PubMed

    Nelles, L; Fang, B L; Volckaert, G; Vandenberghe, A; De Wachter, R

    1984-12-11

    The primary structure of the gene for 18 S rRNA of the crustacean Artemia salina was determined. The sequence has been aligned with 13 other small ribosomal subunit RNA sequences of eukaryotic, archaebacterial, eubacterial, chloroplastic and plant mitochondrial origin. Secondary structure models for these RNAs were derived on the basis of previously proposed models and additional comparative evidence found in the alignment. Although there is a general similarity in the secondary structure models for eukaryotes and prokaryotes, the evidence seems to indicate a different topology in a central area of the structures.

  2. Molecular characterization of nuclear small subunit (18S)-rDNA pseudogenes in a symbiotic dinoflagellate (Symbiodinium, Dinophyta).

    PubMed

    Santos, Scott R; Kinzie, Robert A; Sakai, Kazuhiko; Coffroth, Mary Alice

    2003-01-01

    For the dinoflagellates, an important group of single-cell protists, some nuclear rDNA phylogenetic studies have reported the discovery of rDNA pseudogenes. However, it is unknown if these aberrant molecules are confined to free-living taxa or occur in other members of the group. We have cultured a strain of symbiotic dinoflagellate, belonging to the genus Symbiodinium, which produces three distinct amplicons following PCR for nuclear small subunit (18S) rDNA genes. These amplicons contribute to a unique restriction fragment length polymorphism pattern diagnostic for this particular strain. Sequence analyses revealed that the largest amplicon was the expected region of 18S-rDNA, while the two smaller amplicons are Symbiodinium nuclear 18S-rDNA genes that contain single long tracts of nucleotide deletions. Reverse transcription (RT)-PCR experiments did not detect RNA transcripts of these latter genes, suggesting that these molecules represent the first report of nuclear 18S-rDNA pseudogenes from the genome of Symbiodinium. As in the free-living dinoflagellates, nuclear rDNA pseudogenes are effective indicators of unique Symbiodinium strains. Furthermore, the evolutionary pattern of dinoflagellate nuclear rDNA pseudogenes appears to be unique among organisms studied to date, and future studies of these unusual molecules will provide insight on the cellular biology and genomic evolution of these protists.

  3. Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency.

    PubMed

    Badhai, Jitendra; Fröjmark, Anne-Sophie; Razzaghian, Hamid Reza; Davey, Edward; Schuster, Jens; Dahl, Niklas

    2009-06-18

    Ribosomal protein S19 (RPS19) is mutated in patients with Diamond-Blackfan anemia (DBA). We hypothesized that decreased levels of RPS19 lead to a coordinated down-regulation of other ribosomal (r-)proteins at the subunit level. We show that small interfering RNA (siRNA) knock-down of RPS19 results in a relative decrease of small subunit (SSU) r-proteins (S20, S21 and S24) when compared to large subunit (LSU) r-proteins (L3, L9, L30 and L38). This correlates with a relative decrease in 18S rRNA with respect to 28S rRNA. The r-protein mRNA levels remain relatively unchanged indicating a post transcriptional regulation of r-proteins at the level of subunit formation.

  4. Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera).

    PubMed

    Gillespie, J J; McKenna, C H; Yoder, M J; Gutell, R R; Johnston, J S; Kathirithamby, J; Cognato, A I

    2005-12-01

    We report the entire sequence (2864 nts) and secondary structure of the nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S) from the twisted-wing parasite Caenocholax fenyesi texensis Kathirithamby & Johnston (Strepsiptera: Myrmecolacidae). The majority of the base pairings in this structural model map on to the SSU rRNA secondary and tertiary helices that were previously predicted with comparative analysis. These regions of the core rRNA were unambiguously aligned across all Arthropoda. In contrast, many of the variable regions, as previously characterized in other insect taxa, had very large insertions in C. f. texensis. The helical base pairs in these regions were predicted with a comparative analysis of a multiple sequence alignment (that contains C. f. texensis and 174 published arthropod 18S rRNA sequences, including eleven strepsipterans) and thermodynamic-based algorithms. Analysis of our structural alignment revealed four unusual insertions in the core rRNA structure that are unique to animal 18S rRNA and in general agreement with previously proposed insertion sites for strepsipterans. One curious result is the presence of a large insertion within a hairpin loop of a highly conserved pseudoknot helix in variable region 4. Despite the extraordinary variability in sequence length and composition, this insertion contains the conserved sequences 5'-AUUGGCUUAAA-3' and 5'-GAC-3' that immediately flank a putative helix at the 5'- and 3'-ends, respectively. The longer sequence has the potential to form a nine base pair helix with a sequence in the variable region 2, consistent with a recent study proposing this tertiary interaction. Our analysis of a larger set of arthropod 18S rRNA sequences has revealed possible errors in some of the previously published strepsipteran 18S rRNA sequences. Thus we find no support for the previously recovered heterogeneity in the 18S molecules of strepsipterans. Our findings lend insight to the evolution of RNA structure and

  5. Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera).

    PubMed

    Gillespie, J J; McKenna, C H; Yoder, M J; Gutell, R R; Johnston, J S; Kathirithamby, J; Cognato, A I

    2005-12-01

    We report the entire sequence (2864 nts) and secondary structure of the nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S) from the twisted-wing parasite Caenocholax fenyesi texensis Kathirithamby & Johnston (Strepsiptera: Myrmecolacidae). The majority of the base pairings in this structural model map on to the SSU rRNA secondary and tertiary helices that were previously predicted with comparative analysis. These regions of the core rRNA were unambiguously aligned across all Arthropoda. In contrast, many of the variable regions, as previously characterized in other insect taxa, had very large insertions in C. f. texensis. The helical base pairs in these regions were predicted with a comparative analysis of a multiple sequence alignment (that contains C. f. texensis and 174 published arthropod 18S rRNA sequences, including eleven strepsipterans) and thermodynamic-based algorithms. Analysis of our structural alignment revealed four unusual insertions in the core rRNA structure that are unique to animal 18S rRNA and in general agreement with previously proposed insertion sites for strepsipterans. One curious result is the presence of a large insertion within a hairpin loop of a highly conserved pseudoknot helix in variable region 4. Despite the extraordinary variability in sequence length and composition, this insertion contains the conserved sequences 5'-AUUGGCUUAAA-3' and 5'-GAC-3' that immediately flank a putative helix at the 5'- and 3'-ends, respectively. The longer sequence has the potential to form a nine base pair helix with a sequence in the variable region 2, consistent with a recent study proposing this tertiary interaction. Our analysis of a larger set of arthropod 18S rRNA sequences has revealed possible errors in some of the previously published strepsipteran 18S rRNA sequences. Thus we find no support for the previously recovered heterogeneity in the 18S molecules of strepsipterans. Our findings lend insight to the evolution of RNA structure and

  6. Phylogeny and systematics of demospongiae in light of new small-subunit ribosomal DNA (18S) sequences.

    PubMed

    Redmond, N E; Morrow, C C; Thacker, R W; Diaz, M C; Boury-Esnault, N; Cárdenas, P; Hajdu, E; Lôbo-Hajdu, G; Picton, B E; Pomponi, S A; Kayal, E; Collins, A G

    2013-09-01

    The most diverse and species-rich class of the phylum Porifera is Demospongiae. In recent years, the systematics of this clade, which contains more than 7000 species, has developed rapidly in light of new studies combining molecular and morphological observations. We add more than 500 new, nearly complete 18S sequences (an increase of more than 200%) in an attempt to further enhance understanding of the phylogeny of Demospongiae. Our study specifically targets representation of type species and genera that have never been sampled for any molecular data in an effort to accelerate progress in classifying this diverse lineage. Our analyses recover four highly supported subclasses of Demospongiae: Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha. Within Keratosa, neither Dendroceratida, nor its two families, Darwinellidae and Dictyodendrillidae, are monophyletic and Dictyoceratida is divided into two lineages, one predominantly composed of Dysideidae and the second containing the remaining families (Irciniidae, Spongiidae, Thorectidae, and Verticillitidae). Within Myxospongiae, we find Chondrosida to be paraphyletic with respect to the Verongida. We amend the latter to include species of the genus Chondrosia and erect a new order Chondrillida to contain remaining taxa from Chondrosida, which we now discard. Even with increased taxon sampling of Haploscleromorpha, our analyses are consistent with previous studies; however, Haliclona species are interspersed in even more clades. Haploscleromorpha contains five highly supported clades, each more diverse than previously recognized, and current families are mostly polyphyletic. In addition, we reassign Janulum spinispiculum to Haploscleromorpha and resurrect Reniera filholi as Janulum filholi comb. nov. Within the large clade Heteroscleromorpha, we confirmed 12 recently identified clades based on alternative data, as well as a sister-group relationship between the freshwater Spongillida and the family

  7. Phylogenetic Analysis of Rhinosporidium seeberi’s 18S Small-Subunit Ribosomal DNA Groups This Pathogen among Members of the Protoctistan Mesomycetozoa Clade

    PubMed Central

    Herr, Roger A.; Ajello, Libero; Taylor, John W.; Arseculeratne, Sarath N.; Mendoza, Leonel

    1999-01-01

    For the past 100 years the phylogenetic affinities of Rhinosporidium seeberi have been controversial. Based on its morphological features, it has been classified as a protozoan or as a member of the kingdom Fungi. We have amplified and sequenced nearly a full-length 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence from R. seeberi. Using phylogenetic analysis, by parsimony and distance methods, of R. seeberi’s 18S SSU rDNA and that of other eukaryotes, we found that this enigmatic pathogen of humans and animals clusters with a novel group of fish parasites referred to as the DRIP clade (Dermocystidium, rossete agent, Ichthyophonus, and Psorospermium), near the animal-fungal divergence. Our phylogenetic analyses also indicate that R. seeberi is the sister taxon of the two Dermocystidium species used in this study. This molecular affinity is remarkable since members of the genus Dermocystidium form spherical structures in infected hosts, produce endospores, have not been cultured, and possess mitochondria with flat cristae. With the addition of R. seeberi to this clade, the acronym DRIP is no longer appropriate. We propose to name this monophyletic clade Mesomycetozoa to reflect the group’s phylogenetic association within the Eucarya. PMID:10449446

  8. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    PubMed

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  9. Megraft: A software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metagenomic libraries represent subsamples of the total DNA found at a study site and offer unprecedented opportunities to study ecological and functional aspects of microbial communities. To examine the depth of the sequencing effort, rarefaction analysis of the ribosomal small sub-unit (SSU/16S/18...

  10. Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits.

    PubMed

    White, Joshua; Li, Zhihua; Sardana, Richa; Bujnicki, Janusz M; Marcotte, Edward M; Johnson, Arlen W

    2008-05-01

    BUD23 was identified from a bioinformatics analysis of Saccharomyces cerevisiae genes involved in ribosome biogenesis. Deletion of BUD23 leads to severely impaired growth, reduced levels of the small (40S) ribosomal subunit, and a block in processing 20S rRNA to 18S rRNA, a late step in 40S maturation. Bud23 belongs to the S-adenosylmethionine-dependent Rossmann-fold methyltransferase superfamily and is related to small-molecule methyltransferases. Nevertheless, we considered that Bud23 methylates rRNA. Methylation of G1575 is the only mapped modification for which the methylase has not been assigned. Here, we show that this modification is lost in bud23 mutants. The nuclear accumulation of the small-subunit reporters Rps2-green fluorescent protein (GFP) and Rps3-GFP, as well as the rRNA processing intermediate, the 5' internal transcribed spacer 1, indicate that bud23 mutants are defective for small-subunit export. Mutations in Bud23 that inactivated its methyltransferase activity complemented a bud23Delta mutant. In addition, mutant ribosomes in which G1575 was changed to adenosine supported growth comparable to that of cells with wild-type ribosomes. Thus, Bud23 protein, but not its methyltransferase activity, is important for biogenesis and export of the 40S subunit in yeast.

  11. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation.

    PubMed Central

    Gulli, M P; Girard, J P; Zabetakis, D; Lapeyre, B; Melese, T; Caizergues-Ferrer, M

    1995-01-01

    Several nucleolar proteins, such as nucleolin, NOP1/fibrillarin, SSB1, NSR1 and GAR1 share a common glycine and arginine rich structural motif called the GAR domain. To identify novel nucleolar proteins from fission yeast we screened Schizosaccharomyces pombe genomic DNA libraries with a probe encompassing the GAR structural motif. Here we report the identification and characterization of a S.pombe gene coding for a novel nucleolar protein, designated gar2. The structure of the fission yeast gar2 is reminiscent of that of nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. In addition, like these proteins, gar2 has a nucleolar localisation. The disruption of the gar2+ gene affects normal cell growth, leads to an accumulation of 35S pre-rRNA and a decrease of mature 18S rRNA steady state levels. Moreover, ribosomal profiles of the mutant show an increase of free 60S ribosomal subunits and an absence of free 40S ribosomal subunits. gar2 is able to rescue a S.cerevisiae mutant lacking NSR1, thus establishing gar2 as a functional homolog of NSR1. We propose that gar2 helps the assembly of pre-ribosomal particles containing 18S rRNA. Images PMID:7596817

  12. Phylogenetic classification of the frog pathogen Amphibiothecum (Dermosporidium) penneri based on small ribosomal subunit sequencing

    USGS Publications Warehouse

    Feldman, S.H.; Wimsatt, J.H.; Green, D.E.

    2005-01-01

    We determined 1,600 base pairs of DNA sequence in the 18S small ribosomal subunit from two geographically distinct isolates of Dermosporidium penneri. Maximum likelihood and parsimony analysis of these sequences place D. penneri in the order Dermocystida of the class Mesomycetozoea. The 18S rRNA sequences from these two isolates only differ within a single region of 16 contiguous nucleotides. Based on the distant phylogenetic relationship of these organisms to Amphibiocystidium ranae and similarity to Sphaerothecum destruens we propose the organism be renamed Amphibiothecum penneri.

  13. Compilation of small ribosomal subunit RNA structures.

    PubMed Central

    Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R

    1993-01-01

    The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525

  14. Dissociation of ribosomes into large and small subunits.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-04-01

    Structural and functional studies of ribosomal subunits require the dissociation of intact ribosomes into individual small and large ribosomal subunits. The dissociation of the prokaryotic 70S ribosomes into the 50S and 30S subunits is achieved by dialysis against a buffer containing a lower Mg(2+) concentration. Eukaryotic 80S ribosomes are dissociated into 60S and 40S subunits by incubation in a buffer containing puromycin and higher KCl and Mg(2+) concentrations.

  15. [Topography of ribosomal proteins: reconsideration of of protein map of small ribosomal subunit].

    PubMed

    Spirin, A S; Agafonov, D E; Kolb, V A; Kommer, A

    1996-11-01

    Exposure of proteins on the surface of the small (30S) ribosomal subunit of Escherichia coli was studied by the hot tritium bombardment technique. Eight of 21 proteins of the 30 S subunit (S3, S8, S10, S12, S15, S16, S17, and S19) had virtually no groups exposed on the surface of the particle, i.e., they were mainly hidden inside. Seven proteins (S1, S4, S5, S7, S18, S20, and S21) were all well exposed on the surface of the particle, thus being outside proteins. The remaining proteins (S2, S6, S9 and/or S11, S13, and S14) were partially exposed. On the basis of these results a reconcilement of the three-dimensional protein map of the small ribosomal subunit has been done and corrected model is proposed.

  16. [Region 1112-1123 in the central domain of 18S rRNA in 40S subunits of plant ribosomes: accessibility for complementary interactions and the functional role].

    PubMed

    Zhigaĭlov, A V; Graĭfer, D M; Babaĭlova, E S; Polimbetova, N S; Karpova, G G; Iskakov, B K

    2010-01-01

    The binding of the 18S RNA of the 40S subunits of wheat germ ribosomes to an oligodeoxyribonucleotide complementary to the 1112-1123 region of the central domain of this RNA molecule has been studied. The selective binding of this oligomer to the complementary RNA fragment and the inhibition of the translation of uncapped chimeric RNA containing enhancer sequences in the 5'-untranslated region upstream of the reporter sequence coding for beta-glucuronidase has been shown in a cell-free protein-synthesizing system. The use of a derivative of the aforementioned oligomer containing an alkylating group at the 5' end allowed for the demonstration that the 1112-1123 region of 18S RNA can form a heteroduplex with the complementary sequence of the oligomer. The data obtained show that the 1112-1123 region in loop 27 of the central domain of 18S RNA of 40S ribosomal subunits is exposed on the subunit surface and probably participates in the cap-independent binding of the subunits to mRNA due to the complementary interaction with the enhancer sequences.

  17. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast

    PubMed Central

    Zhang, Liman; Wu, Chen; Cai, Gaihong; Chen, She

    2016-01-01

    The eukaryotic ribosomal RNA (rRNA) is associated cotranscriptionally with numerous factors into an enormous 90S preribosomal particle that conducts early processing of small ribosomal subunits. The assembly pathway and structure of the 90S particle is poorly understood. Here, we affinity-purified and analyzed the constituents of yeast 90S particles that were assembled on a series of plasmid-encoded 3′-truncated pre-18S RNAs. We determined the assembly point of 65 proteins and the U3, U14, and snR30 small nucleolar RNAs (snoRNAs), revealing a stepwise and dynamic assembly map. The 5′ external transcribed spacer (ETS) alone can nucleate a large complex. When the 18S rRNA is nearly complete, the 90S structure undergoes a dramatic reorganization, releasing U14, snR30, and 14 protein factors that bind earlier. We also identified a reference state of 90S that is fully assembled yet has not undergone 5′ETS processing. The assembly map present here provides a new framework to understand small subunit biogenesis. PMID:26980190

  18. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast.

    PubMed

    Zhang, Liman; Wu, Chen; Cai, Gaihong; Chen, She; Ye, Keqiong

    2016-03-15

    The eukaryotic ribosomal RNA (rRNA) is associated cotranscriptionally with numerous factors into an enormous 90S preribosomal particle that conducts early processing of small ribosomal subunits. The assembly pathway and structure of the 90S particle is poorly understood. Here, we affinity-purified and analyzed the constituents of yeast 90S particles that were assembled on a series of plasmid-encoded 3'-truncated pre-18S RNAs. We determined the assembly point of 65 proteins and the U3, U14, and snR30 small nucleolar RNAs (snoRNAs), revealing a stepwise and dynamic assembly map. The 5' external transcribed spacer (ETS) alone can nucleate a large complex. When the 18S rRNA is nearly complete, the 90S structure undergoes a dramatic reorganization, releasing U14, snR30, and 14 protein factors that bind earlier. We also identified a reference state of 90S that is fully assembled yet has not undergone 5'ETS processing. The assembly map present here provides a new framework to understand small subunit biogenesis. PMID:26980190

  19. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast.

    PubMed

    Zhang, Liman; Wu, Chen; Cai, Gaihong; Chen, She; Ye, Keqiong

    2016-03-15

    The eukaryotic ribosomal RNA (rRNA) is associated cotranscriptionally with numerous factors into an enormous 90S preribosomal particle that conducts early processing of small ribosomal subunits. The assembly pathway and structure of the 90S particle is poorly understood. Here, we affinity-purified and analyzed the constituents of yeast 90S particles that were assembled on a series of plasmid-encoded 3'-truncated pre-18S RNAs. We determined the assembly point of 65 proteins and the U3, U14, and snR30 small nucleolar RNAs (snoRNAs), revealing a stepwise and dynamic assembly map. The 5' external transcribed spacer (ETS) alone can nucleate a large complex. When the 18S rRNA is nearly complete, the 90S structure undergoes a dramatic reorganization, releasing U14, snR30, and 14 protein factors that bind earlier. We also identified a reference state of 90S that is fully assembled yet has not undergone 5'ETS processing. The assembly map present here provides a new framework to understand small subunit biogenesis.

  20. Role of the small subunit processome in the maintenance of pluripotent stem cells.

    PubMed

    You, Kwon Tae; Park, Joha; Kim, V Narry

    2015-10-01

    RNA-binding proteins (RBPs) play integral roles in gene regulation, yet only a small fraction of RBPs has been studied in the context of stem cells. Here we applied an RNAi screen for RBPs in mouse embryonic stem cells (ESCs) and identified 16 RBPs involved in pluripotency maintenance. Interestingly, six identified RBPs, including Krr1 and Ddx47, are part of a complex called small subunit processome (SSUP) that mediates 18S rRNA biogenesis. The SSUP components are preferentially expressed in stem cells and enhance the global translational rate, which is critical to sustain the protein levels of labile pluripotency factors such as Nanog and Esrrb. Furthermore, the SSUP proteins are required for efficient reprogramming of induced pluripotent stem cells. Our study uncovers the role of the SSUP and the importance of translational control in stem cell fate decision.

  1. Genetic characterization and phylogenetic relationships based on 18S rRNA and ITS1 region of small form of canine Babesia spp. from India.

    PubMed

    Mandal, M; Banerjee, P S; Garg, Rajat; Ram, Hira; Kundu, K; Kumar, Saroj; Kumar, G V P P S Ravi

    2014-10-01

    Canine babesiosis is a vector borne disease caused by intra-erythrocytic apicomplexan parasites Babesia canis (large form) and Babesia gibsoni (small form), throughout the globe. Apart from few sporadic reports on the occurrence of B. gibsoni infection in dogs, no attempt has been made to characterize Babesia spp. of dogs in India. Fifteen canine blood samples, positive for small form of Babesia, collected from northern to eastern parts of India, were used for amplification of 18S rRNA gene (∼1665bp) of Babesia sp. and partial ITS1 region (∼254bp) of B. gibsoni Asian genotype. Cloning and sequencing of the amplified products of each sample was performed separately. Based on sequences and phylogenetic analysis of 18S rRNA and ITS1 sequences, 13 were considered to be B. gibsoni. These thirteen isolates shared high sequence identity with each other and with B. gibsoni Asian genotype. The other two isolates could not be assigned to any particular species because of the difference(s) in 18S rRNA sequence with B. gibsoni and closer identity with Babesiaoccultans and Babesiaorientalis. In the phylogenetic tree, all the isolates of B. gibsoni Asian genotype formed a separate major clade named as Babesia spp. sensu stricto clade with high bootstrap support. The two unnamed Babesia sp. (Malbazar and Ludhiana isolates) clustered close together with B. orientalis, Babesia sp. (Kashi 1 isolate) and B. occultans of bovines. It can be inferred from this study that 18S rRNA gene and ITS1 region are highly conserved among 13 B. gibsoni isolates from India. It is the maiden attempt of genetic characterization by sequencing of 18S rRNA gene and ITS1 region of B. gibsoni from India and is also the first record on the occurrence of an unknown Babesia sp. of dogs from south and south-east Asia.

  2. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Caers, A; De Rijk, P; De Wachter, R

    1998-01-01

    About 8600 complete or nearly complete sequences are now available from the Antwerp database on small ribosomal subunit RNA. All these sequences are aligned with one another on the basis of the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Literature references, accession numbers and detailed taxonomic information are also compiled. The database can be consulted via the World Wide Web at URL http://rrna.uia.ac.be/ssu/ PMID:9399829

  3. Ribosomal small subunit domains radiate from a central core

    PubMed Central

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O’Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-01-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2′OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit. PMID:26876483

  4. Ribosomal small subunit domains radiate from a central core

    NASA Astrophysics Data System (ADS)

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O'Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-02-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2‧OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit.

  5. Ribosomal small subunit domains radiate from a central core.

    PubMed

    Gulen, Burak; Petrov, Anton S; Okafor, C Denise; Vander Wood, Drew; O'Neill, Eric B; Hud, Nicholas V; Williams, Loren Dean

    2016-02-15

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2'OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit.

  6. Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences.

    PubMed

    Dolezel, D; Jirků, M; Maslov, D A; Lukes, J

    2000-09-01

    The phylogeny of kinetoplastid flagellates was investigated by determining the sequences of the small-subunit (18S) rRNA from Bodo designis, Bodo saltans K, Bodo saltans P, Bodo sorokini, Bodo sp. (cf. uncinatus), Cruzella marina, Cryptobia helicis, Dimastigella mimosa and Parabodo nitrophilus and analysing these data together with several previously obtained sequences. The root of the kinetoplastid tree was tentatively determined to be attached to the branch of B. designis and/or Cruzella marina. Within this topology, the suborder Trypanosomatina appears as a late-emerging monophyletic group, while the suborder Bodonina is paraphyletic. Within the bodonid subtree, the branches of parasitic organisms were intermingled with free-living ones, implying multiple transitions to parasitism. The tree indicates that the genera Cryptobia and Bodo are artificial taxa. In addition, the separation of the fish cryptobias and Trypanoplasma borreli as different genera was not supported.

  7. Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA

    PubMed Central

    Rahman, Md Moshiur; Yagita, Kenji; Kobayashi, Akira; Oikawa, Yosaburo; Hussein, Amjad I.A.; Matsumura, Takahiro

    2013-01-01

    Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear sub-conformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba. PMID:24039282

  8. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.

    PubMed

    Cavdar Koc, E; Burkhart, W; Blackburn, K; Moseley, A; Spremulli, L L

    2001-06-01

    Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete coding sequences of the proteins were assembled. The human mitochondrial ribosome has 29 distinct proteins in the small subunit. Fourteen of this group of proteins are homologs of the Escherichia coli 30 S ribosomal proteins S2, S5, S6, S7, S9, S10, S11, S12, S14, S15, S16, S17, S18, and S21. All of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. Surprisingly, three variants of ribosomal protein S18 are found in the mammalian and D. melanogaster mitochondrial ribosomes while C. elegans has two S18 homologs. The S18 homologs tend to be more closely related to chloroplast S18s than to prokaryotic S18s. No mitochondrial homologs to prokaryotic ribosomal proteins S1, S3, S4, S8, S13, S19, and S20 could be found in the peptides obtained from the whole 28 S subunit digests or by analysis of the available data bases. The remaining 15 proteins present in mammalian mitochondrial 28 S subunits (MRP-S22 through MRP-S36) are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of these proteins have a clear homolog in D. melanogaster while all but three can be found in the genome of C. elegans. Five of the mitochondrial specific ribosomal proteins have homologs in S. cerevisiae.

  9. Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria

    PubMed Central

    Weiss, Andy; Shaw, Lindsey N.

    2015-01-01

    The DNA-dependent RNA polymerase core enzyme in Gram-positive bacteria consists of seven subunits. Whilst four of them (α2ββ′) are essential, three smaller subunits, δ, ε and ω (∼9–21.5 kDa), are considered accessory. Both δ and ω have been viewed as integral components of RNAP for several decades; however, ε has only recently been described. Functionally these three small subunits carry out a variety of tasks, imparting important, supportive effects on the transcriptional process of Gram-positive bacteria. While ω is thought to have a wide range of roles, reaching from maintaining structural integrity of RNAP to σ factor recruitment, the only suggested function for ε thus far is in protecting cells from phage infection. The third subunit, δ, has been shown to have distinct influences in maintaining transcriptional specificity, and thus has a key role in cellular fitness. Collectively, all three accessory subunits, although dispensable under laboratory conditions, are often thought to be crucial for proper RNAP function. Herein we provide an overview of the available literature on each subunit, summarizing landmark findings that have deepened our understanding of these proteins and their function, and outline future challenges in understanding the role of these small subunits in the transcriptional process. PMID:25878038

  10. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Van den Broeck, I; De Rijk, P; De Wachter, R

    1994-01-01

    The database on small ribosomal subunit RNA structure contains (June 1994) 2824 nucleotide sequences. All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. The complete database is made available to the scientific community through anonymous ftp on our server in Antwerp. A special effort was made to improve electronic retrieval and a program is supplied that allows to create different file formats. The database can also be obtained from the EMBL nucleotide sequence library. PMID:7524022

  11. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Jansen, J; De Rijk, P; De Wachter, R

    1997-01-01

    The Antwerp database on small ribosomal subunit RNA now offers more than 6000 nucleotide sequences (August 1996). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. For ease of use, the complete database is made available to the scientific community via World Wide Web at URL http://rrna.uia.ac.be/ssu/ . PMID:9016516

  12. Database on the structure of small ribosomal subunit RNA.

    PubMed Central

    Van de Peer, Y; Nicolaï, S; De Rijk, P; De Wachter, R

    1996-01-01

    The Antwerp database on small ribosomal subunit RNA offers over 4300 nucleotide sequences (August 1995). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. The complete database is made available to the scientific community through anonymous ftp and World Wide Web(WWW). PMID:8594609

  13. Phylogenetic position of Linguatula arctica and Linguatula serrata (Pentastomida) as inferred from the nuclear 18S rRNA gene and the mitochondrial cytochrome c oxidase subunit I gene.

    PubMed

    Gjerde, Bjørn

    2013-10-01

    Genomic DNA was isolated from a Linguatula serrata female expelled from a dog imported to Norway from Romania and from four Linguatula arctica females collected from semi-domesticated reindeer from northern Norway and subjected to PCR amplification of the complete nuclear 18S rRNA gene and a 1,045-bp portion of the mitochondrial cytochrome c oxidase subunit I gene (cox1). The two species differed at two of 1,830 nucleotide positions (99.9% identity) of the complete 18S rRNA gene sequences and at 102 of 1,045 nucleotide positions (90.2% identity) of the partial cox1 sequences. The four isolates of L. arctica showed no genetic variation in either gene. The new cox1 primers may facilitate the diagnosis of various developmental stages of L. arctica and L. serrata in their hosts. In separate phylogenetic analyses using the maximum likelihood method on sequence data from either gene, L. arctica and L. serrata clustered with members of the order Cephalobaenida rather than with members of the order Porocephalida, in which the genus Linguatula is currently placed based on morphological characters. The phylogenetic relationship of L. arctica, L. serrata and other pentastomids to other metazoan groups could not be clearly resolved, but the pentastomids did not seem to have a sister relationship to crustaceans of the subclass Branchiura as found in other studies. A more extensive taxon sampling, including molecular characterisation of more pentastomid taxa across different genera, seems to be necessary in order to estimate the true relationship of the Pentastomida to other metazoan groups.

  14. The discovery of the two types of small subunit ribosomal RNA gene in Eimeria mitis contests the existence of E. mivati as an independent species.

    PubMed

    Vrba, Vladimir; Poplstein, Martin; Pakandl, Michal

    2011-12-29

    Although the validity of the coccidian species, Eimeria mivati, has been questioned by many researchers for a long time there has not been any molecular analysis that would help resolve this issue. Here we report on the discovery of the two types of small ribosomal subunit (18S) gene within the Eimeria mitis genome that correspond to the known 18S sequences of E. mitis and E. mivati, and this is in conflict with the existence of E. mivati as an independent species. We have carried out five single oocyst isolations to obtain five single-oocyst-derived strains of E. mitis and these were analyzed by the sequencing of 18S and mitochondrial cytochrome c oxidase subunit I genes. The two types of 18S gene were found to be present in each strain in roughly equal ratios. This indicates that if the strains carrying only one or the other 18S type exist, they will likely cross-breed and still represent a single species. However, the more probable explanation is that all strains of E. mitis contain two types of 18S gene and that the occasional detection of only one or the other type by sequencing might be caused by insufficient sampling. This is also the first report of the two types of 18S gene in Eimeria, which has already been described in some other apicomplexan species, most notably Plasmodium. We also found that these two types of ribosomal RNA differ significantly in their secondary structure. The biological significance of the two 18S gene variants in E. mitis is not known, however, we hypothesize that these variants might be used in different stages of the parasite's life-cycle as it is in other apicomplexan species investigated so far.

  15. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 40 S ribosomal subunit proteins Sa, Sc, S3a, S3b, S5', S9, S10, S11, S12, S14, S15, S15', S16, S17, S18, S19, S20, S21, S26, S27', and S29.

    PubMed

    Collatz, E; Ulbrich, N; Tsurugi, K; Lightfoot, H N; MacKinlay, W; Lin, A; Wool, I G

    1977-12-25

    The proteins of the small subunit of rat liver ribosomes were separated into five main groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Twenty-one proteins (Sa, Sc, S3a, S3b, S5', S9, S10, S11, S12, S14, S15, S15', S16, S17, S18, S19, S20, S21, S26, S27', and S29) were isolated from three groups (A40, C40, and D40) by ion exchange chromatography on DEAE-cellulose, carboxymethylcellulose, and phosphocellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.1 to 11 mg. Six of the proteins (S5', S10, S11, S18, S19, and S27') had no detectable contamination; the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.

  16. The unusually long small subunit ribosomal RNA of Phreatamoeba balamuthi.

    PubMed Central

    Hinkle, G; Leipe, D D; Nerad, T A; Sogin, M L

    1994-01-01

    The small subunit ribosomal RNA (rRNA) of the anaerobic amoeba Phreatamoeba balamuthi is the longest 16S-like rRNA sequenced to date. Secondary structure analysis suggests that the additional sequence is incorporated in canonical eukaryotic expansion regions and is not due to the presence of introns. Reverse transcriptase sequencing of total RNA extracts confirmed that two uncommonly long expansion regions are present in native P. balamuthi 16S-like rRNA. Primary sequence comparison and similar secondary structure indicate a 61 base stem and loop repeat within an expansion region; a mechanism whereby the repeat may have been incorporated is presented. P. balamuthi provides further evidence that 16S-like rRNA length does not correlate with phylogenetic position. PMID:8127686

  17. Structural diversity of eukaryotic small subunit ribosomal RNAs. Evolutionary implications.

    PubMed

    Sogin, M L; Gunderson, J H

    1987-01-01

    The phylogenetic diversity of the eukaryotic kingdom was assessed by comparing the structural and evolutionary diversity of 18-20S ribosomal RNA genes. The coding regions for cytoplasmic small subunit ribosomal RNA genes vary in length from 1753 to 2305 nucleotides, and they appear to be evolutionary mosaics in which highly and partially conserved sequences are interspersed among regions that display very high rates of genetic drift. Structural similarities between these gene sequences were used to establish a phylogenetic framework for the eukaryotes. The extent of sequence variation within the eukaryotes exceeds that displayed within the eubacterial or archaebacterial lines of descent. The kinetoplastids and euglenoids represent the earliest branchings among the eukaryotes. These branchings preceded the divergence of lineages leading to the slime molds and apicomplexans and far antedate a radiative period that gave rise to the plants, animals, fungi, and other protists.

  18. Identification and phylogenetic analysis of morphologically similar naked amoebae using small subunit ribosomal RNA.

    PubMed

    Sims, Gary P; Aitken, Robert; Rogerson, Andrew

    2002-01-01

    Fan-shaped, naked amoebae are commonly encountered in samples from freshwater and marine habitats suggesting that they are an important component of the microbial food web. However, there are considerable problems in both detecting these amoebae and identifying them, given their morphological similarity. In this study we used restriction analysis and partial sequence analysis of the small-subunit 18S ribosomal RNA gene to examine the phylogenetic relationships between nine "fan-shaped" Vannella and Platyamoeba species. The molecular phylogeny showed that the marine Vannella and Platyamoeba isolates are closely related, whereas the freshwater isolates are disparate. Thus, the current reliance on the fine structure of the cell coat (glycocalyx) used to separate these genera is not justified. The study also highlights sequence elements that might be targeted by fluorescent probes for the direct detection of these amoebae in field samples. The molecular data were also used to aid the identification of three unknown fan-shaped isolates. All three unknowns resembled Vannella or Platyamoeba. However, one of the strains (a small < 10 microm, benthic, fan-shaped amoeba) probably represents a new genus.

  19. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues.

    PubMed

    Bower, Susan M; Carnegie, Ryan B; Goh, Benjamin; Jones, Simon R; Lowe, Geoffrey J; Mak, Michelle W

    2004-01-01

    A "universal non-metazoan" polymerase chain reaction (UNonMet-PCR) that selectively amplifies a segment of nonmetazoan Small Subunit (SSU) rDNA gene was validated. The primers used were: 18S-EUK581-F (5'-GTGCCAGCAGCCGCG-3') and 18S-EUK1134-R (5'-TTTAAGTTTCAGCCTTGCG-3') with specificity provided by the 19-base reverse primer. Its target site is highly conserved across the Archaea, Bacteria, and eukaryotes (including fungi), but not most Metazoa (except Porifera, Ctenophora, and Myxozoa) which have mismatches at bases 14 and 19 resulting in poor or failed amplification. During validation, UNonMet-PCR amplified SSU rDNA gene fragments from all assayed protists (n = 16 from 7 higher taxa, including two species of marine phytoplankton) and Fungi (n = 3) but amplified very poorly or not at all most assayed Metazoa (n = 13 from 8 higher taxa). When a nonmetazoan parasite was present in a metazoan host, the parasite DNA was preferentially amplified. For example, DNA from the parasite Trypanosoma danilewskyi was preferentially amplified in mixtures containing up to 1,000 x more goldfish Carassius auratus (host) DNA. Also, the weak amplification of uninfected host (Chionoecetes tanneri) SSU rDNA did not occur in the presence of a natural infection with a parasite (Hematodinium sp.). Only Hematodinium sp. SSU rDNA was amplified in samples from infected C. tanneri. This UNonMet-PCR is a powerful tool for amplifying SSU rDNA from non-metazoan pathogens or symbionts that have not been isolated from metazoan hosts.

  20. The sequential addition of ribosomal proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells.

    PubMed

    Todorov, I T; Noll, F; Hadjiolov, A A

    1983-03-15

    Nucleolar '80-S' and '40-S' preribosomes (containing 45-S and 21-S pre-rRNA, respectively), as well as cytoplasmic ribosomes, were isolated from Friend erythroleukemia cells. The presence of structural ribosomal proteins in the isolated particles was studied by using antisera against individual rat liver small ribosomal subunit proteins. The analysis is based on the established crossreactivity between rat and mouse ribosomes [F. Noll and H. Bielka (1970) Mol. Gen. Genet. 106, 106-113]. The identification of the proteins was achieved by two independent immunological techniques: the passive haemagglutination test and the enzyme immunoassay of electrophoretically fractionated proteins, blotted on nitrocellulose. All 17 proteins tested are present in cytoplasmic ribosomes. A large number of proteins (S3a, S6, S7, S8, S11, S14, S18, S20, S23/24 and S25) are present in the '80-S' preribosome. Only two proteins (S3 and S21) are added during the formation of the '40-S' preribosome in the nucleolus. Four proteins (S2, S19, S26 and S29) are added at later, possibly extranucleolar, stages of ribosome formation. The results obtained provide evidence for the sequential addition of proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells.

  1. Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene

    PubMed Central

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally. PMID:23024768

  2. An overview of the secondary structure of the V4 region of eukaryotic small-subunit ribosomal RNA.

    PubMed

    Nickrent, D L; Sargent, M L

    1991-01-25

    The V4 region of the small subunit (18S) ribosomal RNA was examined in 72 different sequences representing a broad sample eukaryotic diversity. This domain is the most variable region of the 18S rRNA molecule and ranges in length from ca. 230 to over 500 bases. Based upon comparative analysis, secondary structural models were constructed for all sequences and the resulting generalized model shows that most organisms possess seven helices for this region. The protists and two insects show from one to as many as four helices in addition to the above seven. In this report, we summarize secondary structure information presented elsewhere for the V4 region, describe the general features for helical and apical regions, and identify signature sequences useful in helix identification. Our model generally agrees with other current concepts; however, we propose modifications or alternative structures for the start of the V4 region, the large protist inserts, and the sector that may possibly contain a pseudoknot.

  3. Prevalent ciliate symbiosis on copepods: high genetic diversity and wide distribution detected using small subunit ribosomal RNA gene.

    PubMed

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally.

  4. The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae.

    PubMed

    Rubtsov, P M; Musakhanov, M M; Zakharyev, V M; Krayev, A S; Skryabin, K G; Bayev, A A

    1980-12-11

    The cloned 18 S ribosomal RNA gene from Saccharomyces cerevisiae have been sequenced, using the Maxam-Gilbert procedure. From this data the complete sequence of 1789 nucleotides of the 18 S RNA was deduced. Extensive homology with many eucaryotic as well as E. coli ribosomal small subunit rRNA (S-rRNA) has been observed in the 3'-end region of the rRNA molecule. Comparison of the yeast 18 S rRNA sequences with partial sequence data, available for rRNAs of the other eucaryotes provides strong evidence that a substantial portion of the 18 S RNA sequence has been conserved in evolution.

  5. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data.

    PubMed

    Bengtsson-Palme, Johan; Hartmann, Martin; Eriksson, Karl Martin; Pal, Chandan; Thorell, Kaisa; Larsson, Dan Göran Joakim; Nilsson, Rolf Henrik

    2015-11-01

    The ribosomal rRNA genes are widely used as genetic markers for taxonomic identification of microbes. Particularly the small subunit (SSU; 16S/18S) rRNA gene is frequently used for species- or genus-level identification, but also the large subunit (LSU; 23S/28S) rRNA gene is employed in taxonomic assignment. The METAXA software tool is a popular utility for extracting partial rRNA sequences from large sequencing data sets and assigning them to an archaeal, bacterial, nuclear eukaryote, mitochondrial or chloroplast origin. This study describes a comprehensive update to METAXA - METAXA2 - that extends the capabilities of the tool, introducing support for the LSU rRNA gene, a greatly improved classifier allowing classification down to genus or species level, as well as enhanced support for short-read (100 bp) and paired-end sequences, among other changes. The performance of METAXA2 was compared to other commonly used taxonomic classifiers, showing that METAXA2 often outperforms previous methods in terms of making correct predictions while maintaining a low misclassification rate. METAXA2 is freely available from http://microbiology.se/software/metaxa2/. PMID:25732605

  6. Dim2p, a KH-domain protein required for small ribosomal subunit synthesis

    PubMed Central

    VANROBAYS, EMMANUEL; GÉLUGNE, JEAN-PAUL; CAIZERGUES-FERRER, MICHÈLE; LAFONTAINE, DENIS L.J.

    2004-01-01

    Recent proteomic analyses are revealing the dynamics of preribosome assembly. Following cleavage at processing site A2, which generates the 20S pre-rRNA (the immediate precursor to the 18S rRNA), early RRPs (ribosomal RNA processing factors) are released in bulk from the preribosomes, and the resulting pre-40S subunits are left associated with a limited set of proteins that we refer to as the SSU RRP complex. Dim2p, a core constituent of the SSU RRP complex and conserved KH-domain containing protein, is required for pre-rRNA processing and is associated with early nucleolar and late cytoplasmic pre-rRNA species. Consistently, Dim2p shuttles between the nucle(ol)us and the cytoplasm, a trafficking that is tightly regulated by growth. The association of Dim2p with the 18S rRNA dimethyltransferase Dim1p, as well as its requirement for pre-rRNA processing at cleavage sites A1 and A2 and for 18S rRNA dimethylation, suggest that Dim2p may recruit Dim1p to nucleolar pre-rRNAs through its KH domain. PMID:15037774

  7. Differential Targeting of Gβγ-Subunit Signaling with Small Molecules

    NASA Astrophysics Data System (ADS)

    Bonacci, Tabetha M.; Mathews, Jennifer L.; Yuan, Chujun; Lehmann, David M.; Malik, Sundeep; Wu, Dianqing; Font, Jose L.; Bidlack, Jean M.; Smrcka, Alan V.

    2006-04-01

    G protein βγ subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gβγ subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gβγ subunit functions. Several compounds bound to Gβγ subunits with affinities from 0.1 to 60 μM and selectively modulated functional Gβγ-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  8. DEAD-box RNA helicase Dbp4 is required for small-subunit processome formation and function.

    PubMed

    Soltanieh, Sahar; Osheim, Yvonne N; Spasov, Krasimir; Trahan, Christian; Beyer, Ann L; Dragon, François

    2015-03-01

    DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5' end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA.

  9. Phylogenetics and systematics of Angiostrongylus lungworms and related taxa (Nematoda: Metastrongyloidea) inferred from the nuclear small subunit (SSU) ribosomal DNA sequences.

    PubMed

    Eamsobhana, P; Lim, P E; Yong, H S

    2015-05-01

    The Angiostrongylus lungworms are of public health and veterinary concern in many countries. At the family level, the Angiostrongylus lungworms have been included in the family Angiostrongylidae or the family Metastrongylidae. The present study was undertaken to determine the usefulness and suitability of the nuclear 18S (small subunit, SSU) rDNA sequences for differentiating various taxa of the genus Angiostrongylus, as well as to determine the systematics and phylogenetic relationship of Angiostrongylus species and other metastrongyloid taxa. This study revealed six 18S (SSU) haplotypes in A. cantonensis, indicating considerable genetic diversity. The uncorrected pairwise 'p' distances among A. cantonensis ranged from 0 to 0.86%. The 18S (SSU) rDNA sequences unequivocally distinguished the five Angiostrongylus species, confirmed the close relationship of A. cantonensis and A. malaysiensis and that of A. costaricensis and A. dujardini, and were consistent with the family status of Angiostrongylidae and Metastrongylidae. In all cases, the congeneric metastrongyloid species clustered together. There was no supporting evidence to include the genus Skrjabingylus as a member of Metastrongylidae. The genera Aelurostrongylus and Didelphostrongylus were not recovered with Angiostrongylus, indicating polyphyly of the Angiostrongylidae. Of the currently recognized families of Metastrongyloidea, only Crenosomatidae appeared to be monophyletic. In view of the unsettled questions regarding the phylogenetic relationships of various taxa of the metastrongyloid worms, further analyses using more markers and more taxa are warranted.

  10. Molecular phylogeny of Stentor (Ciliophora: Heterotrichea) based on small subunit ribosomal RNA sequences.

    PubMed

    Gong, Ying-Chun; Yu, Yu-He; Zhu, Fei-Yun; Feng, Wei-Song

    2007-01-01

    To determine the phylogenetic position of Stentor within the Class Heterotrichea, the complete small subunit rRNA genes of three Stentor species, namely Stentor polymorphus, Stentor coeruleus, and Stentor roeseli, were sequenced and used to construct phylogenetic trees using the maximum parsimony, neighbor joining, and Bayesian analysis. With all phylogenetic methods, the genus Stentor was monophyletic, with S. roeseli branching basally. PMID:17300519

  11. Expression of a foreign Rubisco small subunit in tobacco with reduced levels of the native protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cDNA, ArRbcS3, for the small subunit of Rubisco from Amaranthus retroflexus (pigweed) was expressed in tobacco (Nicotiana tabacum) under the control of a strong leaf-specific Lhcb promoter. The coding region of the ArRbcS3 was fused to the plastid targeting sequence of the native tobacco rbcS to...

  12. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms

    NASA Technical Reports Server (NTRS)

    Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.

    1994-01-01

    When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.

  13. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    PubMed

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology. PMID:27170550

  14. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    PubMed

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.

  15. Cloning and characterization of ADP-glucose pyrophosphorylase small subunit gene in Cyperus esculentus (yellow nutsedge).

    PubMed

    Cheng, C; Hu, J; Zhi, Y; Su, J J; Zhang, X K; Huang, B Q

    2015-01-01

    ADP-glucose pyrophosphorylase (ADPGlcPPase) controls the first committed step of starch synthesis by catalyzing the biosynthesis of ADP-glucose from glucose-phosphate and ATP. It is a tetrameric protein consisting of two small and two large subunits. The small subunits have a catalytic function, while the large subunits regulate the enzyme activity. Cyperus esculentus (yellow nutsedge) is a perennial C4 plant grown from rhizomes and tubers. Previous studies on yellow nutsedge have mostly focused on the morphology and cultivation of tubers, their application in food, and biochemical analyses of the tubers. In this study, the gene encoding the ADPGlcPPase small subunit (CeAGPS) in yellow nutsedge was cloned and characterized. The full-length CeAGPS cDNA sequence contained an 81-bp 5'-untranslated region (UTR), a 188-bp 3'-UTR, and a 1539-bp open reading frame encoding 512-amino acid residues. The genomic sequence of CeAGPS comprises a nine exon-eight intron structure similar to the previously reported cotton and Arabidopsis thaliana AGPS genes. The deduced translation product of the CeAGPS gene contained a well-conserved catalytic domain and regulatory elements typical of plant AGPS. Reverse transcriptase polymerase chain reaction amplification of the target gene in various plant parts using gene-specific primers indicated that the expression of CeAGPS was most abundant in the tuber, and relatively lower in nutsedge roots. PMID:26782478

  16. Activation and regulation of ribulose bisphosphate carboxylase-oxygenase in the absence of small subunits.

    PubMed

    Whitman, W B; Martin, M N; Tabita, F R

    1979-10-25

    Ribulose 1,5-bisphosphate carboxylase from Rhodospirillum rubrum requires CO2 and Mg2+ for activation of both CO2, both the carboxylase and oxygenase activities are stimulated by 6-phoshpo-D-gluconate, fructose 1,6-bisphosphate, 2-phosphoglycolate, 3-phosphoglycerate, NADPH, and fructose 6-phosphate. The carboxylase activity is not activated by ribose 5-phosphate. The substrate, ribulose bisphosphate, neither activates nor inhibits the CO2 and Mg2+ activation of this enzyme. Activation by CO2 and Mg2+ is rapid and results in increased susceptibility to active-site-directed protein modification reagents. Because the R. rubrum carboxylase-oxygenase is a dimer of large subunits and contains no small subunits, these results suggest that the effector binding sites of the higher plant enzyme may also be found on the large subunit.

  17. Differential distribution of calpain small subunit 1 and 2 in rat brain.

    PubMed

    Friedrich, Peter; Papp, Henrietta; Halasy, Katalin; Farkas, Attila; Farkas, Bence; Tompa, Peter; Kása, Peter

    2004-04-01

    Calpains, the Ca(2+)-dependent thiol proteases, are abundant in the nervous tissue. The ubiquitous enzyme forms in mammals are heterodimers consisting of a specific, micro or m, large (catalytic) subunit and, apparently, a common small (regulatory) subunit (CSS1). Recently, however, we described a second form of small subunit (CSS2), which is of restricted occurrence [Schád, E., Farkas, A., Jékely, G., Tompa, P. & Friedrich, P. (2002) Biochem. J., 362, 383-388]. Here we analysed the distribution of immunoreactivity in various parts of rat brain against two anti-CSS1 and two anti-CSS2 antibodies by correlated light and electron microscopy. Remarkably, the antibodies showed differential distribution in various parts of rat cortex: anti-CSS1 reacted mainly with perikarya and dendrites, whereas anti-CSS2 was more prominent in axons. In serial sections CSS2 and synaptophysin gave very similar patterns, i.e. these epitopes seem to colocalize. Electron microscopy confirmed that CSS1 was mainly localized postsynaptically in dendrites and somata, whereas CSS2 was found presynaptically. The hypothesis is advanced that these distinct distributions of calpain subunits may be related to the transport of these enzymes in nerve cells. PMID:15078555

  18. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000

    SciTech Connect

    Spreitzer, Robert J.

    2000-10-04

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesis is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.

  19. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae.

    PubMed Central

    Van de Peer, Y; Rensing, S A; Maier, U G; De Wachter, R

    1996-01-01

    Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA. PMID:8755544

  20. Eukaryote-specific extensions in ribosomal proteins of the small subunit: Structure and function.

    PubMed

    Ghosh, Arnab; Komar, Anton A

    2015-01-01

    High-resolution structures of yeast ribosomes have improved our understanding of the architecture and organization of eukaryotic rRNA and proteins, as well as eukaryote-specific extensions present in some conserved ribosomal proteins. Despite this progress, assignment of specific functions to individual proteins and/or eukaryote-specific protein extensions remains challenging. It has been suggested that eukaryote-specific extensions of conserved proteins from the small ribosomal subunit may facilitate eukaryote-specific reactions in the initiation phase of protein synthesis. This review summarizes emerging data describing the structural and functional significance of eukaryote-specific extensions of conserved small ribosomal subunit proteins, particularly their possible roles in recruitment and spatial organization of eukaryote-specific initiation factors. PMID:26779416

  1. Investigation of molluscan phylogeny using large-subunit and small-subunit nuclear rRNA sequences.

    PubMed

    Passamaneck, Yale J; Schander, Christoffer; Halanych, Kenneth M

    2004-07-01

    The Mollusca represent one of the most morphologically diverse animal phyla, prompting a variety of hypotheses on relationships between the major lineages within the phylum based upon morphological, developmental, and paleontological data. Analyses of small-ribosomal RNA (SSU rRNA) gene sequence have provided limited resolution of higher-level relationships within the Mollusca. Recent analyses suggest large-subunit (LSU) rRNA gene sequences are useful in resolving deep-level metazoan relationships, particularly when combined with SSU sequence. To this end, LSU (approximately 3.5 kb in length) and SSU (approximately 2 kb) sequences were collected for 33 taxa representing the major lineages within the Mollusca to improve resolution of intraphyletic relationships. Although the LSU and combined LSU+SSU datasets appear to hold potential for resolving branching order within the recognized molluscan classes, low bootstrap support was found for relationships between the major lineages within the Mollusca. LSU+SSU sequences also showed significant levels of rate heterogeneity between molluscan lineages. The Polyplacophora, Gastropoda, and Cephalopoda were each recovered as monophyletic clades with the LSU+SSU dataset. While the Bivalvia were not recovered as monophyletic clade in analyses of the SSU, LSU, or LSU+SSU, the Shimodaira-Hasegawa test showed that likelihood scores for these results did not differ significantly from topologies where the Bivalvia were monophyletic. Analyses of LSU sequences strongly contradict the widely accepted Diasoma hypotheses that bivalves and scaphopods are closely related to one another. The data are consistent with recent morphological and SSU analyses suggesting scaphopods are more closely related to gastropods and cephalopods than to bivalves. The dataset also presents the first published DNA sequences from a neomeniomorph aplacophoran, a group considered critical to our understanding of the origin and early radiation of the Mollusca

  2. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics

    NASA Technical Reports Server (NTRS)

    Winker, S.; Woese, C. R.

    1991-01-01

    The number of small subunit rRNA sequences is now great enough that the three domains Archaea, Bacteria and Eucarya (Woese et al., 1990) can be reliably defined in terms of their sequence "signatures". Approximately 50 homologous positions (or nucleotide pairs) in the small subunit rRNA characterize and distinguish among the three. In addition, the three can be recognized by a variety of nonhomologous rRNA characters, either individual positions and/or higher-order structural features. The Crenarchaeota and the Euryarchaeota, the two archaeal kingdoms, can also be defined and distinguished by their characteristic compositions at approximately fifteen positions in the small subunit rRNA molecule.

  3. Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins.

