Science.gov

Sample records for 18s small-subunit ssu

  1. Molecular analysis of lungworms from European bison (Bison bonasus) on the basis of small subunit ribosomal RNA gene (SSU).

    PubMed

    Pyziel, Anna M

    2014-03-01

    Dictyocaulosis (Nematoda: Trichostrongyloidea) is a widespread parasitosis of the European bison (Bison bonasus) inhabiting Bialowieza Primeval Forest. Bearing in mind the current coexistence of bison with wild cervids, and with domestic ruminants in the 19th and 20th century, the need arose for molecular identification of lungworm species. Molecular analysis was done on adult lungworms that were obtained from the respiratory track of four free-roaming bison euthanized as a part of the population health control program. As the result of the study four identical small subunit-ribosomal RNA gene sequences from the lungworms were obtained and deposited in GenBank as sequence, 1708 bp long (GenBank KC771250). Comparative analysis of the SSU rRNA sequences revealed the European bison to be a host for the bovine lungworm Dictyocaulus viviparus.

  2. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  3. Morphology and small subunit (SSU) rRNA gene sequence of the new brackish water ciliate Neobakuella flava n. g., n. sp. (Ciliophora, Spirotricha, Bakuellidae) and SSU rRNA gene sequences of six additional hypotrichs from Korea.

    PubMed

    Li, Liqiong; Khan, Sadia Nawroz; Ji, Daode; Shin, Mann Kyoon; Berger, Helmut

    2011-01-01

    The morphology and the small subunit (SSU) rRNA gene sequence of the hypotrich Neobakuella flava n. g., n. sp. from the estuary of the Taehwagang River (Ulsan, South Korea) were investigated. The three frontal cirri, the composition of the midventral complex of cirral pairs and rows, and the simple dorsal kinety pattern of three bipolar kineties assign it to the urostyloid taxon Bakuellidae. The increased number of buccal and parabuccal cirri, the presence of transverse cirri, and more than one left marginal row, as well as the lack of caudal cirri separate Neobakuella n. g. from the other bakuellids. Neobakuella flava n. sp. has many 0.3 μm sized green and/or yellow usually dark-green cortical granules and some sparsely distributed, 2 × 1 μm sized grass green with yellowish shimmer granules. The gene sequence data indicate a close relationship with Diaxonella and a distinct separation from the bakuellid Metaurostylopsis and parabirojimid Parabirojimia. The SSU rRNA gene sequences of four further urostyloids (i.e. Diaxonella pseudorubra, Anteholosticha monilata, Metaurostylopsis struederkypkeae, Pseudourostyla cristata) and two stylonychines (i.e. Sterkiella cavicola, Sterkiella histriomuscorum) from Korea were analyzed. Anteholosticha monilata, type of the genus, is clearly separated from the Holosticha clade, supporting the morphological separation from Holosticha. Sterkiella cavicola, type of Sterkiella, clusters within the stylonychines and is obviously closely related with S. histriomuscorum.

  4. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna.

    PubMed

    Tang, Cuong Q; Leasi, Francesca; Obertegger, Ulrike; Kieneke, Alexander; Barraclough, Timothy G; Fontaneto, Diego

    2012-10-02

    Molecular tools have revolutionized the exploration of biodiversity, especially in organisms for which traditional taxonomy is difficult, such as for microscopic animals (meiofauna). Environmental (eDNA) metabarcode surveys of DNA extracted from sediment samples are increasingly popular for surveying biodiversity. Most eDNA surveys use the nuclear gene-encoding small-subunit rDNA gene (18S) as a marker; however, different markers and metrics used for delimiting species have not yet been evaluated against each other or against morphologically defined species (morphospecies). We assessed more than 12,000 meiofaunal sequences of 18S and of the main alternatively used marker [Cytochrome c oxidase subunit I (COI) mtDNA] belonging to 55 datasets covering three taxonomic ranks. Our results show that 18S reduced diversity estimates by a factor of 0.4 relative to morphospecies, whereas COI increased diversity estimates by a factor of 7.6. Moreover, estimates of species richness using COI were robust among three of four commonly used delimitation metrics, whereas estimates using 18S varied widely with the different metrics. We show that meiofaunal diversity has been greatly underestimated by 18S eDNA surveys and that the use of COI provides a better estimate of diversity. The suitability of COI is supported by cross-mating experiments in the literature and evolutionary analyses of discreteness in patterns of genetic variation. Furthermore its splitting of morphospecies is expected from documented levels of cryptic taxa in exemplar meiofauna. We recommend against using 18S as a marker for biodiversity surveys and suggest that use of COI for eDNA surveys could provide more accurate estimates of species richness in the future.

  5. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador

    PubMed Central

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.

    2015-01-01

    Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  6. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    PubMed

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.

  7. The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene.

    PubMed

    Xue, Xiao-Feng; Dong, Yan; Deng, Wei; Hong, Xiao-Yue; Shao, Renfu

    2017-04-01

    Eriophyoid mites (superfamily Eriophyoidea) comprise >4400 species worldwide. Despite over a century of study, the phylogenetic position of these mites within Acariformes is still poorly resolved. Currently, Eriophyoidea is placed in the order Trombidiformes. We inferred the high-level phylogeny of Acari with the mitochondrial (mt) genome sequences of 110 species including four eriophyoid species, and the nuclear small subunit (18S) rRNA gene sequences of 226 species including 25 eriophyoid species. Maximum likelihood (ML), Bayesian inference (BI) and Maximum parsimony (MP) methods were used to analyze the sequence data. Divergence times were estimated for major lineages of Acari using Bayesian approaches. Our analyses consistently recovered the monophyly of Eriophyoidea but rejected the monophyly of Trombidiformes. The eriophyoid mites were grouped with the sarcoptiform mites, or were the sister group of sarcoptiform mites+non-eriophyoid trombidiform mites, depending on data partition strategies. Eriophyoid mites diverged from other mites in the Devonian (384Mya, 95% HPD, 352-410Mya). The origin of eriophyoid mites was dated to the Permian (262Mya, 95% HPD 230-307Mya), mostly prior to the radiation of gymnosperms (Triassic-Jurassic) and angiosperms (early Cretaceous). We propose that the placement of Eriophyoidea in the order Trombidiformes under the current classification system should be reviewed.

  8. Morphology and Small-Subunit Ribosomal DNA Sequence of Henneguya Adiposa (Myxosporea) From Ictalurus punctatus (Siluriformes)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The original description of Henneguya adiposa, a myxozoan parasitizing channel catfish Ictalurus punctatus, is supplemented with new data on spore morphology, including photomicrographs and line drawings, as well as 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence. Elongate, translucent, linear...

  9. Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets.

    PubMed

    Bengtsson, Johan; Eriksson, K Martin; Hartmann, Martin; Wang, Zheng; Shenoy, Belle Damodara; Grelet, Gwen-Aëlle; Abarenkov, Kessy; Petri, Anna; Rosenblad, Magnus Alm; Nilsson, R Henrik

    2011-10-01

    The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa ( http://microbiology.se/software/metaxa/ ), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.

  10. Megraft: A software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metagenomic libraries represent subsamples of the total DNA found at a study site and offer unprecedented opportunities to study ecological and functional aspects of microbial communities. To examine the depth of the sequencing effort, rarefaction analysis of the ribosomal small sub-unit (SSU/16S/18...

  11. Phylogenetic Analyses of Meloidogyne Small Subunit rDNA

    PubMed Central

    De Ley, Irma Tandingan; De Ley, Paul; Vierstraete, Andy; Karssen, Gerrit; Moens, Maurice; Vanfleteren, Jacques

    2002-01-01

    Phylogenies were inferred from nearly complete small subunit (SSU) 18S rDNA sequences of 12 species of Meloidogyne and 4 outgroup taxa (Globodera pallida, Nacobbus abberans, Subanguina radicicola, and Zygotylenchus guevarai). Alignments were generated manually from a secondary structure model, and computationally using ClustalX and Treealign. Trees were constructed using distance, parsimony, and likelihood algorithms in PAUP* 4.0b4a. Obtained tree topologies were stable across algorithms and alignments, supporting 3 clades: clade I = [M. incognita (M. javanica, M. arenaria)]; clade II = M. duytsi and M. maritima in an unresolved trichotomy with (M. hapla, M. microtyla); and clade III = (M. exigua (M. graminicola, M. chitwoodi)). Monophyly of [(clade I, clade II) clade III] was given maximal bootstrap support (mbs). M. artiellia was always a sister taxon to this joint clade, while M. ichinohei was consistently placed with mbs as a basal taxon within the genus. Affinities with the outgroup taxa remain unclear, although G. pallida and S. radicicola were never placed as closest relatives of Meloidogyne. Our results show that SSU sequence data are useful in addressing deeper phylogeny within Meloidogyne, and that both M. ichinohei and M. artiellia are credible outgroups for phylogenetic analysis of speciations among the major species. PMID:19265950

  12. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms

    NASA Technical Reports Server (NTRS)

    Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.

    1994-01-01

    When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.

  13. Heteroduplex mobility assay-guided sequence discovery: elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscicida and related dinoflagellates from complex algal culture and environmental sample DNA pools.

    PubMed

    Oldach, D W; Delwiche, C F; Jakobsen, K S; Tengs, T; Brown, E G; Kempton, J W; Schaefer, E F; Bowers, H A; Glasgow, H B; Burkholder, J M; Steidinger, K A; Rublee, P A

    2000-04-11

    The newly described heterotrophic estuarine dinoflagellate Pfiesteria piscicida has been linked with fish kills in field and laboratory settings, and with a novel clinical syndrome of impaired cognition and memory disturbance among humans after presumptive toxin exposure. As a result, there is a pressing need to better characterize the organism and these associations. Advances in Pfiesteria research have been hampered, however, by the absence of genomic sequence data. We employed a sequencing strategy directed by heteroduplex mobility assay to detect Pfiesteria piscicida 18S rDNA "signature" sequences in complex pools of DNA and used those data as the basis for determination of the complete P. piscicida 18S rDNA sequence. Specific PCR assays for P. piscicida and other estuarine heterotrophic dinoflagellates were developed, permitting their detection in algal cultures and in estuarine water samples collected during fish kill and fish lesion events. These tools should enhance efforts to characterize these organisms and their ecological relationships. Heteroduplex mobility assay-directed sequence discovery is broadly applicable, and may be adapted for the detection of genomic sequence data of other novel or nonculturable organisms in complex assemblages.

  14. Rubisco small subunit gene family in cassava.

    PubMed

    Yeo, T W; Mak, Y M; Ho, K K

    1999-01-01

    Cassava leaves of two different cultivars, Brazil and Buloh, were used to isolate mRNA. The mRNA isolated was successfully used in the construction of cDNA libraries for each of the cultivars. The cDNA libraries were screened for members of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene family and positive clones were sequenced. A total of seven different SSU genes, of which five were from cultivar Brazil and two were from cultivar Buloh, were isolated. Comparison results show that even though all the sequences are highly similar, they can be classified into three subfamilies. Homology between members of the same subfamily is higher than homology between members from the same cultivar.

  15. DEAD-box RNA helicase Dbp4 is required for small-subunit processome formation and function.

    PubMed

    Soltanieh, Sahar; Osheim, Yvonne N; Spasov, Krasimir; Trahan, Christian; Beyer, Ann L; Dragon, François

    2015-03-01

    DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5' end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA.

  16. DEAD-Box RNA Helicase Dbp4 Is Required for Small-Subunit Processome Formation and Function

    PubMed Central

    Soltanieh, Sahar; Osheim, Yvonne N.; Spasov, Krasimir; Trahan, Christian; Beyer, Ann L.

    2014-01-01

    DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5′ end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA. PMID:25535329

  17. Group I introns in small subunit ribosomal DNA of several Phaeosphaeria species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a study of small subunit ribosomal RNA (SSU-rRNA) gene sequences in Phaeosphaeria species, group I introns were found in 9 of 10 P. avenaria f.sp. avenaria (Paa) isolates, 1 of 2 Phaeosphaeria sp. (P-rye) isolates from Polish rye (Sn48-1), 1 Phaeosphaeria sp. from dallis grass (P-dg) (S-93-48) an...

  18. Postimport methylation of the small subunit of ribulose-1,5-bisphosphate carboxylase in chloroplasts.

    PubMed

    Grimm, R; Grimm, M; Eckerskorn, C; Pohlmeyer, K; Röhl, T; Soll, J

    1997-05-26

    Electron impact mass spectronomy analysis of the amino-terminal amino acid of the small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase (Rubisco) showed that the amino-terminal methionine residue is post-translationally modified to N-methyl-methionine. Modification of the amino-terminal methionine residue was found in mature SSU proteins from the dicotyledonous plants pea and spinach as well as the monocotyledonous plants barley and corn. SSU methyltransferase is a soluble protein in the chloroplast stroma and accepts heterologously expressed non-methylated SSU as a substrate using S-adenosylmethionine as methyl-group donor. We show that this modification occurs after post-translational uptake of the precursor form of SSU into chloroplasts and processing to its mature size. This reaction represents a new step in the import and assembly pathway of Rubisco holoenzyme.

  19. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    PubMed

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.

  20. Molecular Evolution of the Small Subunit of Ribulose Bisphosphate Carboxylase: Nucleotide Substitution and Gene Conversion

    PubMed Central

    Meagher, R. B.; Berry-Lowe, S.; Rice, K.

    1989-01-01

    The nucleotide sequences encoding the mature portion of 31 ribulose 1,5-bisphosphate carboxylase small subunit (SSU) genes from 17 genera of plants, green algae and cyanobacteria were examined. Among the 465 pairwise sequence comparisons, SSU multigene family members within the same species were more similar to each other in nonsynonymous or replacement nucleotide substitutions (RNS) than they were to SSU sequences in any other organism. The concerted evolution of independent SSU gene lineages within closely related plant species suggests that homogenization of RNS positions has occurred at least once in the life of each genus. The rate of expected RNS among mature SSU sequences was calculated to be 1.25 X 10(-9)/site/yr for the first 70 million years (MY) of divergence with a significant slowing to 0.13 X 10(-9)/site/yr for the next 1,400 MY. The data suggest that mature SSU sequences do not accumulate more than 20% differences in the RNS positions without compensatory changes in other components of this enzyme system. During the first 70 MY of divergence between species, the rate of expected synonymous or silent nucleotide substitutions (SNS) is ~6.6 X 10(-9)/site/yr. This is five times the RNS rate and is similar to the silent rate observed in animals. In striking contrast, SNS and RNS do not show this correlation among SSU gene family members within a species. A mechanism involving gene conversion within the exons followed by selection for biased gene conversion products with conservation of RNS positions and divergence of SNS positions is discussed. A SSU gene tree based on corrected RNS for 31 SSU sequences is presented and agrees well with a species tree based on morphological and cytogenetic traits for the 17 genera examined. SSU gene comparisons may be useful in predicting phylogenetic relationships and in some cases divergence times of various plant, algal and cyanobacterial species. PMID:2515110

  1. Role of the Rubisco Small Subunit

    SciTech Connect

    Spreitzer, Robert Joseph

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  2. Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis.

    PubMed

    Atkinson, Nicky; Leitão, Nuno; Orr, Douglas J; Meyer, Moritz T; Carmo-Silva, Elizabete; Griffiths, Howard; Smith, Alison M; McCormick, Alistair J

    2017-04-01

    Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.

  3. Succession of Microbial Communities during Hot Composting as Detected by PCR–Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes

    PubMed Central

    Peters, Sabine; Koschinsky, Stefanie; Schwieger, Frank; Tebbe, Christoph C.

    2000-01-01

    A cultivation-independent technique for genetic profiling of PCR-amplified small-subunit rRNA genes (SSU rDNA) was chosen to characterize the diversity and succession of microbial communities during composting of an organic agricultural substrate. PCR amplifications were performed with DNA directly extracted from compost samples and with primers targeting either (i) the V4–V5 region of eubacterial 16S rRNA genes, (ii) the V3 region in the 16S rRNA genes of actinomycetes, or (iii) the V8–V9 region of fungal 18S rRNA genes. Homologous PCR products were converted to single-stranded DNA molecules by exonuclease digestion and were subsequently electrophoretically separated by their single-strand-conformation polymorphism (SSCP). Genetic profiles obtained by this technique showed a succession and increasing diversity of microbial populations with all primers. A total of 19 single products were isolated from the profiles by PCR reamplification and cloning. DNA sequencing of these molecular isolates showed similarities in the range of 92.3 to 100% to known gram-positive bacteria with a low or high G+C DNA content and to the SSU rDNA of γ-Proteobacteria. The amplified 18S rRNA gene sequences were related to the respective gene regions of Candida krusei and Candida tropicalis. Specific molecular isolates could be attributed to different composting stages. The diversity of cultivated bacteria isolated from samples taken at the end of the composting process was low. A total of 290 isolates were related to only 6 different species. Two or three of these species were also detectable in the SSCP community profiles. Our study indicates that community SSCP profiles can be highly useful for the monitoring of bacterial diversity and community successions in a biotechnologically relevant process. PMID:10698754

  4. The SSU Processome in Ribosome Biogenesis – Progress and Prospects

    PubMed Central

    Phipps, Kathleen R.; Charette, J. Michael; Baserga, Susan J.

    2010-01-01

    The small subunit (SSU) processome is a 2.2 MDa ribonucleoprotein complex involved in the processing, assembly and maturation of the SSU of eukaryotic ribosomes. The identities of many of the factors involved in SSU biogenesis have been elucidated over the past 40 years. However, as our understanding increases, so do the number of questions about the nature of this complicated process. Cataloguing the components is the first step towards understanding the molecular workings of a system. This review will focus on how identifying components of ribosome biogenesis has led to the knowledge of how these factors, protein and RNA alike, associate with one another into sub-complexes, with a concentration on the small ribosomal subunit. We will also explore how this knowledge of sub-complex assembly has informed our understanding of the workings of the ribosome synthesis system as a whole. PMID:21318072

  5. AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts

    PubMed Central

    Zhang, Renshan; Guan, Xiaoqian; Law, Yee-Song; Sun, Feng; Chen, Shuai; Wong, Kam Bo

    2016-01-01

    ABSTRACT Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is the only phosphatase that is dual-targeted to both chloroplasts and mitochondria. Like Toc33/34 of the TOC and Tom 20 of the TOM, AtPAP2 is anchored to the outer membranes of chloroplasts and mitochondria via a hydrophobic C-terminal motif. AtPAP2 on the mitochondria was previously shown to recognize the presequences of several nuclear-encoded mitochondrial proteins and modulate the import of pMORF3 into the mitochondria. Here we show that AtPAP2 binds to the small subunit of Rubisco (pSSU) and that chloroplast import experiments demonstrated that pSSU was imported less efficiently into pap2 chloroplasts than into wild-type chloroplasts. We propose that AtPAP2 is an outer membrane-bound phosphatase receptor that facilitates the import of selected proteins into chloroplasts. PMID:27700374

  6. 18S rDNA phylogeny of lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa).

    PubMed

    Fiore-Donno, Anna Maria; Kamono, Akiko; Meyer, Marianne; Schnittler, Martin; Fukui, Manabu; Cavalier-Smith, Thomas

    2012-01-01

    The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (~600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.

  7. 18S rDNA Phylogeny of Lamproderma and Allied Genera (Stemonitales, Myxomycetes, Amoebozoa)

    PubMed Central

    Fiore-Donno, Anna Maria; Kamono, Akiko; Meyer, Marianne; Schnittler, Martin; Fukui, Manabu; Cavalier-Smith, Thomas

    2012-01-01

    The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (∼600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species. PMID:22530009

  8. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    PubMed Central

    Medina, Mónica; Collins, Allen G.; Silberman, Jeffrey D.; Sogin, Mitchell L.

    2001-01-01

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino–Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira–Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny. PMID:11504944

  9. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences.

    PubMed Central

    Robison-Cox, J F; Bateson, M M; Ward, D M

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed. PMID:7538272

  10. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey; Sogin, Mitchell L.

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  11. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences

    NASA Technical Reports Server (NTRS)

    Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.

  12. A small subunit processome protein promotes cancer by altering translation.

    PubMed

    Yang, H W; Kim, T-M; Song, S S; Menon, L; Jiang, X; Huang, W; Black, P M; Park, P J; Carroll, R S; Johnson, M D

    2015-08-20

    Dysregulation of ribosome biogenesis or translation can promote cancer, but the underlying mechanisms remain unclear. UTP18 is a component of the small subunit processome, a nucleolar multi-protein complex whose only known function is to cleave pre-ribosomal RNA to yield the 18S ribosomal RNA component of 40S ribosomal subunits. Here, we show that UTP18 also alters translation to promote stress resistance and growth, and that UTP18 is frequently gained and overexpressed in cancer. We observed that UTP18 localizes to the cytoplasm in a subset of cells, and that serum withdrawal increases cytoplasmic UTP18 localization. Cytoplasmic UTP18 associates with the translation complex and Hsp90 to upregulate the translation of IRES-containing transcripts such as HIF1a, Myc and VEGF, thereby inducing stress resistance. Hsp90 inhibition decreases cytoplasmic UTP18 and UTP18-induced increases in translation. Importantly, elevated UTP18 expression correlates with increased aggressiveness and decreased survival in numerous cancers. Enforced UTP18 overexpression promotes transformation and tumorigenesis, whereas UTP18 knockdown inhibits these processes. This stress adaptation mechanism is thus co-opted for growth by cancers, and its inhibition may represent a promising new therapeutic target.

  13. Small subunit ribosomal DNA suggests that the xenophyophorean Syringammina corbicula is a foraminiferan.

    PubMed

    Pawlowski, Jan; Holzmann, Maria; Fahrni, Jose; Richardson, Susan L

    2003-01-01

    Xenophyophorea are giant deep-sea rhizopodial protists of enigmatic origins. Although species were described as Foraminifera or sponges in the early literature, the xenophyophoreans are currently classified either as a class of Rhizopoda or an independent phylum. To establish the phylogenetic position of Xenophyophorea, we analysed the small subunit (SSU) rRNA gene sequence of Syringammina corbicula Richardson, a newly described xenophyophorean species from the Cape Verde Plateau. The SSUrDNA analyses showed that S. corbicula is closely related to Rhizammina algaeformis, a tubular deep-sea foraminiferan. Both species branch within a group of monothalamous (single-chambered) Foraminifera, which include also such agglutinated genera as Toxisarcon, Rhabdammina, and Saccammina, and the organic-walled genera Gloiogullmia and Cylindrogullmia. Our results are congruent with observations of similar cytoplasmic organisation in Rhizammina and Syringammina. Thus, the Xenophyophorea appear to be a highly specialised group of deep-sea Foraminifera.

  14. Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and beta-tubulin.

    PubMed

    Leander, Brian S; Clopton, Richard E; Keeling, Patrick J

    2003-01-01

    Gregarines are thought to be deep-branching apicomplexans. Accordingly, a robust inference of gregarine phylogeny is crucial to any interpretation of apicomplexan evolution, but molecular sequences from gregarines are restricted to a small number of small-subunit (SSU) rDNA sequences from derived taxa. This work examines the usefulness of SSU rDNA and beta-tubulin sequences for inferring gregarine phylogeny. SSU rRNA genes from Lecudina (Mingazzini) sp., Monocystis agilis Stein, Leidyana migrator Clopton and Gregarina polymorpha Dufour, as well as the beta-tubulin gene from Leidyana migrator, were sequenced. The results of phylogenetic analyses of alveolate taxa using both genes were consistent with an early origin of gregarines and the putative 'sister' relationship between gregarines and Cryptosporidium, but neither phylogeny was strongly supported. In addition, two SSU rDNA sequences from unidentified marine eukaryotes were found to branch among the gregarines: one was a sequence derived from the haemolymph parasite of the giant clam, Tridacna crocea, and the other was a sequence misattributed to the foraminiferan Ammonium beccarii. In all of our analyses, the SSU rDNA sequence from Colpodella sp. clustered weakly with the apicomplexans, which is consistent with ultrastructural data. Altogether, the exact position of gregarines with respect to Cryptosporidium and other apicomplexans remains to be confirmed, but the congruence of SSU rDNA and beta-tubulin trees with one another and with morphological data does suggest that further sampling of molecular data will eventually put gregarine diversity into a phylogenetic context.

  15. Revised small subunit rRNA analysis provides further evidence that Foraminifera are related to Cercozoa.

    PubMed

    Berney, Cédric; Pawlowski, Jan

    2003-01-01

    There is accumulating evidence that the general shape of the ribosomal DNA-based phylogeny of Eukaryotes is strongly biased by the long-branch attraction phenomenon, leading to an artifactual basal clustering of groups that are probably highly derived. Among these groups, Foraminifera are of particular interest, because their deep phylogenetic position in ribosomal trees contrasts with their Cambrian appearance in the fossil record. A recent actin-based phylogeny of Eukaryotes has proposed that Foraminifera might be closely related to Cercozoa and, thus, branch among the so-called crown of Eukaryotes. Here, we reanalyze the small-subunit ribosomal RNA gene (SSU rDNA) phylogeny by removing all long-branching lineages that could artifactually attract foraminiferan sequences to the base of the tree. Our analyses reveal that Foraminifera branch together with the marine testate filosean Gromia oviformis as a sister group to Cercozoa, in agreement with actin phylogeny. Our study confirms the utility of SSU rDNA as a phylogenetic marker of megaevolutionary history, provided that the artifacts due to the heterogeneity of substitution rates in ribosomal genes are circumvented.

  16. The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation.

    PubMed

    Imhof, Janet; Huber, Florian; Reichelt, Michael; Gershenzon, Jonathan; Wiegreffe, Christoph; Lächler, Kurt; Binder, Stefan

    2014-01-01

    In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (isopropylmalate isomerase large subunit1), three genes encode small subunits (isopropylmalate isomerase small subunit1 to 3). We have now analyzed small subunit 1 (isopropylmalate isomerase small subunit1) employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.

  17. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  18. Quantitative Analysis of Small-Subunit rRNA Genes in Mixed Microbial Populations via 5′-Nuclease Assays

    PubMed Central

    Suzuki, Marcelino T.; Taylor, Lance T.; DeLong, Edward F.

    2000-01-01

    Few techniques are currently available for quantifying specific prokaryotic taxa in environmental samples. Quantification of specific genotypes has relied mainly on oligonucleotide hybridization to extracted rRNA or intact rRNA in whole cells. However, low abundance and cellular rRNA content limit the application of these techniques in aquatic environments. In this study, we applied a newly developed quantitative PCR assay (5′-nuclease assay, also known as TaqMan) to quantify specific small-subunit (SSU) rRNA genes (rDNAs) from uncultivated planktonic prokaryotes in Monterey Bay. Primer and probe combinations for quantification of SSU rDNAs at the domain and group levels were developed and tested for specificity and quantitative reliability. We examined the spatial and temporal variations of SSU rDNAs from Synechococcus plus Prochlorococcus and marine Archaea and compared the results of the quantitative PCR assays to those obtained by alternative methods. The 5′-nuclease assays reliably quantified rDNAs over at least 4 orders of magnitude and accurately measured the proportions of genes in artificial mixtures. The spatial and temporal distributions of planktonic microbial groups measured by the 5′-nuclease assays were similar to the distributions estimated by quantitative oligonucleotide probe hybridization, whole-cell hybridization assays, and flow cytometry. PMID:11055900

  19. Determination of the relative expression levels of rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends.

    PubMed

    Yoon, M; Putterill, J J; Ross, G S; Laing, W A

    2001-04-15

    Multigene families are common in higher organisms. However, due to the close similarities between members, it is often difficult to assess the individual contribution of each gene to the overall expression of the family. In Arabidopsis thaliana, there are four genes encoding the small subunits (SSU) of ribulose-1.5-bisphosphate carboxylase oxygenase (rubisco) whose nucleotide sequences are up to 98.4% identical. In order to overcome the technical limitations associated with gene-specific probes (or primers) commonly used in existing methods, we developed a new gene expression assay based on the RACE (rapid amplification of cDNA ends) technique with a single pair of primers. With this RACE gene expression assay, we were able to determine the relative transcript levels between four Arabidopsis SSU genes. We found that the relative SSU gene expression differed significantly between plants grown at different temperatures. Our observation raises the possibility that an adaptation of rubisco to the environment may be achieved through the specific synthesis of the SSU proteins, which is determined by the relative expression levels between the SSU genes.

  20. Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?

    NASA Technical Reports Server (NTRS)

    Viscogliosi, E.; Edgcomb, V. P.; Gerbod, D.; Noel, C.; Delgado-Viscogliosi, P.; Sogin, M. L. (Principal Investigator)

    1999-01-01

    The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.

  1. Morphology and 18S rDNA of Henneguya gurlei (Myxosporea) from Ameiurus nebulosus (Siluriformes) in North Carolina

    USGS Publications Warehouse

    Iwanowicz, L.R.; Iwanowicz, D.D.; Pote, L.M.; Blazer, V.S.; Schill, W.B.

    2008-01-01

    Henneguya gurlei was isolated from Ameiurus nebulosus captured in North Carolina and redescribed using critical morphological features and 18S small-subunit ribosomal RNA (SSU rDNA) gene sequence. Plasmodia are white, spherical, or subspherical, occur in clusters, measure up to 1.8 mm in length, and are located on the dorsal, pectoral, and anal fins. Histologically, plasmodia are located in the dermis and subdermally, and the larger cysts disrupt the melanocyte pigment layer. The spore body is lanceolate, 18.2 ?? 0.3 ??m (range 15.7-20.3) in length, and 5.4 ?? 0.1 ??m (range 3.8-6.1) in width in valvular view. The caudal appendages are 41.1 ?? 1.1 ??m (range 34.0-49.7) in length. Polar capsules are pyriform and of unequal size. The longer polar capsule measures 6.2 ?? 0.1 ??m (range 5.48-7.06), while the shorter is 5.7 ?? 0.1 ??m (range 4.8-6.4) in length. Polar capsule width is 1.2 ?? 0.03 ??m (range 1.0-1.54). The total length of the spore is 60.9 ?? 1.2 ??m (range 48.7-68.5). Morphologically, this species is similar to other species of Henneguya that are known to infect ictalurids. Based on SSU rDNA sequences, this species is most closely related to H. exilis and H. ictaluri, which infect Ictalurus punctatus. ?? American Society of Parasitologists 2008.

  2. Identification of Egyptian Fasciola species by PCR and restriction endonucleases digestion of the nuclear small subunit ribosomal RNA gene.

    PubMed

    El-Gozamy, Bothina R; Shoukry, Nahla M

    2009-08-01

    Fascioliasis is one of the familiar zoonotic health problems of worldwide distribution including Egypt. In this study, a simple and rapid polymerase chain reaction/restriction fragment length polymorphisms (PCR/RFLPs) assay, using the common restriction endonucleases Aval, EcoRI, Eael, Sac11 and Avail was applied to differentiate between both Fasciola gigantica and F. hepatica. The five restriction endonucleases were used to differentiate between the two species of Fasciola based on -1950 bp long sequence of the 18S nuclear small subunit ribosomal RNA gene. Aval and EcoRI restriction endonucleases failed to differentiate between the two Fasciola species when each restriction enzyme gave the same restriction patterns in both of them. However, F. gigantica and F. hepatica were well-differentiated when their small subunit ribosomal DNA were digested with Eael and Sac 11 restriction endonucleases.

  3. Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials.

    PubMed

    Nakacwa, R; Kiggundu, A; Talwana, H; Namaganda, J; Lilley, C; Tushemereirwe, W; Atkinson, H

    2013-10-01

    Information on relatedness in nematodes is commonly obtained by DNA sequencing of the ribosomal internal transcribed spacer region. However, the level of diversity at this locus is often insufficient for reliable species differentiation. Recent findings suggest that the sequences of a fragment of the small subunit nuclear ribosomal DNA (18S rRNA or SSU), identify genera of soil nematodes and can also distinguish between species in some cases. A database of soil nematode genera in a Ugandan soil was developed using 18S rRNA sequences of individual nematodes from a GM banana confined field trial site at the National Agricultural Research Laboratories, Kawanda in Uganda. The trial was planted to evaluate transgenic bananas for resistance to black Sigatoka disease. Search for relatedness of the sequences gained with entries in a public genomic database identified a range of 20 different genera and sometimes distinguished species. Molecular markers were designed from the sequence information to underpin nematode faunal analysis. This approach provides bio-indicators for disturbance of the soil environment and the condition of the soil food web. It is being developed to support environmental biosafety analysis by detecting any perturbance by transgenic banana or other GM crops on the soil environment.

  4. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern United States, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA gene (SSU rRNA). Howe...

  5. Characterization of SSU5C promoter of a rbcS gene from duckweed (Lemna gibba).

    PubMed

    Wang, Youru; Zhang, Yong; Yang, Baoyu; Chen, Shiyun

    2011-04-01

    Photosynthesis-associated nuclear genes are able to respond to multiple environmental and developmental signals. Studies have shown that light signals coordinate with hormone signaling pathways to control photomorphogenesis. A small subunit of ribulose-1,5 bisphosphate carboxylase/oxygenase (rbcS) gene promoter was cloned from duckweed (Lemna gibba). Sequence analysis revealed this promoter is different from the previously reported rbcs promoters and is named SSU5C. Analysis of T1 transgenic tobacco plants with a reporter gene under the control of the SSU5C promoter revealed that this promoter is tissue-specific and is positively regulated by red light. Promoter deletion analysis confirmed a region from position -152 to -49 relative to the start of transcription containing boxes X, Y and Z, and is identified to be critical for phytochrome responses. Further functional analysis of constructs of box-X, Y, Z, which was respectively fused to the basal SSU5C promoter, defined boxes X, Y and Z alone are able to direct phytochrome-regulated expression, indicating that boxes Y and Z are different from those of the SSU5B promoters in L. gibba. This promoter may be used for plant gene expression in a tissue-specific manner.

  6. Ribosomal small subunit domains radiate from a central core

    PubMed Central

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O’Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-01-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2′OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit. PMID:26876483

  7. Genetic characterization of clinical acanthamoeba isolates from Japan using nuclear and mitochondrial small subunit ribosomal RNA.

    PubMed

    Rahman, Md Moshiur; Yagita, Kenji; Kobayashi, Akira; Oikawa, Yosaburo; Hussein, Amjad I A; Matsumura, Takahiro; Tokoro, Masaharu

    2013-08-01

    Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear sub-conformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.