    PubMed

    Culver, G M; Noller, H F

    1999-06-01

    Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated

  4. Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA–protein interactions during small ribosomal subunit biogenesis

    PubMed Central

    Hellmich, Ute A.; Weis, Benjamin L.; Lioutikov, Anatoli; Wurm, Jan Philip; Kaiser, Marco; Christ, Nina A.; Hantke, Katharina; Kötter, Peter; Entian, Karl-Dieter; Schleiff, Enrico; Wöhnert, Jens

    2013-01-01

    Factor activating Pos9 (Fap7) is an essential ribosome biogenesis factor important for the assembly of the small ribosomal subunit with an uncommon dual ATPase and adenylate kinase activity. Depletion of Fap7 or mutations in its ATPase motifs lead to defects in small ribosomal subunit rRNA maturation, the absence of ribosomal protein Rps14 from the assembled subunit, and retention of the nascent small subunit in a quality control complex with the large ribosomal subunit. The molecular basis for the role of Fap7 in ribosome biogenesis is, however, not yet understood. Here we show that Fap7 regulates multiple interactions between the precursor rRNA, ribosomal proteins, and ribosome assembly factors in a hierarchical manner. Fap7 binds to Rps14 with a very high affinity. Fap7 binding blocks both rRNA-binding elements of Rps14, suggesting that Fap7 inhibits premature interactions of Rps14 with RNA. The Fap7/Rps14 interaction is modulated by nucleotide binding to Fap7. Rps14 strongly activates the ATPase activity but not the adenylate kinase activity of Fap7, identifying Rps14 as an example of a ribosomal protein functioning as an ATPase-activating factor. In addition, Fap7 inhibits the RNA cleavage activity of Nob1, the endonuclease responsible for the final maturation step of the small subunit rRNA, in a nucleotide independent manner. Thus, Fap7 may regulate small subunit biogenesis at multiple stages. PMID:24003121

  5. Structural and evolutionary relationships among RuBisCOs inferred from their large and small subunits.

    PubMed

    Xiang, Fu; Fang, Yuanping; Xiang, Jun

    2016-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key enzyme to assimilate CO(2) into the biosphere. The nonredundant structural data sets for three RuBisCO domain superfamilies, i.e. large subunit C-terminal domain (LSC), large subunit N-terminal domain (LSN) and small subunit domain (SS), were selected using QR factorization based on the structural alignment with QH as the similarity measure. The structural phylogenies were then constructed to investigate a possible functional significance of the evolutionary diversification. The LSC could have occurred in both bacteria and archaea, and has evolved towards increased complexity in both bacteria and eukaryotes with a 4-helix-2-helix-2-helix bundle being extended into a 5-helix-3-helix-3-helix one at the LSC carboxyl-terminus. The structural variations of LSN could have originated not only in bacteria with a short coil, but also in eukaryotes with a long one. Meanwhile, the SS dendrogram can be contributed to the structural variations at the βA-βB-loop region. All the structural variations observed in the coil regions have influence on catalytic performance or CO(2)/O(2) selectivities of RuBisCOs from different species. Such findings provide insights on RuBisCO improvements. PMID:27049618

  6. Structure of the small ribosomal subunit RNA of the pulmonate snail, Limicolaria kambeul, and phylogenetic analysis of the Metazoa.

    PubMed

    Winnepennickx, B; Backeljau, T; van de Peer, Y; De Wachter, R

    1992-09-01

    The complete nucleotide sequence of the small ribosomal subunit RNA of the gastropod, Limicolaria kambeul, was determined and used to infer a secondary structure model. In order to clarify the phylogenetic position of the Mollusca among the Metazoa, an evolutionary tree was constructed by neighbor-joining, starting from an alignment of small ribosomal subunit RNA sequences. The Mollusca appear to be a monophyletic group, related to Arthropoda and Chordata in an unresolved trichotomy. PMID:1505675

  7. Phylogenetic position of Cryothecomonas inferred from nuclear-encoded small subunit ribosomal RNA.

    PubMed

    Kühn, S; Lange, M; Medlin, L K

    2000-12-01

    The systematic position of the genus Cryothecomonas has been determined from an analysis of the nuclear-encoded small subunit ribosomal RNA gene of Cryothecomonas longipes and two strains of Cryothecomonas aestivalis. Our phylogenetic trees inferred from maximum likelihood, distance and maximum parsimony methods robustly show that the genus Cryothecomonas clusters within the phylum Cercozoa, and is related to the sarcomonad flagellate Heteromita globosa. Morphological data supporting the taxonomic placement of Cryothecomonas near the sarcomonad flagellates has been compiled from the literature. The high number of nucleotide substitutions found between two morphologically indistinguishable strains of Cryothecomonas aestivalis suggests the possibility of cryptic species within Cryothecomonas aestivalis. PMID:11212894

  8. Molecular phylogeny of the Heterotrichea (Ciliophora, Postciliodesmatophora) based on small subunit rRNA gene sequences.

    PubMed

    Schmidt, Stephanie L; Foissner, Wilhelm; Schlegel, Martin; Bernhard, Detlef

    2007-01-01

    A comprehensive molecular analysis of the phylogenetic relationships within the Heterotrichea including all described families is still lacking. For this reason, the complete nuclear small subunit (SSU) rDNA was sequenced from further representatives of the Blepharismidae and the Stentoridae. In addition, the SSU rDNA of a new, undescribed species of the genus Condylostomides (Condylostomatidae) was sequenced. The detailed phylogenetic analyses revealed a consistent branching pattern: while the terminal branches are generally well resolved, the basal relationships remain unsolved. Moreover, the data allow some conclusions about the macronuclear evolution within the genera Blepharisma, Stentor, and Spirostomum suggesting that a single, compact macronucleus represents the ancestral state. PMID:17669161

  9. Evolutionary diversity of eukaryotic small-subunit rRNA genes.

    PubMed

    Sogin, M L; Elwood, H J; Gunderson, J H

    1986-03-01

    The small-subunit rRNA gene sequences of the flagellated protists Euglena gracilis and Trypanosoma brucei were determined and compared to those of other eukaryotes. A phylogenetic tree was constructed in which the earliest branching among the eukaryotes is represented by E. gracilis. The E. gracilis divergence far antedates a period of massive evolutionary radiation that gave rise to the plants, animals, fungi, and certain groups of protists such as ciliates and the acanthamoebae. The genetic diversity in this collection of eukaryotes is seen to exceed that displayed within either the eubacterial or the archaebacterial lines of descent.

  10. Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of small subunit residues

    SciTech Connect

    Jeyakanthan, Jeyaraman; Drevland, Randy; Gayathri, Dasara; Velmurugan, Devadasan; Shinkai, Akeo; Graham, David E

    2010-01-01

    The aconitase family of hydro-lyase enzymes includes three classes of proteins that catalyze the isomerization of -hydroxyacids to -hydroxyacids. Besides aconitase, isopropylmalate isomerase (IPMI) proteins specifically catalyze the isomerization of , -dicarboxylates with hydrophobic -chain groups, and homoaconitase (HACN) proteins catalyze the isomerization of tricarboxylates with variable chain length -carboxylate groups. These enzymes stereospecific hydro-lyase activities make them attractive catalysts to produce diastereomers from unsaturated precursors. However, sequence similarity and convergent evolution among these proteins leads to widespread misannotation and uncertainty about gene function. To find the substrate specificity determinants of homologous IPMI and HACN proteins from Methanocaldococcus jannaschii, the small-subunit HACN protein (MJ1271) was crystallized for X-ray diffraction. The structural model showed characteristic residues in a flexible loop region between 2 and 3 that distinguish HACN from IPMI and aconitase proteins. Site-directed mutagenesis of MJ1271 produced loop-region variant proteins that were reconstituted with wild-type MJ1003 large-subunit protein. The heteromers formed promiscuous hydro-lyases with reduced activity but broader substrate specificity. Both R26K and R26V variants formed relatively efficient IPMI enzymes, while the T27A variant had uniformly lower specificity constants for both IPMI and HACN substrates. The R26V T27Y variant resembles the MJ1277 IPMI small subunit in its flexible loop sequence, but demonstrated the broad substrate specificity of the R26V variant. These mutations may reverse the evolution of HACN activity from an ancestral IPMI gene, demonstrating the evolutionary potential for promiscuity in hydro-lyase enzymes. Understanding these specificity determinants enables the functional reannotation of paralogous HACN and IPMI genes in numerous genome sequences. These structural and kinetic results will

  11. High-Density Microarray of Small-Subunit Ribosomal DNA Probes

    PubMed Central

    Wilson, Kenneth H.; Wilson, Wendy J.; Radosevich, Jennifer L.; DeSantis, Todd Z.; Viswanathan, Vijay S.; Kuczmarski, Thomas A.; Andersen, Gary L.

    2002-01-01

    Ribosomal DNA sequence analysis, originally conceived as a way to provide a universal phylogeny for life forms, has proven useful in many areas of biological research. Some of the most promising applications of this approach are presently limited by the rate at which sequences can be analyzed. As a step toward overcoming this limitation, we have investigated the use of photolithography chip technology to perform sequence analyses on amplified small-subunit rRNA genes. The GeneChip (Affymetrix Corporation) contained 31,179 20-mer oligonucleotides that were complementary to a subalignment of sequences in the Ribosomal Database Project (RDP) (B. L. Maidak et al., Nucleic Acids Res. 29:173-174, 2001). The chip and standard Affymetrix software were able to correctly match small-subunit ribosomal DNA amplicons with the corresponding sequences in the RDP database for 15 of 17 bacterial species grown in pure culture. When bacteria collected from an air sample were tested, the method compared favorably with cloning and sequencing amplicons in determining the presence of phylogenetic groups. However, the method could not resolve the individual sequences comprising a complex mixed sample. Given these results and the potential for future enhancement of this technology, it may become widely useful. PMID:11976131

  12. Inhibition of Heterotrimeric G Protein Signaling by a Small Molecule Acting on Gα Subunit

    PubMed Central

    Ayoub, Mohammed Akli; Damian, Marjorie; Gespach, Christian; Ferrandis, Eric; Lavergne, Olivier; De Wever, Olivier; Banères, Jean-Louis; Pin, Jean-Philippe; Prévost, Grégoire Pierre

    2009-01-01

    The simultaneous activation of many distinct G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play a major role in various pathological conditions. Pan-inhibition of GPCR signaling by small molecules thus represents a novel strategy to treat various diseases. To better understand such therapeutic approach, we have characterized the biomolecular target of BIM-46187, a small molecule pan-inhibitor of GPCR signaling. Combining bioluminescence and fluorescence resonance energy transfer techniques in living cells as well as in reconstituted receptor-G protein complexes, we observed that, by direct binding to the Gα subunit, BIM-46187 prevents the conformational changes of the receptor-G protein complex associated with GPCR activation. Such a binding prevents the proper interaction of receptors with the G protein heterotrimer and inhibits the agonist-promoted GDP/GTP exchange. These observations bring further evidence that inhibiting G protein activation through direct binding to the Gα subunit is feasible and should constitute a new strategy for therapeutic intervention. PMID:19648112

  13. Integrative structural analysis of the UTPB complex, an early assembly factor for eukaryotic small ribosomal subunits

    PubMed Central

    Zhang, Cheng; Sun, Qi; Chen, Rongchang; Chen, Xining; Lin, Jinzhong; Ye, Keqiong

    2016-01-01

    Ribosome assembly is an essential and conserved cellular process in eukaryotes that requires numerous assembly factors. The six-subunit UTPB complex is an essential component of the 90S precursor of the small ribosomal subunit. Here, we analyzed the molecular architecture of UTPB using an integrative structural biology approach. We mapped the major interactions that associate each of six UTPB proteins. Crystallographic studies showed that Utp1, Utp21, Utp12 and Utp13 are evolutionarily related and form a dimer of dimers (Utp1–Utp21, Utp12–Utp13) through their homologous helical C-terminal domains. Molecular docking with crosslinking restraints showed that the WD domains of Utp12 and Utp13 are associated, as are the WD domains of Utp1, Utp21 and Utp18. Electron microscopy images of the entire UTPB complex revealed that it predominantly adopts elongated conformations and possesses internal flexibility. We also determined crystal structures of the WD domain of Utp18 and the HAT and deviant HAT domains of Utp6. A structural model of UTPB was derived based on these data. PMID:27330138

  14. Direct-reversible binding of small molecules to G protein βγ subunits

    PubMed Central

    Seneviratne, AMPB; Burroughs, Michael; Giralt, Ernest; Smrcka, Alan V.

    2011-01-01

    Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of three subunits α, β, γ mediate activation of multiple intracellular signaling cascades initiated by G protein-coupled receptors (GPCRs). Previously our laboratory identified small molecules that bind to Gβγ and interfere with or enhance binding of select effectors with Gβγ. To understand the molecular mechanisms of selectivity and assess binding of compounds to Gβγ, we used biophysical and biochemical approaches to directly monitor small molecule binding to Gβγ. Surface plasmon resonance (SPR) analysis indicated that multiple compounds bound directly to Gβγ with affinities in the high nanomolar to low micromolar range but with surprisingly slow on and off rate kinetics. While the koff was slow for most of the compounds in physiological buffers, they could be removed from Gβγ with mild chaotropic salts or mildly dissociating collision energy in a mass-spectrometer indicating that compound-Gβγ interactions were non-covalent. Finally, at concentrations used to observe maximal biological effects the stoichiometry of binding was 1:1. The results from this study show that small molecule modulation of Gβγ-effector interactions is by specific direct non-covalent and reversible binding of small molecules to Gβγ. This is highly relevant to development of Gβγ targeting as a therapeutic approach since reversible, direct binding is a prerequisite for drug development and important for specificity. PMID:21621014

  15. Isolation and characterization of rubisco small subunit gene promoter from common wheat (Triticum aestivum L.).

    PubMed

    Mukherjee, Shalini; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-01-01

    Choice of an appropriate promoter is critical to express target genes in intended tissues and developmental stages. However, promoters capable of directing gene expression in specific tissues and stages are not well characterized in monocot species. To identify such a promoter in wheat, this study isolated a partial sequence of the wheat small subunit of RuBisCO (TarbcS) promoter. In silico analysis revealed the presence of elements that are characteristic to rbcS promoters of other, mainly dicot, species. Transient expression of the TarbcS:GUS in immature wheat embryos and tobacco leaves but not in the wheat roots indicate the functionality of the TarbcS promoter fragment in directing the expression of target genes in green plant tissues.

  16. Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria.

    PubMed

    Polet, Stephane; Berney, Cédric; Fahrni, José; Pawlowski, Jan

    2004-03-01

    In his grand monograph of Radiolaria, Ernst Haeckel originally included Phaeodarea together with Acantharea and Polycystinea, all three taxa characterized by the presence of a central capsule and the possession of axopodia. Cytological and ultrastructural studies, however, questioned the monophyly of Radiolaria, suggesting an independent evolutionary origin of the three taxa, and the first molecular data on Acantharea and Polycystinea brought controversial results. To test further the monophyly of Radiolaria, we sequenced the complete small subunit ribosomal RNA gene of three phaeodarians and three polycystines. Our analyses reveal that phaeodarians clearly branch among the recently described phylum Cercozoa, separately from Acantharea and Polycystinea. This result enhances the morphological variability within the phylum Cercozoa, which already contains very heterogeneous groups of protists. Our study also confirms the common origin of Acantharea and Polycystinea, which form a sister-group to the Cercozoa, and allows a phylogenetic reinterpretation of the morphological features of the three radiolarian groups. PMID:15144058

  17. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas.

    PubMed

    Meyer, Moritz T; Genkov, Todor; Skepper, Jeremy N; Jouhet, Juliette; Mitchell, Madeline C; Spreitzer, Robert J; Griffiths, Howard

    2012-11-20

    The pyrenoid is a subcellular microcompartment in which algae sequester the primary carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The pyrenoid is associated with a CO(2)-concentrating mechanism (CCM), which improves the operating efficiency of carbon assimilation and overcomes diffusive limitations in aquatic photosynthesis. Using the model alga Chlamydomonas reinhardtii, we show that pyrenoid formation, Rubisco aggregation, and CCM activity relate to discrete regions of the Rubisco small subunit (SSU). Specifically, pyrenoid occurrence was shown to be conditioned by the amino acid composition of two surface-exposed α-helices of the SSU: higher plant-like helices knock out the pyrenoid, whereas native algal helices establish a pyrenoid. We have also established that pyrenoid integrity was essential for the operation of an active CCM. With the algal CCM being functionally analogous to the terrestrial C(4) pathway in higher plants, such insights may offer a route toward transforming algal and higher plant productivity for the future.

  18. Small subunit ribosomal DNA suggests that the xenophyophorean Syringammina corbicula is a foraminiferan.

    PubMed

    Pawlowski, Jan; Holzmann, Maria; Fahrni, Jose; Richardson, Susan L

    2003-01-01

    Xenophyophorea are giant deep-sea rhizopodial protists of enigmatic origins. Although species were described as Foraminifera or sponges in the early literature, the xenophyophoreans are currently classified either as a class of Rhizopoda or an independent phylum. To establish the phylogenetic position of Xenophyophorea, we analysed the small subunit (SSU) rRNA gene sequence of Syringammina corbicula Richardson, a newly described xenophyophorean species from the Cape Verde Plateau. The SSUrDNA analyses showed that S. corbicula is closely related to Rhizammina algaeformis, a tubular deep-sea foraminiferan. Both species branch within a group of monothalamous (single-chambered) Foraminifera, which include also such agglutinated genera as Toxisarcon, Rhabdammina, and Saccammina, and the organic-walled genera Gloiogullmia and Cylindrogullmia. Our results are congruent with observations of similar cytoplasmic organisation in Rhizammina and Syringammina. Thus, the Xenophyophorea appear to be a highly specialised group of deep-sea Foraminifera.

  19. Phylogeny of lobose amoebae based on actin and small-subunit ribosomal RNA genes.

    PubMed

    Fahrni, José F; Bolivar, Ignacio; Berney, Cédric; Nassonova, Elena; Smirnov, Alexey; Pawlowski, Jan

    2003-11-01

    Lobose amoebae are abundant free-living protists and important pathogenic agents, yet their evolutionary history and position in the universal tree of life are poorly known. Molecular data for lobose amoebae are limited to a few species, and all phylogenetic studies published so far lacked representatives of many of their taxonomic groups. Here we analyze actin and small-subunit ribosomal RNA (SSU rRNA) gene sequences of a broad taxon sampling of naked, lobose amoebae. Our results support the existence of a monophyletic Amoebozoa clade, which comprises all lobose amoebae examined so far, the amitochondriate pelobionts and entamoebids, and the slime molds. Both actin and SSU rRNA phylogenies distinguish two well-defined clades of amoebae, the "Gymnamoebia sensu stricto" and the Archamoebae (pelobionts + entamoebids), and one weakly supported and ill-resolved group comprising some naked, lobose amoebae and the Mycetozoa.

  20. Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria.

    PubMed

    Polet, Stephane; Berney, Cédric; Fahrni, José; Pawlowski, Jan

    2004-03-01

    In his grand monograph of Radiolaria, Ernst Haeckel originally included Phaeodarea together with Acantharea and Polycystinea, all three taxa characterized by the presence of a central capsule and the possession of axopodia. Cytological and ultrastructural studies, however, questioned the monophyly of Radiolaria, suggesting an independent evolutionary origin of the three taxa, and the first molecular data on Acantharea and Polycystinea brought controversial results. To test further the monophyly of Radiolaria, we sequenced the complete small subunit ribosomal RNA gene of three phaeodarians and three polycystines. Our analyses reveal that phaeodarians clearly branch among the recently described phylum Cercozoa, separately from Acantharea and Polycystinea. This result enhances the morphological variability within the phylum Cercozoa, which already contains very heterogeneous groups of protists. Our study also confirms the common origin of Acantharea and Polycystinea, which form a sister-group to the Cercozoa, and allows a phylogenetic reinterpretation of the morphological features of the three radiolarian groups.

  1. Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock.

    PubMed

    Van de Peer, Y; Neefs, J M; De Rijk, P; De Wachter, R

    1993-08-01

    The detailed descriptions now available for the secondary structure of small-ribosomal-subunit RNA, including areas of highly variable primary structure, facilitate the alignment of nucleotide sequences. However, for optimal exploitation of the information contained in the alignment, a method must be available that takes into account the local sequence variability in the computation of evolutionary distance. A quantitative definition for the variability of an alignment position is proposed in this study. It is a parameter in an equation which expresses the probability that the alignment position contains a different nucleotide in two sequences, as a function of the distance separating these sequences, i.e., the number of substitutions per nucleotide that occurred during their divergence. This parameter can be estimated from the distance matrix resulting from the conversion of pairwise sequence dissimilarities into pairwise distances. Alignment positions can then be subdivided into a number of sets of matching variability, and the average variability of each set can be derived. Next, the conversion of dissimilarity into distance can be recalculated for each set of alignment positions separately, using a modified version of the equation that corrects for multiple substitutions and changing for each set the parameter that reflects its average variability. The distances computed for each set are finally averaged, giving a more precise distance estimation. Trees constructed by the algorithm based on variability calibration have a topology markedly different from that of trees constructed from the same alignments in the absence of calibration. This is illustrated by means of trees constructed from small-ribosomal-subunit RNA sequences of Metazoa. A reconstruction of vertebrate evolution based on calibrated alignments matches the consensus view of paleontologists, contrary to trees based on uncalibrated alignments. In trees derived from sequences covering several metazoan

  2. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics.

    PubMed

    Chernoff, Y O; Vincent, A; Liebman, S W

    1994-02-15

    Mutations have been created in the Saccharomyces cerevisiae 18S rRNA gene that correspond to those known to be involved in the control of translational fidelity or antibiotic resistance in prokaryotes. Yeast strains, in which essentially all chromosomal rDNA repeats are deleted and all cellular rRNAs are encoded by plasmid, have been constructed that contain only mutant 18S rRNA. In Escherichia coli, a C-->U substitution at position 912 of the small subunit rRNA causes streptomycin resistance. Eukaryotes normally carry U at the corresponding position and are naturally resistant to streptomycin. We show that a U-->C transition (rdn-4) at this position of the yeast 18S rRNA gene decreases resistance to streptomycin. The rdn-4 mutation also increases resistance to paromomycin and G-418, and inhibits nonsense suppression induced by paromomycin. The same phenotypes, as well as a slow growth phenotype, are also associated with rdn-2, whose prokaryotic counterpart, 517 G-->A, manifests itself as a suppressor rather than an antisuppressor. Neither rdn-2- nor rdn-4-related phenotypes could be detected in the presence of the normal level of wild-type rDNA repeats. Our data demonstrate that eukaryotic rRNA is involved in the control of translational fidelity, and indicate that rRNA features important for interactions with aminoglycosides have been conserved throughout evolution.

  3. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries.

    PubMed

    Cox, Robert H; Fromme, Samantha

    2016-06-01

    Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.

  4. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries.

    PubMed

    Cox, Robert H; Fromme, Samantha

    2016-06-01

    Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages. PMID:27286858

  5. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit.

    PubMed

    Shin, Byung-Sik; Kim, Joo-Ran; Acker, Michael G; Maher, Kathryn N; Lorsch, Jon R; Dever, Thomas E

    2009-02-01

    The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.

  6. Crystallization of the Nonameric Small Terminase Subunit of bacteriophage P22

    SciTech Connect

    A Roy; A Bhardwaj; G Cingoloni

    2011-12-31

    The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometry of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.

  7. Crystallization of the Nonameric Small Terminase Subunit of Bacteriophage P22

    SciTech Connect

    A Roy; A Bhardwaj; G Cingolani

    2011-12-31

    The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometry of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.

  8. Yeast Dun1 Kinase Regulates Ribonucleotide Reductase Small Subunit Localization in Response to Iron Deficiency.

    PubMed

    Sanvisens, Nerea; Romero, Antonia M; Zhang, Caiguo; Wu, Xiaorong; An, Xiuxiang; Huang, Mingxia; Puig, Sergi

    2016-04-29

    Ribonucleotide reductase (RNR) is an essential iron-dependent enzyme that catalyzes deoxyribonucleotide synthesis in eukaryotes. Living organisms have developed multiple strategies to tightly modulate RNR function to avoid inadequate or unbalanced deoxyribonucleotide pools that cause DNA damage and genome instability. Yeast cells activate RNR in response to genotoxic stress and iron deficiency by facilitating redistribution of its small heterodimeric subunit Rnr2-Rnr4 from the nucleus to the cytoplasm, where it forms an active holoenzyme with large Rnr1 subunit. Dif1 protein inhibits RNR by promoting nuclear import of Rnr2-Rnr4. Upon DNA damage, Dif1 phosphorylation by the Dun1 checkpoint kinase and its subsequent degradation enhances RNR function. In this report, we demonstrate that Dun1 kinase triggers Rnr2-Rnr4 redistribution to the cytoplasm in response to iron deficiency. We show that Rnr2-Rnr4 relocalization by low iron requires Dun1 kinase activity and phosphorylation site Thr-380 in the Dun1 activation loop, but not the Dun1 forkhead-associated domain. By using different Dif1 mutant proteins, we uncover that Dun1 phosphorylates Dif1 Ser-104 and Thr-105 residues upon iron scarcity. We observe that the Dif1 phosphorylation pattern differs depending on the stimuli, which suggests different Dun1 activating pathways. Importantly, the Dif1-S104A/T105A mutant exhibits defects in nucleus-to-cytoplasm redistribution of Rnr2-Rnr4 by iron limitation. Taken together, these results reveal that, in response to iron starvation, Dun1 kinase phosphorylates Dif1 to stimulate Rnr2-Rnr4 relocalization to the cytoplasm and promote RNR function.

  9. A group-I intron in the mitochondrial small subunit ribosomal RNA gene of Sclerotinia sclerotiorum.

    PubMed

    Carbone, I; Anderson, J B; Kohn, L M

    1995-01-01

    A 1,380-bp intervening sequence within the mitochondrial small subunit ribosomal RNA (mt SSU rRNA) gene of the fungus Sclerotinia sclerotiorum has been sequenced and identified as a group-I intron. This is the first report of an intron in the mt SSU rRNA gene. The intron shows close similarity in secondary structure to the subgroup-IC2 introns from Podospora (ND3i1, ND5i2, and COIi5) and Neurospora (ND5i1). The intron has an open reading frame (ORF) that encodes a putative protein of 420 amino acids which contains two copies of the LAGLI-DADG motif. The ORF belongs to a family of ORFs identified in Podospora (ND3i1, ND4Li1, ND4Li2, ND5i2, and COIi5) and Neurospora (ND5i1). The putative 420-aa polypeptide is also similar to a site-specific endonuclease in the chloroplast large subunit ribosomal RNA (LSU rRNA) gene of the green alga Chlamydomonas eugametos. In each clone of S. sclerotiorum examined, including several clones which were sampled over a 3-year period from geographically separated sites, all isolates either had the intron or lacked the intron within the mt SSU rRNA gene. Screening by means of Southern hybridization and PCR amplification detected the intron in the mt SSU rRNA genes of S. minor, S. trifoliorum and Sclerotium cepivorum, but not in other members of the Sclerotiniaceae, such as Botrytis anamorphs of Botryotinia spp., or in other ascomycetous and basidiomycetous fungi. PMID:7788720

  10. Molecular identification of nanoplanktonic protists based on small subunit ribosomal RNA gene sequences for ecological studies.

    PubMed

    Lim, E L

    1996-01-01

    Nanoplanktonic protists are comprised of a diverse assemblage of species which are responsible for a variety of trophic processes in marine and freshwater ecosystems. Current methods for identifying small protists by electron microscopy do not readily permit both identification and enumeration of nanoplanktonic protists in field samples. Thus, one major goal in the application of molecular approaches in protistan ecology has been the detection and quantification of individual species in natural water samples. Sequences of small subunit ribosomal RNA (SSU rRNA) genes have proven to be useful towards achieving this goal. Comparison of sequences from clone libraries of protistan SSU rRNA genes amplified from natural assemblages of protists by the polymerase chain reaction (PCR) can be used to examine protistan diversity. Furthermore, oligonucleotide probes complementary to short sequence regions unique to species of small protists can be designed by comparative analysis of rRNA gene sequences. These probes may be used to either detect the RNA of particular species of protists in total nucleic acid extracts immobilized on membranes, or the presence of target species in water samples via in situ hybridization of whole cells. Oligonucleotide probes may also serve as primers for the selective amplification of target sequences from total population DNA by PCR. Thus, molecular sequence information is becoming increasingly useful for identifying and enumerating protists, and for studying their spatial and temporal distribution in nature. Knowledge of protistan species composition, abundance and variability in an environment can ultimately be used to relate community structure to various aspects of community function and biogeochemical activity.

  11. The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences.

    PubMed

    Kranz, H D; Miks, D; Siegler, M L; Capesius, I; Sensen, C W; Huss, V A

    1995-07-01

    Complete nuclear-encoded small-subunit 18S rRNA (= SSU rRNA) gene sequences were determined for the prasinophyte green alga Mantoniella squamata; the charophycean green algae Chara foetida, Coleochaete scutata, Klebsormidium flaccidum, and Mougeotia scalaris; the bryophytes Marchantia polymorpha, Fossombronia pusilla, and Funaria hygrometrica; and the lycopod Selaginella galleottii to get a better insight into the sequential evolution from green algae to land plants. The sequences were aligned with several previously published SSU rRNA sequences from chlorophytic and charophytic algae as well as from land plants to infer the evolutionary relationships for major evolutionary lineages within the Chlorobionta by distance matrix, maximum parsimony, and maximum likelihood analyses. Phylogenetic trees created by the different methods consistently placed the Charophyceae on the branch leading to the land plants. The Charophyceae were shown to be polyphyletic with the Charales ("charalean" algae) diverging earlier than the Coleochaetales, Klebsormidiales, Chlorokybales, and Zygnematales ("charophycean" algae) which branch from a point closer to the land plants in most analyses. Maximum parsimony and maximum likelihood analyses imply a successive evolution from "charophycean" algae, particularly Coleochaetales, to bryophytes, lycopods, and seed plants. In contrast, distance matrix methods group the bryophytes together with the "charophycean" algae, suggesting a separate evolution of these organisms compared with the club moss and the seed plants.

  12. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis.

    PubMed

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko; Machida, Yasunori

    2016-01-01

    Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4 These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  13. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    PubMed Central

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko

    2016-01-01

    ABSTRACT Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  14. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas

    PubMed Central

    Meyer, Moritz T.; Genkov, Todor; Skepper, Jeremy N.; Jouhet, Juliette; Mitchell, Madeline C.; Spreitzer, Robert J.; Griffiths, Howard

    2012-01-01

    The pyrenoid is a subcellular microcompartment in which algae sequester the primary carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The pyrenoid is associated with a CO2-concentrating mechanism (CCM), which improves the operating efficiency of carbon assimilation and overcomes diffusive limitations in aquatic photosynthesis. Using the model alga Chlamydomonas reinhardtii, we show that pyrenoid formation, Rubisco aggregation, and CCM activity relate to discrete regions of the Rubisco small subunit (SSU). Specifically, pyrenoid occurrence was shown to be conditioned by the amino acid composition of two surface-exposed α-helices of the SSU: higher plant-like helices knock out the pyrenoid, whereas native algal helices establish a pyrenoid. We have also established that pyrenoid integrity was essential for the operation of an active CCM. With the algal CCM being functionally analogous to the terrestrial C4 pathway in higher plants, such insights may offer a route toward transforming algal and higher plant productivity for the future. PMID:23112177

  15. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9

    PubMed Central

    Kannan, Krishna; Tsvetanova, Billyana; Chuang, Ray-Yuan; Noskov, Vladimir N.; Assad-Garcia, Nacyra; Ma, Li; Hutchison III, Clyde A.; Smith, Hamilton O.; Glass, John I.; Merryman, Chuck; Venter, J. Craig; Gibson, Daniel G.

    2016-01-01

    Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the “simple” M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life. PMID:27489041

  16. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9.

    PubMed

    Kannan, Krishna; Tsvetanova, Billyana; Chuang, Ray-Yuan; Noskov, Vladimir N; Assad-Garcia, Nacyra; Ma, Li; Hutchison Iii, Clyde A; Smith, Hamilton O; Glass, John I; Merryman, Chuck; Venter, J Craig; Gibson, Daniel G

    2016-01-01

    Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the "simple" M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life. PMID:27489041

  17. Revised small subunit rRNA analysis provides further evidence that Foraminifera are related to Cercozoa.

    PubMed

    Berney, Cédric; Pawlowski, Jan

    2003-01-01

    There is accumulating evidence that the general shape of the ribosomal DNA-based phylogeny of Eukaryotes is strongly biased by the long-branch attraction phenomenon, leading to an artifactual basal clustering of groups that are probably highly derived. Among these groups, Foraminifera are of particular interest, because their deep phylogenetic position in ribosomal trees contrasts with their Cambrian appearance in the fossil record. A recent actin-based phylogeny of Eukaryotes has proposed that Foraminifera might be closely related to Cercozoa and, thus, branch among the so-called crown of Eukaryotes. Here, we reanalyze the small-subunit ribosomal RNA gene (SSU rDNA) phylogeny by removing all long-branching lineages that could artifactually attract foraminiferan sequences to the base of the tree. Our analyses reveal that Foraminifera branch together with the marine testate filosean Gromia oviformis as a sister group to Cercozoa, in agreement with actin phylogeny. Our study confirms the utility of SSU rDNA as a phylogenetic marker of megaevolutionary history, provided that the artifacts due to the heterogeneity of substitution rates in ribosomal genes are circumvented.

  18. Phylogenetic position of Gromia oviformis Dujardin inferred from nuclear-encoded small subunit ribosomal DNA.

    PubMed

    Burki, Fabien; Berney, Cédric; Pawlowski, Jan

    2002-09-01

    Gromia oviformis Dujardin is a common marine protist characterised by a large, globular test and filose pseudopodia. First considered a foraminifer, Gromia was later placed within the Filosea and recently included among amoebae of uncertain affinities. In order to clarify the phylogenetic position of this genus, we sequenced the complete small-subunit ribosomal DNA gene of G. oviformis collected at five different geographic localities. The high divergence of obtained sequences suggests that G. oviformis is a species complex composed of several genetically distinct sibling species. Sequence analyses show Gromia to be a member of the Cercozoa, a heterogeneous assemblage which includes filose amoebae, the amoeboflagellate cercomonads, the chlorarachniophytes and the plasmodiophorid plant pathogens. Contrary to traditional classification, Gromia is not closely related to other testate filose amoebae (the Euglyphida), but seems to branch early among the Cercozoa. Our analyses also show a close relationship between the Cercozoa and the Acantharea. Because the Cercozoa are related to the Foraminifera based on other molecular data, we propose that most protists possessing filopodia, reticulopodia and axopodia have a common origin.

  19. Phylogeny of trichomonads inferred from small-subunit rRNA sequences.

    PubMed

    Gunderson, J; Hinkle, G; Leipe, D; Morrison, H G; Stickel, S K; Odelson, D A; Breznak, J A; Nerad, T A; Müller, M; Sogin, M L

    1995-01-01

    Small subunit (16S-like) ribosomal RNA sequences were obtained from representatives of all four families constituting the order Trichomonadida. Comparative sequence analysis revealed that the Trichomonadida are a monophyletic lineage and a deep branch of the eukaryotic tree. Relative to the early divergent eukaryotic assemblages the branching pattern within the Trichomonadida is very shallow. This pattern suggests the Trichomonadida radiated recently, perhaps in conjunction with their animal hosts. From a morphological perspective the Devescovinidae and Calonymphidae are considered more derived than the Monocercomonadidae and Trichomonadidae. Molecular trees inferred by distance, parsimony and likelihood techniques consistently show the Devescovinidae and Calonymphidae are the earliest diverging lineages within the Trichomonadida, however bootstrap values do not strongly support a particular branching order. In an analysis of all known 16S-like ribosomal RNA sequences, the Trichomonadida share most recent common ancestry with unidentified protists from the hindgut of the termite Reticulitermes flavipes. The position of two putative free-living trichomonads in the tree is indicative of derivation from symbionts rather than direct descent from some free-living ancestral trichomonad.

  20. Small-angle x-ray scattering studies of the manganese stabilizing subunit in photosystem II.

    SciTech Connect

    Svensson, B.; Tiede, D. M.; Barry, B. A.; Univ. of Minnesota

    2002-08-29

    Small-angle X-ray scattering studies (SAXS) were used to determine the size, shape, and oligomeric composition of the manganese stabilizing protein (MSP) of photosystem II. This extrinsic protein subunit plays an important role in photosynthetic oxygen evolution. As its name implies, MSP stabilizes the tetranuclear Mn cluster of the water oxidation complex. Removal of MSP lowers activity and decreases the stability of active-site manganese. Reconstitution of MSP reverses these effects. In this study, MSP was extracted from spinach PSII membranes using CaCl{sub 2} or urea. Through the use of MALDI-TOF mass spectrometry, the molecular weight of MSP was determined to be 26.53 kDa. X-ray scattering results show that both samples display a monodisperse scattering pattern; this pattern is consistent with a homogeneous protein solution. The CaCl{sub 2} extracted and urea extracted MSP samples have radii of gyration of 25.9 {+-} 0.4 and 27.0 {+-} 0.01 {angstrom}, respectively. MSP is shown to be monomeric in solution. This was determined using a cytochrome c standard and the scattering intensity, extrapolated to zero scattering angle, which is proportional to the molecular weight. This SAXS study suggests that, in solution, MSP is a monomeric, elongated prolate ellipsoid with dimensions, 112 x 23 x 23 {angstrom}{sup 3} and an axial ratio of 4.8.

  1. Phylogeny of the conserved 3' terminal structure of the RNA of small ribosomal subunits.

    PubMed Central

    Van Knippenberg, P H; Van Kimmenade, J M; Heus, H A

    1984-01-01

    The strongest conserved part of the RNA of small ribosomal subunits is probably located near the 3' end. This paper reviews the primary and secondary structures of some 40 sequenced 3' termini and tries to classify these structures according to common features and differences. The regions under consideration contain at the 5' side an almost universal, supposedly single-stranded stretch of nucleotides with the sequence--AAGUCGUAACAAGGU--. This is followed by a stem-loop structure. The stem always contains 9 basepairs (including U-G pairs) and no mismatches or bulged nucleotides. The loop of the hairpin is either (m2)GGm62Am62A (bacteria, chloroplasts and mitochondria) or UGm62Am62A (cytoplasm). The hairpin is, in most cases, followed at the 3' side by--GGAUCA--. Next to it bacteria and chloroplasts contain the so-called "Shine and Dalgarno" sequence --CCUCC--. The stem region of the hairpin contains a conserved A-U U-G junction. The two basepairs between this junction and the loop are either of type 1 (G-C G-C) or type 2 (C-G C-G). Classification according to type links certain bacteria with mitochondria of yeast and plants and others with chloroplasts and with animal mitochondria. PMID:6709501

  2. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover. Annual progress report

    SciTech Connect

    Meagher, R.B.

    1993-12-31

    An in vitro degradation system has been developed from petunia and soybean polysomes in order to investigate the mechanisms and determinants controlling RNA turnover in higher plants. This system faithfully degrades soybean ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) mRNA into the same products observed in total RNA preparations. In previous years it was shown that the most stable products represent a nested constellation of fragments, which are shortened from their 3{prime} ends, and have intact 5{prime} ends. Exogenous rbcS RNA tagged with novel 5{prime} sequence 15 or 56 bp long were synthesized in vitro as Sp6 and T7 runoff transcripts, respectively. When added to the system they were degraded faithfully into constellation of products which were 15 or 56 bp longer than the endogenous products, respectively. Detailed kinetics on the appearance of these exogenous products confirmed degradation proceeds in an overall 3{prime} to 5{prime} direction but suggested that there are multiple pathways through which the RNA may be degraded. To further demonstrate a precursor product relationships, in vitro synthesized transcripts truncated at their 3{prime} ends were shown to degrade into the expected smaller fragments previously mapped in the 5{prime} portion of the rbcS RNA.

  3. Comparative analysis of secondary structure of insect mitochondrial small subunit ribosomal RNA using maximum weighted matching.

    PubMed

    Page, R D

    2000-10-15

    Comparative analysis is the preferred method of inferring RNA secondary structure, but its use requires considerable expertise and manual effort. As the importance of secondary structure for accurate sequence alignment and phylogenetic analysis becomes increasingly realised, the need for secondary structure models for diverse taxonomic groups becomes more pressing. The number of available structures bears little relation to the relative diversity or importance of the different taxonomic groups. Insects, for example, comprise the largest group of animals and yet are very poorly represented in secondary structure databases. This paper explores the utility of maximum weighted matching (MWM) to help automate the process of comparative analysis by inferring secondary structure for insect mitochondrial small subunit (12S) rRNA sequences. By combining information on correlated changes in substitutions and helix dot plots, MWM can rapidly generate plausible models of secondary structure. These models can be further refined using standard comparative techniques. This paper presents a secondary structure model for insect 12S rRNA based on an alignment of 225 insect sequences and an alignment for 16 exemplar insect sequences. This alignment is used as a template for a web server that automatically generates secondary structures for insect sequences.

  4. Reexamination of the Three-Dimensional Structure of the Small Subunit of RuBisCo from Higher Plants

    NASA Astrophysics Data System (ADS)

    Knight, Stefan; Andersson, Inger; Branden, Carl-Ivar

    1989-05-01

    The structure of L8S8 RuBisCo (where L is the large subunit and S is the small subunit) from spinach has been determined to a resolution of 2.8 angstrom by using fourfold averaging of an isomorphous electron density map based on three heavy-atom derivatives. The structure of the S subunit is different from that previously reported for the tobacco S subunit in spite of 75 percent sequence identity. The elements of secondary structure, four antiparallel β strands and two α helices, are the same, but the topology and direction of the polypeptide chain through these elements differ completely. One of these models is clearly wrong. The spinach model has hydrophobic residues in the core between the α helices and β sheet as well as conserved residues in the subunit interactions. The deletion of residues 49 to 62 that is present in the Anabaena sequence removes a loop region in the spinach model. The positions of three mercury atoms in the heavy-atom derivatives agree with the assignment of side chains in the spinach structure.

  5. Small-Subunit rRNA Genotyping of Rhizobia Nodulating Australian Acacia spp.

    PubMed Central

    Lafay, Bénédicte; Burdon, Jeremy J.

    2001-01-01

    The structure of rhizobial communities nodulating Acacia in southeastern Australia from south Queensland to Tasmania was investigated by a molecular approach. A total of 118 isolates from nodule samples from 13 different Acacia species collected at 44 sites were characterized by small-subunit (SSU) ribosomal DNA (rDNA) PCR-restriction fragment length polymorphism analysis. Nine rhizobial genomospecies were identified, and these taxa corresponded to previously described genomospecies (B. Lafay and J. J. Burdon, Appl. Environ. Microbiol. 64:3989–3997, 1998). Eight of these genomospecies belonged to the Bradyrhizobium lineage and accounted for 96.6% of the isolates. The remaining genomospecies corresponded to Rhizobium tropici. For analysis of geographic patterns, results were grouped into five latitudinal regions regardless of host origin. In each region, as observed previously for rhizobial isolates taken from non-Acacia legumes (Lafay and Burdon, Appl. Environ. Microbiol. 64:3989–3997, 1998), rhizobial communities were dominated by one or two genomospecies, the identities of which varied from place to place. Despite this similarity in patterns, the most abundant genomospecies for Acacia isolates differed from the genomospecies found in the non-Acacia-derived rhizobial collection, suggesting that there is a difference in nodulation patterns of the Mimosoideae and the Papilionoideae. Only two genomospecies were both widespread and relatively abundant across the range of sites sampled. Genomospecies A was found in all regions except the most northern sites located in Queensland, whereas genomospecies B was not detected in Tasmania. This suggests that genomospecies A might be restricted to the more temperate regions of Australia, whereas in contrast, genomospecies B occurs in different climatic and edaphic conditions across the whole continent. The latter hypothesis is supported by the presence of genomospecies B in southwestern Australia, based on partial SSU r

  6. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration.

    PubMed

    Zhao, Lihong; Spassieva, Stefka; Gable, Kenneth; Gupta, Sita D; Shi, Lan-Ying; Wang, Jieping; Bielawski, Jacek; Hicks, Wanda L; Krebs, Mark P; Naggert, Juergen; Hannun, Yusuf A; Dunn, Teresa M; Nishina, Patsy M

    2015-10-20

    Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions.

  7. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration.

    PubMed

    Zhao, Lihong; Spassieva, Stefka; Gable, Kenneth; Gupta, Sita D; Shi, Lan-Ying; Wang, Jieping; Bielawski, Jacek; Hicks, Wanda L; Krebs, Mark P; Naggert, Juergen; Hannun, Yusuf A; Dunn, Teresa M; Nishina, Patsy M

    2015-10-20

    Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions. PMID:26438849

  8. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration

    PubMed Central

    Zhao, Lihong; Spassieva, Stefka; Gable, Kenneth; Gupta, Sita D.; Shi, Lan-Ying; Wang, Jieping; Bielawski, Jacek; Hicks, Wanda L.; Krebs, Mark P.; Naggert, Juergen; Hannun, Yusuf A.; Dunn, Teresa M.; Nishina, Patsy M.

    2015-01-01

    Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions. PMID:26438849

  9. Residues in three conserved regions of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase are required for quaternary structure

    SciTech Connect

    Fitchen, J.H.; McIntosh, L. ); Knight, S.; Andersson, I.; Branden, C.I. )

    1990-08-01

    To explore the role of individual residues in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, small subunits with single amino acid substitutions in three regions of relative sequence conservation were produced by directed mutagenesis of the rbcS gene from Anabaena 7120. These altered small subunits were cosythesized with large subunits (from an expressed Anabaena rbcL gene) in Escherichia coli. Mutants were analyzed for effects on quaternary structure and catalytic activity. Changing Glu-13S (numbering used is that of the spinach enzyme) to Val, Trp-67S to Arg, Pro-73S to His, or Tyr-98S to Asn prevented accumulation of stable holoenzyme. Interpretation of these results using a model for the three-dimensional structure of the spinach enzyme based on x-ray crystallographic data suggests that our small subunit mutants containing substitutions at positions 13S and 67S probably do not assemble because of mispairing or nonpairing of charged residues on the interfacing surfaces of the large and small subunits. The failure of small subunits substituted at positions 73S or 98S to assemble correctly may result from disruption of intersubunit or intrasubunit hydrophobic pockets, respectively.

  10. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex.

    PubMed

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Willliams, Carole; Miller, Christopher

    2016-04-21

    Mitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca(2+) landscape.

  11. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex

    PubMed Central

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Williams, Carole; Miller, Christopher

    2016-01-01

    Mitochondrial Ca2+ uptake, a process crucial for bioenergetics and Ca2+ signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca2+-activated Ca2+ channel, with the Ca2+ pore formed by the MCU protein and Ca2+-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca2+ permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca2+ landscape. DOI: http://dx.doi.org/10.7554/eLife.15545.001 PMID:27099988

  12. Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation.

    PubMed

    Young, Brian D; Weiss, David I; Zurita-Lopez, Cecilia I; Webb, Kristofor J; Clarke, Steven G; McBride, Anne E

    2012-06-26

    We have characterized the posttranslational methylation of Rps2, Rps3, and Rps27a, three small ribosomal subunit proteins in the yeast Saccharomyces cerevisiae, using mass spectrometry and amino acid analysis. We found that Rps2 is substoichiometrically modified at arginine-10 by the Rmt1 methyltransferase. We demonstrated that Rps3 is stoichiometrically modified by ω-monomethylation at arginine-146 by mass spectrometric and site-directed mutagenic analyses. Substitution of alanine for arginine at position 146 is associated with slow cell growth, suggesting that the amino acid identity at this site may influence ribosomal function and/or biogenesis. Analysis of the three-dimensional structure of Rps3 in S. cerevisiae shows that arginine-146 makes contacts with the small subunit rRNA. Screening of deletion mutants encoding potential yeast methyltransferases revealed that the loss of the YOR021C gene results in the absence of methylation of Rps3. We demonstrated that recombinant Yor021c catalyzes ω-monomethylarginine formation when incubated with S-adenosylmethionine and hypomethylated ribosomes prepared from a YOR021C deletion strain. Interestingly, Yor021c belongs to the family of SPOUT methyltransferases that, to date, have only been shown to modify RNA substrates. Our findings suggest a wider role for SPOUT methyltransferases in nature. Finally, we have demonstrated the presence of a stoichiometrically methylated cysteine residue at position 39 of Rps27a in a zinc-cysteine cluster. The discovery of these three novel sites of protein modification within the small ribosomal subunit will now allow for an analysis of their functional roles in translation and possibly other cellular processes.

  13. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities.

    PubMed

    Han, Gongshe; Gupta, Sita D; Gable, Kenneth; Niranjanakumari, Somashekarappa; Moitra, Prasun; Eichler, Florian; Brown, Robert H; Harmon, Jeffrey M; Dunn, Teresa M

    2009-05-19

    Serine palmitoyltransferase (SPT) catalyzes the first committed step in sphingolipid biosynthesis. In yeast, SPT is composed of a heterodimer of 2 highly-related subunits, Lcb1p and Lcb2p, and a third subunit, Tsc3p, which increases enzyme activity markedly and is required for growth at elevated temperatures. Higher eukaryotic orthologs of Lcb1p and Lcb2p have been identified, but SPT activity is not highly correlated with coexpression of these subunits and no ortholog of Tsc3p has been identified. Here, we report the discovery of 2 proteins, ssSPTa and ssSPTb, which despite sharing no homology with Tsc3p, each substantially enhance the activity of mammalian SPT expressed in either yeast or mammalian cells and therefore define an evolutionarily conserved family of low molecular weight proteins that confer full enzyme activity. The 2 ssSPT isoforms share a conserved hydrophobic central domain predicted to reside in the membrane, and each interacts with both hLCB1 and hLCB2 as assessed by positive split ubiquitin 2-hybrid analysis. The presence of these small subunits, along with 2 hLCB2 isofoms, suggests that there are 4 distinct human SPT isozymes. When each SPT isozyme was expressed in either yeast or CHO LyB cells lacking endogenous SPT activity, characterization of their in vitro enzymatic activities, and long-chain base (LCB) profiling revealed differences in acyl-CoA preference that offer a potential explanation for the observed diversity of LCB seen in mammalian cells. PMID:19416851

  14. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome

    PubMed Central

    Olivier, Nelson B.; Altman, Roger B.; Noeske, Jonas; Basarab, Gregory S.; Code, Erin; Ferguson, Andrew D.; Gao, Ning; Huang, Jian; Juette, Manuel F.; Livchak, Stephania; Miller, Matthew D.; Prince, D. Bryan; Cate, Jamie H. D.; Buurman, Ed T.; Blanchard, Scott C.

    2014-01-01

    Negamycin is a natural product with broad-spectrum antibacterial activity and efficacy in animal models of infection. Although its precise mechanism of action has yet to be delineated, negamycin inhibits cellular protein synthesis and causes cell death. Here, we show that single point mutations within 16S rRNA that confer resistance to negamycin are in close proximity of the tetracycline binding site within helix 34 of the small subunit head domain. As expected from its direct interaction with this region of the ribosome, negamycin was shown to displace tetracycline. However, in contrast to tetracycline-class antibiotics, which serve to prevent cognate tRNA from entering the translating ribosome, single-molecule fluorescence resonance energy transfer investigations revealed that negamycin specifically stabilizes near-cognate ternary complexes within the A site during the normally transient initial selection process to promote miscoding. The crystal structure of the 70S ribosome in complex with negamycin, determined at 3.1 Å resolution, sheds light on this finding by showing that negamycin occupies a site that partially overlaps that of tetracycline-class antibiotics. Collectively, these data suggest that the small subunit head domain contributes to the decoding mechanism and that small-molecule binding to this domain may either prevent or promote tRNA entry by altering the initial selection mechanism after codon recognition and before GTPase activation. PMID:25368144

  15. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis.

    PubMed

    Chaker-Margot, Malik; Hunziker, Mirjam; Barandun, Jonas; Dill, Brian D; Klinge, Sebastian

    2015-11-01

    Eukaryotic ribosome biogenesis involves a plethora of ribosome-assembly factors, and their temporal order of association with preribosomal RNA is largely unknown. By using Saccharomyces cerevisiae as a model organism, we developed a system that recapitulates and arrests ribosome assembly at early stages, thus providing in vivo snapshots of nascent preribosomal particles. Here we report the stage-specific order in which 70 ribosome-assembly factors associate with preribosomal RNA domains, thereby forming the 6-MDa small-subunit processome. PMID:26479197

  16. Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5.

    PubMed

    Yamaguchi, Kenichi; Prieto, Susana; Beligni, María Verónica; Haynes, Paul A; McDonald, W Hayes; Yates, John R; Mayfield, Stephen P

    2002-11-01

    To understand how chloroplast mRNAs are translated into functional proteins, a detailed understanding of all of the components of chloroplast translation is needed. To this end, we performed a proteomic analysis of the plastid ribosomal proteins in the small subunit of the chloroplast ribosome from the green alga Chlamydomonas reinhardtii. Twenty proteins were identified, including orthologs of Escherichia coli S1, S2, S3, S4, S5, S6, S7, S9, S10, S12, S13, S14, S15, S16, S17, S18, S19, S20, and S21 and a homolog of spinach plastid-specific ribosomal protein-3 (PSRP-3). In addition, a novel S1 domain-containing protein, PSRP-7, was identified. Among the identified proteins, S2 (57 kD), S3 (76 kD), and S5 (84 kD) are prominently larger than their E. coli or spinach counterparts, containing N-terminal extensions (S2 and S5) or insertion sequence (S3). Structural predictions based on the crystal structure of the bacterial 30S subunit suggest that the additional domains of S2, S3, and S5 are located adjacent to each other on the solvent side near the binding site of the S1 protein. These additional domains may interact with the S1 protein and PSRP-7 to function in aspects of mRNA recognition and translation initiation that are unique to the Chlamydomonas chloroplast.

  17. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit

    PubMed Central

    He, J.; Cooper, H. M.; Reyes, A.; Di Re, M.; Kazak, L.; Wood, S. R.; Mao, C. C.; Fearnley, I. M.; Walker, J. E.; Holt, I. J.

    2012-01-01

    The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle. PMID:22447445

  18. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    SciTech Connect

    Tai, Lin-Ru; Chou, Chang-Wei; Wu, Jing-Ying; Kirby, Ralph; Lin, Alan

    2013-11-15

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20{sub NLS} mutant gene and examined polysome profile of cells that had been transfected with the S20{sub NLS} gene. As a result, we observed the formation of recombinant 40S carried S20{sub NLS} but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20{sub NLS} in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20{sub NLS} in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20{sub NLS} is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20{sub NLS}. • Cytoplasm-retained S20{sub NLS} is crucial for creating a functional small subunit.

  19. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  20. Phylogenetic relationships among Linguatula serrata isolates from Iran based on 18S rRNA and mitochondrial cox1 gene sequences.