  8. The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta[W

    PubMed Central

    Orlova, Irina; Nagegowda, Dinesh A.; Kish, Christine M.; Gutensohn, Michael; Maeda, Hiroshi; Varbanova, Marina; Fridman, Eyal; Yamaguchi, Shinjiro; Hanada, Atsushi; Kamiya, Yuji; Krichevsky, Alexander; Citovsky, Vitaly; Pichersky, Eran; Dudareva, Natalia

    2009-01-01

    Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta. PMID:20028839

  9. MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool

    PubMed Central

    Zhou, Quan

    2017-01-01

    An understanding of microbial community structure is an important issue in the field of molecular ecology. The traditional molecular method involves amplification of small subunit ribosomal RNA (SSU rRNA) genes by polymerase chain reaction (PCR). However, PCR-based amplicon approaches are affected by primer bias and chimeras. With the development of high-throughput sequencing technology, unbiased SSU rRNA gene sequences can be mined from shotgun sequencing-based metagenomic or metatranscriptomic datasets to obtain a reflection of the microbial community structure in specific types of environment and to evaluate SSU primers. However, the use of short reads obtained through next-generation sequencing for primer evaluation has not been well resolved. The software MIPE (MIcrobiota metagenome Primer Explorer) was developed to adapt numerous short reads from metagenomes and metatranscriptomes. Using metagenomic or metatranscriptomic datasets as input, MIPE extracts and aligns rRNA to reveal detailed information on microbial composition and evaluate SSU rRNA primers. A mock dataset, a real Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) test dataset, two PrimerProspector test datasets and a real metatranscriptomic dataset were used to validate MIPE. The software calls Mothur (v1.33.3) and the SILVA database (v119) for the alignment and classification of rRNA genes from a metagenome or metatranscriptome. MIPE can effectively extract shotgun rRNA reads from a metagenome or metatranscriptome and is capable of classifying these sequences and exhibiting sensitivity to different SSU rRNA PCR primers. Therefore, MIPE can be used to guide primer design for specific environmental samples. PMID:28350876

  10. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis.

    PubMed

    Godon, J J; Zumstein, E; Dabert, P; Habouzit, F; Moletta, R

    1997-07-01

    The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis.

  11. Secondary structure and molecular evolution of the mitochondrial small subunit ribosomal RNA in Agaricales (Euagarics clade, Homobasidiomycota).

    PubMed

    Barroso, Gérard; Sirand-Pugnet, Pascal; Mouhamadou, Bello; Labarère, Jacques

    2003-10-01

    The complete sequences and secondary structures of the mitochondrial small subunit (SSU) ribosomal RNAs of both mostly cultivated mushrooms Agaricus bisporus (1930 nt) and Lentinula edodes (2164 nt) were achieved. These secondary structures and that of Schizophyllum commune (1872 nt) were compared to that previously established for Agrocybe aegerita. The four structures are near the model established for Archae, Bacteria, plastids, and mitochondria; particularly the helices 23 and 37, described as specific to bacteria, are present. Within the four Agaricales (Homobasidiomycota), the SSU-rRNA "core" is conserved in size (966 to 1009 nt) with the exception of an unusual extension of 40 nt in the H17 helix of S. commune. The four core sequences possess 76% of conserved positions and a cluster of C in their 3' end, which could constitute a signal involved in the RNA maturation process. Among the nine putative variable domains, three (V3, V5, V7) do not show significant length variations and possess similar percentages of conserved positions (69%) than the core. The other six variable domains show important length variations, due to independent large size inserted/deleted sequences, and higher rates of nucleotide substitutions than the core (only 31% of conserved positions between the four species). Interestingly, the inserted/deleted sequences are located in few preferential sites (hot spots for insertion/deletion) where they seem to arise or disappear haphazardly during evolution. These sites are located on the surface of the tertiary structure of the 30S ribosomal subunit, at the beginning of hairpin loops; the insertions lead to a lengthening of existing hairpins or to branching loops bearing up to five additional helices.

  12. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis.

    PubMed Central

    Godon, J J; Zumstein, E; Dabert, P; Habouzit, F; Moletta, R

    1997-01-01

    The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis. PMID:9212428

  13. Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly.

    PubMed

    Passamaneck, Yale; Halanych, Kenneth M

    2006-07-01

    Of the three major bilaterian clades, Lophotrochozoa has the greatest diversity and disparity of body forms and is the least understood in terms of phylogenetic history. Within this clade, small nuclear ribosomal subunit (SSU or 18S) studies have failed to provide resolution and other molecular markers have insufficient taxon sampling. To examine relationships within Lophotrochozoa, we collected and complied complete SSU data and nearly complete (>90%) large nuclear ribosomal subunit (LSU or 28S) data totaling approximately 5kb per taxon, for 36 lophotrochozoans. Results of LSU and combined SSU+LSU likelihood analyses provide topologies more consistent with morphological data than analyses of SSU data alone. Namely, most phyla recognized on morphological grounds are recovered as monophyletic entities when the LSU data is considered (contra SSU data alone). These new data show with significant support that "Lophophorata" (traditionally recognized to include Brachiopoda, Phoronida, and Bryozoa) is not a monophyletic entity. Further, the data suggest that Platyzoa is real and may be derived within lophotrochozans rather than a basal or sister taxon. The recently discovered Cycliophora are allied to entoprocts, consistent with their initial placement based on morphology. Additional evidence for Syndermata (i.e., Rotifera+Acanthocephala) is also found. Although relationships among groups with trochophore-like larvae could not be resolved and nodal support values are generally low, the addition of LSU data is a considerable advance in our understanding of lophotrochozoan phylogeny from the molecular perspective.

  14. Using Small Subunit Ribosomal RNA to Follow Dark Incorporation of 14C-bicarbonate by Bacteria and Archaea in Sandy Sediment

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Musat, N.; Kuypers, M. M.

    2007-12-01

    Small subunit ribosomal RNA (SSU rRNA) and the genes encoding it have become the basis of modern microbial phylogeny, and of numerous methods for characterizing the composition of bacterial, archaeal, and even eukaryotic communities as they occur in nature. A limitation of this approach has been that phylogeny alone is not a reliable guide to physiology, particularly for groups with no close relatives in culture. We have been developing ways of using the SSU rRNA molecule itself to identify and (eventually) quantify the carbon sources incorporated by particular phylogenetic groups. This can be done by taking advantage of natural variations in carbon isotopic composition among growth substrates, or by following incorporation of 13C- or 14C-labeled compounds. 14C has the advantage that natural background levels are negligible. In the present study, our goal is to identify species responsible for non-photosynthetic CO2 incorporation in sandy sediments of the German Wadden Sea. Sediment cores collected from the Janssand sand flats were percolated with 14C-bicarbonate at in situ temperature for 36-38h in the dark, total RNA isolated, and domain-specific oligonucleotide probes used to capture bacterial and archaeal SSU rRNA. Total and/or captured RNA was separated by denaturing polyacrylamide gel electrophoresis, and 14C detected by phosphor imager, autoradiography, or beta imager. Detection was fastest and most sensitive with the beta imager. Both Bacteria and Archaea had incorporated label, suggesting both groups may harbor non-photosynthetic autotrophs. The next step will be to use more specific capture probes. We are currently working to separate the captured domain-specific SSU rRNA on non-denaturing gels, with detection by the high-resolution mode of the beta imager, so that individual species incorporating label can be identified by RT-PCR and sequencing of labeled bands.

  15. Reconsideration of the phylogenetic positions of five peritrich genera, Vorticella, Pseudovorticella, Zoothamnopsis, Zoothamnium, and Epicarchesium (Ciliophora, Peritrichia, Sessilida), based on small subunit rRNA gene sequences.

    PubMed

    Li, Lifang; Song, Weibo; Warren, Alan; Shin, Mann Kyoon; Chen, Zigui; Ji, Daode; Sun, Ping

    2008-01-01

    In order to re-evaluate the systematics of sessilid peritrich ciliates, small subunit (SSU) rRNA gene sequences were determined for 12 species belonging to five genera: Vorticella, Pseudovorticella, Epicarchesium, Zoothamnium, and Zoothamnopsis. Phylogenetic trees were deduced using Bayesian inference, maximum parsimony, and maximum likelihood methods. The phylogenetic analyses suggest that (1) sessilids which have stalks with continuous myonemes that contract in a zig-zag fashion form a separate clade from those which have stalks that contract independently and in a spiral fashion, supporting the separation of the family Zoothamniidae from the family Vorticellidae and (2) Epicarchesium and Pseudovorticella, both of which have reticulate silverline systems, are more closely related to each other than to other vorticellids, suggesting that differences in the silverline system (i.e. transverse vs. reticulate) may be the result of genuine evolutionary divergence among sessilid peritrichs. However, the newly sequenced Zoothamnopsis sinica, which has a reticulate silverline pattern, nests within the unresolved Zoothamnium species that have transverse silverline patterns. Thus, there were at least two evolutions of the reticulate silverline pattern character state from a plesiomorphic transverse state in the peritrichid ciliates. The molecular work demonstrates the genus Zoothamnium to be paraphyletic in relation to morphological studies, and suggests that Astylozoon, Opisthonecta, and Vorticella microstoma possibly share a SSU rRNA secondary structure in the helix E10-1 region.

  16. Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny.

    PubMed

    Takishita, Kiyotaka; Miyake, Hiroshi; Kawato, Masaru; Maruyama, Tadashi

    2005-06-01

    Recent culture-independent molecular analyses have shown the diversity and ecological importance of microbial eukaryotes (protists) in various marine environments. In the present study we directly extracted DNA from anoxic sediment near active fumaroles on a submarine caldera floor at a depth of 200 m and constructed genetic libraries of PCR-amplified eukaryotic small-subunit (SSU) rDNA. By sequencing cloned SSU rDNA of the libraries and their phylogenetic analyses, it was shown that most sequences have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, stramenopiles and Opisthokonta). In particular, some sequences were closely related to those of representatives of eukaryotic parasites, such as Phagomyxa and Cryothecomonas of Cercozoa, Pirsonia of stramenopiles and Ichthyosporea of Opisthokonta, although it is not clear whether the organisms occur in free-living or parasitic forms. In addition, other sequences did not seem to be related to any described eukaryotic lineages suggesting the existence of novel eukaryotes at a high-taxonomic level in the sediment. The community composition of microbial eukaryotes in the sediment we surveyed was different overall from those of other anoxic marine environments previously investigated.

  17. An overview of the secondary structure of the V4 region of eukaryotic small-subunit ribosomal RNA.

    PubMed Central

    Nickrent, D L; Sargent, M L

    1991-01-01

    The V4 region of the small subunit (18S) ribosomal RNA was examined in 72 different sequences representing a broad sample eukaryotic diversity. This domain is the most variable region of the 18S rRNA molecule and ranges in length from ca. 230 to over 500 bases. Based upon comparative analysis, secondary structural models were constructed for all sequences and the resulting generalized model shows that most organisms possess seven helices for this region. The protists and two insects show from one to as many as four helices in addition to the above seven. In this report, we summarize secondary structure information presented elsewhere for the V4 region, describe the general features for helical and apical regions, and identify signature sequences useful in helix identification. Our model generally agrees with other current concepts; however, we propose modifications or alternative structures for the start of the V4 region, the large protist inserts, and the sector that may possibly contain a pseudoknot. PMID:2014163

  18. Prevalent ciliate symbiosis on copepods: high genetic diversity and wide distribution detected using small subunit ribosomal RNA gene.

    PubMed

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally.

  19. Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene

    PubMed Central

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally. PMID:23024768

  20. Multiple Group I Introns in the Small-Subunit rDNA of Botryosphaeria dothidea: Implication for Intraspecific Genetic Diversity

    PubMed Central

    Xu, Chao; Wang, Chunsheng; Sun, Xinyao; Zhang, Rong; Gleason, Mark L.; Eiji, Tanaka; Sun, Guangyu

    2013-01-01

    Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU) ribosomal DNA (rDNA) sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF) for encoding the homing endonuclease (HE), whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron) and genotype IV (Bdo.S1199-B) were each found in only one strain, whereas genotype I (Bdo.S1199-A) and genotype II (Bdo.S943 and Bdo.S1506) occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea. PMID:23844098

  1. Multiple group I introns in the small-subunit rDNA of Botryosphaeria dothidea: implication for intraspecific genetic diversity.

    PubMed

    Xu, Chao; Wang, Chunsheng; Sun, Xinyao; Zhang, Rong; Gleason, Mark L; Eiji, Tanaka; Sun, Guangyu

    2013-01-01

    Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU) ribosomal DNA (rDNA) sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF) for encoding the homing endonuclease (HE), whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron) and genotype IV (Bdo.S1199-B) were each found in only one strain, whereas genotype I (Bdo.S1199-A) and genotype II (Bdo.S943 and Bdo.S1506) occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea.

  2. Prevalence of microsporidiosis due to Enterocytozoon bieneusi and Encephalitozoon (Septata) intestinalis among patients with AIDS-related diarrhea: determination by polymerase chain reaction to the microsporidian small-subunit rRNA gene.

    PubMed

    Coyle, C M; Wittner, M; Kotler, D P; Noyer, C; Orenstein, J M; Tanowitz, H B; Weiss, L M

    1996-11-01

    Microsporidia are emerging as opportunistic pathogens in patients with AIDS. Enterocytozoon bieneusi and Encephalitozoon (Septata) intestinalis have been implicated in enteric infections in AIDS patients with chronic diarrhea, a wasting syndrome, and malabsorption. We used the polymerase chain reaction (PCR) and primers that amplify the conserved regions of the small-subunit rRNA (SSU-rRNA) gene of E. bieneusi and E. intestinalis in tissue specimens from HIV-infected patients with and without diarrhea to examine the association between microsporidia and diarrhea in patients with AIDS. Tissue specimens were obtained from 68 patients with AIDS and diarrhea (mean CD4 lymphocyte count, 21/mm3) and 43 AIDS patients without diarrhea (mean CD4 lymphocyte count, 60/mm3). By means of PCR with use of the SSU-rRNA primers specific for E. bieneusi and E. intestinalis, we found that 44% of patients with diarrhea were infected with microsporidia, whereas only 2.3% of the patients without diarrhea were infected with microsporidia (P < .001). There was a clear association between the presence of microsporidia and diarrhea. In addition, the SSU-rRNA primers proved to be sensitive and specific when used in this clinical setting.

  3. Molecular characterization of Sarcocystis species from Polish roe deer based on ssu rRNA and cox1 sequence analysis.

    PubMed

    Kolenda, Rafał; Ugorski, Maciej; Bednarski, Michał

    2014-08-01

    Sarcocysts from four Polish roe deer were collected and examined by light microscopy, small subunit ribosomal RNA (ssu rRNA), and the subunit I of cytochrome oxidase (cox1) sequence analysis. This resulted in identification of Sarcocystis gracilis, Sarcocystis oviformis, and Sarcocystis silva. However, we were unable to detect Sarcocystis capreolicanis, the fourth Sarcocystis species found previously in Norwegian roe deer. Polish sarcocysts isolated from various tissues differed in terms of their shape and size and were larger than the respective Norwegian isolates. Analysis of ssu rRNA gene revealed the lack of differences between Sarcocystis isolates belonging to one species and a very low degree of genetic diversity between Polish and Norwegian sarcocysts, ranging from 0.1% for Sarcocystis gracilis and Sarcocystis oviformis to 0.44% for Sarcocystis silva. Contrary to the results of the ssu rRNA analysis, small intraspecies differences in cox1 sequences were found among Polish Sarcocystis gracilis and Sarcocystis silva isolates. The comparison of Polish and Norwegian cox1 sequences representing the same Sarcocystis species revealed similar degree of sequence identity, namely 99.72% for Sarcocystis gracilis, 98.76% for Sarcocystis silva, and 99.85% for Sarcocystis oviformis. Phylogenetic reconstruction and genetic population analyses showed an unexpected high degree of identity between Polish and Norwegian isolates. Moreover, cox1 gene sequences turned out to be more accurate than ssu rRNA when used to reveal phylogenetic relationships among closely related species. The results of our study revealed that the same Sarcocystis species isolated from the same hosts living in different geographic regions show a very high level of genetic similarity.

  4. Analysis of U3 snoRNA and small subunit processome components in the parasitic protist Entamoeba histolytica.

    PubMed

    Srivastava, Ankita; Ahamad, Jamaluddin; Ray, Ashwini Kumar; Kaur, Devinder; Bhattacharya, Alok; Bhattacharya, Sudha

    2014-02-01

    In the early branching parasitic protist Entamoeba histolytica, pre-rRNA synthesis continues when cells are subjected to growth stress, but processing slows down and unprocessed pre-rRNA accumulates. To gain insight into the regulatory mechanisms leading to accumulation, it is necessary to define the pre-rRNA processing machinery in E. histolytica. We searched the E. histolytica genome sequence for homologs of the SSU processome, which contains the U3snoRNA, and 72 proteins in yeast. We could identify 57 of the proteins with high confidence. Of the rest, 6 were absent in human, and 4 were non-essential in yeast. The remaining 5 were absent in other parasite genomes as well. Analysis of U3snoRNA showed that the E. histolytica U3snoRNA adopted the same conserved secondary structure as seen in yeast and human. The predicted structure was verified by chemical modification followed by primer extension (SHAPE). Further we showed that the predicted interactions of Eh_U3snoRNA boxes A and A' with pre-18S rRNA were highly conserved both in position and sequence. The predicted interactions of 5'-hinge and 3'-hinge sequences of Eh_U3 snoRNA with the 5'-ETS sequences were conserved in position but not in sequence. Transcription of selected genes of SSU processome was tested by northern analysis, and transcripts of predicted sizes were obtained. During serum starvation, when unprocessed pre-RNA accumulated, the transcript levels of some of these genes declined. This is the first report on pre-rRNA processing machinery in E. histolytica, and shows that the components are well conserved with respect to yeast and human.

  5. Expression of a foreign Rubisco small subunit in tobacco with reduced levels of the native protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cDNA, ArRbcS3, for the small subunit of Rubisco from Amaranthus retroflexus (pigweed) was expressed in tobacco (Nicotiana tabacum) under the control of a strong leaf-specific Lhcb promoter. The coding region of the ArRbcS3 was fused to the plastid targeting sequence of the native tobacco rbcS to...

  6. Inheritance behavior of information coding for small subunit polypeptides of fraction 1 protein.

    PubMed

    Chen, K; Wildman, S G

    1980-12-01

    In various genera of plants, the small subunit of fraction 1 protein is often composed of more than one kind of polypeptide; these differ in isoelectric points and amino acid composition. Previous analysis of numerous individual progeny of Nicotiana tabacum (two kinds of polypeptides), N. glauca + N. langsdorffii parasexual hybrids (three kinds) and other examples showed no change in F-1 protein composition as a consequence of alternation of generations. Experiments reported here show that absence of one number of each of the 24 different pairs of chromosomes in an N. tabacum monosomic series and also absence of the "S" pair in a nullisome did not affect F-1 protein composition. Absence of the "E" pair caused reduction in the amount of the least acidic of the two kinds of N. tabacum small subunit polypeptides. The question of how many individual progeny of self-fertile hybrids would have to be analyzed to detect segregation of genes coding for F-1 protein small subunit polypeptides, if segregation occurs, was answered by analysis of F1 hybrids between N. otophora and N. tomentosiformis, and two subspecies of N. suaveolens, together with their F2 progeny. In both cases, analysis of 16 progeny was sufficient to demonstrate a segregation pattern of two F1 hybrid type to one each of the two parental types. Therefore, in the absence of segregation, it is likely that coding information for different kinds of F-1 protein small subunit polypeptides is sequestered on heterologous chromosomes, as postulated in previous reports.

  7. Molecular phylogeny of Stentor (Ciliophora: Heterotrichea) based on small subunit ribosomal RNA sequences.

    PubMed

    Gong, Ying-Chun; Yu, Yu-He; Zhu, Fei-Yun; Feng, Wei-Song

    2007-01-01

    To determine the phylogenetic position of Stentor within the Class Heterotrichea, the complete small subunit rRNA genes of three Stentor species, namely Stentor polymorphus, Stentor coeruleus, and Stentor roeseli, were sequenced and used to construct phylogenetic trees using the maximum parsimony, neighbor joining, and Bayesian analysis. With all phylogenetic methods, the genus Stentor was monophyletic, with S. roeseli branching basally.

  8. Soybean ribulose bisphosphate carboxylase small subunit; mechanisms and determinants of RNA turnover: Annual progress report for the period June 1, 1987 through May 31, 1988

    SciTech Connect

    Meagher, R.

    1988-01-01

    SRS1 and SRS4 are two closely related soybean ribulose -1,5-bisphosphate carboxylase small subunit (SSU) genes. The promoters from both SRS1 and SRS4 can be fused to a neomycin phosphotransferase gene and these fusions produce similar levels of kanamycin resistance in transgenic petunia plants. The expression of SRS1 and SRS4 has been shown to be controlled at the level of transcription, and this transcriptional control is phytochrome mediated. Together these genes account for 2-3% of the total transcription in light-grown soybean seedlings or expanding soybean leaves. Recent experiments analyzing transcription rates of SRS1 and SRS4, steady state levels of their total and poly A+ RNA and frequency of their cDNAs in a soybean RNA library have led us to hypothesize that the expression of these two genes may also be controlled at the level of RNA turnover. Despite the 30-50 fold difference in transcription of these genes in seedlings grown in light, the steady state levels of RNA are only 4-8 fold higher in the light. When plants are shifted from darkness to light, accumulation of RNA lags far behind the striking transcriptional induction. In plants shifted from light to darkness, SRS1 transcription takes 24 hours to drop to dark-grown levels, and the steady state RNA levels take 72 hours to decay to dark-grown levels. On the other hand light-grown plants treated with far-red light shut down SRS1 transcription immediately, and the steady state levels of SSU RNA also drop rapidly. We have evidence suggesting striking differential turnover of the RNA products of SRS1 and SRS4, the SRS1 RNA being perhaps 5-10 times more stable than the SRS4 RNA.

  9. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco.

    PubMed

    Whitney, S M; Andrews, T J

    2001-01-01

    To assess the extent to which a nuclear gene for a chloroplast protein retained the ability to be expressed in its presumed preendosymbiotic location, we relocated the RbcS gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to the tobacco plastid genome. Plastid RbcS transgenes, both with and without the transit presequence, were equipped with 3' hepta-histidine-encoding sequences and psbA promoter and terminator elements. Both transgenes were transcribed abundantly, and their products were translated into small subunit polypeptides that folded correctly and assembled into the Rubisco hexadecamer. When present, either the transit presequence was not translated or the transit peptide was cleaved completely. After assembly into Rubisco, transplastomic small subunits were relatively stable. The hepta-histidine sequence fused to the C terminus of a single small subunit was sufficient for isolation of the whole Rubisco hexadecamer by Ni(2)+ chelation. Small subunits produced by the plastid transgenes were not abundant, never exceeding approximately 1% of the total small subunits, and they differed from cytoplasmically synthesized small subunits in their N-terminal modifications. The scarcity of transplastomic small subunits might be caused by inefficient translation or assembly.

  10. "Cryptic" group-I introns in the nuclear SSU-rRNA gene of Verticillium dahliae.

    PubMed

    Papaioannou, Ioannis A; Dimopoulou, Chrysoula D; Typas, Milton A

    2014-08-01

    Group-I introns are widespread--though irregularly distributed--in eukaryotic organisms, and they have been extensively used for discrimination and phylogenetic analyses. Within the Verticillium genus, which comprises important phytopathogenic fungi, a group-I intron was previously identified in the SSU-rRNA (18S) gene of only V. longisporum. In this work, we aimed at elucidating the SSU-located intron distribution in V. dahliae and other Verticillium species, and the assessment of heterogeneity regarding intron content among rDNA repeats of fungal strains. Using conserved PCR primers for the amplification of the SSU gene, a structurally similar novel intron (sub-group IC1) was detected in only a few V. dahliae isolates. However, when intron-specific primers were used for the screening of a diverse collection of Verticillium isolates that originally failed to produce intron-containing SSU amplicons, most were found to contain one or both intron types, at variable rDNA repeat numbers. This marked heterogeneity was confirmed with qRT-PCR by testing rDNA copy numbers (varying from 39 to 70 copies per haploid genome) and intron copy ratios in selected isolates. Our results demonstrate that (a) IC1 group-I introns are not specific to V. longisporum within the Verticillium genus, (b) V. dahliae isolates of vegetative compatibility groups (VCGs) 4A and 6, which bear the novel intron at most of their rDNA repeats, are closely related, and (c) there is considerable intra-genomic heterogeneity for the presence or absence of introns among the ribosomal repeats. These findings underline that distributions of introns in the highly heterogeneous repetitive rDNA complex should always be verified with sensitive methods to avoid misleading conclusions for the phylogeny of fungi and other organisms.

  11. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts.

    PubMed

    Lueders, Tillmann; Friedrich, Michael W

    2003-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis is a widely used method for profiling microbial community structure in different habitats by targeting small-subunit (SSU) rRNA and also functional marker genes. It is not known, however, whether relative gene frequencies of individual community members are adequately represented in post-PCR amplicon frequencies as shown by T-RFLP. In this study, precisely defined artificial template mixtures containing genomic DNA of four different methanogens in various ratios were prepared for subsequent T-RFLP analysis. PCR amplicons were generated from defined mixtures targeting not only the SSU rRNA but also the methyl-coenzyme M reductase (mcrA/mrtA) genes of methanogens. Relative amplicon frequencies of microorganisms were quantified by comparing fluorescence intensities of characteristic terminal restriction fragments. SSU ribosomal DNA (rDNA) template ratios in defined template mixtures of the four-membered community were recovered absolutely by PCR-T-RFLP analysis, which demonstrates that the T-RFLP analysis evaluated can give a quantitative view of the template pool. SSU rDNA-targeted T-RFLP analysis of a natural community was found to be highly reproducible, independent of PCR annealing temperature, and unaffected by increasing PCR cycle numbers. Ratios of mcrA-targeted T-RFLP analysis were biased, most likely by PCR selection due to the degeneracy of the primers used. Consequently, for microbial community analyses, each primer system used should be evaluated carefully for possible PCR bias. In fact, such bias can be detected by using T-RFLP analysis as a tool for the precise quantification of the PCR product pool.

  12. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae.

    PubMed Central

    Van de Peer, Y; Rensing, S A; Maier, U G; De Wachter, R

    1996-01-01

    Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA. PMID:8755544

  13. Origin and Evolution of the Eukaryotic SSU Processome Revealed by a Comprehensive Genomic Analysis and Implications for the Origin of the Nucleolus

    PubMed Central

    Feng, Jin-Mei; Tian, Hai-Feng; Wen, Jian-Fan

    2013-01-01

    As a nucleolar complex for small-subunit (SSU) ribosomal RNA processing, SSU processome has been extensively studied mainly in Saccharomyces cerevisiae but not in diverse organisms, leaving open the question of whether it is a ubiquitous mechanism across eukaryotes and how it evolved in the course of the evolution of eukaryotes. Genome-wide survey and identification of SSU processome components showed that the majority of all 77 yeast SSU processome proteins possess homologs in almost all of the main eukaryotic lineages, and 14 of them have homologs in archaea but few in bacteria, suggesting that the complex is ubiquitous in eukaryotes, and its evolutionary history began with abundant protein homologs being present in archaea and then a fairly complete form of the complex emerged in the last eukaryotic common ancestor (LECA). Phylogenetic analysis indicated that ancient gene duplication and functional divergence of the protein components of the complex occurred frequently during the evolutionary origin of the LECA from prokaryotes. We found that such duplications not only increased the complex’s components but also produced some new functional proteins involved in other nucleolar functions, such as ribosome biogenesis and even some nonnucleolar (but nuclear) proteins participating in pre-mRNA splicing, implying the evolutionary emergence of the subnuclear compartment—the nucleolus—has occurred in the LECA. Therefore, the LECA harbored not only complicated SSU processomes but also a nucleolus. Our analysis also revealed that gene duplication, innovation, and loss, caused further divergence of the complex during the divergence of eukaryotes. PMID:24214024

  14. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000

    SciTech Connect

    Spreitzer, Robert J.

    2000-10-04

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesis is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.

  15. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics

    NASA Technical Reports Server (NTRS)

    Winker, S.; Woese, C. R.

    1991-01-01

    The number of small subunit rRNA sequences is now great enough that the three domains Archaea, Bacteria and Eucarya (Woese et al., 1990) can be reliably defined in terms of their sequence "signatures". Approximately 50 homologous positions (or nucleotide pairs) in the small subunit rRNA characterize and distinguish among the three. In addition, the three can be recognized by a variety of nonhomologous rRNA characters, either individual positions and/or higher-order structural features. The Crenarchaeota and the Euryarchaeota, the two archaeal kingdoms, can also be defined and distinguished by their characteristic compositions at approximately fifteen positions in the small subunit rRNA molecule.

  16. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics

    SciTech Connect

    Winker, S.; Woese, C.R.

    1994-11-01

    The number of small subunit rRNA sequences is not great enough that the three domains Archaea, Bacteria, and Eucarya (Woese, et al., 1990) can be reliably defined in terms of their sequence ``signatures.`` Approximately 50 homologous positions (or nucleotide pairs) in the small subunit rRNA characterized and distinguish among the three. In addition, the three can be recognized by a variety of nonhomologous rRNA characters, either individual positions and/or higher-order structural features. The Crenarchaeota and the Euryarchaeota, the two archaeal kingdoms, can also be defined and distinguished by their characteristic composition at approximately fifteen positions in the small subunit rRNA molecule.

  17. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover in higher plants

    SciTech Connect

    Meagher, R.B.

    1990-02-01

    The goals of examining the mechanisms and determinants of RNA turnover in higher plants remain the same. We will continue with two of the major approaches (1) in vivo chemical modification of RNA structure and (2) analysis of Rubisco SSU RNA structure and turnover in transgenic plants. We plan to reduce the amount of molecular physiology (studies of transcription and steady state levels) to a minimum and expand these efforts into the analysis of plant rebonucleases. We have also broadened our examination of light induced turnover of rubisco SSU RNA to include general RNA turnover. We plan to identify specific 3{prime}->5{prime} precessive ribonuclease by complementation of E. coli mutants. The activity of these novel RNases and their potential role in plant RNA turnover and processing will be characterized.

  18. Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes.

    PubMed

    Reeks, Judith; Graham, Shirley; Anderson, Linzi; Liu, Huanting; White, Malcolm F; Naismith, James H

    2013-05-01

    The Cascade complex for CRISPR-mediated antiviral immunity uses CRISPR RNA (crRNA) to target invading DNA species from mobile elements such as viruses, leading to their destruction. The core of the Cascade effector complex consists of the Cas5 and Cas7 subunits, which are widely conserved in prokaryotes. Cas7 binds crRNA and forms the helical backbone of Cascade. Many archaea encode a version of the Cascade complex (denoted Type I-A) that includes a Csa5 (or small) subunit, which interacts weakly with the core proteins. Here, we report the crystal structure of the Csa5 protein from Sulfolobus solfataricus. Csa5 comprises a conserved α-helical domain with a small insertion consisting of a weakly conserved β-strand domain. In the crystal, the Csa5 monomers have multimerized into infinite helical threads. At each interface is a strictly conserved intersubunit salt bridge, deletion of which disrupts multimerization. Structural analysis indicates a shared evolutionary history among the small subunits of the CRISPR effector complexes. The same α-helical domain is found in the C-terminal domain of Cse2 (from Type I-E Cascade), while the N-terminal domain of Cse2 is found in Cmr5 of the CMR (Type III-B) effector complex. As Cmr5 shares no match with Csa5, two possibilities present themselves: selective domain loss from an ancestral Cse2 to create two new subfamilies or domain fusion of two separate families to create a new Cse2 family. A definitive answer awaits structural studies of further small subunits from other CRISPR effector complexes.

  19. Amino-terminal truncations of the ribulose-bisphosphate carboxylase small subunit influence catalysis and subunit interactions.

    PubMed Central

    Paul, K; Morell, M K; Andrews, T J

    1993-01-01

    The first 20 residues at the amino terminus of the small subunit of spinach ribulose-1,5-bisphosphate carboxylase form an irregular arm that makes extensive contacts with the large subunit and also with another small subunit (S. Knight, I. Andersson, and C.-I. Brändén [1990] J Mol Biol 215: 113-160). The influence of these contacts on subunit binding and, indirectly, on catalysis was investigated by constructing truncations from the amino terminus of the small subunit of the highly homologous enzyme from Synechococcus PCC 6301 expressed in Escherichia coli. Removal of the first six residues (and thus the region of contact with a neighboring small subunit) affected neither the affinity with which the small subunits bound to the large subunits nor the catalytic properties of the assembled holoenzyme. Extending the truncation to include the first 12 residues (which encroaches into a highly conserved region that interacts with the large subunit) also did not weaken intersubunit binding appreciably, but it reduced the catalytic activity of the holoenzyme nearly 5-fold. Removal of an additional single residue (i.e. removal of a total of 13 residues) weakened intersubunit binding approximately 80-fold. Paradoxically, this partially restored catalytic activity to approximately 40% of that of the wild-type holoenzyme. None of these truncations materially affected the Km values for ribulose-1,5-bisphosphate or CO2. Removal of all 20 residues of the irregular arm (thereby deleting the conserved region of contact with large subunits) totally abolished the small subunit's ability to bind to large subunits to form a stable holoenzyme. However, this truncated small subunit was still synthesized by the E. coli cells. These data are interpreted in terms of the role of the amino-terminal arm of the small subunit in maintaining the structure of the holoenzyme. PMID:8278544

  20. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    PubMed

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.

  1. Imp3p and Imp4p mediate formation of essential U3–precursor rRNA (pre-rRNA) duplexes, possibly to recruit the small subunit processome to the pre-rRNA

    PubMed Central

    Gérczei, Tímea; Correll, Carl C.

    2004-01-01

    In eukaryotes, formation of short duplexes between the U3 small nucleolar RNA (snoRNA) and the precursor rRNA (pre-rRNA) at multiple sites is a prerequisite for three endonucleolytic cleavages that initiate small subunit biogenesis by releasing the 18S rRNA precursor from the pre-rRNA. The most likely role of these RNA duplexes is to guide the U3 snoRNA and its associated proteins, designated the small subunit processome, to the target cleavage sites on the pre-rRNA. Studies by others in Saccharomyces cerevisiae have identified the proteins Mpp10p, Imp3p, and Imp4p as candidates to mediate U3–pre-rRNA interactions. We report here that Imp3p and Imp4p appear to stabilize an otherwise unstable duplex between the U3 snoRNA hinge region and complementary bases in the external transcribed spacer of the pre-rRNA. In addition, Imp4p, but not Imp3p, seems to rearrange the U3 box A stem structure to expose the site that base-pairs with the 5′ end of the 18S rRNA, thereby mediating duplex formation at a second site. By mediating formation of both essential U3–pre-rRNA duplexes, Imp3p and Imp4p may help the small subunit processome to dock onto the pre-rRNA, an event indispensable for ribosome biogenesis and hence for cell growth. PMID:15489263

  2. Isolation and characterization of rubisco small subunit gene promoter from common wheat (Triticum aestivum L.).

    PubMed

    Mukherjee, Shalini; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-01-01

    Choice of an appropriate promoter is critical to express target genes in intended tissues and developmental stages. However, promoters capable of directing gene expression in specific tissues and stages are not well characterized in monocot species. To identify such a promoter in wheat, this study isolated a partial sequence of the wheat small subunit of RuBisCO (TarbcS) promoter. In silico analysis revealed the presence of elements that are characteristic to rbcS promoters of other, mainly dicot, species. Transient expression of the TarbcS:GUS in immature wheat embryos and tobacco leaves but not in the wheat roots indicate the functionality of the TarbcS promoter fragment in directing the expression of target genes in green plant tissues.

  3. Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of the small subunit.

    PubMed

    Jeyakanthan, Jeyaraman; Drevland, Randy M; Gayathri, Dasara Raju; Velmurugan, Devadasan; Shinkai, Akeo; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Graham, David E

    2010-03-30

    The aconitase family of hydro-lyase enzymes includes three classes of proteins that catalyze the isomerization of alpha-hydroxy acids to beta-hydroxy acids. Besides aconitase, isopropylmalate isomerase (IPMI) proteins specifically catalyze the isomerization of alpha,beta-dicarboxylates with hydrophobic gamma-chain groups, and homoaconitase (HACN) proteins catalyze the isomerization of tricarboxylates with variable chain length gamma-carboxylate groups. These enzymes' stereospecific hydro-lyase activities make them attractive catalysts to produce diastereomers from unsaturated precursors. However, sequence similarity and convergent evolution among these proteins lead to widespread misannotation and uncertainty about gene function. To find the substrate specificity determinants of homologous IPMI and HACN proteins from Methanocaldococcus jannaschii, the small-subunit HACN protein (MJ1271) was crystallized for X-ray diffraction. The structural model showed characteristic residues in a flexible loop region between alpha2 and alpha3 that distinguish HACN from IPMI and aconitase proteins. Site-directed mutagenesis of MJ1271 produced loop-region variant proteins that were reconstituted with wild-type MJ1003 large-subunit protein. The heteromers formed promiscuous hydro-lyases with reduced activity but broader substrate specificity. Both R26K and R26V variants formed relatively efficient IPMI enzymes, while the T27A variant had uniformly lower specificity constants for both IPMI and HACN substrates. The R26V T27Y variant resembles the MJ1277 IPMI small subunit in its flexible loop sequence but demonstrated the broad substrate specificity of the R26V variant. These mutations may reverse the evolution of HACN activity from an ancestral IPMI gene, demonstrating the evolutionary potential for promiscuity in hydro-lyase enzymes. Understanding these specificity determinants enables the functional reannotation of paralogous HACN and IPMI genes in numerous genome sequences. These

  4. Structural insights on the small subunit of DNA topoisomerase I from the unicellular parasite Leishmania donovani.

    PubMed

    Díaz González, Rosario; Pérez Pertejo, Yolanda; Redondo, Carmen M; Pommier, Yves; Balaña-Fouce, Rafael; Reguera, Rosa M

    2007-12-01

    Leishmania donovani, the causative organism of visceral leishmaniasis, contains a unique heterodimeric DNA topoisomerase IB (LdTop1). The catalytically active enzyme consists of a large subunit (LdTop1L), which contains the non-conserved N-terminal end and a phylogenetically conserved core domain, and of a small subunit (LdTop1S) which harbours the C-terminal region with a characteristic tyrosine residue in the active site. Heterologous co-expression of LdTop1L and LdTop1S in a topoisomerase I deficient yeast strain, reconstitutes a fully functional enzyme which can be used for structural studies. The role played by the non-conserved N-terminal extension of LdTop1S in both relaxation activity and CPT sensitivity of LdTop1 has been examined co-expressing the full-length LdTop1L with several deletions of LdTop1S lacking growing sequences of the N-terminal end. The sequential deletion study shows that the first 174 amino acids of LdTop1S are dispensable in terms of relaxation activity and DNA cleavage. It is also described that the trapping of the covalent complex between LdTop1 and DNA by CPT requires a pentapeptide between amino acid residues 175 and 179 of LdTop1S. Our results suggest the crucial role played by the N-terminal extension of the small subunit of DNA topoisomerase I.

  5. Human Blastocystis subtyping with subtype-specific primers developed from unique sequences of the SSU rRNA gene.

    PubMed

    Yoshikawa, Hisao; Iwamasa, Ayana

    2016-12-01

    The genus Blastocystis is one of the most genetically diverse parasites. Blastocystis isolates from humans and animals have been classified into subtypes (STs) based on the phylogeny of the small subunit rRNA gene (SSU rDNA). Although human Blastocystis isolates are limited to STs 1-9, the identification of all 9 STs remains challenging due to the lack of specific primers for several STs. The sequencing of partial SSU rDNA is therefore essential for the identification of several STs. In this study, we developed 9 sets of PCR primers to detect each of the 9 kinds of ST in humans. When these ST-specific primer pairs were examined reference Blastocystis for the 9 STs, all 9 amplified only the target ST even in a DNA mixture of all 9 STs. The specificities of the 9 primer sets were tested against several intestinal parasites and fungi found in human stool samples. No amplification with these common human intestinal eukaryotes was observed using the primer pairs for 8 STs, while the ST5 primer set gave only faint bands with some parasites. Since genomic DNA levels of these parasites extracted from Blastocystis-positive cultures are expected to be markedly lower than the pure or highly concentrated DNA samples tested, the cross-amplifications with these organisms are unlikely to be detected when DNA samples are extracted from Blastocystis-positive cultures. The PCR conditions for all 9 primer sets were the same, hence a one-step analysis by PCR amplification, followed by electrophoresis has potential as a simple tool for the subtyping of human Blastocystis isolates.

  6. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    PubMed Central

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko

    2016-01-01

    ABSTRACT Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  7. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover. Annual progress report

    SciTech Connect

    Meagher, R.B.

    1993-12-31

    An in vitro degradation system has been developed from petunia and soybean polysomes in order to investigate the mechanisms and determinants controlling RNA turnover in higher plants. This system faithfully degrades soybean ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) mRNA into the same products observed in total RNA preparations. In previous years it was shown that the most stable products represent a nested constellation of fragments, which are shortened from their 3{prime} ends, and have intact 5{prime} ends. Exogenous rbcS RNA tagged with novel 5{prime} sequence 15 or 56 bp long were synthesized in vitro as Sp6 and T7 runoff transcripts, respectively. When added to the system they were degraded faithfully into constellation of products which were 15 or 56 bp longer than the endogenous products, respectively. Detailed kinetics on the appearance of these exogenous products confirmed degradation proceeds in an overall 3{prime} to 5{prime} direction but suggested that there are multiple pathways through which the RNA may be degraded. To further demonstrate a precursor product relationships, in vitro synthesized transcripts truncated at their 3{prime} ends were shown to degrade into the expected smaller fragments previously mapped in the 5{prime} portion of the rbcS RNA.

  8. Phylogenetic Analysis of Cryptosporidium Parasites Based on the Small-Subunit rRNA Gene Locus

    PubMed Central

    Xiao, Lihua; Escalante, Lillian; Yang, Chunfu; Sulaiman, Irshad; Escalante, Anannias A.; Montali, Richard J.; Fayer, Ronald; Lal, Altaf A.

    1999-01-01

    Biological data support the hypothesis that there are multiple species in the genus Cryptosporidium, but a recent analysis of the available genetic data suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxonomy of this parasite genus, we characterized the small-subunit rRNA genes of Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris, and Cryptosporidium serpentis and performed a phylogenetic analysis of the genus Cryptosporidium. Our study revealed that the genus Cryptosporidium contains the phylogenetically distinct species C. parvum, C. muris, C. baileyi, and C. serpentis, which is consistent with the biological characteristics and host specificity data. The Cryptosporidium species formed two clades, with C. parvum and C. baileyi belonging to one clade and C. muris and C. serpentis belonging to the other clade. Within C. parvum, human genotype isolates and guinea pig isolates (known as Cryptosporidium wrairi) each differed from bovine genotype isolates by the nucleotide sequence in four regions. A C. muris isolate from cattle was also different from parasites isolated from a rock hyrax and a Bactrian camel. Minor differences were also detected between C. serpentis isolates from snakes and lizards. Based on the genetic information, a species- and strain-specific PCR-restriction fragment length polymorphism diagnostic tool was developed. PMID:10103253

  9. Molecular architecture of the 90S small subunit pre-ribosome

    PubMed Central

    Sun, Qi; Zhu, Xing; Qi, Jia; An, Weidong; Lan, Pengfei; Tan, Dan; Chen, Rongchang; Wang, Bing; Zheng, Sanduo; Zhang, Cheng; Chen, Xining; Zhang, Wei; Chen, Jing; Dong, Meng-Qiu; Ye, Keqiong

    2017-01-01

    Eukaryotic small ribosomal subunits are first assembled into 90S pre-ribosomes. The complete 90S is a gigantic complex with a molecular mass of approximately five megadaltons. Here, we report the nearly complete architecture of Saccharomyces cerevisiae 90S determined from three cryo-electron microscopy single particle reconstructions at 4.5 to 8.7 angstrom resolution. The majority of the density maps were modeled and assigned to specific RNA and protein components. The nascent ribosome is assembled into isolated native-like substructures that are stabilized by abundant assembly factors. The 5' external transcribed spacer and U3 snoRNA nucleate a large subcomplex that scaffolds the nascent ribosome. U3 binds four sites of pre-rRNA, including a novel site on helix 27 but not the 3' side of the central pseudoknot, and crucially organizes the 90S structure. The 90S model provides significant insight into the principle of small subunit assembly and the function of assembly factors. DOI: http://dx.doi.org/10.7554/eLife.22086.001 PMID:28244370

  10. The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron.

    PubMed Central

    Sjöberg, B M; Hahne, S; Mathews, C Z; Mathews, C K; Rand, K N; Gait, M J

    1986-01-01

    The bacteriophage T4 gene nrdB codes for the small subunit of the enzyme ribonucleotide reductase. The T4 nrdB gene was localized between 136.1 kb and 137.8 kb in the T4 genetic map according to the deduced structural homology of the protein to the amino acid sequence of its bacterial counterpart, the B2 subunit of Escherichia coli. This positions the C-terminal end of the T4 nrdB gene approximately 2 kb closer to the T4 gene 63 than earlier anticipated from genetic recombinational analyses. The most surprising feature of the T4 nrdB gene is the presence of an approximately 625 bp intron which divides the structural gene into two parts. This is the second example of a prokaryotic structural gene with an intron. The first prokaryotic intron was reported in the nearby td gene, coding for the bacteriophage T4-specific thymidylate synthase enzyme. The nucleotide sequence at the exon-intron junctions of the T4 nrdB gene is similar to that of the junctions of the T4 td gene: the anticipated exon-intron boundary at the donor site ends with a TAA stop codon and there is an ATG start codon at the putative downstream intron-exon boundary of the acceptor site. In the course of this work the denA gene of T4 (endonuclease II) was also located. PMID:3530746

  11. Morphology and SSU rDNA sequence analysis of two hypotrichous ciliates (Protozoa, Ciliophora, Hypotrichia) including the new species Metaurostylopsis parastruederkypkeae n. sp.

    NASA Astrophysics Data System (ADS)

    Lu, Borong; Wang, Chundi; Huang, Jie; Shi, Yuhong; Chen, Xiangrui

    2016-10-01

    The morphology and phylogeny of two hypotrichous ciliates, Metaurostylopsis parastruederkypkeae n. sp. and Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013 were investigated based on morphology, infraciliature and the small subunit (SSU) ribosomal RNA gene (rRNA) sequence. The new species, M. parastruederkypkeae n. sp. was identified according to its characteristics: body shape ellipsoidal, size about (165-200) × (45-60) μm in vivo, cell color reddish; two types of cortical granules including wheat grain-like and yellow-greenish larger ones along the marginal cirri rows and dorsal kineties and dot-like and reddish smaller ones, grouped around marginal cirri on ventral side and arranged in short lines on dorsal side; 26-41 adoral membranelles; three frontal and one parabuccal, five to seven frontoterminal, one buccal, and three to six transverse cirri; seven to thirteen midventral pairs; five to nine unpaired ventral cirri, five to seven left and three to five right marginal rows; and three complete dorsal kineties. Phylogenetic analysis based on SSU rDNA sequences showed that both Metaurostylopsis and Neourostylopsis are monophyletic. As the internal relationship between and within both genera are not clear, further studies on the species in these two genera are necessary. The key characteristics of all known twelve Metaurostylopsis-Apourostylopsis-Neourostylopsis species complex were updated.

  12. Evolution of mitochondrial SSU-rDNA variable domain sequences and rRNA secondary structures, and phylogeny of the Agrocybe aegerita multispecies complex.

    PubMed

    Uhart, Marina; Sirand-Pugnet, Pascal; Labarère, Jacques

    2007-04-01

    Mitochondrial small subunit (mtSSU) rDNA variable (V1, V2, V4, V6, V8 and V9) domain sequences and rRNA secondary structures evidenced eight molecular groups within 32 strains of the Agrocybe aegerita multispecies complex from different continents. mtSSU-rRNA secondary structure evolution occurred mainly by insertion/deletion of sequences from 8 to 57nt long. Preferential insertion/deletion sites correlated with loops of the mtSSU-rRNA secondary structures, and suggested that these events occurred in regions without interactions in the ribosomal-protein assembly. Indels modified the stem length (V1 and V4 domains) or the size and loop number (V6 and V9 domains). Three indels inserted in the V1 and V4 domains had 76.5% to 94.7% identity with short sequences of the mitochondrial cytochrome c oxidase gene; this fact and the presence of inverted repeated motifs within indel sequences suggested a mechanism of evolution based on insertion/deletion of sequences from another region of the mitochondrial genome. Phylogenetic relationships inferred using both ribosomal DNA sequences and rRNA secondary structures were congruent and evidenced three clades within the A. aegerita complex: European, Argentinean, and a more distant Asian-American clade including A. aegerita and A. chaxingu strains. These results suggested that numerous genetic exchanges occurred between Asian-American strains after isolation of the European clade. V4-V6-V9 concatenated sequences of European and Argentinean clades had 86.1% identity, similar to the value calculated between two Agrocybe closely related species, suggesting that these clades could represent different species. A cleaved amplified polymorphic sequence test for rapid characterization of strains was developed.

  13. Role of Small Subunit in Mediating Assembly of Red-type Form I Rubisco

    PubMed Central

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C.; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. PMID:25371207

  14. Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants.

    PubMed

    Zhang, Xing-Hai; Webb, James; Huang, Yi-Hong; Lin, Li; Tang, Ri-Sheng; Liu, Aimin

    2011-03-01

    Biogenesis of functional ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in plants requires specific assembly in the chloroplast of the imported, cytosol-synthesized small subunits (SS) with the chloroplast-made large subunits (LS). Accumulating evidence indicates that chloroplasts (plastids) generally have a low tolerance for assembling foreign or modified Rubisco. To explore Rubisco engineering, we created two lines of transplastomic tobacco plants whose rbcL gene was replaced by tomato-derived rbcL: plant LLS2 with Rubisco composed of tobacco SS and Q437R LS and plant LLS4 with a hybrid Rubisco of tobacco SS and tomato LS (representing four substitutions of Y226F, A230T, S279T and Q437R from tobacco LS). Plant LLS2 exhibited similar phenotypes as the wild type. Plant LLS4 showed lower chlorophyll and Rubisco levels particularly in young emerging leaves, lower photosynthesis rates and biomass during early stages of development, but was able to reach reproductive maturity and somewhat wild type-like phenotype under ambient CO₂ condition. In vitro assays detected similar carboxylase activity and RuBP affinity in LLS2 and LLS4 plants as in wild type. Our studies demonstrated that tomato LS was sufficiently assembled with tobacco SS into functional Rubisco. The hybrid Rubisco of tomato LS and tobacco SS can drive photosynthesis that supports photoautotrophic growth and reproduction of tobacco plants under ambient CO₂ and light conditions. We discuss the effect of these residue substitutions on Rubisco activity and the possible attribution of chlorophyll deficiency to the in planta photosynthesis performance in the hybrid Rubisco plants.

  15. Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5- bisphosphate carboxylase small subunit of Chlamydomonas

    PubMed Central

    1985-01-01

    The precursor of the ribulose-1,5-bisphosphate carboxylase small subunit and other proteins from Chlamydomonas reinhardtii are efficiently transported into chloroplasts isolated from spinach and pea. Thus, similar determinants specify precursor-chloroplast interactions in the alga and vascular plants. Removal of all or part of its transit sequence was found to block import of the algal small subunit into isolated chloroplasts. Comparison of available sequences revealed a nine amino acid segment conserved in the transit sequences of all small subunit precursors. A protease in the vascular plant chloroplasts recognized this region in the Chlamydomonas precursor and produced an intermediate form of the small subunit. We propose that processing of the small subunit precursor involves at least two proteolytic events; only one of these has been evolutionarily conserved. PMID:3965471

  16. Vorticella Linnaeus, 1767 (Ciliophora, Oligohymenophora, Peritrichia) is a grade not a clade: redefinition of Vorticella and the families Vorticellidae and Astylozoidae using molecular characters derived from the gene coding for small subunit ribosomal RNA.

    PubMed

    Sun, Ping; Clamp, John; Xu, Dapeng; Kusuoka, Yasushi; Miao, Wei

    2012-01-01

    Recent phylogenetic analyses of the peritrich genus Vorticella have suggested that it might be paraphyletic, with one Vorticella species - Vorticella microstoma grouping with the swimming peritrichs Astylozoon and Opisthonecta in a distant clade. These results were based on very limited taxon sampling and thus could not be accepted as conclusive evidence for revising the generic classification. We tested paraphyly of the genus Vorticella by making a new analysis with a broad range of samples from three continents that yielded 52 new sequences of the gene coding for small subunit rRNA. Our results, together with the available sequences in Genbank, form a comprehensive set of data for the genus Vorticella. Analyses of these data showed that Vorticella microstoma morphotypes, Astylozoon, and Opisthonecta form a well-supported, monophyletic clade, that is distinct from and basal to the family Vorticellidae containing other species of Vorticella. Paraphyly of the genus Vorticella and family Vorticellidae was strongly confirmed by these results. Furthermore, the two clades of Vorticella identified by the SSU rRNA gene are so genetically diverse whereas the genetic distances within the one containing Vorticella microstoma morphotypes, Astylozoon, and Opisthonecta were so slight, which marked it as a separate family that must be defined by molecular characters in the absence of unifying morphological and morphogenetic characters. An emended characterization and status of the genus Vorticella, the families Vorticellidae and Astylozoidae are presented and discussed.

  17. Morphology, morphogenesis and small subunit rRNA gene sequence of a soil hypotrichous ciliate, Perisincirra paucicirrata (Ciliophora, Kahliellidae), from the shoreline of the Yellow River, North China.

    PubMed

    Li, Fengchao; Xing, Yi; Li, Jiamei; Al-Rasheid, Khaled A S; He, Songke; Shao, Chen

    2013-01-01

    The morphology, morphogenesis, and 18S rRNA gene sequence of a soil hypotrichous ciliate Perisincirra paucicirrata, isolated from north China, were investigated. Perisincirra paucicirrata differs from its congeners in: (1) having a body length to width ratio in vivo of 4:1, (2) its adoral zone occupying between 15% and 25% of the total body length, and (3) the presence of two parabuccal cirri, three left (with 10-16 cirri each) and two right marginal rows (with 14-24 cirri each), and three dorsal kineties. Our study offers a first attempt to begin to map the morphogenetic processes of the genus, which are mainly characterised by the following: the formation of four frontal ventral transverse anlagens for each daughter cell, with the proter's anlage I originating from the reorganised anterior part of the parental paroral; the paroral and endoral anlage developed from the reorganised old endoral and do not contribute the first frontal cirrus; the frontoventral transverse anlage I contributing the left frontal cirrus; anlage II generating the middle frontal and the buccal cirri; anlage III developing the right frontal cirrus and the anterior parabuccal cirrus; and anlage IV contributing the posterior parabuccal cirrus. As an additional contribution, we judge that the inner one or the two right rows of P. kahli and P. longicirrata are marginal rows. Phylogenetic analysis based on SSU rDNA sequences suggests that Perisincirra is related to sporadotrichids, but provides no credible evidence for its taxonomic position.

  18. Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco.

    PubMed

    Lee, Dong Wook; Lee, Sookjin; Lee, Gil-Je; Lee, Kwang Hee; Kim, Sanguk; Cheong, Gang-Won; Hwang, Inhwan

    2006-02-01

    The transit peptides of nuclear-encoded chloroplast proteins are necessary and sufficient for targeting and import of proteins into chloroplasts. However, the sequence information encoded by transit peptides is not fully understood. In this study, we investigated sequence motifs in the transit peptide of the small subunit of the Rubisco complex by examining the ability of various mutant transit peptides to target green fluorescent protein reporter proteins to chloroplasts in Arabidopsis (Arabidopsis thaliana) leaf protoplasts. We divided the transit peptide into eight blocks (T1 through T8), each consisting of eight or 10 amino acids, and generated mutants that had alanine (Ala) substitutions or deletions, of one or two T blocks in the transit peptide. In addition, we generated mutants that had the original sequence partially restored in single- or double-T-block Ala (A) substitution mutants. Analysis of chloroplast import of these mutants revealed several interesting observations. Single-T-block mutations did not noticeably affect targeting efficiency, except in T1 and T4 mutations. However, double-T mutants, T2A/T4A, T3A/T6A, T3A/T7A, T4A/T6A, and T4A/T7A, caused a 50% to 100% loss in targeting ability. T3A/T6A and T4A/T6A mutants produced only precursor proteins, whereas T2A/T4A and T4A/T7A mutants produced only a 37-kD protein. Detailed analyses revealed that sequence motifs ML in T1, LKSSA in T3, FP and RK in T4, CMQVW in T6, and KKFET in T7 play important roles in chloroplast targeting. In T1, the hydrophobicity of ML is important for targeting. LKSSA in T3 is functionally equivalent to CMQVW in T6 and KKFET in T7. Furthermore, subcellular fractionation revealed that Ala substitution in T1, T3, and T6 produced soluble precursors, whereas Ala substitution in T4 and T7 produced intermediates that were tightly associated with membranes. These results demonstrate that the transit peptide contains multiple motifs and that some of them act in concert or

  19. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus

    SciTech Connect

    Menon, N.K.; Peck, H.D. Jr.; Le Gall, J.; Przybyla, A.E.

    1987-12-01

    The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities.

  20. A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare).

    PubMed Central

    Thorbjørnsen, T; Villand, P; Kleczkowski, L A; Olsen, O A

    1996-01-01

    ADP-glucose pyrophosphorylase (AGPase), a heterotetrameric enzyme composed of two small and two large subunits, catalyses the first committed step of starch synthesis in plant tissues. In an attempt to learn more about the organization and expression of the small-subunit gene of AGPase, we have studied the small-subunit transcripts as well as the structure of the gene encoding these transcripts in barley (Hordeum vulgare L. cv. Bomi). Two different transcripts (bepsF1 and blps14) were identified: bepF1 was abundantly expressed in the starchy endosperm but not in leaves, whereas blps14 was isolated from leaves but was also found to be present at a moderate level in the starchy endosperm. The sequences for the two transcripts are identical over approx. 90% of the length, with differences being confined solely to their 5' ends. In blps14, the unique 5' end is 259 nt long and encodes a putative plastid transit peptide sequence. For the 178-nt 5' end of bepsF1, on the other hand, no transit peptide sequence could be recognized. A lambda clone that hybridized to the AGPase transcripts was isolated from a barley genomic library and characterized. The restriction map has suggested a complex organization of the gene, with alternative exons encoding the different 5' ends of the two transcripts followed by nine exons coding for the common part of the transcripts. The sequence of a portion of the genomic clone, covering the alternative 5'-end exons as well as upstream regions, has verified that both transcripts are encoded by the gene. The results suggest that the small-subunit gene of barley AGPase transcribes two different mRNAs by a mechanism classified as alternative splicing. PMID:8546676

  1. Isolation and 18S ribosomal DNA gene sequences of Marteilioides chungmuensis (Paramyxea), an ovarian parasite of the Pacific oyster Crassostrea gigas.

    PubMed

    Itoh, Naoki; Oda, Tadashi; Yoshinaga, Tomoyoshi; Ogawa, Kazuo

    2003-03-31

    To develop sensitive detection techniques with the aim of elucidating the life cycle of Marteilioides chungmuensis, an intracellular paramyxean infecting the ovary of the Pacific oyster Crassostrea gigas, we isolated the parasite at the sporont stage from infected oysters using a freeze-thaw procedure at -20 degrees C and differential centrifugations in discontinuous sucrose and Percoll gradients. DNA was extracted from the isolated sporonts, and a PCR amplicon of 18S small subunit ribosomal RNA gene DNA was partially sequenced. In situ hybridization using 3 parasite-specific probes designed from the obtained sequence successfully detected parasite cells in infected oysters, and confirmed that the sequenced DNA was derived from M. chungmuensis.

  2. Structural Comparison, Substrate Specificity, and Inhibitor Binding of AGPase Small Subunit from Monocot and Dicot: Present Insight and Future Potential

    PubMed Central

    Choudhury, Manabendra D.; Modi, Mahendra K.

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide. PMID:25276800

  3. Structural comparison, substrate specificity, and inhibitor binding of AGPase small subunit from monocot and dicot: present insight and future potential.

    PubMed

    Sarma, Kishore; Sen, Priyabrata; Barooah, Madhumita; Choudhury, Manabendra D; Roychoudhury, Shubhadeep; Modi, Mahendra K

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide.

  4. Sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Demodex and phylogenetic analysis of Acari based on 18S and 28S rDNA.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping; Hu, Li; Xu, Yang; Wang, Zheng-Hang; Liu, Wen-Yan

    2012-11-01

    Due to the difficulty of DNA extraction for Demodex, few studies dealt with the identification and the phyletic evolution of Demodex at molecular level. In this study, we amplified, sequenced, and analyzed a complete (Demodex folliculorum) and an almost complete (D12 missing) (Demodex brevis) ribosomal DNA (rDNA) sequence and also analyzed the primary sequences of divergent domains in small-subunit ribosomal RNA (rRNA) of 51 species and in large-subunit rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea, and Ixodoidea). The results revealed that 18S rDNA sequence was relatively conserved in rDNA-coding regions and was not evolving as rapidly as 28S rDNA sequence. The evolutionary rates of transcribed spacer regions were much higher than those of the coding regions. The maximum parsimony trees of 18S and 28S rDNA appeared to be almost identical, consistent with their morphological classification. Based on the fact that the resolution capability of sequence length and the divergence of the 13 segments (D1-D6, D7a, D7b, and D8-D12) of 28S rDNA were stronger than that of the nine variable regions (V1-V9) of 18S rDNA, we were able to identify Demodex (Cheyletoidea) by the indels occurring in D2, D6, and D8.

  5. Evidence for Horizontal Transfer of SsuDAT1I Restriction-Modification Genes to the Streptococcus suis Genome

    PubMed Central

    Sekizaki, Tsutomu; Otani, Yoshiko; Osaki, Makoto; Takamatsu, Daisuke; Shimoji, Yoshihiro

    2001-01-01

    Different strains of Streptococcus suis serotypes 1 and 2 isolated from pigs either contained a restriction-modification (R-M) system or lacked it. The R-M system was an isoschizomer of Streptococcus pneumoniae DpnII, which recognizes nucleotide sequence 5′-GATC-3′. The nucleotide sequencing of the genes encoding the R-M system in S. suis DAT1, designated SsuDAT1I, showed that the SsuDAT1I gene region contained two methyltransferase genes, designated ssuMA and ssuMB, as does the DpnII system. The deduced amino acid sequences of M.SsuMA and M.SsuMB showed 70 and 90% identity to M.DpnII and M.DpnA, respectively. However, the SsuDAT1I system contained two isoschizomeric restriction endonuclease genes, designated ssuRA and ssuRB. The deduced amino acid sequence of R.SsuRA was 49% identical to that of R.DpnII, and R.SsuRB was 72% identical to R.LlaDCHI of Lactococcus lactis subsp. cremoris DCH-4. The four SsuDAT1I genes overlapped and were bounded by purine biosynthetic gene clusters in the following gene order: purF-purM-purN-purH-ssuMA-ssuMB-ssuRA-ssuRB-purD-purE. The G+C content of the SsuDAT1I gene region (34.1%) was lower than that of the pur region (48.9%), suggesting horizontal transfer of the SsuDAT1I system. No transposable element or long-repeat sequence was found in the flanking regions. The SsuDAT1I genes were functional by themselves, as they were individually expressed in Escherichia coli. Comparison of the sequences between strains with and without the R-M system showed that only the region from 53 bp upstream of ssuMA to 5 bp downstream of ssuRB was inserted in the intergenic sequence between purH and purD and that the insertion target site was not the recognition site of SsuDAT1I. No notable substitutions or insertions could be found, and the structures were conserved among all the strains. These results suggest that the SsuDAT1I system could have been integrated into the S. suis chromosome by an illegitimate recombination mechanism. PMID:11133943

  6. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  7. Mitochondrial DNA Restriction Fragment Length Polymorphism (RFLP) and 18S Small-Subunit Ribosomal DNA PCR-RFLP Analyses of Acanthamoeba Isolated from Contact Lens Storage Cases of Residents in Southwestern Korea

    PubMed Central

    Kong, Hyun-Hee; Shin, Ji-Yeol; Yu, Hak-Sun; Kim, Jin; Hahn, Tae-Won; Hahn, Young-Ho; Chung, Dong-Il

    2002-01-01

    We applied ribosomal DNA PCR-restriction fragment length polymorphism (RFLP) and mitochondrial DNA (mtDNA) RFLP analyses to 43 Acanthamoeba environmental isolates (KA/LH1 to KA/LH43) from contact lens storage cases in southwestern Korea. These isolates were compared to American Type Culture Collection strains and clinical isolates (KA/E1 to KA/E12) from patients with keratitis. Seven riboprint patterns were seen. To identify the species of the isolates, a phylogenetic tree was constructed based on the comparison of riboprint patterns with reference strains. Four types accounted for 39 of the isolates belonging to the A. castellanii complex. The most predominant (48.8%) type was A. castellanii KA/LH2 type, which had identical riboprint and mtDNA RFLP patterns to those of A. castellanii Castellani, KA/E3 and KA/E8. The riboprint and mtDNA RFLP patterns of the KA/LH7 (20.9%) type were identical to those of A. castellanii Ma, a corneal isolate from the United States. The riboprint and mtDNA RFLP patterns of the KA/LH1 (18.6%) type were the same as those of A. lugdunensis L3a, KA/E2, and KA/E12. The prevalent pattern for each type of Acanthamoeba in southwestern Korea was very different from that from southeastern Korea and Seoul, Korea. It is noteworthy that 38 (88.4%) out of 43 isolates from contact lens storage cases of the residents in southwestern Korea revealed mtDNA RFLP and riboprint patterns identical to those found for clinical isolates in our area. This indicates that most isolates from contact lens storage cases in the surveyed area are potential keratopathogens. More attention should be paid to the disinfection of contact lens storage cases to prevent possible amoebic keratitis. PMID:11923331

  8. Mitochondrial DNA restriction fragment length polymorphism (RFLP) and 18S small-subunit ribosomal DNA PCR-RFLP analyses of Acanthamoeba isolated from contact lens storage cases of residents in southwestern Korea.

    PubMed

    Kong, Hyun-Hee; Shin, Ji-Yeol; Yu, Hak-Sun; Kim, Jin; Hahn, Tae-Won; Hahn, Young-Ho; Chung, Dong-Il

    2002-04-01

    We applied ribosomal DNA PCR-restriction fragment length polymorphism (RFLP) and mitochondrial DNA (mtDNA) RFLP analyses to 43 Acanthamoeba environmental isolates (KA/LH1 to KA/LH43) from contact lens storage cases in southwestern Korea. These isolates were compared to American Type Culture Collection strains and clinical isolates (KA/E1 to KA/E12) from patients with keratitis. Seven riboprint patterns were seen. To identify the species of the isolates, a phylogenetic tree was constructed based on the comparison of riboprint patterns with reference strains. Four types accounted for 39 of the isolates belonging to the A. castellanii complex. The most predominant (48.8%) type was A. castellanii KA/LH2 type, which had identical riboprint and mtDNA RFLP patterns to those of A. castellanii Castellani, KA/E3 and KA/E8. The riboprint and mtDNA RFLP patterns of the KA/LH7 (20.9%) type were identical to those of A. castellanii Ma, a corneal isolate from the United States. The riboprint and mtDNA RFLP patterns of the KA/LH1 (18.6%) type were the same as those of A. lugdunensis L3a, KA/E2, and KA/E12. The prevalent pattern for each type of Acanthamoeba in southwestern Korea was very different from that from southeastern Korea and Seoul, Korea. It is noteworthy that 38 (88.4%) out of 43 isolates from contact lens storage cases of the residents in southwestern Korea revealed mtDNA RFLP and riboprint patterns identical to those found for clinical isolates in our area. This indicates that most isolates from contact lens storage cases in the surveyed area are potential keratopathogens. More attention should be paid to the disinfection of contact lens storage cases to prevent possible amoebic keratitis.

  9. Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity.

    PubMed

    Yang, ChenXue; Ji, YingQiu; Wang, XiaoYang; Yang, ChunYang; Yu, Douglas W

    2013-01-01

    A number of basic and applied questions in ecology and environmental management require the characterization of soil and leaf litter faunal diversity. Recent advances in high-throughput sequencing of barcode-gene amplicons ('metabarcoding') have made it possible to survey biodiversity in a robust and efficient way. However, one obstacle to the widespread adoption of this technique is the need to choose amongst many candidates for bioinformatic processing of the raw sequencing data. We compare three candidate pipelines for the processing of 18S small subunit rDNA metabarcode data from solid substrates: (i) USEARCH/CROP, (ii) Denoiser/UCLUST, and (iii) OCTUPUS. The three pipelines produced reassuringly similar and highly correlated assessments of community composition that are dominated by taxa known to characterize the sampled environments. However, OCTUPUS appears to inflate phylogenetic diversity, because of higher sequence noise. We therefore recommend either the USEARCH/CROP or Denoiser/UCLUST pipelines, both of which can be run within the QIIME (Quantitative Insights Into Microbial Ecology) environment.