    PubMed

    Ghorashi, Seyed Ali; Tavassoli, Mousa; Peters, Andrew; Shamsi, Shokoofeh; Hajipour, Naser

    2016-01-01

    The phylogenetic relationships among seven Linguatula serrata (L. serrata) isolates collected from cattle, goats, sheep, dogs and camels in different geographical locations of Iran were investigated using partial 18S ribosomal RNA (rRNA) and partial mitochondrial cytochrome c oxidase subunit 1 (cox1) gene sequences. The nucleotide sequences were analysed in order to determine the phylogenetic relationships between the isolates. Higher sequence diversity and intraspecies variation was observed in the cox1 gene compared to 18S rRNA sequences. Phylogenetic analysis of the cox1 gene placed all L. serrata isolates in a sister clade to L. arctica. The Mantel regression analysis revealed no association between genetic variations and host species or geographical location, perhaps due to the small sample size. However, genetic variations between L. serrata isolates in Iran and those isolated in other parts of the world may exist and could reveal possible evolutionary relationships.

  1. Phylogenetic relationships among Linguatula serrata isolates from Iran based on 18S rRNA and mitochondrial cox1 gene sequences.

    PubMed

    Ghorashi, Seyed Ali; Tavassoli, Mousa; Peters, Andrew; Shamsi, Shokoofeh; Hajipour, Naser

    2016-01-01

    The phylogenetic relationships among seven Linguatula serrata (L. serrata) isolates collected from cattle, goats, sheep, dogs and camels in different geographical locations of Iran were investigated using partial 18S ribosomal RNA (rRNA) and partial mitochondrial cytochrome c oxidase subunit 1 (cox1) gene sequences. The nucleotide sequences were analysed in order to determine the phylogenetic relationships between the isolates. Higher sequence diversity and intraspecies variation was observed in the cox1 gene compared to 18S rRNA sequences. Phylogenetic analysis of the cox1 gene placed all L. serrata isolates in a sister clade to L. arctica. The Mantel regression analysis revealed no association between genetic variations and host species or geographical location, perhaps due to the small sample size. However, genetic variations between L. serrata isolates in Iran and those isolated in other parts of the world may exist and could reveal possible evolutionary relationships. PMID:27149706

  2. The gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is located close to the gene for the large subunit in the cyanobacterium Anacystis nidulans 6301.

    PubMed Central

    Shinozaki, K; Sugiura, M

    1983-01-01

    The gene for the small subunit (SS) of ribulose-1,5-bisphosphate carboxylase/oxygenase from a cyanobacterium, Anacystis nidulans 6301, has been cloned and subjected to sequence analysis. The SS coding region is located close to and downstream from the large subunit (LS) coding region on the same DNA strand. The spacer region between the LS and the SS coding regions contains 93 base pairs (bp), and has no promoter-like sequences. The coding region of A. nidulans SS gene contains 333 bp (111 codons). The deduced amino acid sequence of the A. nidulans SS protein shows 40% homology with those of higher plants. Images PMID:6415615

  3. The Use of Small-Angle Scattering for the Characterization of Multi Subunit Complexes.

    PubMed

    Round, Adam

    2016-01-01

    As the continuing trend in structural biology is to probe ever more complex systems, new methodologies are being developed plus existing techniques are being expanded and adapted, to keep up with the demands of the research community. To investigate multi subunit complexes (protein-DNA, protein-RNA or protein-protein complexes) no one technique holds a monopoly, as each technique yields independent information inaccessible to the other methods, but can be used together in a complementary way. Additionally as large conformational changes are not unlikely, investigation of the dynamics of these systems under physiological conditions is needed to fully understand their function. Investigations under physiological conditions in solution are becoming more standardized and with more dedicated, automated beamlines available these experiments are easy to access by the general research community. As such the need for explanations of how to plan and undertake these experiments is needed. In this chapter we will cover the requirements of these experiments as well and how to plan undertake and analyze the results of such experiments. PMID:27165335

  4. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms.

    PubMed Central

    Telford, Maximilian J; Lockyer, Anne E; Cartwright-Finch, Chloë; Littlewood, D Timothy J

    2003-01-01

    The phylogenetic position of the phylum Platyhelminthes has been re-evaluated in the past decade by analysis of diverse molecular datasets. The consensus is that the Rhabditophora + Catenulida, which includes most of the flatworm taxa, are not primitively simple basal bilaterians but are related to coelomate phyla such as molluscs. The status of two other groups of acoelomate worms, Acoela and Nemertodermatida, is less clear. Although many characteristics unite these two groups, initial molecular phylogenetic studies placed the Nemertodermatida within the Rhabditophora, but placed the Acoela at the base of the Bilateria, distant from other flatworms. This contradiction resulted in scepticism about the basal position of acoels and led to calls for further data. We have sequenced large subunit ribosomal RNA genes from 13 rhabditophorans + catenulids, three acoels and one nemertodermatid, tripling the available data. Our analyses strongly support a basal position of both acoels and nemertodermatids. Alternative hypotheses are significantly less well supported by the data. We conclude that the Nemertodermatida and Acoela are basal bilaterians and, owing to their unique body plan and embryogenesis, should be recognized as a separate phylum, the Acoelomorpha. PMID:12803898

  5. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms.

    PubMed

    Telford, Maximilian J; Lockyer, Anne E; Cartwright-Finch, Chloë; Littlewood, D Timothy J

    2003-05-22

    The phylogenetic position of the phylum Platyhelminthes has been re-evaluated in the past decade by analysis of diverse molecular datasets. The consensus is that the Rhabditophora + Catenulida, which includes most of the flatworm taxa, are not primitively simple basal bilaterians but are related to coelomate phyla such as molluscs. The status of two other groups of acoelomate worms, Acoela and Nemertodermatida, is less clear. Although many characteristics unite these two groups, initial molecular phylogenetic studies placed the Nemertodermatida within the Rhabditophora, but placed the Acoela at the base of the Bilateria, distant from other flatworms. This contradiction resulted in scepticism about the basal position of acoels and led to calls for further data. We have sequenced large subunit ribosomal RNA genes from 13 rhabditophorans + catenulids, three acoels and one nemertodermatid, tripling the available data. Our analyses strongly support a basal position of both acoels and nemertodermatids. Alternative hypotheses are significantly less well supported by the data. We conclude that the Nemertodermatida and Acoela are basal bilaterians and, owing to their unique body plan and embryogenesis, should be recognized as a separate phylum, the Acoelomorpha.

  6. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey; Sogin, Mitchell L.

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  7. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA.

    PubMed

    Medina, M; Collins, A G; Silberman, J D; Sogin, M L

    2001-08-14

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  8. Characterisation of three cDNA clones encoding different mRNAs for the precursor to the small subunit of wheat ribulosebisphosphate carboxylase.

    PubMed Central

    Smith, S M; Bedbrook, J; Speirs, J

    1983-01-01

    We have isolated and sequenced three cDNA clones for the nuclear-encoded precursor to the small subunit of the chloroplast enzyme, ribulose-1,5-bisphosphate carboxylase of wheat. The nucleotide sequences of these clones are different, indicating that they are probably derived from three different mRNAs. This finding is consistent with the proposal that this polypeptide is encoded by a multigene family in wheat, in support of similar data reported by Broglie et al. (Bio/Technology 1:55-61, 1983). We deduce that the mature small subunit polypeptide is comprised of 128 amino acids and that its precursor contains an N-terminal transit peptide sequence. The sequences of both the mature small subunit and its transit peptide differ at several positions from those determined by Broglie et al, (1983) from a different wheat cultivar. Different wheat cultivars might therefore contain different small subunit polypeptides. A comparison of nucleotide and amino acid sequences of the small subunit from wheat, pea, soybean and spinach shows that these sequences are not highly conserved, particularly between monocotyledon and dicotyledon species. Images PMID:6324097

  9. Molecular analysis of lungworms from European bison (Bison bonasus) on the basis of small subunit ribosomal RNA gene (SSU).

    PubMed

    Pyziel, Anna M

    2014-03-01

    Dictyocaulosis (Nematoda: Trichostrongyloidea) is a widespread parasitosis of the European bison (Bison bonasus) inhabiting Bialowieza Primeval Forest. Bearing in mind the current coexistence of bison with wild cervids, and with domestic ruminants in the 19th and 20th century, the need arose for molecular identification of lungworm species. Molecular analysis was done on adult lungworms that were obtained from the respiratory track of four free-roaming bison euthanized as a part of the population health control program. As the result of the study four identical small subunit-ribosomal RNA gene sequences from the lungworms were obtained and deposited in GenBank as sequence, 1708 bp long (GenBank KC771250). Comparative analysis of the SSU rRNA sequences revealed the European bison to be a host for the bovine lungworm Dictyocaulus viviparus.

  10. Phylogenetic position of Rhynchopus sp. and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA.

    PubMed

    Busse, I; Preisfeld, Angelika

    2002-02-01

    The taxa Rhynchopus Skuja and Diplonema Griessmann were first described as remarkable protists with euglenid affinities. Later on, the placement of Diplonema within the Euglenozoa was confirmed by molecular data. For this study two new sequences were added to the euglenozoan data set. The uncertainly placed Rhynchopus can be identified as a close relative to Diplonema by small subunit ribosomal DNA (SSU rDNA) analysis. The new sequence of Diplonema ambulator is in close relationship to two other Diplonema species. Our molecular analyses clearly support the monophyly of the diplonemids comprising Rhynchopus and Diplonema. Yet the topology at the base of the euglenozoan tree remains unresolved, and especially the monophyly of the euglenids is arguable. SSU rDNA sequence analyses suggest that significantly different GC contents, high mutational saturation in the euglenids, and different evolutionary rates in the euglenozoan clades make it difficult to identify any sister group to the diplonemids.

  11. Length variation in eukaryotic rRNAs: small subunit rRNAs from the protists Acanthamoeba castellanii and Euglena gracilis.

    PubMed

    Gunderson, J H; Sogin, M L

    1986-01-01

    We have sequenced the region of the Acanthamoeba castellanii ribosomal RNA transcription unit which encodes the mature small subunit ribosomal RNA (SSU rRNA). It, like the SSU rRNA coding regions of Euglena gracilis and kinetoplastids, is approx. 30% larger than those reported from other eukaryotes. The extra nucleotides are present in highly variable regions of the rRNA genes. Direct sequence analysis of the corresponding variable regions in the rRNA of A. castellanii and E. gracilis demonstrates that the extra nucleotides are present in the mature rRNA; no post-transcriptional modification of the rRNAs occurs to reduce them to a size more typical of eukaryotes. The extra elements present in the rRNAs of these two organisms are not homologous; they have independent evolutionary origins.

  12. Structure of a human pre-40S particle points to a role for RACK1 in the final steps of 18S rRNA processing

    PubMed Central

    Larburu, Natacha; Montellese, Christian; O'Donohue, Marie-Françoise; Kutay, Ulrike; Gleizes, Pierre-Emmanuel; Plisson-Chastang, Célia

    2016-01-01

    Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3′-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation. PMID:27530427

  13. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  14. Sequence analysis of the Alcaligenes eutrophus chromosomally encoded ribulose bisphosphate carboxylase large and small subunit genes and their gene products.

    PubMed Central

    Andersen, K; Caton, J

    1987-01-01

    The nucleotide sequence of the chromosomally encoded ribulose bisphosphate carboxylase/oxygenase (RuBPCase) large (rbcL) and small (rbcS) subunit genes of the hydrogen bacterium Alcaligenes eutrophus ATCC 17707 was determined. We found that the two coding regions are separated by a 47-base-pair intergenic region, and both genes are preceded by plausible ribosome-binding sites. Cotranscription of the rbcL and rbcS genes has been demonstrated previously. The rbcL and rbcS genes encode polypeptides of 487 and 135 amino acids, respectively. Both genes exhibited similar codon usage which was highly biased and different from that of other organisms. The N-terminal amino acid sequence of both subunit proteins was determined by Edman degradation. No processing of the rbcS protein was detected, while the rbcL protein underwent a posttranslational loss of formylmethionyl. The A. eutrophus rbcL and rbcS proteins exhibited 56.8 to 58.3% and 35.6 to 38.5% amino acid sequence homology, respectively, with the corresponding proteins from cyanobacteria, eucaryotic algae, and plants. The A. eutrophus and Rhodospirillum rubrum rbcL proteins were only about 32% homologous. The N- and C-terminal sequences of both the rbcL and the rbcS proteins were among the most divergent regions. Known or proposed active site residues in other rbcL proteins, including Lys, His, Arg, and Asp residues, were conserved in the A. eutrophus enzyme. The A. eutrophus rbcS protein, like those of cyanobacteria, lacks a 12-residue internal sequence that is found in plant RuBPCase. Comparison of hydropathy profiles and secondary structure predictions by the method described by Chou and Fasman (P. Y. Chou and G. D. Fasman, Adv. Enzymol. 47:45-148, 1978) revealed striking similarities between A. eutrophus RuBPCase and other hexadecameric enzymes. This suggests that folding of the polypeptide chains is similar. The observed sequence homologies were consistent with the notion that both the rbcL and rbcS genes of the

  15. Phylogenetic analyses among octocorals (Cnidaria): mitochondrial and nuclear DNA sequences (lsu-rRNA, 16S and ssu-rRNA, 18S) support two convergent clades of branching gorgonians.

    PubMed

    Armando Sánchez, Juan; Lasker, Howard R; Taylor, Derek J

    2003-10-01

    Gorgonian octocorals lack corroborated hypotheses of phylogeny. This study reconstructs genealogical relationships among some octocoral species based on published DNA sequences from the large ribosomal subunit of the mitochondrial RNA (lsu-rRNA, 16S: 524bp and 21 species) and the small subunit of the nuclear RNA (ssu-rRNA, 18S: 1815bp and 13 spp) using information from insertions-deletions (INDELS) and the predicted secondary structure of the lsu-rRNA (16S). There were seven short (3-10bp) INDELS in the 18S with consistent phylogenetic information. The INDELS in the 16S corresponded to informative signature sequences homologous to the G13 helix found in Escherichia coli. We found two main groups of gorgonian octocorals using a maximum parsimony analysis of the two genes. One group corresponds to deep-water taxa including species from the suborders Calcaxonia and Scleraxonia characterized by an enlargement of the G13 helix. The second group has species from Alcyoniina, Holaxonia and again Scleraxonia characterized by insertions in the 18S. Gorgonian corals, branching colonies with a gorgonin-containing flexible multilayered axis (Holaxonia and Calcaxonia), do not form a monophyletic group. These corroborated results from maternally inherited (16S) and biparentally inherited (18S) genes support a hypothesis of independent evolution of branching in the two octocoral clades.

  16. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity.

    PubMed

    Moon-van der Staay, S Y; De Wachter, R; Vaulot, D

    2001-02-01

    Picoplankton--cells with a diameter of less than 3 microm--are the dominant contributors to both primary production and biomass in open oceanic regions. However, compared with the prokaryotes, the eukaryotic component of picoplankton is still poorly known. Recent discoveries of new eukaryotic algal taxa based on picoplankton cultures suggest the existence of many undiscovered taxa. Conventional approaches based on phenotypic criteria have limitations in depicting picoplankton composition due to their tiny size and lack of distinctive taxonomic characters. Here we analyse, using an approach that has been very successful for prokaryotes but has so far seldom been applied to eukaryotes, 35 full sequences of the small-subunit (18S) ribosomal RNA gene derived from a picoplanktonic assemblage collected at a depth of 75 m in the equatorial Pacific Ocean, and show that there is a high diversity of picoeukaryotes. Most of the sequences were previously unknown but could still be assigned to important marine phyla including prasinophytes, haptophytes, dinoflagellates, stramenopiles, choanoflagellates and acantharians. We also found a novel lineage, closely related to dinoflagellates and not previously described.

  17. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity

    NASA Astrophysics Data System (ADS)

    Moon-van der Staay, Seung Yeo; De WachterRDanielVaulot, RupertDe WachterR.Daniel

    2001-02-01

    Picoplankton-cells with a diameter of less than 3µm-are the dominant contributors to both primary production and biomass in open oceanic regions. However, compared with the prokaryotes, the eukaryotic component of picoplankton is still poorly known. Recent discoveries of new eukaryotic algal taxa based on picoplankton cultures suggest the existence of many undiscovered taxa. Conventional approaches based on phenotypic criteria have limitations in depicting picoplankton composition due to their tiny size and lack of distinctive taxonomic characters. Here we analyse, using an approach that has been very successful for prokaryotes but has so far seldom been applied to eukaryotes, 35 full sequences of the small-subunit (18S) ribosomal RNA gene derived from a picoplanktonic assemblage collected at a depth of 75m in the equatorial Pacific Ocean, and show that there is a high diversity of picoeukaryotes. Most of the sequences were previously unknown but could still be assigned to important marine phyla including prasinophytes, haptophytes, dinoflagellates, stramenopiles, choanoflagellates and acantharians. We also found a novel lineage, closely related to dinoflagellates and not previously described.

  18. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130.

    PubMed

    Hong, Soon-Sun; Choi, Jung Ho; Lee, Sung Yoon; Park, Yeon-Hwa; Park, Kyung-Yeon; Lee, Joo Young; Kim, Juyoung; Gajulapati, Veeraswamy; Goo, Ja-Il; Singh, Sarbjit; Lee, Kyeong; Kim, Young-Kook; Im, So Hee; Ahn, Sung-Hoon; Rose-John, Stefan; Heo, Tae-Hwe; Choi, Yongseok

    2015-07-01

    IL-6 is a major causative factor of inflammatory disease. Although IL-6 and its signaling pathways are promising targets, orally available small-molecule drugs specific for IL-6 have not been developed. To discover IL-6 antagonists, we screened our in-house chemical library and identified LMT-28, a novel synthetic compound, as a candidate IL-6 blocker. The activity, mechanism of action, and direct molecular target of LMT-28 were investigated. A reporter gene assay showed that LMT-28 suppressed activation of STAT3 induced by IL-6, but not activation induced by leukemia inhibitory factor. In addition, LMT-28 downregulated IL-6-stimulated phosphorylation of STAT3, gp130, and JAK2 protein and substantially inhibited IL-6-dependent TF-1 cell proliferation. LMT-28 antagonized IL-6-induced TNF-α production in vivo. In pathologic models, oral administration of LMT-28 alleviated collagen-induced arthritis and acute pancreatitis in mice. Based on the observation of upstream IL-6 signal inhibition by LMT-28, we hypothesized IL-6, IL-6Rα, or gp130 to be putative molecular targets. We subsequently demonstrated direct interaction of LMT-28 with gp130 and specific reduction of IL-6/IL-6Rα complex binding to gp130 in the presence of LMT-28, which was measured by surface plasmon resonance analysis. Taken together, our data suggest that LMT-28 is a novel synthetic IL-6 inhibitor that functions through direct binding to gp130. PMID:26026064

  19. Direct evidence for redundant segmental replacement between multiple 18S rRNA genes in a single Prototheca strain.

    PubMed

    Ueno, Ryohei; Huss, Volker A R; Urano, Naoto; Watabe, Shugo

    2007-11-01

    Informational genes such as those encoding rRNAs are related to transcription and translation, and are thus considered to be rarely subject to lateral gene transfer (LGT) between different organisms, compared to operational genes having metabolic functions. However, several lines of evidence have suggested or confirmed the occurrence of LGT of DNA segments encoding evolutionarily variable regions of rRNA genes between different organisms. In the present paper, we show, for the first time to our knowledge, that variable regions of the 18S rRNA gene are segmentally replaced by multiple copies of different sequences in a single strain of the green microalga Prototheca wickerhamii, resulting in at least 17 genotypes, nine of which were actually transcribed. Recombination between different 18S rRNA genes occurred in seven out of eight variable regions (V1-V5 and V7-V9) of eukaryotic small subunit (SSU) rRNAs. While no recombination was observed in V1, one to three different recombination loci were demonstrated for the other regions. Such segmental replacement was also implicated for helix H37, which is defined as V6 of prokaryotic SSU rRNAs. Our observations provide direct evidence for redundant recombination of an informational gene, which encodes a component of mature ribosomes, in a single strain of one organism.

  20. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    SciTech Connect

    Fang, Zejun; Gong, Chaoju; Liu, Hong; Zhang, Xiaomin; Mei, Lingming; Song, Mintao; Qiu, Lanlan; Luo, Shuchai; Zhu, Zhihua; Zhang, Ronghui; Gu, Hongqian; Chen, Xiang

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and

  1. Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata.

    PubMed

    Moreira, David; von der Heyden, Sophie; Bass, David; López-García, Purificación; Chao, Ema; Cavalier-Smith, Thomas

    2007-07-01

    Resolution of the phylogenetic relationships among the major eukaryotic groups is one of the most important problems in evolutionary biology that is still only partially solved. This task was initially addressed using a single marker, the small-subunit ribosomal DNA (SSU rDNA), although in recent years it has been shown that it does not contain enough phylogenetic information to robustly resolve global eukaryotic phylogeny. This has prompted the use of multi-gene analyses, especially in the form of long concatenations of numerous conserved protein sequences. However, this approach is severely limited by the small number of taxa for which such a large number of protein sequences is available today. We have explored the alternative approach of using only two markers but a large taxonomic sampling, by analysing a combination of SSU and large-subunit (LSU) rDNA sequences. This strategy allows also the incorporation of sequences from non-cultivated protists, e.g., Radiozoa (=radiolaria minus Phaeodarea). We provide the first LSU rRNA sequences for Heliozoa, Apusozoa (both Apusomonadida and Ancyromonadida), Cercozoa and Radiozoa. Our Bayesian and maximum likelihood analyses for 91 eukaryotic combined SSU+LSU sequences yielded much stronger support than hitherto for the supergroup Rhizaria (Cercozoa plus Radiozoa plus Foraminifera) and several well-recognised groups and also for other problematic clades, such as the Retaria (Radiozoa plus Foraminifera) and, with more moderate support, the Excavata. Within opisthokonts, the combined tree strongly confirms that the filose amoebae Nuclearia are sisters to Fungi whereas other Choanozoa are sisters to animals. The position of some bikont taxa, notably Heliozoa and Apusozoa, remains unresolved. However, our combined trees suggest a more deeply diverging position for Ancyromonas, and perhaps also Apusomonas, than for other bikonts, suggesting that apusozoan zooflagellates may be central for understanding the early evolution of

  2. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1

    PubMed Central

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L.J.

    2015-01-01

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson–Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. PMID:25653167

  3. Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis.

    PubMed

    Snell-Castro, Raúl; Godon, Jean-Jacques; Delgenès, Jean-Philippe; Dabert, Patrick

    2005-04-01

    The microbial community structure of pig manure slurry (PMS) was determined with comparative analysis of 202 bacterial, 44 archaeal and 33 eukaryotic small subunit (SSU) rDNA partial sequences. Based on a criterion of 97% of sequence similarity, the phylogenetic analyses revealed a total of 108, eight and five phylotypes for the Bacteria, Archaea and Eukarya lineages, respectively. Only 36% of the bacterial phylotypes were closely related (>or=97% similarity) to any previously known sequence in databases. The bacterial groups most often represented in terms of phylotype and clone abundance were the Eubacterium (22% of total sequences), the Clostridium (15% of sequences), the Bacillus-Lactobacillus-Streptococcus subdivision (20% of sequences), theMycoplasma and relatives (10% of sequences) and the Flexibacter-Cytophaga-Bacteroides (20% of sequences). The global microbial community structure and phylotype diversity show a close relationship to the pig gastrointestinal tract ecosystem whereas phylotypes from the Acholeplasma-Anaeroplasma and the Clostridium purinolyticum groups appear to be better represented in manure. Archaeal diversity was dominated by three phylotypes clustering with a group of uncultured microorganisms of unknown activity and only distantly related to the Thermoplasmales and relatives. Other Archaea were methanogenic H2/CO2 utilisers. No known acetoclastic Archaea methanogen was found. Eukaryotic diversity was represented by a pluricellular nematode, two Alveolata, a Blastocystis and an Entamoebidae. Manure slurry physico-chemical characteristics were analysed. Possible inhibitory effects of acetate, sulphide and ammonia concentrations on the microbial anaerobic ecosystem are discussed. PMID:16329909

  4. Identification of bovine Neospora parasites by PCR amplification and specific small-subunit rRNA sequence probe hybridization.

    PubMed

    Ho, M S; Barr, B C; Marsh, A E; Anderson, M L; Rowe, J D; Tarantal, A F; Hendrickx, A G; Sverlow, K; Dubey, J P; Conrad, P A

    1996-05-01

    Neospora is a newly recognized genus of pathogenic coccidia, closely related to Toxoplasma gondii, that can cause abortion or congenital disease in a variety of domestic animal hosts. On the basis of the small-subunit rRNA gene sequences of Neospora spp. and other apicomplexa coccidia, oligonucleotide primers COC-1 and COC-2 were used for PCR amplification of conserved sequences of approximately 300 bp in size. A Neospora-specific chemiluminescent probe hybridized to Southern blots of amplification products from Neospora DNA but not to Southern blots with amplified DNA from the other coccidian parasites tested. A Toxoplasma-specific probe whose sequence differed from that of the probe for Neospora spp. by a single base pair was used to distinguish these parasites by specific Southern blot hybridization. The PCR system detected as few as one Neospora tachyzoite in the culture medium or five tachyzoites in samples of whole blood or amniotic fluid spiked with Neospora parasites. In addition, Neospora PCR products were successfully amplified from whole blood and amniotic fluid samples of experimentally infected bovine and rhesus macaque fetuses. These results indicate that this PCR and probe hybridization system could be a valuable adjunct to serology and immunohistochemistry for the diagnosis of Neospora infections in bovine or primate fetuses.

  5. Redescription of Rhizodomus tagatzi (Ciliophora: Spirotrichea: Tintinnida), based on morphology and small subunit ribosomal RNA gene sequence.

    PubMed

    Saccà, Alessandro; Strüder-Kypke, Michaela C; Lynn, Denis H

    2012-01-01

    Herein, we redescribe a tintinnid ciliate that is most commonly known as Tintinnopsis corniger Hada, 1964; but it has been described several times with different names, specifically Tintinnopsis nudicauda Paulmier, 1997 and Rhizodomus tagatzi Strelkow & Wirketis, 1950. Neotype material was collected from the water column of the coastal saline Lake Faro, a meromictic basin connected to the Straits of Messina, Central Mediterranean. The Lake Faro population is characterized by a hyaline or sparsely agglomerated lorica, which made it possible to observe in detail the basal layer structure, usually concealed by abundant incrusting particles. Along with an improved description of the lorica, we provide novel information, such as the general zooid morphology, the ciliary pattern, and the small subunit rRNA (SSU rRNA) gene sequence. Our phylogenetic analysis, based on the SSU rRNA, groups this species with Tintinnopsis radix, while the first taxonomic study designated it as R. tagatzi, introducing a new genus due to peculiarities in lorica morphology. We conclude that the species should be known as R. tagatzi, the senior synonym for the species. However, we do not transfer any other species to this genus, despite strong molecular similarities. Although it is obvious that the genus Tintinnopsis is in need of a thorough revision, current molecular and cytological information for this genus is too sparse, and the type species has not yet been redescribed with modern methods. PMID:22452414

  6. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences

    NASA Technical Reports Server (NTRS)

    Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.

  7. Phylogenetic analyses of small subunit ribosomal RNA coding regions reveal a monophyletic lineage of euglyphid testate amoebae (Order Euglyphida).

    PubMed

    Wylezich, Claudia; Meisterfeld, Ralf; Meisterfeld, Susanne; Schlegel, Martin

    2002-01-01

    The Testaceafilosia includes amoebae with filopodia and with a proteinaceous, agglutinated or siliceous test. To explore the deeper phylogeny of this group, we sequenced the small subunit ribosomal RNA coding region of 13 species, including the first sequence of an amoeba with an agglutinated test, Pseudodifflugia sp. Phylogenetic analyses using maximum parsimony and maximum likelihood methods as well as neighbor joining method yielded the following results: the order Euglyphida forms a monophyletic lineage with the sarcomonads as sister group. The next related taxa are the Chlorarachnea and the unidentified filose strain N-Por. In agreement with the previous studies the Phytomyxea branch off at the base of this lineage. The Monadofilosa (Testaceafilosia and Sarcomonadea) appear monophyletic. The Testaceafilosia are polyphyletic, because Pseudodifflugia sp. is positioned as the sister taxon to the sarcomonads. Within the order Euglyphida Paulinella branches off first, together with Cyphoderia followed by Tracheleuglypha. In maximum likelihood and neighbor joining analyses, the genus Euglypha is monophyletic. The branching pattern within the order Euglyphida reflects the evolution of shell morphology from simple to complex built test.

  8. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): the status of Podotremata based on small subunit nuclear ribosomal RNA.

    PubMed

    Ahyong, Shane T; Lai, Joelle C Y; Sharkey, Deirdre; Colgan, Donald J; Ng, Peter K L

    2007-11-01

    The true crabs, the Brachyura, are generally divided into two major groups: Eubrachyura or 'advanced' crabs, and Podotremata or 'primitive' crabs. The status of Podotremata is one of the most controversial issues in brachyuran systematics. The podotreme crabs, best recognised by the possession of gonopores on the coxae of the pereopods, have variously been regarded as mono-, para- or polyphyletic, or even as non-brachyuran. For the first time, the phylogenetic positions of the podotreme crabs were studied by cladistic analysis of small subunit nuclear ribosomal RNA sequences. Eight of 10 podotreme families were represented along with representatives of 17 eubrachyuran families. Under both maximum parsimony and Bayesian Inference, Podotremata was found to be significantly paraphyletic, comprising three major clades: Dromiacea, Raninoida, and Cyclodorippoida. The most 'basal' is Dromiacea, followed by Raninoida and Cylodorippoida. Notably, Cyclodorippoida was identified as the sister group of the Eubrachyura. Previous hypotheses that the dromiid crab, Hypoconcha, is an anomuran were unsupported, though Dromiidae as presently composed could be paraphyletic. Topologies constrained for podotreme monophyly were found to be significantly worse (P < 0.04) than unconstrained topologies under Templeton and S-H tests. The clear pattern of podotreme paraphyly and robustness of topologies recovered indicates that Podotremata as a formal concept is untenable. Relationships among the eubrachyurans were generally equivocal, though results indicate the majoids or dorippoids were the least derived of the Eubrachyura. A new high level classification of the Brachyura is proposed.

  9. Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta.

    PubMed

    Bhattacharya, D; Helmchen, T; Bibeau, C; Melkonian, M

    1995-05-01

    The Glaucocystophyta (e.g., Cyanophora paradoxa) form a morphologically distinct group of photosynthetic protists that is primarily distinguished by its cyanelles (= plastids). To elucidate their evolutionary relationships, we determined nuclear-encoded small-subunit ribosomal RNA (SSU rRNA) coding regions for four taxa classified in the Glaucocystophyta (C. paradoxa, Glaucocystis nostochinearum, Glaucosphaera vacuolata, Gloeochaete wittrockiana; sensu Kies and Kremer), and these sequences were positioned within the eukaryotic phylogeny. Maximum likelihood, maximum-parsimony, and neighbor-joining phylogenetic analyses show that the Glaucocystophyta is a relatively late-diverging monophyletic assemblage within the "crown" group radiation that forms a sister group to cryptophyte algae. Glaucosphaera vacuolata is a red alga and lacks some cyanelle (e.g., bounding peptidoglycan wall) and host cell (e.g., cruciate flagellar roots) characters typical of glaucocystophytes. Our data are consistent with a monophyletic origin of the cyanelle in the glaucocystophytes. The distribution of photosynthetic taxa within the glaucocystophytes/cryptophytes and other lineages such as the filose amoebae/chlorarachniophytes and heterokont protists provide clues to the origin of plastids with four bounding membranes. We speculate that multiple, likely independent, secondary endosymbioses gave rise to these plastids.

  10. The Rubisco Small Subunit Is Involved in Tobamovirus Movement and Tm-22-Mediated Extreme Resistance1[C][W][OA

    PubMed Central

    Zhao, Jinping; Liu, Qi; Zhang, Haili; Jia, Qi; Hong, Yiguo; Liu, Yule

    2013-01-01

    The multifunctional movement protein (MP) of Tomato mosaic tobamovirus (ToMV) is involved in viral cell-to-cell movement, symptom development, and resistance gene recognition. However, it remains to be elucidated how ToMV MP plays such diverse roles in plants. Here, we show that ToMV MP interacts with the Rubisco small subunit (RbCS) of Nicotiana benthamiana in vitro and in vivo. In susceptible N. benthamiana plants, silencing of NbRbCS enabled ToMV to induce necrosis in inoculated leaves, thus enhancing virus local infectivity. However, the development of systemic viral symptoms was delayed. In transgenic N. benthamiana plants harboring Tobacco mosaic virus resistance-22 (Tm-22), which mediates extreme resistance to ToMV, silencing of NbRbCS compromised Tm-22-dependent resistance. ToMV was able to establish efficient local infection but was not able to move systemically. These findings suggest that NbRbCS plays a vital role in tobamovirus movement and plant antiviral defenses. PMID:23148080

  11. Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments.

    PubMed

    Stoeck, Thorsten; Epstein, Slava

    2003-05-01

    Microeukaryotes in oxygen-depleted environments are among the most diverse, as well as the least studied, organisms. We conducted a cultivation-independent, small-subunit (SSU) rRNA-based survey of microeukaryotes in suboxic waters and anoxic sediments in the great Sippewisset salt marsh, Cape Cod, Mass. We generated two clone libraries and analyzed approximately 300 clones, which contained a large diversity of microeukaryotic SSU rRNA signatures. Only a few of these signatures were closely related (sequence similarity of >97%) to the sequences reported earlier. The bulk of our sequences represented deep novel branches within green algae, fungi, cercozoa, stramenopiles, alveolates, euglenozoa and unclassified flagellates. In addition, a significant number of detected rRNA sequences exhibited no affiliation to known organisms and sequences and thus represent novel lineages of the highest taxonomical order, most of them branching off the base of the global phylogenetic tree. This suggests that oxygen-depleted environments harbor diverse communities of novel organisms, which may provide an interesting window into the early evolution of eukaryotes.

  12. Structural and functional studies of the phage Sf6 terminase small subunit reveal a DNA-spooling device facilitated by structural plasticity

    PubMed Central

    Zhao, Haiyan; Kamau, Yvonne N.; Christensen, Theodore E.; Tang, Liang

    2013-01-01

    In many DNA viruses, genome packaging is initiated by the small subunit of the packaging terminase, which specifically binds to the packaging signal on viral DNA and directs assembly of the terminase holoenzyme. We have experimentally mapped the DNA-interacting region on Shigella virus Sf6 terminase small subunit gp1, which occupies extended surface areas encircling the gp1 octamer, indicating that DNA wraps around gp1 through extensive contacts. High resolution structures reveal large-scale motions of the gp1 DNA-binding domain mediated by the curved helix formed by residues 54-81 and an intermolecular salt bridge formed by residues Arg67 and Glu73, indicating remarkable structural plasticity underlying multivalent, pleomorphic gp1:DNA interactions. These results provide spatial restraints for protein:DNA interactions, which enable construction of a three-dimensional pseudo-atomic model for a DNA-packaging initiation complex assembled from the terminase small subunit and the packaging region on viral DNA. Our results suggest that gp1 functions as a DNA-spooling device, which may transform DNA into a specific architecture appropriate for interaction with and cleavage by the terminase large subunit prior to DNA translocation into viral procapsid. This may represent a common mechanism for the initiation step of DNA packaging in tailed dsDNA bacterial viruses. PMID:22858866

  13. Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and beta-tubulin.

    PubMed

    Leander, Brian S; Clopton, Richard E; Keeling, Patrick J

    2003-01-01

    Gregarines are thought to be deep-branching apicomplexans. Accordingly, a robust inference of gregarine phylogeny is crucial to any interpretation of apicomplexan evolution, but molecular sequences from gregarines are restricted to a small number of small-subunit (SSU) rDNA sequences from derived taxa. This work examines the usefulness of SSU rDNA and beta-tubulin sequences for inferring gregarine phylogeny. SSU rRNA genes from Lecudina (Mingazzini) sp., Monocystis agilis Stein, Leidyana migrator Clopton and Gregarina polymorpha Dufour, as well as the beta-tubulin gene from Leidyana migrator, were sequenced. The results of phylogenetic analyses of alveolate taxa using both genes were consistent with an early origin of gregarines and the putative 'sister' relationship between gregarines and Cryptosporidium, but neither phylogeny was strongly supported. In addition, two SSU rDNA sequences from unidentified marine eukaryotes were found to branch among the gregarines: one was a sequence derived from the haemolymph parasite of the giant clam, Tridacna crocea, and the other was a sequence misattributed to the foraminiferan Ammonium beccarii. In all of our analyses, the SSU rDNA sequence from Colpodella sp. clustered weakly with the apicomplexans, which is consistent with ultrastructural data. Altogether, the exact position of gregarines with respect to Cryptosporidium and other apicomplexans remains to be confirmed, but the congruence of SSU rDNA and beta-tubulin trees with one another and with morphological data does suggest that further sampling of molecular data will eventually put gregarine diversity into a phylogenetic context.

  14. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis

    PubMed Central

    Zorbas, Christiane; Nicolas, Emilien; Wacheul, Ludivine; Huvelle, Emmeline; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2015-01-01

    At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features. PMID:25851604

  15. Influence of the C terminus of the small protein subunit of bean pod mottle virus on the antigenicity of the virus determined using monoclonal antibodies and anti-peptide antiserum.

    PubMed

    Joisson, C; Van Regenmortel, M H

    1991-09-01

    Middle component particles of bean pod mottle virus (BPMV) containing small protein subunits with a cleaved C terminus were used to produce monoclonal antibodies (MAbs). All MAbs were specific for cryptotopes, i.e. epitopes present only on dissociated BPMV protein. The MAbs reacted more strongly with virus protein preparations containing the cleaved form of the small subunit than with preparations containing only the uncleaved form. It seems that the presence of additional residues at the C terminus of the intact small subunit interferes with antibody binding. Antibodies raised against synthetic peptides corresponding to the C terminus of the uncleaved small subunit reacted with both intact virions and dissociated subunits. This C-terminal region seems to play a dominant role in the antigenicity of the virus.

  16. Homology of the D-galactose-specific lectins from Artocarpus integrifolia and Maclura pomifera and the role of an unusual small polypeptide subunit.

    PubMed

    Young, N M; Johnston, R A; Szabo, A G; Watson, D C

    1989-05-01

    The Maclura pomifera agglutinin (MPA) was purified by affinity chromatography from a seed extract and its properties were compared with those of the Artocarpus integrifolia lectin, jacalin. Reverse-phase high-performance liquid chromatography showed both proteins had multiple forms of a small approximately 20-residue polypeptide chain in addition to the major 12,000 Mr subunit. The amino acid sequences of the small chains and the N-terminal sequences of the large subunits showed considerable similarity between the two proteins, approximately 60% identical residues. The homology of the proteins was confirmed by the similarity of their circular dichroism and fluorescence emission spectra. MPA showed much greater spectral changes upon binding methyl alpha-D-galactoside, suggesting it has complete activity rather than the partial activity found for jacalin. The binding of methyl alpha-D-galactoside by MPA was measured by fluorescence titration; the KA was 1.9 X 10(4) M-1 compared to 3.4 X 10(4) M-1 for jacalin. MPA also precipitated human IgA1 in the same manner as jacalin. The spectra indicate the involvement of tryptophan and tyrosine residues in the binding site of these lectins. Since a tryptophan residue is conserved in all the small subunits, they may form part of the binding site.

  17. Unexpected high digestion rate of cooked starch by the Ct-Maltase-Glucoamylase small intestine mucosal alpha-glucosidase subunit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For starch digestion to glucose, two luminal alpha-amylases and four gut mucosal alpha-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal alpha-glucosidases on cooked (gelatinized) starch. Gelatinized ...

  18. A Broad Anti-influenza Hybrid Small Molecule That Potently Disrupts the Interaction of Polymerase Acidic Protein-Basic Protein 1 (PA-PB1) Subunits.

    PubMed

    Massari, Serena; Nannetti, Giulio; Desantis, Jenny; Muratore, Giulia; Sabatini, Stefano; Manfroni, Giuseppe; Mercorelli, Beatrice; Cecchetti, Violetta; Palù, Giorgio; Cruciani, Gabriele; Loregian, Arianna; Goracci, Laura; Tabarrini, Oriana

    2015-05-14

    In continuing our efforts to identify small molecules able to disrupt the interaction of the polymerase acidic protein-basic protein 1 (PA-PB1) subunits of influenza virus (Flu) RNA-dependent RNA polymerase, this paper is devoted to the optimization of a dihydrotriazolopyrimidine derivative, previously identified through structure-based drug discovery. The structure modifications performed around the bicyclic core led to the identification of compounds endowed with both the ability to disrupt PA-PB1 subunits interaction and anti-Flu activity with no cytotoxicity. Very interesting results were obtained with the hybrid molecules 36 and 37, designed by merging some peculiar structural features known to impart PA-PB1 interaction inhibition, with compound 36 that emerged as the most potent PA-PB1 interaction inhibitor (IC50 = 1.1 μM) among all the small molecules reported so far. Calculations showed a very favored H-bonding between the 2-amidic carbonyl of 36 and Q408, which seems to justify its potent ability to interfere with the interaction of the polymerase subunits.

  19. The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27.

    PubMed Central

    MacNeill, S A; Moreno, S; Reynolds, N; Nurse, P; Fantes, P A

    1996-01-01

    cdc1+ is required for cell cycle progression in Schizosaccharomyces pombe. Cells carrying temperature-sensitive cdc1 mutants undergo cell cycle arrest when shifted to the restrictive temperature, becoming highly elongated. Here we describe the cloning and sequencing of cdc1+, which is shown to encode a 462 residue protein that displays significant sequence similarity to the small subunit of mammalian DNA polymerase delta. cdc1+ interacts genetically with pol3+, which encodes the large subunit of DNA polymerase delta in fission yeast, and the Cdc1 protein binds to Pol3 in vitro, strongly suggesting that Cdc1 is likely to be the small subunit of Pol delta. In addition, we show that cdc1+ overexpression is sufficient to rescue cells carrying temperature-sensitive cdc27 alleles and that the Cdc1 and Cdc27 proteins interact in vivo and in vitro. Deletion of either cdc1+ or cdc27+ results in cell cycle arrest with the arrested cells having a single nucleus with 2C DNA content. No evidence was obtained for a cut phenotype, indicating that neither cdc1+ nor cdc27+ is required for checkpoint function. cdc1 mutant cells are supersensitive to the DNA synthesis inhibitor hydroxyurea and to the DNA damaging agent MMS, display increased frequency of mini-chromosome loss and have an extended S phase. Images PMID:8887553

  20. Evolutionary analyses of the small subunit of glutamate synthase: gene order conservation, gene fusions, and prokaryote-to-eukaryote lateral gene transfers.

    PubMed

    Andersson, Jan O; Roger, Andrew J

    2002-04-01

    Lateral gene transfer has been identified as an important mode of genome evolution within prokaryotes. Except for the special case of gene transfer from organelle genomes to the eukaryotic nucleus, only a few cases of lateral gene transfer involving eukaryotes have been described. Here we present phylogenetic and gene order analyses on the small subunit of glutamate synthase (encoded by gltD) and its homologues, including the large subunit of sulfide dehydrogenase (encoded by sudA). The scattered distribution of the sudA and sudB gene pair and the phylogenetic analysis strongly suggest that lateral gene transfer was involved in the propagation of the genes in the three domains of life. One of these transfers most likely occurred between a prokaryote and an ancestor of diplomonad protists. Furthermore, phylogenetic analyses indicate that the gene for the small subunit of glutamate synthase was transferred from a low-GC gram-positive bacterium to a common ancestor of animals, fungi, and plants. Interestingly, in both examples, the eukaryotes encode a single gene that corresponds to a conserved operon structure in prokaryotes. Our analyses, together with several recent publications, show that lateral gene transfers from prokaryotes to unicellular eukaryotes occur with appreciable frequency. In the case of the genes for sulfide dehydrogenase, the transfer affected only a limited group of eukaryotes--the diplomonads--while the transfer of the glutamate synthase gene probably happened earlier in evolution and affected a wider range of eukaryotes.

  1. Metabolism of 18S rRNA in rat liver cells in different functional states of protein-synthesizing apparatus

    SciTech Connect

    Chirkov, G.P.; Druzhinina, M.K.; Todorov, I.N.

    1986-04-10

    The ratio of the absolute radioactivities of 28S and 18S RNAs in the fractions of membrane-bound and free polysomes and the fraction of free rat liver ribosomes was studied under conditions of inhibition of translation by cycloheximide, insulin, and cAMP. It was found that insulin and cAMP, in contrast to cycloheximide, do not induce selective degradation of 18S rRNA. The results are discussed from the standpoint of the possible role of the phosphorylation of protein S6 in the degradation of the 40S ribosomal subunit.

  2. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA

    PubMed Central

    Zhang, Jun; McCann, Kathleen L.; Qiu, Chen; Gonzalez, Lauren E.; Baserga, Susan J.; Hall, Traci M. Tanaka

    2016-01-01

    Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C'-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease, Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins. PMID:27725644

  3. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  4. Isolation and characterization of cDNAs and genomic DNAs encoding ADP-glucose pyrophosphorylase large and small subunits from sweet potato.

    PubMed

    Zhou, Yu-Xi; Chen, Yu-Xiang; Tao, Xiang; Cheng, Xiao-Jie; Wang, Hai-Yan

    2016-04-01

    Sweet potato [Ipomoea batatas (L.) Lam.], the world's seventh most important food crop, is also a major industrial raw material for starch and ethanol production. In the plant starch biosynthesis pathway, ADP-glucose pyrophosphorylase (AGPase) catalyzes the first, rate-limiting step and plays a pivotal role in regulating this process. In spite of the importance of sweet potato as a starch source, only a few studies have focused on the molecular aspects of starch biosynthesis in sweet potato and almost no intensive research has been carried out on the AGPase gene family in this species. In this study, cDNAs encoding two small subunits (SSs) and four large subunits (LSs) of AGPase isoforms were cloned from sweet potato and the genomic organizations of the corresponding AGPase genes were elucidated. Expression pattern analysis revealed that the two SSs were constitutively expressed, whereas the four LSs displayed differential expression patterns in various tissues and at different developmental stages. Co-expression of SSs with different LSs in Escherichia coli yielded eight heterotetramers showing different catalytic activities. Interactions between different SSs and LSs were confirmed by a yeast two-hybrid experiment. Our findings provide comprehensive information about AGPase gene sequences, structures, expression profiles, and subunit interactions in sweet potato. The results can serve as a foundation for elucidation of molecular mechanisms of starch synthesis in tuberous roots, and should contribute to future regulation of starch biosynthesis to improve sweet potato starch yield.

  5. Isolation and characterization of cDNAs and genomic DNAs encoding ADP-glucose pyrophosphorylase large and small subunits from sweet potato.

    PubMed

    Zhou, Yu-Xi; Chen, Yu-Xiang; Tao, Xiang; Cheng, Xiao-Jie; Wang, Hai-Yan

    2016-04-01

    Sweet potato [Ipomoea batatas (L.) Lam.], the world's seventh most important food crop, is also a major industrial raw material for starch and ethanol production. In the plant starch biosynthesis pathway, ADP-glucose pyrophosphorylase (AGPase) catalyzes the first, rate-limiting step and plays a pivotal role in regulating this process. In spite of the importance of sweet potato as a starch source, only a few studies have focused on the molecular aspects of starch biosynthesis in sweet potato and almost no intensive research has been carried out on the AGPase gene family in this species. In this study, cDNAs encoding two small subunits (SSs) and four large subunits (LSs) of AGPase isoforms were cloned from sweet potato and the genomic organizations of the corresponding AGPase genes were elucidated. Expression pattern analysis revealed that the two SSs were constitutively expressed, whereas the four LSs displayed differential expression patterns in various tissues and at different developmental stages. Co-expression of SSs with different LSs in Escherichia coli yielded eight heterotetramers showing different catalytic activities. Interactions between different SSs and LSs were confirmed by a yeast two-hybrid experiment. Our findings provide comprehensive information about AGPase gene sequences, structures, expression profiles, and subunit interactions in sweet potato. The results can serve as a foundation for elucidation of molecular mechanisms of starch synthesis in tuberous roots, and should contribute to future regulation of starch biosynthesis to improve sweet potato starch yield. PMID:26499957

  6. Exploring the potential of small RNA subunit and ITS sequences for resolving phylogenetic relationships within the phylum Ctenophora.

    PubMed

    Simion, Paul; Bekkouche, Nicolas; Jager, Muriel; Quéinnec, Eric; Manuel, Michaël

    2015-04-01

    Ctenophores are a phylum of non-bilaterian marine (mostly planktonic) animals, characterised by several unique synapomorphies (e.g., comb rows, apical organ). Relationships between and within the nine recognised ctenophore orders are far from understood, notably due to a paucity of phylogenetically informative anatomical characters. Previous attempts to address ctenophore phylogeny using molecular data (18S rRNA) led to poorly resolved trees but demonstrated the paraphyly of the order Cydippida. Here we compiled an updated 18S rRNA data set, notably including a few newly sequenced species representing previously unsampled families (Lampeidae, Euryhamphaeidae), and we constructed an additional more rapidly evolving ITS1 + 5.8S rRNA + ITS2 alignment. These data sets were analysed separately and in combination under a probabilistic framework, using different methods (maximum likelihood, Bayesian inference) and models (e.g., doublet model to accommodate secondary structure; data partitioning). An important lesson from our exploration of these datasets is that the fast-evolving internal transcribed spacer (ITS) regions are useful markers for reconstructing high-level relationships within ctenophores. Our results confirm the paraphyly of the order Cydippida (and thus a "cydippid-like" ctenophore common ancestor) and suggest that the family Mertensiidae could be the sister group of all other ctenophores. The family Lampeidae (also part of the former "Cydippida") is probably the sister group of the order Platyctenida (benthic ctenophores). The order Beroida might not be monophyletic, due to the position of Beroe abyssicola outside of a clade grouping the other Beroe species and members of the "Cydippida" family Haeckeliidae. Many relationships (e.g. between Pleurobrachiidae, Beroida, Cestida, Lobata, Thalassocalycida) remain unresolved. Future progress in understanding ctenophore phylogeny will come from the use of additional rapidly evolving markers and improvement of

  7. Exploring the potential of small RNA subunit and ITS sequences for resolving phylogenetic relationships within the phylum Ctenophora.

    PubMed

    Simion, Paul; Bekkouche, Nicolas; Jager, Muriel; Quéinnec, Eric; Manuel, Michaël

    2015-04-01

    Ctenophores are a phylum of non-bilaterian marine (mostly planktonic) animals, characterised by several unique synapomorphies (e.g., comb rows, apical organ). Relationships between and within the nine recognised ctenophore orders are far from understood, notably due to a paucity of phylogenetically informative anatomical characters. Previous attempts to address ctenophore phylogeny using molecular data (18S rRNA) led to poorly resolved trees but demonstrated the paraphyly of the order Cydippida. Here we compiled an updated 18S rRNA data set, notably including a few newly sequenced species representing previously unsampled families (Lampeidae, Euryhamphaeidae), and we constructed an additional more rapidly evolving ITS1 + 5.8S rRNA + ITS2 alignment. These data sets were analysed separately and in combination under a probabilistic framework, using different methods (maximum likelihood, Bayesian inference) and models (e.g., doublet model to accommodate secondary structure; data partitioning). An important lesson from our exploration of these datasets is that the fast-evolving internal transcribed spacer (ITS) regions are useful markers for reconstructing high-level relationships within ctenophores. Our results confirm the paraphyly of the order Cydippida (and thus a "cydippid-like" ctenophore common ancestor) and suggest that the family Mertensiidae could be the sister group of all other ctenophores. The family Lampeidae (also part of the former "Cydippida") is probably the sister group of the order Platyctenida (benthic ctenophores). The order Beroida might not be monophyletic, due to the position of Beroe abyssicola outside of a clade grouping the other Beroe species and members of the "Cydippida" family Haeckeliidae. Many relationships (e.g. between Pleurobrachiidae, Beroida, Cestida, Lobata, Thalassocalycida) remain unresolved. Future progress in understanding ctenophore phylogeny will come from the use of additional rapidly evolving markers and improvement of

  8. Identification of Species and Sources of Cryptosporidium Oocysts in Storm Waters with a Small-Subunit rRNA-Based Diagnostic and Genotyping Tool

    PubMed Central

    Xiao, Lihua; Alderisio, Kerri; Limor, Josef; Royer, Michael; Lal, Altaf A.

    2000-01-01

    The identification of Cryptosporidium oocysts in environmental samples is largely made by the use of an immunofluorescent assay. In this study, we have used a small-subunit rRNA-based PCR-restriction fragment length polymorphism technique to identify species and sources of Cryptosporidium oocysts present in 29 storm water samples collected from a stream in New York. A total of 12 genotypes were found in 27 positive samples; for 4 the species and probable origins were identified by sequence analysis, whereas the rest represent new genotypes from wildlife. Thus, this technique provides an alternative method for the detection and differentiation of Cryptosporidium parasites in environmental samples. PMID:11097935

  9. Phylogenetic relationships of Blepharisma americanum and Colpoda inflata within the phylum ciliophora inferred from complete small subunit rRNA gene sequences.

    PubMed

    Greenwood, S J; Schlegel, M; Sogin, M L; Lynn, D H

    1991-01-01

    The complete small subunit rRNA gene sequences of the heterotrich Blepharisma americanum and the colpodid Colpoda inflata were determined to be 1719 and 1786 nucleotides respectively. The phylogeny produced by comparisons with other ciliates indicated that C. inflata is allied more closely with the nassophoreans and oligohymenophoreans than the spirotrichs. This is consistent with the placement of the colpodids in the Class Copodea. Blepharisma americanum was not grouped with the hypotrichs but instead was placed as the earliest branching ciliate. The distinct separation of B. americanum supports the elevation to class status given the heterotrichs based on morphological characters.

  10. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-08-24

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon.

  11. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  12. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  13. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode.

  14. Identification of Theileria parva and Theileria sp. (buffalo) 18S rRNA gene sequence variants in the African Buffalo (Syncerus caffer) in southern Africa.

    PubMed

    Chaisi, Mamohale E; Sibeko, Kgomotso P; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2011-12-15

    Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the

  15. Characterization of the rDNA unit and sequence analysis of the small subunit rRNA and 5.8S rRNA genes from Tritrichomonas foetus.

    PubMed

    Chakrabarti, D; Dame, J B; Gutell, R R; Yowell, C A

    1992-05-01

    The ribosomal RNA gene unit of the protozoan parasite Tritrichomonas foetus has been cloned and analyzed. Southern blot analysis of the genomic DNA showed that the ribosomal RNA gene unit is organized as a tandem head to tail repeat with a unit length of 6 kb. By Northern analysis a primary transcript of 5.8 kb was detected. Copy number analysis showed the presence of 12 copies of the ribosomal RNA gene unit. The lengths of the small subunit ribosomal RNA and 5.8S ribosomal RNA are 1571 bp and 159 bp, respectively, as determined by sequence analysis. The T. foetus small subunit ribosomal RNA sequence is one of the shortest eukaryotic small subunit rRNA sequences, similar in length to those from 2 other amitochondrial protists. Although shorter than the majority of the eukaryotic small subunit ribosomal RNAs, this sequence maintains the primary and secondary structure common to all eukaryotic small subunit ribosomal RNA structures, while truncating sequences found within the eukaryotic variable regions. The length of the large subunit ribosomal RNA was measured at 2.5 kb.