  10. 18S ribosomal RNA gene sequences of Cochliopodium (Himatismenida) and the phylogeny of Amoebozoa.

    PubMed

    Kudryavtsev, Alexander; Bernhard, Detlef; Schlegel, Martin; Chao, Ema E Y; Cavalier-Smith, Thomas

    2005-08-01

    Cochliopodium is a very distinctive genus of discoid amoebae covered by a dorsal tectum of carbohydrate microscales. Its phylogenetic position is unclear, since although sharing many features with naked "gymnamoebae", the tectum sets it apart. We sequenced 18S ribosomal RNA genes from three Cochliopodium species (minus, spiniferum and Cochliopodium sp., a new species resembling C. minutum). Phylogenetic analysis shows Cochliopodium as robustly holophyletic and within Amoebozoa, in full accord with morphological data. Cochliopodium is always one of the basal branches within Amoebozoa but its precise position is unstable. In Bayesian analysis it is sister to holophyletic Glycostylida, but distance trees mostly place it between Dermamoeba and a possibly artifactual long-branch cluster including Thecamoeba. These positions are poorly supported and basal amoebozoan branching ill-resolved, making it unclear whether Discosea (Glycostylida, Himatismenida, Dermamoebida) is holophyletic; however, Thecamoeba seems not specifically related to Dermamoeba. We also sequenced the small-subunit rRNA gene of Vannella persistens, which constantly grouped with other Vannella species, and two Hartmannella strains. Our trees suggest that Vexilliferidae, Variosea and Hartmannella are polyphyletic, confirming the existence of two very distinct Hartmannella clades: that comprising H. cantabrigiensis and another divergent species is sister to Glaeseria, whilst Hartmannella vermiformis branches more deeply.

  11. Cloning of the cDNAs for the small subunits of bovine and human DNA polymerase {delta} and chromosomal location of the human gene (POLD2)

    SciTech Connect

    Zhang, Jian; Tan, Cheng-Keat; Downey, K.M.

    1995-09-01

    cDNAs encoding the small subunit of bovine and human DNA polymerase {delta} have been cloned and sequenced. The predicted polypeptides, 50,885 and 51,289 Daltons, respectively, are 94% identical, similar to the catalytic subunits. The high degree of conservation of the polypeptides suggests an essential function for the small subunit in the heterodimeric core enzyme. Although the catalytic subunit of DNA polymerase 5 shares significant homology with those of the herpes virus family of DNA polymerases, the small subunit of mammalian DNA polymerase 6 is not homologous to the small subunit of either herpes simplex virus type 1 DNA polymerase (UL42 protein) or the Epstein-Barr virus DNA polymerase (BMRF1 protein). Searches of the protein databases failed to detect significant homology with any protein sequenced thus far. PCR analysis of DNA from a panel of human-hamster hybrid cell lines localized the gene (POLD2) for the small subunit of DNA polymerase 5 to human chromosome 7. 45 refs., 2 figs., 2 tabs.

  12. Isolation of the catalytically competent small subunit of ribulose bisphosphate carboxylase/oxygenase from spinach under an extremely alkaline condition.

    PubMed

    Incharoensakdi, A; Takabe, T; Takabe, T; Akazawa, T

    1986-07-16

    A method for isolating the small subunit (B) of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from spinach leaf using an alkaline buffer (pH 11.2) in combination with sucrose gradient centrifugation is described. Although the yield of isolated subunit B (ca. 20%) was comparable to that previously described (ca. 25%) using the acid precipitation method [Andrews, T.J. and Lorimer, G.H. (1985) J. Biol. Chem. 260: 4632-4636], the isolated subunit B in this report suffered less denaturation (ca. 30%) as estimated from kinetic analysis of its reassembly with large subunit (A) derived from Aphanothece halophytica. Studies on the kinetic properties of the reassembled enzyme molecules suggested that spinach subunit B does not influence the affinity of the enzyme for substrate CO2. The catalytic core (A8) of spinach RuBisCO could not be isolated in the native form.

  13. Phosphorylation of chloroplast ribulose bisphosphate carboxylase/oxygenase small subunit by an envelope-bound protein kinase in situ.

    PubMed

    Soll, J; Buchanan, B B

    1983-06-10

    A new protein kinase of the cAMP independent type was found to be bound to the outer envelope membrane of spinach chloroplasts. While stimulated by Mg2+ and inhibited by ADP, the enzyme showed no response to conventional protein substrates and was essentially independent of pH in the physiological (pH 7 to 8) range. The new protein kinase phosphorylated the mature form of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase and, to a lesser extent, an unidentified 24-kDa polypeptide, both of which were bound to the outer envelope membrane. The results suggest that phosphorylation of cytoplasmically synthesized protein constituents of chloroplasts is involved in their transport through the chloroplast envelope membrane barrier.

  14. A preliminary phylogeny of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea) based on nuclear small-subunit ribosomal DNA.

    PubMed

    Cook, Lyn G; Gullan, Penny J; Trueman, Holly E

    2002-10-01

    Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) are a speciose and morphologically specialized group of plant-feeding bugs in which evolutionary relationships and thus higher classification are controversial. Sequences derived from nuclear small-subunit ribosomal DNA were used to generate a preliminary molecular phylogeny for the Coccoidea based on 39 species representing 14 putative families. Monophyly of the archaeococcoids (comprising Ortheziidae, Margarodidae sensu lato, and Phenacoleachia) was equivocal, whereas monophyly of the neococcoids was supported. Putoidae, represented by Puto yuccae, was found to be outside the remainder of the neococcoid clade. These data are consistent with a single origin (in the ancestor of the neococcoid clade) of a chromosome system involving paternal genome elimination in males. Pseudococcidae (mealybugs) appear to be sister to the rest of the neococcoids and there are indications that Coccidae (soft scales) and Kerriidae (lac scales) are sister taxa. The Eriococcidae (felt scales) was not recovered as a monophyletic group and the eriococcid genus Eriococcus sensu lato was polyphyletic.

  15. Crystal Structure of the Human Symplekin-Ssu72-CTD Phosphopeptide Complex

    SciTech Connect

    K Xiang; T Nigaike; S Xiang; T Kilic; M Beh; J Manley; L Tong

    2011-12-31

    Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3'-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs); it also participates in transcription initiation and termination by RNA polymerase II (Pol II). Symplekin mediates interactions between many different proteins in this machinery, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 {angstrom} resolution of the amino-terminal domain (residues 30-340) of human symplekin in a ternary complex with the Pol II carboxy-terminal domain (CTD) Ser5 phosphatase Ssu72 and a CTD Ser5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of antiparallel {alpha}-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-mass phosphotyrosine protein phosphatase, although Ssu72 has a unique active-site landscape as well as extra structural features at the C terminus that are important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, with the pSer5-Pro6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations. Although the active site of Ssu72 is about 25 {angstrom} from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but only when coupled to transcription. Because catalytically active Ssu72 overcomes this inhibition, our results show a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3'-end processing.

  16. Purification and characterization of large and small subunits of ribulose 1,5-bisphosphate carboxylase expressed separately in Escherichia coli.

    PubMed

    Smrcka, A V; Ramage, R T; Bohnert, H J; Jensen, R G

    1991-04-01

    Procedures were developed for 95 and 80% purification to homogeneity of the large subunit (L) and small subunit (S) of ribulose 1,5-bisphosphate carboxylase/oxygenase (L8S8) from Synechococcus PCC 6301, each expressed separately in Escherichia coli. Purified L had a low specific activity in the absence of S (0.075 mumol CO2 fixed/mg holoenzyme/min). Following elution on a Pharmacia Superose 6 or 12 gel filtration column, 50% of the purified L appeared as the octamer, L8. The rest was in equilibrium with lower polymeric species and/or was retained on the column. Large and small subunits assembled rapidly into the L8S8 holoenzyme that had high specific activities, 6.2 and 3.1 mumol CO2 fixed/mg holoenzyme/min for the homologous Synechococcus L8S8 and the hybrid Synechococcus L-pea S L8S8, respectively. The CO2 dependence for carbamylation of L8 was compared to that of L8S8 as a function of pH and CO2 concentration. The pH dependence indicated an apparent pKa for L8 of 8.28 and for L8S8 of 8.15, suggesting that S may influence the pKa of the lysine involved in carbamylation. The Kact for CO2 at pH 8.4 were similar for L8 (13.5 microM) and L8S8 (15.5 microM). L8 bound 2-[14C]carboxy-D-arabinitol 1,5-bisphosphate (CABP) tightly so that most of the bound [14C]CABP survived gel filtration. A major amount of the L8-[14C]CABP complex appeared as larger polymeric aggregates when eluted in the presence of E. coli protein.

  17. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    PubMed Central

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-01-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems. PMID:9055425

  18. Using the small subunit of nuclear ribosomal DNA to reveal the phylogenetic position of the plerocercoid larvae of Spirometra tapeworms.

    PubMed

    Zhang, Xi; Duan, Jiang Yang; Wang, Zhong Quan; Jiang, Peng; Liu, Ruo Dan; Cui, Jing

    2017-04-01

    Although medically important, the systematics of Spirometra and the taxonomic position of S. erinaceieuropaei remain unclear. In this study, the 18S rDNA gene of S. erinaceieuropaei sparganum from naturally infected frogs caught in 14 geographical locations of China was sequenced. In addition, all available 18S sequences of the family Diphyllobothriidae in the Genbank database were included to reconstruct the phylogeny of diphyllobothriid tapeworms. The secondary structure model of the 18S rDNA was also predicated to further explore the sequence variation. Phylogenetic analyses were performed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods. The intraspecific divergences of 18S rDNA in Chinese sparganum isolates ranged from 0.0 to 0.4%. Regions of V2, V4 and V7 were the most variable regions in the secondary structure of 18S rDNA. With the exception of genera Duthiersia and Probothriocephalus, other genera (i.e., Adenocephalus, Diphyllobothrium, Diplogonoporus, Duthiersia, Schistocephalus and Spirometra) selected in the Diphyllobothriidae shared similar topologies of V2, V4 and V7 structures. The topology of generated phylogenetic trees revealed close relationships among Adenocephalus, Digramma, Diphyllobothrium, Diplogonoporus, Ligula, Sparganum and Spirometra. The exact phylogenetic position of Spirometra species should be further analyzed with more sampling and more useful molecular markers.

  19. The Ssu72 Phosphatase Mediates the RNA Polymerase II Initiation-Elongation Transition*

    PubMed Central

    Rosado-Lugo, Jesús D.; Hampsey, Michael

    2014-01-01

    Transitions between the different stages of the RNAPII transcription cycle involve the recruitment and exchange of factors, including mRNA capping enzymes, elongation factors, splicing factors, 3′-end-processing complexes, and termination factors. These transitions are coordinated by the dynamic phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNAPII (Rpb1). The CTD is composed of reiterated heptapeptide repeats (Y1S2P3T4S5P6S7) that undergo phosphorylation and dephosphorylation as RNAPII transitions through the transcription cycle. An essential phosphatase in this process is Ssu72, which exhibits catalytic specificity for Ser(P)5 and Ser(P)7. Ssu72 is unique in that it is specific for Ser(P)5 in one orientation of the CTD and for Ser(P)7 when bound in the opposite orientation. Moreover, Ssu72 interacts with components of the initiation machinery and affects start site selection yet is an integral component of the CPF 3′-end-processing complex. Here we provide a comprehensive view of the effects of Ssu72 with respect to its Ser(P)5 phosphatase activity. We demonstrate that Ssu72 dephosphorylates Ser(P)5 at the initiation-elongation transition. Furthermore, Ssu72 indirectly affects the levels of Ser(P)2 during the elongation stage of transcription but does so independent of its catalytic activity. PMID:25339178

  20. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    SciTech Connect

    Fang, Zejun; Gong, Chaoju; Liu, Hong; Zhang, Xiaomin; Mei, Lingming; Song, Mintao; Qiu, Lanlan; Luo, Shuchai; Zhu, Zhihua; Zhang, Ronghui; Gu, Hongqian; Chen, Xiang

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and

  1. Differential accumulation of ribonucleotide reductase subunits in clam oocytes: the large subunit is stored as a polypeptide, the small subunit as untranslated mRNA

    PubMed Central

    1986-01-01

    Within minutes of fertilization of clam oocytes, translation of a set of maternal mRNAs is activated. One of the most abundant of these stored mRNAs encodes the small subunit of ribonucleotide reductase (Standart, N. M., S. J. Bray, E. L. George, T. Hunt, and J. V. Ruderman, 1985, J. Cell Biol., 100:1968-1976). Unfertilized oocytes do not contain any ribonucleotide reductase activity; such activity begins to appear shortly after fertilization. In virtually all organisms, this enzyme is composed of two dissimilar subunits with molecular masses of approximately 44 and 88 kD, both of which are required for activity. This paper reports the identification of the large subunit of clam ribonucleotide reductase isolated by dATP-Sepharose chromatography as a relatively abundant 86-kD polypeptide which is already present in oocytes, and whose level remains constant during early development. The enzyme activity of this large subunit was established in reconstitution assays using the small subunit isolated from embryos by virtue of its binding to the anti-tubulin antibody YL 1/2. Thus the two components of clam ribonucleotide reductase are differentially stored in the oocyte: the small subunit in the form of untranslated mRNA and the large subunit as protein. When fertilization triggers the activation of translation of the maternal mRNA, the newly synthesized small subunit combines with the preformed large subunit to generate active ribonucleotide reductase. PMID:3536960

  2. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    SciTech Connect

    Tai, Lin-Ru; Chou, Chang-Wei; Wu, Jing-Ying; Kirby, Ralph; Lin, Alan

    2013-11-15

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20{sub NLS} mutant gene and examined polysome profile of cells that had been transfected with the S20{sub NLS} gene. As a result, we observed the formation of recombinant 40S carried S20{sub NLS} but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20{sub NLS} in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20{sub NLS} in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20{sub NLS} is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20{sub NLS}. • Cytoplasm-retained S20{sub NLS} is crucial for creating a functional small subunit.

  3. The rubisco small subunit is involved in tobamovirus movement and Tm-2²-mediated extreme resistance.

    PubMed

    Zhao, Jinping; Liu, Qi; Zhang, Haili; Jia, Qi; Hong, Yiguo; Liu, Yule

    2013-01-01

    The multifunctional movement protein (MP) of Tomato mosaic tobamovirus (ToMV) is involved in viral cell-to-cell movement, symptom development, and resistance gene recognition. However, it remains to be elucidated how ToMV MP plays such diverse roles in plants. Here, we show that ToMV MP interacts with the Rubisco small subunit (RbCS) of Nicotiana benthamiana in vitro and in vivo. In susceptible N. benthamiana plants, silencing of NbRbCS enabled ToMV to induce necrosis in inoculated leaves, thus enhancing virus local infectivity. However, the development of systemic viral symptoms was delayed. In transgenic N. benthamiana plants harboring Tobacco mosaic virus resistance-2² (Tm-2²), which mediates extreme resistance to ToMV, silencing of NbRbCS compromised Tm-2²-dependent resistance. ToMV was able to establish efficient local infection but was not able to move systemically. These findings suggest that NbRbCS plays a vital role in tobamovirus movement and plant antiviral defenses.

  4. Phylogenetic relationships between Vorticella convallaria and other species inferred from small subunit rRNA gene sequences.

    PubMed

    Itabashi, Takeshi; Mikami, Kazuyuki; Fang, Jie; Asai, Hiroshi

    2002-08-01

    Vorticellid ciliates generally dwell in freshwater. In nature, the species have up until now been identified by comparison with previous descriptions. It is difficult to identify between species of the genus Vorticella, because the morphological markers of vorticellid ciliates described in reports are limited and variable. Unfortunately, culturing them has only succeeded with certain species such as Vorticella convallaria, but many others have been impossible to culture. To find out whether the sequence of a small subunit rRNA gene was an appropriate marker to identify vorticellid ciliates, the gene was aligned and compared. Finding a new convenient method will contribute to research on vorticellid ciliates. In strains of V. convallaria, classified morphologically, some varieties of the SSrRNA gene sequences were recognized, but there were large variations within the same species. According to the phylogenetic tree, these strains are closely related. However, the difference was not as big as between Vorticella and Carchesium. In addition, Carchesium constructed a distinct clade from the genus Vorticella and Epistylis. These results show the possibility that the SSrRNA gene is one of the important markers to identify species of Vorticella. This study is first to approach and clarify the complicated taxa in the genus Vorticella.

  5. Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast.

    PubMed Central

    Sugimoto, K; Shimomura, T; Hashimoto, K; Araki, H; Sugino, A; Matsumoto, K

    1996-01-01

    The inhibition of DNA synthesis prevents mitotic entry through the action of the S phase checkpoint. In the yeast Saccharomyces cerevisiae, an essential protein kinase, Spk1/Mec2/Rad53/Sad1, controls the coupling of S phase to mitosis. In an attempt to identify genes that genetically interact with Spk1, we have isolated a temperature-sensitive mutation, rfc5-1, that can be suppressed by overexpression of SPK1. The RFC5 gene encodes a small subunit of replication factor C complex. At the restrictive temperature, rfc5-1 mutant cells entered mitosis with unevenly separated or fragmented chromosomes, resulting in loss of viability. Thus, the rfc5 mutation defective for DNA replication is also impaired in the S phase checkpoint. Overexpression of POL30, which encodes the proliferating cell nuclear antigen, suppressed the replication defect of the rfc5 mutant but not its checkpoint defect. Taken together, these results suggested that replication factor C has a direct role in sensing the state of DNA replication and transmitting the signal to the checkpoint machinery. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692942

  6. Phylogenetics of Bonamia parasites based on small subunit and internal transcribed spacer region ribosomal DNA sequence data.

    PubMed

    Hill, Kristina M; Stokes, Nancy A; Webb, Stephen C; Hine, P Mike; Kroeck, Marina A; Moore, James D; Morley, Margaret S; Reece, Kimberly S; Burreson, Eugene M; Carnegie, Ryan B

    2014-07-24

    The genus Bonamia (Haplosporidia) includes economically significant oyster parasites. Described species were thought to have fairly circumscribed host and geographic ranges: B. ostreae infecting Ostrea edulis in Europe and North America, B. exitiosa infecting O. chilensis in New Zealand, and B. roughleyi infecting Saccostrea glomerata in Australia. The discovery of B. exitiosa-like parasites in new locations and the observation of a novel species, B. perspora, in non-commercial O. stentina altered this perception and prompted our wider evaluation of the global diversity of Bonamia parasites. Samples of 13 oyster species from 21 locations were screened for Bonamia spp. by PCR, and small subunit and internal transcribed spacer regions of Bonamia sp. ribosomal DNA were sequenced from PCR-positive individuals. Infections were confirmed histologically. Phylogenetic analyses using parsimony and Bayesian methods revealed one species, B. exitiosa, to be widely distributed, infecting 7 oyster species from Australia, New Zealand, Argentina, eastern and western USA, and Tunisia. More limited host and geographic distributions of B. ostreae and B. perspora were confirmed, but nothing genetically identifiable as B. roughleyi was found in Australia or elsewhere. Newly discovered diversity included a Bonamia sp. in Dendostrea sandvicensis from Hawaii, USA, that is basal to the other Bonamia species and a Bonamia sp. in O. edulis from Tomales Bay, California, USA, that is closely related to both B. exitiosa and the previously observed Bonamia sp. from O. chilensis in Chile.

  7. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    PubMed Central

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  8. Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas.

    PubMed

    Genkov, Todor; Meyer, Moritz; Griffiths, Howard; Spreitzer, Robert J

    2010-06-25

    There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO(2) fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclear genes encodes the Rubisco small subunits, which can also influence the carboxylation catalytic efficiency and CO(2)/O(2) specificity of the enzyme. To further define the role of the small subunit in Rubisco function, small subunits from spinach, Arabidopsis, and sunflower were assembled with algal large subunits by transformation of a Chlamydomonas reinhardtii mutant that lacks the rbcS gene family. Foreign rbcS cDNAs were successfully expressed in Chlamydomonas by fusing them to a Chlamydomonas rbcS transit peptide sequence engineered to contain rbcS introns. Although plant Rubisco generally has greater CO(2)/O(2) specificity but a lower carboxylation V(max) than Chlamydomonas Rubisco, the hybrid enzymes have 3-11% increases in CO(2)/O(2) specificity and retain near normal V(max) values. Thus, small subunits may make a significant contribution to the overall catalytic performance of Rubisco. Despite having normal amounts of catalytically proficient Rubisco, the hybrid mutant strains display reduced levels of photosynthetic growth and lack chloroplast pyrenoids. It appears that small subunits contain the structural elements responsible for targeting Rubisco to the algal pyrenoid, which is the site where CO(2) is concentrated for optimal photosynthesis.

  9. Ultrastructure and 18S rDNA phylogeny of Apoikia lindahlii comb. nov. (Chrysophyceae) and its epibiontic protists, Filos agilis gen. et sp. nov. (Bicosoecida) and Nanos amicus gen. et sp. nov. (Bicosoecida).

    PubMed

    Kim, Eunsoo; Yubuki, Naoji; Leander, Brian S; Graham, Linda E

    2010-04-01

    Three heterotrophic stramenopiles--Apoikia lindahlii comb. nov. (Chrysophyceae), Filos agilis gen. et sp. nov. (Bicosoecida), and Nanos amicus gen. et sp. nov. (Bicosoecida)--were isolated from acidic peat bogs. The biflagellate A. lindahlii forms loose irregular colonies from which swimming cells may detach, and produces extensive mucilaginous material containing bacterial cells. Phylogenetic analyses of small subunit rDNA sequences demonstrated that A. lindahlii branches within the Chrysophyceae. While A. lindahlii is an obligate heterotroph, ultrastructural observations revealed a leukoplast in the perinuclear region. The pico-sized uniflagellates F. agilis and N. amicus were isolated from separate lakes and within the mucilage of A. lindahlii, suggesting their close associations in natural habitats. In SSU rDNA phylogenies, F. agilis and N. amicus were closely related to the bicosoecids Adriamonas, Siluania, Paramonas, and Nerada. While Filos, Nanos, and Siluania are similar in light microscopic features, their SSU rDNA gene sequences differed significantly (>8% differences) and were not monophyletic. Both F. agilis and N. amicus have a cytostome/cytopharynx particle ingestion apparatus. Bacterial cells and material similar to the mucilage of A. lindahlii occurred within the food vacuole of F. agilis and N. amicus. The nature of association between A. lindahlii and its epibiontic bicosoecids is discussed.

  10. Systematics of Mexiconema cichlasomae (Nematoda: Daniconematidae) based on sequences of SSU rDNA.

    PubMed

    Mejia-Madrid, H H; Aguirre-Macedo, M L

    2011-02-01

    The molecular characterization of the daniconematid dracunculoid Mexiconema cichlasomae Moravec, Vidal, and Salgado-Maldonado, 1992 through the sequencing of SSU rDNA from adult individuals is presented herein. Additionally, preliminary genetic relationships of this nematode are inferred from alignment of sequences generated previously for other dracunculoids. Maximum parsimony and maximum likelihood analyses recovered identical trees. As anticipated by previous taxonomic work, M. cichlasomae is putatively closely related to skrjabillanid dracunculoids represented by Molnaria intestinalis (Dogiel and Bychovsky, 1934) and Skrjabillanus scardinii Molnár, 1966 SSU rDNA sequences, but the relationships of this newly discovered clade to other dracunculoid clades remain unresolved.

  11. Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari.

    PubMed

    Zhao, Ya-E; Wang, Zheng-Hang; Xu, Yang; Wu, Li-Ping; Hu, Li

    2013-10-01

    According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.

  12. Phylogenetic relationships of Sarcocystis neurona of horses and opossums to other cyst-forming coccidia deduced from SSU rRNA gene sequences.

    PubMed

    Elsheikha, Hany M; Lacher, David W; Mansfield, Linda S

    2005-11-01

    Phylogenetic analyses based on sequences of the nuclear-encoded small subunit rRNA (ssurRNA) gene were performed to examine the origin, phylogeny, and biogeographic relationships of Sarcocystis neurona isolates from opossums and horses from the State of Michigan, USA, in relation to other cyst-forming coccidia. A total of 31 taxa representing all recognized subfamilies and genera of Sarcocystidae were included in the analyses with clonal isolates of two opossum and two horse S. neurona. Phylogenies obtained by the four tree-building methods were consistent with the classical taxonomy based on morphological criteria. The "isosporid" coccidia Neospora, Toxoplasma, Besnoitia, Isospora lacking stieda bodies, and Hyaloklossia formed a sister group to the Sarcocystis spp. Sarcocystis species were divided into three main lineages; S. neurona isolates were located in the second lineage and clustered with S. mucosa, S. dispersa, S. lacertae, S. rodentifelis, S. muris, and Frenkelia spp. Alignment of S. neurona SSU rRNA gene sequences of Michigan opossum isolates (MIOP5, MIOP20) and a S. neurona Michigan horse isolate (MIH8) showed 100% identity. These Michigan isolates differed in 2/1085 bp (0.2%) from a Kentucky S. neurona horse isolate (SN5). Additionally, S. neurona isolates from horses and opossums were identical based on the ultrastructural features and PCR-RFLP analyses thus forming a phylogenetically indistinct group in these regions. These findings revealed the concordance between the morphological and molecular data and confirmed that S. neurona from opossums and horses originated from the same phylogenetic origin.

  13. New record of Apoholosticha sinica (Ciliophora, Urostylida) from the UK: morphology, 18S rRNA gene phylogeny and notes on morphogenesis.

    PubMed

    Hu, Xiaozhong; Fan, Yangbo; Warren, Alan

    2015-08-01

    The benthic urostylid ciliate Apoholosticha sinicaFan et al., 2014 was isolated from a salt marsh at Blakeney, UK, and reinvestigated using light microscopy and small-subunit rRNA gene sequencing. Morphologically, it corresponds well with the original description. Several stages of divisional morphogenesis and physiological reorganization were also observed from which the following could be deduced: (i) the oral apparatus is completely newly built in the proter; (ii) frontal-ventral-transverse cirral anlage II does not produce a buccal cirrus; (iii) each of the posteriormost three or four anlagen contributes one transverse cirrus at its posterior end; (iv) a row of frontoterminal cirri originates from the rearmost frontal-ventral-transverse cirral anlage; (v) the last midventral row is formed from the penultimate frontal-ventral-transverse cirral anlage. Based on new data, two diagnostic features were added to the genus definition: (i) the midventral complex is composed of midventral pairs and midventral row and (ii) pretransverse ventral cirri are absent. Based on a combination of morphological and morphogenetic data, the genus Apoholosticha is assigned to the recently erected subfamily Nothoholostichinae Paiva et al., 2014, which is consistent with sequence comparison and phylogenetic analyses based on SSU rRNA gene data. It is also concluded that this benthic species, previously reported only from China, is not an endemic form.

  14. Polymorphisms in the 18S rDNA gene of Cystoisospora belli and clinical features of cystoisosporosis in HIV-infected patients.

    PubMed

    Resende, Deisy V; Pedrosa, André L; Correia, Dalmo; Cabrine-Santos, Marlene; Lages-Silva, Eliane; Meira, Wendell S F; Oliveira-Silva, Márcia B

    2011-03-01

    Intraspecific variability among Cystoisospora belli isolates and its clinical implications in human cystoisosporosis have not been established. In this study, the restriction fragment length polymorphisms in a 1.8-kb amplicon of the small subunit ribosomal DNA (SSU rDNA) of the parasite was investigated in 20 C. belli-positive stool samples obtained from 15 HIV-infected patients. Diarrheic syndrome was observed in all patients with cystoisosporosis and the number of diarrheic episodes per patient during hospitalization ranged from 1 to 26 (mean of 9.64 ± 9.30), with a mean duration of 2 to 12 days (mean of 5.90 ± 3 days). Three restriction profiles (RF) were generated with MboII digestion, which were named RFI, RFII, and RFIII. Two isolates obtained from a patient with extraintestinal cystoisosporosis showed distinct restriction profiles with MboII. This study demonstrates that patients can be infected with different C. belli genotypes, and this information may be useful for identifying new C. belli genotypes infecting humans.

  15. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba.

    PubMed

    Fuerst, Paul A; Booton, Gregory C; Crary, Monica

    2015-01-01

    Species of Acanthamoeba were first described using morphological characters including cyst structure and cytology of nuclear division. More than 20 nominal species were proposed using these methods. Morphology, especially cyst shape and size, has proven to be plastic and dependent upon culture conditions. The DNA sequence of the nuclear small-subunit (18S) rRNA, the Rns gene, has become the most widely accepted method for rapid diagnosis and classification of Acanthamoeba. The Byers-Fuerst lab first proposed an Rns typing system in 1996. Subsequent refinements, with an increasing DNA database and analysis of diagnostic fragments within the gene, have become widely accepted by the Acanthamoeba research community. The development of the typing system, including its current state of implementation is illustrated by three cases: (i) the division between sequence types T13 and T16; (ii) the diversity within sequence supertype T2/T6, and (iii) verification of a new sequence type, designated T20. Molecular studies make clear the disconnection between phylogenetic relatedness and species names, as applied for the genus Acanthamoeba. Future reconciliation of genetic types with species names must become a priority, but the possible shortcomings of the use of a single gene when reconstructing the evolutionary history of the acanthamoebidae must also be resolved.

  16. Two F-18s in Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This 32 second video clip shows two F-18s in NASA's Autonomous Formation Flight (AFF) program. The aircraft use smoke contrails to gather data on wingtip vortices. Flight research attempts to utilize the energy in the vortices for more efficient flight.

  17. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation

    PubMed Central

    Chen, Yupeng; Zhang, Lirong; Estarás, Conchi; Choi, Seung H.; Moreno, Luis; Karn, Jonathan; Moresco, James J.; Yates, John R.

    2014-01-01

    HIV-1 Tat stimulates transcription elongation by recruiting the P-TEFb (positive transcription elongation factor-b) (CycT1:CDK9) C-terminal domain (CTD) kinase to the HIV-1 promoter. Here we show that Tat transactivation also requires the Ssu72 CTD Ser5P (S5P)-specific phosphatase, which mediates transcription termination and intragenic looping at eukaryotic genes. Importantly, HIV-1 Tat interacts directly with Ssu72 and strongly stimulates its CTD phosphatase activity. We found that Ssu72 is essential for Tat:P-TEFb-mediated phosphorylation of the S5P-CTD in vitro. Interestingly, Ssu72 also stimulates nascent HIV-1 transcription in a phosphatase-dependent manner in vivo. Chromatin immunoprecipitation (ChIP) experiments reveal that Ssu72, like P-TEFb and AFF4, is recruited by Tat to the integrated HIV-1 proviral promoter in TNF-α signaling 2D10 T cells and leaves the elongation complex prior to the termination site. ChIP-seq (ChIP combined with deep sequencing) and GRO-seq (genome-wide nuclear run-on [GRO] combined with deep sequencing) analysis further reveals that Ssu72 predominantly colocalizes with S5P–RNAPII (RNA polymerase II) at promoters in human embryonic stem cells, with a minor peak in the terminator region. A few genes, like NANOG, also have high Ssu72 at the terminator. Ssu72 is not required for transcription at most cellular genes but has a modest effect on cotranscriptional termination. We conclude that Tat alters the cellular function of Ssu72 to stimulate viral gene expression and facilitate the early S5P–S2P transition at the integrated HIV-1 promoter. PMID:25319827

  18. Classification of the peritrich ciliate Opisthonecta matiensis (Martín-Cereceda et al. 1999) as Telotrochidium matiense nov. comb., based on new observations and SSU rDNA phylogeny.

    PubMed

    Martín-Cereceda, Mercedes; Guinea, Almudena; Bonaccorso, Elisa; Dyal, Patricia; Novarino, Gianfranco; Foissner, Wilhelm

    2007-11-01

    New observations on Opisthonecta matiensis Martín-Cereceda et al. [1999. Description of Opisthonecta matiensis n. sp. (Protozoa, Ciliophora), a new peritrich ciliate from wastewater. J. Eukaryot. Microbiol. 46, 283-289] especially the lack of an epistomial membrane, reveal that the species does not belong to the genus Opisthonecta, but to Telotrochidium, the other genus within the family Opisthonectidae Foissner, 1975. The contractile vacuole and the cytopyge are on the dorsal wall of the vestibulum and the trochal band is limited distally and proximally by rows of narrowly spaced pellicular pores. Thus the species is redefined as Telotrochidium matiense nov. comb. The morphological, cortical and nuclear events occurring during conjugation are illustrated, compared with those in other species, and phylogenetically discussed. Invariably, the microconjugants attach to and penetrate the lateral side of the macroconjugants. Nuclear processes are very similar to those reported from other peritrichs. The small subunit rRNA gene (SSU rDNA) is sequenced and the phylogeny within Opisthonectidae and peritrichs examined. T. matiense is more closely related to Epistylis (63% Maximum Parsimony (MP), 85% Maximum Likelihood (ML)) than to any other genus, while another representative of the family, viz., Opisthonecta henneguyi, is closely related to Vorticella microstoma, Astylozoon enriquesi and clone RT3n18 (100% MP, 100% ML). Morphology and gene sequences suggest that Telotrochidium and Opisthonecta have derived from different lineages of stalked peritrichs: Opisthonecta could have arisen from peritrichs with stalk myonemes, while Telotrochidium probably evolved from peritrichs without stalk myonemes.

  19. Uncultivated microbial eukaryotic diversity: a method to link ssu rRNA gene sequences with morphology.

    PubMed

    Hirst, Marissa B; Kita, Kelley N; Dawson, Scott C

    2011-01-01

    Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA "phylotypes" from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages

  20. Mapping of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association.

    PubMed

    Xia, Lixin; Willison, LeAnna N; Porter, Lauren; Robotham, Jason M; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H

    2010-05-01

    The 11S globulins are members of the cupin protein superfamily and represent an important class of tree nut allergens for which a number of linear epitopes have been mapped. However, specific conformational epitopes for these allergens have yet to be described. We have recently reported a cashew Ana o 2 conformational epitope defined by murine mAb 2B5 and competitively inhibited by a subset of patient IgE antibodies. The 2B5 epitope appears to reside on the large (acidic) subunit, is dependent upon small (basic) subunit association for expression, and is highly susceptible to denaturation. Here we fine map the epitope using a combination of recombinant chimeric cashew Ana o 2-soybean Gly m 6 chimeras, deletion and point mutations, molecular modeling, and electron microscopy of 2B5-Ana o 2 immune complexes. Key residues appear confined to a 24 amino acid segment near the N-terminus of the large subunit peptide, a portion of which makes direct contact with the small subunit. These data provide an explanation for both the small subunit dependence and the structurally labile nature of the epitope.

  1. The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27.

    PubMed Central

    MacNeill, S A; Moreno, S; Reynolds, N; Nurse, P; Fantes, P A

    1996-01-01

    cdc1+ is required for cell cycle progression in Schizosaccharomyces pombe. Cells carrying temperature-sensitive cdc1 mutants undergo cell cycle arrest when shifted to the restrictive temperature, becoming highly elongated. Here we describe the cloning and sequencing of cdc1+, which is shown to encode a 462 residue protein that displays significant sequence similarity to the small subunit of mammalian DNA polymerase delta. cdc1+ interacts genetically with pol3+, which encodes the large subunit of DNA polymerase delta in fission yeast, and the Cdc1 protein binds to Pol3 in vitro, strongly suggesting that Cdc1 is likely to be the small subunit of Pol delta. In addition, we show that cdc1+ overexpression is sufficient to rescue cells carrying temperature-sensitive cdc27 alleles and that the Cdc1 and Cdc27 proteins interact in vivo and in vitro. Deletion of either cdc1+ or cdc27+ results in cell cycle arrest with the arrested cells having a single nucleus with 2C DNA content. No evidence was obtained for a cut phenotype, indicating that neither cdc1+ nor cdc27+ is required for checkpoint function. cdc1 mutant cells are supersensitive to the DNA synthesis inhibitor hydroxyurea and to the DNA damaging agent MMS, display increased frequency of mini-chromosome loss and have an extended S phase. Images PMID:8887553

  2. Cloning of a yeast gene coding for the glutamate synthase small subunit (GUS2) by complementation of Saccharomyces cerevisiae and Escherichia coli glutamate auxotrophs.

    PubMed

    González, A; Membrillo-Hernández, J; Olivera, H; Aranda, C; Macino, G; Ballario, P

    1992-02-01

    A Saccharomyces cerevisiae glutamate auxotroph, lacking NADP-glutamate dehydrogenase (NADP-GDH) and glutamate synthase (GOGAT) activities, was complemented with a yeast genomic library. Clones were obtained which still lacked NADP-GDH but showed GOGAT activity. Northern analysis revealed that the DNA fragment present in the complementing plasmids coded for a 1.5kb mRNA. Since the only GOGAT enzyme so far purified from S. cerevisiae is made up of a small and a large subunit, the size of the mRNA suggested that the cloned DNA fragment could code for the GOGAT small subunit. Plasmids were purified and used to transform Escherichia coli glutamate auxotrophs. Transformants were only recovered when the recipient strain was an E. coli GDH-less mutant lacking the small GOGAT subunit. These data show that we have cloned the structural gene coding for the yeast small subunit (GUS2). Evidence is also presented indicating that the GOGAT enzyme which is synthesized in the E. coli transformants is a hybrid comprising the large E. coli subunit and the small S. cerevisiae subunit.

  3. Vertebrate Ssu72 Regulates and Coordinates 3′-End Formation of RNAs Transcribed by RNA Polymerase II

    PubMed Central

    Fujiwara, Yosuke; Yamamoto, Masaya; Harada, Fumio; Ohkuma, Yoshiaki; Hirose, Yutaka

    2014-01-01

    In eukaryotes, the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is composed of tandem repeats of the heptapeptide YSPTSPS, which is subjected to reversible phosphorylation at Ser2, Ser5, and Ser7 during the transcription cycle. Dynamic changes in CTD phosphorylation patterns, established by the activities of multiple kinases and phosphatases, are responsible for stage-specific recruitment of various factors involved in RNA processing, histone modification, and transcription elongation/termination. Yeast Ssu72, a CTD phosphatase specific for Ser5 and Ser7, functions in 3′-end processing of pre-mRNAs and in transcription termination of small non-coding RNAs such as snoRNAs and snRNAs. Vertebrate Ssu72 exhibits Ser5- and Ser7-specific CTD phosphatase activity in vitro, but its roles in gene expression and CTD dephosphorylation in vivo remain to be elucidated. To investigate the functions of vertebrate Ssu72 in gene expression, we established chicken DT40 B-cell lines in which Ssu72 expression was conditionally inactivated. Ssu72 depletion in DT40 cells caused defects in 3′-end formation of U2 and U4 snRNAs and GAPDH mRNA. Surprisingly, however, Ssu72 inactivation increased the efficiency of 3′-end formation of non-polyadenylated replication-dependent histone mRNA. Chromatin immunoprecipitation analyses revealed that Ssu72 depletion caused a significant increase in both Ser5 and Ser7 phosphorylation of the Pol II CTD on all genes in which 3′-end formation was affected. These results suggest that vertebrate Ssu72 plays positive roles in 3′-end formation of snRNAs and polyadenylated mRNAs, but negative roles in 3′-end formation of histone mRNAs, through dephosphorylation of both Ser5 and Ser7 of the CTD. PMID:25166011

  4. Structural and Physiological Analyses of the Alkanesulphonate-Binding Protein (SsuA) of the Citrus Pathogen Xanthomonas citri

    PubMed Central

    Tófoli de Araújo, Fabiano; Bolanos-Garcia, Victor M.; Pereira, Cristiane T.; Sanches, Mario; Oshiro, Elisa E.; Ferreira, Rita C. C.; Chigardze, Dimitri Y.; Barbosa, João Alexandre Gonçalves; de Souza Ferreira, Luís Carlos; Benedetti, Celso E.; Blundell, Tom L.; Balan, Andrea

    2013-01-01

    Background The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. Methodology/Principal Findings A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. Conclusions/Significance The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen. PMID:24282519

  5. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia.

    PubMed

    Cooper, Madalyn K; Phalen, David N; Donahoe, Shannon L; Rose, Karrie; Šlapeta, Jan

    2016-01-30

    Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations.

  6. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes.

    PubMed

    Létoquart, Juliette; Huvelle, Emmeline; Wacheul, Ludivine; Bourgeois, Gabrielle; Zorbas, Christiane; Graille, Marc; Heurgué-Hamard, Valérie; Lafontaine, Denis L J

    2014-12-23

    The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N(7)-methylguanosine (m(7)G) introduced at position 1575 on 18S rRNA by Bud23-Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23-Trm112 in the apo and S-adenosyl-L-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23-Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23-Trm112 binds precursor ribosomes at an early nucleolar stage, m(7)G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23-Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23-Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction.

  7. Discrimination between Gyrodactylus salaris, G. derjavini and G. truttae (Platyhelminthes: Monogenea) using restriction fragment length polymorphisms and an oligonucleotide probe within the small subunit ribosomal RNA gene.

    PubMed

    Cunningham, C O; McGillivray, D M; MacKenzie, K; Melvin, W T

    1995-07-01

    The small subunit ribosomal RNA (srRNA) gene was amplified from Gyrodactylus salaris using the polymerase chain reaction (PCR), cloned, and the complete gene sequence of 1966 bp determined. The V4 region of the srRNA gene was identified and amplified from single specimens of G. salaris, G. derjavini and G. truttae. Comparison of the V4 sequences from these three species revealed sequence differences from which restriction fragment length polymorphisms (RFLPs) were predicted and an oligonucleotide probe (GsV4) specific to G. salaris designed. Digestion of the amplified V4 region of the srRNA gene with Hae III and either Alw I, BstY I, Dde I or Mbo I provided a means of discriminating between G. salaris, G. derjavini and G. truttae. The GsV4 probe was used to detect the srRNA gene from G. salaris in Southern and dot blots of the amplified V4 region.

  8. Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences.

    PubMed

    Carreno, R A; Martin, D S; Barta, J R

    1999-11-01

    The phylogenetic placement of gregarine parasites (Apicomplexa: Gregarinasina) within the Apicomplexa was derived by comparison of small-subunit ribosomal RNA gene sequences. Gregarine sequences were obtained from Gregarina niphandrodes Clopton, Percival, and Janovy, 1991, and Monocystis agilis Stein, 1848 (Eugregarinorida Léger 1900), as well as from Ophriocystis elektroscirrha McLaughlin and Myers, 1970 (Neogregarinorida Grassé 1953). The sequences were aligned with several other gregarine and apicomplexan sequences from GenBank and the resulting data matrix analyzed by parsimony and maximum-likelihood methods. The gregarines form a monophyletic clade that is a sister group to Cryptosporidium spp. The gregarine/ Cryptosporidium clade is separate from the other major apicomplexan clade containing the coccidia, adeleids, piroplasms, and haemosporinids. The trees indicate that the genus Cryptosporidium has a closer phylogenetic affinity with the gregarines than with the coccidia. These results do not support the present classification of the Cryptosporidiidae in the suborder Eimerioirina Léger, 1911.

  9. Cloning and characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) cDNA from green microalga Ankistrodesmus convolutus.

    PubMed

    Thanh, Tran; Chi, Vu Thi Quynh; Abdullah, Mohd Puad; Omar, Hishamuddin; Noroozi, Mostafa; Napis, Suhaimi

    2011-11-01

    An initial study on gene cloning and characterization of unicellular green microalga Ankistrodesmus convolutus was carried out to isolate and characterize the full-length cDNA of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) as a first step towards elucidating the structure of A. convolutus RbcS gene. The full-length of A. convolutus RbcS cDNA (AcRbcS) contained 28 bp of 5' untranslated region (UTR), 225 bp of 3' non-coding region, and an open reading frame of 165 amino acids consisting of a chloroplast transit peptide with 24 amino acids and a mature protein of 141 amino acids. The amino acid sequence has high identity to those of other green algae RbcS genes. The AcRbcS contained a few conserved domains including protein kinase C phosphorylation site, tyrosine kinase phosphorylation site and N-myristoylation sites. The AcRbcS was successfully expressed in Escherichia coli and a ~21 kDa of anticipated protein band was observed on SDS-PAGE. From the phylogenetic analysis of RbcS protein sequences, it was found that the RbcS of A. convolutus has closer genetic relationship with green microalgae species compared to those of green seaweed and green macroalgae species. Southern hybridization analysis revealed that the AcRbcS is a member of a small multigene family comprising of two to six members in A. convolutus genome. Under different illumination conditions, RT-PCR analysis showed that AcRbcS transcription was reduced in the dark, and drastically recovered in the light condition. Results presented in this paper established a good foundation for further study on the photosynthetic process of A. convolutus and other green algae species where little information is known on Rubisco small subunit.

  10. The discovery of the two types of small subunit ribosomal RNA gene in Eimeria mitis contests the existence of E. mivati as an independent species.

    PubMed

    Vrba, Vladimir; Poplstein, Martin; Pakandl, Michal

    2011-12-29

    Although the validity of the coccidian species, Eimeria mivati, has been questioned by many researchers for a long time there has not been any molecular analysis that would help resolve this issue. Here we report on the discovery of the two types of small ribosomal subunit (18S) gene within the Eimeria mitis genome that correspond to the known 18S sequences of E. mitis and E. mivati, and this is in conflict with the existence of E. mivati as an independent species. We have carried out five single oocyst isolations to obtain five single-oocyst-derived strains of E. mitis and these were analyzed by the sequencing of 18S and mitochondrial cytochrome c oxidase subunit I genes. The two types of 18S gene were found to be present in each strain in roughly equal ratios. This indicates that if the strains carrying only one or the other 18S type exist, they will likely cross-breed and still represent a single species. However, the more probable explanation is that all strains of E. mitis contain two types of 18S gene and that the occasional detection of only one or the other type by sequencing might be caused by insufficient sampling. This is also the first report of the two types of 18S gene in Eimeria, which has already been described in some other apicomplexan species, most notably Plasmodium. We also found that these two types of ribosomal RNA differ significantly in their secondary structure. The biological significance of the two 18S gene variants in E. mitis is not known, however, we hypothesize that these variants might be used in different stages of the parasite's life-cycle as it is in other apicomplexan species investigated so far.

  11. New Data on Henneguya Pellis (Myxozoa: Myxobolidae), A Parasite of Blue Catfish Ictalurus furcatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The original description of Henneguya pellis, a myxozoan parasitizing blue catfish Ictalurus furcatus, is supplemented with new data on histopathology, spore morphology, and 18S small subunit (SSU) ribosomal DNA (rDNA) sequence. Plasmodia presented as both internal and external, raised, cyst-like le...

  12. New Data on Henneguya pellis (Myxozoa: Myxobolidae), A Parasite of Blue Catfish Ictalurus furcatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The original description of Henneguya pellis, a myxozoan parasitizing blue catfish Ictalurus furcatus, is supplemented with new data on histopathology, spore morphology, and 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence. Plasmodia presented as both internal and external, raised, cyst-like le...

  13. Core Lipopolysaccharide-Specific Phage SSU5 as an Auxiliary Component of a Phage Cocktail for Salmonella Biocontrol

    PubMed Central

    Kim, Minsik; Kim, Sujin; Park, Bookyung

    2014-01-01

    Salmonella spp. are among the major food-borne pathogens that cause mild diarrhea to severe bacteremia. The use of bacteriophages to control various food-borne pathogens, including Salmonella, has emerged as a promising alternative to traditional chemotherapy. We isolated the Siphoviridae family phage SSU5, which can infect only rough strains of Salmonella. The blocking of SSU5 adsorption by periodate treatment of host Salmonella cells and spotting and adsorption assays with mutants that contain various truncations in their lipopolysaccharide (LPS) cores revealed that the outer core region of the LPS is a receptor of SSU5. SSU5 could infect O-antigen (O-Ag)-deficient Salmonella mutants that developed by challenging of O-Ag-specific phages, and consequently, it delayed the emergence of the phage-resistant Salmonella population in broth culture when treated together with phages using O-Ag as a receptor. Therefore, these results suggested that phage SSU5 would be a promising auxiliary component of a phage cocktail to control rough strains of Salmonella enterica serovar Typhimurium, which might emerge as resistant mutants upon infection by phages using O-Ag as a receptor. PMID:24271179

  14. Barcoding amoebae: comparison of SSU, ITS and COI genes as tools for molecular identification of naked lobose amoebae.

    PubMed

    Nassonova, Elena; Smirnov, Alexey; Fahrni, Jose; Pawlowski, Jan

    2010-01-01

    Morphological identification of naked lobose amoebae has always been a problem, hence the development of reliable molecular tools for species distinction is a priority for amoebae systematics. Previous studies based on SSU rDNA sequences provided a backbone for the phylogeny of Amoebozoa but were of little help for the species distinctions in this group. On one hand, the SSU rDNA sequences were rather conserved between closely related species; on the other hand, the intra-strain polymorphism of the SSU gene obscured species identification. In the present study, a 3' fragment of the SSU, a complete ITS1-5.8S-ITS2 block and a 5' fragment of COI gene were cloned and sequenced for six Vannella morphospecies, of which V. simplex was represented by six different isolates. SSU rDNA and ITS were found to be inappropriate for species differentiation, while distinctive and homogenous COI sequences were obtained for each well-defined morphospecies. Moreover, a number of distinct COI genotypes have been identified among V. simplex isolates. This suggests that COI may be a good candidate for DNA barcoding of amoebae, but further studies are necessary to confirm the accurateness of the COI gene as a barcode in other gymnamoebae, and to understand the taxonomic meaning of COI variations.

  15. Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae.

    PubMed

    Wubet, Tesfaye; Weiss, Michael; Kottke, Ingrid; Teketay, Demel; Oberwinkler, Franz

    2006-09-01

    The endangered indigenous tree species Juniperus procera, commonly known as African Pencil Cedar, is an important component of the dry Afromontane vegetation of Ethiopia and was shown to be AM in earlier studies. Here we describe the composition of AM fungi in colonized roots of J. procera from two dry Afromontane forests of Ethiopia. The nuSSU rDNA gene was amplified from colonized roots, cloned and sequenced using AM fungal specific primers that were partly developed for this study. Molecular phylogenetic analysis revealed that all the glomeralean sequences obtained belonged exclusively to the genus Glomus (Glomeraceae). Seven distinct Glomus sequence types were identified that all are new to science. The composition of the AM fungal communities between the sampled trees, and between the two study sites in general, differed significantly. Isolation and utilization of the indigenous AM fungal taxa from the respective sites might be required for successful enrichment plantation of this threatened Juniperus species.

  16. A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences.

    PubMed

    Hahn, William J

    2002-02-01

    Notoriously slow rates of molecular evolution and convergent evolution among some morphological characters have limited phylogenetic resolution for the palm family (Arecaceae). This study adds nuclear DNA (18S SSU rRNA) and chloroplast DNA (cpDNA; atpB and rbcL) sequence data for 65 genera of palms and characterizes molecular variation for each molecule. Phylogenetic relationships were estimated with maximum likelihood and maximum parsimony techniques for the new data and for previously published molecular data for 45 palm genera. Maximum parsimony analysis was also used to compare molecular and morphological data for 33 palm genera. Incongruence among datasets was detected between cpDNA and 18S data and between molecular and morphological data. Most conflict between nuclear and cpDNA data was associated with the genus Nypa. Several taxa showed relatively long branches with 18S data, but phylogenetic resolution of these taxa was essentially the same for 18S and cpDNA data. Base composition bias for 18S that contributed to erroneous phylogenetic resolution in other taxa did not seem to be present in Palmae. Morphological data were incongruent with all molecular data due to apparent morphological homoplasy for Caryoteae, Ceroxyloideae, Iriarteae, and Thrinacinae. Both cpDNA and nuclear 18S data firmly resolved Caryoteae with Borasseae of Coryphoideae, suggesting that at least some morphological characters used to place Caryoteae in Arecoideae are homoplastic. In this study, increased character sampling seems to be more important than increased taxon sampling; a comparison of the full (65-taxon) and reduced (45- and 33-taxon) datasets suggests little difference in core topology but considerably more nodal support with the increased character sample sizes. These results indicate a general trend toward a stable estimate of phylogenetic relationships for the Palmae. Although the 33-taxon topologies are even better resolved, they lack several critical taxa and are

  17. CREB1 directly activates the transcription of ribonucleotide reductase small subunit M2 and promotes the aggressiveness of human colorectal cancer

    PubMed Central

    Fang, Zejun; Lin, Aifen; Chen, Jiaoe; Zhang, Xiaomin; Liu, Hong; Li, Hongzhang; Hu, Yanyan; Zhang, Xia; Zhang, Jiangang; Qiu, Lanlan; Mei, Lingming; Shao, Jimin; Chen, Xiang

    2016-01-01

    As the small subunit of Ribonucleotide reductase (RR), RRM2 displays a very important role in various critical cellular processes such as cell proliferation, DNA repair, and senescence, etc. Importantly, RRM2 functions like a tumor driver in most types of cancer but little is known about the regulatory mechanism of RRM2 in cancer development. In this study, we found that the cAMP responsive element binding protein 1 (CREB1) acted as a transcription factor of RRM2 gene in human colorectal cancer (CRC). CREB1 directly bound to the promoter of RRM2 gene and induced its transcriptional activation. Knockdown of CREB1 decreased the expression of RRM2 at both mRNA and protein levels. Moreover, knockdown of RRM2 attenuated CREB1-induced aggressive phenotypes of CRC cells in vitro and in vivo. Analysis of the data from TCGA database and clinical CRC specimens with immunohistochemical staining also demonstrated a strong correlation between the co-expression of CREB1 and RRM2. Decreased disease survivals were observed in CRC patients with high expression levels of CREB1 or RRM2. Our results indicate CREB1 as a critical transcription factor of RRM2 which promotes tumor aggressiveness, and imply a significant correlation between CREB1 and RRM2 in CRC specimens. These may provide the possibility that CREB1 and RRM2 could be used as biomarkers or targets for CRC diagnosis and treatment. PMID:27801665

  18. A potential role for RNA turnover in the light regulation of plant gene expression: ribulose-1,5-bisphosphate carboxylase small subunit in soybean.

    PubMed Central

    Shirley, B W; Meagher, R B

    1990-01-01

    Post-transcriptional regulation of the genes encoding the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase was examined in soybean seedlings. Substantial discrepancies were detected between relative in vitro transcription rates and steady-state RNA levels in light- and dark-grown seedling leaves, indicating that rbcS RNA may be degraded more rapidly in light than in darkness. Additional data imply that the turnover mechanism is rapidly induced by light, maintained for some time in darkness, and that it may be negatively controlled by far-red light. The proposed RNA turnover system does not affect all RNAs equally since a soybean actin gene showed equivalent in vitro transcription rates and RNA levels in light and darkness. Soybean rbcS genes may be subject to a novel mode of control in which light-induced expression is accompanied by an increased rate of RNA degradation. Models for the specific regulation of rbcS RNA stability in response to light are presented. Images PMID:2356127

  19. Development and Application of Small-Subunit rRNA Probes for Assessment of Selected Thiobacillus Species and Members of the Genus Acidiphilium

    PubMed Central

    Peccia, Jordan; Marchand, Eric A.; Silverstein, Joann; Hernandez, Mark

    2000-01-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using 32P radiolabels, probe specificity was characterized by hybridization dissociation temperature (Td) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined Tds. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris. PMID:10877807

  20. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium.

    PubMed

    Peccia, J; Marchand, E A; Silverstein, J; Hernandez, M

    2000-07-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using (32)P radiolabels, probe specificity was characterized by hybridization dissociation temperature (T(d)) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined T(d)s. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris.

  1. Orosomucoid Proteins Interact with the Small Subunit of Serine Palmitoyltransferase and Contribute to Sphingolipid Homeostasis and Stress Responses in Arabidopsis[OPEN

    PubMed Central

    Li, Jian; Yin, Jian; Rong, Chan; Li, Kai-En; Wu, Jian-Xin; Huang, Li-Qun; Zeng, Hong-Yun; Sahu, Sunil Kumar; Yao, Nan

    2016-01-01

    Serine palmitoyltransferase (SPT), a pyridoxyl-5′-phosphate-dependent enzyme, catalyzes the first and rate-limiting step in sphingolipid biosynthesis. In humans and yeast, orosomucoid proteins (ORMs) negatively regulate SPT and thus play an important role in maintaining sphingolipid levels. Despite the importance of sphingoid intermediates as bioactive molecules, the regulation of sphingolipid biosynthesis through SPT is not well understood in plants. Here, we identified and characterized the Arabidopsis thaliana ORMs, ORM1 and ORM2. Loss of function of both ORM1 and ORM2 (orm1 amiR-ORM2) stimulated de novo sphingolipid biosynthesis, leading to strong sphingolipid accumulation, especially of long-chain bases and ceramides. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays confirmed that ORM1 and ORM2 physically interact with the small subunit of SPT (ssSPT), indicating that ORMs inhibit ssSPT function. We found that orm1 amiR-ORM2 plants exhibited an early-senescence phenotype accompanied by H2O2 production at the cell wall and in mitochondria, active vesicular trafficking, and formation of cell wall appositions. Strikingly, the orm1 amiR-ORM2 plants showed increased expression of genes related to endoplasmic reticulum stress and defenses and also had enhanced resistance to oxidative stress and pathogen infection. Taken together, our findings indicate that ORMs interact with SPT to regulate sphingolipid homeostasis and play a pivotal role in environmental stress tolerance in plants. PMID:27923879

  2. Identification of Theileria parva and Theileria sp. (buffalo) 18S rRNA gene sequence variants in the African Buffalo (Syncerus caffer) in southern Africa.

    PubMed

    Chaisi, Mamohale E; Sibeko, Kgomotso P; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2011-12-15

    Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the

  3. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs

    PubMed Central

    Ito, Jun-ichi; Ikeda, Kazuyoshi; Yamada, Kazunori; Mizuguchi, Kenji; Tomii, Kentaro

    2015-01-01

    PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a database for detecting similar small-molecule binding sites on proteins. Since its initial release in 2011, PoSSuM has grown to provide information related to 49 million pairs of similar binding sites discovered among 5.5 million known and putative binding sites. This enlargement of the database is expected to enhance opportunities for biological and pharmaceutical applications, such as predictions of new functions and drug discovery. In this release, we have provided a new service named PoSSuM drug search (PoSSuMds) at http://possum.cbrc.jp/PoSSuM/drug_search/, in which we selected 194 approved drug compounds retrieved from ChEMBL, and detected their known binding pockets and pockets that are similar to them. Users can access and download all of the search results via a new web interface, which is useful for finding ligand analogs as well as potential target proteins. Furthermore, PoSSuMds enables users to explore the binding pocket universe within PoSSuM. Additionally, we have improved the web interface with new functions, including sortable tables and a viewer for visualizing and downloading superimposed pockets. PMID:25404129

  4. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans

    PubMed Central

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L. J.; Wöhnert, Jens; Entian, Karl-Dieter

    2016-01-01

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m1acp3Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. PMID:27084949

  5. Genetic diversity among Babesia rossi detected in naturally infected dogs in Abeokuta, Nigeria, based on 18S rRNA gene sequences.

    PubMed

    Takeet, Michael I; Oyewusi, Adeoye J; Abakpa, Simon A V; Daramola, Olukayode O; Peters, Sunday O

    2017-03-01

    Adequate knowledge of the genetic diversity among Babesia species infecting dogs is necessary for a better understanding of the epidemiology and control of canine babesiosis. Hence, this study determined the genetic diversity among the Babesia rossi detected in dogs presented for routine examination in Veterinary Hospitals in Abeokuta, Nigeria. Blood were randomly collected from 209 dogs. Field-stained thin smears were made and DNA extracted from the blood. Partial region of the 18S small subunit ribosomal RNA (rRNA) gene was amplified, sequenced and analysed. Babesia species was detected in 16 (7.7%) of the dogs by microscopy. Electrophoresed PCR products from 39 (18.66%) dogs revealed band size of 450 bp and 2 (0.95%) dogs had band size of 430 bp. The sequences obtained from 450 bp amplicon displayed homology of 99.74% (387/388) with partial sequences of 18S rRNA gene of Babesia rossi in the GeneBank. Of the two sequences that had 430 bp amplicon, one was identified as T. annulata and second as T. ovis. A significantly (p<0.05) higher prevalence of B. rossi was detected by PCR compared to microscopy. The mean PCV of Babesia infected dogs was significantly (p<0.05) lower than non-infected dogs. Phylogenetic analysis revealed minimal diversity among B. rossi with the exception of one sequence that was greatly divergent from the others. This study suggests that more than one genotype of B. rossi may be in circulation among the dog population in the study area and this may have potential implication on clinical outcome of canine babesiosis.

  6. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements.

    PubMed

    Saldarriaga, J F; Taylor, F J; Keeling, P J; Cavalier-Smith, T

    2001-09-01

    Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow.

  7. A mechanism for intergenomic integration: abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA.

    PubMed

    Rodermel, S; Haley, J; Jiang, C Z; Tsai, C H; Bogorad, L

    1996-04-30

    Multimeric protein complexes in chloroplasts and mitochondria are generally composed of products of both nuclear and organelle genes of the cell. A central problem of eukaryotic cell biology is to identify and understand the molecular mechanisms for integrating the production and accumulation of the products of the two separate genomes. Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively. Transgenic tobacco plants containing antisense rbcS DNA have reduced levels of rbcS mRNA, normal levels of rbcL mRNA, and coordinately reduced LS and SS proteins. Our previous experiments indicated that the rate of translation of rbcL mRNA might be reduced in some antisense plants; direct evidence is presented here. After a short-term pulse there is less labeled LS protein in the transgenic plants than in wild-type plants, indicating that LS accumulation is controlled in the mutants at the translational and/or posttranslational levels. Consistent with a primary restriction at translation, fewer rbcL mRNAs are associated with polysomes of normal size and more are free or are associated with only a few ribosomes in the antisense plants. Effects of the rbcS antisense mutation on mRNA and protein accumulation, as well as on the distribution of mRNAs on polysomes, appear to be minimal for other chloroplast and nuclear photosynthetic genes. Our results suggest that SS protein abundance specifically contributes to the regulation of LS protein accumulation at the level of rbcL translation initiation.

  8. Targeted Disruption of the Gene Encoding the Murine Small Subunit of Carboxypeptidase N (CPN1) Causes Susceptibility to C5a Anaphylatoxin-Mediated Shock1

    PubMed Central

    Mueller-Ortiz, Stacey L.; Wang, Dachun; Morales, John E.; Li, Li; Chang, Jui-Yoa; Wetsel, Rick A.

    2015-01-01

    Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits (CPN1) and two large subunits (CPN2) that protect the protein from degradation. Historically, CPN has been implicated as a major regulator of inflammation by its enzymatic cleavage of functionally important arginine and lysine amino acids from potent phlogistic molecules, such as the complement anaphylatoxins C3a and C5a. Because of no known complete CPN deficiencies, the biological impact of CPN in vivo has been difficult to evaluate. Here, we report the generation of a mouse with complete CPN deficiency by targeted disruption of the CPN1 gene. CPN1−/− mice were hypersensitive to lethal anaphylactic shock due to acute complement activation by cobra venom factor. This hypersensitivity was completely resolved in CPN1−/−/C5aR−/− but not in CPN1−/−/C3aR−/− mice. Moreover, CPN1−/− mice given C5a i.v., but not C3a, experienced 100% mortality. This C5a-induced mortality was reduced to 20% when CPN1−/− mice were treated with an antihistamine before C5a challenge. These studies describe for the first time a complete deficiency of CPN and demonstrate 1) that CPN plays a requisite role in regulating the lethal effects of anaphylatoxin-mediated shock, 2) that these lethal effects are mediated predominantly by C5a-induced histamine release, and 3) that C3a does not contribute significantly to shock following acute complement activation. PMID:19414808

  9. Design and validation of four new primers for next-generation sequencing to target the 18S rRNA genes of gastrointestinal ciliate protozoa.

    PubMed

    Ishaq, Suzanne L; Wright, André-Denis G

    2014-09-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen.

  10. Design and Validation of Four New Primers for Next-Generation Sequencing To Target the 18S rRNA Genes of Gastrointestinal Ciliate Protozoa

    PubMed Central

    Wright, André-Denis G.

    2014-01-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen. PMID:24973070

  11. Streptococcus suis Type 2 SSU0587 Protein is a Beta-Galactosidase That Contributes to Bacterial Adhesion but Not to Virulence in Mice

    PubMed Central

    TANG, Yulong; ZHANG, Xiaoyan; YIN, Yulong; HARDWIDGE, Philip R.; FANG, Weihuan

    2014-01-01

    ABSTRACT Bacterial surface proteins play key roles in virulence and often contribute to bacterial adhesion and invasion. We discovered that the Streptococcus suis type 2 (SS2) gene SSU0587 encodes a protein of 1,491 amino acids that possesses β-galactosidase activity. The surface association of the protein was dependent upon sortase activity. Deleting SSU0587 from clinical SS2 isolate JX081101 caused a loss of both β-galactosidase activity and adherence to microvascular endothelial cells. Deleting SSU0587 had no measurable impact on either invasion of microvascular endothelial cells or on virulence in a murine infection model, although the concentration of JX081101ΔSSU0587 was reduced in the brains of infected mice, as compared with the pathogen loads of the wild-type strain. PMID:24670993

  12. Streptococcus suis type 2 SSU0587 protein is a beta-galactosidase that contributes to bacterial adhesion but not to virulence in mice.

    PubMed

    Tang, Yulong; Zhang, Xiaoyan; Yin, Yulong; Hardwidge, Philip R; Fang, Weihuan

    2014-07-01

    Bacterial surface proteins play key roles in virulence and often contribute to bacterial adhesion and invasion. We discovered that the Streptococcus suis type 2 (SS2) gene SSU0587 encodes a protein of 1,491 amino acids that possesses β-galactosidase activity. The surface association of the protein was dependent upon sortase activity. Deleting SSU0587 from clinical SS2 isolate JX081101 caused a loss of both β-galactosidase activity and adherence to microvascular endothelial cells. Deleting SSU0587 had no measurable impact on either invasion of microvascular endothelial cells or on virulence in a murine infection model, although the concentration of JX081101ΔSSU0587 was reduced in the brains of infected mice, as compared with the pathogen loads of the wild-type strain.

  13. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode.

  14. Investigation of molluscan phylogeny on the basis of 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1996-12-01

    The 18S rRNA sequences of 12 molluscs, representing the extant classes Gastropoda, Bivalvia, Polyplacophora, Scaphopoda, and Caudofoveata, were determined and compared with selected known 18S rRNA sequences of Metazoa, including other Mollusca. These data do not provide support for a close relationship between Platyhelminthes (Turbellaria) and Mollusca, but rather suggest that the latter group belongs to a clade of eutrochozoan coelomates. The 18S rRNA data fail to recover molluscan, bivalve, or gastropod monophyly. However, the branching pattern of the eutrochozoan phyla and classes is unstable, probably due to the explosive Cambrian radiation during which these groups arose. Similarly, the 18S rRNA data do not provide a reliable signal for the molluscan interclass relationships. Nevertheless, we obtained strong preliminary support for phylogenetic inferences at more restricted taxonomic levels, such as the monophyly of Polyplacophora, Caenogastropoda, Euthyneura, Heterodonta, and Arcoida.

  15. Detection of Babesia microti parasites by highly sensitive 18S rRNA reverse transcription PCR.

    PubMed

    Hanron, Amelia E; Billman, Zachary P; Seilie, Annette M; Chang, Ming; Murphy, Sean C

    2017-03-01

    Babesia are increasingly appreciated as a cause of transfusion-transmitted infection. Sensitive methods are needed to screen blood products. We report herein that B. microti 18S rRNA is over 1,000-fold more abundant than its coding genes, making reverse transcription PCR (RT-PCR) much more sensitive than PCR. Babesia 18S rRNA may be useful for screening the blood supply.

  16. Molecular analysis of complete ssu to lsu rdna sequence in the harmful dinoflagellate alexandrium tamarense (korean isolate, HY970328M)

    NASA Astrophysics Data System (ADS)

    Ki, Jang-Seu; Han, Myung-Soo

    2005-09-01

    New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

  17. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    PubMed Central

    Meli, Marina L.; Novacco, Marilisa; Borel, Nicole

    2016-01-01

    The 18S ribosomal RNA (rRNA) gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal) DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR) analysis. We compared (i) samples from various animal species, tissues, and sample types, including swabs; (ii) multiple DNA extraction methods; and (iii) both fresh and formalin-fixed paraffin-embedded (FFPE) samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects. PMID:27672657

  18. Compositional properties and thermal adaptation of 18S rRNA in vertebrates

    PubMed Central

    Varriale, Annalisa; Torelli, Giuseppe; Bernardi, Giorgio

    2008-01-01

    In order to investigate the influence of temperature on the GC level of the paired sequences of ribosomal 18S RNAs in vertebrates, we have studied their base composition in cold- and warm-blooded vertebrates using a stem-by-stem comparison. We observed that a number of stems of 18S ribosomal RNAs (rRNAs) are variable among species and that the majority of such stems are GC richer in warm-blooded than in cold-blooded vertebrates. We also constructed the secondary structures of the 18S rRNAs of a polar fish, a marsupial, and a monotreme to compare them with those of temperate/tropical fishes and of eutherians, respectively. In these cases, differences similar to those already mentioned were found. We conclude that there is a correlation between stem stability and body temperature even within the relatively limited temperature range of vertebrates. PMID:18567811

  19. Chemical probing of adenine residues within the secondary structure of rabbit /sup 18/S ribosomal RNA

    SciTech Connect

    Rairkar, A.; Rubino, H.M.; Lockard, R.E.