  16. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba.

    PubMed

    Fuerst, Paul A; Booton, Gregory C; Crary, Monica

    2015-01-01

    Species of Acanthamoeba were first described using morphological characters including cyst structure and cytology of nuclear division. More than 20 nominal species were proposed using these methods. Morphology, especially cyst shape and size, has proven to be plastic and dependent upon culture conditions. The DNA sequence of the nuclear small-subunit (18S) rRNA, the Rns gene, has become the most widely accepted method for rapid diagnosis and classification of Acanthamoeba. The Byers-Fuerst lab first proposed an Rns typing system in 1996. Subsequent refinements, with an increasing DNA database and analysis of diagnostic fragments within the gene, have become widely accepted by the Acanthamoeba research community. The development of the typing system, including its current state of implementation is illustrated by three cases: (i) the division between sequence types T13 and T16; (ii) the diversity within sequence supertype T2/T6, and (iii) verification of a new sequence type, designated T20. Molecular studies make clear the disconnection between phylogenetic relatedness and species names, as applied for the genus Acanthamoeba. Future reconciliation of genetic types with species names must become a priority, but the possible shortcomings of the use of a single gene when reconstructing the evolutionary history of the acanthamoebidae must also be resolved. PMID:25284310

  17. Genotypic heterogeneity based on 18S-rRNA gene sequences among Acanthamoeba isolates from clinical samples in Italy.

    PubMed

    Di Cave, David; D' Alfonso, Rossella; Dussey Comlavi, Kodjo A; D' Orazi, Carlo; Monno, Rosa; Berrilli, Federica

    2014-11-01

    Acanthamoeba keratitis (AK) is an ocular disease caused by members of a genus of free-living amoebae and it is associated predominantly with contact lens (CL) use. This study reports 55 cases of AK diagnosed in Italy. Genotype identification was carried out by PCR assay followed by sequence analysis of the 18S rRNA gene using the genus specific primers JDP1 and JDP2. Genotype assignment was based on phenetic analysis of the ASA.S1 subset of the small-subunit rRNA gene sequences. The material has been collected at the Polyclinic Tor Vergata of Rome for a total of 19 isolates and at the Polyclinic Hospital of Bari (36 isolates). Thirty-three out of the 55 genetically characterized isolates were assigned to the genotype T4. Ten isolates were identified as belonging to the genotype T15 thus confirming the first association between the genotype T15 and human amoebic keratitis previously described from the same area. We underline the occurrence of the genotype T3 and T11 identified for the first time in the country.

  18. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba.

    PubMed

    Fuerst, Paul A; Booton, Gregory C; Crary, Monica

    2015-01-01

    Species of Acanthamoeba were first described using morphological characters including cyst structure and cytology of nuclear division. More than 20 nominal species were proposed using these methods. Morphology, especially cyst shape and size, has proven to be plastic and dependent upon culture conditions. The DNA sequence of the nuclear small-subunit (18S) rRNA, the Rns gene, has become the most widely accepted method for rapid diagnosis and classification of Acanthamoeba. The Byers-Fuerst lab first proposed an Rns typing system in 1996. Subsequent refinements, with an increasing DNA database and analysis of diagnostic fragments within the gene, have become widely accepted by the Acanthamoeba research community. The development of the typing system, including its current state of implementation is illustrated by three cases: (i) the division between sequence types T13 and T16; (ii) the diversity within sequence supertype T2/T6, and (iii) verification of a new sequence type, designated T20. Molecular studies make clear the disconnection between phylogenetic relatedness and species names, as applied for the genus Acanthamoeba. Future reconciliation of genetic types with species names must become a priority, but the possible shortcomings of the use of a single gene when reconstructing the evolutionary history of the acanthamoebidae must also be resolved.

  19. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes.

    PubMed

    Létoquart, Juliette; Huvelle, Emmeline; Wacheul, Ludivine; Bourgeois, Gabrielle; Zorbas, Christiane; Graille, Marc; Heurgué-Hamard, Valérie; Lafontaine, Denis L J

    2014-12-23

    The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N(7)-methylguanosine (m(7)G) introduced at position 1575 on 18S rRNA by Bud23-Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23-Trm112 in the apo and S-adenosyl-L-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23-Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23-Trm112 binds precursor ribosomes at an early nucleolar stage, m(7)G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23-Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23-Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction.

  20. Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelma californica and evolutionary relationships among eukaryotic phyla.

    PubMed

    Hendriks, L; Van Broeckhoven, C; Vandenberghe, A; Van de Peer, Y; De Wachter, R

    1988-10-15

    The primary structure of the 18S rRNA of the bird spider Eurypelma californica has been determined in the framework of a study of metazoan phylogeny on the basis of ribosomal RNA structure. A secondary-structure model was derived by comparison of the sequence with that of 43 other eukaryotic small-ribosomal-subunit RNA sequences presently available. This comparison allows a rather detailed secondary-structure pattern to be postulated for a eukaryote-specific area of highly variable sequence and length for which no consensus model has hitherto been attained. A dendrogram, reflecting evolutionary relationships among the 40 eukaryotic species of known 18S rRNA structure, was constructed by a matrix method selecting the best-fitting tree on the basis of a least-squares criterion. The tree shows an early divergence of a microsporidium, an euglenoid, kinetoplastids and a slime mold. Among the remaining species, two main clusters are distinguishable, one comprising the Ciliata, the other comprising Metazoa, green plants, fungi and several protists. Among the Metazoa, the three phyla presently investigated, viz. Chordata, Arthropoda and Nemathelminthes, are distinguishable as three separate lines of descent.

  1. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia.

    PubMed

    Cooper, Madalyn K; Phalen, David N; Donahoe, Shannon L; Rose, Karrie; Šlapeta, Jan

    2016-01-30

    Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations.

  2. Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials.

    PubMed

    Nakacwa, R; Kiggundu, A; Talwana, H; Namaganda, J; Lilley, C; Tushemereirwe, W; Atkinson, H

    2013-10-01

    Information on relatedness in nematodes is commonly obtained by DNA sequencing of the ribosomal internal transcribed spacer region. However, the level of diversity at this locus is often insufficient for reliable species differentiation. Recent findings suggest that the sequences of a fragment of the small subunit nuclear ribosomal DNA (18S rRNA or SSU), identify genera of soil nematodes and can also distinguish between species in some cases. A database of soil nematode genera in a Ugandan soil was developed using 18S rRNA sequences of individual nematodes from a GM banana confined field trial site at the National Agricultural Research Laboratories, Kawanda in Uganda. The trial was planted to evaluate transgenic bananas for resistance to black Sigatoka disease. Search for relatedness of the sequences gained with entries in a public genomic database identified a range of 20 different genera and sometimes distinguished species. Molecular markers were designed from the sequence information to underpin nematode faunal analysis. This approach provides bio-indicators for disturbance of the soil environment and the condition of the soil food web. It is being developed to support environmental biosafety analysis by detecting any perturbance by transgenic banana or other GM crops on the soil environment.

  3. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing.

    PubMed

    Díez, B; Pedrós-Alió, C; Massana, R

    2001-07-01

    Very small eukaryotic organisms (picoeukaryotes) are fundamental components of marine planktonic systems, often accounting for a significant fraction of the biomass and activity in a system. Their identity, however, has remained elusive, since the small cells lack morphological features for identification. We determined the diversity of marine picoeukaryotes by sequencing cloned 18S rRNA genes in five genetic libraries from North Atlantic, Southern Ocean, and Mediterranean Sea surface waters. Picoplankton were obtained by filter size fractionation, a step that excluded most large eukaryotes and recovered most picoeukaryotes. Genetic libraries of eukaryotic ribosomal DNA were screened by restriction fragment length polymorphism analysis, and at least one clone of each operational taxonomic unit (OTU) was partially sequenced. In general, the phylogenetic diversity in each library was rather great, and each library included many different OTUs and members of very distantly related phylogenetic groups. Of 225 eukaryotic clones, 126 were affiliated with algal classes, especially the Prasinophyceae, the Prymnesiophyceae, the Bacillariophyceae, and the Dinophyceae. A minor fraction (27 clones) was affiliated with clearly heterotrophic organisms, such as ciliates, the chrysomonad Paraphysomonas, cercomonads, and fungi. There were two relatively abundant novel lineages, novel stramenopiles (53 clones) and novel alveolates (19 clones). These lineages are very different from any organism that has been isolated, suggesting that there are previously unknown picoeukaryotes. Prasinophytes and novel stramenopile clones were very abundant in all of the libraries analyzed. These findings underscore the importance of attempts to grow the small eukaryotic plankton in pure culture.

  4. Comparison of ITS and 18S rDNA for estimating fungal diversity using PCR-DGGE.

    PubMed

    Liu, Jie; Yu, Yaoyao; Cai, Zhang; Bartlam, Mark; Wang, Yingying

    2015-09-01

    Both the internal transcribed spacer (ITS) region and 18S rRNA genes are broadly applied in molecular fingerprinting studies of fungi. However, the differences in those two ribosomal RNA regions are still largely unknown. In the current study, three sets of most suitable subunit ribosomes in ITS and 18S rRNA were compared using denaturing gradient gel electrophoresis (DGGE) under the optimum experimental conditions. Ten samples from both aquatic and soil environments were tested. The results revealed that the ITS region produced range-weighted richness in the range 36-361, which was significantly higher than that produced by 18S rDNA. There was a similar tendency in terms of the Shannon-Weaver diversity index and community dynamics in both water and soil samples. Samples from water and soil were better separated using ITS than 18S rDNA in principal component analysis of DGGE bands. Our study suggests that the ITS region is more precise and has more potential than 18S rRNA genes in fungal community analysis.

  5. Analysis of U3 snoRNA and small subunit processome components in the parasitic protist Entamoeba histolytica.

    PubMed

    Srivastava, Ankita; Ahamad, Jamaluddin; Ray, Ashwini Kumar; Kaur, Devinder; Bhattacharya, Alok; Bhattacharya, Sudha

    2014-02-01

    In the early branching parasitic protist Entamoeba histolytica, pre-rRNA synthesis continues when cells are subjected to growth stress, but processing slows down and unprocessed pre-rRNA accumulates. To gain insight into the regulatory mechanisms leading to accumulation, it is necessary to define the pre-rRNA processing machinery in E. histolytica. We searched the E. histolytica genome sequence for homologs of the SSU processome, which contains the U3snoRNA, and 72 proteins in yeast. We could identify 57 of the proteins with high confidence. Of the rest, 6 were absent in human, and 4 were non-essential in yeast. The remaining 5 were absent in other parasite genomes as well. Analysis of U3snoRNA showed that the E. histolytica U3snoRNA adopted the same conserved secondary structure as seen in yeast and human. The predicted structure was verified by chemical modification followed by primer extension (SHAPE). Further we showed that the predicted interactions of Eh_U3snoRNA boxes A and A' with pre-18S rRNA were highly conserved both in position and sequence. The predicted interactions of 5'-hinge and 3'-hinge sequences of Eh_U3 snoRNA with the 5'-ETS sequences were conserved in position but not in sequence. Transcription of selected genes of SSU processome was tested by northern analysis, and transcripts of predicted sizes were obtained. During serum starvation, when unprocessed pre-RNA accumulated, the transcript levels of some of these genes declined. This is the first report on pre-rRNA processing machinery in E. histolytica, and shows that the components are well conserved with respect to yeast and human.

  6. Transcription cofactor PC4 plays essential roles in collaboration with the small subunit of general transcription factor TFIIE.

    PubMed

    Akimoto, Yusuke; Yamamoto, Seiji; Iida, Satoshi; Hirose, Yutaka; Tanaka, Aki; Hanaoka, Fumio; Ohkuma, Yoshiaki

    2014-12-01

    In eukaryotes, positive cofactor 4 (PC4) stimulates activator-dependent transcription by facilitating transcription initiation and the transition from initiation to elongation. It also forms homodimers and binds to single-stranded DNA and various transcriptional activators, including the general transcription factor TFIIH. In this study, we further investigated PC4 from Homo sapiens and the nematode Caenorhabditis elegans (hPC4 and cePC4, respectively). hPC4 strongly stimulated transcription on a linearized template, whereas it alleviated transcription on a supercoiled template. Transcriptional stimulation by PC4 was also alleviated by increasing the amount of TFIID. GST pull-down studies with general transcription factors indicated that both hPC4 and cePC4 bind strongly to TFIIB, TFIIEβ, TFIIFα, TFIIFβ and TFIIH XPB subunits and weakly to TBP and TFIIH p62. However, only hPC4 bound to CDK7. The effect of each PC4 on transcription was studied in combination with TFIIEβ. hPC4 stimulated both basal and activated transcription, whereas cePC4 primarily stimulated activated transcription, especially in the presence of TFIIEβ from C. elegans. Finally, hPC4 bound to the C-terminal region of hTFIIEβ adjacent to the basic region. These results indicate that PC4 plays essential roles in the transition step from transcription initiation to elongation by binding to melted DNA in collaboration with TFIIEβ.

  7. Expression of Ribonucleotide Reductase Subunit-2 and Thymidylate Synthase Correlates with Poor Prognosis in Patients with Resected Stages I–III Non-Small Cell Lung Cancer

    PubMed Central

    Grossi, Francesco; Dal Bello, Maria Giovanna; Salvi, Sandra; Puzone, Roberto; Pfeffer, Ulrich; Fontana, Vincenzo; Alama, Angela; Rijavec, Erika; Barletta, Giulia; Genova, Carlo; Sini, Claudio; Ratto, Giovanni Battista; Taviani, Mario; Truini, Mauro; Merlo, Domenico Franco

    2015-01-01

    Biomarkers can help to identify patients with early-stages or locally advanced non-small cell lung cancer (NSCLC) who have high risk of relapse and poor prognosis. To correlate the expression of seven biomarkers involved in DNA synthesis and repair and in cell division with clinical outcome, we consecutively collected 82 tumour tissues from radically resected NSCLC patients. The following biomarkers were investigated using IHC and qRT-PCR: excision repair cross-complementation group 1 (ERCC1), breast cancer 1 (BRCA1), ribonucleotide reductase subunits M1 and M2 (RRM1 and RRM2), subunit p53R2, thymidylate synthase (TS), and class III beta-tubulin (TUBB3). Gene expression levels were also validated in an available NSCLC microarray dataset. Multivariate analysis identified the protein overexpression of RRM2 and TS as independent prognostic factors of shorter overall survival (OS). Kaplan-Meier analysis showed a trend in shorter OS for patients with RRM2, TS, and ERCC1, BRCA1 overexpressed tumours. For all of the biomarkers except TUBB3, the OS trends relative to the gene expression levels were in agreement with those relative to the protein expression levels. The NSCLC microarray dataset showed RRM2 and TS as biomarkers significantly associated with OS. This study suggests that high expression levels of RRM2 and TS might be negative prognostic factors for resected NSCLC patients. PMID:26663950

  8. Phylogeny of organisms investigated by the base-pair changes in the stem regions of small and large ribosomal subunit RNAs.

    PubMed

    Otsuka, J; Terai, G; Nakano, T

    1999-02-01

    In order to obtain the evolutionary distance data that are as purely additive as possible, we have developed a novel method for evaluating the evolutionary distances from the base-pair changes in stem regions of ribosomal RNAs (rRNAs). The application of this method to small-subunit (SSU) and large-subunit (LSU) rRNAs provides the distance data, with which both the unweighted pair group method of analysis and the neighbor-joining method give almost the same tree topology of most organisms except for some Protoctista, thermophilic bacteria, parasitic organisms, and endosymbionts. Although the evolutionary distances calculated with LSU rRNAs are somewhat longer than those with SSU rRNAs, the difference, probably due to a slight difference in functional constraint, is substantially decreased when the distances are converted into the divergence times of organisms by the measure of the time scale estimated in each type of rRNAs. The divergence times of main branches agree fairly well with the geological record of organisms, at least after the appearance of oxygen-releasing photosynthesis, although the divergence times of Eukaryota, Archaebacteria, and Eubacteria are somewhat overestimated in comparison with the geological record of Earth formation. This result is explained by considering that the mutation rate is determined by the accumulation of misrepairs for DNA damage caused by radiation and that the effect of radiation had been stronger before the oxygen molecules became abundant in the atmosphere of the Earth.

  9. Phylogeny of organisms investigated by the base-pair changes in the stem regions of small and large ribosomal subunit RNAs.

    PubMed

    Otsuka, J; Terai, G; Nakano, T

    1999-02-01

    In order to obtain the evolutionary distance data that are as purely additive as possible, we have developed a novel method for evaluating the evolutionary distances from the base-pair changes in stem regions of ribosomal RNAs (rRNAs). The application of this method to small-subunit (SSU) and large-subunit (LSU) rRNAs provides the distance data, with which both the unweighted pair group method of analysis and the neighbor-joining method give almost the same tree topology of most organisms except for some Protoctista, thermophilic bacteria, parasitic organisms, and endosymbionts. Although the evolutionary distances calculated with LSU rRNAs are somewhat longer than those with SSU rRNAs, the difference, probably due to a slight difference in functional constraint, is substantially decreased when the distances are converted into the divergence times of organisms by the measure of the time scale estimated in each type of rRNAs. The divergence times of main branches agree fairly well with the geological record of organisms, at least after the appearance of oxygen-releasing photosynthesis, although the divergence times of Eukaryota, Archaebacteria, and Eubacteria are somewhat overestimated in comparison with the geological record of Earth formation. This result is explained by considering that the mutation rate is determined by the accumulation of misrepairs for DNA damage caused by radiation and that the effect of radiation had been stronger before the oxygen molecules became abundant in the atmosphere of the Earth. PMID:9929391

  10. Two F-18s in Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This 32 second video clip shows two F-18s in NASA's Autonomous Formation Flight (AFF) program. The aircraft use smoke contrails to gather data on wingtip vortices. Flight research attempts to utilize the energy in the vortices for more efficient flight.

  11. Why multiple small subunits (Y2 and Y4) for yeast ribonucleotide reductase? Toward understanding the role of Y4

    PubMed Central

    Ge, Jie; Perlstein, Deborah L.; Nguyen, Hiep-Hoa; Bar, Galit; Griffin, Robert G.; Stubbe, JoAnne

    2001-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides. Class I RNRs are composed of two homodimeric subunits: R1 and R2. R1 is directly involved in the reduction, and R2 contains the diferric-tyrosyl radical (Y⋅) cofactor essential for the initiation of reduction. Saccharomyces cerevisiae has two RNRs; Y1 and Y3 correspond to R1, whereas Y2 and Y4 correspond to R2. Y4 is essential for diferric-Y⋅ formation in Y2 from apoY2, Fe2+, and O2. The actual function of Y4 is controversial. Y2 and Y4 have been further characterized in an effort to understand their respective roles in nucleotide reduction. (His)6-Y2, Y4, and (His)6-Y4 are homodimers, isolated largely in apo form. Their CD spectra reveal that they are predominantly helical. The concentrations of Y2 and Y4 in vivo are 0.5–2.3 μM, as determined by Western analysis. Incubation of Y2 and Y4 under physiological conditions generates apo Y2Y4 heterodimer, which can form a diferric-Y⋅ when incubated with Fe2+ and O2. Holo Y2Y4 heterodimer contains 0.6–0.8 Y⋅ and has a specific activity of 0.8–1.3 μmol⋅min⋅mg. Titration of Y2 with Y4 in the presence of Fe2+ and O2 gives maximal activity with one equivalent of Y4 per Y2. Models for the function of Y4 based on these data and the accompanying structure will be discussed. PMID:11526232

  12. Variability in Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Small Subunits and Carboxylation Activity in Fern Gametophytes Grown under Different Light Spectra 1

    PubMed Central

    Eilenberg, Haviva; Beer, Sven; Gepstein, Shimon; Geva, Nurit; Tadmor, Orly; Zilberstein, Aviah

    1991-01-01

    Two distinct ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (SSU) populations were observed in Pteris vittata gametophytes grown under different illumination conditions. Exposure of the fern gametophytes to continuous red light (R) resulted in Rubisco SSUs that were not recognized by polyclonal antibodies raised against SSUs from spinach. Unlike the R-induced SSUs, blue light (B) induced SSUs were well recognized. This difference in SSU composition also reflected in Rubisco activity. In vitro, B-induced Rubisco exhibits a significantly higher carboxylation activity as compared to the R-induced Rubisco. Approximately a two- to threefold increase in the Vmax value of the B-induced carboxylase as compared to the R-induced one was measured. It thus seems very likely that certain domains in the SSU molecule affect enzyme activity. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16667969

  13. Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta.

    PubMed

    Bhattacharya, D; Helmchen, T; Melkonian, M

    1995-01-01

    The Rhizopoda comprise a diverse assemblage of protists which depend on lobose or filose pseudopodia for locomotion. The biochemical and morphological diversity of rhizopods has led to an uncertain taxonomy. Ribosomal RNA sequence comparisons offer a measure of evolutionary relatedness that is independent of morphology and has been used to demonstrate a polyphyletic origin of the Lobosea. We sequenced complete small subunit ribosomal RNA coding regions from the filose amoebae, Euglypha rotunda and Paulinella chromatophora (Euglyphina) to position these taxa in the eukaryote phylogeny. The neighbor-joining analyses show that E. rotunda and P. chromatophora share a monophyletic origin and are not closely related to any lobose amoebae in our analyses. Instead, the Euglyphina form a robust sister group to the Chlorarachniophyta. These results provide further evidence for the polyphyly of the Rhizopoda and support the creation of a new amoeboid lineage which includes the Euglyphina and the chlorarachniophyte algae; taxa with tubular mitochondrial cristae and filose or reticulate pseudopodia.

  14. Morphology and small subunit rDNA gene sequence of Pseudoamphisiella quadrinucleata n. sp. (Ciliophora, Urostylida) from the South China Sea.

    PubMed

    Shen, Zhuo; Lin, Xiaofeng; Long, Hongan; Miao, Miao; Liu, Hongbin; Al-Rasheid, Khaled A S; Song, Weibo

    2008-01-01

    The urosylid genus Pseudoamphisiella was established by Song (1996) with hitherto only two known congeners. In the present work, the morphology and infraciliature of a new member, Pseudoamphisiella quadrinucleata n. sp., a form with conspicuous alveolar layer and four macronuclear nodules isolated from the coastal waters both near Hong Kong and near Guangzhou, South China were investigated using living observation and protargol silver impregnation methods. Pseudoamphisiella quadrinucleata differs from other two known forms mainly by the number of macronuclear nodules: constantly four vs. two in Pseudoamphisiella alveolata and 24-57 in Pseudoamphisiella lacazei. To support this, the sequence of the small subunit rDNA of P. quadrinucleata n. sp. showed 14 and 74 nucleotides in comparison with that of the two known congeners, respectively, which hence firmly supports the validity of the new species.

  15. The reduction in small ribosomal subunit abundance in ethanol-stressed cells of Bacillus subtilis is mediated by a SigB-dependent antisense RNA.

    PubMed

    Mars, Ruben A T; Mendonça, Karoline; Denham, Emma L; van Dijl, Jan Maarten

    2015-10-01

    One of the best-characterized general stress responses in bacteria is the σB-mediated stress response of the Gram-positive soil bacterium Bacillus subtilis. The σB regulon contains approximately 200 protein-encoding genes and 136 putative regulatory RNAs. One of these σB-dependent RNAs, named S1136-S1134, was recently mapped as being transcribed from the S1136 promoter on the opposite strand of the essential rpsD gene, which encodes the ribosomal primary-binding protein S4. Accordingly, S1136-S1134 transcription results in an rpsD-overlapping antisense RNA (asRNA). Upon exposure of B. subtilis to ethanol, the S1136 promoter was found to be induced, while rpsD transcription was downregulated. By quantitative PCR, we show that the activation of transcription from the S1136 promoter is directly responsible for the downregulation of rpsD upon ethanol exposure. We also show that this downregulation of rpsD leads to a reduced level of the small (30S) ribosomal subunit upon ethanol stress. The activation of the S1136 promoter thus represents the first example of antisense transcription-mediated regulation in the general stress response of B. subtilis and implicates the reduction of ribosomal protein abundance as a new aspect in the σB-dependent stress response. We propose that the observed reduction in the level of the small ribosomal subunit, which contains the ribosome-decoding center, may protect B. subtilis cells against misreading and spurious translation of possibly toxic aberrant peptides under conditions of ethanol stress. PMID:26115952

  16. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth.

    PubMed

    Sharwood, Robert Edward; von Caemmerer, Susanne; Maliga, Pal; Whitney, Spencer Michael

    2008-01-01

    Plastomic replacement of the tobacco (Nicotiana tabacum) Rubisco large subunit gene (rbcL) with that from sunflower (Helianthus annuus; rbcL(S)) produced tobacco(Rst) transformants that produced a hybrid Rubisco consisting of sunflower large and tobacco small subunits (L(s)S(t)). The tobacco(Rst) plants required CO(2) (0.5% v/v) supplementation to grow autotrophically from seed despite the substrate saturated carboxylation rate, K(m), for CO(2) and CO(2)/O(2) selectivity of the L(s)S(t) enzyme mirroring the kinetically equivalent tobacco and sunflower Rubiscos. Consequently, at the onset of exponential growth when the source strength and leaf L(s)S(t) content were sufficient, tobacco(Rst) plants grew to maturity without CO(2) supplementation. When grown under a high pCO(2), the tobacco(Rst) seedlings grew slower than tobacco and exhibited unique growth phenotypes: Juvenile plants formed clusters of 10 to 20 structurally simple oblanceolate leaves, developed multiple apical meristems, and the mature leaves displayed marginal curling and dimpling. Depending on developmental stage, the L(s)S(t) content in tobacco(Rst) leaves was 4- to 7-fold less than tobacco, and gas exchange coupled with chlorophyll fluorescence showed that at 2 mbar pCO(2) and growth illumination CO(2) assimilation in mature tobacco(Rst) leaves remained limited by Rubisco activity and its rate (approximately 11 micromol m(-2) s(-1)) was half that of tobacco controls. (35)S-methionine labeling showed the stability of assembled L(s)S(t) was similar to tobacco Rubisco and measurements of light transient CO(2) assimilation rates showed L(s)S(t) was adequately regulated by tobacco Rubisco activase. We conclude limitations to tobacco(Rst) growth primarily stem from reduced rbcL(S) mRNA levels and the translation and/or assembly of sunflower large with the tobacco small subunits that restricted L(s)S(t) synthesis.

  17. Cellular identity of a novel small subunit rDNA sequence clade of apicomplexans: description of the marine parasite Rhytidocystis polygordiae n. sp. (host: Polygordius sp., Polychaeta).

    PubMed

    Leander, Brian S; Ramey, Patricia A

    2006-01-01

    A new species of Rhytidocystis (Apicomplexa) is characterized from North American waters of the Atlantic Ocean using electron microscopy and phylogenetic analyses of small subunit (SSU) rDNA sequences. Rhytidocystis polygordiae n. sp. is a parasite of the polychaete Polygordius sp. and becomes the fourth described species within this genus. The trophozoites of R. polygordiae were relatively small oblong cells (L=35-55 microm; W=20-25 microm) and distinctive in possessing subterminal indentations at both ends of the cell. The surface of the trophozoites had six to eight longitudinal series of small transverse folds and several micropores arranged in short linear rows. The trophozoites of R. polygordiae were positioned beneath the brush border of the intestinal epithelium but appeared to reside between the epithelial cells within the extracellular matrix rather than within the cells. The trophozoites possessed a uniform distribution of paraglycogen granules, putative apicoplasts, mitochondria with tubular cristae, and a centrally positioned nucleus. The trophozoites were non-motile and lacked a mucron and an apical complex. Intracellular sporozoites of R. polygordiae had a conoid, a few rhoptries, micronemes, dense granules, and a posteriorly positioned nucleus. Phylogenies inferred from SSU rDNA sequences demonstrated a close relationship between R. polygordiae and the poorly known parasite reported from the hemolymph of the giant clam Tridacna crocea. The rhytidocystid clade diverged early in the apicomplexan radiation and showed a weak affinity to a clade consisting of cryptosporidian parasites, monocystids, and neogregarines.

  18. Complementarity between the mRNA 5' untranslated region and 18S ribosomal RNA can inhibit translation.

    PubMed

    Verrier, S B; Jean-Jean, O

    2000-04-01

    In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.

  19. HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation.

    PubMed

    Malygin, Alexey A; Kossinova, Olga A; Shatsky, Ivan N; Karpova, Galina G

    2013-10-01

    Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES-rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors.

  20. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets

  1. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene.

    PubMed

    Urata, Makoto

    2015-06-01

    Seven nuclear and mitochondrial DNA markers were examined in 12 specimens of Ptychodera flava, a model acorn worm used in molecular biology, collected in Japan from three local populations with different modes of living. A comparison of intraspecific results did not show genetically isolated populations despite the species' enclave habitats and asexual reproduction. Moreover, both the nuclear 18S ribosomal RNA gene and mitochondrial 16S ribosomal RNA gene sequences were identical to those from Moorea in French Polynesia, nearly 10,000 kilometers away from Japan. I also provide the first definitive information regarding polymorphisms in 18S ribosomal RNA gene, the external transcribed spacer (ETS), internal transcribed spacers (ITS), and mitochondrial cytochrome c oxidase subunit 1 (mtCO1) sequence in hemichordates using newly designed primer sets, and I show both high larval vagility and certain criteria for the molecular identification of this species. PMID:26003987

  2. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene.

    PubMed

    Urata, Makoto

    2015-06-01

    Seven nuclear and mitochondrial DNA markers were examined in 12 specimens of Ptychodera flava, a model acorn worm used in molecular biology, collected in Japan from three local populations with different modes of living. A comparison of intraspecific results did not show genetically isolated populations despite the species' enclave habitats and asexual reproduction. Moreover, both the nuclear 18S ribosomal RNA gene and mitochondrial 16S ribosomal RNA gene sequences were identical to those from Moorea in French Polynesia, nearly 10,000 kilometers away from Japan. I also provide the first definitive information regarding polymorphisms in 18S ribosomal RNA gene, the external transcribed spacer (ETS), internal transcribed spacers (ITS), and mitochondrial cytochrome c oxidase subunit 1 (mtCO1) sequence in hemichordates using newly designed primer sets, and I show both high larval vagility and certain criteria for the molecular identification of this species.

  3. Morphology and 18S rDNA of Henneguya gurlei (Myxosporea) from Ameiurus nebulosus (Siluriformes) in North Carolina

    USGS Publications Warehouse

    Iwanowicz, L.R.; Iwanowicz, D.D.; Pote, L.M.; Blazer, V.S.; Schill, W.B.

    2008-01-01

    Henneguya gurlei was isolated from Ameiurus nebulosus captured in North Carolina and redescribed using critical morphological features and 18S small-subunit ribosomal RNA (SSU rDNA) gene sequence. Plasmodia are white, spherical, or subspherical, occur in clusters, measure up to 1.8 mm in length, and are located on the dorsal, pectoral, and anal fins. Histologically, plasmodia are located in the dermis and subdermally, and the larger cysts disrupt the melanocyte pigment layer. The spore body is lanceolate, 18.2 ?? 0.3 ??m (range 15.7-20.3) in length, and 5.4 ?? 0.1 ??m (range 3.8-6.1) in width in valvular view. The caudal appendages are 41.1 ?? 1.1 ??m (range 34.0-49.7) in length. Polar capsules are pyriform and of unequal size. The longer polar capsule measures 6.2 ?? 0.1 ??m (range 5.48-7.06), while the shorter is 5.7 ?? 0.1 ??m (range 4.8-6.4) in length. Polar capsule width is 1.2 ?? 0.03 ??m (range 1.0-1.54). The total length of the spore is 60.9 ?? 1.2 ??m (range 48.7-68.5). Morphologically, this species is similar to other species of Henneguya that are known to infect ictalurids. Based on SSU rDNA sequences, this species is most closely related to H. exilis and H. ictaluri, which infect Ictalurus punctatus. ?? American Society of Parasitologists 2008.

  4. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium.

    PubMed

    Peccia, J; Marchand, E A; Silverstein, J; Hernandez, M

    2000-07-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using (32)P radiolabels, probe specificity was characterized by hybridization dissociation temperature (T(d)) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined T(d)s. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris.

  5. Morphology, morphogenesis and small-subunit rRNA gene sequence of the novel brackish-water ciliate Strongylidium orientale sp. nov. (Ciliophora, Hypotrichia).

    PubMed

    Chen, Xumiao; Miao, Miao; Ma, Honggang; Shao, Chen; Al-Rasheid, Khaled A S

    2013-03-01

    A novel stichotrich ciliate, Strongylidium orientale sp. nov., was discovered from a mangrove river in Hong Kong, southern China, and its morphology was investigated through observations in vivo and after protargol impregnation. Cells are 80-120 × 35-50 µm in vivo and fusiform in shape, with rounded anterior and tapered posterior ends. It is characterized by its brackish habitat and by the presence of two types of cortical granules arranged irregularly throughout the cortex. Morphogenetic events of cell division and physiological reorganization are described. The main ontogenetic features were: (i) only the posterior portion of the parental adoral zone of membranelles was renewed by dedifferentiation of the old structures; (ii) the oral primordium in the opisthe occurred apokinetally; (iii) the left and right ventral rows originated intrakinetally and the final left ventral row was spliced from two cirri from the frontoventral cirral anlage, a short cirral row from the anlage for the right ventral row and a long cirral row which was formed from the whole anlage of the left ventral row; (iv) the marginal rows developed intrakinetally; (v) the dorsal kineties replicated entirely de novo and did not fragment; and (vi) the two macronuclear nodules fused into a mass and then divided. Based on small-subunit rRNA gene sequences, phylogenetic analyses showed a close relationship with its congener Strongylidium pseudocrassum and with the genus Pseudouroleptus. PMID:23378115

  6. Morphology and morphogenesis of a novel mangrove ciliate, Sterkiella subtropica sp. nov. (Protozoa, Ciliophora, Hypotrichia), with phylogenetic analyses based on small-subunit rDNA sequence data.

    PubMed

    Chen, Xumiao; Gao, Feng; Al-Farraj, Saleh A; Al-Rasheid, Khaled A S; Xu, Kuidong; Song, Weibo; Song, Weibo

    2015-07-01

    A novel marine hypotrichous ciliate, Sterkiella subtropica sp. nov., was recently isolated from a mangrove wetland in Hong Kong. Its morphology, morphogenesis and systematic position have been investigated. The novel species is diagnosed by combined features of morphology, ciliature and nuclear apparatus, while its ontogenetic events present a stable pattern: (i) the six streaks of the undulating membrane (UM) and cirral anlagen are segmented in a 1 : 3 : 3 : 3 : 4 : 4 pattern from left to right, and form three frontal, four frontoventral, one buccal, five ventral and five transverse cirri; (ii) the dorsal structure is similar to most other oxytrichids; that is, in a '4+2' pattern with three caudal cirri being formed. Based on the small-subunit rDNA sequence, the novel species is different from its congeners by between 21 and 35 bp, with sequence identities from 0.978 to 0.987. All molecular trees exhibited a similar topology: the monophyly of species of the genus Sterkiella is not completely supported in our analyses, and approximately unbiased tests (both including and excluding the novel species) also reject the possibility that Sterkiella is a monophyletic lineage, as indicated by the morphology-based classification. PMID:25872955

  7. Further consideration of the phylogeny of some "traditional" heterotrichs (Protista, Ciliophora) of uncertain affinities, based on new sequences of the small subunit rRNA gene.

    PubMed

    Miao, Miao; Song, Weibo; Clamp, John C; Al-Rasheid, Khaled A S; Al-Khedhairy, Abdulaziz A; Al-Arifi, Saud

    2009-01-01

    The systematic relationships and taxonomic positions of the traditional heterotrich genera Condylostentor, Climacostomum, Fabrea, Folliculina, Peritromus, and Condylostoma, as well as the licnophorid genus Licnophora, were re-examined using new data from sequences of the gene coding for small subunit ribosomal RNA. Trees constructed using distance-matrix, Bayesian inference, and maximum-parsimony methods all showed the following relationships: (1) the "traditional" heterotrichs consist of several paraphyletic groups, including the current classes Heterotrichea, Armophorea and part of the Spirotrichea; (2) the class Heterotrichea was confirmed as a monophyletic assemblage based on our analyses of 31 taxa, and the genus Peritromus was demonstrated to be a peripheral group; (3) the genus Licnophora occupied an isolated branch on one side of the deepest divergence in the subphylum Intramacronucleata and was closely affiliated with spirotrichs, armophoreans, and clevelandellids; (4) Condylostentor, a recently defined genus with several truly unique morphological features, is more closely related to Condylostoma than to Stentor; (5) Folliculina, Eufolliculina, and Maristentor always clustered together with high bootstrap support; and (6) Climacostomum occupied a paraphyletic position distant from Fabrea, showing a close relationship with Condylostomatidae and Chattonidiidae despite of modest support. PMID:19527351

  8. Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny.

    PubMed

    Takishita, Kiyotaka; Miyake, Hiroshi; Kawato, Masaru; Maruyama, Tadashi

    2005-06-01

    Recent culture-independent molecular analyses have shown the diversity and ecological importance of microbial eukaryotes (protists) in various marine environments. In the present study we directly extracted DNA from anoxic sediment near active fumaroles on a submarine caldera floor at a depth of 200 m and constructed genetic libraries of PCR-amplified eukaryotic small-subunit (SSU) rDNA. By sequencing cloned SSU rDNA of the libraries and their phylogenetic analyses, it was shown that most sequences have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, stramenopiles and Opisthokonta). In particular, some sequences were closely related to those of representatives of eukaryotic parasites, such as Phagomyxa and Cryothecomonas of Cercozoa, Pirsonia of stramenopiles and Ichthyosporea of Opisthokonta, although it is not clear whether the organisms occur in free-living or parasitic forms. In addition, other sequences did not seem to be related to any described eukaryotic lineages suggesting the existence of novel eukaryotes at a high-taxonomic level in the sediment. The community composition of microbial eukaryotes in the sediment we surveyed was different overall from those of other anoxic marine environments previously investigated. PMID:15744454

  9. Morphology and small subunit rDNA-based phylogeny of Ceratomyxa amazonensis n. sp. parasite of Symphysodon discus, an ornamental freshwater fish from Amazon.

    PubMed

    Mathews, Patrick D; Naldoni, Juliana; Maia, Antonio A; Adriano, Edson A

    2016-10-01

    The specious genus Ceratomyxa Thélodan, 1892, infect mainly gallbladder of marine fishes, with only five species reported infecting species from freshwater environment. This study performed morphological and phylogenetic analyses involving a new Ceratomyxa species (Ceratomyxa amazonensis n. sp.) found in gallbladder of Symphysodon discus Heckel, 1840 (Perciformes: Cichlidae), an important ornamental fish endemic to Amazon basin. Mature spores were strongly arcuate shaped and measured 7.0 ± 0.3 (6.2-7.6) μm in length, 15.8 ± 0.4 (15.0-16.7) μm in thickness, and polar capsules 3.22 ± 0.34 (2.4-3.6) μm in length and 2.63 ± 0.17 (2.4-2.9) μm in width. This was the first small subunit ribosomal DNA (SS rDNA) sequencing performed to Ceratomyxa species parasite of freshwater fish, and the phylogenetic analysis showed C. amazonensis n. sp. clustering in the early diverging subclade of the ceratomyxids, together with species of parasites of amphidromous/estuaries fishes, suggesting some role of the transition of the fishes between marine/freshwater environments in the evolutionary history of these parasites. PMID:27314232

  10. Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?

    NASA Technical Reports Server (NTRS)

    Viscogliosi, E.; Edgcomb, V. P.; Gerbod, D.; Noel, C.; Delgado-Viscogliosi, P.; Sogin, M. L. (Principal Investigator)

    1999-01-01

    The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.

  11. The small subunit rRNA gene sequence of the chonotrich Chilodochona carcini Jankowski, 1973 confirms chonotrichs as a dysteriid-derived clade (Phyllopharyngea, Ciliophora).

    PubMed

    Lynn, Denis H

    2016-08-01

    The chonotrichs are sessile ciliated protozoa that are ectosymbiotic on the body parts of a variety of crustaceans. They have long been considered a separate group because their sessile habit has resulted in the evolution of a very divergent body form and reproductive strategy compared to free-living ciliates. In the mid-20th Century, the free-living dysteriid cyrtophorian ciliates were proposed as a potential sister clade because the chonotrich bud or daughter cell showed similarities during division morphogenesis (i.e. ontogeny) to these free-living dysteriids. A single small subunit (SSU) rRNA gene sequence is available for the chonotrich Isochona sp. However, its authenticity has recently been questioned, and the placement of this sequence within the dysteriid clade has added to this controversy. In this report, the SSUrRNA gene sequence of the chonotrich Chilodochona carcini, ectosymbiotic on the green crab Carcinus maenas, is provided. Topology testing of the SSUrRNA gene phylogeny, constructed by Bayesian Inference, robustly supports the sister-group relationship of Isochona sp. and Chilodochona carcini, the monophyly of these two chonotrichs, and the divergence of the chonotrich clade within the dysteriid clade.

  12. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium.

    PubMed

    Peccia, J; Marchand, E A; Silverstein, J; Hernandez, M

    2000-07-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using (32)P radiolabels, probe specificity was characterized by hybridization dissociation temperature (T(d)) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined T(d)s. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris. PMID:10877807

  13. Development and Application of Small-Subunit rRNA Probes for Assessment of Selected Thiobacillus Species and Members of the Genus Acidiphilium

    PubMed Central

    Peccia, Jordan; Marchand, Eric A.; Silverstein, Joann; Hernandez, Mark

    2000-01-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using 32P radiolabels, probe specificity was characterized by hybridization dissociation temperature (Td) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined Tds. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris. PMID:10877807

  14. The small subunit rRNA gene sequence of the chonotrich Chilodochona carcini Jankowski, 1973 confirms chonotrichs as a dysteriid-derived clade (Phyllopharyngea, Ciliophora).

    PubMed

    Lynn, Denis H

    2016-08-01

    The chonotrichs are sessile ciliated protozoa that are ectosymbiotic on the body parts of a variety of crustaceans. They have long been considered a separate group because their sessile habit has resulted in the evolution of a very divergent body form and reproductive strategy compared to free-living ciliates. In the mid-20th Century, the free-living dysteriid cyrtophorian ciliates were proposed as a potential sister clade because the chonotrich bud or daughter cell showed similarities during division morphogenesis (i.e. ontogeny) to these free-living dysteriids. A single small subunit (SSU) rRNA gene sequence is available for the chonotrich Isochona sp. However, its authenticity has recently been questioned, and the placement of this sequence within the dysteriid clade has added to this controversy. In this report, the SSUrRNA gene sequence of the chonotrich Chilodochona carcini, ectosymbiotic on the green crab Carcinus maenas, is provided. Topology testing of the SSUrRNA gene phylogeny, constructed by Bayesian Inference, robustly supports the sister-group relationship of Isochona sp. and Chilodochona carcini, the monophyly of these two chonotrichs, and the divergence of the chonotrich clade within the dysteriid clade. PMID:27151876

  15. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways.

    PubMed

    Wang, Ziliang; Hou, Jing; Lu, Lili; Qi, Zihao; Sun, Jianmin; Gao, Wen; Meng, Jiao; Wang, Yan; Sun, Huizhen; Gu, Hongyu; Xin, Yuhu; Guo, Xiaomao; Yang, Gong

    2013-01-01

    Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.

  16. Cryptic diversity of free-living parabasalids, Pseudotrichomonas keilini and Lacusteria cypriaca n. g., n. sp., as inferred from small subunit rDNA sequences.

    PubMed

    Yubuki, Naoji; Céza, Vít; Cepicka, Ivan; Yabuki, Akinori; Inagaki, Yuji; Nakayama, Takeshi; Inouye, Isao; Leander, Brian S

    2010-01-01

    Ultrastructural and molecular phylogenetic evidence indicate that the Parabasalia consists of seven main subgroups: the Trichomonadida, Honigbergiellida, Hypotrichomonadida, Tritrichomonadida, Cristamonadida, Spirotrichonymphida, and Trichonymphida. Only five species of free-living parabasalids are known: Monotrichomonas carabina, Ditrichomonas honigbergii, Honigbergiella sp., Tetratrichomonas undula, and Pseudotrichomonas keilini. Phylogenetic analyses show that free-living species do not form a clade and instead branch in several different positions within the context of their parasitic relatives. Because the diversity of free-living parabasalids is poorly understood, the systematics of these lineages is in a significant state of disarray. In order to better understand the phylogenetic distribution of free-living parabasalids, we sequenced the small subunit rDNA from three different strains reminiscent of P. keilini; the strains were isolated from different geographical locations: (1) mangrove sediments in Japan and (2) sediments in Cyprus. These data demonstrated that the free-living parabasalids P. keilini and Lacusteria cypriaca n. g., n. sp., form a paraphyletic assemblage near the origin of a clade consisting mostly of parasitic trichomonadids (e.g. Trichomonas vaginalis). This paraphyletic distribution of similar morphotypes indicates that free-living trichomonadids represent a compelling example of morphostasis that provides insight into the suite of features present in the most recent free-living ancestor of their parasitic relatives. PMID:20880033

  17. Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?

    PubMed

    Viscogliosi, E; Edgcomb, V P; Gerbod, D; Noël, C; Delgado-Viscogliosi, P

    1999-12-01

    The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.

  18. Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny.

    PubMed

    Takishita, Kiyotaka; Miyake, Hiroshi; Kawato, Masaru; Maruyama, Tadashi

    2005-06-01

    Recent culture-independent molecular analyses have shown the diversity and ecological importance of microbial eukaryotes (protists) in various marine environments. In the present study we directly extracted DNA from anoxic sediment near active fumaroles on a submarine caldera floor at a depth of 200 m and constructed genetic libraries of PCR-amplified eukaryotic small-subunit (SSU) rDNA. By sequencing cloned SSU rDNA of the libraries and their phylogenetic analyses, it was shown that most sequences have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, stramenopiles and Opisthokonta). In particular, some sequences were closely related to those of representatives of eukaryotic parasites, such as Phagomyxa and Cryothecomonas of Cercozoa, Pirsonia of stramenopiles and Ichthyosporea of Opisthokonta, although it is not clear whether the organisms occur in free-living or parasitic forms. In addition, other sequences did not seem to be related to any described eukaryotic lineages suggesting the existence of novel eukaryotes at a high-taxonomic level in the sediment. The community composition of microbial eukaryotes in the sediment we surveyed was different overall from those of other anoxic marine environments previously investigated.

  19. Morphology and small subunit rDNA-based phylogeny of Ceratomyxa amazonensis n. sp. parasite of Symphysodon discus, an ornamental freshwater fish from Amazon.

    PubMed

    Mathews, Patrick D; Naldoni, Juliana; Maia, Antonio A; Adriano, Edson A

    2016-10-01

    The specious genus Ceratomyxa Thélodan, 1892, infect mainly gallbladder of marine fishes, with only five species reported infecting species from freshwater environment. This study performed morphological and phylogenetic analyses involving a new Ceratomyxa species (Ceratomyxa amazonensis n. sp.) found in gallbladder of Symphysodon discus Heckel, 1840 (Perciformes: Cichlidae), an important ornamental fish endemic to Amazon basin. Mature spores were strongly arcuate shaped and measured 7.0 ± 0.3 (6.2-7.6) μm in length, 15.8 ± 0.4 (15.0-16.7) μm in thickness, and polar capsules 3.22 ± 0.34 (2.4-3.6) μm in length and 2.63 ± 0.17 (2.4-2.9) μm in width. This was the first small subunit ribosomal DNA (SS rDNA) sequencing performed to Ceratomyxa species parasite of freshwater fish, and the phylogenetic analysis showed C. amazonensis n. sp. clustering in the early diverging subclade of the ceratomyxids, together with species of parasites of amphidromous/estuaries fishes, suggesting some role of the transition of the fishes between marine/freshwater environments in the evolutionary history of these parasites.

  20. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy.

    PubMed

    Guillou, Laure; Bachar, Dipankar; Audic, Stéphane; Bass, David; Berney, Cédric; Bittner, Lucie; Boutte, Christophe; Burgaud, Gaétan; de Vargas, Colomban; Decelle, Johan; Del Campo, Javier; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Holzmann, Maria; Kooistra, Wiebe H C F; Lara, Enrique; Le Bescot, Noan; Logares, Ramiro; Mahé, Frédéric; Massana, Ramon; Montresor, Marina; Morard, Raphael; Not, Fabrice; Pawlowski, Jan; Probert, Ian; Sauvadet, Anne-Laure; Siano, Raffaele; Stoeck, Thorsten; Vaulot, Daniel; Zimmermann, Pascal; Christen, Richard

    2013-01-01

    The interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR(2), http://ssu-rrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of high-troughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total, 136 866 sequences are nuclear encoded, 45 708 (36 501 mitochondrial and 9657 chloroplastic) are from organelles, the remaining being putative chimeric sequences. The website allows the users to download sequences from the entire and partial databases (including representative sequences after clustering at a given level of similarity). Different web tools also allow searches by sequence similarity. The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists.

  1. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA.

    PubMed

    Van de Peer, Y; De Wachter, R

    1997-12-01

    In this study we constructed a bootstrapped distance tree of 500 small subunit ribosomal RNA sequences from organisms belonging to the so-called crown of eukaryote evolution. Taking into account the substitution rate of the individual nucleotides of the rRNA sequence alignment, our results suggest that (1) animals, true fungi, and choanoflagellates share a common origin: The branch joining these taxa is highly supported by bootstrap analysis (bootstrap support [BS] > 90%), (2) stramenopiles and alveolates are sister groups (BS = 75%), (3) within the alveolates, dinoflagellates and apicomplexans share a common ancestor BS > 95%), while in turn they both share a common origin with the ciliates (BS > 80%), and (4) within the stramenopiles, heterokont algae, hyphochytriomycetes, and oomycetes form a monophyletic grouping well supported by bootstrap analysis (BS > 85%), preceded by the well-supported successive divergence of labyrinthulomycetes and bicosoecids. On the other hand, many evolutionary relationships between crown taxa are still obscure on the basis of 18S rRNA. The branching order between the animal-fungal-choanoflagellates clade and the chlorobionts, the alveolates and stramenopiles, red algae, and several smaller groups of organisms remains largely unresolved.When among-site rate variation is not considered, the inferred tree topologies are inferior to those where the substitution rate spectrum for the 18S rRNA is taken into account. This is primarily indicated by the erroneous branching of fast-evolving sequences. Moreover, when different substitution rates among sites are not considered, the animals no longer appear as a monophyletic grouping in most distance trees.

  2. Using Small Subunit Ribosomal RNA to Follow Dark Incorporation of 14C-bicarbonate by Bacteria and Archaea in Sandy Sediment

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Musat, N.; Kuypers, M. M.

    2007-12-01

    Small subunit ribosomal RNA (SSU rRNA) and the genes encoding it have become the basis of modern microbial phylogeny, and of numerous methods for characterizing the composition of bacterial, archaeal, and even eukaryotic communities as they occur in nature. A limitation of this approach has been that phylogeny alone is not a reliable guide to physiology, particularly for groups with no close relatives in culture. We have been developing ways of using the SSU rRNA molecule itself to identify and (eventually) quantify the carbon sources incorporated by particular phylogenetic groups. This can be done by taking advantage of natural variations in carbon isotopic composition among growth substrates, or by following incorporation of 13C- or 14C-labeled compounds. 14C has the advantage that natural background levels are negligible. In the present study, our goal is to identify species responsible for non-photosynthetic CO2 incorporation in sandy sediments of the German Wadden Sea. Sediment cores collected from the Janssand sand flats were percolated with 14C-bicarbonate at in situ temperature for 36-38h in the dark, total RNA isolated, and domain-specific oligonucleotide probes used to capture bacterial and archaeal SSU rRNA. Total and/or captured RNA was separated by denaturing polyacrylamide gel electrophoresis, and 14C detected by phosphor imager, autoradiography, or beta imager. Detection was fastest and most sensitive with the beta imager. Both Bacteria and Archaea had incorporated label, suggesting both groups may harbor non-photosynthetic autotrophs. The next step will be to use more specific capture probes. We are currently working to separate the captured domain-specific SSU rRNA on non-denaturing gels, with detection by the high-resolution mode of the beta imager, so that individual species incorporating label can be identified by RT-PCR and sequencing of labeled bands.

  3. Small subunit ribosomal RNA gene sequence of Minchinia teredinis (Haplosporidia: Haplosporidiidae) and a specific DNA probe and PCR primers for its detection.

    PubMed

    Stokes, N A; Siddall, M E; Burreson, E M

    1995-05-01

    Minchinia teredinis is a pathogen of wood-boring molluscs (shipworms), Teredo spp., along the middle Atlantic coast of the U.S. Genomic DNA was extracted from M. teredinis spores and small subunit (SSU) rDNA was amplified by PCR, cloned, and sequenced. The sequence of M. teredinis SSU rDNA was aligned with that of Haplosporidium nelsoni and various protists in GenBank. A 22-base oligonucleotide probe unique to M. teredinis, designated MIN702, was commercially synthesized and tested for sensitivity and specificity. In dot-blot hybridizations the probe detected 500 pg of cloned M. teredinis rDNA. The probe did not hybridize with cloned SSU rDNA of Teredo spp. or H. nelsoni. The probe was further tested for specificity with in situ hybridizations on AFA-fixed, paraffin-embedded tissue sections. The probe hybridized well with M. teredinis plasmodia and immature spores, but poorly with mature spores. The probe did not hybridize with shipworm tissue or with the haplosporidians Haplosporidium louisiana from mud crabs (Panopeus spp.) or H. nelsoni and H. costale from Crassostrea virginica. The probe and a second 18-base oligonucleotide, when used as PCR primers, amplified a 536-bp fragment of the M. teredinis SSU rRNA gene. The PCR assay was able to detect 10 fg of the cloned gene and also detected the presence of M. teredinis DNA in shipworms in which infections were observed microscopically. The 536-bp amplification product was not obtained in one Teredo sp. or in one Bankia gouldi, both categorized as uninfected after microscopic inspection. The DNA probe and PCR primers appear to be specific for M. teredinis and should be useful as diagnostic tools and for life cycle investigations.

  4. Phylogenetic diversity of ultraplankton plastid small-subunit rRNA genes recovered in environmental nucleic acid samples from the Pacific and Atlantic coasts of the United States.