    1988-01-26

    The location of unpaired adenine residues within the secondary structure of rabbit /sup 18/S ribosomal RNA was determined by chemical probing. Naked /sup 18/S rRNA was first prepared by digestion of purified 40S subunits with matrix-bound proteinase K in sodium dodecyl sulfate, thereby omitting the use of nucleic acid denaturants. Adenines within naked /sup 18/S rRNA were chemically probed by using either diethyl pyrocarbonate or dimethyl sulfate, which specifically react with unpaired nucleotides. Adenine modification sites were identified by polyacrylamide sequencing gel electrophoresis either upon aniline-induced strand scission of /sup 32/P-end-labeled intact and fragmented rRNA or by primer extension using sequence-specific DNA oligomers with reverse transcriptase. The data indicate good agreement between the general pattern of adenine reactivity and the location of unpaired regions in /sup 18/S rRNA determined by comparative sequence analysis. The overall reactivity of adenine residues toward single-strand-specific chemical probes was, also, similar for both rabbit and Escherichia coli small rRNA. The number of strongly reactive adenines appearing within phylogenetically determined helical segments, however, was greater in rabbit /sup 18/S rRNA than for E. coli /sup 16/S rRNA. Some of these adenines were found clustered in specific helices. Such differences suggest a greater irregularity of many of the helical elements within mammalian /sup 18/S rRNA, as compared with prokaryotic /sup 16/S rRNA. These helical irregularities could be important for protein association and also may represent biologically relevant flexible regions of the molecule.

  20. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    PubMed

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  1. Phylogeny of chloromonas (chlorophyceae): A study of 18S ribosomal RNA gene sequences

    SciTech Connect

    Buchheim, M.A.; Buchheim, J.A.; Chapman, R.L.

    1997-04-01

    The unicellular, biflagellate genus Chloromonas differs from its ally, Chlamydomonas, primarily by the absence of pyrenoids in the vegetative stage of the former. As with most green flagellate genera, little is known about phylogenetic affinities within and among Chloromonas species. Phylogenetic analyses of nuclear-encoded small-subunit ribosomal RNA gene sequences demonstrate that a sampling of five Chloromonas taxa, obtained from major culture collections, do not form a monophyletic group. However, only three of these isolates, Chloromonas clathrata, Chloromonas serbinowi, and Chloromonas rosae, are diagnosable morphologically as Chloromonas species by the absence of a pyrenoid in the vegetative stage. The three diagnosable Chloromonas taxa form an alliance with two pyrenoid-bearing chlamydomonads, Chlamydomonas augustae and Chlamydomonas macrostellata. With the exception of Chloromonas serbinowi, which represents the basal lineage within the clade, each of the diagnosable Chloromonas taxa and their pyrenoid-bearing Chlamydomonas allies were isolated originally from mountain soils, snow, or cold peat. These observations suggest that hibitat, independent of pyrenoid status, may be most closely linked to the natural history of this clade of chlamydomonad flagellates. 51 refs., 3 figs., 3 tabs.

  2. Identification of the 18S-ribosomal-DNA genotypes of Acanthamoeba isolates from the Philippines.

    PubMed

    Rivera, W L; Adao, D E V

    2008-12-01

    Cyst morphology has been commonly used to identify the free-living amoeba Acanthamoeba to subgenus level. A more accurate and consistent method, based on the sequence analysis of the gene coding for the amoeba's small-subunit ribosomal RNA (Rns), has, however, been developed. There have been no attempts to identify the Acanthamoeba genotypes circulating in the Philippines. In this study, therefore, the ASA.S1 region of the Rns gene from 17 Acanthamoeba isolates, collected from soil, water and contact-lens storage cases in different regions of the Philippines, was sequenced. After the isolates were genotyped, using the BLAST program, their phylogenetic positions relative to known Acanthamoeba isolates were determined. For this, the model-based (GTR + Gamma) neighbour-joining, maximum-likelihood and Bayesian-inference analyses and the non-model-based maximum-parsimony analysis were used. All but two of the isolates were identified as the T5 or T4 genotypes, which are probably common in soil, water and contact-lens cases across the Philippines. The only other genotypes identified were T15 (as a single isolate from a contact-lens case) and T3 (as a single soil isolate).

  3. PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries.

    PubMed

    Potvin, Marianne; Lovejoy, Connie

    2009-01-01

    Environmental clone libraries constructed using small subunit ribosomal RNA (rRNA) or other gene-specific primers have become the standard molecular approach for identifying microorganisms directly from their environment. This technique includes an initial polymerase chain reaction (PCR) amplification step of a phylogenetically useful marker gene using universal primers. Although it is acknowledged that such primers introduce biases, there have been few studies if any to date systematically examining such bias in eukaryotic microbes. We investigated some implications of such bias by constructing clone libraries using several universal primer pairs targeting rRNA genes. Firstly, we constructed artificial libraries using a known mix of small cultured pelagic arctic algae with representatives from five major lineages and secondly we investigated environmental samples using several primer pairs. No primer pair retrieved all of the original algae in the artificial clone libraries and all showed a favorable bias toward the dinoflagellate Polarella glacialis and a bias against the prasinophyte Micromonas and a pennate diatom. Several other species were retrieved by only one primer pair tested. Despite this, sequences from nine environmental libraries were diverse and contained representatives from all major eukaryotic clades expected in marine samples. Further, libraries from the same sample grouped together using Bray-Curtis clustering, irrespective of primer pairs. We conclude that environmental PCR-based techniques are sufficient to compare samples, but the total diversity will probably always be underestimated and relative abundance estimates should be treated with caution.

  4. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets

  5. Secondary structure of rabbit 18S ribosomal RNA determined from biochemical and phylogenetic data

    SciTech Connect

    Rairkar, A.; Rubino, H.; Lockard, R.E.

    1986-05-01

    To understand the functional role of 18S rRNA in the eukaryotic 40S subunit, its higher order structure must first be determined. Native deproteinized 18S rRNA was isolated from purified rabbit 40S subunits, fractionated on SDS-sucrose density gradients and concentrated using centricon-30 microconcentrators. The structure of native 18S rRNA was probed chemically with both diethylpyrocarbonate (DEPC) and dimethyl sulfate (DMS) which react with unpaired adenosine and guanosine residues, respectively. After /sup 32/P-end-labeling of intact and fragmented RNA, the modified nucleotides were identified by polyacrylamide sequencing gel electrophoresis upon aniline induced strand scission. On the basis of both the biochemical and phylogenetic data, a secondary structure model is proposed which includes the two major G + C rich insertion elements. A comparison of the structure data with previously published phylogenetic models suggests an instability of certain predicted helices. These unstable helices may normally be stabilized by ribosomal proteins and could represent the flexible elements involved in biologically significant conformational switches within 40S subunit.

  6. Taenia spp.: 18S rDNA microsatellites for molecular systematic diagnosis.

    PubMed

    Foronda, P; Casanova, J C; Martinez, E; Valladares, B; Feliu, C

    2005-06-01

    The 18S rDNA gene of adult worms of Taenia parva found in Genetta genetta in the Iberian Peninsula and larval stages of T. pisiformis from the wild rabbit (Oryctolagus cuniculus) in Tenerife (Canary Islands) were amplified and sequenced. The sequences of the 18S rDNA gene of T. parva (1768 bp) and T. pisiformis (1760 bp) are reported for the first time (GenBank accession nos. AJ555167-AJ555168 and AJ555169-AJ555170, respectively). In 168 alignment positions microsatellites in the 18S rDNA of both taxa were detected for the first time (TGC in T. parva and TGCT in T. pisiformis) and differences in their sequences with different repetition numbers were observed. The use of nucleotide sequences of this gene in the resolution of systematic problems in cestodes is discussed with reference to the systematic status of Taenia spp. and mainly in human taeniids such as T. solium, T. saginata, and Asian human isolates of Taenia.

  7. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses.

    PubMed

    Nakada, Takashi; Misawa, Kazuharu; Nozaki, Hisayoshi

    2008-07-01

    The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses.

  8. Changes in Growth CO2 Result in Rapid Adjustments of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Small Subunit Gene Expression in Expanding and Mature Leaves of Rice1

    PubMed Central

    Gesch, Russ W.; Boote, Kenneth J.; Vu, Joseph C.V.; Hartwell Allen, L.; Bowes, George

    1998-01-01

    The accumulation of soluble carbohydrates resulting from growth under elevated CO2 may potentially signal the repression of gene activity for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS). To test this hypothesis we grew rice (Oryza sativa L.) under ambient (350 μL L−1) and high (700 μL L−1) CO2 in outdoor, sunlit, environment-controlled chambers and performed a cross-switching of growth CO2 concentration at the late-vegetative phase. Within 24 h, plants switched to high CO2 showed a 15% and 23% decrease in rbcS mRNA, whereas plants switched to ambient CO2 increased 27% and 11% in expanding and mature leaves, respectively. Ribulose-1,5-bisphosphate carboxylase/oxygenase total activity and protein content 8 d after the switch increased up to 27% and 20%, respectively, in plants switched to ambient CO2, but changed very little in plants switched to high CO2. Plants maintained at high CO2 showed greater carbohydrate pool sizes and lower rbcS transcript levels than plants kept at ambient CO2. However, after switching growth CO2 concentration, there was not a simple correlation between carbohydrate and rbcS transcript levels. We conclude that although carbohydrates may be important in the regulation of rbcS expression, changes in total pool size alone could not predict the rapid changes in expression that we observed. PMID:9765537

  9. Comprehensive Phylogenetic Reconstruction of Amoebozoa Based on Concatenated Analyses of SSU-rDNA and Actin Genes

    PubMed Central

    Lahr, Daniel J. G.; Grant, Jessica; Nguyen, Truc; Lin, Jian Hua; Katz, Laura A.

    2011-01-01

    Evolutionary relationships within Amoebozoa have been the subject of controversy for two reasons: 1) paucity of morphological characters in traditional surveys and 2) haphazard taxonomic sampling in modern molecular reconstructions. These along with other factors have prevented the erection of a definitive system that resolves confidently both higher and lower-level relationships. Additionally, the recent recognition that many protosteloid amoebae are in fact scattered throughout the Amoebozoa suggests that phylogenetic reconstructions have been excluding an extensive and integral group of organisms. Here we provide a comprehensive phylogenetic reconstruction based on 139 taxa using molecular information from both SSU-rDNA and actin genes. We provide molecular data for 13 of those taxa, 12 of which had not been previously characterized. We explored the dataset extensively by generating 18 alternative reconstructions that assess the effect of missing data, long-branched taxa, unstable taxa, fast evolving sites and inclusion of environmental sequences. We compared reconstructions with each other as well as against previously published phylogenies. Our analyses show that many of the morphologically established lower-level relationships (defined here as relationships roughly equivalent to Order level or below) are congruent with molecular data. However, the data are insufficient to corroborate or reject the large majority of proposed higher-level relationships (above the Order-level), with the exception of Tubulinea, Archamoebae and Myxogastrea, which are consistently recovered. Moreover, contrary to previous expectations, the inclusion of available environmental sequences does not significantly improve the Amoebozoa reconstruction. This is probably because key amoebozoan taxa are not easily amplified by environmental sequencing methodology due to high rates of molecular evolution and regular occurrence of large indels and introns. Finally, in an effort to facilitate

  10. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms.

    PubMed

    Lemaire, Benny; Huysmans, Suzy; Smets, Erik; Merckx, Vincent

    2011-09-01

    Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected.

  11. Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae.

    PubMed

    Las Peñas, M L; Urdampilleta, J D; Bernardello, G; Forni-Martins, E R

    2009-01-01

    Karyotype analyses in members of the four Cactaceae subfamilies were performed. Numbers and karyotype formula obtained were: Pereskioideae = Pereskiaaculeata(2n = 22; 10 m + 1 sm), Maihuenioideae = Maihuenia patagonica (2n = 22, 9 m + 2 sm; 2n = 44, 18 m + 4 sm), Opuntioideae = Cumulopuntia recurvata(2n = 44; 20 m + 2 sm), Cactoideae = Acanthocalycium spiniflorum (2n = 22; 10 m + 1 sm),Echinopsis tubiflora (2n = 22; 10 m + 1 sm), Trichocereus candicans (2n = 22, 22 m). Chromosomes were small, the average chromosome length was 2.3 mum. Diploid species and the tetraploid C. recurvata had one terminal satellite, whereas the remaining tetraploid species showed four satellited chromosomes. Karyotypes were symmetrical. No CMA(-)/DAPI(+) bands were detected, but CMA(+)/DAPI(-) bands associated with NOR were always found. Pericentromeric heterochromatin was found in C. recurvata, A. spiniflorum, and the tetraploid cytotype of M. patagonica. The locations of the 18S-26S rDNA sites in all species coincided with CMA(+)/DAPI(-) bands; the same occurred with the sizes and numbers of signals for each species. This technique was applied for the first time in metaphase chromosomes in cacti. NOR-bearing pair no.1 may be homeologous in all species examined. In Cactaceae, the 18S-26S loci seem to be highly conserved.

  12. Optical and electrical stability of viral-templated copper sulfide (Cu1.8S) films

    NASA Astrophysics Data System (ADS)

    Shahriar Zaman, Mohammed; Bernard Grajeda, Gabriel; Haberer, Elaine D.

    2014-04-01

    The optical and electrical stabilities of viral-templated non-stoichiometric copper sulfide, digenite (Cu1.8S) films were investigated. The films were composed of large agglomerates of randomly aligned Cu1.8S-coated M13 filamentous phage. Free carrier optical absorption associated with localized surface plasmon resonance (LSPR) was observed in the near infrared spectral region, and the films were electrically active, displaying a linear current-voltage relationship. Under ambient conditions, the magnitude of the LSPR absorption increased, following a power law relationship with time, and the electrical resistance of viral-templated films decreased significantly. In contrast, the resistance of films stored under low oxygen, low humidity conditions experienced a smaller reduction in electrical resistance. Changes in optical and electrical film properties under ambient conditions were associated with an increase in free carrier concentration within the copper chalcogenide material due to oxygen exposure. X-ray photoelectron spectroscopy was used to relate this increase in free carrier concentration to compositional changes on the viral-templated material surface.

  13. Loop-mediated isothermal amplification targeting 18S ribosomal DNA for rapid detection of Acanthamoeba.

    PubMed

    Yang, Hye-Won; Lee, Yu-Ran; Inoue, Noboru; Jha, Bijay Kumar; Danne, Dinzouna-Boutamba Sylvatrie; Kim, Hong-Kyun; Lee, Junhun; Goo, Youn-Kyoung; Kong, Hyun-Hee; Chung, Dong-Il; Hong, Yeonchul

    2013-06-01

    Amoebic keratitis (AK) caused by Acanthamoeba is one of the most serious corneal infections. AK is frequently misdiagnosed initially as viral, bacterial, or fungal keratitis, thus ensuring treatment delays. Accordingly, the early detection of Acanthamoeba would contribute significantly to disease management and selection of an appropriate anti-amoebic therapy. Recently, the loop-mediated isothermal amplification (LAMP) method has been applied to the clinical diagnosis of a range of infectious diseases. Here, we describe a rapid and efficient LAMP-based method targeting Acanthamoeba 18S rDNA gene for the detection of Acanthamoeba using clinical ocular specimens in the diagnosis of AK. Acanthamoeba LAMP assays detected 11 different strains including all AK-associated species. The copy number detection limit for a positive signal was 10 DNA copies of 18S rDNA per reaction. No cross-reactivity with the DNA of fungi or other protozoa was observed. The sensitivity of LAMP assay was higher than those of Nelson primer PCR and JDP primer PCR. In the present study, LAMP assay based on directly heat-treated samples was found to be as efficient at detecting Acanthamoeba as DNA extracted using a commercial kit, whereas PCR was only effective when commercial kit-extracted DNA was used. This study showed that the devised Acanthamoeba LAMP assay could be used to diagnose AK in a simple, sensitive, and specific manner.

  14. Detecting morphological convergence in true fungi, using 18S rRNA gene sequence data.

    PubMed

    Berbee, M L; Taylor, J W

    1992-01-01

    For the true fungi, phylogenetic relationships inferred from 18S ribosomal DNA sequence data agree with morphology when (1) the fungi exhibit diagnostic morphological characters, (2) the sequence-based phylogenetic groups are statistically supported, and (3) the ribosomal DNA evolves at roughly the same rate in the lineages being compared. 18S ribosomal RNA gene sequence data and biochemical data provide a congruent definition of true fungi. Sequence data support the traditional fungal subdivisions Ascomycotina and Basidiomycotina. In conflict with morphology, some zygomycetes group with chytrid water molds rather than with other terrestrial fungi, possibly owing to unequal rates of nucleotide substitutions among zygomycete lineages. Within the ascomycetes, the taxonomic consequence of simple or reduced morphology has been a proliferation of mutually incongruent classification systems. Sequence data provide plausible resolution of relationships for some cases where reduced morphology has created confusion. For example, phylogenetic trees from rDNA indicate that those morphologically simple ascomycetes classified as yeasts are polyphyletic and that forcible spore discharge was lost convergently from three lineages of ascomycetes producing flask-like fruiting bodies.

  15. Loop-Mediated Isothermal Amplification Targeting 18S Ribosomal DNA for Rapid Detection of Acanthamoeba

    PubMed Central

    Yang, Hye-Won; Lee, Yu-Ran; Inoue, Noboru; Jha, Bijay Kumar; Danne, Dinzouna-Boutamba Sylvatrie; Kim, Hong-Kyun; Lee, Junhun; Goo, Youn-Kyoung; Kong, Hyun-Hee; Chung, Dong-Il

    2013-01-01

    Amoebic keratitis (AK) caused by Acanthamoeba is one of the most serious corneal infections. AK is frequently misdiagnosed initially as viral, bacterial, or fungal keratitis, thus ensuring treatment delays. Accordingly, the early detection of Acanthamoeba would contribute significantly to disease management and selection of an appropriate anti-amoebic therapy. Recently, the loop-mediated isothermal amplification (LAMP) method has been applied to the clinical diagnosis of a range of infectious diseases. Here, we describe a rapid and efficient LAMP-based method targeting Acanthamoeba 18S rDNA gene for the detection of Acanthamoeba using clinical ocular specimens in the diagnosis of AK. Acanthamoeba LAMP assays detected 11 different strains including all AK-associated species. The copy number detection limit for a positive signal was 10 DNA copies of 18S rDNA per reaction. No cross-reactivity with the DNA of fungi or other protozoa was observed. The sensitivity of LAMP assay was higher than those of Nelson primer PCR and JDP primer PCR. In the present study, LAMP assay based on directly heat-treated samples was found to be as efficient at detecting Acanthamoeba as DNA extracted using a commercial kit, whereas PCR was only effective when commercial kit-extracted DNA was used. This study showed that the devised Acanthamoeba LAMP assay could be used to diagnose AK in a simple, sensitive, and specific manner. PMID:23864737

  16. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  17. Characterization of the Dominant and Rare Members of a Young Hawaiian Soil Bacterial Community with Small-Subunit Ribosomal DNA Amplified from DNA Fractionated on the Basis of Its Guanine and Cytosine Composition

    PubMed Central

    Nüsslein, Klaus; Tiedje, James M.

    1998-01-01

    The small-subunit ribosomal DNA (rDNA) diversity was found to be very high in a Hawaiian soil community that might be expected to have lower diversity than the communities in continental soils because the Hawaiian soil is geographically isolated and only 200 years old, is subjected to a constant climate, and harbors low plant diversity. Since an underlying community structure could not be revealed by analyzing the total eubacterial rDNA, we first fractionated the DNA on the basis of guanine-plus-cytosine (G+C) content by using bis-benzimidazole and equilibrium centrifugation and then analyzed the bacterial rDNA amplified from a fraction with a high biomass (63% G+C fraction) and a fraction with a low biomass (35% G+C fraction). The rDNA clone libraries were screened by amplified rDNA restriction analysis to determine phylotype distribution. The dominant biomass reflected by the 63% G+C fraction contained several dominant phylotypes, while the community members that were less successful (35% G+C fraction) did not show dominance but there was a very high diversity of phylotypes. Nucleotide sequence analysis revealed taxa belonging to the groups expected for the G+C contents used. The dominant phylotypes in the 63% G+C fraction were members of the Pseudomonas, Rhizobium-Agrobacterium, and Rhodospirillum assemblages, while all of the clones sequenced from the 35% G+C fraction were affiliated with several Clostridium assemblages. The two-step rDNA analysis used here uncovered more diversity than can be detected by direct rDNA analysis of total community DNA. The G+C separation step is also a way to detect some of the less dominant organisms in a community. PMID:9546163

  18. 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta.

    PubMed

    Mackey, L Y; Winnepenninckx, B; De Wachter, R; Backeljau, T; Emschermann, P; Garey, J R

    1996-05-01

    The Ento- and Ectoprocta are sometimes placed together in the Bryozoa, which have variously been regarded as proto- or deuterostomes. However, Entoprocta have also been allied to the pseudocoelomates, while Ectoprocta are often united with the Brachiopoda and Phoronida in the (super)phylum Lophophorata. Hence, the phylogenetic relationships of these taxa are still much debated. We determined complete 18S rRNA sequences of two entoprocts, an ectoproct, an inarticulate brachiopod, a phoronid, two annelids, and a platyhelminth. Phylogenetic analyses of these data show that (1) entoprocts and lophophorates have spiralian, protostomous affinities, (2) Ento- and Ectoprocta are not sister taxa, (3) phoronids and brachiopods form a monophyletic clade, and (4) neither Ectoprocta or Annelida appear to be monophyletic. Both deuterostomous and pseudocoelomate features may have arisen at least two times in evolutionary history. These results advocate a Spiralia-Radialia-based classification rather than one based on the Protostomia-Deuterostomia concept.

  19. Phylogenetic relationships of Spiruromorpha from birds of prey based on 18S rDNA.

    PubMed

    Honisch, M; Krone, O

    2008-06-01

    A total of 153 free-ranging birds from Germany belonging to 15 species were examined for nematodes in their digestive and respiratory tracts. In 51.7% of the birds 14 different nematode species were found: the intestinal ascarids Porrocaecum depressum and P. angusticolle, the strongylid Hovorkonema variegatum, which inhabits the trachea and bronchi, the hairworms Eucoleus dispar and Capillaria tenuissima isolated from the digestive system, the spirurid nematodes Cyrnea leptoptera, C. mansioni, C. seurati, Microtetrameres cloacitectus, Physaloptera alata, P. apivori, Synhimantus hamatus and S. laticeps, which inhabit the proventriculus and gizzard of the raptors, and the spirurid nematode Serratospiculum tendo, which lives in the air sacs. To revise their systematic positions the ribosomal 18S gene regions of the nematode species were analysed and a phylogenetic tree was constructed. The molecular data confirmed the morphological systematics, except the spirurid family Physalopteridae, which grouped together with the Acuariidae.

  20. 18S ribosomal DNA genotypes of Acanthamoeba species isolated from contact lens cases in the Philippines.

    PubMed

    Rivera, Windell L; Adao, Davin Edric V

    2009-10-01

    This study was carried out to document the genotypes of Acanthamoeba present in contact lens cases from 50 randomly selected contact lens wearers living in Quezon City, Metro Manila, Philippines. Acanthamoeba species were isolated from eight (16%) in 50 contact lens cases examined. We analyzed partial 18S ribosomal DNA (Rns) sequences of the eight isolates and found that the sequence differences were sufficient to distinguish the genotypes. After the isolates were genotyped, using the Basic Local Alignment Search Tool program, their phylogenetic positions relative to known Acanthamoeba isolates were determined. The model-based (GTR+Gamma+Iota) neighbor-joining, maximum likelihood, and Bayesian inference analyses, as well as the non-model-based maximum parsimony analysis were used. Results showed that of the eight isolates, six were Rns genotype T5 while two were Rns genotype T4. This present study indicates that genotype T5 is also a common contaminant in contact lens storage cases.

  1. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded.

  2. The phylogenetic status of arthropods, as inferred from 18S rRNA sequences.

    PubMed

    Turbeville, J M; Pfeifer, D M; Field, K G; Raff, R A

    1991-09-01

    Partial 18S rRNA sequences of five chelicerate arthropods plus a crustacean, myriapod, insect, chordate, echinoderm, annelid, and platyhelminth were compared. The sequence data were used to infer phylogeny by using a maximum-parsimony method, an evolutionary-distance method, and the evolutionary-parsimony method. The phylogenetic inferences generated by maximum-parsimony and distance methods support both monophyly of the Arthropoda and monophyly of the Chelicerata within the Arthropoda. These results are congruent with phylogenies based on rigorous cladistic analyses of morphological characters. Results support the inclusion of the Arthropoda within a spiralian or protostome coelomate clade that is the sister group of a deuterostome clade, refuting the hypothesis that the arthropods represent the "primitive" sister group of a protostome coelomate clade. Bootstrap analyses and consideration of all trees within 1% of the length of the most parsimonious tree suggest that relationships between the nonchelicerate arthropods and relationships within the chelicerate clade cannot be reliably inferred with the partial 18S rRNA sequence data. With the evolutionary-parsimony method, support for monophyly of the Arthropoda is found in the majority of the combinations analyzed if the coelomates are used as "outgroups." Monophyly of the Chelicerata is supported in most combinations assessed. Our analyses also indicate that the evolutionary-parsimony method, like distance and parsimony, may be biased by taxa with long branches. We suggest that a previous study's inference of the Arthropoda as paraphyletic may be the result of (a) having two few arthropod taxa available for analysis and (b) including long-branched taxa.

  3. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences

    PubMed Central

    Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S

    2009-01-01

    Background Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Results Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Conclusion Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are

  4. Chromosome Mapping of 18S Ribosomal RNA Genes in Eleven Hypostomus Species (Siluriformes, Loricariidae): Diversity Analysis of the Sites.

    PubMed

    Rubert, Marceléia; da Rosa, Renata; Zawadzki, Claudio H; Mariotto, Sandra; Moreira-Filho, Orlando; Giuliano-Caetano, Lucia

    2016-08-01

    We investigated the chromosomal distribution of 18S ribosomal DNA (rDNA) in different populations of 11 species of Hypostomus collected in important Brazilian basins, namely South Atlantic, Upper Paraná, and Paraguay applying the fluorescence in situ hybridization (FISH). Hypostomus cochliodon, Hypostomus commersoni, Hypostomus hermanni, Hypostomus regani, Hypostomus albopunctatus, Hypostomus paulinus, Hypostomus aff. paulinus, Hypostomus iheringii, and Hypostomus mutucae presented multiple 18S rDNA sites while Hypostomus strigaticeps and Hypostomus nigromaculatus exhibited a single pair of chromosomes with 18S rDNA sites. The studied species presented variations in the number and position of these sites. The results accomplished were similar to those obtained by the analysis of AgNORs, revealing the same interspecific variability. Each species exhibited distinctive patterns of AgNOR and 18S rDNA distribution, which can be considered cytogenetic markers in each species of the genus and help improve the discussions on the phylogeny of the group.

  5. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks.

  6. Morphological convergence characterizes the evolution of Xanthophyceae (Heterokontophyta): evidence from nuclear SSU rDNA and plastidial rbcL genes.

    PubMed

    Negrisolo, Enrico; Maistro, Silvia; Incarbone, Matteo; Moro, Isabella; Dalla Valle, Luisa; Broady, Paul A; Andreoli, Carlo

    2004-10-01

    Xanthophyceae are a group of heterokontophyte algae. Few molecular studies have investigated the evolutionary history and phylogenetic relationships of this class. We sequenced the nuclear-encoded SSU rDNA and chloroplast-encoded rbcL genes of several xanthophycean species from different orders, families, and genera. Neither SSU rDNA nor rbcL genes show intraspecific sequence variation and are good diagnostic markers for characterization of problematic species. New sequences, combined with those previously available, were used to create different multiple alignments. Analyses included sequences from 26 species of Xanthophyceae plus three Phaeothamniophyceae and two Phaeophyceae taxa used as outgroups. Phylogenetic analyses were performed according to Bayesian inference, maximum likelihood, and maximum parsimony methods. We explored effects produced on the phylogenetic outcomes by both taxon sampling as well as selected genes. Congruent results were obtained from analyses performed on single gene multiple alignments as well as on a data set including both SSU rDNA and rbcL sequences. Trees obtained in this study show that several currently recognized xanthophycean taxa do not form monophyletic groups. The order Mischococcales is paraphyletic, while Tribonematales and Botrydiales are polyphyletic even if evidence for the second order is not conclusive. Botrydiales and Vaucheriales, both including siphonous taxa, do not form a clade. The families Botrydiopsidaceae, Botryochloridaceae, and Pleurochloridaceae as well as the genera Botrydiopsis and Chlorellidium are polyphyletic. The Centritractaceae and the genus Bumilleriopsis also appear to be polyphyletic but their monophyly cannot be completely rejected with current evidence. Our results support morphological convergence at any taxonomic rank in the evolution of the Xanthophyceae. Finally, our phylogenetic analyses exclude an origin of the Xanthophyceae from a Vaucheria-like ancestor and favor a single early origin

  7. Substitution of Azotobacter vinelandii hydrogenase small-subunit cysteines by serines can create insensitivity to inhibition by O2 and preferentially damages H2 oxidation over H2 evolution.

    PubMed Central

    McTavish, H; Sayavedra-Soto, L A; Arp, D J

    1995-01-01

    Mutants in which conserved cysteines 294, 297 or 64 and 65 of the Azotobacter vinelandii hydrogenase small subunit were replaced by serines were studied. Cysteines 294 and 297 are homologous to cysteines 246 and 249 of the Desulfovibrio gigas hydrogenase, and these cysteines are ligands to the [3Fe-4S] clusters (A. Volbeda, M.-H. Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps, Nature (London) 373:580-587, 1995). Cysteine 65 is homologous to cysteine 20 of the D. gigas hydrogenase, and this cysteine is a ligand to the proximal [4Fe-4S] cluster. All three mutants retained some hydrogenase activity. All three mutants studied had H2 oxidation-to-H2 evolution activity ratios with whole cells of approximately 1.5, compared with 46 for the wild type. The changes preferentially deplete H2 oxidation activity, while having less effect on evolution. The K64,65C-->S hydrogenase was partially purified and had a specific activity for the evolution reaction that was 22% that of the wild type, while the oxidation-specific activity was 2% that of the wild type. Because cysteine 65 provides a ligand to the proximal [4Fe-4S] cluster, this cluster can be altered without entirely eliminating enzyme activity. Likewise, the detection of H2 evolution and H2 oxidation activities with whole cells and membranes of the K294C-->S and K297C-->S mutants indicates that the [3Fe-4S] cluster can also be altered or possibly eliminated without entirely eliminating enzyme activity. Membranes with K294C-->S or K297C-->S hydrogenase were uninhibited by O2 in H2 oxidation and uninhibited by H2 in H2 evolution. Wild-type membranes and membranes with K64,65C-->S hydrogenase were both sensitive to these inhibitors. These data indicate that the [3Fe-4S] cluster controls the reversible inhibition of hydrogenase activity by O2 or H2. PMID:7608067

  8. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  9. Radiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny

    PubMed Central

    Dolven, Jane K.; Ose, Randi F.; Klaveness, Dag; Kristensen, Tom; Bjørklund, Kjell R.; Shalchian-Tabrizi, Kamran

    2011-01-01

    Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previously heliozoan group Taxopodida should be included in Radiolaria. 18S rDNA phylogenies have not yet resolved the sister relationship between the main Radiolaria groups, but nevertheless suggests that Spumellaria, and thereby also Polycystina, are polyphyletic. Very few sequences other than 18S rDNA have so far been generated from radiolarian cells, mostly due to the fact that Radiolaria has been impossible to cultivate and single cell PCR has been hampered by low success rate. Here we have therefore investigated the mutual evolutionary relationship of the main radiolarian groups by using the novel approach of combining single cell whole genome amplification with targeted PCR amplification of the 18S and 28S rDNA genes. Combined 18S and 28S phylogeny of sequences obtained from single cells shows that Radiolaria is divided into two main lineages: Polycystina (Spumellaria+Nassellaria) and Spasmaria (Acantharia+Taxopodida). Further we show with high support that Foraminifera groups within Radiolaria supporting the Retaria hypothesis. PMID:21853146

  10. ITS1 sequence variabilities correlate with 18S rDNA sequence types in the genus Acanthamoeba (Protozoa: Amoebozoa).

    PubMed

    Köhsler, Martina; Leitner, Brigitte; Blaschitz, Marion; Michel, Rolf; Aspöck, Horst; Walochnik, Julia

    2006-01-01

    The subgenus classification of the ubiquitously spread and potentially pathogenic acanthamoebae still poses a great challenge. Fifteen 18S rDNA sequence types (T1-T15) have been established, but the vast majority of isolates fall into sequence type T4, and so far, there is no means to reliably differentiate within T4. In this study, the first internal transcribed spacer (ITS1), a more variable region than the 18S rRNA gene, was sequenced, and the sequences of 15 different Acanthamoeba isolates were compared to reveal if ITS1 sequence variability correlates with 18S rDNA sequence typing and if the ITS1 sequencing allows a differentiation within T4. It was shown that the variability in ITS1 is tenfold higher than in the 18S rDNA, and that ITS1 clusters correlate with the 18S rDNA clusters and thus corroborate the Acanthamoeba sequence type system. Moreover, high sequence dissimilarities and distinctive microsatellite patterns could enable a more detailed differentiation within T4.

  11. Evolutionary history of trypanosomes from South American caiman (Caiman yacare) and African crocodiles inferred by phylogenetic analyses using SSU rDNA and gGAPDH genes.