    PubMed

    Rappé, M S; Suzuki, M T; Vergin, K L; Giovannoni, S J

    1998-01-01

    The scope of marine phytoplankton diversity is uncertain in many respects because, like bacteria, these organisms sometimes lack defining morphological characteristics and can be a challenge to grow in culture. Here, we report the recovery of phylogenetically diverse plastid small-subunit (SSU) rRNA gene (rDNA) clones from natural plankton populations collected in the Pacific Ocean off the mouth of Yaquina Bay, Oreg. (OCS clones), and from the eastern continental shelf of the United States off Cape Hatteras, N.C. (OM clones). SSU rRNA gene clone libraries were prepared by amplifying rDNAs from nucleic acids isolated from plankton samples and cloning them into plasmid vectors. The PCR primers used for amplification reactions were designed to be specific for bacterial SSU rRNA genes; however, plastid genes have a common phylogenetic origin with bacteria and were common in both SSU rRNA gene clone libraries. A combination of restriction fragment length polymorphism analyses, nucleic acid sequencing, and taxon-specific oligonucleotide probe hybridizations revealed that 54 of the 116 OCS gene clones were of plastid origin. Collectively, clones from the OCS and OM libraries formed at least eight unique lineages within the plastid radiation, including gene lineages related to the classes Bacillariophyceae, Cryptophyceae, Prymnesiophyceae, Chrysophyceae, and Prasinophyceae; for a number of unique clones, no close phylogenetic neighbors could be identified with confidence. Only a group of two OCS rRNA gene clones showed close identity to the plastid SSU rRNA gene sequence of a cultured organism [Emiliania huxleyi (Lohmann) Hay and Mohler; 99.8% similar]. The remaining clones could not be identified to the genus or species level. Although cryptic species are not as prevalent among phytoplankton as they are among their bacterial counterparts, this genetic survey nonetheless uncovered significant new information about phytoplankton diversity. PMID:9435081

  5. [Fragment of mRNA coding part that is complementary to region 1638-1650 of wheat 18S rRNA functions as a translational enhancer].

    PubMed

    Zhigaĭlov, A V; Babaĭlova, E S; Polimbetova, N S; Graĭfer, D M; Karpova, G G; Iskakov, B K

    2012-01-01

    Possible involvement of 18S rRNA fragment 1638-1650 including basements of the helices h44 and h28 and nucleotides of the ribosomal decoding site in the cap-independent translation initiation on plant ribosomes is studied. This rRNA fragment is shown to be accessible for complementary interactions within the 40S ribosomal subunit. It is found that the sequence complementary to the 18S rRNA fragment 1638-1650 is able to enhance efficiency of a reporter mRNA translation when placed just after the initiation codon. The results obtained indicate that in the course of the cap-independent translation initiation, complementary interactions can occur between mRNA coding sequence and 18S rRNA fragment in the region of the ribosomal decoding site.

  6. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans

    PubMed Central

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L. J.; Wöhnert, Jens; Entian, Karl-Dieter

    2016-01-01

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m1acp3Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. PMID:27084949

  7. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans.

    PubMed

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L J; Wöhnert, Jens; Entian, Karl-Dieter

    2016-05-19

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes.

  8. Sequence of the Small Subunit Ribosomal RNA Gene of Perkinsus atlanticus-like Isolated from Carpet Shell Clam in Galicia, Spain.

    PubMed

    Figueras, Antonio; Lorenzo, Gema; Ordás, M Camino; Gouy, Manolo; Novoa, Beatriz

    2000-09-01

    Parasites identified as Perkinsus atlanticus have been reported infecting carpet shell clams in Galicia (northwest Spain). We have sequenced the 18S ribosomal RNA gene of in vitro cultured Perkinsus atlanticus-like or hypnospores from diseased clams, and compared it with the same genomic region from P. marinus and Perkinsus sp. We have also compared the sequence of internal transcribed spacer (ITS) 1, ITS 2, and 5.8S rRNA from our isolate with the P. atlanticus GenBank sequence. The phylogenetic analysis of our cultured parasite based on the 18S gene led us to conclude that this isolate is not related to the genus Perkinsus but to the protists Anurofeca, Ichthyophonus, and Psorospermium, located near the animal-fungal divergence. These last two genera have been included, together with Dermocystidium, in the newly described DRIPs (Dermocystidium, rossete agent, Ichthyophonus, and Psorospermium) clade, recently named Mesomycetozoa.

  9. Synthesis and turnover of ribulose biphosphate carboxylase and of its subunits during the cell cycle of Chlamydomonas reinhardtii.

    PubMed

    Iwanij, V; Chua, N H; Siekevitz, P

    1975-03-01

    The chloroplast enzyme ribulose-1,5-bisphosphate (Ru-1,5-P2) carboxylase (EC 4.1 1.39) is made up ot two nonidentical subunits, one synthesized in the chloroplast and the other outside. Both of these subunits of the assembled enzyme are synthesized in a stepwise manner during the synchronous cell cycle of the green alga Chlamydomonas reinhardtii. The activity of this enzyme increases in the light and this increase is due to de novo protein synthesis as shown by the measurement of the amount of protein and by the pulse incorporation of radioactive arginine in the 18S enzyme peak in linear sucrose density gradients. During the dark phase of the cell cycle, there is little change in the enzymatic activity as well as in the amount of this enzyme. Pulse-labeling studies using radioactive arginine indicated that there is a slow but detectable rate of synthesis of the carboxylase and of its subunits in the dark. Ru-1,5-P2 carboxylase, prelabeled with radioactive arginine throughout the entire light period, shows a similarly slow rate of degradation in the following dark period. This slow turnover of the enzyme in the dark accounts for the steady levels of carboxylase protein and of enzymatic activity during this period. A wide variety of inhibitors of protein synthesis by 70S and 80S ribosomes abolished the incorporation of [3H]arginine into total Ru-1,5-P2 carboxylase during short-term incubation. These results suggest a tight-coordinated control of the biosynthesis of the small and large subunits of the enzyme. This stringent control is further substantiated by the finding that both subunits are synthesized in sychrony with each other, that the ratio of radioactivity of the small to the large subunit remains constant throughout the entire light-dark cycle, and that the rates of synthesis and of degradation of both subunits are similar to that of the assembled enzyme.

  10. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis.

    PubMed

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.

  11. Investigation of in vivo roles of the C-terminal tails of the small subunit (ββ') of Saccharomyces cerevisiae ribonucleotide reductase: contribution to cofactor formation and intersubunit association within the active holoenzyme.

    PubMed

    Zhang, Yan; An, Xiuxiang; Stubbe, Joanne; Huang, Mingxia

    2013-05-17

    The small subunit (β2) of class Ia ribonucleotide reductase (RNR) houses a diferric tyrosyl cofactor (Fe2(III)-Y(•)) that initiates nucleotide reduction in the large subunit (α2) via a long range radical transfer (RT) pathway in the holo-(α2)m(β2)n complex. The C-terminal tails of β2 are predominantly responsible for interaction with α2, with a conserved tyrosine residue in the tail (Tyr(356) in Escherichia coli NrdB) proposed to participate in cofactor assembly/maintenance and in RT. In the absence of structure of any holo-RNR, the role of the β tail in cluster assembly/maintenance and its predisposition within the holo-complex have remained unknown. In this study, we have taken advantage of the unusual heterodimeric nature of the Saccharomyces cerevisiae RNR small subunit (ββ'), of which only β contains a cofactor, to address both of these issues. We demonstrate that neither β-Tyr(376) nor β'-Tyr(323) (Tyr(356) equivalent in NrdB) is required for cofactor assembly in vivo, in contrast to the previously proposed mechanism for E. coli cofactor maintenance and assembly in vitro. Furthermore, studies with reconstituted-ββ' and an in vivo viability assay show that β-Tyr(376) is essential for RT, whereas Tyr(323) in β' is not. Although the C-terminal tail of β' is dispensable for cofactor formation and RT, it is essential for interactions with β and α to form the active holo-RNR. Together the results provide the first evidence of a directed orientation of the β and β' C-terminal tails relative to α within the holoenzyme consistent with a docking model of the two subunits and argue against RT across the β β' interface.

  12. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis.

    PubMed

    Hanelt, B; Van Schyndel, D; Adema, C M; Lewis, L A; Loker, E S

    1996-11-01

    The Orthonectida is a small, poorly known phylum of parasites of marine invertebrates. Their phylogenetic placement is obscure; they have been considered to be multicellular protozoans, primitive animals at a "mesozoan" grade of organization, or secondarily simplified flatworm-like organisms. The best known species in the phylum, Rhopalura ophiocomae, was collected on San Juan Island, Wash. and a complete 18S rDNA sequence was obtained. Using the models of minimum evolution and parsimony, phylogenetic analyses were undertaken and the results lend support to the following hypotheses about orthonectids: (1) orthonectids are more closely aligned with triploblastic metazoan taxa than with the protist or diploblastic metazoan taxa considered in this analysis; (2) orthonectids are not derived members of the phylum Platyhelminthes; and (3) orthonectids and rhombozoans are not each other's closest relatives, thus casting further doubt on the validity of the phylum Mesozoa previously used to encompass both groups. PMID:8896370

  13. Origin of the Mesozoa inferred from 18S rRNA gene sequences.

    PubMed

    Pawlowski, J; Montoya-Burgos, J I; Fahrni, J F; Wüest, J; Zaninetti, L

    1996-10-01

    The phylum Mesozoa comprises small, simply organized wormlike parasites of marine invertebrates and is composed of two classes, the Rhombozoa and the Orthonectida. The origin of Mesozoa is uncertain; they are classically considered either as degenerate turbellarians or as primitive multicellular animals related to ciliated protists. In order to precisely determine the phylogenetic position of this group we sequenced the complete 18S rRNA gene of one rhombozoid, Dicyema sp., and one orthonectid, Rhopalura ophiocomae. The sequence analysis shows that the Mesozoa branch early in the animal evolution, closely to nematodes and myxozoans. Our data indicate probably separate origins of rhombozoids and orthonectids, suggesting that their placement in the same phylum needs to be revised.

  14. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis.

    PubMed

    Hanelt, B; Van Schyndel, D; Adema, C M; Lewis, L A; Loker, E S

    1996-11-01

    The Orthonectida is a small, poorly known phylum of parasites of marine invertebrates. Their phylogenetic placement is obscure; they have been considered to be multicellular protozoans, primitive animals at a "mesozoan" grade of organization, or secondarily simplified flatworm-like organisms. The best known species in the phylum, Rhopalura ophiocomae, was collected on San Juan Island, Wash. and a complete 18S rDNA sequence was obtained. Using the models of minimum evolution and parsimony, phylogenetic analyses were undertaken and the results lend support to the following hypotheses about orthonectids: (1) orthonectids are more closely aligned with triploblastic metazoan taxa than with the protist or diploblastic metazoan taxa considered in this analysis; (2) orthonectids are not derived members of the phylum Platyhelminthes; and (3) orthonectids and rhombozoans are not each other's closest relatives, thus casting further doubt on the validity of the phylum Mesozoa previously used to encompass both groups.

  15. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth

    PubMed Central

    Bai, Dongmei; Zhang, Jinfang; Li, Tingting; Hang, Runlai; Liu, Yong; Tian, Yonglu; Huang, Dadu; Qu, Linglong; Cao, Xiaofeng; Ji, Jiafu; Zheng, Xiaofeng

    2016-01-01

    Dysfunctions in ribosome biogenesis cause developmental defects and increased cancer susceptibility; however, the connection between ribosome assembly and tumorigenesis remains unestablished. Here we show that hCINAP (also named AK6) is required for human 18S rRNA processing and 40S subunit assembly. Homozygous CINAP−/− mice show embryonic lethality. The heterozygotes are viable and show defects in 18S rRNA processing, whereas no delayed cell growth is observed. However, during rapid growth, CINAP haploinsufficiency impairs protein synthesis. Consistently, hCINAP depletion in fast-growing cancer cells inhibits ribosome assembly and abolishes tumorigenesis. These data demonstrate that hCINAP reduction is a specific rate-limiting controller during rapid growth. Notably, hCINAP is highly expressed in cancers and correlated with a worse prognosis. Genome-wide polysome profiling shows that hCINAP selectively modulates cancer-associated translatome to promote malignancy. Our results connect the role of hCINAP in ribosome assembly with tumorigenesis. Modulation of hCINAP expression may be a promising target for cancer therapy. PMID:27477389

  16. The 68 kDa subunit of mammalian cleavage factor I interacts with the U7 small nuclear ribonucleoprotein and participates in 3′-end processing of animal histone mRNAs

    PubMed Central

    Ruepp, Marc-David; Vivarelli, Silvia; Pillai, Ramesh S.; Kleinschmidt, Nicole; Azzouz, Teldja N.; Barabino, Silvia M. L.; Schümperli, Daniel

    2010-01-01

    Metazoan replication-dependent histone pre-mRNAs undergo a unique 3′-cleavage reaction which does not result in mRNA polyadenylation. Although the cleavage site is defined by histone-specific factors (hairpin binding protein, a 100-kDa zinc-finger protein and the U7 snRNP), a large complex consisting of cleavage/polyadenylation specificity factor, two subunits of cleavage stimulation factor and symplekin acts as the effector of RNA cleavage. Here, we report that yet another protein involved in cleavage/polyadenylation, mammalian cleavage factor I 68-kDa subunit (CF Im68), participates in histone RNA 3′-end processing. CF Im68 was found in a highly purified U7 snRNP preparation. Its interaction with the U7 snRNP depends on the N-terminus of the U7 snRNP protein Lsm11, known to be important for histone RNA processing. In vivo, both depletion and overexpression of CF Im68 cause significant decreases in processing efficiency. In vitro 3′-end processing is slightly stimulated by the addition of low amounts of CF Im68, but inhibited by high amounts or by anti-CF Im68 antibody. Finally, immunoprecipitation of CF Im68 results in a strong enrichment of histone pre-mRNAs. In contrast, the small CF Im subunit, CF Im25, does not appear to be involved in histone RNA processing. PMID:20634199

  17. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples.

    PubMed

    Parada, Alma E; Needham, David M; Fuhrman, Jed A

    2016-05-01

    Microbial community analysis via high-throughput sequencing of amplified 16S rRNA genes is an essential microbiology tool. We found the popular primer pair 515F (515F-C) and 806R greatly underestimated (e.g. SAR11) or overestimated (e.g. Gammaproteobacteria) common marine taxa. We evaluated marine samples and mock communities (containing 11 or 27 marine 16S clones), showing alternative primers 515F-Y (5'-GTGYCAGCMGCCGCGGTAA) and 926R (5'-CCGYCAATTYMTTTRAGTTT) yield more accurate estimates of mock community abundances, produce longer amplicons that can differentiate taxa unresolvable with 515F-C/806R, and amplify eukaryotic 18S rRNA. Mock communities amplified with 515F-Y/926R yielded closer observed community composition versus expected (r(2)  = 0.95) compared with 515F-Y/806R (r(2)  ∼ 0.5). Unexpectedly, biases with 515F-Y/806R against SAR11 in field samples (∼4-10-fold) were stronger than in mock communities (∼2-fold). Correcting a mismatch to Thaumarchaea in the 515F-C increased their apparent abundance in field samples, but not as much as using 926R rather than 806R. With plankton samples rich in eukaryotic DNA (> 1 μm size fraction), 18S sequences averaged ∼17% of all sequences. A single mismatch can strongly bias amplification, but even perfectly matched primers can exhibit preferential amplification. We show that beyond in silico predictions, testing with mock communities and field samples is important in primer selection.

  18. The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution.

    PubMed

    Hancock, J M

    1995-06-01

    Six of 204 eukaryotic nuclear small-subunit ribosomal RNA sequences analyzed show a highly significant degree of clustering of short sequence motifs that indicates the fixation of products of replication slippage within them in their recent evolutionary history. A further 72 sequences show weaker indications of sequence repetition. Repetitive sequences in SSU rRNAs are preferentially located in variable regions and in particular in V4 and V7. The conserved region immediately 5' to V7 (C7) is also consistently repetitive. Whereas variable regions vary in length and appear to have evolved by the fixation of slippage products, C7 shows no indication of length variation. Repetition within C7 is therefore either not a consequence of slippage or reflects very ancient slippage events. The phylogenetic distribution of sequence simplicity in small-subunit rRNAs is patchy, being largely confined to the Mammalia, Apicomplexa, Tetrahymenidae, and Trypanosomatidae. The regions of the molecule associated with sequence simplicity vary with taxonomic grouping as do the sequence motifs undergoing slippage. Comparison of rates of insertion and substitution in a lineage within the genus Plasmodium confirms that both rates are higher in variable regions than in conserved regions. The insertion rate in variable regions is substantially lower than the substitution rate, suggesting that selection acts more strongly on slippage products than on point mutations in these regions. Patterns of coevolution between variable regions may reflect the consequences of selection acting on the incorporation of slippage-derived sequences across the gene.

  19. Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification.

    PubMed

    Buchhaupt, Markus; Sharma, Sunny; Kellner, Stefanie; Oswald, Stefanie; Paetzold, Melanie; Peifer, Christian; Watzinger, Peter; Schrader, Jens; Helm, Mark; Entian, Karl-Dieter

    2014-01-01

    Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2'-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2'-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process.

  20. PCR amplification of a multi-copy mitochondrial gene (cox3) improves detection of Cytauxzoon felis infection as compared to a ribosomal gene (18S).

    PubMed

    Schreeg, Megan E; Marr, Henry S; Griffith, Emily H; Tarigo, Jaime L; Bird, David M; Reichard, Mason V; Cohn, Leah A; Levy, Michael G; Birkenheuer, Adam J

    2016-07-30

    Cytauxzoon felis is a tick-transmitted protozoan parasite that infects felids. Clinical disease caused by acute C. felis infection rapidly progresses in domestic cats, leading to high morbidity and mortality. Accurately diagnosing cytauxzoonosis as soon as possible during acute infection would allow for earlier initiation of antiprotozoal therapy which could lead to higher survival rates. Molecular detection of parasite rRNA genes (18S) by PCR has previously been shown to be a sensitive method of diagnosing C. felis infections. Based on evidence from related apicomplexan species, we hypothesized that C. felis mitochondrial genes would exist at higher copy numbers than 18S and would be a more sensitive diagnostic target. In this study we have designed a PCR assay targeting the C. felis mitochondrial gene cytochrome c oxidase subunit III (cox3). Herein we demonstrate that (1) the cox3 PCR can detect as low as 1 copy of DNA target and can detect C. felis in samples with known mitochondrial sequence heterogeneity, (2) cox3 copy number is increased relative to 18S in blood and tissue samples from acutely infected cats, and (3) the cox3 PCR is more sensitive than 18S PCR for detection of C. felis during early infections.

  1. Diversity of the small subunit ribosomal RNA gene of the arbuscular mycorrhizal fungi colonizing Clintonia borealis from a mixed-wood boreal forest.

    PubMed

    DeBellis, Tonia; Widden, Paul

    2006-11-01

    Arbuscular mycorrhizal fungi (AMF) communities in Clintonia borealis roots from a boreal mixed forests in northwestern Québec were investigated. Roots were sampled from 100 m2 plots whose overstory was dominated by either trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), or mixed white spruce (Picea glauca (Moench) Voss) and balsam fir (Abies balsamea (L.) Mill.). Part of the 18S ribosomal gene of the AMF was amplified and the resulting PCR products were cloned. Restriction analysis of the 576 resulting clones yielded 92 different restriction patterns which were then sequenced. Fifty-two sequences closely matched other Glomus sequences from Genbank. Phylogenetic analysis revealed 10 different AMF sequence types, most of which clustered with other uncultured AM sequences from plant roots from various field sites. Compared with other AMF communities from comparable studies, richness and diversity were higher than observed in an arable field, but lower than seen in a tropical forest and a temperate wetland. The AMF communities from Clintonia roots under the different canopy types did not differ significantly and the dominant sequence type, which clustered with AM sequences from a variety of environments and hosts at distant geographical locations, represented 66.9% of all the clones analyzed.

  2. Morphology, morphogenesis and small subunit rRNA gene sequence of a soil hypotrichous ciliate, Perisincirra paucicirrata (Ciliophora, Kahliellidae), from the shoreline of the Yellow River, North China.

    PubMed

    Li, Fengchao; Xing, Yi; Li, Jiamei; Al-Rasheid, Khaled A S; He, Songke; Shao, Chen

    2013-01-01

    The morphology, morphogenesis, and 18S rRNA gene sequence of a soil hypotrichous ciliate Perisincirra paucicirrata, isolated from north China, were investigated. Perisincirra paucicirrata differs from its congeners in: (1) having a body length to width ratio in vivo of 4:1, (2) its adoral zone occupying between 15% and 25% of the total body length, and (3) the presence of two parabuccal cirri, three left (with 10-16 cirri each) and two right marginal rows (with 14-24 cirri each), and three dorsal kineties. Our study offers a first attempt to begin to map the morphogenetic processes of the genus, which are mainly characterised by the following: the formation of four frontal ventral transverse anlagens for each daughter cell, with the proter's anlage I originating from the reorganised anterior part of the parental paroral; the paroral and endoral anlage developed from the reorganised old endoral and do not contribute the first frontal cirrus; the frontoventral transverse anlage I contributing the left frontal cirrus; anlage II generating the middle frontal and the buccal cirri; anlage III developing the right frontal cirrus and the anterior parabuccal cirrus; and anlage IV contributing the posterior parabuccal cirrus. As an additional contribution, we judge that the inner one or the two right rows of P. kahli and P. longicirrata are marginal rows. Phylogenetic analysis based on SSU rDNA sequences suggests that Perisincirra is related to sporadotrichids, but provides no credible evidence for its taxonomic position.

  3. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera).

    PubMed

    Ouvrard, D; Campbell, B C; Bourgoin, T; Chan, K L

    2000-09-01

    A secondary structure model for 18S rRNA of peloridiids, relict insects with a present-day circumantarctic distribution, is constructed using comparative sequence analysis, thermodynamic folding, a consensus method using 18S rRNA models of other taxa, and support of helices based on compensatory substitutions. Results show that probable in vivo configuration of 18S rRNA is not predictable using current free-energy models to fold the entire molecule concurrently. This suggests that refinements in free-energy minimization algorithms are needed. Molecular phylogenetic datasets were created using 18S rRNA nucleotide alignments produced by CLUSTAL and rigorous interpretation of homologous position based on certain secondary substructures. Phylogenetic analysis of a hemipteran data matrix of 18S rDNA sequences placed peloridiids sister to Heteroptera. Resolution of affiliations between the three main euhemipteran lineages was unresolved. The peloridiid 18S RNA model presented here provides the most accurate template to date for aligning homologous nucleotides of hemipteran taxa. Using folded 18S rRNA to infer homology of character as morpho-molecular structures or nucleotides and scoring particular sites or substructures is discussed. PMID:10991793

  4. Replication Factor C3 of Schizosaccharomyces pombe, a Small Subunit of Replication Factor C Complex, Plays a Role in Both Replication and Damage Checkpoints

    PubMed Central

    Shimada, Midori; Okuzaki, Daisuke; Tanaka, Seiji; Tougan, Takahiro; Tamai, Katsuyuki K.; Shimoda, Chikashi; Nojima, Hiroshi

    1999-01-01

    We report here the isolation and functional analysis of the rfc3+ gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3+ gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3+ is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor. PMID:10588638

  5. Replication factor C3 of Schizosaccharomyces pombe, a small subunit of replication factor C complex, plays a role in both replication and damage checkpoints.

    PubMed

    Shimada, M; Okuzaki, D; Tanaka, S; Tougan, T; Tamai, K K; Shimoda, C; Nojima, H

    1999-12-01

    We report here the isolation and functional analysis of the rfc3(+) gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3(+) gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3(+) is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor. PMID:10588638

  6. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5' UTRs and its implications for eukaryotic gene translation regulation.

    PubMed

    Pánek, Josef; Kolár, Michal; Vohradský, Jirí; Shivaya Valásek, Leos

    2013-09-01

    There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA-rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5' untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5' UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5' UTRs of mRNAs.

  7. PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries.

    PubMed

    Potvin, Marianne; Lovejoy, Connie

    2009-01-01

    Environmental clone libraries constructed using small subunit ribosomal RNA (rRNA) or other gene-specific primers have become the standard molecular approach for identifying microorganisms directly from their environment. This technique includes an initial polymerase chain reaction (PCR) amplification step of a phylogenetically useful marker gene using universal primers. Although it is acknowledged that such primers introduce biases, there have been few studies if any to date systematically examining such bias in eukaryotic microbes. We investigated some implications of such bias by constructing clone libraries using several universal primer pairs targeting rRNA genes. Firstly, we constructed artificial libraries using a known mix of small cultured pelagic arctic algae with representatives from five major lineages and secondly we investigated environmental samples using several primer pairs. No primer pair retrieved all of the original algae in the artificial clone libraries and all showed a favorable bias toward the dinoflagellate Polarella glacialis and a bias against the prasinophyte Micromonas and a pennate diatom. Several other species were retrieved by only one primer pair tested. Despite this, sequences from nine environmental libraries were diverse and contained representatives from all major eukaryotic clades expected in marine samples. Further, libraries from the same sample grouped together using Bray-Curtis clustering, irrespective of primer pairs. We conclude that environmental PCR-based techniques are sufficient to compare samples, but the total diversity will probably always be underestimated and relative abundance estimates should be treated with caution.

  8. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae).

    PubMed

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country's economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 'Azul', Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies. PMID:24260700

  9. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae)

    PubMed Central

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Abstract Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country’s economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 ‘Azul’, Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies. PMID:24260700

  10. Isolation of the alpha subunits of GTP-binding regulatory proteins by affinity chromatography with immobilized beta gamma subunits.

    PubMed Central

    Pang, I H; Sternweis, P C

    1989-01-01

    Immobilized beta gamma subunits of GTP-binding regulatory proteins (G proteins) were used to isolate alpha subunits from solubilized membranes of bovine tissues and to separate specific alpha subunits based on their differential affinities for beta gamma subunits. The beta gamma subunits were cross-linked to omega-aminobutyl agarose. Up to 7 nmol of alpha subunit could bind to each milliliter of beta gamma-agarose and be recovered by elution with AIF4-. This affinity resin effectively separated the alpha subunits of Gi1 and Gi2 from "contaminating" alpha subunits of Go, the most abundant G protein in bovine brain, by taking advantage of the apparent lower affinity of the alpha subunits of Go for beta gamma subunits. The beta gamma-agarose was also used to isolate mixtures of alpha subunits from cholate extracts of membranes from different bovine tissues. alpha subunits of 39-41 kDa (in various ratios) as well as the alpha subunits of Gs were purified. The yields from extracts exceeded 60% for all alpha subunits examined and apparently represented the relative content of alpha subunits in the tissues. This technique can rapidly isolate and identify, from a small amount of sample, the endogenous G proteins in various tissues and cells. So far, only polypeptides in the range of 39-52 kDa have been detected with this approach. If other GTP-binding proteins interact with these beta gamma subunits, the interaction is either of low affinity or mechanistically unique from the alpha subunits isolated in this study. Images PMID:2510152

  11. RRP5 is required for formation of both 18S and 5.8S rRNA in yeast.

    PubMed Central

    Venema, J; Tollervey, D

    1996-01-01

    Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S) are synthesized as a single precursor which is subsequently processed into the mature rRNAs by a complex series of cleavage and modification reactions. In the yeast Saccharomyces cerevisiae, the early pre-rRNA cleavages at sites A0, A1 and A2, required for the synthesis of 18S rRNA, are inhibited in strains lacking RNA or protein components of the U3, U14, snR10 and snR30 small nucleolar ribonucleoproteins (snoRNPs). The subsequent cleavage at site A3, required for formation of the major, short form of 5.8S rRNA, is carried out by another ribonucleoprotein, RNase MRP. A screen for mutations showing synthetic lethality with deletion of the non-essential snoRNA, snR10, identified a novel gene, RRP5, which is essential for viability and encodes a 193 kDa nucleolar protein. Genetic depletion of Rrp5p inhibits the synthesis of 18S rRNA and, unexpectedly, also of the major short form of 5.8S rRNA. Pre-rRNA processing is concomitantly impaired at sites A0, A1, A2 and A3. This distinctive phenotype makes Rrp5p the first cellular component simultaneously required for the snoRNP-dependent cleavage at sites A0, A1 and A2 and the RNase MRP-dependent cleavage at A3 and provides evidence for a close interconnection between these processing events. Putative RRP5 homologues from Caenorhabditis elegans and humans were also identified, suggesting that the critical function of Rrp5p is evolutionarily conserved. Images PMID:8896463

  12. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China.

    PubMed

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies. PMID:25699679

  13. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China.

    PubMed

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies.

  14. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    PubMed Central

    Meli, Marina L.; Novacco, Marilisa; Borel, Nicole

    2016-01-01

    The 18S ribosomal RNA (rRNA) gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal) DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR) analysis. We compared (i) samples from various animal species, tissues, and sample types, including swabs; (ii) multiple DNA extraction methods; and (iii) both fresh and formalin-fixed paraffin-embedded (FFPE) samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects.

  15. Performance of 18S rRNA in littorinid phylogeny (Gastropoda: Caenogastropoda).

    PubMed

    Winnepenninckx, B M; Reid, D G; Backeljau, T

    1998-11-01

    In the past, 18S rRNA sequences have proved to be very useful for tracing ancient divergences but were rarely used for resolving more recent ones. Moreover, it was suggested that the molecule does not contain useful information to resolve divergences which took place during less than 40 Myr. The present paper takes littorinid phylogeny as a case study to reevaluate the utility of the molecule for resolving recent divergences. Two data sets for nine species of the snail family Littorinidae were analyzed, both separately and combined. One data set comprised 7 new complete 18S rRNA sequences aligned with 2 published littorinid sequences; the other comprised 12 morphological, 1 biochemical, and 2 18S rRNA secondary structure characters. On the basis of its ability to confirm generally accepted relationships and the congruence of results derived from the different data sets, it is concluded that 18S rRNA sequences do contain information to resolve "rapid" cladogenetic events, provided that they occurred in the not too distant past. 18S rRNA sequences yielded support for (1) the branching order (L. littorea, (L. obtusata, (L. saxatilis, L. compressa))) and (2) the basal position of L. striata in the Littorina clade. PMID:9797409

  16. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    PubMed Central

    Meli, Marina L.; Novacco, Marilisa; Borel, Nicole

    2016-01-01

    The 18S ribosomal RNA (rRNA) gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal) DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR) analysis. We compared (i) samples from various animal species, tissues, and sample types, including swabs; (ii) multiple DNA extraction methods; and (iii) both fresh and formalin-fixed paraffin-embedded (FFPE) samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects. PMID:27672657

  17. Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics.

    PubMed

    Tanaka, Ryusei; Hino, Akina; Tsai, Isheng J; Palomares-Rius, Juan Emilio; Yoshida, Ayako; Ogura, Yoshitoshi; Hayashi, Tetsuya; Maruyama, Haruhiko; Kikuchi, Taisei

    2014-01-01

    Parasite diversity has important implications in several research fields including ecology, evolutionary biology and epidemiology. Wide-ranging analysis has been restricted because of the difficult, highly specialised and time-consuming processes involved in parasite identification. In this study, we assessed parasite diversity in wild rats using 18S rDNA-based metagenomics. 18S rDNA PCR products were sequenced using an Illumina MiSeq sequencer and the analysis of the sequences using the QIIME software successfully classified them into several parasite groups. The comparison of the results with those obtained using standard methods including microscopic observation of helminth parasites in the rat intestines and PCR amplification/sequencing of 18S rDNA from isolated single worms suggests that this new technique is reliable and useful to investigate parasite diversity.

  18. Phylogeny of chloromonas (chlorophyceae): A study of 18S ribosomal RNA gene sequences

    SciTech Connect

    Buchheim, M.A.; Buchheim, J.A.; Chapman, R.L.

    1997-04-01

    The unicellular, biflagellate genus Chloromonas differs from its ally, Chlamydomonas, primarily by the absence of pyrenoids in the vegetative stage of the former. As with most green flagellate genera, little is known about phylogenetic affinities within and among Chloromonas species. Phylogenetic analyses of nuclear-encoded small-subunit ribosomal RNA gene sequences demonstrate that a sampling of five Chloromonas taxa, obtained from major culture collections, do not form a monophyletic group. However, only three of these isolates, Chloromonas clathrata, Chloromonas serbinowi, and Chloromonas rosae, are diagnosable morphologically as Chloromonas species by the absence of a pyrenoid in the vegetative stage. The three diagnosable Chloromonas taxa form an alliance with two pyrenoid-bearing chlamydomonads, Chlamydomonas augustae and Chlamydomonas macrostellata. With the exception of Chloromonas serbinowi, which represents the basal lineage within the clade, each of the diagnosable Chloromonas taxa and their pyrenoid-bearing Chlamydomonas allies were isolated originally from mountain soils, snow, or cold peat. These observations suggest that hibitat, independent of pyrenoid status, may be most closely linked to the natural history of this clade of chlamydomonad flagellates. 51 refs., 3 figs., 3 tabs.

  19. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  20. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    PubMed

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  1. Phylogeny of protostome worms derived from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1995-07-01

    The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade.

  2. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    PubMed Central

    2010-01-01

    Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement. PMID:20051104

  3. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes

    NASA Technical Reports Server (NTRS)

    Sukharev, Sergei

    2002-01-01

    The small mechanosensitive channel, MscS, is a part of the turgor-driven solute efflux system that protects bacteria from lysis in the event of osmotic downshift. It has been identified in Escherichia coli as a product of the orphan yggB gene, now called mscS (Levina et al., 1999, EMBO J. 18:1730). Here I show that that the isolated 31-kDa MscS protein is sufficient to form a functional mechanosensitive channel gated directly by tension in the lipid bilayer. MscS-6His complexes purified in the presence of octylglucoside and lipids migrate in a high-resolution gel-filtration column as particles of approximately 200 kDa. Consistent with that, the protein cross-linking patterns predict a hexamer. The channel reconstituted in soybean asolectin liposomes was activated by pressures of 20-60 mm Hg and displayed the same asymmetric I-V curve and slight anionic preference as in situ. At the same time, the single-channel conductance is proportional to the buffer conductivity in a wide range of salt concentrations. The rate of channel activation in response to increasing pressure gradient across the patch was slower than the rate of closure in response to decreasing steps of pressure gradient. Therefore, the open probability curves were recorded with descending series of pressures. Determination of the curvature of patches by video imaging permitted measurements of the channel activity as a function of membrane tension (gamma). Po(gamma) curves had the midpoint at 5.5 +/- 0.1 dyne/cm and gave estimates for the energy of opening DeltaG = 11.4 +/- 0.5 kT, and the transition-related area change DeltaA = 8.4 +/- 0.4 nm(2) when fitted with a two-state Boltzmann model. The correspondence between channel properties in the native and reconstituted systems is discussed.

  4. Modified nucleotides in T1 RNase oligonucleotides of 18S ribosomal RNA of the Novikoff hepatoma.

    PubMed

    Choi, Y C; Busch, H

    1978-06-27

    The primary structure of 18S rRNA of the Novikoff hepatoma cells was investigated. Regardless of whether the primary sequence of 18S rRNA is finally determined by RNA sequencing methods or DNA sequencing methods, it is important to identify numbers and types of the modified nucleotides and accordingly the present study was designed to localize the modified regions in T1 RNase derived oligonucleotide. Modified nucleotides found in 66 different oligonucleotide sequences included 2 m62A, 1 m6A, 1 m7G, 1m1cap3psi, 7 Cm, 13 Am, 9 Gm, 11 Um, and 38 psi residues. A number of these modified nucleotides are now placed in defined sequences of T1 RNase oligonucleotides which are now being searched for in larger fragments derived from partial T1 RNase digests of 18S rRNA. Improved homochromatography fingerprinting (Choi et al. (1976) Cancer Res. 36, 4301) of T1 RNase derived oligonucleotides provided a distinctive pattern for 18S rRNA of Novikoff hepatoma ascites cells. The 116 spots obtained by homochromatography contain 176 oligonucleotide sequences. PMID:209819

  5. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae.

    PubMed

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-02-27

    Methylation of ribose sugars at the 2'-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2'-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5' central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D' box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications.

  6. Morphological, small subunit rRNA, and physiological characterization of Trimyema minutum (Kahl, 1931), an anaerobic ciliate from submarine hydrothermal vents growing from 28 degrees C to 52 degrees C.

    PubMed

    Baumgartner, Manuela; Stetter, Karl O; Foissner, Wilhelm

    2002-01-01

    A thermophilic strain of Trimyema minutum was isolated from the hydrothermally heated sea floor at Vulcano Island (Italy) and cultivated monoxenically on Marinobacter sp. and Methanococcus thermolithotrophicus. It can be propagated strictly anaerobically and is sensitive to oxygen: if exposed to air at 48 degrees C all cells die within 60 min. It grows from 0.45-7.2% (w/v) salt and at pH 6.0-8.0. The isolate is the most extreme thermophilic ciliate which ever has been cultivated, exhibiting an optimal growth temperature of 48 degrees C (doubling time 6 h). Growth occurs between 28 degrees C and 52 degrees C. Trimyema minutum is redescribed using live observation and silver impregnation. Its morphology and the small subunit ribosomal RNA sequence is distinctly different from that of T. compressum, but morphology is highly similar to that of T. shoalsia Nerad et al. 1995, which is thus probably a junior synonym of T. minutum. To stabilize the bewildering species taxonomy in Trimyema, we suggest to recognize our population as a neotype of T. minutum. PMID:12120988

  7. Vorticella Linnaeus, 1767 (Ciliophora, Oligohymenophora, Peritrichia) is a grade not a clade: redefinition of Vorticella and the families Vorticellidae and Astylozoidae using molecular characters derived from the gene coding for small subunit ribosomal RNA.

    PubMed

    Sun, Ping; Clamp, John; Xu, Dapeng; Kusuoka, Yasushi; Miao, Wei

    2012-01-01

    Recent phylogenetic analyses of the peritrich genus Vorticella have suggested that it might be paraphyletic, with one Vorticella species - Vorticella microstoma grouping with the swimming peritrichs Astylozoon and Opisthonecta in a distant clade. These results were based on very limited taxon sampling and thus could not be accepted as conclusive evidence for revising the generic classification. We tested paraphyly of the genus Vorticella by making a new analysis with a broad range of samples from three continents that yielded 52 new sequences of the gene coding for small subunit rRNA. Our results, together with the available sequences in Genbank, form a comprehensive set of data for the genus Vorticella. Analyses of these data showed that Vorticella microstoma morphotypes, Astylozoon, and Opisthonecta form a well-supported, monophyletic clade, that is distinct from and basal to the family Vorticellidae containing other species of Vorticella. Paraphyly of the genus Vorticella and family Vorticellidae was strongly confirmed by these results. Furthermore, the two clades of Vorticella identified by the SSU rRNA gene are so genetically diverse whereas the genetic distances within the one containing Vorticella microstoma morphotypes, Astylozoon, and Opisthonecta were so slight, which marked it as a separate family that must be defined by molecular characters in the absence of unifying morphological and morphogenetic characters. An emended characterization and status of the genus Vorticella, the families Vorticellidae and Astylozoidae are presented and discussed. PMID:21784703

  8. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  9. The gene for human U2 snRNP auxiliary factor small 35-kDa subunit (U2AF1) maps to the progressive myoclonus epilepsy (EPM1) critical region on chromosome 21q22.3

    SciTech Connect

    Lalioti, M.D.; Rossier, C.; Antonarakis, S.E.

    1996-04-15

    We used targeted exon trapping to clone portions of genes from human chromosome 21q22.3. One trapped sequence showed complete homology with the cDNA of human U2AF{sup 35} (M96982; HGM-approved nomenclature U2AF1), which encodes for the small 35-kDa subunit of the U2 snRNP auxiliary factor. Using the U2AF1 cDNA as a probe, we mapped this gene to cosmid Q15D2, a P1, and YAC 350F7 of the Chumakov et al. contig, close to the cystathionine-{beta}-synthase gene (CBS) on 21q22.3. This localization was confirmed by PCR using oligonucleotides from the 3{prime} UTR and by FISH. As U2AF1 associated with a number of different factors during mRNA splicing, overexpression in trisomy 21 individuals could contribute to some Down syndrome phenotypes by interfering with the splicing process. Furthermore, because this gene maps in the critical region for the progressive myoclonus epilepsy I locus (EPM1), mutation analysis will be carried out in patients to evaluate the potential role of U2AF1 as a candidate for EPM1. 24 refs., 1 fig.

  10. Morphology and morphogenesis of a soil ciliate, Rigidohymena candens (Kahl, 1932) Berger, 2011 (Ciliophora, Hypotricha, Oxytrichidae), with notes on its molecular phylogeny based on small-subunit rDNA sequence data.

    PubMed

    Chen, Xumiao; Yan, Ying; Hu, Xiaozhong; Zhu, Mingzhuang; Ma, Honggang; Warren, Alan

    2013-05-01

    The morphology and morphogenesis of the stylonychine hypotrich Rigidohymena candens (Kahl, 1932) Berger, 2011, isolated from garden soil in Qingdao, China, were investigated using live observation and protargol impregnation methods. The Qingdao isolate possesses all diagnostic morphological characters of R. candens. The main events during binary fission are as follows: (i) the proter retains the parental adoral zone of membranelles entirely, whereas the old undulating membranes dedifferentiate into an anlage that gives rise to the leftmost frontal cirrus and the new undulating membranes of the proter; (ii) five streaks of fronto-ventral-transverse cirral anlagen are segmented in the pattern 3 : 3 : 3 : 4 : 4 from left to right, which form two frontal, four frontoventral, one buccal, five ventral and five transverse cirri, respectively; (iii) dorsal morphogenesis is in the typical Oxytricha pattern; (iv) three caudal cirri are formed, one at the posterior end of each of dorsal kineties 1, 2 and 4; and (v) the postoral ventral cirrus V/3 is not involved in primordia formation. The morphological and morphogenetic observations and phylogenetic analyses based on the small-subunit rDNA sequence data support the validity of Rigidohymena Berger, 2011 and its systematic position in the subfamily Stylonychinae. PMID:23456808

  11. Structural dynamics and ssDNA binding activity of the three N-terminal domains of the large subunit of Replication Protein A from small angle X-ray scattering

    SciTech Connect

    Pretto, Dalyir I.; Tsutakawa, Susan; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Tainer, John A.; Chazin, Walter J.

    2010-03-11

    Replication Protein A (RPA) is the primary eukaryotic ssDNA binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial inter-domain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments on two multi-domain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains, but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA bound state and therefore freely available to serve as a protein recruitment module.

  12. Genetic identification of yeast 18S rRNA residues required for efficient recruitment of initiator tRNA(Met) and AUG selection.

    PubMed

    Dong, Jinsheng; Nanda, Jagpreet S; Rahman, Hafsa; Pruitt, Margaret R; Shin, Byung-Sik; Wong, Chi-Ming; Lorsch, Jon R; Hinnebusch, Alan G

    2008-08-15

    High-resolution structures of bacterial 70S ribosomes have provided atomic details about mRNA and tRNA binding to the decoding center during elongation, but such information is lacking for preinitiation complexes (PICs). We identified residues in yeast 18S rRNA critical in vivo for recruiting methionyl tRNA(i)(Met) to 40S subunits during initiation by isolating mutations that derepress GCN4 mRNA translation. Several such Gcd(-) mutations alter the A928:U1389 base pair in helix 28 (h28) and allow PICs to scan through the start codons of upstream ORFs that normally repress GCN4 translation. The A928U substitution also impairs TC binding to PICs in a reconstituted system in vitro. Mutation of the bulge G926 in h28 and certain other residues corresponding to direct contacts with the P-site codon or tRNA in bacterial 70S complexes confer Gcd(-) phenotypes that (like A928 substitutions) are suppressed by overexpressing tRNA(i)(Met). Hence, the nonconserved 928:1389 base pair in h28, plus conserved 18S rRNA residues corresponding to P-site contacts in bacterial ribosomes, are critical for efficient Met-tRNA(i)(Met) binding and AUG selection in eukaryotes.

  13. Aligned 18S for Zoraptera (Insecta): phylogenetic position and molecular evolution.

    PubMed

    Yoshizawa, Kazunori; Johnson, Kevin P

    2005-11-01

    The order Zoraptera (angel insects) is one of the least known insect groups, containing only 32 extant species. The phylogenetic position of Zoraptera is poorly understood, but it is generally thought to be closely related to either Paraneoptera (hemipteroid orders: booklice, lice, thrips, and bugs), Dictyoptera (blattoid orders: cockroaches, termites, and mantis), or Embioptera (web spinners). We inferred the phylogenetic position of Zoraptera by analyzing nuclear 18S rDNA sequences, which we aligned according to a secondary structure model. Maximum likelihood and Bayesian analyses both supported a close relationship between Zoraptera and Dictyoptera with relatively high posterior probability. The 18S sequences of Zoraptera exhibited several unusual properties: (1) a dramatically increased substitution rate, which resulted in very long branches; (2) long insertions at helix E23; and (3) modifications of secondary structures at helices 12 and 18.

  14. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae

    PubMed Central

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-01-01

    Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  15. New Hosts of Simplicimonas similis and Trichomitus batrachorum Identified by 18S Ribosomal RNA Gene Sequences

    PubMed Central

    Dimasuay, Kris Genelyn B.; Lavilla, Orlie John Y.; Rivera, Windell L.

    2013-01-01

    Trichomonads are obligate anaerobes generally found in the digestive and genitourinary tract of domestic animals. In this study, four trichomonad isolates were obtained from carabao, dog, and pig hosts using rectal swab. Genomic DNA was extracted using Chelex method and the 18S rRNA gene was successfully amplified through novel sets of primers and undergone DNA sequencing. Aligned isolate sequences together with retrieved 18S rRNA gene sequences of known trichomonads were utilized to generate phylogenetic trees using maximum likelihood and neighbor-joining analyses. Two isolates from carabao were identified as Simplicimonas similis while each isolate from dog and pig was identified as Pentatrichomonas hominis and Trichomitus batrachorum, respectively. This is the first report of S. similis in carabao and the identification of T. batrachorum in pig using 18S rRNA gene sequence analysis. The generated phylogenetic tree yielded three distinct groups mostly with relatively moderate to high bootstrap support and in agreement with the most recent classification. Pathogenic potential of the trichomonads in these hosts still needs further investigation. PMID:23936631

  16. 18S ribosomal DNA sequences provide insight into the phylogeny of patellogastropod limpets (Mollusca: Gastropoda).

    PubMed

    Yoon, Sook Hee; Kim, Won

    2007-02-28

    To investigate the phylogeny of Patellogastropoda, the complete 18S rDNA sequences of nine patellogastropod limpets Cymbula canescens (Gmelin, 1791), Helcion dunkeri (Krauss, 1848), Patella rustica Linnaeus, 1758, Cellana toreuma (Reeve, 1855), Cellana nigrolineata (Reeve, 1854), Nacella magellanica Gmelin, 1791, Nipponacmea concinna (Lischke, 1870), Niveotectura pallida (Gould, 1859), and Lottia dorsuosa Gould, 1859 were determined. These sequences were then analyzed along with the published 18S rDNA sequences of 35 gastropods, one bivalve, and one chiton species. Phylogenetic trees were constructed by maximum parsimony, maximum likelihood, and Bayesian inference. The results of our 18S rDNA sequence analysis strongly support the monophyly of Patellogastropoda and the existence of three subgroups. Of these, two subgroups, the Patelloidea and Acmaeoidea, are closely related, with branching patterns that can be summarized as [(Cymbula + Helcion) + Patella] and [(Nipponacmea + Lottia) + Niveotectura]. The remaining subgroup, Nacelloidea, emerges as basal and paraphyletic, while its genus Cellana is monophyletic. Our analysis also indicates that the Patellogastropoda have a sister relationship with the order Cocculiniformia within the Gastropoda. PMID:17464213

  17. Phylogeny of the Eustigmatophyceae Based upon 18S rDNA, with Emphasis on Nannochloropsis.

    PubMed

    Andersen, R A; Brett, R W; Potter, D; Sexton, J P

    1998-02-01

    Complete 18S rDNA sequences were determined for 25 strains representing five genera of the Eustigmatophyceae, including re-examination of three strains with previously published sequences. Parsimony analysis of these and 44 published sequences for other heterokont chromophytes (unalignable sites removed) revealed that the Eustigmatophyceae were a monophyletic group. Analysis of eustigmatophyte taxa only (complete gene analyzed) supported the current familial classification scheme. Twenty one strains of Nannochloropsis were also examined using light microscopy. Gross morphology of cells was variable and overlapped among the strains; cell size was consistent within strains but sometimes varied considerably among strains of a species. The 18S rDNA of N. gaditana, N. oculata and N. salina was re-sequenced for strains used in previous publications and one or more nucleotide differences were found. Nucleotide sequences for Nannochloropsis species varied by up to 32 nucleotides. Identical sequences were found for six strains of N. salina, five strains of N. gadifana, four strains of N. granulata, and two strains of N. oculata, respectively. Four strains could not be assigned to described species and may represent two new species. The unique 18S rDNA sequences for each sibling species of Nannochloropsis demonstrates the presence of considerable genetic diversity despite the extremely simple morphology in this genus. PMID:23196114

  18. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern United States, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA gene (SSU rRNA). Howe...

  19. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-01

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  20. Single-Cell DNA barcoding using sequences from the small subunit rRNA and internal transcribed spacer region identifies new species of Trichonympha and Trichomitopsis from the hindgut of the termite Zootermopsis angusticollis.

    PubMed

    Tai, Vera; James, Erick R; Perlman, Steve J; Keeling, Patrick J

    2013-01-01

    To aid in their digestion of wood, lower termites are known to harbour a diverse community of prokaryotes as well as parabasalid and oxymonad protist symbionts. One of the best-studied lower termite gut communities is that of Zootermopsis angusticollis which has been known for almost 100 years to possess 3 species of Trichonympha (T. campanula, T. collaris, and T. sphaerica), 1 species of Trichomitopsis (T. termopsidis), as well as smaller flagellates. We have re-assessed this community by sequencing the small subunit (SSU) rRNA gene and the internal transcribed spacer (ITS) region from a large number of single Trichonympha and Trichomitopsis cells for which morphology was also documented. Based on phylogenetic clustering and sequence divergence, we identify 3 new species: Trichonympha postcylindrica, Trichomitopsis minor, and Trichomitopsis parvus spp. nov. Once identified by sequencing, the morphology of the isolated cells for all 3 new species was re-examined and found to be distinct from the previously described species: Trichonympha postcylindrica can be morphologically distinguished from the other Trichonympha species by an extension on its posterior end, whereas Trichomitopsis minor and T. parvus are smaller than T. termopsidis but similar in size to each other and cannot be distinguished based on morphology using light microscopy. Given that Z. angusticollis has one of the best characterized hindgut communities, the near doubling of the number of the largest and most easily identifiable symbiont species suggests that the diversity of hindgut symbionts is substantially underestimated in other termites as well. Accurate descriptions of the diversity of these microbial communities are essential for understanding hindgut ecology and disentangling the interactions among the symbionts, and molecular barcoding should be a priority for these systems.

  1. Rubisco small subunit, chlorophyll a/b-binding protein and sucrose:fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light.

    PubMed

    Lu, Chungui; Koroleva, Olga A; Farrar, John F; Gallagher, Joe; Pollock, Chris J; Tomos, A Deri

    2002-11-01

    We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA. Actin could be used as an internal standard. The expression of message for Rubisco small subunit (RbcS), chlorophyll a/b-binding protein (Cab), sucrose (Suc):fructan-6-fructosyl transferase (6-SFT), and Actin were measured in individual photosynthetic cells of the barley (Hordeum vulgare) leaf. Only Actin was found in the non-photosynthetic epidermal cells. Cab, RbcS, and 6-SFT genes were expressed at a low level in mesophyll and parenchymatous bundle sheath (BS) cells when sampled from plants held in dark for 40 h. Expression increased considerably after illumination. The amount of 6-SFT, Cab, and RbcS transcript increased more in mesophyll cells than in the parenchymatous BS cells. The difference may be caused by different chloroplast structure and posttranscriptional control in mesophyll and BS cells. When similar single-cell samples were assayed for Suc, glucose, and fructan, there was high correlation between 6-SFT gene expression and Suc and glucose concentrations. This is consistent with Suc concentration being the trigger for transcription. Together with earlier demonstrations that the mesophyll cells have a higher sugar threshold for fructan polymerization, our data may indicate separate control of transcription and enzyme activity. Values for the sugar concentrations of the individual cell types are reported.

  2. Effects of ambient CO{sub 2} concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase

    SciTech Connect

    Masle, J.; Hudson, G.S.; Badger, M.R.

    1993-12-01

    Growth of the R{sub 1} progeny of a tobacco plant (Nicotiana tabacum) transformed with an antisense gene to the small subunit of ribulose-1,5-carboxylase/oxygenase (Rubisco) was analyzed under 330 and 930 {mu}bar of CO{sub 2r} at an irradiance of 1000 {mu}mol quanta m{sup {minus}2} s{sup {minus}1}. Rubisco activity was reduced to 30 to 50% and 13 to 18% of that in the wild type when one and two copies of the antisense gene, respectively, were present in the genome, whereas null plants and wild-type plants had similar phenotypes. At 330 {mu}bar of CO{sub 2} all antisense plants were smaller than the wild type. There was no indication that Rubisco is present in excess in the wild type with respect to growth under high light. Raising ambient CO{sub 2} pressure to 930 {mu}bar caused plants with one copy of the DNA transferred from plasmid to plant genome to achieve the same size as the wild type at 330 {mu}bar, but plants with two copies remained smaller. The authors suggest other intrinsic rate-limiting processes independent of carbohydrate supply were involved. Under plentiful nitrogen supply, reduction in the amount of nitrogen invested in Rubisco was more than compensated for by an increase in leaf nitrate. Nitrogen content of organic matter, excluding Rubisco, was unaffected by the antisense gene. In contrast, it was systematically lower at elevated p{sub a} than at normal p{sub a}. Combined with the positive effects of p{sub a} on growth, this resulted in the single-dose antisense plants growing as fast at 930 {mu}bar of CO{sub 2} as the wild-type plants at 330 {mu}bar of CO{sub 2} but at a lower organic nitrogen cost.

  3. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts.

    PubMed

    Lueders, Tillmann; Friedrich, Michael W

    2003-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis is a widely used method for profiling microbial community structure in different habitats by targeting small-subunit (SSU) rRNA and also functional marker genes. It is not known, however, whether relative gene frequencies of individual community members are adequately represented in post-PCR amplicon frequencies as shown by T-RFLP. In this study, precisely defined artificial template mixtures containing genomic DNA of four different methanogens in various ratios were prepared for subsequent T-RFLP analysis. PCR amplicons were generated from defined mixtures targeting not only the SSU rRNA but also the methyl-coenzyme M reductase (mcrA/mrtA) genes of methanogens. Relative amplicon frequencies of microorganisms were quantified by comparing fluorescence intensities of characteristic terminal restriction fragments. SSU ribosomal DNA (rDNA) template ratios in defined template mixtures of the four-membered community were recovered absolutely by PCR-T-RFLP analysis, which demonstrates that the T-RFLP analysis evaluated can give a quantitative view of the template pool. SSU rDNA-targeted T-RFLP analysis of a natural community was found to be highly reproducible, independent of PCR annealing temperature, and unaffected by increasing PCR cycle numbers. Ratios of mcrA-targeted T-RFLP analysis were biased, most likely by PCR selection due to the degeneracy of the primers used. Consequently, for microbial community analyses, each primer system used should be evaluated carefully for possible PCR bias. In fact, such bias can be detected by using T-RFLP analysis as a tool for the precise quantification of the PCR product pool.

  4. ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs

    PubMed Central

    Akbergenov, R. Zh.; Zhanybekova, S. Sh.; Kryldakov, R. V.; Zhigailov, A.; Polimbetova, N. S.; Hohn, T.; Iskakov, B. K.

    2004-01-01

    The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation-enhancing property of these sequences. To verify this notion, we designed β-glucuronidase (GUS) mRNAs differing only in the nature of 10 nt inserts in the center of their 41 base leaders. These were complementary to consecutive domains of plant 18S rRNA. Sucrose gradient analysis revealed that leaders with inserts complementary to regions 1105–1114 and 1115–1124 (‘ARC-1’) of plant 18S rRNA bound most efficiently to the 40S ribosomal subunit after dissociation from 80S ribosomes under conditions of high ionic strength, a treatment known to remove translation initiation factors. Using wheat germ cell-free extracts, we could demonstrate that mRNAs with these leaders were translated more than three times more efficiently than a control lacking such a complementarity. Three linked copies of the insert enhanced translation of reporter mRNA to levels comparable with those directed by the natural translation enhancing leaders of tobacco mosaic virus and potato virus Y RNAs. Moreover, inserting the same leaders as intercistronic sequences in dicistronic mRNAs substantially increased translation of the second cistron, thereby revealing internal ribosome entry site activity. Thus, for plant systems, the complementary interaction between mRNA leader and the central region of 18S rRNA allows cap-independent binding of mRNA to the 43S pre-initiation complex without assistance of translation initiation factors. PMID:14718549

  5. [18S-25S rDNA variation in tissue culture of some Gentiana L. species].

    PubMed

    Mel'nyk, V M; Andrieiev, I O; Spiridonova, K V; Strashniuk, N M; Kunakh, V A

    2007-01-01

    18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata and G. lutea have been investigated by using blot-hybridization. The decrease of rDNA amount was found in the callus cultures as compared with the plants. In contrast to other species, G. lutea showed intragenome heterogeneity of rRNA genes as well as qualitative rDNA changes in tissue culture, in particular appearance of altered repeats. The relationship between the peculiarities of rRNA gene structure and their rearrangements in in vitro culture was suggested.

  6. Phylogenetic relationships among higher Nemertean (Nemertea) Taxa inferred from 18S rDNA sequences.

    PubMed

    Sundberg, P; Turbeville, J M; Lindh, S

    2001-09-01

    We estimated the phylogenetic relationships of 15 nemertean (phylum Nemertea) species from the four subclasses Hoplo-, Hetero-, Palaeo-, and Bdellonemertea with 18S rDNA sequence data. Three outgroup taxa were used for rooting: Annelida, Platyhelminthes, and Mollusca. Parsimony and maximum-likelihood analyses supported the monophyletic status of the Heteronemertea and a taxon consisting of hoplonemerteans and Bdellonemertea, while indicating that Palaeonemertea is paraphyletic. The monophyletic status of the two nemertean classes Anopla and Enopla is not supported by the data. The unambiguous clades are well supported, as assessed by a randomization test (bootstrapping) and branch support values.

  7. Novel Acanthamoeba 18S rRNA gene sequence type from an environmental isolate.

    PubMed

    Magnet, A; Henriques-Gil, N; Galván-Diaz, A L; Izquiedo, F; Fenoy, S; del Aguila, C

    2014-08-01

    The free-living amoebae, Acanthamoeba, can act as opportunistic parasites on a wide range of vertebrates and are becoming a serious threat to human health due to the resistance of their cysts to harsh environmental conditions, disinfectants, some water treatment practices, and their ubiquitous distribution. Subgenus classification based on morphology is being replaced by a classification based on the sequences of the 18S rRNA gene with a total of 18 different genotypes (T1-T18). A new environmental strain of Acanthamoeba isolated from a waste water treatment plant is presented in this study as a candidate for the description of the novel genotype T19 after phylogenetic analysis.

  8. Structural diversity of eukaryotic 18S rRNA and its impact on alignment and phylogenetic reconstruction.

    PubMed

    Xie, Qiang; Lin, Jinzhong; Qin, Yan; Zhou, Jianfu; Bu, Wenjun

    2011-02-01

    Ribosomal RNAs are important because they catalyze the synthesis of peptides and proteins. Comparative studies of the secondary structure of 18S rRNA have revealed the basic locations of its many length-conserved and length-variable regions. In recent years, many more sequences of 18S rDNA with unusual lengths have been documented in GenBank. These data make it possible to recognize the diversity of the secondary and tertiary structures of 18S rRNAs and to identify the length-conserved parts of 18S rDNAs. The longest 18S rDNA sequences of almost every known eukaryotic phylum were included in this study. We illustrated the bioinformatics-based structure to show that, the regions that are more length-variable, regions that are less length-variable, the splicing sites for introns, and the sites of A-minor interactions are mostly distributed in different parts of the 18S rRNA. Additionally, this study revealed that some length-variable regions or insertion positions could be quite close to the functional part of the 18S rRNA of Foraminifera organisms. The tertiary structure as well as the secondary structure of 18S rRNA can be more diverse than what was previously supposed. Besides revealing how this interesting gene evolves, it can help to remove ambiguity from the alignment of eukaryotic 18S rDNAs and to improve the performance of 18S rDNA in phylogenetic reconstruction. Six nucleotides shared by Archaea and Eukaryota but rarely by Bacteria are also reported here for the first time, which might further support the supposed origin of eukaryote from archaeans.

  9. Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia.

    PubMed

    Shalchian-Tabrizi, Kamran; Kauserud, Håvard; Massana, Ramon; Klaveness, Dag; Jakobsen, Kjetill S

    2007-04-01

    Telonemia has recently been described as a new eukaryotic phylum with uncertain evolutionary origin. So far, only two Telonemia species, Telonema subtilis and Telonema antarcticum, have been described, but there are substantial variations in size and morphology among Telonema isolates and field observations, indicating a hidden diversity of Telonemia-like species and populations. In this study, we investigated the diversity and the global distribution of this group by analyzing 18S rDNA sequences from marine environmental clone libraries published in GenBank as well as several unpublished sequences from the Indian Ocean. Phylogenetic analyses of the identified sequences suggest that the Telonemia phylum includes several undescribed 18S rDNA phylotypes, probably corresponding to a number of different species and/or populations. The Telonemia phylotypes form two main groups, here referred to as Telonemia Groups 1 and 2. Some of the closely related sequences originate from separate oceans, indicating worldwide distributions of various Telonemia phylotypes, while other phylotypes seem to have limited geographical distribution. Further investigations of the evolutionary relationships within Telonemia should be conducted on isolated cultures of Telonema-like strains using multi-locus sequencing and morphological data. PMID:17196879

  10. Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5' end of the 28S rRNA genes indicates that several genera are polyphyletic.

    PubMed

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825-1,901 bp) and 28S (the 5' end of 646-743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.

  11. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  12. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded. PMID:10603259

  13. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters.

    PubMed

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-03-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI's SRA database (BioProject PRJNA294919). PMID:26904716

  14. 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta.

    PubMed

    Mackey, L Y; Winnepenninckx, B; De Wachter, R; Backeljau, T; Emschermann, P; Garey, J R

    1996-05-01

    The Ento- and Ectoprocta are sometimes placed together in the Bryozoa, which have variously been regarded as proto- or deuterostomes. However, Entoprocta have also been allied to the pseudocoelomates, while Ectoprocta are often united with the Brachiopoda and Phoronida in the (super)phylum Lophophorata. Hence, the phylogenetic relationships of these taxa are still much debated. We determined complete 18S rRNA sequences of two entoprocts, an ectoproct, an inarticulate brachiopod, a phoronid, two annelids, and a platyhelminth. Phylogenetic analyses of these data show that (1) entoprocts and lophophorates have spiralian, protostomous affinities, (2) Ento- and Ectoprocta are not sister taxa, (3) phoronids and brachiopods form a monophyletic clade, and (4) neither Ectoprocta or Annelida appear to be monophyletic. Both deuterostomous and pseudocoelomate features may have arisen at least two times in evolutionary history. These results advocate a Spiralia-Radialia-based classification rather than one based on the Protostomia-Deuterostomia concept.

  15. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters.

    PubMed

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-03-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI's SRA database (BioProject PRJNA294919).

  16. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded.

  17. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers.

    PubMed

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies.

  18. Differential identification of Entamoeba spp. based on the analysis of 18S rRNA.

    PubMed

    Santos, Helena Lúcia Carneiro; Bandea, Rebecca; Martins, Luci Ana Fernandes; de Macedo, Heloisa Werneck; Peralta, Regina Helena Saramago; Peralta, Jose Mauro; Ndubuisi, Mackevin I; da Silva, Alexandre J

    2010-03-01

    Entamoeba histolytica is known to cause intestinal and extra-intestinal disease while the other Entamoeba species are not considered to be pathogenic. However, all Entamoeba spp. should be reported when identified in clinical samples. Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanii can be differentiated morphologically from E. histolytica, but some of their diagnostic morphologic features overlap. E. histolytica, Entamoeba dispar, and Entamoeba moshkovskii are morphologically identical but can be differentiated using molecular tools. We developed a polymerase chain reaction (PCR) procedure followed by DNA sequencing of specific regions of 18S rRNA gene to differentiate the Entamoeba spp. commonly found in human stools. This approach was used to analyze 45 samples from cases evaluated for the presence of Entamoeba spp. by microscopy and a real-time PCR method capable of differential detection of E. histolytica and E. dispar. Our results demonstrated an agreement of approximately 98% (45/44) between the real-time PCR for E. histolytica and E. dispar and the 18S rRNA analysis described here. Five previously negative samples by microscopy revealed the presence of E. dispar, E. hartmanii, or E. coli DNA. In addition, we were able to detect E. hartmanii in a stool sample that had been previously reported as negative for Entamoeba spp. by microscopy. Further microscopic evaluation of this sample revealed the presence of E. hartmanii cysts, which went undetected during the first microscopic evaluation. This PCR followed by DNA sequencing will be useful to refine the diagnostic detection of Entamoeba spp. in stool and other clinical specimens.

  19. Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers

    PubMed Central

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M.; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies. PMID:24516555

  20. Identification of new 18S rRNA strains of Babesia canis isolated from dogs with subclinical babesiosis.

    PubMed

    Łyp, P; Adaszek, Ł; Furmaga, B; Winiarczyk, S

    2015-01-01

    In this study, we used PCR to detect and characterize B. canis from naturally infected dogs in Poland with subclinical babesiosis by amplifying and sequencing a portion of the 18S ribosomal RNA (rRNA) gene. Venous blood samples were collected from ten dogs with subclinical babesiosis. A 559-bp fragment of the B. canis 18S rRNA gene was amplified by PCR. Sequencing of the PCR products led to the identification of a new variant of Babesia canis, differing from the previously detected protozoa genotypes (18S rRNA-A and 18S rRNA-B) with nucleotide substitutions in positions 150 and 151 of the tested gene fragment. The results indicate the emergence within the Polish territory of a new, previously unencountered Babesia canis genotype responsible for the development of subclinical babesiosis. PMID:26618590

  1. Identification of new 18S rRNA strains of Babesia canis isolated from dogs with subclinical babesiosis.

    PubMed

    Łyp, P; Adaszek, Ł; Furmaga, B; Winiarczyk, S

    2015-01-01

    In this study, we used PCR to detect and characterize B. canis from naturally infected dogs in Poland with subclinical babesiosis by amplifying and sequencing a portion of the 18S ribosomal RNA (rRNA) gene. Venous blood samples were collected from ten dogs with subclinical babesiosis. A 559-bp fragment of the B. canis 18S rRNA gene was amplified by PCR. Sequencing of the PCR products led to the identification of a new variant of Babesia canis, differing from the previously detected protozoa genotypes (18S rRNA-A and 18S rRNA-B) with nucleotide substitutions in positions 150 and 151 of the tested gene fragment. The results indicate the emergence within the Polish territory of a new, previously unencountered Babesia canis genotype responsible for the development of subclinical babesiosis.

  2. Chromosome Mapping of 18S Ribosomal RNA Genes in Eleven Hypostomus Species (Siluriformes, Loricariidae): Diversity Analysis of the Sites.

    PubMed

    Rubert, Marceléia; da Rosa, Renata; Zawadzki, Claudio H; Mariotto, Sandra; Moreira-Filho, Orlando; Giuliano-Caetano, Lucia

    2016-08-01

    We investigated the chromosomal distribution of 18S ribosomal DNA (rDNA) in different populations of 11 species of Hypostomus collected in important Brazilian basins, namely South Atlantic, Upper Paraná, and Paraguay applying the fluorescence in situ hybridization (FISH). Hypostomus cochliodon, Hypostomus commersoni, Hypostomus hermanni, Hypostomus regani, Hypostomus albopunctatus, Hypostomus paulinus, Hypostomus aff. paulinus, Hypostomus iheringii, and Hypostomus mutucae presented multiple 18S rDNA sites while Hypostomus strigaticeps and Hypostomus nigromaculatus exhibited a single pair of chromosomes with 18S rDNA sites. The studied species presented variations in the number and position of these sites. The results accomplished were similar to those obtained by the analysis of AgNORs, revealing the same interspecific variability. Each species exhibited distinctive patterns of AgNOR and 18S rDNA distribution, which can be considered cytogenetic markers in each species of the genus and help improve the discussions on the phylogeny of the group.

  3. Chromosomal localization of 18S and 5S rDNA using FISH in the genus Tor (Pisces, Cyprinidae).

    PubMed

    Singh, Mamta; Kumar, Ravindra; Nagpure, N S; Kushwaha, B; Gond, Indramani; Lakra, W S

    2009-12-01

    Dual color fluorescence in situ hybridization (FISH) was performed to study the simultaneous chromosomal localization of 18S and 5S ribosomal genes in the genus Tor for the first time. The 18S and 5S rDNAs in four Tor species were amplified, sequenced and mapped on the metaphase chromosomes. The number and distribution of 18S and 5S rDNA clusters were examined on metaphase chromosome spreads using FISH. The specimens of T. chelynoides, T. putitora and T. progeneius showed six bright fluorescent signals of 18S rDNA and T. tor exhibited ten such signals. The 5S rDNA signals were present only on one pair of chromosomes in all the four Tor species. Ag-NORs were observed on two pairs of chromosomes in T. chelynoides, T. putitora, T. progeneius and four pairs in T. tor. Comparison of the observed 18S rDNA FISH signals and Ag-NORs strongly suggested a possible inactivation of NORs localized at the telomeres of a subtelocentric and telocentric chromosome pairs in all four species. The 5S rDNA contained an identical 120 bp long coding region and 81 bp long highly divergent non-transcribed spacers in all species examined. 18S and 5S rDNA sequencing and chromosomal localization can be a useful genetic marker in species identification as well as phylogenetic and evolutionary studies.

  4. A purified nucleoprotein fragment of the 30 S ribosomal subunit of Escherichia coli.

    PubMed

    Spitnik-Elson, P; Elson, D; Abramowitz, R

    1979-02-27

    A '13 S' nucleoprotein fragment was isolated from a nuclease digest of Escherichia coli 30-S ribosomal subunits and purified to gel electrophoretic homogeneity. It contained two polynucleotides, of about 1.1 . 10(5) and 2.5 . 10(4) daltons, which separated when the fragment was deproteinized. The major protein components were S4, S7 and S9/11, with S15, S16, S18, S19 and S20 present in reduced amount.

  5. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  6. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships.

  7. Molecular Evolution of Multi-subunit RNA Polymerases: Sequence Analysis

    PubMed Central

    Lane, William J.; Darst, Seth A.

    2009-01-01

    Transcription in all cellular organisms is performed by multi-subunit, DNA-dependent RNA polymerases that synthesize RNA from DNA templates. Previous sequence and structural studies have elucidated the importance of shared regions common to all multi-subunit RNA polymerases. In addition RNA polymerases contain multiple lineage-specific domain insertions involved in protein-protein and protein-nucleic acid interactions. We have created comprehensive multiple sequence alignments using all available sequence data for the multi-subunit RNA polymerase large subunits, including the bacterial β and β′ subunits and their homologues from archaebacterial RNA polymerases, the eukaryotic RNA polymerases I, II, and III, the nuclear-cytoplasmic large double-stranded DNA Virus RNA polymerases, and plant plastid RNA polymerases. In order to overcome technical difficulties inherent to the large subunit sequences, including large sequence length, small and large lineage-specific insertions, split subunits, and fused proteins, we created an automated and customizable sequence retrieval and processing system. In addition, we used our alignments to create a more expansive set of shared sequence regions and bacterial lineage-specific domain insertions. We also analyzed the intergenic gap between the bacterial β and β′ genes. PMID:19895820

  8. Sequence requirements for maturation of the 5' terminus of human 18 S rRNA in vitro.

    PubMed

    Yu, Y T; Nilsen, T W

    1992-05-01

    Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s). PMID:1577760

  9. Radiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny

    PubMed Central

    Dolven, Jane K.; Ose, Randi F.; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R.; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis. PMID:21853146

  10. Radiolaria divided into Polycystina and Spasmaria in combined 18S and 28S rDNA phylogeny.

    PubMed

    Krabberød, Anders K; Bråte, Jon; Dolven, Jane K; Ose, Randi F; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis.

  11. A phylogenetic study on galactose-containing Candida species based on 18S ribosomal DNA sequences.

    PubMed

    Suzuki, Motofumi; Suh, Sung-Oui; Sugita, Takashi; Nakase, Takashi

    1999-10-01

    Phylogenetic relationships of 33 Candida species containing galactose in the cells were investigated by using 18S ribosomal DNA sequence analysis. Galactose-containing Candida species and galactose-containing species from nine ascomycetous genera were a heterogeneous assemblage. They were divided into three clusters (II, III, and IV) which were phylogenetically distant from cluster I, comprising 9 galactose-lacking Candida species, C. glabrata, C. holmii, C. krusei, C. tropicalis (the type species of Candida), C. albicans, C. viswanathii, C. maltosa, C. parapsilosis, C. guilliermondii, and C. lusitaniae, and 17 related ascomycetous yeasts. These three clusters were also phylogenetically distant from Schizosaccharomyces pombe, which contains galactomannan in its cell wall. Cluster II comprised C. magnoliae, C. vaccinii, C. apis, C. gropengiesseri, C. etchellsii, C. floricola, C. lactiscondensi, Wickerhamiella domercqiae, C. versatilis, C. azyma, C. vanderwaltii, C. pararugosa, C. sorbophila, C. spandovensis, C. galacta, C. ingens, C. incommunis, Yarrowia lipolytica, Galactomyces geotrichum, and Dipodascus albidus. Cluster III comprised C. tepae, C. antillancae and its synonym C. bondarzewiae, C. ancudensis, C. petrohuensis, C. santjacobensis, C. ciferrii (anamorph of Stephanoascus ciferrii), Arxula terrestris, C. castrensis, C. valdiviana, C. paludigena, C. blankii, C. salmanticensis, C. auringiensis, C. bertae, and its synonym C. bertae var. chiloensis, C. edax (anamorph of Stephanoascus smithiae), Arxula adeninivorans, and C. steatolytica (synonym of Zygoascus hellenicus). Cluster IV comprised C. cantarellii, C. vinaria, Dipodascopsis uninucleata, and Lipomyces lipofer. Two galactose-lacking and Q-8-forming species, C. stellata and Pichia pastoris, and 5 galactose-lacking and Q-9-forming species, C. apicola, C. bombi, C. bombicola, C. geochares, and C. insectalens, were included in Cluster II. Two galactose-lacking and Q-9-forming species, C. drimydis and C

  12. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    PubMed Central

    Santos, Henrique F.; Cury, Juliano C.; Carmo, Flavia L.; Rosado, Alexandre S.; Peixoto, Raquel S.

    2010-01-01

    Background Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. Methodology/Principal Findings We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. Conclusions/Significance We believe that

  13. Comparative physical mapping of the 18S-5.8S-26S rDNA in three sorghum species.

    PubMed

    Sang, Y; Liang, G H

    2000-10-01

    The physical locations of the 18S-5.8S-26S rDNA sequences were examined in three sorghum species by fluorescence in situ hybridization (FISH) using biotin-labeled heterologous 18S-5.8S-26S rDNA probe (pTa71). Each 18S-5.8S-26S rDNA locus occurred at two sites on the chromosomes in Sorghum bicolor (2n = 20) and S. versicolor (2n = 10), but at four sites on the chromosomes of S. halepense (2n = 40) and the tetraploid S. versicolor (2n = 20). Positions of the rDNA loci varied from the interstitial to terminal position among the four accessions of the three sorghum species. The rDNA data are useful for investigation of chromosome evolution and phylogeny. This study excluded S. versicolor as the possible progenitor of S. bicolor.

  14. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci.

    PubMed

    Paparini, Andrea; Gofton, Alexander; Yang, Rongchang; White, Nicole; Bunce, Michael; Ryan, Una M

    2015-01-01

    Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are

  15. Arrangement of subunits in microribbons from Giardia.

    PubMed

    Holberton, D V

    1981-02-01

    Ultrasound has been used to disperse the cytoplasm of Giardia muris and Giardia duodenalis trophozoites, releasing disk cytoskeletons for negative staining and study by electron microscopy. Sonication also breaks down the corss-bridges uniting microribbons in disks. Individual ribbons and small bundles of these structures, are found in these preparations and have been imaged both from their edges and in flat face view. The outer layers of ribbons are 2 sheets of regularly arranged globular subunits, held apart by a fibrous inner core. The axial repeat of the microribbon is 15 nm, which is also the distance separating cross-bridge sites along ribbons. Pronounced striping at this interval is a feature of ribbon faces where they are joined in bundles. Subunits in the outer layer are arranged in vertical protofilaments that are set orthogonally to the long axis of the ribbon. Protofilaments bind tannic acid and are seen clearly in sectioned ribbons. Three protofilaments fit into the 15-nm longitudinal spacing. Optical diffraction patterns from ribbon images are dominated by orders of the 15-nm periodicity, including the third-order reflexions expected from protofilaments spacings. Fourth-order reflexions indicate that the ribbon core may also be structured. Ribbon face images give rise to a strong 4-nm layer line, corresponding to the vertical spacing of subunits in protofilaments. Neighbouring protofilaments are staggered by about 0.67 nm. The lattices found in ribbons are consistent with studies of cytoskeleton composition.

  16. U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production.

    PubMed

    Atzorn, Vera; Fragapane, Paola; Kiss, Tamás

    2004-02-01

    Saccharomyces cerevisiae snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) required for the processing of 18S rRNA. Here, we show that the previously characterized human, reptilian, amphibian, and fish U17 snoRNAs represent the vertebrate homologues of yeast snR30. We also demonstrate that U17/snR30 is present in the fission yeast Schizosaccharomyces pombe and the unicellular ciliated protozoan Tetrahymena thermophila. Evolutionary comparison revealed that the 3'-terminal hairpins of U17/snR30 snoRNAs contain two highly conserved sequence motifs, the m1 (AUAUUCCUA) and m2 (AAACCAU) elements. Mutation analysis of yeast snR30 demonstrated that the m1 and m2 elements are essential for early cleavages of the 35S pre-rRNA and, consequently, for the production of mature 18S rRNA. The m1 and m2 motifs occupy the opposite strands of an internal loop structure, and they are located invariantly 7 nucleotides upstream from the ACA box of U17/snR30 snoRNAs. U17/snR30 is the first identified box H/ACA snoRNA that possesses an evolutionarily conserved role in the nucleolytic processing of eukaryotic pre-rRNA.

  17. Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment.

    PubMed

    Xie, Qiang; Tian, Xiaoxuan; Qin, Yan; Bu, Wenjun

    2009-02-01

    The SSU nrDNA (18S), is one of the most frequently sequenced molecular markers in phylogenetic studies. However, the length-hyper-variation at multiple positions of this gene can affect the accuracy of alignment greatly and this length variation makes alignment across arthropod orders a serious problem. The analyses of Hexapoda phylogeny is such a case. A more clear recognition of the distribution of the length-variable-regions is needed. In this study, the secondary structure of some length-variable-regions in the SSU nrRNA of Arthropoda was adjusted by the principle of co-variation. It is found that the extent of plasticity of some length-variable-region can extraordinarily be higher than 600 bases in hexapods. And the numbers of hyper length-variable-regions are largest in Strepsiptera and Sternorrhyncha (Hemiptera). Our study shows that some length-variable-regions can serve as synapomorphies for some groups. The phylogenetic comparison also suggested that the expansion of a lateral bulge could be the origin of a helix. PMID:19027081

  18. Interaction of factor XIII subunits.

    PubMed

    Katona, Eva; Pénzes, Krisztina; Csapó, Andrea; Fazakas, Ferenc; Udvardy, Miklós L; Bagoly, Zsuzsa; Orosz, Zsuzsanna Z; Muszbek, László

    2014-03-13

    Coagulation factor XIII (FXIII) is a heterotetramer consisting of 2 catalytic A subunits (FXIII-A2) and 2 protective/inhibitory B subunits (FXIII-B2). FXIII-B, a mosaic protein consisting of 10 sushi domains, significantly prolongs the lifespan of catalytic subunits in the circulation and prevents their slow progressive activation in plasmatic conditions. In this study, the biochemistry of the interaction between the 2 FXIII subunits was investigated. Using a surface plasmon resonance technique and an enzyme-linked immunosorbent assay-type binding assay, the equilibrium dissociation constant (Kd) for the interaction was established in the range of 10(-10) M. Based on the measured Kd, it was calculated that in plasma approximately 1% of FXIII-A2 should be in free form. This value was confirmed experimentally by measuring FXIII-A2 in plasma samples immunodepleted of FXIII-A2B2. Free plasma FXIII-A2 is functionally active, and when activated by thrombin and Ca(2+), it can cross-link fibrin. In cerebrospinal fluid and tears with much lower FXIII subunit concentrations, >80% of FXIII-A2 existed in free form. A monoclonal anti-FXIII-B antibody that prevented the interaction between the 2 subunits reacted with the recombinant combined first and second sushi domains of FXIII-B, and its epitope was localized to the peptide spanning positions 96 to 103 in the second sushi domain. PMID:24408323

  19. “Invisible” silver and gold in supergene digenite (Cu1.8S)

    NASA Astrophysics Data System (ADS)

    Reich, Martin; Chryssoulis, Stephen L.; Deditius, Artur; Palacios, Carlos; Zúñiga, Alejandro; Weldt, Magdalena; Alvear, Macarena

    2010-11-01

    Despite its potential economic and environmental importance, the study of trace metals in supergene (secondary) Cu-sulfides has been seriously overlooked in the past decades. In this study, the concentration and mineralogical form of "invisible" precious metals (Ag, Au) and metalloids (As, Sb, Se, Te) in supergene digenite (Cu 1.8S) from various Cu deposits in the Atacama Desert of northern Chile, the world's premier Cu province, were determined in detail using a combination of microanalytical techniques. Secondary ion mass spectrometry (SIMS) and electron microprobe analyzer (EMPA) measurements reveal that, apart from hosting up to ˜11,000 ppm Ag, supergene digenite can incorporate up to part-per-million contents of Au (˜6 ppm) and associated metalloids such as As (˜300 ppm), Sb (˜60 ppm), Se (˜96 ppm) and Te (˜18 ppm). SIMS analyses of trace metals show that Ag and Au concentrations strongly correlate with As in supergene digenite, defining wedge-shaped zones in Ag-As and Au-As log-log spaces. SIMS depth profiling and high-resolution transmission electron microscopy (HRTEM) observations reveal that samples with anomalously high Ag/As (>˜30) and Au/As (>˜0.03) ratios plot above the wedge zones and contain nanoparticles of metallic Ag and Au, while samples with lower ratios contain Ag and Au that is structurally bound to the Cu-sulfide matrix. The Ag-Au-As relations reported in this study strongly suggest that the incorporation of precious metals in Cu-sulfides formed under supergene, low-temperature conditions respond to the incorporation of a minor component, in this case As. Therefore, As might play a significant role by increasing the solubility of Ag and Au in supergene digenite and controlling the formation and occurrence of Ag and Au nanoparticles. Considering the fact that processes of supergene enrichment in Cu deposits can be active from tens of millions of years (e.g. Atacama Desert), we conclude that supergene digenite may play a previously unforeseen role in scavenging precious metals from undersaturated (or locally slightly supersaturated) solutions in near-surface environments.

  20. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks

    EPA Science Inventory

    The goal of this study was to characterize microbial eukaryotes over a 12 month period, so as to provide insight into the occurrence of potentially important predators and bacterial hosts in hot and cold premise plumbing. Nearly 6,300 partial (600 bp) 18S rRNA gene sequences from...

  1. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCEAE) TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelilhood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the...

  2. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCAE)TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelihood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the ...

  3. Cellular identification of a novel uncultured marine stramenopile (MAST-12 Clade) small-subunit rRNA gene sequence from a norwegian estuary by use of fluorescence in situ hybridization-scanning electron microscopy.

    PubMed

    Kolodziej, Karolina; Stoeck, Thorsten

    2007-04-01

    Revealing the cellular identity of organisms behind environmental eukaryote rRNA gene sequences is a major objective in microbial diversity research. We sampled an estuarine oxygen-depleted microbial mat in southwestern Norway and retrieved an 18S rRNA gene signature that branches in the MAST-12 clade, an environmental marine stramenopile clade. Detailed phylogenetic analyses revealed that MAST-12 branches among the heterotrophic stramenopiles as a sister of the free-living Bicosoecida and the parasitic genus Blastocystis. Specific sequence signatures confirmed a relationship to these two groups while excluding direct assignment. We designed a specific oligonucleotide probe for the target sequence and detected the corresponding organism in incubation samples using fluorescence in situ hybridization (FISH). Using the combined FISH-scanning electron microscopy approach (T. Stoeck, W. H. Fowle, and S. S. Epstein, Appl. Environ. Microbiol. 69:6856-6863, 2003), we determined the morphotype of the target organism among the very diverse possible morphologies of the heterotrophic stramenopiles. The unpigmented cell is spherical and about 5 mum in diameter and possesses a short flagellum and a long flagellum, both emanating anteriorly. The long flagellum bears mastigonemes in a characteristic arrangement, and its length (30 mum) distinguishes the target organism from other recognized heterotrophic stramenopiles. The short flagellum is naked and often directed posteriorly. The organism possesses neither a lorica nor a stalk. The morphological characteristics that we discovered should help isolate a representative of a novel stramenopile group, possibly at a high taxonomic level, in order to study its ultrastructure, physiological capabilities, and ecological role in the environment. PMID:17293516

  4. Cellular identification of a novel uncultured marine stramenopile (MAST-12 Clade) small-subunit rRNA gene sequence from a norwegian estuary by use of fluorescence in situ hybridization-scanning electron microscopy.

    PubMed

    Kolodziej, Karolina; Stoeck, Thorsten

    2007-04-01

    Revealing the cellular identity of organisms behind environmental eukaryote rRNA gene sequences is a major objective in microbial diversity research. We sampled an estuarine oxygen-depleted microbial mat in southwestern Norway and retrieved an 18S rRNA gene signature that branches in the MAST-12 clade, an environmental marine stramenopile clade. Detailed phylogenetic analyses revealed that MAST-12 branches among the heterotrophic stramenopiles as a sister of the free-living Bicosoecida and the parasitic genus Blastocystis. Specific sequence signatures confirmed a relationship to these two groups while excluding direct assignment. We designed a specific oligonucleotide probe for the target sequence and detected the corresponding organism in incubation samples using fluorescence in situ hybridization (FISH). Using the combined FISH-scanning electron microscopy approach (T. Stoeck, W. H. Fowle, and S. S. Epstein, Appl. Environ. Microbiol. 69:6856-6863, 2003), we determined the morphotype of the target organism among the very diverse possible morphologies of the heterotrophic stramenopiles. The unpigmented cell is spherical and about 5 mum in diameter and possesses a short flagellum and a long flagellum, both emanating anteriorly. The long flagellum bears mastigonemes in a characteristic arrangement, and its length (30 mum) distinguishes the target organism from other recognized heterotrophic stramenopiles. The short flagellum is naked and often directed posteriorly. The organism possesses neither a lorica nor a stalk. The morphological characteristics that we discovered should help isolate a representative of a novel stramenopile group, possibly at a high taxonomic level, in order to study its ultrastructure, physiological capabilities, and ecological role in the environment.

  5. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    PubMed

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci.

  6. The Pyridoxal 5′-Phosphate (PLP)-Dependent Enzyme Serine Palmitoyltransferase (SPT): Effects of the Small Subunits and Insights from Bacterial Mimics of Human hLCB2a HSAN1 Mutations

    PubMed Central

    Beattie, Ashley E.; Gupta, Sita D.; Frankova, Lenka; Harmon, Jeffrey M.; Dunn, Teresa M.; Campopiano, Dominic J.

    2013-01-01

    The pyridoxal 5′-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b), and mutations in both hLCB1 (e.g., C133W and C133Y) and hLCB2a (e.g., V359M, G382V, and I504F) have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1), an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT) provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F), and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form. PMID:24175284

  7. The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT): effects of the small subunits and insights from bacterial mimics of human hLCB2a HSAN1 mutations.

    PubMed

    Beattie, Ashley E; Gupta, Sita D; Frankova, Lenka; Kazlauskaite, Agne; Harmon, Jeffrey M; Dunn, Teresa M; Campopiano, Dominic J

    2013-01-01

    The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b), and mutations in both hLCB1 (e.g., C133W and C133Y) and hLCB2a (e.g., V359M, G382V, and I504F) have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1), an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT) provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F), and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form. PMID:24175284

  8. The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT): effects of the small subunits and insights from bacterial mimics of human hLCB2a HSAN1 mutations.

    PubMed

    Beattie, Ashley E; Gupta, Sita D; Frankova, Lenka; Kazlauskaite, Agne; Harmon, Jeffrey M; Dunn, Teresa M; Campopiano, Dominic J

    2013-01-01

    The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b), and mutations in both hLCB1 (e.g., C133W and C133Y) and hLCB2a (e.g., V359M, G382V, and I504F) have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1), an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT) provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F), and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form.

  9. Metagenomic data of fungal internal transcribed Spacer and 18S rRNA gene sequences from Lonar lake sediment, India.

    PubMed

    Dudhagara, Pravin; Ghelani, Anjana; Bhavsar, Sunil; Bhatt, Shreyas

    2015-09-01

    The data in this article contains the sequences of fungal Internal Transcribed Spacer (ITS) and 18S rRNA gene from a metagenome of Lonar soda lake, India. Sequences were amplified using fungal specific primers, which amplified the amplicon lined between the 18S and 28S rRNA genes. Data were obtained using Fungal tag-encoded FLX amplicon pyrosequencing (fTEFAP) technique and used to analyze fungal profile by the culture-independent method. Primary analysis using PlutoF 454 pipeline suggests the Lonar lake mycobiome contained the 29 different fungal species. The raw sequencing data used to perform this analysis along with FASTQ file are located in the NCBI Sequence Read Archive (SRA) under accession No. SRX889598 (http://www.ncbi.nlm.nih.gov/sra/SRX889598).

  10. Gene cloning of the 18S rRNA of an ancient viable moss from the permafrost of northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Marsic, Damien; Hoover, Richard B.; Gilichinsky, David A.; Ng, Joseph D.

    1999-12-01

    A moss plant dating as much as 40,000 years old was collected from the permafrost of the Kolyma Lowlands of Northeastern Siberia. The plant tissue was revived and cultured for the extraction of its genomic DNA. Using the polymerase chain reaction technique, the 18S ribosomal RNA gene was cloned and its sequence studied. Comparative sequence analysis of the cloned ribosomal DNA to other known 18S RNA showed very high sequence identity and was revealed to be closest to the moss specie, Aulacomnium turgidum. The results of this study also show the ability of biological organisms to rest dormant in deep frozen environments where they can be revived and cultured under favorable conditions. This is significant in the notion that celestial icy bodies can be media to preserve biological function and genetic material during long term storage or transport.

  11. Molecular Phylogeny of Cypridoid Freshwater Ostracods (Crustacea: Ostracoda), Inferred from 18S and 28S rDNA Sequences.

    PubMed

    Hiruta, Shimpei F; Kobayashi, Norio; Katoh, Toru; Kajihara, Hiroshi

    2016-04-01

    With the aim of exploring phylogenetic relationships within Cypridoidea, the most species-rich superfamily among the podocopidan ostracods, we sequenced nearly the entire 18S rRNA gene (18S) and part of the 28S rRNA gene (28S) for 22 species in the order Podocopida, with representatives from all the major cypridoid families. We conducted phylogenetic analyses using the methods of maximum likelihood, minimum evolution, and Bayesian analysis. Our analyses showed monophyly for Cyprididae, one of the four families currently recognized in Cypridoidea. Candonidae turned out to be paraphyletic, and included three clades corresponding to the subfamilies Candoninae, Paracypridinae, and Cyclocypridinae. We propose restricting the name Candonidae s. str. to comprise what is now Candoninae, and raising Paracypridinae and Cyclocyprininae to family rank within the superfamily Cypridoidea.

  12. Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae)

    PubMed Central

    2009-01-01

    The location of 18S and 5S rDNA sites was determined in eight species and populations of the fish genus Triportheus by using fluorescent in situ hybridization (FISH). The males and females of all species had 2n = 52 chromosomes and a ZZ/ZW sex chromosome system. A single 18S rDNA site that was roughly equivalent to an Ag-NOR was detected on the short arms of a submetacentric pair in nearly all species, and up to two additional sites were also observed in some species. In addition, another 18S rDNA cluster was identified in a distal region on the long arms of the W chromosome; this finding corroborated previous evidence that this cluster would be a shared feature amongst Triportheus species. In T. angulatus, a heterozygotic paracentric inversion involving the short arms of one homolog of a metacentric pair was associated with NORs. The 5S rDNA sites were located on the short arms of a single submetacentric chromosomal pair, close to the centromeres, except in T. auritus, which had up to ten 5S rDNA sites. The 18S and 5S rDNA sites were co-localized and adjacent on the short arms of a chromosomal pair in two populations of T. nematurus. Although all Triportheus species have a similar karyotypic macrostructure, the results of this work show that in some species ribosomal genes may serve as species-specific markers when used in conjunction with other putatively synapomorphic features. PMID:21637644

  13. Authentication of Curcuma species (Zingiberaceae) based on nuclear 18S rDNA and plastid trnK sequences.

    PubMed

    Cao, Hui; Sasaki, Yohei; Fushimi, Hirotoshi; Komatsu, Katsuko

    2010-07-01

    Curcuma drugs have been used discriminatingly for invigorating blood circulation, promoting digestion, and as a cholagogic in China. However, there is confusion about the drug's botanical origins and clinical uses because of morphological similarity of Curcuma plants and drugs. Comparative sequencing of the 18S rRNA gene in nuclear ribosomal DNA (rDNA) and trnK gene in chloroplast DNA (cpDNA) was carried out in order to examine interspecies phylogeny and to identify ultimately Curcuma species. A total of a hundred of accessions of eighteen species were analyzed. This resulted in an aligned matrix of 1810 bp for 18S rDNA and 2 800 bp for trnK. 18S rDNA sequence divergence within the ingroup ranged from 0-0.05%, trnK ranged from 0-0.19%. One base transversion-substituted site (from cytosine to thymine) was observed from the upstream of 18S rDNA at nucleotide position 234 in C. kwangsiensis and Japanese population of C. zedoaria which have separated genetic distance to other Curcuma taxa. Two noncoding regions embedded in trnK intron showed higher variability, including nucleotide substitutions, repeat insertion and deletions. Based on consensus of relationship, eighteen major lineages within Curcuma are recognized at the species level. The results suggest that Curcuma is monophyletic with 100% bootstrap support and sister to the genera Hedychium and Zingiber. The trnK sequences showed considerable variations between Curcuma species and thus were revealed as a promising candidate for barcoding of Curcuma species, which provide valuable characters for inferring relationship within species but are insufficient to resolve relationships among closely related taxa.

  14. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones. PMID:24681200

  15. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones.

  16. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia.

    PubMed

    Hugerth, Luisa W; Muller, Emilie E L; Hu, Yue O O; Lebrun, Laura A M; Roume, Hugo; Lundin, Daniel; Wilmes, Paul; Andersson, Anders F

    2014-01-01

    High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.

  17. Characterization and physical mapping of 18S and 5S ribosomal genes in Indian major carps (Pisces, Cyprinidae).

    PubMed

    Ravindra Kumar; Kushwaha, Basdeo; Nagpure, Naresh S

    2013-06-01

    Characterization of the major (18S) and minor (5S) ribosomal RNA genes were carried out in three commercially important Indian major carp (IMC) species, viz. Catla catla, Labeo rohita and Cirrhinus mrigala along with their physical localizations using dual colour fluorescence in situ hybridization. The diploid chromosome number in the above carps was confirmed to be 50 with inter-species karyo-morphological variations. The 18S rDNA signals were observed on 3 pair of chromosomes in C. catla and L. rohita, and two pairs in C. mrigala. The 5S rDNA signal was found on single pair of chromosome in all the species with variation in their position on chromosomes. The sequencing of 18S rDNA generated 1804, 1805 and 1805 bp long fragments, respectively, in C. catla, L. rohita and C. mrigala with more than 98% sequence identity among them. Similarly, sequencing of 5S rDNA generated 191 bp long fragments in the three species with 100% identity in coding region and 23.2% overall variability in non-transcribed spacer region. Thus, these molecular markers could be used as species-specific markers for taxonomic identification and might help in understanding the genetic diversity, genome organization and karyotype evolution of these species.

  18. Chromosomal localization and partial sequencing of the 18S and 28S ribosomal genes from Bradysia hygida (Diptera: Sciaridae).

    PubMed

    Gaspar, V P; Shimauti, E L T; Fernandez, M A

    2014-03-26

    In insects, ribosomal genes are usually detected in sex chromosomes, but have also or only been detected in autosomal chromosomes in some cases. Previous results from our research group indicated that in Bradysia hygida, nucleolus organizer regions were associated with heterochromatic regions of the autosomal C chromosome, using the silver impregnation technique. The present study confirmed this location of the ribosomal genes using fluorescence in situ hybridization analysis. This analysis also revealed the partial sequences of the 18S and 28S genes for this sciarid. The sequence alignment showed that the 18S gene has 98% identity to Corydalus armatus and 91% identity to Drosophila persimilis and Drosophila melanogaster. The partial sequence analysis of the 28S gene showed 95% identity with Bradysia amoena and 93% identity with Schwenckfeldina sp. These results confirmed the location of ribosomal genes of B. hygida in an autosomal chromosome, and the partial sequence analysis of the 18S and 28S genes demonstrated a high percentage of identity among several insect ribosomal genes.

  19. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  20. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    PubMed Central

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel JP; Delsuc, Frédéric

    2009-01-01

    Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1) Phlebobranchia + Thaliacea + Aplousobranchia, 2) Appendicularia, and 3) Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models suggest a sister

  1. Cross-links between ribosomal proteins of 30S subunits in 70S tight couples and in 30S subunits.

    PubMed

    Lambert, J M; Boileau, G; Cover, J A; Traut, R R

    1983-08-01

    Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.

  2. Synaptic localization of NMDA receptor subunits in the rat retina.

    PubMed

    Fletcher, E L; Hack, I; Brandstätter, J H; Wässle, H

    2000-04-24

    The distribution and synaptic clustering of N-methyl-D-aspartate (NMDA) receptors were studied in the rat retina by using subunit specific antisera. A punctate immunofluorescence was observed in the inner plexiform layer (IPL) for all subunits tested, and electron microscopy confirmed that the immunoreactive puncta represent labeling of receptors clustered at postsynaptic sites. Double labeling of sections revealed that NMDA receptor clusters within the IPL are composed of different subunit combinations: NR1/NR2A, NR1/NR2B, and in a small number of synapses NR1/NR2A/NR2B. The majority of NMDA receptor clusters were colocalized with the postsynaptic density proteins PSD-95, PSD-93, and SAP 102. Double labeling of the NMDA receptor subunit specific antisera with protein kinase C (PKC), a marker of rod bipolar cells, revealed very little colocalization at the rod bipolar cell axon terminal. This suggests that NMDA receptors are important in mediating neurotransmission within the cone bipolar cell pathways of the IPL. The postsynaptic neurons are a subset of amacrine cells and most ganglion cells. Usually only one of the two postsynaptic processes at the bipolar cell ribbon synapses expressed NMDA receptors. In the outer plexiform layer (OPL), punctate immunofluoresence was observed for the NR1C2; subunit, which was shown by electron microscopy to be localized presynaptically within both rod and cone photoreceptor terminals.

  3. First description of heterogeneity in 18S rRNA genes in the haploid genome of Cryptosporidium andersoni Kawatabi type.

    PubMed

    Ikarashi, Makoto; Fukuda, Yasuhiro; Honma, Hajime; Kasai, Kenji; Kaneta, Yoshiyasu; Nakai, Yutaka

    2013-09-01

    The Apicomplexan Cryptosporidium andersoni, is a species of gastric Cryptosporidium, is frequently detected in older calves and adult cattle. Genotyping analyses based on 18S ribosomal RNA gene sequences have been performed on a novel C. andersoni genotype, namely the Kawatabi type, and the oocysts were classified into two distinct groups genotypically: Type A (the sequence in GenBank) and Type B (with a thymine nucleotide insertion not in Type A). This study analyzed 3775 cattle at a slaughterhouse and 310 cattle at a farm using microscopy and found 175 Cryptosporidium-positive animals: 171 from the slaughterhouse and four from the farm, and all infecting parasites were determined to be C. andersoni from 18S rRNA gene sequences determined from fecal DNA. In genotyping analyses with single isolated oocysts, about a half of analyzed ones were clearly classified into well known two genotypes (Type A and B). In addition to these two known genotypes, we have detected some oocysts showing mixed signals of Types A and B in the electropherogram from the automated sequencer (the Type C genotype). To determine the genotypic composition of sporozoites carried by the Type C oocysts, we analyzed their 18S rRNA gene sequences using a single sporozoite isolation procedure. Some sporozoites were classified as either Type A or Type B. However, more than half of the analyzed isolated sporozoites showed a mixed signal identical to that of Type C oocysts, and both the Type A and B signals were surely detectable from such sporozoites after a cloning procedure. In conclusion, C. andersoni carries two different genotypes heterogeneously in its haploid genome.

  4. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  5. Genetic differentiation of strongyloides stercoralis from two different climate zones revealed by 18S ribosomal DNA sequence comparison.

    PubMed

    Pakdee, Wallop; Thaenkham, Urusa; Dekumyoy, Paron; Sa-Nguankiat, Surapol; Maipanich, Wanna; Pubampen, Somchit

    2012-11-01

    Over 70 countries in tropical and subtropical zones are endemic areas for Strongyloides stercoralis, with a higher prevalence of the parasite often occurring in tropical regions compared to subtropical ones. In order to explore genetic variations of S. stercoralis form different climate zones, 18S ribosomal DNA of parasite specimens obtained from Thailand were sequenced and compared with those from Japan. The maximum likelihood indicates that S. stercoralis populations from these two different climate zones have genetically diverged. The genetic relationship between S. stercoralis populations is not related to the host species, but rather to moisture and temperature. These factors may directly drive genetic differentiation among isolated populations of S. stercoralis.

  6. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff.

  7. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. PMID:23205499

  8. Secondary structures of proteins from the 30S subunit of the Escherichia coli ribosome.

    PubMed

    Dzionara, M; Robinson, S M; Wittmann-Liebold, B

    1977-08-01

    The secondary structures of the proteins S4, S6, S8, S9, S12, S13, S15, S16, S18, S20 and S21 from the subunit of the E. coli ribosome were predicted according to four different methods. From the resultant diagrams indicating regions of helix, turn, extended structure and random coil, average values for the respective secondary structures could be calculated for each protein. Using the known relative distances for residues in the helical, turn and sheet or allowed random conformations, estimates are made of the maximum possible lengths of the proteins in order to correlate these with results obtained from antibody binding studies to the 30S subunit as determined by electron microscopy. The influence of amino acid changes on the predicted secondary structures of proteins from a few selected mutants was studied. The altered residues tend to be structurally conservative or to induce only minimal local changes.

  9. Phylogenetic Relationships Among Xiphinema and Xiphidorus Nematode Species from Brazil Inferred from 18S rDNA Sequences.

    PubMed

    Oliveira, Claudio M G; Hübschen, Judith; Brown, Derek J F; Ferraz, Luiz C C B; Wright, Frank; Neilson, Roy

    2004-06-01

    Maximum likelihood trees produced from 18S rDNA sequences separated 14 Xiphinema and five Xiphidorus nematode species from Brazil into distinct groups that concurred with their current morphological taxonomic status. Species belonging to the X. americanum group (X. brevicolle, X. diffusum, X. oxycaudatum, and X. peruvianum) formed a single group that was clearly separated from the other Xiphinema species. As with previous taxonomic studies that noted only minor morphological differences between putative X. americanum group species, separation of these species based upon 18S rDNA sequences was inconclusive. Thus it is probable that instead of comprising distinct species, the X. americanum group may in fact represent numerous morphotypes with large inter- and intra- population morphological variability that may be environmentally driven. Within the cluster representing non X. americanum group species, there was little statistical support to clearly separate species. However, three subgroups, comprising (i) the X. setariae/vulgare complex, (ii) X. ifacolum and X. paritaliae, and (iii) X. brasiliense and X. ensiculiferum were well resolved.

  10. Phylogenetic Relationships Among Xiphinema and Xiphidorus Nematode Species from Brazil Inferred from 18S rDNA Sequences

    PubMed Central

    Oliveira, Claudio M. G.; Hübschen, Judith; Brown, Derek J. F.; Ferraz, Luiz C. C. B.; Wright, Frank; Neilson, Roy

    2004-01-01

    Maximum likelihood trees produced from 18S rDNA sequences separated 14 Xiphinema and five Xiphidorus nematode species from Brazil into distinct groups that concurred with their current morphological taxonomic status. Species belonging to the X. americanum group (X. brevicolle, X. diffusum, X. oxycaudatum, and X. peruvianum) formed a single group that was clearly separated from the other Xiphinema species. As with previous taxonomic studies that noted only minor morphological differences between putative X. americanum group species, separation of these species based upon 18S rDNA sequences was inconclusive. Thus it is probable that instead of comprising distinct species, the X. americanum group may in fact represent numerous morphotypes with large inter- and intra- population morphological variability that may be environmentally driven. Within the cluster representing non X. americanum group species, there was little statistical support to clearly separate species. However, three subgroups, comprising (i) the X. setariae/vulgare complex, (ii) X. ifacolum and X. paritaliae, and (iii) X. brasiliense and X. ensiculiferum were well resolved. PMID:19262801

  11. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans.

    PubMed

    Rooney, Alejandro P

    2004-09-01

    In many species of the protist phylum Apicomplexa, ribosomal RNA (rRNA) gene copies are structurally and functionally heterogeneous, owing to distinct requirements for rRNA-expression patterns at different developmental stages. The genomic mechanisms underlying the maintenance of this system over long-term evolutionary history are unclear. Therefore, the aim of this study was to investigate what processes underlie the long-term evolution of apicomplexan 18S genes in representative species. The results show that these genes evolve according to a birth-and-death model under strong purifying selection, thereby explaining how divergent 18S genes are generated over time while continuing to maintain their ability to produce fully functional rRNAs. In addition, it was found that Cryptosporidium parvum undergoes a rapid form of birth-and-death evolution that may facilitate host-specific adaptation, including that of type I and II strains found in humans. This represents the first case in which an rRNA gene family has been found to evolve under the birth-and-death model. PMID:15175411

  12. Optical and electrical stability of viral-templated copper sulfide (Cu{sub 1.8}S) films

    SciTech Connect

    Shahriar Zaman, Mohammed; Bernard Grajeda, Gabriel; Haberer, Elaine D.

    2014-04-14

    The optical and electrical stabilities of viral-templated non-stoichiometric copper sulfide, digenite (Cu{sub 1.8}S) films were investigated. The films were composed of large agglomerates of randomly aligned Cu{sub 1.8}S-coated M13 filamentous phage. Free carrier optical absorption associated with localized surface plasmon resonance (LSPR) was observed in the near infrared spectral region, and the films were electrically active, displaying a linear current-voltage relationship. Under ambient conditions, the magnitude of the LSPR absorption increased, following a power law relationship with time, and the electrical resistance of viral-templated films decreased significantly. In contrast, the resistance of films stored under low oxygen, low humidity conditions experienced a smaller reduction in electrical resistance. Changes in optical and electrical film properties under ambient conditions were associated with an increase in free carrier concentration within the copper chalcogenide material due to oxygen exposure. X-ray photoelectron spectroscopy was used to relate this increase in free carrier concentration to compositional changes on the viral-templated material surface.

  13. Evaluating multiple alternative hypotheses for the origin of Bilateria: An analysis of 18S rRNA molecular evidence

    PubMed Central

    Collins, Allen G.

    1998-01-01

    Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians. PMID:9860990

  14. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  15. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections.

    PubMed

    Yang, Rongchang; Palermo, Cindy; Chen, Linda; Edwards, Amanda; Paparini, Andrea; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una

    2015-12-15

    Cryptosporidium is an enteric parasite that infects humans and a wide range of animals. Relatively little is known about the epidemiology and taxonomy of Cryptosporidium in fish. In the present study, a total of 775 fish, belonging to 46 species and comprising ornamental fish, marine fish and freshwater fish were screened for the prevalence of Cryptosporidium by PCR. The overall prevalence of Cryptosporidium in fish was 5.3% (41/775), with prevalences ranging from 1.5 to 100% within individual host species. Phylogenetic analysis of these Cryptosporidium isolates as well as 14 isolates from previous studies indicated extensive genetic diversity as well as evidence for mixed infections. At the 18S locus the following species were identified; Cryptosporidium molnari-like genotype (n=14), Cryptosporidium huwi (n=8), piscine genotype 2 (n=4), piscine genotype 3-like (n=1), piscine genotype 4 (n=2), piscine genotype 5 (n=13), piscine genotype 5-like (n=1) and five novel genotypes (n=5). At the actin locus, species identification agreed with the 18S locus for only 52.3% of isolates sequenced, indicating high levels of mixed infections. Future studies will need to employ both morphological characterization and deep sequencing amplicon-based technologies to better understand the epidemiological and phylogenetic relationships of piscine-derived Cryptosporidium species and genotypes, particularly when mixed infections are detected.