    PubMed

    Viola, L B; Almeida, R S; Ferreira, R C; Campaner, M; Takata, C S A; Rodrigues, A C; Paiva, F; Camargo, E P; Teixeira, M M G

    2009-01-01

    In this study, using a combined data set of SSU rDNA and gGAPDH gene sequences, we provide phylogenetic evidence that supports clustering of crocodilian trypanosomes from the Brazilian Caiman yacare (Alligatoridae) and Trypanosoma grayi, a species that circulates between African crocodiles (Crocodilydae) and tsetse flies. In a survey of trypanosomes in Caiman yacare from the Brazilian Pantanal, the prevalence of trypanosome infection was 35% as determined by microhaematocrit and haemoculture, and 9 cultures were obtained. The morphology of trypomastigotes from caiman blood and tissue imprints was compared with those described for other crocodilian trypanosomes. Differences in morphology and growth behaviour of caiman trypanosomes were corroborated by molecular polymorphism that revealed 2 genotypes. Eight isolates were ascribed to genotype Cay01 and 1 to genotype Cay02. Phylogenetic inferences based on concatenated SSU rDNA and gGAPDH sequences showed that caiman isolates are closely related to T. grayi, constituting a well-supported monophyletic assemblage (clade T. grayi). Divergence time estimates based on clade composition, and biogeographical and geological events were used to discuss the relationships between the evolutionary histories of crocodilian trypanosomes and their hosts.

  12. Morphology, ontogenetic features and SSU rRNA gene-based phylogeny of a soil ciliate, Bistichella cystiformans spec. nov. (Protista, Ciliophora, Stichotrichia).

    PubMed

    Fan, Yangbo; Hu, Xiaozhong; Gao, Feng; Al-Farraj, Saleh A; Al-Rasheid, Khaled A S

    2014-12-01

    The morphology, ontogeny and SSU rRNA gene-based phylogeny of Bistichella cystiformans spec. nov., isolated from the slightly saline soil of a mangrove wetland in Zhanjiang, southern China, were investigated. The novel species was characterized by having five to eight buccal cirri arranged in a row, three to five transverse cirri, four macronuclear nodules aligned, and 17-32 and 20-34 cirri in frontoventral rows V and VI, respectively, both extending to the transverse cirri. The main ontogenetic features of the novel species were as follows: (1) the parental adoral zone of the membranelles is completely inherited by the proter; (2) the frontoventral and transverse cirri are formed in a six-anlagen mode; (3) basically, the frontal-ventral-transverse cirral anlagen II-V generate one transverse cirrus each at their posterior ends, while anlage VI provides no transverse cirrus; (4) both marginal rows and dorsal kineties develop intrakinetally, no dorsal kinety fragment is formed; and (5) the macronuclear nodules fuse into a single mass at the middle stage. Phylogenetic analyses based on the SSU rRNA gene showed that the novel species groups with the clade containing Bistichella variabilis, Parabistichella variabilis, Uroleptoides magnigranulosus and two species of the genus Orthoamphisiella. Given present knowledge, it was considered to be still too early to come to a final conclusion regarding the familial classification of the genus Bistichella; further investigations of key taxa with additional molecular markers are required.

  13. Induction of the superoxide anion radical scavenging capacity of dried 'funori'Gloiopeltis furcata by Lactobacillus plantarum S-SU1 fermentation.

    PubMed

    Kuda, Takashi; Nemoto, Maki; Kawahara, Miho; Oshio, Satoshi; Takahashi, Hajime; Kimura, Bon

    2015-08-01

    To understand the beneficial properties of edible algae obtained from the north-eastern (Sanriku) Satoumi region of Japan, the antioxidant properties of hot aqueous extract solutions (AES) obtained from 18 dried algal products were determined. The samples included 4 Ceratophyllum demersum (matsumo), 5 Undaria pinnatifida (wakame), 5 Laminaria japonica (kombu), and 2 each of Gloiopeltis furcate (funori) and G. tenax (funori). Of these products, the total phenolic content and Fe-reducing power were highest in matsumo. On the other hand, the polysaccharide content, viscosity, and superoxide anion radical (O2˙(-))-scavenging capacity were highest in funori. Lactobacillus plantarum S-SU3, isolated from the intestine of Japanese surfperch, and Lb. plantarum S-SU1, isolated from salted squid, could ferment the AES of matsumo and funori, respectively. Although the Fe-reducing power of the matsumo solution was reduced due to fermentation, the O2˙(-)-scavenging capacity of the funori solution was increased by fermentation. Furthermore, the fermented funori suspension protected Saccharomyces cerevisiae, a live cell model, against H2O2 toxicity. These results suggest that the fermented funori is a promising functional food material that is capable of protecting against reactive oxygen species.

  14. Ultrastructure, SSU rRNA gene sequences and phylogenetic relationships of Flamella Schaeffer, 1926 (Amoebozoa), with description of three new species.

    PubMed

    Kudryavtsev, Alexander; Wylezich, Claudia; Schlegel, Martin; Walochnik, Julia; Michel, Rolf

    2009-02-01

    We isolated and described three new freshwater amoebozoan species that could be unambiguously assigned to the genus Flamella Schaeffer, 1926 by light microscopy. The phylogenetic position of the genus Flamella within the Amoebozoa was unknown, and gene sequence data were lacking. We sequenced the SSU rRNA gene of five Flamella spp., including a previously described F. aegyptia Michel et Smirnov, 1999. The phylogenetic trees inferred from these data showed, that Flamella is monophyletic and robustly branches within Amoebozoa. It belongs to a clade comprising Filamoeba spp., "Arachnula" sp., some protostelids and several SSU rRNA sequences of unidentified or uncultured eukaryotes. This clade consistently branched close to Archamoebae, Mycetozoa, Acramoeba dendroida and Multicilia marina; in contrast to the previous hypotheses, Flamella spp. did not show any relatedness either to Leptomyxida, or to Flabellinea. The ultrastructure of trophic amoebae and especially cysts of the species studied showed considerable similarity to Comandonia operculata Pernin et Pussard, 1979. We therefore suggest that Comandonia may be a junior synonym of Flamella, although more ultrastructural data about Comandonia operculata are necessary to test this hypothesis.

  15. cis-Proline-mediated Ser(P)[superscript 5] Dephosphorylation by the RNA Polymerase II C-terminal Domain Phosphatase Ssu72

    SciTech Connect

    Werner-Allen, Jon W.; Lee, Chul-Jin; Liu, Pengda; Nicely, Nathan I.; Wang, Su; Greenleaf, Arno L.; Zhou, Pei

    2012-05-16

    RNA polymerase II coordinates co-transcriptional events by recruiting distinct sets of nuclear factors to specific stages of transcription via changes of phosphorylation patterns along its C-terminal domain (CTD). Although it has become increasingly clear that proline isomerization also helps regulate CTD-associated processes, the molecular basis of its role is unknown. Here, we report the structure of the Ser(P){sup 5} CTD phosphatase Ssu72 in complex with substrate, revealing a remarkable CTD conformation with the Ser(P){sup 5}-Pro{sup 6} motif in the cis configuration. We show that the cis-Ser(P){sup 5}-Pro{sup 6} isomer is the minor population in solution and that Ess1-catalyzed cis-trans-proline isomerization facilitates rapid dephosphorylation by Ssu72, providing an explanation for recently discovered in vivo connections between these enzymes and a revised model for CTD-mediated small nuclear RNA termination. This work presents the first structural evidence of a cis-proline-specific enzyme and an unexpected mechanism of isomer-based regulation of phosphorylation, with broad implications for CTD biology

  16. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis

    PubMed Central

    Michael, E. S.; Kuliopulos, A.; Covic, L.; Steer, M. L.

    2013-01-01

    Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2−/− mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca2+ concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP. PMID:23275617

  17. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis.

    PubMed

    Michael, E S; Kuliopulos, A; Covic, L; Steer, M L; Perides, G

    2013-03-01

    Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2(-/-) mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca(2+) concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP.

  18. Metabolism of 18S rRNA in rat liver cells in different functional states of protein-synthesizing apparatus

    SciTech Connect

    Chirkov, G.P.; Druzhinina, M.K.; Todorov, I.N.

    1986-04-10

    The ratio of the absolute radioactivities of 28S and 18S RNAs in the fractions of membrane-bound and free polysomes and the fraction of free rat liver ribosomes was studied under conditions of inhibition of translation by cycloheximide, insulin, and cAMP. It was found that insulin and cAMP, in contrast to cycloheximide, do not induce selective degradation of 18S rRNA. The results are discussed from the standpoint of the possible role of the phosphorylation of protein S6 in the degradation of the 40S ribosomal subunit.

  19. Sequencing and characterization of full-length sequence of 18S rRNA gene from the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Variation within this gene is rare but it has been observed in few metazoan species. For the first time, we h...

  20. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks

    EPA Science Inventory

    The goal of this study was to characterize microbial eukaryotes over a 12 month period, so as to provide insight into the occurrence of potentially important predators and bacterial hosts in hot and cold premise plumbing. Nearly 6,300 partial (600 bp) 18S rRNA gene sequences from...

  1. Multiple origins of parasitism in lice: phylogenetic analysis of SSU rDNA indicates that the Phthiraptera and Psocoptera are not monophyletic.

    PubMed

    Murrell, Anna; Barker, Stephen C

    2005-10-01

    The Paraneoptera (Hemipteroid Assemblage) comprises the orders Thysanoptera (thrips), Hemiptera (bugs), Phthiraptera (lice) and Psocoptera (booklice and barklice). The phylogenetic relationships among the Psocodea (Phthiraptera and Psocoptera), Thysanoptera and Hemiptera are unresolved, as are some relationships within the Psocodea. Here, we present phylogenetic hypotheses inferred from SSU rDNA sequences; the most controversial of which is the apparent paraphyly of the Phthiraptera, which are parasites of birds and mammals, with respect to one family of Psocoptera, the Liposcelididae. The order Psocoptera and the suborder that contains the Liposcelididae, the Troctomorpha, are also paraphyletic. The two remaining psocopteran suborders, the Psocomorpha and the Trogiomorpha, are apparently monophyletic. The Liposcelididae is most closely related to lice from the suborder Amblycera. These results suggest that the taxonomy of the Psocodea needs revision. In addition, there are implications for the evolution of parasitism in insects; parasitism may have evolved twice in lice or have evolved once and been subsequently lost in the Liposcelididae.

  2. Phylogeny of Flabellulidae (Amoebozoa: Leptomyxida) inferred from SSU rDNA sequences of the type strain of Flabellula citata Schaeffer, 1926 and newly isolated strains of marine amoebae.

    PubMed

    Dyková, Iva; Fiala, Ivan; Pecková, Hana; Dvoráková, Helena

    2008-12-01

    New strains of non-vannellid flattened amoebae isolated from fish, an invertebrate and the marine environment were studied together with Flabellula citata Schaeffer, 1926 selected by morphology as a reference strain. The study revealed a paucity of features distinguishing individual strains at the generic level, but clearly evidenced mutual phylogenetic relationships within the assemblage of strains as well as their affiliation to the Leptomyxida. In this study, the SSU rDNA dataset of leptomyxids was expanded and a new branching pattern was presented within this lineage of Amoebozoa. Sequences of three newly introduced strains clustered in close relationship with the type strain of F. citata, the type species of the genus. Three strains, including one resembling Flamella sp., were positioned within a sister-group containing Paraflabellula spp. Results of phylogenetic analysis confirmed doubts of previous authors regarding generic assignment of several Rhizanmoeba and Ripidomnyxa strains.

  3. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene.

    PubMed

    Urata, Makoto

    2015-06-01

    Seven nuclear and mitochondrial DNA markers were examined in 12 specimens of Ptychodera flava, a model acorn worm used in molecular biology, collected in Japan from three local populations with different modes of living. A comparison of intraspecific results did not show genetically isolated populations despite the species' enclave habitats and asexual reproduction. Moreover, both the nuclear 18S ribosomal RNA gene and mitochondrial 16S ribosomal RNA gene sequences were identical to those from Moorea in French Polynesia, nearly 10,000 kilometers away from Japan. I also provide the first definitive information regarding polymorphisms in 18S ribosomal RNA gene, the external transcribed spacer (ETS), internal transcribed spacers (ITS), and mitochondrial cytochrome c oxidase subunit 1 (mtCO1) sequence in hemichordates using newly designed primer sets, and I show both high larval vagility and certain criteria for the molecular identification of this species.

  4. The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia.

    PubMed

    Yan, Hongbin; Lou, Zhongzi; Li, Li; Ni, Xingwei; Guo, Aijiang; Li, Hongmin; Zheng, Yadong; Dyachenko, Viktor; Jia, Wanzhong

    2013-03-01

    Most species of the genus Taenia are of considerable medical and veterinary significance. In this study, complete nuclear 18S rRNA gene sequences were obtained from seven members of genus Taenia [Taenia multiceps, Taenia saginata, Taenia asiatica, Taenia solium, Taenia pisiformis, Taenia hydatigena, and Taenia taeniaeformis] and a phylogeny inferred using these sequences. Most of the variable sites fall within the variable regions, V1-V5. We show that sequences from the nuclear 18S ribosomal RNA gene have considerable promise as sources of phylogenetic information within the genus Taenia. Furthermore, given that almost all the variable sites lie within defined variable portions of that gene, it will be appropriate and economical to sequence only those regions for additional species of Taenia.

  5. Cystoisospora spp. from dogs in China and phylogenetic analysis of its 18S and ITS1 gene.

    PubMed

    He, Pengfei; Li, Jianhua; Gong, Pengtao; Huang, Jingui; Zhang, Xichen

    2012-11-23

    Cystoisospora spp. oocysts isolated from dog feces in Changchun, China were morphologically similar to those of Cystoisospora ohioensis and Cystoisospora sp. 1-MM recently isolated from dogs in Japanese. Sequencing results of the 18S subunit RNA gene from isolates in the present study were compared to other Cystoisospora spp. and the results suggested that Cystoisospora spp. from dogs in Changchun was homologous to C. ohioensis and Cystoisospora sp. 1-MM. Phylogenetic analysis of the 18S rRNA sequences showed that the Cystoisospora sp. ChangChun 1 and Cystoisospora sp. ChangChun 2 were nested in a clade with other Cystoisospora spp., including C. ohioensis, Cystoisospora belli, Cystoisospora suis, Isospora sp. Harbin/01/08 and C. orlovi,. Cystoisospora sp. ChangChun 2 was confirmed as C. ohioensis, and the other isolate was in a separate clade but the genetic relationship was relatively close to C. suis after analysis of the ITS-1gene.

  6. Gene cloning of the 18S rRNA of an ancient viable moss from the permafrost of northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Marsic, Damien; Hoover, Richard B.; Gilichinsky, David A.; Ng, Joseph D.

    1999-12-01

    A moss plant dating as much as 40,000 years old was collected from the permafrost of the Kolyma Lowlands of Northeastern Siberia. The plant tissue was revived and cultured for the extraction of its genomic DNA. Using the polymerase chain reaction technique, the 18S ribosomal RNA gene was cloned and its sequence studied. Comparative sequence analysis of the cloned ribosomal DNA to other known 18S RNA showed very high sequence identity and was revealed to be closest to the moss specie, Aulacomnium turgidum. The results of this study also show the ability of biological organisms to rest dormant in deep frozen environments where they can be revived and cultured under favorable conditions. This is significant in the notion that celestial icy bodies can be media to preserve biological function and genetic material during long term storage or transport.

  7. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones.

  8. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs.

  9. Conservation of the primary structure at the 3' end of 18S rRNA from eucaryotic cells.

    PubMed

    Hagenbüchle, O; Santer, M; Steitz, J A; Mans, R J

    1978-03-01

    DNA sequencing methods have been used to determine a sequence of about 20 nucleotides at the 3' termini of various 18S (small ribosomal subunit) RNA molecules. Polyadenylated rRNA was first synthesized using the enzyme ATP:polynucleotidyl transferase from mainze. Then in the presence of an oligonucleotide primer uniquely complementary to the end of each adenylated rRNA, a cDNA copy was produced using AMV reverse transcriptase. In every case, the cDNA transcript was of finite size, which we ascribe to the appearance of an oligonucleotide containing m62A near the 3' end of the 18S rRNAs. Sequences at the 3' termini of 18S rRNA molecules from the four eucaryotic species examined here (mouse, silk worm, wheat embryo and slime mold) are highly conserved. They also exhibit strong homology to the 3' end of E. coli 16S rRNA. Two important differences, however, are apparent. First, the 16S sequence CCUCC, implicated in mRNA binding by E. coli ribosomes, is absent from each eucaryotic rRNA sequence. Second, a purine-rich region which exhibits extensive complementarity to the 5' noncoding regions of many eucaryotic mRNAs appears consistently.

  10. Molecular hybridization of iodinated 4S, 5S, and 18S + 28S RNA to salamander chromosomes

    PubMed Central

    1976-01-01

    4S, 5S, AND 18S + 28S RNA from the newt Taricha granulosa granulosa were iodinated in vitro with carrier-free 125I and hybridized to the denatured chromosomes of Taricha granulosa and Batrachoseps weighti. Iodinated 18S + 28S RNA hybridizes to the telomeric region on the shorter arm of chromosome 2 and close to the centromere on the shorter arm of chromosome 9 from T. granulosa. On this same salamander the label produced by the 5S RNA is located close to or on the centromere of chromosome 7 and the iodinated 4S RNA labels the distal end of the longer arm of chromosome 5. On the chromosomes of B. wrighti, 18S + 28S RNA hybridizes close to the centromeric region on the longer arm of the largest chromosome. Two centromeric sites are hybridized by the iodinated 5S RNA. After hybridization with iodinated 4S RNA, label is found near the end of the shorter arm of chromosome 3. It is concluded that both ribosomal and transfer RNA genes are clustered in the genome of these two salamanders. PMID:944187

  11. Immunological inter-strain crossreactivity correlated to 18S rDNA sequence types in Acanthamoeba spp.

    PubMed

    Walochnik, J; Obwaller, A; Aspöck, H

    2001-02-01

    Various species of the genus Acanthamoeba have been described as potential pathogens; however, differentiation of acanthamoebae remains problematic. The genus has been divided into 12 18S rDNA sequence types, most keratitis causing strains exhibiting sequence type T4. We recently isolated a keratitis causing Acanthamoeba strain showing sequence type T6, but being morphologically identical to a T4 strain. The aim of our study was to find out, whether the 18S rDNA sequence based identification correlates to immunological differentiation. The protein and antigen profiles of the T6 isolate and three reference Acanthamoeba strains were investigated using two sera from Acanthamoeba keratitis patients and one serum from an asymptomatic individual. It was shown, that the T6 strain produces a distinctly different immunological pattern, while patterns within T4 were identical. Affinity purified antibodies were used to further explore immunological cross-reactivity between sequence types. Altogether, the results of our study support the Acanthamoeba 18S rDNA sequence type classification in the investigated strains.

  12. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    PubMed Central

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel JP; Delsuc, Frédéric

    2009-01-01

    Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1) Phlebobranchia + Thaliacea + Aplousobranchia, 2) Appendicularia, and 3) Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models suggest a sister

  13. Applied genomics: data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA.

    PubMed

    Demas, Allison; Oberstaller, Jenna; DeBarry, Jeremy; Lucchi, Naomi W; Srinivasamoorthy, Ganesh; Sumari, Deborah; Kabanywanyi, Abdunoor M; Villegas, Leopoldo; Escalante, Ananias A; Kachur, S Patrick; Barnwell, John W; Peterson, David S; Udhayakumar, Venkatachalam; Kissinger, Jessica C

    2011-07-01

    Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms.

  14. Molecular phylogenetics of subclass Peritrichia (Ciliophora: Oligohymenophorea) based on expanded analyses of 18S rRNA sequences.

    PubMed

    Utz, Laura R P; Eizirik, Eduardo

    2007-01-01

    Phylogenetic relationships among peritrich ciliates remain unclear in spite of recent progress. To expand the analyses performed in previous studies, and to statistically test hypotheses of monophyly, we analyzed a broad sample of 18s rRNA sequences (including 15 peritrich genera), applying a conservative alignment strategy and several phylogenetic approaches. The main results are that: (i) the monophyly of Peritrichia cannot be rejected; (ii) the two main clades of Sessilida do not correspond to formally recognized taxa; (iii) the monophyly of genera Vorticella and Epistylis is significantly rejected; and (iv) morphological structures commonly used in peritrich taxonomy may be evolutionarily labile.

  15. Searching factors causing implausible non-monophyly: ssu rDNA phylogeny of Isopoda Asellota (Crustacea: Peracarida) and faster evolution in marine than in freshwater habitats.

    PubMed

    Wägele, Johann-Wolfgang; Holland, Barbara; Dreyer, Hermann; Hackethal, Beate

    2003-09-01

    This contribution addresses two questions: which alignment patterns are causing non-monophyly of the Asellota and what is the phylogenetic history of this group? The Asellota are small benthic crustaceans occurring in most aquatic habitats. In view of the complex morphological apomorphies known for this group, monophyly of the Asellota has never been questioned. Using ssu rDNA sequences of outgroups and of 16 asellote species from fresh water, littoral marine habitats and from deep-sea localities, the early divergence between the lineages in fresh water and in the ocean, and the monophyly of the deep-sea taxon Munnopsidae are confirmed. Relative substitution rates of freshwater species are much lower than in other isopod species, rates being highest in some littoral marine genera (Carpias and Jaera). Furthermore, more sequence sites are variable in marine than in freshwater species, the latter conserve outgroup character states. Monophyly is recovered with parsimony methods, but not with distance and maximum likelihood analyses, which tear apart the marine from the freshwater species. The information content of alignments was studied with spectra of supporting positions. The scarcity of signal (=apomorphic nucleotides) supporting monophyly of the Asellota is attributed to a short stem-line of this group or to erosion of signal in fast evolving marine species. Parametric boostrapping in combination with spectra indicates that a tree model cannot explain the data and that monophyly of the Asellota should not be rejected even though many topologies do not recover this taxon.

  16. A contribution to the taxonomy of the genus Rinodina (Physciaceae, lichenized Ascomycotina) using combined ITS and mtSSU rDNA data

    PubMed Central

    NADYEINA, Olga; GRUBE, Martin; MAYRHOFER, Helmut

    2011-01-01

    To test the phylogenetic position of phenotypically peculiar species in the Physciaceae we generated 47 new sequences (26 of nrITS region and 21 of mtSSU rDNA) from 19 crustose taxa of Physciaceae mainly from the genus Rinodina. Phylogenetic analysis confirmed the Buellia and Physcia groups. The analysis revealed a considerable variability of characters traditionally used for classification, especially in the delimitation of the genera Buellia and Rinodina. While ascus types agree well with the distinction of the Buellia and Physcia groups, none of the other traditional characters, including excipulum type and ascospore thickening, were consistent within subclades of the Physcia group. We suggest that both excipulum type and ascospore characters are rather dynamic in the evolution of Rinodina species and only appear consistent in morphologically more complex foliose and fruticose groups, which are characterized by thallus characters not present in the crustose groups. Two recent taxonomic changes are supported by molecular characters: Endohyalina insularis (syn. ‘Rinodina’ insularis) and Rinodina lindingeri (syn. ‘Buellia’ lindingeri). In addition Rinodina parvula (syn. ‘Buellia’ parvula) is reinstated. New records for Endohyalina brandii, E. diederichii, E. insularis and Rinodina albana are presented. PMID:22121298

  17. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  18. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  19. Phylogenetic Relationships Among Xiphinema and Xiphidorus Nematode Species from Brazil Inferred from 18S rDNA Sequences

    PubMed Central

    Oliveira, Claudio M. G.; Hübschen, Judith; Brown, Derek J. F.; Ferraz, Luiz C. C. B.; Wright, Frank; Neilson, Roy

    2004-01-01

    Maximum likelihood trees produced from 18S rDNA sequences separated 14 Xiphinema and five Xiphidorus nematode species from Brazil into distinct groups that concurred with their current morphological taxonomic status. Species belonging to the X. americanum group (X. brevicolle, X. diffusum, X. oxycaudatum, and X. peruvianum) formed a single group that was clearly separated from the other Xiphinema species. As with previous taxonomic studies that noted only minor morphological differences between putative X. americanum group species, separation of these species based upon 18S rDNA sequences was inconclusive. Thus it is probable that instead of comprising distinct species, the X. americanum group may in fact represent numerous morphotypes with large inter- and intra- population morphological variability that may be environmentally driven. Within the cluster representing non X. americanum group species, there was little statistical support to clearly separate species. However, three subgroups, comprising (i) the X. setariae/vulgare complex, (ii) X. ifacolum and X. paritaliae, and (iii) X. brasiliense and X. ensiculiferum were well resolved. PMID:19262801

  20. Optical and electrical stability of viral-templated copper sulfide (Cu{sub 1.8}S) films

    SciTech Connect

    Shahriar Zaman, Mohammed; Bernard Grajeda, Gabriel; Haberer, Elaine D.

    2014-04-14

    The optical and electrical stabilities of viral-templated non-stoichiometric copper sulfide, digenite (Cu{sub 1.8}S) films were investigated. The films were composed of large agglomerates of randomly aligned Cu{sub 1.8}S-coated M13 filamentous phage. Free carrier optical absorption associated with localized surface plasmon resonance (LSPR) was observed in the near infrared spectral region, and the films were electrically active, displaying a linear current-voltage relationship. Under ambient conditions, the magnitude of the LSPR absorption increased, following a power law relationship with time, and the electrical resistance of viral-templated films decreased significantly. In contrast, the resistance of films stored under low oxygen, low humidity conditions experienced a smaller reduction in electrical resistance. Changes in optical and electrical film properties under ambient conditions were associated with an increase in free carrier concentration within the copper chalcogenide material due to oxygen exposure. X-ray photoelectron spectroscopy was used to relate this increase in free carrier concentration to compositional changes on the viral-templated material surface.

  1. Early diagnosis of Exophiala CAPD peritonitis by 18S ribosomal RNA gene sequencing and its clinical significance.

    PubMed

    Lau, Susanna K P; Woo, Patrick C Y; Chiu, Siu-kau; Leung, Kit-wah; Yung, Raymond W H; Yuen, Kwok-yung

    2003-06-01

    Phenotypic identification of fungi in clinical microbiology laboratories is often difficult and late, especially for slow growing and rarely encountered fungi. We describe the application of 18S ribosomal RNA (rRNA) gene sequencing in the early diagnosis of a case of Exophiala peritonitis. A yeast-like fungus was isolated from the dialysate fluid of a 66-year-old man undergoing continuous ambulatory peritoneal dialysis. It grew slowly after 12 days of incubation to yield mature cultures to permit recognition of microscopic features resembling those of Exophiala, a dematiacerous mold. 18S rRNA gene sequencing provided results 12 days earlier than phenotypic identification and revealed 15 base difference (0.9%) between the isolate and Exophiala sp. strain GHP 1205 (GenBank Accession no. AJ232954), indicating that the isolate most closely resembles a strain of Exophiala species. The patient responded to 4 weeks of intravenous amphotericin B therapy. Early identification of the fungus was important for the choice of anti-fungal regimen. As opportunistic fungal infections in immunocompromised patients are globally emerging problems, the development of molecular techniques for fungal identification is crucial for early diagnosis and appropriate treatment.

  2. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae)

    PubMed Central

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Abstract Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country’s economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 ‘Azul’, Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies. PMID:24260700

  3. Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera.

    PubMed

    Gokhman, Vladimir E; Anokhin, Boris A; Kuznetsova, Valentina G

    2014-08-01

    Karyotypes of six species belonging to three main clades of parasitoid Hymenoptera, the superfamilies Ichneumonoidea (Ichneumonidae: Ichneumon amphibolus), Cynipoidea (Cynipidae: Diplolepis rosae) and Chalcidoidea (Eurytomidae: Eurytoma robusta, Eu. serratulae and Eu. compressa, and Torymidae: Torymus bedeguaris) were studied using FISH with 18S rDNA and telomeric (TTAGG)n probes. Haploid karyotypes of D. rosae, Eu. robusta and Eu. serratulae carried the only 18S rDNA hybridization signal, whereas those of I. amphibolus and Eu. compressa carried three and two rDNA clusters respectively. In addition, three rDNA sites were visualized in the aneuploid female of T. bedeguaris. The number of rDNA clusters in parasitoid Hymenoptera generally correlates to the chromosome number. Apart from the overwhelming majority of the studied species of aculeate Hymenoptera, no hybridization signals were obtained from FISH with the telomeric (TTAGG)n probe in the examined parasitoid species. These data suggest absence of the canonical (TTAGG)n insect telomeric motif in the Ichneumonoidea, Cynipoidea and Chalcidoidea, and perhaps in parasitoid Hymenoptera in general.

  4. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections.

    PubMed

    Yang, Rongchang; Palermo, Cindy; Chen, Linda; Edwards, Amanda; Paparini, Andrea; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una

    2015-12-15

    Cryptosporidium is an enteric parasite that infects humans and a wide range of animals. Relatively little is known about the epidemiology and taxonomy of Cryptosporidium in fish. In the present study, a total of 775 fish, belonging to 46 species and comprising ornamental fish, marine fish and freshwater fish were screened for the prevalence of Cryptosporidium by PCR. The overall prevalence of Cryptosporidium in fish was 5.3% (41/775), with prevalences ranging from 1.5 to 100% within individual host species. Phylogenetic analysis of these Cryptosporidium isolates as well as 14 isolates from previous studies indicated extensive genetic diversity as well as evidence for mixed infections. At the 18S locus the following species were identified; Cryptosporidium molnari-like genotype (n=14), Cryptosporidium huwi (n=8), piscine genotype 2 (n=4), piscine genotype 3-like (n=1), piscine genotype 4 (n=2), piscine genotype 5 (n=13), piscine genotype 5-like (n=1) and five novel genotypes (n=5). At the actin locus, species identification agreed with the 18S locus for only 52.3% of isolates sequenced, indicating high levels of mixed infections. Future studies will need to employ both morphological characterization and deep sequencing amplicon-based technologies to better understand the epidemiological and phylogenetic relationships of piscine-derived Cryptosporidium species and genotypes, particularly when mixed infections are detected.

  5. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth

    PubMed Central

    Bai, Dongmei; Zhang, Jinfang; Li, Tingting; Hang, Runlai; Liu, Yong; Tian, Yonglu; Huang, Dadu; Qu, Linglong; Cao, Xiaofeng; Ji, Jiafu; Zheng, Xiaofeng

    2016-01-01

    Dysfunctions in ribosome biogenesis cause developmental defects and increased cancer susceptibility; however, the connection between ribosome assembly and tumorigenesis remains unestablished. Here we show that hCINAP (also named AK6) is required for human 18S rRNA processing and 40S subunit assembly. Homozygous CINAP−/− mice show embryonic lethality. The heterozygotes are viable and show defects in 18S rRNA processing, whereas no delayed cell growth is observed. However, during rapid growth, CINAP haploinsufficiency impairs protein synthesis. Consistently, hCINAP depletion in fast-growing cancer cells inhibits ribosome assembly and abolishes tumorigenesis. These data demonstrate that hCINAP reduction is a specific rate-limiting controller during rapid growth. Notably, hCINAP is highly expressed in cancers and correlated with a worse prognosis. Genome-wide polysome profiling shows that hCINAP selectively modulates cancer-associated translatome to promote malignancy. Our results connect the role of hCINAP in ribosome assembly with tumorigenesis. Modulation of hCINAP expression may be a promising target for cancer therapy. PMID:27477389

  6. Invalidation of Hyperamoeba by transferring its species to other genera of Myxogastria.

    PubMed

    Fiore-Donno, Anna Maria; Kamono, Akiko; Chao, Ema E; Fukui, Manabu; Cavalier-Smith, Thomas

    2010-01-01

    The genus Hyperamoeba Alexeieff, 1923 was established to accommodate an aerobic amoeba exhibiting three life stages-amoeba, flagellate, and cyst. As more species/strains were isolated, it became increasingly evident from small subunit (SSU) gene phylogenies and ultrastructure that Hyperamoeba is polyphyletic and its species occupy different positions within the class Myxogastria. To pinpoint Hyperamoeba strains within other myxogastrid genera we aligned numerous myxogastrid sequences: whole small subunit ribosomal (SSU or 18S rRNA) gene for 50 dark-spored (i.e. Stemonitida and Physarida) Myxogastria (including a new "Hyperamoeba"/Didymium sequence) and a approximately 400-bp SSU fragment for 147 isolates assigned to 10 genera of the order Physarida. Phylogenetic analyses show unambiguously that the type species Hyperamoeba flagellata is a Physarum (Physarum flagellatum comb. nov.) as it nests among other Physarum species as robust sister to Physarum didermoides. Our trees also allow the following allocations: five Hyperamoeba strains to the genus Stemonitis; Hyperamoeba dachnaya, Pseudodidymium cryptomastigophorum, and three other Hyperamoeba strains to the genus Didymium; and two further Hyperamoeba strains to the family Physaridae. We therefore abandon the polyphyletic and redundant genus Hyperamoeba. We discuss the implications for the ecology and evolution of Myxogastria, whose amoeboflagellates are more widespread than previous inventories supposed, being now found in freshwater and even marine environments.

  7. Variations of SSU rDNA group I introns in different isolates of Cordyceps militaris and the loss of an intron during cross-mating.

    PubMed

    Lian, Tiantian; Yang, Tao; Sun, Junde; Guo, Suping; Yang, Huaijun; Dong, Caihong

    2014-08-01

    Cordyceps militaris, the type species of genus Cordyceps, is one of the most popular mushrooms and a nutraceutical in eastern Asia. It is considered a model organism for the study of Cordyceps species because it can complete its life cycle when cultured in vitro. In the present study, the occurrence and sequence variation of SSU rDNA group I introns, Cmi.S943 and Cmi.S1199, among different isolates of C. militaris were analyzed. Based on the secondary structure predictions, the Cmi.S943 intron has been placed in subgroup IC1, and the Cmi.S1199 intron has been placed in subgroup IE. No significant similarity between Cmi.S943 and Cmi.S1199 suggested different origins. Three genotypes, based on the frequency and distribution of introns, were described to discriminate the 57 surveyed C. militaris strains. It was found that the genotype was related to the stroma characteristics. The stromata of all of the genotype II strains, which possessed only Cmi.S943, could produce perithecium. In contrast, the stromata of all genotype III strains, which had both Cmi.S943 and Cmi.S1199, could not produce perithecium. Cmi.S1199 showed the lowest level of intra-specific variation among the tested strains. Group I introns can be lost during strain cross-mating. Therefore, we presumed that during cross-mating and recombination, intron loss could be driven by positive Darwinian selection due to the energetic cost of transcribing long introns.

  8. Further evidence for the variability of the 18S rDNA loci in the family Tingidae (Hemiptera, Heteroptera)

    PubMed Central

    Golub, Natalia V.; Golub, Viktor B.; Kuznetsova, Valentina G.