  16. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections.

    PubMed

    Yang, Rongchang; Palermo, Cindy; Chen, Linda; Edwards, Amanda; Paparini, Andrea; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una

    2015-12-15

    Cryptosporidium is an enteric parasite that infects humans and a wide range of animals. Relatively little is known about the epidemiology and taxonomy of Cryptosporidium in fish. In the present study, a total of 775 fish, belonging to 46 species and comprising ornamental fish, marine fish and freshwater fish were screened for the prevalence of Cryptosporidium by PCR. The overall prevalence of Cryptosporidium in fish was 5.3% (41/775), with prevalences ranging from 1.5 to 100% within individual host species. Phylogenetic analysis of these Cryptosporidium isolates as well as 14 isolates from previous studies indicated extensive genetic diversity as well as evidence for mixed infections. At the 18S locus the following species were identified; Cryptosporidium molnari-like genotype (n=14), Cryptosporidium huwi (n=8), piscine genotype 2 (n=4), piscine genotype 3-like (n=1), piscine genotype 4 (n=2), piscine genotype 5 (n=13), piscine genotype 5-like (n=1) and five novel genotypes (n=5). At the actin locus, species identification agreed with the 18S locus for only 52.3% of isolates sequenced, indicating high levels of mixed infections. Future studies will need to employ both morphological characterization and deep sequencing amplicon-based technologies to better understand the epidemiological and phylogenetic relationships of piscine-derived Cryptosporidium species and genotypes, particularly when mixed infections are detected. PMID:26527238

  17. Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera.

    PubMed

    Gokhman, Vladimir E; Anokhin, Boris A; Kuznetsova, Valentina G

    2014-08-01

    Karyotypes of six species belonging to three main clades of parasitoid Hymenoptera, the superfamilies Ichneumonoidea (Ichneumonidae: Ichneumon amphibolus), Cynipoidea (Cynipidae: Diplolepis rosae) and Chalcidoidea (Eurytomidae: Eurytoma robusta, Eu. serratulae and Eu. compressa, and Torymidae: Torymus bedeguaris) were studied using FISH with 18S rDNA and telomeric (TTAGG)n probes. Haploid karyotypes of D. rosae, Eu. robusta and Eu. serratulae carried the only 18S rDNA hybridization signal, whereas those of I. amphibolus and Eu. compressa carried three and two rDNA clusters respectively. In addition, three rDNA sites were visualized in the aneuploid female of T. bedeguaris. The number of rDNA clusters in parasitoid Hymenoptera generally correlates to the chromosome number. Apart from the overwhelming majority of the studied species of aculeate Hymenoptera, no hybridization signals were obtained from FISH with the telomeric (TTAGG)n probe in the examined parasitoid species. These data suggest absence of the canonical (TTAGG)n insect telomeric motif in the Ichneumonoidea, Cynipoidea and Chalcidoidea, and perhaps in parasitoid Hymenoptera in general.

  18. Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

    PubMed Central

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered. PMID:25289639

  19. Subunit Conformations and Assembly States of a DNA Translocating Motor: The Terminase of Bacteriophage P22

    PubMed Central

    Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.

    2007-01-01

    Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256

  20. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities. PMID:26224512

  1. Comparison of eukaryotic phytobenthic community composition in a polluted river by partial 18S rRNA gene cloning and sequencing.

    PubMed

    Dorigo, U; Bérard, A; Humbert, J F

    2002-11-01

    We compared the species composition in phytobenthic communities at different sampling sites in a small French river presenting polluted and unpolluted areas. For each sampling point, the total DNA was extracted and used to construct an 18S rRNA gene clone library after PCR amplification of a ca 400 bp fragment. Phytobenthic community composition was estimated by random sequencing of several clones per library. Most of the sequences corresponded to the Bacillariophyceae and Chlorophyceae groups. By combining phylogenetic and correspondence analyses, we showed that our molecular approach is able to estimate and compare the species composition at different sampling sites in order to assess the environmental impact of xenobiotics on phytobenthic communities. Changes in species composition of these communities were found, but no evident decrease in the diversity. We discuss the significance of these changes with regard to the existing level of pollution and their impact on the functionality of the ecosystem. Our findings suggest that it is now possible to use faster molecular methods (DGGE, ARISA.) to test large numbers of samples in the context of ecotoxicological studies, and thus to assess the impact of pollution in an aquatic ecosystem.

  2. Simultaneous 16S and 18S rRNA fluorescence in situ hybridization (FISH) on LR White sections demonstrated in Vestimentifera (Siboglinidae) tubeworms.

    PubMed

    Schimak, Mario P; Toenshoff, Elena R; Bright, Monika

    2012-02-01

    Traditional morphological identification of invertebrate marine species is limited in early life history stages for many taxa. In this study, we demonstrate, by example of Vestimentiferan tubeworms (Siboglinidae, Polychaeta), that the simultaneous fluorescence in situ hybridization (FISH) of both eukaryotic host and bacterial symbiont cells is possible on a single semi-thin (1 μm) section. This allows the identification of host specimens to species level as well as offering visualization of bacteria distributed within the host tissue. Previously published 18S rRNA host-specific oligonucleotide probes for Riftia pachyptila, Tevnia jerichonana and a newly designed Oasisia alvinae probe, as well as a 16S rRNA probe targeting symbionts found in all host species, were applied. A number of standard fixation and hybridization parameters were tested and optimized for the best possible signal intensity and cellular resolution. Ethanol conserved samples embedded in LR White low viscosity resin yielded the best results with regard to both signal intensity and resolution. We show that extended storage times of specimens does not affect the quality of signals attained by FISH and use our protocol to identify morphologically unidentifiable tubeworm individuals from a small data set, conforming to previous findings in succession studies of the Siboglinidae family.

  3. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities.

  4. Isolation and cultivation of endosymbiotic algae from green hydra and phylogenetic analysis of 18S rDNA sequences.

    PubMed

    Kovacević, Goran; Franjević, Damjan; Jelencić, Biserka; Kalafatić, Mirjana

    2010-01-01

    Symbiotic associations are of wide significance in evolution and biodiversity. The green hydra is a typical example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors the individuals of a unicellular green algae. Endosymbiotic algae from green hydra have been successfully isolated and permanently maintained in a stable clean lab culture for the first time. We reconstructed the phylogeny of isolated endosymbiotic algae using the 18S rRNA gene to clarify its current status and to validate the traditional inclusion of these endosymbiotic algae within the Chlorella genus. Molecular analyses established that different genera and species of unicellular green algae could be present as symbionts in green hydra, depending on the natural habitat of a particular strain of green hydra.

  5. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data. PMID:15012964

  6. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  7. Short communication: Genetic variants of Sarcocystis cruzi in infected Malaysian cattle based on 18S rDNA.

    PubMed

    Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling

    2015-12-01

    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population. PMID:26679818

  8. Short communication: Genetic variants of Sarcocystis cruzi in infected Malaysian cattle based on 18S rDNA.

    PubMed

    Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling

    2015-12-01

    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population.

  9. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes.

  10. Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

    PubMed Central

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  11. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data.

  12. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. PMID:27084467

  13. Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles.

    PubMed

    Tiquia, S M

    2005-10-01

    Compost processing is assumed to be related to the microbial communities present. However, methods that will evaluate these relationships are not well understood. In this study, terminal restriction fragment length polymorphism (T-RFLP) analysis was used to evaluate the diversity of PCR-amplified bacterial 16S and fungal 18S rDNA communities from manure composts at different stages of composting (initial [day 0], thermophilic [day 24], and mature [day 104]). Results showed that the bacterial and fungal community profiles changed over the composting process, with bacterial communities showing a higher diversity compared with the fungal communities. During the thermophilic stage (day 24), the diversity of the bacterial communities increased, while the fungal communities decreased. As the compost reached maturity (day 104), a reverse pattern was observed between the diversity of bacterial and fungal communities. That is, the 18S rDNA T-RFLP-based diversity indices increased, while the 16S rDNA T-RFLP-based diversity decreased. Differences in temperature profiles at different stages of composting impacted the chemical properties and the diversity of the microbial communities. The day 104 compost (mature) had lower water, organic matter and C contents and higher C and OM loss compared with the day 0 (initial) and day 24 (thermophilic) composts, which affected the diversity of the microbial communities. The results presented here demonstrated that distinctive community patterns from manure composts could be rapidly generated using T-RFLP analysis. The succession of peaks in combination of increasing and decreasing peak heights at different stage of composting indicates the high potential of T-RFLP technique to monitor the dynamics of microbial communities, and their variation qualitatively and quantitatively.

  14. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis.

  15. Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA.

    PubMed

    Callejón, Rocío; Nadler, Steven; De Rojas, Manuel; Zurita, Antonio; Petrášová, Jana; Cutillas, Cristina

    2013-11-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from the mitochondrial cytochrome c oxidase 1 (cox1) and ribosomal 18S genes. The taxa consisted of different described species and several host-associated isolates (undescribed taxa) of Trichuris collected from hosts from Spain. Sequence data from mitochondrial cox1 (partial gene) and nuclear 18S near-complete gene were analyzed by maximum likelihood and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. Phylogenetic results based on 18S ribosomal DNA (rDNA) were robust for relationships among species; cox1 sequences delimited species and revealed phylogeographic variation, but most relationships among Trichuris species were poorly resolved by mitochondrial sequences. The phylogenetic hypotheses for both genes strongly supported monophyly of Trichuris, and distinct genetic lineages corresponding to described species or nematodes associated with certain hosts were recognized based on cox1 sequences. Phylogenetic reconstructions based on concatenated sequences of the two loci, cox1 (mitochondrial DNA (mtDNA)) and 18S rDNA, were congruent with the overall topology inferred from 18S and previously published results based on internal transcribed spacer sequences. Our results demonstrate that the 18S rDNA and cox1 mtDNA genes provide resolution at different levels, but together resolve relationships among geographic populations and species in the genus Trichuris.

  16. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  17. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  18. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  19. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  20. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  1. Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis.

    PubMed

    Kittelmann, Sandra; Devente, Savannah R; Kirk, Michelle R; Seedorf, Henning; Dehority, Burk A; Janssen, Peter H

    2015-04-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups.

  2. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis

    PubMed Central

    Devente, Savannah R.; Kirk, Michelle R.; Seedorf, Henning; Dehority, Burk A.

    2015-01-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. PMID:25616800

  3. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    PubMed

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses. PMID:17685227

  4. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Struewing, Ian T; Ashbolt, Nicholas J

    2013-09-01

    The goal of this study was to characterize microbial eukaryotes over a 12-month period to provide insight into the occurrence of potential bacterial predators and hosts in premise plumbing. Nearly 6,300 partial 18S rRNA gene sequences from 24 hot (36.9-39.0 °C) and cold (6.8-29.1 °C) drinking water samples were analyzed and classified into major eukaryotic groups. Each major group, consisting of free-living amoebae (FLA)/protozoa, algae, copepods, dinoflagellates, fungi, nematodes, and unique uncultured eukaryotic sequences, showed limited diversity dominated by a few distinct populations, which may be characteristic of oligotrophic environments. Changes in the relative abundance of predators such as nematodes, copepods, and FLA appear to be related to temperature and seasonal changes in water quality. Sequences nearly identical to FLA such as Hartmannella vermiformis, Echinamoeba thermarmum, Pseudoparamoeba pagei, Protacanthamoeba bohemica, Platyamoeba sp., and Vannella sp. were obtained. In addition to FLA, various copepods, rotifers, and nematodes have been reported to internalize viral and bacterial pathogens within drinking water systems thus potentially serving as transport hosts; implications of which are discussed further. Increasing the knowledge of eukaryotic occurrence and their relationship with potential pathogens should aid in assessing microbial risk associated with various eukaryotic organisms in drinking water.

  5. Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements.

  6. Chromosomal localization of 18S rDNA and telomere sequence in the aye-aye, Daubentonia madagascariensis.

    PubMed

    Rakotoarisoa, G; Hirai, Y; Go, Y; Kawamoto, Y; Shima, T; Koyama, N; Randrianjafy, A; Mora, R; Hirai, H

    2000-10-01

    Chromosomal localization of 18S rDNA and telomere sequence was attempted on the chromosomes of the aye-aye (2n = 30) using fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS), respectively. The rDNA was localized at the tip or whole of the short arm of acrocentric chromosomes 13 and 14 in all spreads observed. However, post-FISH silver-nitrate (Ag) staining showed that transcriptional activity of the rRNA genes was variable, particularly in chromosome 14, which was most frequently negative in one homologue carrying the smaller copy number of rDNA. This observation supports, at the molecular cytogenetic level, previous data concerning the relationship between the copy number of rDNA and its trancriptional activity. On the other hand, telomere sequence was localized only at the telomeric region of all chromosomes, the so-called telomere-only pattern, a characteristic similar to that of the greater bushbaby. These data may provide information on the chromosomal evolution of the lemur, because locations of rDNA and telomere sequences frequently offer important clues in reconstruction of karyotype differentiation. PMID:11245223

  7. Morphology and 18S rDNA gene sequence of Blepharisma sinuosum Sawaya, 1940 (Ciliophora: Heterotrichea) from Brazil.

    PubMed

    Fernandes, Noemi Mendes; Dias, Roberto Júnio Pedroso; Senra, Marcus Vinicius Xavier; Soares, Carlos Augusto Gomes; da Silva Neto, Inácio Domingos

    2013-11-01

    The morphology and morphometric data of seven populations of Blepharisma sinuosum from southeastern Brazil were investigated. The description is based on live observations, protargol impregnation, and scanning electron microscopy. Blepharisma sinuosum measures 75-255μm in length and 25-93μm in width and has a spindle-shaped body, pink color, a single contractile vacuole located at the posterior end, 50 adoral membranelles, a conspicuous paroral, 17-35 somatic kineties, a moniliform macronucleus with 2-7 connected nodules, and 3-20 micronuclei. Morphological comparisons with similar species were performed and suggest that B. americanum is the junior synonym of B. sinuosum. The 18S rDNA gene sequence of B. sinuosum was obtained and compared with that of other Blepharisma species. The length and GC content of the obtained sequence is 1652bp and 47.03%, respectively, and has a very high structural similarity (99.9%) with the B. undulans sequence. The validity of the classification of Blepharisma species in morphonuclear subgenera is also discussed.

  8. Physical mapping of 18S and 5S genes in pelagic species of the genera Caranx and Carangoides (Carangidae).

    PubMed

    Jacobina, U P; Bertollo, L A C; Bello Cioffi, M; Molina, W F

    2014-11-14

    In Carangidae, Caranx is taxonomically controversial because of slight morphological differences among species, as well as because of its relationship with the genus Carangoides. Cytogenetic data has contributed to taxonomic and phylogenetic classification for some groups of fish. In this study, we examined the chromosomes of Caranx latus, Caranx lugubris, and Carangoides bartholomaei using classical methods, including conventional staining, C-banding, silver staining for nuclear organizer regions, base-specific fluorochrome, and 18S and 5S ribosomal sequence mapping using in situ hybridization. These 3 species showed chromosome numbers of 2n = 48, simple nuclear organizer regions (pair 1), and mainly centromeric heterochomatin. However, C. latus (NF = 50) and C. bartholomaei (NF = 50) showed a structurally conserved karyotype compared with C. lugubris (NF = 54), with a larger number of 2-armed chromosomes. The richness of GC-positive heterochromatic segments and sites in 5S rDNA in specific locations compared to the other 2 species reinforce the higher evolutionary dynamism in C. lugubris. Cytogenetic aspects shared between C. latus and C. bartholomaei confirm the remarkable phylogenetic proximity between these genera.

  9. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    PubMed

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses.

  10. Subunit dissociations in natural and recombinant hemoglobins.

    PubMed

    Manning, L R; Jenkins, W T; Hess, J R; Vandegriff, K; Winslow, R M; Manning, J M

    1996-04-01

    A precise and rapid procedure employing gel filtration on Superose-12 to measure the tetramer-dimer dissociation constants of some natural and recombinant hemoglobins in the oxy conformation is described. Natural sickle hemoglobin was chosen to verify the validity of the results by comparing the values with those reported using an independent method not based on gel filtration. Recombinant sickle hemoglobin, as well as a sickle double mutant with a substitution at the Val-6(beta) receptor site, had approximately the same dissociation constant as natural sickle hemoglobin. Of the two recombinant hemoglobins with amino acid replacements in the alpha 1 beta 2 subunit interface, one was found to be extensively dissociated and the other completely dissociated. In addition, the absence of an effect of the allosteric regulators DPG and IHP on the dissociation constant was demonstrated. Thus, a tetramer dissociation constant can now be determined readily and used together with other criteria for characterization of hemoglobins and their interaction with small regulatory molecules. PMID:8845768

  11. The large subunit determines catalytic specificity of barley sucrose:fructan 6-fructosyltransferase and fescue sucrose:sucrose 1-fructosyltransferase.

    PubMed

    Altenbach, Denise; Nüesch, Eveline; Meyer, Alain D; Boller, Thomas; Wiemken, Andres

    2004-06-01

    Plant fructosyltransferases are highly homologous in primary sequence and typically consist of two subunits but catalyze widely different reactions. Using functional expression in the yeast Pichia pastoris, we show that the substrate specificity of festuca sucrose:sucrose 1--beta-D-fructosyltransferase (1-SST) and barley sucrose:fructan 6--beta-D-fructosyltransferase (6-SFT) is entirely determined by the large subunit. Chimeric enzymes with the large subunit of festuca 1-SST (LSuB) and the small subunit of barley 6-SFT have the same catalytic specificity as the native festuca 1-SST and vice versa. If the LSuB is expressed alone, it does not yield a functionally active enzyme, indicating that the small subunit is nevertheless essential.

  12. Identification of a gamma subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni.

    PubMed

    Hildebrandt, J D; Codina, J; Risinger, R; Birnbaumer, L

    1984-02-25

    The subunit composition of the Ns and Ni, the human erythrocyte stimulatory and inhibitory regulatory proteins of adenylyl cyclase, respectively, were analyzed by a sodium dodecyl sulfate-containing discontinuous urea and polyacrylamide gradient gel electrophoresis system designed for the study of low molecular weight polypeptides. This system disclosed that these proteins, in addition to their known alpha and beta subunits, contain an additional small peptide of apparent molecular weight of 5,000 (5K). This "5K peptide" is also present in preparations of another protein which we termed "40K protein" on the basis of its hydrodynamic behavior and whose primary protein constituent is the Mr 35,000 beta subunit of the above regulatory proteins. Analyzing Ni, the 5K peptide was functionally related to the protein by showing that its apparent Stokes radius changes from 5.9 to 5.1 nm after treatment with guanyl-5'-yl imidodiphosphate and magnesium in parallel with the alpha and beta subunits. These data are interpreted as evidence for the existence of a third subunit associated with the regulatory proteins of adenylyl cyclase. We call this subunit gamma and propose a minimum subunit structure for these proteins of the alpha beta gamma type. PMID:6321456

  13. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern.

    PubMed

    Liu, Runhui; Chen, Xinyu; Chakraborty, Saswata; Lemke, Justin J; Hayouka, Zvi; Chow, Clara; Welch, Rodney A; Weisblum, Bernard; Masters, Kristyn S; Gellman, Samuel H

    2014-03-19

    Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied examples have been limited mostly to cycloalkane-derived structures, with cyclohexyl proving to be particularly promising. The present study evaluates alternative hydrophobic subunits that are isomeric or nearly isomeric with the cyclohexyl example; each has four sp(3) carbons in the side chains. The results show that varying the substitution pattern of the hydrophobic subunit leads to relatively small changes in antibacterial activity but causes significant changes in hemolytic activity. We hypothesize that these differences in biological activity profile arise, at least in part, from variations among the conformational propensities of the hydrophobic subunits. The α,α,β,β-tetramethyl unit is optimal among the subunits we have examined, providing copolymers with potent antibacterial activity and excellent prokaryote vs eukaryote selectivity. Bacteria do not readily develop resistance to the new antibacterial nylon-3 copolymers. These findings suggest that variation in subunit conformational properties could be generally valuable in the development of synthetic polymers for biological applications. PMID:24601599

  14. Subunit arrangement in beef heart complex III

    SciTech Connect

    Gonzalez-Halphen, D.; Lindorfer, M.A.; Capaldi, R.A.

    1988-09-06

    Beef heart mitochondrial complex III was separated into 12 polypeptide bands representing 11 different subunits by using the electrophoresis conditions described previously. Eight of the 12 polypeptide bands were identified from their NH/sub 2/-terminal sequences as obtained by electroblotting directly from the NaDodSO/sub 4/-polyacrylamide gel onto a solid support. The topology of the subunits in complex III was explored by three different approaches. (1) Protease digestion experiments of submitochrondial particles in the presence and absence of detergent showed that subunits II and VI are on the M side of the inner membrane and subunits V and XI on the C side. (2) Labeling experiments with the membrane-intercalated probes (/sup 125/I)TID and arylazidoPE indicated that cytochrome b is the predominant bilayer embedded subunit of complex III, while the non-heme iron protein appears to be peripherally located. (3) Cross-linking studies with carbodiimides and homobifunctional cleavable reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and V+VII. The cytochrome c binding site was found to include subunits IV, VII, and X. The combined data are used to provide an updated model of the topology of beef heart complex III.

  15. Cleft Lip Repair: The Hybrid Subunit Method.

    PubMed

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach.

  16. Cleft Lip Repair: The Hybrid Subunit Method.

    PubMed

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach. PMID:27097136

  17. Outside-in recrystallization of ZnS-Cu1.8 S hollow spheres with interdispersed lattices for enhanced visible light solar hydrogen generation.

    PubMed

    Zhu, Ting; Nuo Peh, Connor Kang; Hong, Minghui; Ho, Ghim Wei

    2014-09-01

    For the first time an earth-abundant and nontoxic ZnS-Cu(1.8) S hybrid photocatalyst has been engineered with well-defined nanosheet hollow structures by a template-engaged method. In contrast to conventional surface coupling and loading, the unique outside-in recrystallization promotes co-precipitation of ZnS and Cu(1.8) S into homogeneous interdispersed lattices, hence forming a hybrid semiconductor with visible responsive photocatalytic activity. The as-derived ZnS-Cu(1.8) S semiconductor alloy is tailored into a hierarchical hollow structure to provide readily accessible porous shells and interior spaces for effective ion transfer/exchange. Notably, this synergistic morphology, interface and crystal lattice engineering, aim towards the design of novel nanocatalysts for various sustainable environmental and energy applications.

  18. Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase.

    PubMed Central

    Tokuhisa, J G; Vijayan, P; Feldmann, K A; Browse, J A

    1998-01-01

    Poikilothermic organisms require mechanisms that allow survival at chilling temperatures (2 to 15 degreesC). We have isolated chilling-sensitive mutants of Arabidopsis, a plant that is very chilling resistant, and are characterizing them to understand the genes involved in chilling resistance. The T-DNA-tagged mutant paleface1 (pfc1) grows normally at 22 degrees C but at 5 degrees C exhibits a pattern of chilling-induced chlorosis consistent with a disruption of chloroplast development. Genomic DNA flanking the T-DNA was cloned and used to isolate wild-type genomic and cDNA clones. The PFC1 transcript is present at a low level in wild-type plants and was not detected in pfc1 plants. Wild-type Arabidopsis expressing antisense constructs of PFC1 grew normally at 22 degrees C but showed chilling-induced chlorosis, confirming that the gene is essential for low-temperature development of chloroplasts. The deduced amino acid sequence of PFC1 has identity with rRNA methylases found in bacteria and yeast that modify specific adenosines of pre-rRNA transcripts. The pfc1 mutant does not have these modifications in the small subunit rRNA of the plastid. PMID:9596631

  19. New record of Apoholosticha sinica (Ciliophora, Urostylida) from the UK: morphology, 18S rRNA gene phylogeny and notes on morphogenesis.

    PubMed

    Hu, Xiaozhong; Fan, Yangbo; Warren, Alan

    2015-08-01

    The benthic urostylid ciliate Apoholosticha sinicaFan et al., 2014 was isolated from a salt marsh at Blakeney, UK, and reinvestigated using light microscopy and small-subunit rRNA gene sequencing. Morphologically, it corresponds well with the original description. Several stages of divisional morphogenesis and physiological reorganization were also observed from which the following could be deduced: (i) the oral apparatus is completely newly built in the proter; (ii) frontal-ventral-transverse cirral anlage II does not produce a buccal cirrus; (iii) each of the posteriormost three or four anlagen contributes one transverse cirrus at its posterior end; (iv) a row of frontoterminal cirri originates from the rearmost frontal-ventral-transverse cirral anlage; (v) the last midventral row is formed from the penultimate frontal-ventral-transverse cirral anlage. Based on new data, two diagnostic features were added to the genus definition: (i) the midventral complex is composed of midventral pairs and midventral row and (ii) pretransverse ventral cirri are absent. Based on a combination of morphological and morphogenetic data, the genus Apoholosticha is assigned to the recently erected subfamily Nothoholostichinae Paiva et al., 2014, which is consistent with sequence comparison and phylogenetic analyses based on SSU rRNA gene data. It is also concluded that this benthic species, previously reported only from China, is not an endemic form. PMID:25948616

  20. New record of Apoholosticha sinica (Ciliophora, Urostylida) from the UK: morphology, 18S rRNA gene phylogeny and notes on morphogenesis.

    PubMed

    Hu, Xiaozhong; Fan, Yangbo; Warren, Alan

    2015-08-01

    The benthic urostylid ciliate Apoholosticha sinicaFan et al., 2014 was isolated from a salt marsh at Blakeney, UK, and reinvestigated using light microscopy and small-subunit rRNA gene sequencing. Morphologically, it corresponds well with the original description. Several stages of divisional morphogenesis and physiological reorganization were also observed from which the following could be deduced: (i) the oral apparatus is completely newly built in the proter; (ii) frontal-ventral-transverse cirral anlage II does not produce a buccal cirrus; (iii) each of the posteriormost three or four anlagen contributes one transverse cirrus at its posterior end; (iv) a row of frontoterminal cirri originates from the rearmost frontal-ventral-transverse cirral anlage; (v) the last midventral row is formed from the penultimate frontal-ventral-transverse cirral anlage. Based on new data, two diagnostic features were added to the genus definition: (i) the midventral complex is composed of midventral pairs and midventral row and (ii) pretransverse ventral cirri are absent. Based on a combination of morphological and morphogenetic data, the genus Apoholosticha is assigned to the recently erected subfamily Nothoholostichinae Paiva et al., 2014, which is consistent with sequence comparison and phylogenetic analyses based on SSU rRNA gene data. It is also concluded that this benthic species, previously reported only from China, is not an endemic form.

  1. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA.

    PubMed Central

    Kowalchuk, G A; Gerards, S; Woldendorp, J W

    1997-01-01

    Marram grass (Ammophila arenaria L.), a sand-stabilizing plant species in coastal dune areas, is affected by a specific pathosystem thought to include both plant-pathogenic fungi and nematodes. To study the fungal component of this pathosystem, we developed a method for the cultivation-independent detection and characterization of fungi infecting plant roots based on denaturing gradient gel electrophoresis (DGGE) of specifically amplified DNA fragments coding for 18S rRNA (rDNA). A nested PCR strategy was employed to amplify a 569-bp region of the 18S rRNA gene, with the addition of a 36-bp GC clamp, from fungal isolates, from roots of test plants infected in the laboratory, and from field samples of marram grass roots from both healthy and degenerating stands from coastal dunes in The Netherlands. PCR products from fungal isolates were subjected to DGGE to examine the variation seen both between different fungal taxa and within a single species. DGGE of the 18S rDNA fragments could resolve species differences from fungi used in this study yet was unable to discriminate between strains of a single species. The 18S rRNA genes from 20 isolates of fungal species previously recovered from A. arenaria roots were cloned and partially sequenced to aid in the interpretation of DGGE data. DGGE patterns recovered from laboratory plants showed that this technique could reliably identify known plant-infecting fungi. Amplification products from field A. arenaria roots also were analyzed by DGGE, and the major bands were excised, reamplified, sequenced, and subjected to phylogenetic analysis. Some recovered 18S rDNA sequences allowed for phylogenetic placement to the genus level, whereas other sequences were not closely related to known fungal 18S rDNA sequences. The molecular data presented here reveal fungal diversity not detected in previous culture-based surveys. PMID:9327549

  2. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product.

  3. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product. PMID:26789074

  4. Regulation of Nav1.6 and Nav1.8 peripheral nerve Na+ channels by auxiliary β-subunits.

    PubMed

    Zhao, Juan; O'Leary, Michael E; Chahine, Mohamed

    2011-08-01

    Voltage-gated Na(+) (Na(v)) channels are composed of a pore-forming α-subunit and one or more auxiliary β-subunits. The present study investigated the regulation by the β-subunit of two Na(+) channels (Na(v)1.6 and Na(v)1.8) expressed in dorsal root ganglion (DRG) neurons. Single cell RT-PCR was used to show that Na(v)1.8, Na(v)1.6, and β(1)-β(3) subunits were widely expressed in individually harvested small-diameter DRG neurons. Coexpression experiments were used to assess the regulation of Na(v)1.6 and Na(v)1.8 by β-subunits. The β(1)-subunit induced a 2.3-fold increase in Na(+) current density and hyperpolarizing shifts in the activation (-4 mV) and steady-state inactivation (-4.7 mV) of heterologously expressed Na(v)1.8 channels. The β(4)-subunit caused more pronounced shifts in activation (-16.7 mV) and inactivation (-9.3 mV) but did not alter the current density of cells expressing Na(v)1.8 channels. The β(3)-subunit did not alter Na(v)1.8 gating but significantly reduced the current density by 31%. This contrasted with Na(v)1.6, where the β-subunits were relatively weak regulators of channel function. One notable exception was the β(4)-subunit, which induced a hyperpolarizing shift in activation (-7.6 mV) but no change in the inactivation or current density of Na(v)1.6. The β-subunits differentially regulated the expression and gating of Na(v)1.8 and Na(v)1.6. To further investigate the underlying regulatory mechanism, β-subunit chimeras containing portions of the strongly regulating β(1)-subunit and the weakly regulating β(2)-subunit were generated. Chimeras retaining the COOH-terminal domain of the β(1)-subunit produced hyperpolarizing shifts in gating and increased the current density of Na(v)1.8, similar to that observed for wild-type β(1)-subunits. The intracellular COOH-terminal domain of the β(1)-subunit appeared to play an essential role in the regulation of Na(v)1.8 expression and gating. PMID:21562192

  5. N-terminal region of the large subunit of Leishmania donovani bisubunit topoisomerase I is involved in DNA relaxation and interaction with the smaller subunit.

    PubMed

    Das, Benu Brata; Sen, Nilkantha; Dasgupta, Somdeb Bose; Ganguly, Agneyo; Majumder, Hemanta K

    2005-04-22

    Leishmania donovani topoisomerase I is an unusual bisubunit enzyme. We have demonstrated earlier that the large and small subunit could be reconstituted in vitro to show topoisomerase I activity. We extend our biochemical study to evaluate the role of the large subunit in topoisomerase activity. The large subunit (LdTOP1L) shows a substantial degree of homology with the core DNA binding domain of the topoisomerase IB family. Two N-terminal truncation constructs, LdTOP1Delta39L (lacking amino acids 1-39) and LdTOP1Delta99L (lacking amino acids 1-99) of the large subunit were generated and mixed with intact small subunit (LdTOP1S). Our observations reveal that residues within amino acids 1-39 of the large subunit have significant roles in modulating topoisomerase I activity (i.e. in vitro DNA relaxation, camptothecin sensitivity, cleavage activity, and DNA binding affinity). Interestingly, the mutant LdTOP1Delta99LS was unable to show topoisomerase I activity. Investigation of the loss of activity indicates that LdTOP1Delta99L was unable to pull down glutathione S-transferase-LdTOP1S in an Ni(2+)-nitrilotriacetic acid co-immobilization experiment. For further analysis, we co-expressed LdTOP1L and LdTOP1S in Escherichia coli BL21(DE3)pLysS cells. The lysate shows topoisomerase I activity. Immunoprecipitation revealed that LdTOP1L could interact with LdTOP1S, indicating the subunit interaction in bacterial cells, whereas immunoprecipitation of bacterial lysate co-expressing LdTOP1Delta99L and LdTOP1S reveals that LdTOP1Delta99L was significantly deficient at interacting with LdTOP1S to reconstitute topoisomerase I activity. This study demonstrates that heterodimerization between the large and small subunits of the bisubunit enzyme appears to be an absolute requirement for topoisomerase activity. The residue within amino acids 1-39 from the N-terminal end of the large subunit regulates DNA topology during relaxation by controlling noncovalent DNA binding or by

  6. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya.

    PubMed

    Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan

    2016-09-01

    We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05). PMID:27423733

  7. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya.

    PubMed

    Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan

    2016-09-01

    We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05).

  8. Soil clone library analyses to evaluate specificity and selectivity of PCR primers targeting fungal 18S rDNA for denaturing-gradient gel electrophoresis (DGGE).

    PubMed

    Takada Hoshino, Yuko; Morimoto, Sho

    2010-01-01

    We evaluated the fungal specificity and detection bias of four fungal 18S rRNA gene (18S rDNA) primer sets for denaturing-gradient gel electrophoresis (DGGE). We constructed and compared clone libraries amplified from upland and paddy field soils with each primer set (1, NS1/GCFung; 2, FF390/FR1-GC; 3, NS1/FR1-GC; and 4, NS1/EF3 for the first PCR and NS1/FR1-GC for the second PCR). Primer set 4 (for nested PCR) showed the highest specificity for fungi but biased specific sequences. Sets 1, 2, and 3 (for single PCR) amplified non-fungal eukaryotic sequences (from 7 to 16% for upland soil and from 20 to 31% for paddy field soil) and produced libraries with similar distributions of fungal 18S rDNA sequences at both the phylum and the class level. Set 2 tended to amplify more diverse fungal sequences, maintaining higher specificity for fungi. In addition, clone analyses revealed differences among primer sets in the frequency of chimeras. In upland field soil, the libraries amplified with primer sets 3 and 4, which targeted long fragments, contained many chimeric 18S rDNA sequences (18% and 48%, respectively), while the libraries obtained with sets 1 and 2, which targeted short fragments, contained fewer chimeras (5% and 10%, respectively).

  9. Phylogenetic analyses of four species of Ulva and Monostroma grevillei using ITS, rbc L and 18S rDNA sequence data

    NASA Astrophysics Data System (ADS)

    Lin, Zhongheng; Shen, Songdong; Chen, Weizhou; Li, Huihui

    2013-01-01

    Chlorophyta species are common in the southern and northern coastal areas of China. In recent years, frequent green tide incidents in Chinese coastal waters have raised concerns and attracted the attention of scientists. In this paper, we sequenced the 18S rDNA genes, the internal transcribed spacer (ITS) regions and the rbc L genes in seven organisms and obtained 536-566 bp long ITS sequences, 1 377-1 407 bp long rbc L sequences and 1 718-1 761 bp long partial 18S rDNA sequences. The GC base pair content was highest in the ITS regions and lowest in the rbc L genes. The sequencing results showed that the three Ulva prolifera (or U. pertusa) gene sequences from Qingdao and Nan'ao Island were identical. The ITS, 18S rDNA and rbc L genes in U. prolifera and U. pertusa from different sea areas in China were unchanged by geographic distance. U. flexuosa had the least evolutionary distance from U. californica in both the ITS regions (0.009) and the 18S rDNA (0.002). These data verified that Ulva and Enteromorpha are not separate genera.

  10. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata.

  11. Quantitative analysis of dinoflagellates and diatoms community via Miseq sequencing of actin gene and v9 region of 18S rDNA

    PubMed Central

    Guo, Liliang; Sui, Zhenghong; Liu, Yuan

    2016-01-01

    Miseq sequencing and data analysis for the actin gene and v9 region of 18S rDNA of 7 simulated samples consisting of different mixture of dinoflagellates and diatoms were carried out. Not all the species were detectable in all the 18S v9 samples, and sequence percent in all the v9 samples were not consistent with the corresponding cell percent which may suggest that 18S rDNA copy number in different cells of these species differed greatly which result in the large deviation of the amplification. And 18S rDNA amplification of the microalgae was prone to be contaminated by fungus. The amplification of actin gene all was from the dinoflagellates because of its targeted degenerate primers. All the actin sequences of dinoflagellates were detected in the act samples except act4, and sequence percentage of the dinoflagellates in the act samples was not completely consistent with the dinoflagellates percentage of cell samples, but with certain amplification deviations. Indexes of alpha diversity of actin gene sequencing may be better reflection of community structure, and beta diversity analysis could cluster the dinoflagellates samples with identical or similar composition together and was distinguishable with blooming simulating samples at the generic level. Hence, actin gene was more proper than rDNA as the molecular marker for the community analysis of the dinoflagellates. PMID:27721499

  12. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella

    PubMed Central

    2010-01-01

    Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 μmol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days. PMID:20377865

  13. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343

  14. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage. PMID:26319789

  15. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

    PubMed Central

    Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.

    2015-01-01

    Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239

  16. Phylogenetic relationships of the enigmatic angiosperm family Podostemaceae inferred from 18S rDNA and rbcL sequence data.

    PubMed

    Soltis, D E; Mort, M E; Soltis, P S; Hibsch-Jetter, C; Zimmer, E A; Morgan, D

    1999-03-01

    The phylogenetic relationships of some angiosperm families have remained enigmatic despite broad phylogenetic analyses of rbcL sequences. One example is the aquatic family Podostemaceae, the relationships of which have long been controversial because of major morphological modifications associated with their aquatic habit. Podostemaceae have variously been associated with Piperaceae, Nepenthaceae, Polygonaceae, Caryophyllaceae, Scrophulariaceae, Rosaceae, Crassulaceae, and Saxifragaceae. Two recent analyses of rbcL sequences suggest a possible sister-group relationship of Podostemaceae to Crassulaceae (Saxifragales). However, the branch leading to Podostemaceae was long, and use of different outgroups resulted in alternative placements. We explored the phylogenetic relationships of Podostemaceae using 18S rDNA sequences and a combined rbcL + 18S rDNA matrix representing over 250 angiosperms. In analyses based on 18S rDNA data, Podostemaceae are not characterized by a long branch; the family consistently appears as part of a Malpighiales clade that also includes Malpighiaceae, Turneraceae, Passifloraceae, Salicaceae, Euphorbiaceae, Violaceae, Linaceae, Chrysobalanaceae, Trigoniaceae, Humiriaceae, and Ochnaceae. Phylogenetic analyses based on a combined 18S rDNA + rbcL data set (223 ingroup taxa) with basal angiosperms as the outgroup also suggest that Podostemaceae are part of a Malpighiales clade. These searches swapped to completion, and the shortest trees showed enhanced resolution and increased internal support compared to those based on 18S rDNA or rbcL alone. However, when Gnetales are used as the outgroup, Podostemaceae appear with members of the nitrogen fixing clade (e.g., Elaeagnaceae, Ulmaceae, Rhamnaceae, Cannabaceae, Moraceae, and Urticaceae). None of the relationships suggested here for Podostemaceae receives strong bootstrap support. Our analyses indicate that Podostemaceae are not closely allied with Crassulaceae or with other members of the

  17. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage.

  18. Sequence variation identified in the 18S rRNA gene of Theileria mutans and Theileria velifera from the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2013-01-16

    The African buffalo (Syncerus caffer) is a natural reservoir host for both pathogenic and non-pathogenic Theileria species. These often occur naturally as mixed infections in buffalo. Although the benign and mildly pathogenic forms do not have any significant economic importance, their presence could complicate the interpretation of diagnostic test results aimed at the specific diagnosis of the pathogenic Theileria parva in cattle and buffalo in South Africa. The 18S rRNA gene has been used as the target in a quantitative real-time PCR (qPCR) assay for the detection of T. parva infections. However, the extent of sequence variation within this gene in the non-pathogenic Theileria spp. of the Africa buffalo is not well known. The aim of this study was, therefore, to characterise the full-length 18S rRNA genes of Theileria mutans, Theileria sp. (strain MSD) and T. velifera and to determine the possible influence of any sequence variation on the specific detection of T. parva using the 18S rRNA qPCR. The reverse line blot (RLB) hybridization assay was used to select samples which either tested positive for several different Theileria spp., or which hybridised only with the Babesia/Theileria genus-specific probe and not with any of the Babesia or Theileria species-specific probes. The full-length 18S rRNA genes from 14 samples, originating from 13 buffalo and one bovine from different localities in South Africa, were amplified, cloned and the resulting recombinants sequenced. Variations in the 18S rRNA gene sequences were identified in T. mutans, Theileria sp. (strain MSD) and T. velifera, with the greatest diversity observed amongst the T. mutans variants. This variation possibly explained why the RLB hybridization assay failed to detect T. mutans and T. velifera in some of the analysed samples.

  19. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    PubMed

    Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  20. Molecular epidemiology of Theileria annulata and identification of 18S rRNA gene and ITS regions sequences variants in apparently healthy buffaloes and cattle in Pakistan.

    PubMed

    Khan, Muhammad Kasib; He, Lan; Hussain, Altaf; Azam, Sabita; Zhang, Wen-Jie; Wang, Li-Xia; Zhang, Qing-Li; Hu, Min; Zhou, Yan-Qin; Zhao, Junlong

    2013-01-01

    A molecular epidemiological survey was conducted to determine the prevalence of piroplasms in buffaloes and cattle from Sheikhupura and Okara districts of Punjab, Pakistan using reverse line blot (RLB) hybridization assay. The genetic diversity within 18S rRNA gene and ITS regions sequences of various obtained Theileria species (spp.) was also investigated. Briefly, 102 blood samples from buffaloes and cattle in the study districts were collected on blood collection cards and brought to the laboratory. DNA was extracted; the V4 hypervariable region of 18S rRNA was amplified and analyzed using RLB. Out of total samples analyzed, 61 (59.8%) were hybridized with Babesia/Theileria (B/T) genus-specific probe. Only one species of piroplasm was detected in buffaloes and cattle in study districts, i.e. Theileria (T.) annulata. Six samples only hybridized with B/T genus-specific and Theileria genus-specific probes but not with any species-specific probe indicating the presence of novel species or variants. The sequences of 18S rRNA gene and ITS regions of these six samples revealed the presence of T. annulata variants as confirmed through sequence identity estimation and phylogenetic analyses. Meanwhile, an unexpected sequence variation was observed within the 18S rRNA gene and ITS regions sequences of T. annulata identified in the present study. This is the first report on the simultaneous detection of species of piroplasms infecting buffaloes and cattle in Pakistan and molecular characterization of T. annulata 18S rRNA gene and ITS regions. The present study may address the new insights into the epidemiology of theileriosis which will help researches in designing control strategies and developing various molecular diagnostic tools at national level.

  1. Exploring assembly energetics of the 30S ribosomal subunit using an implicit solvent approach.

    PubMed

    Trylska, Joanna; McCammon, J Andrew; Brooks Iii, Charles L

    2005-08-10

    To explore the relationship between the assembly of the 30S ribosomal subunit and interactions among the constituent components, 16S RNA and proteins, relative binding free energies of the T. thermophilus 30S proteins to the 16S RNA were studied based on an implicit solvent model of electrostatic, nonpolar, and entropic contributions. The late binding proteins in our assembly map were found not to bind to the naked 16S RNA. The 5' domain early kinetic class proteins, on average, carry the highest positive charge, get buried the most upon binding to 16S RNA, and show the most favorable binding. Some proteins (S10/S14, S6/S18, S13/S19) have more stabilizing interactions while binding as dimers. Our computed assembly map resembles that of E. coli; however, the central domain path is more similar to that of A. aeolicus, a hyperthermophilic bacteria.

  2. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.

    PubMed

    Whiting, M F; Carpenter, J C; Wheeler, Q D; Wheeler, W C

    1997-03-01

    Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of

  3. Quantification of Transthyretin Kinetic Stability in Human Plasma Using Subunit Exchange

    PubMed Central

    2015-01-01

    The transthyretin (TTR) amyloidoses are a group of degenerative diseases caused by TTR aggregation, requiring rate-limiting tetramer dissociation. Kinetic stabilization of TTR, by preferential binding of a drug to the native tetramer over the dissociative transition state, dramatically slows the progression of familial amyloid polyneuropathy. An established method for quantifying the kinetic stability of recombinant TTR tetramers in buffer is subunit exchange, in which tagged TTR homotetramers are added to untagged homotetramers at equal concentrations to measure the rate at which the subunits exchange. Herein, we report a subunit exchange method for quantifying the kinetic stability of endogenous TTR in human plasma. The subunit exchange reaction is initiated by the addition of a substoichiometric quantity of FLAG-tagged TTR homotetramers to endogenous TTR in plasma. Aliquots of the subunit exchange reaction, taken as a function of time, are then added to an excess of a fluorogenic small molecule, which immediately arrests further subunit exchange. After binding, the small molecule reacts with the TTR tetramers, rendering them fluorescent and detectable in human plasma after subsequent ion exchange chromatography. The ability to report on the extent of TTR kinetic stabilization resulting from treatment with oral tafamidis is important, especially for selection of the appropriate dose for patients carrying rare mutations. This method could also serve as a surrogate biomarker for the prediction of the clinical outcome. Subunit exchange was used to quantify the stabilization of WT TTR from senile systemic amyloidosis patients currently being treated with tafamidis (20 mg orally, once daily). TTR kinetic stability correlated with the tafamidis plasma concentration. PMID:24661308

  4. Modulation of the Na,K-pump function by beta subunit isoforms

    PubMed Central

    1994-01-01

    To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-ATPase (beta HK), by cRNA injection in Xenopus oocyte. We studied the K+ activation kinetics by measuring the Na,K- pump current induced by external K+ under voltage clamp conditions. The endogenous oocyte Na,K-ATPase was selectively inhibited, taking advantage of the large difference in ouabain sensitivity between Xenopus and Bufo Na,K pumps. The K+ half-activation constant (K1/2) was higher in the alpha 1 beta 3NaK than in the alpha 1 beta 1NaK groups in the presence of external Na+, but there was no significant difference in the absence of external Na+. Association of alpha 1 and beta HK subunits produced active Na,K pumps with a much lower apparent affinity for K+ both in the presence and in the absence of external Na+. The voltage dependence of the K1/2 for external K+ was similar with the three beta subunits. Our results indicate that the beta subunit has a significant influence on the ion transport activity of the Na,K pump. The small structural differences between the beta 1NaK and beta 3NaK subunits results in a difference of the apparent affinity for K+ that is measurable only in the presence of external Na+, and thus appears not to be directly related to the K+ binding site. In contrast, association of an alpha 1 subunit with a beta HK subunit results in a Na,K pump in which the K+ binding or translocating mechanisms are altered since the apparent affinity for external K+ is affected even in the absence of external Na+. PMID:8057080

  5. The influence of effectors and subunit interactions on Escherichia coli carbamoyl-phosphate synthetase studied by differential scanning calorimetry.

    PubMed

    Cervera, J; Conejero-Lara, F; Ruiz-Sanz, J; Galisteo, M L; Mateo, P L; Lusty, C J; Rubio, V

    1993-06-15

    Differential scanning calorimetry of Escherichia coli carbamoyl-phosphate synthetase and its isolated large and small subunits reveals in each case an irreversible, kinetically controlled transition, at a temperature 14 degrees C higher for the holoenzyme than for the subunits, indicating dramatic stabilization of the subunits in the heterodimer. The deletion of the COOH-terminal 171 (mutant CarB'2373) or 385 (mutant CarB2177) residues of the large subunit results in more asymmetric transitions at a temperature 7 degrees C lower than for the wild type. The allosteric effectors IMP, UMP, and ornithine induce small reversible transitions at low temperature in the endotherm for the wild-type enzyme, but not for CarB'2373, as expected if the effectors bind in the 171-residue, COOH-terminal region. In contrast, two ligands that bind outside the deleted region, Ap5A (a ligand of both ATP sites) and glycine (an analog of glutamine) decrease and increase, respectively, the stability of the two mutants and of the wild type. The stabilization by glycine requires that the subunits are associated. The results support the implication of the 20-kDa COOH-terminal domain of the large subunit in the allosteric modulation by all the effectors and are consistent with the folding of the large subunit as a pseudohomodimer of its two homologous halves. PMID:8509390

  6. Human NAT10 Is an ATP-dependent RNA Acetyltransferase Responsible for N4-Acetylcytidine Formation in 18 S Ribosomal RNA (rRNA)*

    PubMed Central

    Ito, Satoshi; Horikawa, Sayuri; Suzuki, Tateki; Kawauchi, Hiroki; Tanaka, Yoshikazu; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Human N-acetyltransferase 10 (NAT10) is known to be a lysine acetyltransferase that targets microtubules and histones and plays an important role in cell division. NAT10 is highly expressed in malignant tumors, and is also a promising target for therapies against laminopathies and premature aging. Here we report that NAT10 is an ATP-dependent RNA acetyltransferase responsible for formation of N4-acetylcytidine (ac4C) at position 1842 in the terminal helix of mammalian 18 S rRNA. RNAi-mediated knockdown of NAT10 resulted in growth retardation of human cells, and this was accompanied by high-level accumulation of the 30 S precursor of 18 S rRNA, suggesting that ac4C1842 formation catalyzed by NAT10 is involved in rRNA processing and ribosome biogenesis. PMID:25411247

  7. Evaluation of nucleic acid sequence based amplification using fluorescence resonance energy transfer (FRET-NASBA) in quantitative detection of Aspergillus 18S rRNA.

    PubMed

    Park, Chulmin; Kwon, Eun-Young; Shin, Na-Young; Choi, Su-Mi; Kim, Si-Hyun; Park, Sun Hee; Lee, Dong-Gun; Choi, Jung-Hyun; Yoo, Jin-Hong

    2011-01-01

    We attempted to apply fluorescence resonance energy transfer technology to nucleic acid sequence-based amplification (FRET-NASBA) on the platform of the LightCycler system to detect Aspergillus species. Primers and probes for the Aspergillus 18S rRNA were newly designed to avoid overlapping with homologous sequences of human 18s rRNA. NASBA using molecular beacon (MB) showed non-specific results which have been frequently observed from controls, although it showed higher sensitivity (10(-2) amol) than the FRET. FRET-NASBA showed a sensitivity of 10(-1) amol and a high fidelity of reproducibility from controls. As FRET technology was successfully applied to the NASBA assay, it could contribute to diverse development of the NASBA assay. These results suggest that FRET-NASBA could replace previous NASBA techniques in the detection of Aspergillus.

  8. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity

    PubMed Central

    2010-01-01

    Background The 18S rRNA gene is one of the most important molecular markers, used in diverse applications such as molecular phylogenetic analyses and biodiversity screening. The Mollusca is the second largest phylum within the animal kingdom and mollusks show an outstanding high diversity in body plans and ecological adaptations. Although an enormous amount of 18S data is available for higher mollusks, data on some early branching lineages are still limited. Despite of some partial success in obtaining these data from Solenogastres, by some regarded to be the most "basal" mollusks, this taxon still remained problematic due to contamination with food organisms and general amplification difficulties. Results We report here the first authentic 18S genes of three Solenogastres species (Mollusca), each possessing a unique sequence composition with regions conspicuously rich in guanine and cytosine. For these GC-rich regions we calculated strong secondary structures. The observed high intra-molecular forces hamper standard amplification and appear to increase formation of chimerical sequences caused by contaminating foreign DNAs from potential prey organisms. In our analyses, contamination was avoided by using RNA as a template. Indication for contamination of previously published Solenogastres sequences is presented. Detailed phylogenetic analyses were conducted using RNA specific models that account for compensatory substitutions in stem regions. Conclusions The extreme morphological diversity of mollusks is mirrored in the molecular 18S data and shows elevated substitution rates mainly in three higher taxa: true limpets (Patellogastropoda), Cephalopoda and Solenogastres. Our phylogenetic tree based on 123 species, including representatives of all mollusk classes, shows limited resolution at the class level but illustrates the pitfalls of artificial groupings formed due to shared biased sequence composition. PMID:20214780

  9. Fluorescent Oligonucleotide Probes for Clinical and Environmental Detection of Acanthamoeba and the T4 18S rRNA Gene Sequence Type

    PubMed Central

    Stothard, Diane R.; Hay, John; Schroeder-Diedrich, Jill M.; Seal, David V.; Byers, Thomas J.

    1999-01-01

    The first genus- and subgenus-specific fluorescent oligonucleotide probes for in situ staining of Acanthamoeba are described. Sequences of these phylogeny-based probes complement the 18S rRNA and the gene encoding it (18S rDNA). The genus-specific probe (GSP) is a fluorescein-labeled 22-mer specific for Acanthamoeba as shown here by its hybridization to growing trophozoites of all 12 known Acanthamoeba 18S rDNA sequence types and by its failure to hybridize with amoebae of two other genera (Hartmannella vermiformis and Balamuthia mandrillaris), two human cell lines, and two bacteria (Pseudomonas aeruginosa and Escherichia coli). The sequence type T4-specific probe (ST4P) is a rhodamine-labeled 30-mer specific for Acanthamoeba 18S rDNA sequence type T4, as shown here in hybridization tests with trophozoites of all 12 sequence types. T4 is the subgenus group associated most closely with Acanthamoeba keratitis (AK). GSP also was tested with corneal scrapings from 17 patients with a high index of clinical suspicion of AK plus 5 patient controls. GSP stained both trophozoites and cysts, although nonspecific cyst wall autofluorescence also was observed. Results could be obtained with GSP in 1 to 2 days, and based on results from cell culture tests, the probe correctly detected the presence or absence of Acanthamoeba in 21 of 24 specimens from the 22 patients. The use of GSP with cultured trophozoites and cysts from corneal scrapings has illustrated the suitability of using fluorescent oligonucleotide probes for identification of the genus Acanthamoeba in both environmental and clinical samples. In addition, the use of ST4P with cultured amoebae has indicated the potential of oligonucleotide probes for use in subgenus classification. PMID:10405422

  10. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences

    PubMed Central

    Sun, Sang-Mi; Yang, Seung Hwan

    2016-01-01

    Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia. PMID:27190985

  11. Identification of protein-coding sequences using the hybridization of 18S rRNA and mRNA during translation.

    PubMed

    Xing, Chuanhua; Bitzer, Donald L; Alexander, Winser E; Vouk, Mladen A; Stomp, Anne-Marie

    2009-02-01

    We introduce a new approach in this article to distinguish protein-coding sequences from non-coding sequences utilizing a period-3, free energy signal that arises from the interactions of the 3'-terminal nucleotides of the 18S rRNA with mRNA. We extracted the special features of the amplitude and the phase of the period-3 signal in protein-coding regions, which is not found in non-coding regions, and used them to distinguish protein-coding sequences from non-coding sequences. We tested on all the experimental genes from Saccharomyces cerevisiae and Schizosaccharomyces pombe. The identification was consistent with the corresponding information from GenBank, and produced better performance compared to existing methods that use a period-3 signal. The primary tests on some fly, mouse and human genes suggests that our method is applicable to higher eukaryotic genes. The tests on pseudogenes indicated that most pseudogenes have no period-3 signal. Some exploration of the 3'-tail of 18S rRNA and pattern analysis of protein-coding sequences supported further our assumption that the 3'-tail of 18S rRNA has a role of synchronization throughout translation elongation process. This, in turn, can be utilized for the identification of protein-coding sequences.

  12. The spatial and temporal distribution of microalgae in the South China Sea: evidence from GIS-based analysis of 18S rDNA sequences.

    PubMed

    Li, LüYan; Huang, QiaoJuan; Wu, ShuHui; Lin, Duan; Chen, JiaHui; Chen, YueQin

    2008-12-01

    The purpose of this study was to estimate the spatial and temporal variation of microalgae in the South China Sea and to demonstrate the environmental factors controlling the diversity of microalgae by GIS (geographic information system)-based analysis of 18S rDNA sequences. Six 18S rDNA libraries were constructed from environmental samples collected at different sites in the study area, and more than 600 18S rDNA sequences were determined. The rDNA sequence data were then analyzed by DIVA-GIS software to display the spatial and temporal variation of phytoplankton's composition. It was shown that the autotrophic eukaryotic plankton dominated over the heterotrophic cells in most of our clone libraries, and the dominating phytoplankton was Dinophyceae except for Bacillariophyta at the Xiamen harbor. The percentages of these two groups were controlled by water temperature and salinity. Our results also revealed that the species composition of Chlorophyta showed a close relationship with latitude, changing from Prasinophyceae at the high latitude to Trebouxiophyceae at the low latitude. Several newly classified picoplankton lineages were first uncovered in the South China Sea, including the pico-sized green alga Ostreococcus sp. and Picochlorum eukaryotum, and picobiliphytes, which was just discovered in 2007 with unknown affinities to other eukaryotes. Their spatial and temporal variation were also analyzed and discussed.

  13. Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana.

    PubMed

    Sikorski, Pawel J; Zuber, Hélène; Philippe, Lucas; Sement, François M; Canaday, Jean; Kufel, Joanna; Gagliardi, Dominique; Lange, Heike

    2015-09-01

    The biosynthesis of ribosomal RNA and its incorporation into functional ribosomes is an essential and intricate process that includes production of mature ribosomal RNA from large precursors. Here, we analyse the contribution of the plant exosome and its co-factors to processing and degradation of 18S pre-RNAs in Arabidopsis thaliana. Our data show that, unlike in yeast and humans, an RRP6 homologue, the nucleolar exoribonuclease RRP6L2, and the exosome complex, together with RRP44, function in two distinct steps of pre-18S rRNA processing or degradation in Arabidopsis. In addition, we identify TRL (TRF4/5-like) as the terminal nucleotidyltransferase that is mainly responsible for oligoadenylation of rRNA precursors in Arabidopsis. We show that TRL is required for efficient elimination of the excised 5' external transcribed spacer and of 18S maturation intermediates that escaped 5' processing. Our data also suggest involvement of additional nucleotidyltransferases, including terminal uridylyltransferase(s), in modifying rRNA processing intermediates in plants.

  14. The conservation of number and location of 18S sites indicates the relative stability of rDNA in species of Pentatomomorpha (Heteroptera).

    PubMed

    Bardella, Vanessa Bellini; Fernandes, Thiago; Vanzela, André Luís Laforga

    2013-07-01

    Fluorescent in situ hybridization (FISH) with rDNA probes has been used for comparative cytogenetics studies in different groups of organisms. Although heteropterans are a large suborder within Hemiptera, studies using rDNA are limited to the infraorder Cimicomorpha, in which rDNA sites are present in the autosomes or sex chromosomes. We isolated and sequenced a conserved 18S rDNA region of Antiteuchus tripterus (Pentatomidae) and used it as a probe against chromosomes of 25 species belonging to five different families of Pentatomomorpha. The clone pAt05, with a length of 736 bp, exhibited a conserved stretch of 590 bp. FISH analysis with the probe pAt05 always demonstrated hybridization signals in sub-terminal positions, except for Euschistus heros. Apparently, there is a tendency for 18S rDNA sites to locate in autosomes, except for Leptoglossus gonagra and Euryophthalmus rufipennis, which showed signals in the m- and sex chromosomes, respectively. Although FISH has produced evidence that rearrangements are involved in rDNA repositioning, whether in different autosomes or between sex and m-chromosomes, we have no conclusive evidence of what were the pathways of these rearrangements based on the evolutionary history of the species studied here. Nevertheless, the diversity in the number of species analyzed here showed a tendency of 18S rDNA to remain among the autosomes.

  15. Identification of Entamoeba polecki with Unique 18S rRNA Gene Sequences from Celebes Crested Macaques and Pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia.

    PubMed

    Tuda, Josef; Feng, Meng; Imada, Mihoko; Kobayashi, Seiki; Cheng, Xunjia; Tachibana, Hiroshi

    2016-09-01

    Unique species of macaques are distributed across Sulawesi Island, Indonesia, and the details of Entamoeba infections in these macaques are unknown. A total of 77 stool samples from Celebes crested macaques (Macaca nigra) and 14 stool samples from pigs were collected in Tangkoko Nature Reserve, North Sulawesi, and the prevalence of Entamoeba infection was examined by PCR. Entamoeba polecki was detected in 97% of the macaques and all of the pigs, but no other Entamoeba species were found. The nucleotide sequence of the 18S rRNA gene in E. polecki from M. nigra was unique and showed highest similarity with E. polecki subtype (ST) 4. This is the first case of identification of E. polecki ST4 from wild nonhuman primates. The sequence of the 18S rRNA gene in E. polecki from pigs was also unique and showed highest similarity with E. polecki ST1. These results suggest that the diversity of the 18S rRNA gene in E. polecki is associated with differences in host species and geographic localization, and that there has been no transmission of E. polecki between macaques and pigs in the study area.

  16. Subunit constituent of the porin trimers that form the permeability channels in the outer membrane of Salmonella typhimurium.

    PubMed Central

    Ishii, J; Nakae, T

    1980-01-01

    The polypeptide composition of the functional porin trimers that produced the permeability channels in the outer membrane of Salmonella typhimurium was examined on two-dimensional slab gels. The results suggested that the majority of porin trimers from strains producing mixed species of porin polypeptides consisted of homologous subunit polypeptides. The present results do not exclude the possibility that a small fraction of porin trimer is constructed from heterologous subunit polypeptides. Images PMID:6246065

  17. Novel subunit-subunit interactions in the structure of glutamine synthetase.

    PubMed

    Almassy, R J; Janson, C A; Hamlin, R; Xuong, N H; Eisenberg, D

    We present an atomic model for glutamine synthetase, an enzyme of central importance in bacterial nitrogen metabolism, from X-ray crystallography. The 12 identical subunits are arranged as the carbon atoms in two face-to-face benzene rings, with unusual subunit contacts. Our model, which places the active sites at the subunit interfaces, suggests a mechanism for the main functional role of glutamine synthetase: how the enzyme regulates the rate of synthesis of glutamine in response to covalent modification and feedback inhibition. PMID:2876389

  18. Colocalization of HCN Channel Subunits in Rat Retinal Ganglion Cells

    PubMed Central

    Stradleigh, Tyler W.; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Greenberg, Kenneth P.; Krempely, Kalen S.; Ishida, Andrew T.

    2011-01-01

    The current-passing pore of mammalian hyperpolarization-activated, cyclic nucleotide-gated ("HCN") channels is formed by subunit isoforms denoted HCN1-4. In various brain areas, antibodies directed against multiple isoforms bind to single neurons and the current ("Ih") passed during hyperpolarizations differs from that of heterologously expressed homomeric channels. By contrast, retinal rod, cone, and bipolar cells appear to use homomeric HCN channels. Here, we assess the generality of this pattern by examining HCN1 and HCN4 immunoreactivity in rat retinal ganglion cells, measuring Ih in dissociated cells, and testing whether HCN1 and HCN4 protein coimmunoprecipitate. Nearly half of the ganglion cells in whole-mounted retinae bound antibodies against both isoforms. Consistent with colocalization and physical association, 8-bromo-cAMP shifted the voltage-sensitivity of Ih less than that of HCN4 channels and more than that of HCN1 channels, and HCN1 coimmunoprecipitated with HCN4 from membrane fraction proteins. Lastly, the immunopositive somata ranged in diameter from the smallest to the largest in rat retina, the dendrites of immunopositive cells arborized at various levels of the inner plexiform layer and over fields of different diameters, and Ih activated with similar kinetics and proportions of fast and slow components in small, medium, and large somata. These results show that different HCN subunits colocalize in single retinal ganglion cells, identify a subunit that can reconcile native Ih properties with the previously reported presence of HCN4 in these cells, and indicate that Ih is biophysically similar in morphologically diverse retinal ganglion cells and differs from Ih in rods, cones, and bipolar cells. PMID:21456027

  19. Localization of the human genes encoding the two subunits of general transcription factor TFIIE.

    PubMed

    Purrello, M; Di Pietro, C; Rapisarda, A; Motta, S; Pavone, L; Grzeschik, K H; Sichel, G

    1994-09-01

    TFIIE is a general transcription factor for class II genes composed of two types of subunits, a large one of 56 kDa and a small of 34 kDa. By Southern analysis at high and at low stringency of a panel of mouse/human hybrid cell lines and by in situ chromosomal hybridization, we have demonstrated that both polypeptides are encoded by genes that are single copy in the human genome and are localized at 3q13-q21 and at 8p12, respectively. A TaqI RFLP (heterozygosity index of 0.07) was detected at the locus for the 56-kDa subunit.

  20. One-step immunoaffinity purification of complex I subunits from beef heart mitochondria.

    PubMed

    Haines, A M; Cooper, J M; Morgan-Hughes, J A; Clark, J B; Schapira, A H

    1992-06-01

    Polypeptides of beef heart mitochondrial complex I were isolated from 15 mg of solubilized beef heart mitochondria using antibodies immobilized on an agarose chromatography column. The preparation was examined by SDS electrophoresis and Western blotting using affinity-purified antibodies to complex I and compared to beef heart complex I purified according to the conventional method of Hatefi and Rieske. There was a high degree of homology between the two preparations as judged by SDS-polyacrylamide electrophoresis and by immunoblotting with seven affinity-purified antibodies to various complex I subunits. This method could be applied to the preparation of complex I subunits from small samples such as human muscle biopsy specimens.

  1. Identification and Characterization of High-Molecular-Weight Glutenin Subunits from Agropyron intermedium

    PubMed Central

    Cao, Shuanghe; Li, Zhixin; Gong, Caiyan; Xu, Hong; Yang, Ran; Hao, Shanting; Wang, Xianping; Wang, Daowen; Zhang, Xiangqi

    2014-01-01

    High-molecular-weight glutenin subunit (HMW-GS) is a primary determinant of processing quality of wheat. Considerable progress has been made in understanding the structure, function and genetic regulation of HMW-GS in wheat and some of its related species, but less is known about their orthologs in Agropyron intermedium, a useful related species for wheat improvement. Here seven HMW-GSs in Ag. intermedium were identified using SDS-PAGE and Western blotting experiments. Subsequently, the seven genes (Glu-1Aix1∼4 and Glu-1Aiy1∼3) encoding the seven HMW-GSs were isolated using PCR technique with degenerate primers, and confirmed by bacterial expression and Western blotting. Sequence analysis indicated that the seven Ag. intermedium HMW-GSs shared high similarity in primary structure to those of wheat, but four of the seven subunits were unusually small compared to the representatives of HMW-GS from wheat and two of them possessed extra cysteine residues. The alignment and clustering analysis of deduced amino acid sequences revealed that 1Aix1 and 1Aiy1 subunits had special molecular structure, belonging to the hybrid type compounding between typical x- and y-type subunit. The xy-type subunit 1Aix1 is composed of the N-terminal of x-type and C-terminal of y-type, whereas yx-type subunit 1Aiy1 comprises the N-terminal of y-type and C-terminal of x-type. This result strongly supported the hypothesis of unequal crossover mechanism that might generate the novel coding sequence for the hybrid type of HMW-GSs. In addition to the aforementioned, the other novel characteristics of the seven subunits were also discussed. Finally, phylogenetic analysis based on HMW-GS genes was carried out and provided new insights into the evolutionary biology of Ag. intermedium. PMID:24503781

  2. Identification and characterization of high-molecular-weight glutenin subunits from Agropyron intermedium.

    PubMed

    Cao, Shuanghe; Li, Zhixin; Gong, Caiyan; Xu, Hong; Yang, Ran; Hao, Shanting; Wang, Xianping; Wang, Daowen; Zhang, Xiangqi

    2014-01-01

    High-molecular-weight glutenin subunit (HMW-GS) is a primary determinant of processing quality of wheat. Considerable progress has been made in understanding the structure, function and genetic regulation of HMW-GS in wheat and some of its related species, but less is known about their orthologs in Agropyron intermedium, a useful related species for wheat improvement. Here seven HMW-GSs in Ag. intermedium were identified using SDS-PAGE and Western blotting experiments. Subsequently, the seven genes (Glu-1Aix1 ∼ 4 and Glu-1Aiy1 ∼ 3) encoding the seven HMW-GSs were isolated using PCR technique with degenerate primers, and confirmed by bacterial expression and Western blotting. Sequence analysis indicated that the seven Ag. intermedium HMW-GSs shared high similarity in primary structure to those of wheat, but four of the seven subunits were unusually small compared to the representatives of HMW-GS from wheat and two of them possessed extra cysteine residues. The alignment and clustering analysis of deduced amino acid sequences revealed that 1Aix1 and 1Aiy1 subunits had special molecular structure, belonging to the hybrid type compounding between typical x- and y-type subunit. The xy-type subunit 1Aix1 is composed of the N-terminal of x-type and C-terminal of y-type, whereas yx-type subunit 1Aiy1 comprises the N-terminal of y-type and C-terminal of x-type. This result strongly supported the hypothesis of unequal crossover mechanism that might generate the novel coding sequence for the hybrid type of HMW-GSs. In addition to the aforementioned, the other novel characteristics of the seven subunits were also discussed. Finally, phylogenetic analysis based on HMW-GS genes was carried out and provided new insights into the evolutionary biology of Ag. intermedium. PMID:24503781

  3. Saccharomyces cerevisiae Nip7p is required for efficient 60S ribosome subunit biogenesis.

    PubMed Central

    Zanchin, N I; Roberts, P; DeSilva, A; Sherman, F; Goldfarb, D S

    1997-01-01

    The Saccharomyces cerevisiae temperature-sensitive (ts) allele nip7-1 exhibits phenotypes associated with defects in the translation apparatus, including hypersensitivity to paromomycin and accumulation of halfmer polysomes. The cloned NIP7+ gene complemented the nip7-1 ts growth defect, the paromomycin hypersensitivity, and the halfmer defect. NIP7 encodes a 181-amino-acid protein (21 kDa) with homology to predicted products of open reading frames from humans, Caenorhabditis elegans, and Arabidopsis thaliana, indicating that Nip7p function is evolutionarily conserved. Gene disruption analysis demonstrated that NIP7 is essential for growth. A fraction of Nip7p cosedimented through sucrose gradients with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Nip7p was found evenly distributed throughout the cytoplasm and nucleus by indirect immunofluorescence; however, in vivo localization of a Nip7p-green fluorescent protein fusion protein revealed that a significant amount of Nip7p is present inside the nucleus, most probably in the nucleolus. Depletion of Nip7-1p resulted in a decrease in protein synthesis rates, accumulation of halfmers, reduced levels of 60S subunits, and, ultimately, cessation of growth. Nip7-1p-depleted cells showed defective pre-rRNA processing, including accumulation of the 35S rRNA precursor, presence of a 23S aberrant precursor, decreased 20S pre-rRNA levels, and accumulation of 27S pre-rRNA. Delayed processing of 27S pre-rRNA appeared to be the cause of reduced synthesis of 25S rRNA relative to 18S rRNA, which may be responsible for the deficit of 60S subunits in these cells. PMID:9271378

  4. Thermostable Cross-Protective Subunit Vaccine against Brucella Species

    PubMed Central

    Barabé, Nicole D.; Grigat, Michelle L.; Lee, William E.; Poirier, Robert T.; Jager, Scott J.; Berger, Bradley J.

    2014-01-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 105 CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  5. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae).

    PubMed

    Rosser, Thomas G; Griffin, Matt J; Quiniou, Sylvie M A; Khoo, Lester H; Pote, Linda M

    2014-12-01

    In the southeastern USA, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. However, only two of these have confirmed life cycles that involve the oligochaete Dero digitata as the definitive host. During a health screening of farm-raised channel catfish, several fish presented with deformed primary lamellae. Lamellae harbored large, nodular, white pseudocysts 1.25 mm in diameter, and upon rupturing, these pseudocysts released Henneguya myxospores, with a typical lanceolate-shaped spore body, measuring 17.1 ± 1.0 μm (mean ± SD; range = 15.0-19.3 μm) in length and 4.8 ± 0.4 μm (3.7-5.6 μm) in width. Pyriform-shaped polar capsules were 5.8 ± 0.3 μm in length (5.1-6.4 μm) and 1.7 ± 0.1 μm (1.4-1.9 μm) in width. The two caudal processes were 40.0 ± 5.1 μm in length (29.5-50.0 μm) with a spore length of 57.2 ± 4.7 (46.8-66.8 μm). The contiguous SSU rRNA gene sequence obtained from myxospores of five excised cysts did not match any Henneguya sp. in GenBank. The greatest sequence homology (91% over 1,900 bp) was with Henneguya pellis, associated with blister-like lesions on the skin of blue catfish Ictalurus furcatus. Based on the unique combination of pseudocyst and myxospore morphology, tissue location, host, and SSU rRNA gene sequence data, we report this isolate to be a previously unreported species, Henneguya bulbosus sp. nov.

  6. U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals.

    PubMed Central

    Nicoloso, M; Caizergues-Ferrer, M; Michot, B; Azum, M C; Bachellerie, J P

    1994-01-01

    We have found that intron 11 of the nucleolin gene in humans and rodents encodes a previously unidentified small nucleolar RNA, termed U20. The single-copy U20 sequence is located on the same DNA strand as the nucleolin mRNA. U20 RNA, which does not possess a trimethyl cap, appears to result from intronic RNA processing and not from transcription of an independent gene. In mammals, U20 RNA is an 80-nucleotide-long, metabolically stable species, present at about 7 x 10(3) molecules per exponentially growing HeLa cell. It has a nucleolar localization, as indicated by fluorescence microscopy following in situ hybridization with digoxigenin-labeled oligonucleotides. U20 RNA contains the box C and box D sequence motifs, hallmarks of most small nucleolar RNAs reported to date, and is immunoprecipitated by antifibrillarin antibodies. It also exhibits a 5'-3' terminal stem bracketing the box C-box D motifs like U14, U15, U16, or Y RNA. A U20 homolog of similar size has been detected in all vertebrate classes by Northern (RNA) hybridization with mammalian oligonucleotide probes. U20 RNA contains an extended region (21 nucleotides) of perfect complementarity with a phylogenetically conserved sequence in 18S rRNA. This complementarity is strongly preserved among distant vertebrates, suggesting that U20 RNA may be involved in the formation of the small ribosomal subunit like nucleolin, the product of its host gene. Images PMID:8065311

  7. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    PubMed Central

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  8. Localization of the regulatory particle subunit Sem1 in the 26S proteasome

    SciTech Connect

    Bohn, Stefan; Sakata, Eri; Beck, Florian; Pathare, Ganesh R.; Schnitger, Jérôme; Nágy, Istvan; Baumeister, Wolfgang Förster, Friedrich

    2013-05-31

    Highlights: •26S proteasome subunit Sem1 was mapped using cryo-EM and cross-linking data. •C-terminal helix of Sem1 located near winged helix motif of Rpn7. •N-terminal part of Sem1 tethers Rpn7, Rpn3 and lid helical bundle. •Sem1 binds differently to PCI-domains of proteasome subunit Rpn7 and TREX-2 subunit Thp1. -- Abstract: The ubiquitin–proteasome system is responsible for regulated protein degradation in the cell with the 26S proteasome acting as its executive arm. The molecular architecture of this 2.5 MDa complex has been established recently, with the notable exception of the small acidic subunit Sem1. Here, we localize the C-terminal helix of Sem1 binding to the PCI domain of the subunit Rpn7 using cryo-electron microscopy single particle reconstruction of proteasomes purified from yeast cells with sem1 deletion. The approximate position of the N-terminal region of Sem1 bridging the cleft between Rpn7 and Rpn3 was inferred based on site-specific cross-linking data of the 26S proteasome. Our structural studies indicate that Sem1 can assume different conformations in different contexts, which supports the idea that Sem1 functions as a molecular glue stabilizing the Rpn3/Rpn7 heterodimer.

  9. Reconfiguration of yeast 40S ribosomal subunit domains by the translation initiation multifactor complex.

    PubMed

    Gilbert, Robert J C; Gordiyenko, Yulya; von der Haar, Tobias; Sonnen, Andreas F-P; Hofmann, Gregor; Nardelli, Maria; Stuart, David I; McCarthy, John E G

    2007-04-01

    In the process of protein synthesis, the small (40S) subunit of the eukaryotic ribosome is recruited to the capped 5' end of the mRNA, from which point it scans along the 5' untranslated region in search of a start codon. However, the 40S subunit alone is not capable of functional association with cellular mRNA species; it has to be prepared for the recruitment and scanning steps by interactions with a group of eukaryotic initiation factors (eIFs). In budding yeast, an important subset of these factors (1, 2, 3, and 5) can form a multifactor complex (MFC). Here, we describe cryo-EM reconstructions of the 40S subunit, of the MFC, and of 40S complexes with MFC factors plus eIF1A. These studies reveal the positioning of the core MFC on the 40S subunit, and show how eIF-binding induces mobility in the head and platform and reconfigures the head-platform-body relationship. This is expected to increase the accessibility of the mRNA channel, thus enabling the 40S subunit to convert to a recruitment-competent state.

  10. Influence of magnesium and polyamines on the reactivity of individual ribosomal subunit proteins to lactoperoxidase-catalyzed iodination.

    PubMed

    Michalski, C J; Boyle, S M; Sells, B H

    1979-03-01

    30S and 50S subunits, in the presence of either 20 mM Mg2+ or 6 mM Mg2+ and 5mM spermidine plus 25 mM putrescine, were observed to completely associate to form 70S monosomes as monitored by sucrose gradient sedimentation. Subunits maintained under the above ionic conditions were compared with 30S and 50S particles at low (6 mM) magnesium concentration with respect to the reactivity of individual ribosomal proteins to lactoperoxidase-catalyzed iodination. Altered reactivity to enzymatic iodination of ribosomal proteins S4, S9, S10, S14, S17, S19, and S20 in the small subunit of ribosomal proteins, L2, L9, L11, L27, and L30 in the large subunit following incubation with high magnesium or magnesium and polyamines suggests that a conformation change in both subunits accompanies the formation of 70S monosomes. The results further demonstrate that the effect of Mg2+ on subunit conformation is mimicked when polyamines are substituted for magnesium necessary for subunit association.

  11. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  12. PKA regulatory subunit expression in tooth development.

    PubMed

    de Sousa, Sílvia Ferreira; Kawasaki, Katsushige; Kawasaki, Maiko; Volponi, Ana Angelova; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri; Sharpe, Paul T; Ohazama, Atsushi

    2014-05-01

    Protein kinase A (PKA) plays critical roles in many biological processes including cell proliferation, cell differentiation, cellular metabolism and gene regulation. Mutation in PKA regulatory subunit, PRKAR1A has previously been identified in odontogenic myxomas, but it is unclear whether PKA is involved in tooth development. The aim of the present study was to assess the expression of alpha isoforms of PKA regulatory subunit (Prkar1a and Prkar2a) in mouse and human odontogenesis by in situ hybridization. PRKAR1A and PRKAR2A mRNA transcription was further confirmed in a human deciduous germ by qRT-PCR. Mouse Prkar1a and human PRKAR2A exhibited a dynamic spatio-temporal expression in tooth development, whereas neither human PRKAR1A nor mouse Prkar2a showed their expression in odontogenesis. These isoforms thus showed different expression pattern between human and mouse tooth germs. PMID:24755349

  13. Recent Advances in Subunit Vaccine Carriers.

    PubMed

    Vartak, Abhishek; Sucheck, Steven J

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  14. PKA regulatory subunit expression in tooth development.

    PubMed

    de Sousa, Sílvia Ferreira; Kawasaki, Katsushige; Kawasaki, Maiko; Volponi, Ana Angelova; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri; Sharpe, Paul T; Ohazama, Atsushi

    2014-05-01

    Protein kinase A (PKA) plays critical roles in many biological processes including cell proliferation, cell differentiation, cellular metabolism and gene regulation. Mutation in PKA regulatory subunit, PRKAR1A has previously been identified in odontogenic myxomas, but it is unclear whether PKA is involved in tooth development. The aim of the present study was to assess the expression of alpha isoforms of PKA regulatory subunit (Prkar1a and Prkar2a) in mouse and human odontogenesis by in situ hybridization. PRKAR1A and PRKAR2A mRNA transcription was further confirmed in a human deciduous germ by qRT-PCR. Mouse Prkar1a and human PRKAR2A exhibited a dynamic spatio-temporal expression in tooth development, whereas neither human PRKAR1A nor mouse Prkar2a showed their expression in odontogenesis. These isoforms thus showed different expression pattern between human and mouse tooth germs.

  15. Polymorphism of genes coding for nuclear 18S rRNA indicates genetic distinctiveness of anastomosis group 10 from other groups in the Rhizoctonia solani species complex.

    PubMed

    Liu, Z L; Domier, L L; Sinclair, J B

    1995-07-01

    DNA polymorphism in the 18S nuclear rRNA gene region was investigated by using 11 restriction endonucleases for 161 isolates of 25 intraspecific groups (ISGs) representing 11 reported anastomosis groups (AGs) of Rhizoctonia solani. A PCR-based restriction mapping method in which enzymatically amplified DNA fragments and subfragments were digested with one or two restriction enzymes was employed. Four types of DNA restriction maps of this region were constructed for these 25 ISGs. Map type I of the 18S rDNA region was represented by isolates of a majority of R. solani ISGs. Map types II and III, represented by ISG 2E and 9 isolates and 5C isolates, respectively, differed from map I by the absence of one (map type II) or two (map type III) restriction sites. Map type IV, represented by ISG 10A and B (or AG 10) isolates, showed significant restriction site variations, with five enzymes in this region compared with those of the remaining ISGs or AGs. Ten of the 25 restriction sites in the 18S rRNA gene region were informative and selected for analysis. Previously reported restriction maps of the 5.8S rRNA gene region, including the internal transcribed spacers, were aligned with each other, and 12 informative restriction sites were identified. These data were used alone and in combination to evaluate group relationships. Analyses derived from these data sets by maximum parsimony and likelihood methods showed that AG 10 isolates were distinct and distantly related to the majority isolates of the other AGs of this species complex.

  16. Use of Subgenic 18S Ribosomal DNA PCR and Sequencing for Genus and Genotype Identification of Acanthamoebae from Humans with Keratitis and from Sewage Sludge

    PubMed Central

    Schroeder, Jill M.; Booton, Gregory C.; Hay, John; Niszl, Ingrid A.; Seal, David V.; Markus, Miles B.; Fuerst, Paul A.; Byers, Thomas J.

    2001-01-01

    This study identified subgenic PCR amplimers from 18S rDNA that were (i) highly specific for the genus Acanthamoeba, (ii) obtainable from all known genotypes, and (iii) useful for identification of individual genotypes. A 423- to 551-bp Acanthamoeba-specific amplimer ASA.S1 obtained with primers JDP1 and JDP2 was the most reliable for purposes i and ii. A variable region within this amplimer also identified genotype clusters, but purpose iii was best achieved with sequencing of the genotype-specific amplimer GTSA.B1. Because this amplimer could be obtained from any eukaryote, axenic Acanthamoeba cultures were required for its study. GTSA.B1, produced with primers CRN5 and 1137, extended between reference bp 1 and 1475. Genotypic identification relied on three segments: bp 178 to 355, 705 to 926, and 1175 to 1379. ASA.S1 was obtained from single amoeba, from cultures of all known 18S rDNA genotypes, and from corneal scrapings of Scottish patients with suspected Acanthamoeba keratitis (AK). The AK PCR findings were consistent with culture results for 11 of 15 culture-positive specimens and detected Acanthamoeba in one of nine culture-negative specimens. ASA.S1 sequences were examined for 6 of the 11 culture-positive isolates and were most closely associated with genotypic cluster T3-T4-T11. A similar distance analysis using GTSA.B1 sequences identified nine South African AK-associated isolates as genotype T4 and three isolates from sewage sludge as genotype T5. Our results demonstrate the usefulness of 18S ribosomal DNA PCR amplimers ASA.S1 and GTSA.B1 for Acanthamoeba-specific detection and reliable genotyping, respectively, and provide further evidence that T4 is the predominant genotype in AK. PMID:11326011

  17. Subunit organization in cytoplasmic dynein subcomplexes

    PubMed Central

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  18. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    SciTech Connect

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce an immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.

  19. Na+ Channel β Subunits: Overachievers of the Ion Channel Family

    PubMed Central

    Brackenbury, William J.; Isom, Lori L.

    2011-01-01

    Voltage-gated Na+ channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B–SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSCα subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin superfamily of cell adhesion molecules and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na+ current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of physiopathologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington’s disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independently of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy. PMID:22007171

  20. Carbohydrate binding specificities and crystal structure of the cholera toxin-like B-subunit from Citrobacter freundii.

    PubMed

    Jansson, Lena; Angström, Jonas; Lebens, Michael; Imberty, Anne; Varrot, Annabelle; Teneberg, Susann

    2010-05-01

    Enterotoxigenic Escherichia coli and Vibrio cholerae are well known causative agents of severe diarrheal diseases. Both pathogens produce AB(5) toxins, with one enzymatically active A-subunit and a pentamer of receptor-binding B-subunits. The primary receptor for both B-subunits is the GM1 ganglioside (Galbeta3GalNAcbeta4(NeuAcalpha3)Galbeta4GlcbetaCer), but the B-subunits from porcine isolates of E. coli also bind neolacto-(Galbeta4GlcNAcbeta-)terminated glycoconjugates and the B-subunits from human isolates of E. coli (hLTB) have affinity for blood group A type 2-(GalNAcalpha3(Fucalpha2)Galbeta4GlcNAcbeta-)terminated glycoconjugates. A B-subunit with 73% sequence identity to the B-subunits of cholera toxin and the heat-labile toxin of E. coli is produced by certain strains of enteropathogenic E. coli and by Citrobacter freundii. This C. freundii B-subunit (CFXB) has now been expressed in V. cholerae, and isolated in high yields. Glycosphingolipid binding studies show that CFXB binds to the GM1 ganglioside with high affinity. In addition, CFXB has high affinity for both neolacto-terminated and blood group A type 2-terminated glycoconjugates. The crystal structure of the pentameric arrangement of C. freundii B-subunits display high structural similarity with related proteins from E. coli and V. cholerae and oligosaccharide binding sites can be identified on the protein surface. Small changes in the 88-95 loop connecting the GM1 and blood group A binding sites explains the minor changes in affinity seen for these two ligands. However, the enhanced affinity of CFXB for neolacto-terminated structures can be sought in the Lys34Tyr substitution affording additional hydrogen bond interactions between the tyrosyl side chain and the GlcNAcbeta3Galb4Glcbeta1 segment of neolactotetraosylceramide via bridging water molecules.

  1. Molecular phylogenetic analysis of the coccidian cephalopod parasites Aggregata octopiana and Aggregata eberthi (Apicomplexa: Aggregatidae) from the NE Atlantic coast using 18S rRNA sequences.

    PubMed

    Castellanos-Martínez, Sheila; Pérez-Losada, Marcos; Gestal, Camino

    2013-08-01

    The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are identified in European waters. Extensive investigation of their morphology resulted in a redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus clarifying confusing descriptions recorded in the past. The present study sequenced the 18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo (NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed between A. octopiana samples from the same two areas, which suggest the existence of two species. Based on previous morphological evidence, host specificity data, and new molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the valid type species.

  2. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Luo, Zhu-Hua; Guo, Shuangshuang; Pang, Ka-Lai

    2016-03-01

    We investigated the diversity of fungal communities in 6 different deep-sea sediment samples of the Pacific Ocean based on three different types of clone libraries, including internal transcribed spacer (ITS), 18S rDNA, and 28S rDNA regions. A total of 1978 clones were generated from 18 environmental clone libraries, resulting in 140 fungal operational taxonomic units (OTUs), including 18 OTUs from ITS, 44 OTUs from 18S rDNA, and 78 OTUs from 28S rDNA gene primer sets. The majority of the recovered sequences belonged to diverse phylotypes of the Ascomycota and Basidiomycota. Additionally, our study revealed a total of 46 novel fungal phylotypes, which showed low similarities (<97%) with available fungal sequences in the GenBank, including a novel Zygomycete lineage, suggesting possible new fungal taxa occurring in the deep-sea sediments. The results suggested that 28S rDNA is an efficient target gene to describe fungal community in deep-sea environment.

  3. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae sedis).

    PubMed

    Moriya, M; Nakayama, T; Inouye, I

    2000-05-01

    A new heterotrophic flagellate Wobblia lunata gen. et sp. nov. is described. This organism usually attaches to the substratum showing a wobbling motion, and sometimes glides on the substratum or swims freely in the medium. W. lunata has various features characteristic of the stramenopiles. These include a hairy flagellum with tripartite tubular hairs, a mitochondrion with tubular cristae, arrangement of flagellar apparatus components and a double helix in the flagellar transition zone. W. lunata shares a double helix with heterotrophic stramenopiles, including Developayella elegans, oomycetes, hyphochytrids, opalinids and proteromonads, and could be placed in the phylum Bigyra Cavalier-Smith. However, from 18S rDNA tree analysis, these organisms form two distantly-related clades in the stramenopiles, and Wobblia appears at the base of the stramenopiles. Evaluation of morphological features and comparison of 18S rDNA sequences indicate that W. lunata is a member of the stramenopiles, but it is distinct from any other stramenopiles so far described. Its phylogenetic position within the stramenopiles is uncertain and therefore W. lunata is described as a stramenopile incertae sedis. PMID:10896132

  4. Karyotype diversity of four species of the incertae sedis group (Characidae) from different hydrographic basins: analysis of AgNORs, CMA3 and 18S rDNA.

    PubMed

    Mendes, M M; da Rosa, R; Giuliano-Caetano, L; Dias, A L

    2011-01-01

    A large number of genera in the tropical fish family Characidae are incertae sedis. Cytogenetic analysis was made of four of these species: Astyanax eigenmanniorum, Deuterodon stigmaturus, Hyphessobrycon luetkenii, and H. anisitsi, collected from various hydrographic basins: hydrographic system from Laguna dos Patos/RS, Tramandaí basin/RS and Tibagi River basin/PR. The first two species were collected in their type locality in the State of Rio Grande do Sul. The 2n = 48 karyotype was observed only in A. eigenmanniorum, while the other species had 2n = 50 chromosomes, with different karyotypic formulas. There was weak heterochromatin staining in the pericentromeric region of A. eigenmanniorum, D. stigmaturus and H. luetkenni chromosomes. In H. anisitsi, heterochromatin appeared to be more abundant and distributed in the pericentromeric and terminal regions of the chromosomes; three pairs showed more evident heterochromatic blocks. There were multiple Ag-NORs in all populations, visualized by FISH with an 18S rDNA probe. While D. stigmaturus and H. luetkenii had conserved AgNOR, CMA3 and 18S rDNA sites, the other two species showed intra- and interindividual variation at these sites. The karyotype variability was high, as is common in this group of fish. Different species arising from isolated hydrographic basins maintain an elevated level of karyotype differentiation, mainly with respect to chromosome structure, heterochromatin distribution and rDNA localization. This is the first report with cytogenetic data for D. stigmaturus and H. luetkenii. PMID:22179995

  5. Physical mapping of 18S and 5S rDNA loci and histone H3 gene in grasshopper species of the subfamily Gomphocerinae (Acrididae).

    PubMed

    Silva-Neto, L C; Bernardino, A C S; Loreto, V; Moura, R C

    2015-01-01

    In this study, fluorescence in situ hybridization (FISH) analysis was used to determine and compare the numbers and chromosomal locations of two multigene families (rDNA and histone H3) in four Neotropical species of gomphocerine grasshoppers. FISH using the 18S rDNA probe identified a single site on the S9 chromosome of Amblytropidia sp and Cauratettix borelli, a single site on chromosome M6 of Compsacris pulcher, and two sites (chromosomes L1 and L2) in Orphulella punctata. By contrast, FISH with a 5S rDNA probe identified dispersion of this sequence in the genomes of the four species, with evidence of intraspecific variations. Amblytropidia sp had six to eight FISH signals on autosomal chromosomes, while C. pulcher exhibited a signal only on the M5 bivalent. The histone H3 gene was less variable and was restricted to a single pair in all species. The conservation of the numbers and locations of 18S rDNA and H3 genes in conjunction with data from the literature was useful for evaluating karyotype evolution in this subfamily. The variation in the number and sizes of 5S rDNA sites indicates a process of recent dispersion that might have been mediated by transposition. PMID:26634462

  6. Evolutionary relationships between 15 Plasmodium species from new and old world primates (including humans): an 18S rDNA cladistic analysis.

    PubMed

    Leclerc, M C; Hugot, J P; Durand, P; Renaud, F

    2004-12-01

    We present a new phylogenetic analysis of 15 primate Plasmodium species based on 18S rDNA sequences including new sequences of Plasmodium coatneyi, P. fieldi, P. gonderi, P. hylobati and P. simium. The results are discussed in the context of the parasite host species and their geographical distribution. Contrary to other phylogenies constructed with this 18S rDNA molecule, we observed that the topology of phylogenetic trees was not affected either by the quality of the nucleotide matrices, or by the species present in the outgroup. This analysis showed the following. (1) The polyphyly of human Plasmodium is confirmed. (2) The monophyly of Plasmodium from Old World monkeys is confirmed by the new added sequences and P. gonderi, an African species, possibly could be at the root of this group. (3) The most parsimonious biogeographical hypothesis is that P. vivax originated in Asia; thus, its related species P. simium appears to be derived through a transfer from the human P. vivax to New World monkey species in South America. (4) Sampling efforts of non-human primate Plasmodium could permit improvement of the knowledge of primate Plasmodium phylogeny and also consideration of the risks of malaria emergence from monkey reservoirs.

  7. Loop-mediated isothermal amplification assay for detection of Histomonas meleagridis infection in chickens targeting the 18S rRNA sequences.

    PubMed

    Xu, Jinjun; Qu, Chanbao; Tao, Jianping

    2014-01-01

    Histomonas meleagridis is the causative agent of histomonosis, a disease of gallinaceous fowl characterized by necrotic typhlitis, hepatitis, and high mortality. To develop a rapid and sensitive method for specific detection of H. meleagridis, an assay based on loop-mediated isothermal amplification (LAMP) targeting the 18S rRNA gene was established. The detection limit of the LAMP assay was 10 copies for standard plasmids containing an 18S rRNA gene fragment, which was superior to that of a classical PCR method. Specificity tests revealed that there was no cross-reaction with other protozoa such as Trichomonas gallinae, Blastocytis sp, Tetratrichomonas gallinarum, Plasmodium gallinaceum, Toxoplasma gondii, Eimeria tenella, Leucocytozoon caulleryi and Leucocytozoon sabrazesi. The assay was evaluated for its diagnostic utility using liver and caeca samples collected from suspected field cases, the detection rate was 100 and 97.92%, respectively. These results indicate that the LAMP assay may be a useful tool for rapid detection and identification of H. meleagridis in poultry. PMID:24320623

  8. Physical mapping of 18S and 5S rDNA loci and histone H3 gene in grasshopper species of the subfamily Gomphocerinae (Acrididae).

    PubMed

    Silva-Neto, L C; Bernardino, A C S; Loreto, V; Moura, R C

    2015-11-25

    In this study, fluorescence in situ hybridization (FISH) analysis was used to determine and compare the numbers and chromosomal locations of two multigene families (rDNA and histone H3) in four Neotropical species of gomphocerine grasshoppers. FISH using the 18S rDNA probe identified a single site on the S9 chromosome of Amblytropidia sp and Cauratettix borelli, a single site on chromosome M6 of Compsacris pulcher, and two sites (chromosomes L1 and L2) in Orphulella punctata. By contrast, FISH with a 5S rDNA probe identified dispersion of this sequence in the genomes of the four species, with evidence of intraspecific variations. Amblytropidia sp had six to eight FISH signals on autosomal chromosomes, while C. pulcher exhibited a signal only on the M5 bivalent. The histone H3 gene was less variable and was restricted to a single pair in all species. The conservation of the numbers and locations of 18S rDNA and H3 genes in conjunction with data from the literature was useful for evaluating karyotype evolution in this subfamily. The variation in the number and sizes of 5S rDNA sites indicates a process of recent dispersion that might have been mediated by transposition.

  9. PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit.

    PubMed

    Calebiro, Davide; Hannawacker, Annette; Lyga, Sandra; Bathon, Kerstin; Zabel, Ulrike; Ronchi, Cristina; Beuschlein, Felix; Reincke, Martin; Lorenz, Kristina; Allolio, Bruno; Kisker, Caroline; Fassnacht, Martin; Lohse, Martin J

    2014-01-01

    We recently identified a high prevalence of mutations affecting the catalytic (Cα) subunit of protein kinase A (PKA) in cortisol-secreting adrenocortical adenomas. The two identified mutations (Leu206Arg and Leu199_Cys200insTrp) are associated with increased PKA catalytic activity, but the underlying mechanisms are highly controversial. Here we utilize a combination of biochemical and optical assays, including fluorescence resonance energy transfer in living cells, to analyze the consequences of the two mutations with respect to the formation of the PKA holoenzyme and its regulation by cAMP. Our results indicate that neither mutant can form a stable PKA complex, due to the location of the mutations at the interface between the catalytic and the regulatory subunits. We conclude that the two mutations cause high basal catalytic activity and lack of regulation by cAMP through interference of complex formation between the regulatory and the catalytic subunits of PKA. PMID:25477193

  10. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  11. Crystal structure of a putative type I restriction-modification S subunit from Mycoplasma genitalium.

    PubMed

    Calisto, Bárbara M; Pich, Oscar Q; Piñol, Jaume; Fita, Ignacio; Querol, Enrique; Carpena, Xavier

    2005-08-26

    The crystal structure of the eubacteria Mycoplasma genitalium ORF MG438 polypeptide, determined by multiple anomalous dispersion and refined at 2.3 A resolution, reveals the organization of S subunits from the Type I restriction and modification system. The structure consists of two globular domains, with about 150 residues each, separated by a pair of 40 residue long antiparallel alpha-helices. The globular domains correspond to the variable target recognition domains (TRDs), as previously defined for S subunits on sequence analysis, while the two helices correspond to the central (CR1) and C-terminal (CR2) conserved regions, respectively. The structure of the MG438 subunit presents an overall cyclic topology with an intramolecular 2-fold axis that superimposes the N and the C-half parts, each half containing a globular domain and a conserved helix. TRDs are found to be structurally related with the small domain of the Type II N6-adenine DNA MTase TaqI. These relationships together with the structural peculiarities of MG438, in particular the presence of the intramolecular quasi-symmetry, allow the proposal of a model for S subunits recognition of their DNA targets in agreement with previous experimental results. In the crystal, two subunits of MG438 related by a crystallographic 2-fold axis present a large contact area mainly involving the symmetric interactions of a cluster of exposed hydrophobic residues. Comparison with the recently reported structure of an S subunit from the archaea Methanococcus jannaschii highlights the structural features preserved despite a sequence identity below 20%, but also reveals important differences in the globular domains and in their disposition with respect to the conserved regions. PMID:16038930

  12. Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II.

    PubMed

    Amegadzie, B Y; Ahn, B Y; Moss, B

    1992-05-01

    A previously unrecognized 7-kDa polypeptide copurified with the DNA-dependent RNA polymerase of vaccinia virus virions. Internal amino acid sequences of the small protein matched a viral genomic open reading frame of 63 codons. Antipeptide antiserum was used to confirm the specific and complete association of the 7-kDa protein with RNA polymerase. The amino acid sequence predicted from the viral gene, named rpo7, was 23% identical to that of the smallest subunit of Saccharomyces cerevisiae RNA polymerase II, and a metal-binding motif, Cys-X-X-Cys-Gly, was located at precisely the same location near the N terminus in the two proteins. RNA analyses demonstrated early transcriptional initiation and termination signals in the rpo7 gene sequence. The viral RNA polymerase subunit was synthesized during the early phase of infection and continued to accumulate during the late phase.

  13. [Nose surgical anatomy in six aesthetic subunits].

    PubMed

    Chaput, B; Lauwers, F; Lopez, R; Saboye, J; André, A; Grolleau, J-L; Chavoin, J-P

    2013-04-01

    The nose is a complex entity, combining aesthetic and functional roles. Descriptive anatomy is a fundamental science that it can be difficult to relate directly to our daily surgical activity. Reasoning in terms of aesthetic subunits to decide on his actions appeared to us so obvious. The aim of this paper is to resume the anatomical bases relevant to our daily practice in order to fully apprehend the restorative or cosmetic procedures. We discuss the limits of the systematization of these principles in nasal oncology.

  14. 18S rDNA analysis of alkenone-producing haptophyte(s) preserved in surface sediments of Lake Toyoni, Japan

    NASA Astrophysics Data System (ADS)

    McColl, J. L.; Couto, J.; Bendle, J. A.; Henderson, A. C.; Seki, O.; Phoenix, V. R.; Toney, J. L.

    2013-12-01

    Alkenones (long chain ketones) are readily preserved in sedimentary archives and have the potential to provide quantitative reconstructions of past water temperature. Alkenones are produced by a limited number of haptophyte algae in the marine and also some lacustrine systems. However, lakes are heterogeneous: an individual lake will have a unique combination of ecological conditions, haptophyte species and seasonal alkenone production that contributes to the sedimentary record. Haptophyte algae species have different sensitivities to temperature; therefore identifying the alkenone producer(s) prior to down-core temperature reconstructions is critical before selecting the most appropriate temperature calibration. We present a study from Lake Toyoni, a freshwater lake in Hokkaido, Japan that has alkenones preserved in surface sediments. The aim of this study is to identify the alkenone producer(s) within the lake using 18S rDNA analyses. Preserved rDNA of planktonic phototrophic algae was extracted from surface sediments of Lake Toyoni and phylogenetic analyses of the rDNA sequences suggest alkenones are produced by a single haptophyte within the class Prymnesiophyceae (order Isochrysidales). The Lake Toyoni alkenone-producer shares a distinct phylotype with a haptophyte reported from water filter samples collected in Lake BrayaSø, Greenland (D'Andrea et al., 2006). Similarity between the 18S rDNA sequences from Lake Toyoni and Lake BrayaSø provides a basis for applying (and updating) the Greenland lake temperature calibration. Applying this temperature calibration (T°C = 40.8 [UK37] + 31.8, R2=0.96; n=34) to the surface sediment alkenone unsaturation index from Lake Toyoni gives an estimated lake surface temperature (LST) of 8°C. This is in line with observed LST at Lake Toyoni, which ranges between 7 - 22°C (Apr 2011 to Nov 2011). The occurrence and identification of a single alkenone producer in Lake Toyoni means problems posed by a mixture of haptophytes in

  15. Liposome encapsulated subunit (VP1) and virion vaccines against foot-and-mouth disease.

    PubMed

    Vasantha, S; Antony, A; Lal, S M

    1987-03-01

    Subunit vaccine prepared from VP1 protein of foot-and-mouth disease virus (FMDV) types 0 and Asia 1 protected guinea pigs against FMD and also induced high levels of antibody. Liposomes have been used as a safe and potent immunological adjuvant for FMD vaccines. Vaccines prepared from inactivated virus types 0 and Asia 1 encapsulated in liposomes protected guinea pigs against challenge with homologous virus and showed good antibody response in pigs on a small scale field trial. PMID:2886019

  16. Protist 18S rRNA gene Sequence Analysis Reveals Multiple Sources of Organic Matter Contributing to Turbidity Maxima of the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Zuber, Peter A.

    2011-10-05

    The Columbia River estuary is traditionally considered a detritus-based ecosystem fueled in summer by organic matter (OM) from expired freshwater diatoms. Since Estuarine Turbidity Maxima (ETM) are sites of accumulation and transformation of this phytoplankton-derived OM, to further characterize the ETM protist assemblage, we collected in August 2007 bottom waters throughout an ETM event, as well as surface water during the peak of bottom turbidity, and performed biogeochemical, microscopic and molecular (18S rRNA gene clone libraries) analyses. These data confirmed that the majority of the particulate OM in ETMs is derived from chlorophyll a-poor particulate organic carbon tagged by DNA too damaged to be detected by molecular analysis.

  17. [Variability of nuclear 18S-25S rDNA of Gentiana lutea L. in nature and in tissue culture in vitro].

    PubMed

    Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A

    2004-01-01

    18S-25S rDNA sequence in genomes of G. lutea plants from different natural populations and from tissue culture has been studied with blot-hybridization method. It was shown that ribosomal repeats are represented by the variants which differ for their size and for the presence of additional HindIII restriction site. Genome of individual plant usually possesses several variants of DNA repeats. Interpopulation variability according to their quantitative ratio and to the presence of some of them has been shown. Modifications of the range of rDNA repeats not exceeding intraspecific variability were observed in callus tissues in comparison with the plants of initial population. Non-randomness of genome modifications in the course of cell adaptation to in vitro conditions makes it possible to some extent to forecast these modifications in tissue culture.

  18. Comparative analysis of eukaryotic marine microbial assemblages from 18S rRNA gene and gene transcript clone libraries by using different methods of extraction.

    PubMed

    Koid, Amy; Nelson, William C; Mraz, Amy; Heidelberg, Karla B

    2012-06-01

    Eukaryotic marine microbes play pivotal roles in biogeochemical nutrient cycling and ecosystem function, but studies that focus on the protistan biogeography and genetic diversity lag-behind studies of other microbes. 18S rRNA PCR amplification and clone library sequencing are commonly used to assess diversity that is culture independent. However, molecular methods are not without potential biases and artifacts. In this study, we compare the community composition of clone libraries generated from the same water sample collected at the San Pedro Ocean Time Series (SPOTs) station in the northwest Pacific Ocean. Community composition was assessed using different cell lysis methods (chemical and mechanical) and the extraction of different nucleic acids (DNA and RNA reverse transcribed to cDNA) to build Sanger ABI clone libraries. We describe specific biases for ecologically important phylogenetic groups resulting from differences in nucleic acid extraction methods that will inform future designs of eukaryotic diversity studies, regardless of the target sequencing platform planned.

  19. Genus Tetrastemma Ehrenberg, 1831 (Phylum Nemertea)--a natural group? Phylogenetic relationships inferred from partial 18S rRNA sequences.

    PubMed

    Strand, Malin; Sundberg, Per

    2005-10-01

    We investigated the monophyletic status of the hoplonemertean taxon Tetrastemma by reconstructing the phylogeny for 22 specimens assigned to this genus, together with another 25 specimens from closely related hoplonemertean genera. The phylogeny was based on partial 18S rRNA sequences using Bayesian and maximum likelihood analyses. The included Tetrastemma-species formed a well-supported clade, although the within-taxon relationships were unsettled. We conclude that the name Tetrastemma refers to a monophyletic taxon, but that it cannot be defined by morphological synapomorphies, and our results do not imply that all the over 100 species assigned to this genus belong to it. The results furthermore indicate that the genera Amphiporus and Emplectonema are non-monophyletic.

  20. Crystal Structure of Rcl1 an Essential Component of the Eukaryal pre-rRNA Processosome Implicated in 18s rRNA Biogenesis

    SciTech Connect

    T Tanaka; P Smith; S Shuman

    2011-12-31

    Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3'-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 {angstrom} crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.

  1. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants.

    PubMed

    Stenøien, H K

    2008-03-01

    The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential.

  2. Molecular typing of sand fly species (Diptera, Psychodidae, Phlebotominae) from areas endemic for Leishmaniasis in Ecuador by PCR-RFLP of 18S ribosomal RNA gene.

    PubMed

    Terayama, Yoshimi; Kato, Hirotomo; Gomez, Eduardo A; Uezato, Hiroshi; Calvopiña, Manuel; Iwata, Hiroyuki; Hashiguchi, Yoshihisa

    2008-09-01

    Surveillance of the distribution of sand fly species is important for prediction of the risk and expansion of Leishmania infection in endemic and surrounding areas. In the present study, a simple and reliable method of typing New World Lutzomyia species circulating in endemic areas in Ecuador was established by using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique. PCR-RFLP of 18S ribosomal RNA (rRNA) genes with the restriction enzyme AfaI and subsequently HinfI successfully identified seven sand fly species in nine endemic areas in Ecuador. Although intraspecific genetic-diversity affecting the RFLP-patterns was detected in a species, the patterns were species specific. The method promises to be a powerful tool for the classification of New World Lutzomyia species.

  3. First record of metacestodes of Mesocestoides sp. in the common starling (Sturnus vulgaris) in Europe, with an 18S rDNA characterisation of the isolate.

    PubMed

    Literák, Ivan; Olson, Peter D; Georgiev, Boyko B; Spakulová, Marta

    2004-03-01

    Metacestodes of Mesocestoides sp. were recorded from Sturnus vulgaris (Passeriformes: Stumidae) in the Czech Republic in April 2002. They were found in a cutaneous cyst and in the thoracic region of the body cavity of the bird. This is the first record of metacestodes of Mesocestoides sp. in this host species in Europe as well as the first finding of the formation of a cutaneous cyst provoked by this parasite. Additional specimens from Apodemus agrarius (Mammalia: Rodentia) from Bulgaria and Lacerta agilis (Reptilia: Squamata) from the Czech Republic were compared with that from S. vulgaris. Sequence data from the V4 variable region (18S rDNA) were used to compare genetic variability among these and previously characterized isolates of Mesocestoides spp. A number of distinct clades were recognized, with metacestodes from L. agilis showing the highest degree of relative divergence. PMID:15139376

  4. Subunit Arrangement and Function in NMDA Receptors

    SciTech Connect

    Furukawa,H.; Singh, S.; Mancusso, R.; Gouaux, E.

    2005-01-01

    Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.

  5. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.

    PubMed

    Giribet, G; Distel, D L; Polz, M; Sterrer, W; Wheeler, W C

    2000-09-01

    Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent resu