    2016-01-01

    Abstract As of now, within the lace bug family Tingidae (Cimicomorpha), only 1.5% of the species described have been cytogenetically studied. In this paper, male karyotypes of Stephanitis caucasica, Stephanitis pyri, Physatocheila confinis, Lasiacantha capucina, Dictyla rotundata and Dictyla echii were studied using FISH mapping with an 18S rDNA marker. The results show variability: the major rDNA sites are predominantly located on a pair of autosomes but occasionally on the X and Y chromosomes. All currently available data on the distribution of the major rDNA in the Tingidae karyotypes are summarized and shortly discussed. Our main concern is to clarify whether the chromosomal position of rDNA loci can contribute to resolving the phylogenetic relationships among the Tingidae taxa. PMID:28123675

  9. Granulomatous prostatitis due to Cryptococcus neoformans: diagnostic usefulness of special stains and molecular analysis of 18S rDNA.

    PubMed

    Wada, R; Nakano, N; Yajima, N; Yoneyama, T; Wakasaya, Y; Murakami, C; Yamato, K; Yagihashi, S

    2008-01-01

    A 57-year-old Japanese man complained of pain on micturition. The prostate was of normal size but hard. Transrectal needle biopsy demonstrated granulomatous prostatitis with small focal abscesses. Staining with periodic acid-Schiff, Grocott's methenamine silver and Fontana-Masson revealed yeast-form fungus in the granulomas. The mucoid capsule of the fungus stained with mucicarmine. PCR specific for cryptococcal 18S rDNA using DNA extracted from the pathological specimen was positive, and the sequence was homologous to Cryptococcus neoformans. A diagnosis of cryptococcal granulomatous prostatitis was made. The patient was then found to suffer from meningitis and lung abscess, and was treated with amphotericin B and flucytosine. Careful histological and molecular studies are beneficial to reach the correct diagnosis and to prevent an unfavorable outcome of disseminated cryptococcosis.

  10. Phylogenetic relationships of the Culicomorpha inferred from 18S and 5.8S ribosomal DNA sequences. (Diptera:Nematocera).

    PubMed

    Miller, B R; Crabtree, M B; Savage, H M

    1997-05-01

    We investigated the evolutionary origins of the mosquito family Culicidae by examination of 18S and 5.8S ribosomal gene sequence divergence. Phylogenetic analyses demonstrated that within the infraorder Culicomorpha, taxa in the families Corethrellidae, Chaoboridae and Culicidae formed a monophyletic group; there was support for a sister relationship between this lineage and a representative of the Chironomidae. A chaoborid midge was the closest relative of the mosquitoes. Taxa from four genera of mosquitoes formed a monophyletic group; lack of a spacer in the 5.8S gene was unique to members of the Culicidae. A member of the genus Anopheles formed the most basal lineage among the mosquitoes analysed. Phylogenetic relationships were unresolved for representatives in the families Dixidae, Simuliidae and Ceratopogonidae.

  11. Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

    PubMed Central

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  12. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data.

  13. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes.

  14. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences.

    PubMed

    Chaw, S M; Zharkikh, A; Sung, H M; Lau, T C; Li, W H

    1997-01-01

    To study the evolutionary relationships among the four living gymnosperm orders and the interfamilial relationships in each order, a set of 65 nuclear 18S rRNA sequences from ferns, gymnosperms, and angiosperms was analyzed using the neighbor-joining and maximum-parsimony methods. With Selaginella as the outgroup, the analysis strongly indicates that the seed plants form a monophyletic group with the ferns as a sister group. Within the seed plants the angiosperms are clearly a monophyletic group. Although the bootstrap support for the monophyly of the gymnosperm clade is moderate, the monophyly is further supported by its lack of angiosperm-specific indels. Within the gymnosperms there appear to be three monophyletic clades: Cycadales-Ginkgoales, Gnetales, and Coniferales. The cycad-ginkgo clade is the earliest gymnosperm lineage. Given the strong support for the sister group relationship between Gnetales and Coniferales, it is unlikely that Gnetales is a sister group of the angiosperms, contrary to the view of many plant taxonomists. Within Coniferales, Pinaceae is monophyletic and basal to the remaining conifer families, among which there are three monophyletic clades: Phyllocladaceae-Podocarpaceae, Araucariaceae, and Sciadopityaceae-Taxaceae-Cephalotaxaceae-Taxodiacea e-Cupressaceae. Within the latter clade, Sciadopityaceae may be an outgroup to the other four families. Among the angiosperms, no significant cluster at the level of subclass was found, but there was evidence that Nymphaeaceae branched off first. Within the remaining angiosperms, the monocots included in this study are nested and form a monophyletic group. This study attests to the utility of nuclear 18S rRNA sequences in addressing relationships among living gymnosperms. Considerable variation in substitution rates was observed among the ferns and seed plants.

  15. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis.

  16. Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis.

    PubMed

    Sha, Jian; Rosenzweig, Jason A; Kozlova, Elena V; Wang, Shaofei; Erova, Tatiana E; Kirtley, Michelle L; van Lier, Christina J; Chopra, Ashok K

    2013-06-01

    Aeromonas hydrophila, a Gram-negative bacterium, is an emerging human pathogen equipped with both a type 3 and a type 6 secretion system (T6SS). In this study, we evaluated the roles played by paralogous T6SS effector proteins, hemolysin co-regulated proteins (Hcp-1 and -2) and valine glycine repeat G (VgrG-1, -2 and -3) protein family members in A. hydrophila SSU pathogenesis by generating various combinations of deletion mutants of the their genes. In addition to their predicted roles as structural components and effector proteins of the T6SS, our data clearly demonstrated that paralogues of Hcp and VgrG also influenced bacterial motility, protease production and biofilm formation. Surprisingly, there was limited to no observed functional redundancy among and/or between the aforementioned T6SS effector paralogues in multiple assays. Our data indicated that Hcp and VgrG paralogues located within the T6SS cluster were more involved in forming T6SS structures, while the primary roles of Hcp-1 and VgrG-1, located outside of the T6SS cluster, were as T6SS effectors. In terms of influence on bacterial physiology, Hcp-1, but not Hcp-2, influenced bacterial motility and protease production, and in its absence, increases in both of the aforementioned activities were observed. Likewise, VgrG-1 played a major role in regulating bacterial protease production, while VgrG-2 and VgrG-3 were critical in regulating bacterial motility and biofilm formation. In an intraperitoneal murine model of infection, all Hcp and VgrG paralogues were required for optimal bacterial virulence and dissemination to mouse peripheral organs. Importantly, the observed phenotypic alterations of the T6SS mutants could be fully complemented. Taking these results together, we have further established the roles played by the two known T6SS effectors of A. hydrophila by defining their contributions to T6SS function and virulence in both in vitro and in vivo models of infection.

  17. Monitoring the mycobiota during Greco di Tufo and Aglianico wine fermentation by 18S rRNA gene sequencing.

    PubMed

    De Filippis, Francesca; La Storia, Antonietta; Blaiotta, Giuseppe

    2017-05-01

    Spontaneous alcoholic fermentation of grape must is a complex process, carried out by indigenous yeast populations arising from the vineyard or the winery environment and therefore representing an autochthonous microbial terroir of the production area. Microbial diversity at species and biotype level is extremely important in order to develop the composite and typical flavour profile of DOCG (Appellation of Controlled and Guaranteed Origin) wines. In this study, we monitored fungal populations involved in spontaneous fermentations of Aglianico and Greco di Tufo grape must by high-throughput sequencing (HTS) of 18S rRNA gene amplicons. We firstly proposed an alternative/addition to ITS as target gene in HTS studies and highlighted consistency between the culture-dependent and -independent approaches. A complex mycobiota was found at the beginning of the fermentation, mainly characterized by non-Saccharomyces yeasts and several moulds, with differences between the two types of grapes. Moreover, Interdelta patterns revealed a succession of several Saccharomyces cerevisiae biotypes and a high genetic diversity within this species.

  18. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    PubMed

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses.

  19. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA Sequences.

    PubMed

    Rivadavia, Fernando; Kondo, Katsuhiko; Kato, Masahiro; Hasebe, Mitsuyasu

    2003-01-01

    The sundew genus Drosera consists of carnivorous plants with active flypaper traps and includes nearly 150 species distributed mainly in Australia, Africa, and South America, with some Northern Hemisphere species. In addition to confused intrageneric classification of Drosera, the intergeneric relationships among the Drosera and two other genera in the Droseraceae with snap traps, Dionaea and Aldrovanda, are problematic. We conducted phylogenetic analyses of DNA sequences of the chloroplast rbcL gene for 59 species of Drosera, covering all sections except one. These analyses revealed that five of 11 sections, including three monotypic sections, are polyphyletic. Combined rbcL and 18S rDNA sequence data were used to infer phylogenetic relationships among Drosera, Dionaea, and Aldrovanda. This analysis revealed that all Drosera species form a clade sister to a clade including Dionaea and Aldrovanda, suggesting that the snap traps of Aldrovanda and Dionaea are homologous despite their morphological differences. MacClade reconstructions indicated that multiple episodes of aneuploidy occurred in a clade that includes mainly Australian species, while the chromosome numbers in the other clades are not as variable. Drosera regia, which is native to South Africa, and most species native to Australia, were clustered basally, suggesting that Drosera originated in Africa or Australia. The rbcL tree indicates that Australian species expanded their distribution to South America and then to Africa. Expansion of distribution to the Northern Hemisphere from the Southern Hemispere occurred in a few different lineages.

  20. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis

    PubMed Central

    Devente, Savannah R.; Kirk, Michelle R.; Seedorf, Henning; Dehority, Burk A.

    2015-01-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. PMID:25616800

  1. Characterization of the vaginal fungal flora in pregnant diabetic women by 18S rRNA sequencing.

    PubMed

    Zheng, N-N; Guo, X-C; Lv, W; Chen, X-X; Feng, G-F

    2013-08-01

    Pregnancy and diabetes are regarded as individual risk factors for vaginal candidiasis. The high prevalence of vaginal candidiasis in pregnant diabetic women can be explained by disruption of the balance of the vaginal normal flora. However, little is known about the overall structure and composition of the vaginal fungal flora in pregnant diabetic women. In the present study, the diversity and richness of the vaginal fungal flora in healthy non-pregnant women (group HN), healthy pregnant women (group HP), women with gestational diabetes mellitus (group GDM), and pregnant women with diabetes mellitus type I (group T1DM) were investigated using an 18S rRNA gene clone library method. Our data demonstrated that the composition of the vaginal fungal flora in the four groups could be divided into two phyla (Ascomycetes, 20/26, and Basidiomycetes, 6/26). The most predominant vaginal fungal species belonged to the Candida and Saccharomyces genera, uncultured fungi, and a large number of low-abundance taxa that were unrecorded or underrepresented in previous studies using cultivation-dependent methods. Variation in operational taxonomic units (OTUs) between the study cohorts was generally high in the clone libraries, as 9, 13, 17, and 20 phylotypes were identified in groups HN, HP, GDM, and T1DM, respectively. The Shannon indices of groups GDM and T1DM (with poorer glycemic control) were significantly higher compared to groups HN and HP (p < 0.05). The data presented here revealed an increased diversity and varied composition of the vaginal fungal flora in pregnant diabetic women and demonstrated that poor glycemic control might be associated with disturbances in the vaginal fungal flora.

  2. 17(R),18(S)-Epoxyeicosatetraenoic Acid, A Potent Eicosapentaenoic Acid (EPA)-Derived Regulator of Cardiomyocyte Contraction: Structure-Activity Relationships and Stable Analogs

    PubMed Central

    Falck, John R.; Wallukat, Gerd; Puli, Narender; Goli, Mohan; Arnold, Cosima; Konkel, Anne; Rothe, Michael; Fischer, Robert; Müller, Dominik N.; Schunck, Wolf-Hagen

    2011-01-01

    17(R),18(S)-Epoxyeicosatetraenoic acid [17(R),18(S)-EETeTr], a cytochrome P450 epoxygenase metabolite of eicosapentaenoic acid (EPA), exerts negative chronotropic effects and protects neonatal rat cardiomyocytes against Ca2+-overload with an EC50 ~1–2 nM. Structure-activity studies revealed a cis-Δ11,12- or Δ14,15-olefin and a 17(R),18(S)-epoxide are minimal structural elements for anti-arrhythmic activity whereas antagonist activity was often associated with the combination of a Δ14,15-olefin and a 17(S),18(R)-epoxide. Compared with natural material, the agonist and antagonist analogs are chemically and metabolically more robust and several show promise as templates for future development of clinical candidates. PMID:21591683

  3. Outside-in recrystallization of ZnS-Cu1.8 S hollow spheres with interdispersed lattices for enhanced visible light solar hydrogen generation.

    PubMed

    Zhu, Ting; Nuo Peh, Connor Kang; Hong, Minghui; Ho, Ghim Wei

    2014-09-01

    For the first time an earth-abundant and nontoxic ZnS-Cu(1.8) S hybrid photocatalyst has been engineered with well-defined nanosheet hollow structures by a template-engaged method. In contrast to conventional surface coupling and loading, the unique outside-in recrystallization promotes co-precipitation of ZnS and Cu(1.8) S into homogeneous interdispersed lattices, hence forming a hybrid semiconductor with visible responsive photocatalytic activity. The as-derived ZnS-Cu(1.8) S semiconductor alloy is tailored into a hierarchical hollow structure to provide readily accessible porous shells and interior spaces for effective ion transfer/exchange. Notably, this synergistic morphology, interface and crystal lattice engineering, aim towards the design of novel nanocatalysts for various sustainable environmental and energy applications.

  4. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion.

    PubMed

    Abouheif, E; Zardoya, R; Meyer, A

    1998-10-01

    We document the phylogenetic behavior of the 18S rRNA molecule in 67 taxa from 28 metazoan phyla and assess the effects of among-site rate variation on reconstructing phylogenies of the animal kingdom. This empirical assessment was undertaken to clarify further the limits of resolution of the 18S rRNA gene as a phylogenetic marker and to address the question of whether 18S rRNA phylogenies can be used as a source of evidence to infer the reality of a Cambrian explosion. A notable degree of among-site rate variation exists between different regions of the 18S rRNA molecule, as well as within all classes of secondary structure. There is a significant negative correlation between inferred number of nucleotide substitutions and phylogenetic information, as well as with the degree of substitutional saturation within the molecule. Base compositional differences both within and between taxa exist and, in certain lineages, may be associated with long branches and phylogenetic position. Importantly, excluding sites with different degrees of nucleotide substitution significantly influences the topology and degree of resolution of maximum-parsimony phylogenies as well as neighbor-joining phylogenies (corrected and uncorrected for among-site rate variation) reconstructed at the metazoan scale. Together, these data indicate that the 18S rRNA molecule is an unsuitable candidate for reconstructing the evolutionary history of all metazoan phyla, and that the polytomies, i.e., unresolved nodes within 18S rRNA phylogenies, cannot be used as a single or reliable source of evidence to support the hypothesis of a Cambrian explosion.

  5. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA.

    PubMed Central

    Kowalchuk, G A; Gerards, S; Woldendorp, J W

    1997-01-01

    Marram grass (Ammophila arenaria L.), a sand-stabilizing plant species in coastal dune areas, is affected by a specific pathosystem thought to include both plant-pathogenic fungi and nematodes. To study the fungal component of this pathosystem, we developed a method for the cultivation-independent detection and characterization of fungi infecting plant roots based on denaturing gradient gel electrophoresis (DGGE) of specifically amplified DNA fragments coding for 18S rRNA (rDNA). A nested PCR strategy was employed to amplify a 569-bp region of the 18S rRNA gene, with the addition of a 36-bp GC clamp, from fungal isolates, from roots of test plants infected in the laboratory, and from field samples of marram grass roots from both healthy and degenerating stands from coastal dunes in The Netherlands. PCR products from fungal isolates were subjected to DGGE to examine the variation seen both between different fungal taxa and within a single species. DGGE of the 18S rDNA fragments could resolve species differences from fungi used in this study yet was unable to discriminate between strains of a single species. The 18S rRNA genes from 20 isolates of fungal species previously recovered from A. arenaria roots were cloned and partially sequenced to aid in the interpretation of DGGE data. DGGE patterns recovered from laboratory plants showed that this technique could reliably identify known plant-infecting fungi. Amplification products from field A. arenaria roots also were analyzed by DGGE, and the major bands were excised, reamplified, sequenced, and subjected to phylogenetic analysis. Some recovered 18S rDNA sequences allowed for phylogenetic placement to the genus level, whereas other sequences were not closely related to known fungal 18S rDNA sequences. The molecular data presented here reveal fungal diversity not detected in previous culture-based surveys. PMID:9327549

  6. Physical mapping of 18S-25S rDNA and 5S rDNA in Lupinus via fluorescent in situ hybridization.

    PubMed

    Naganowska, Barbara; Zielińska, Anna

    2002-01-01

    Double-target fluorescent in situ hybridization (FISH) was used to determine the genomic distribution of ribosomal RNA genes in five Lupinus species: L. cosentinii (2n=32), L. pilosus (2n=42), L. angustifolius (2n=40), L. luteus (2n=52) and L. mutabilis (2n=48). 18S-25S rDNA and 5S rDNA were used as probes. Some interspecific variation was observed in the number and size of the 18S-25S rDNA loci. All the studied species had one chromosome pair carrying 5S rDNA.

  7. Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase.

    PubMed Central

    Tokuhisa, J G; Vijayan, P; Feldmann, K A; Browse, J A

    1998-01-01

    Poikilothermic organisms require mechanisms that allow survival at chilling temperatures (2 to 15 degreesC). We have isolated chilling-sensitive mutants of Arabidopsis, a plant that is very chilling resistant, and are characterizing them to understand the genes involved in chilling resistance. The T-DNA-tagged mutant paleface1 (pfc1) grows normally at 22 degrees C but at 5 degrees C exhibits a pattern of chilling-induced chlorosis consistent with a disruption of chloroplast development. Genomic DNA flanking the T-DNA was cloned and used to isolate wild-type genomic and cDNA clones. The PFC1 transcript is present at a low level in wild-type plants and was not detected in pfc1 plants. Wild-type Arabidopsis expressing antisense constructs of PFC1 grew normally at 22 degrees C but showed chilling-induced chlorosis, confirming that the gene is essential for low-temperature development of chloroplasts. The deduced amino acid sequence of PFC1 has identity with rRNA methylases found in bacteria and yeast that modify specific adenosines of pre-rRNA transcripts. The pfc1 mutant does not have these modifications in the small subunit rRNA of the plastid. PMID:9596631

  8. The nuclear poly(A) polymerase and Exosome cofactor Trf5 is recruited cotranscriptionally to nucleolar surveillance.

    PubMed

    Wery, Maxime; Ruidant, Sabine; Schillewaert, Stéphanie; Leporé, Nathalie; Lafontaine, Denis L J

    2009-03-01

    Terminal balls detected at the 5'-end of nascent ribosomal transcripts act as pre-rRNA processing complexes and are detected in all eukaryotes examined, resulting in illustrious Christmas tree images. Terminal balls (also known as SSU-processomes) compaction reflects the various stages of cotranscriptional ribosome assembly. Here, we have followed SSU-processome compaction in vivo by use of a chromatin immunoprecipitation (Ch-IP) approach and shown, in agreement with electron microscopy analysis of Christmas trees, that it progressively condenses to come in close proximity to the 5'-end of the 25S rRNA gene. The SSU-processome is comprised of independent autonomous building blocks that are loaded onto nascent pre-rRNAs and assemble into catalytically active pre-rRNA processing complexes in a stepwise and highly hierarchical process. Failure to assemble SSU-processome subcomplexes with proper kinetics triggers a nucleolar surveillance pathway that targets misassembled pre-rRNAs otherwise destined to mature into small subunit 18S rRNA for polyadenylation, preferentially by TRAMP5, and degradation by the 3' to 5' exoribonucleolytic activity of the Exosome. Trf5 colocalized with nascent pre-rRNPs, indicating that this nucleolar surveillance initiates cotranscriptionally.

  9. Direct chemical probing of the conformation of the 3' functional domain of rabbit 18S rRNA in 40S subunits, 80S ribosomes and polyribosomes

    SciTech Connect

    Rubino, H.M.; Rairkar, A.; Lockard, R.E.

    1987-05-01

    Recent evidence suggests that the 3' minor domain of eukaryotic 18S rRNA, as in prokaryotes, is directly involved in protein biosynthesis. To determine regions of possible functional importance, they have probed the higher order structure of rabbit 18S rRNA in both 40S subunits and 80S ribosomes, as well as polyribosomes using the single-strand specific chemical probes dimethyl sulfate (DMS) and diethyl pyrocarbonate (DEPC) which react with unpaired guanosine and adenosine residues, respectively. The modified 18S rRNA was isolated from these particles and the resultant modified nucleotides identified on polyacrylamide sequencing gels upon either aniline-induced strand scission of /sup 32/P-end-labeled intact rRNA or by DNA primer extension using sequence specific deoxyoligomers with reverse transcriptase. Their results indicate a decreased reactivity of residue C-1692 in rabbit 18S rRNA (corresponding to C-1400 E. coli) within the putative tRNA contact site in polyribosomes as compared with 40S subunits and 80S ribosomes. They have also determined varying reactivities of a number of other residues within specific regions of the 3' functional domain when 40S, 80S, and polyribosomes are compared, which may be important for both subunit association as well as mRNA binding.

  10. Quantitative analysis of dinoflagellates and diatoms community via Miseq sequencing of actin gene and v9 region of 18S rDNA

    PubMed Central

    Guo, Liliang; Sui, Zhenghong; Liu, Yuan

    2016-01-01

    Miseq sequencing and data analysis for the actin gene and v9 region of 18S rDNA of 7 simulated samples consisting of different mixture of dinoflagellates and diatoms were carried out. Not all the species were detectable in all the 18S v9 samples, and sequence percent in all the v9 samples were not consistent with the corresponding cell percent which may suggest that 18S rDNA copy number in different cells of these species differed greatly which result in the large deviation of the amplification. And 18S rDNA amplification of the microalgae was prone to be contaminated by fungus. The amplification of actin gene all was from the dinoflagellates because of its targeted degenerate primers. All the actin sequences of dinoflagellates were detected in the act samples except act4, and sequence percentage of the dinoflagellates in the act samples was not completely consistent with the dinoflagellates percentage of cell samples, but with certain amplification deviations. Indexes of alpha diversity of actin gene sequencing may be better reflection of community structure, and beta diversity analysis could cluster the dinoflagellates samples with identical or similar composition together and was distinguishable with blooming simulating samples at the generic level. Hence, actin gene was more proper than rDNA as the molecular marker for the community analysis of the dinoflagellates. PMID:27721499

  11. Phylogenetic analyses of four species of Ulva and Monostroma grevillei using ITS, rbc L and 18S rDNA sequence data

    NASA Astrophysics Data System (ADS)

    Lin, Zhongheng; Shen, Songdong; Chen, Weizhou; Li, Huihui

    2013-01-01

    Chlorophyta species are common in the southern and northern coastal areas of China. In recent years, frequent green tide incidents in Chinese coastal waters have raised concerns and attracted the attention of scientists. In this paper, we sequenced the 18S rDNA genes, the internal transcribed spacer (ITS) regions and the rbc L genes in seven organisms and obtained 536-566 bp long ITS sequences, 1 377-1 407 bp long rbc L sequences and 1 718-1 761 bp long partial 18S rDNA sequences. The GC base pair content was highest in the ITS regions and lowest in the rbc L genes. The sequencing results showed that the three Ulva prolifera (or U. pertusa) gene sequences from Qingdao and Nan'ao Island were identical. The ITS, 18S rDNA and rbc L genes in U. prolifera and U. pertusa from different sea areas in China were unchanged by geographic distance. U. flexuosa had the least evolutionary distance from U. californica in both the ITS regions (0.009) and the 18S rDNA (0.002). These data verified that Ulva and Enteromorpha are not separate genera.

  12. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya.

    PubMed

    Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan

    2016-09-01

    We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05).

  13. Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA.

    PubMed

    Preti, Milena; O'Donohue, Marie-Françoise; Montel-Lehry, Nathalie; Bortolin-Cavaillé, Marie-Line; Choesmel, Valérie; Gleizes, Pierre-Emmanuel

    2013-04-01

    Defects in ribosome biogenesis trigger stress response pathways, which perturb cell proliferation and differentiation in several genetic diseases. In Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia, mutations in ribosomal protein genes often interfere with the processing of the internal transcribed spacer 1 (ITS1), the mechanism of which remains elusive in human cells. Using loss-of-function experiments and extensive RNA analysis, we have defined the precise position of the endonucleolytic cleavage E in the ITS1, which generates the 18S-E intermediate, the last precursor to the 18S rRNA. Unexpectedly, this cleavage is followed by 3'-5' exonucleolytic trimming of the 18S-E precursor during nuclear export of the pre-40S particle, which sets a new mechanism for 18S rRNA formation clearly different from that established in yeast. In addition, cleavage at site E is also followed by 5'-3' exonucleolytic trimming of the ITS1 by exonuclease XRN2. Perturbation of this step on knockdown of the large subunit ribosomal protein RPL26, which was recently associated to DBA, reveals the putative role of a highly conserved cis-acting sequence in ITS1 processing. These data cast new light on the original mechanism of ITS1 elimination in human cells and provide a mechanistic framework to further study the interplay of DBA-linked ribosomal proteins in this process.

  14. Physical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae)

    PubMed Central

    Kharrat-Souissi, Amina; Siljak-Yakovlev, Sonja; Pustahija, Fatima; Chaieb, Mohamed

    2012-01-01

    Abstract The Buffelgrass (Cenchrus ciliaris L., Poaceae) is one of the most important pasturage grasses due to its high productivity and good forage qualities. This species possess a high adaptability to bioclimatic constraints of arid zones and may be used for the restoration of degraded arid ecosystems. Tunisian populations present three ploidy levels (4x, 5x and 6x) with a basic chromosome number x=9. This study reported for the first time the distribution of the ribosomal genes (rRNA) for pentaploid and hexaploid cytotypes of Cenchrus ciliaris. Molecular cytogenetic study using double fluorescence in situ hybridization has shown that the two rDNA families, 5S and 18S-5.8S-26S (18S), displayed intraspecific variation in number of loci among different ploidy levels. Each ploidy level was characterized by specific number of both 5S and 18S rDNA loci (two loci in tetraploid, five in pentaploid and six in hexaploid level). For three studied cytotypes (4x, 5x and 6x) all 5S rDNA loci were localized on the subcentromeric region of chromosomes, while 18S loci were situated on the telomeric region of short chromosome arms. Data of the FISH experiments show proportional increase of ribosomal loci number during polyploidization processes. PMID:24260668

  15. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata.

  16. Electrolyte level and blood pH in dogs infected by various 18S RNA strains of Babaesia canis canis on the early stage of babesiosis.

    PubMed

    Adaszek, Łukasz; Górna, Marta; Winiarczyk, Stanisław

    2012-01-01

    The purpose of the studies was to determine electrolyte disturbances and blood pH changes in dogs with babesiosis and possibly show a connection between the Babesia (B.) canis strain causing the infection and the intensity of these irregularities. 40 animals (group 1) with early babesiosis and 40 healthy dogs (group 2) were studied and their blood pH and blood levels of potassium, chlorides; calcium and sodium were determined. At the same time, molecular typing of parasites was carried out to detect which B.canis strain (18S RNA-A or 185 RNA-B) had caused the disease in dogs of group 1. In group 1, four dogs were acidaemic, twelve had normal blood pH, and 24 were alkalaemic. Potassium concentration was below normal in 16 out of 40 dogs (40%) and normal in 24 dogs. Hypochloremia was present in 36 out of 40 dogs; chloride was normal in the remaining four animals. Serum sodium concentration was low in 16 of 40 dogs, normal in 20 of 40 dogs and high in four dogs. Calcium concentration was normal in all 40 dogs. In dogs of group 2 no abnormalities of haematological or blood biochemical parameters were observed. 29 out of the 40 dogs of group 1 were infected with the 18S RNA-A strain and eleven with the 18S RNA-B strain of Babesia canis canis. We did not observe any correlation between the type of strain causing the infection and the electrolyte disturbances in the serum of sick dogs. Hypocalaemia was observed in ten specimen infected with 18S RNA-A and six infected with 18S RNA-B. Additionally, in dogs infected with 18S RNA-A, hypochloraemia (28), hyponatraemia (10), hypernatraemia (2) were observed, as well as blood pH drop (4) or increase (14). The 18S RNA-B-infected dogs suffered from hypochloraemia (8), hyponatraemia (6), hypernatraemia (2) and increase in blood pH (10).The studies conducted did not answer the question of whether the type of electrolyte disturbances in dogs with babesiosis can be connected with the strain of the parasite that induced the disease, as

  17. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella.

    PubMed

    Hejazi, Mohammad A; Barzegari, Abolfazl; Gharajeh, Nahid Hosseinzadeh; Hejazi, Mohammad S

    2010-04-08

    Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 mumol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days.

  18. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343

  19. Genetic characterization and phylogenetic relationships based on 18S rRNA and ITS1 region of small form of canine Babesia spp. from India.

    PubMed

    Mandal, M; Banerjee, P S; Garg, Rajat; Ram, Hira; Kundu, K; Kumar, Saroj; Kumar, G V P P S Ravi

    2014-10-01

    Canine babesiosis is a vector borne disease caused by intra-erythrocytic apicomplexan parasites Babesia canis (large form) and Babesia gibsoni (small form), throughout the globe. Apart from few sporadic reports on the occurrence of B. gibsoni infection in dogs, no attempt has been made to characterize Babesia spp. of dogs in India. Fifteen canine blood samples, positive for small form of Babesia, collected from northern to eastern parts of India, were used for amplification of 18S rRNA gene (∼1665bp) of Babesia sp. and partial ITS1 region (∼254bp) of B. gibsoni Asian genotype. Cloning and sequencing of the amplified products of each sample was performed separately. Based on sequences and phylogenetic analysis of 18S rRNA and ITS1 sequences, 13 were considered to be B. gibsoni. These thirteen isolates shared high sequence identity with each other and with B. gibsoni Asian genotype. The other two isolates could not be assigned to any particular species because of the difference(s) in 18S rRNA sequence with B. gibsoni and closer identity with Babesiaoccultans and Babesiaorientalis. In the phylogenetic tree, all the isolates of B. gibsoni Asian genotype formed a separate major clade named as Babesia spp. sensu stricto clade with high bootstrap support. The two unnamed Babesia sp. (Malbazar and Ludhiana isolates) clustered close together with B. orientalis, Babesia sp. (Kashi 1 isolate) and B. occultans of bovines. It can be inferred from this study that 18S rRNA gene and ITS1 region are highly conserved among 13 B. gibsoni isolates from India. It is the maiden attempt of genetic characterization by sequencing of 18S rRNA gene and ITS1 region of B. gibsoni from India and is also the first record on the occurrence of an unknown Babesia sp. of dogs from south and south-east Asia.

  20. Sequence variation identified in the 18S rRNA gene of Theileria mutans and Theileria velifera from the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Collins, Nicola E; Potgieter, Fred T; Oosthuizen, Marinda C

    2013-01-16

    The African buffalo (Syncerus caffer) is a natural reservoir host for both pathogenic and non-pathogenic Theileria species. These often occur naturally as mixed infections in buffalo. Although the benign and mildly pathogenic forms do not have any significant economic importance, their presence could complicate the interpretation of diagnostic test results aimed at the specific diagnosis of the pathogenic Theileria parva in cattle and buffalo in South Africa. The 18S rRNA gene has been used as the target in a quantitative real-time PCR (qPCR) assay for the detection of T. parva infections. However, the extent of sequence variation within this gene in the non-pathogenic Theileria spp. of the Africa buffalo is not well known. The aim of this study was, therefore, to characterise the full-length 18S rRNA genes of Theileria mutans, Theileria sp. (strain MSD) and T. velifera and to determine the possible influence of any sequence variation on the specific detection of T. parva using the 18S rRNA qPCR. The reverse line blot (RLB) hybridization assay was used to select samples which either tested positive for several different Theileria spp., or which hybridised only with the Babesia/Theileria genus-specific probe and not with any of the Babesia or Theileria species-specific probes. The full-length 18S rRNA genes from 14 samples, originating from 13 buffalo and one bovine from different localities in South Africa, were amplified, cloned and the resulting recombinants sequenced. Variations in the 18S rRNA gene sequences were identified in T. mutans, Theileria sp. (strain MSD) and T. velifera, with the greatest diversity observed amongst the T. mutans variants. This variation possibly explained why the RLB hybridization assay failed to detect T. mutans and T. velifera in some of the analysed samples.

  1. A CAPS test allowing a rapid distinction of Penicillium expansum among fungal species collected on grape berries, inferred from the sequence and secondary structure of the mitochondrial SSU-rRNA.

    PubMed

    Garcia, Carole; La Guerche, Stéphane; Mouhamadou, Bello; Férandon, Cyril; Labarère, Jacques; Blancard, Dominique; Darriet, Philippe; Barroso, Gérard

    2006-10-01

    Penicillium expansum is a fungal species highly damageable for the postharvest conservation of numerous fruits. In vineyards, this fungus is sometimes isolated from grape berries where its presence may lead to the production of geosmin, a powerful earthy odorant, which can impair grapes and wines aromas. However, the discrimination of P. expansum from related fungi is difficult because it is based on ambiguous phenotypic characters and/or expensive and time-consuming molecular tests. In this context, the complete sequences and secondary structures of Penicillium expansum and Penicillium thomii mitochondrial SSU-rRNAs were achieved and compared with those of two other phylogenetically related Ascomycota: Penicillium chrysogenum and Emericella nidulans. The comparison has shown a high conservation in size and sequence of the core and of the variable domains (more than 80% of nt identity) of the four SSU-rRNAs, arguing for a close phylogenetic relationship between these four species of the Trichocomaceae family. Large (from 10 to 18 nt) inserted/deleted (indel) sequences were evidenced in the V1, V5 and V6 variable domains. The size variations (10 to 18 nt) of the V1 indel sequence allowed the distinction of the four species; the V5 indel (15 nt) was specifically recovered in E. nidulans; the V6 indel (16 nt), shared by the three Penicillium species, was lacking in E. nidulans. A couple of conserved primers (UI/R2) were defined to generate a PCR product containing the V1 to V5 variable domains. This product contained the two regions of the four SSU-rRNAs showing the highest rates of nt substitutions, namely the V2 variable domain and, surprisingly, a helix (H17) of the core. The H17 sequence was shown to specifically possess in P. expansum a recognition site for the ClaI restriction endonuclease. Hence, this enzyme generates a digestion pattern of the PCR product with two bands (350 bp+500 bp), specific to P. expansum and easily separable by agarose gel

  2. Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water.

    PubMed

    Li, Na; Neumann, Norman F; Ruecker, Norma; Alderisio, Kerri A; Sturbaum, Gregory D; Villegas, Eric N; Chalmers, Rachel; Monis, Paul; Feng, Yaoyu; Xiao, Lihua

    2015-09-01

    The occurrence of Cryptosporidium oocysts in drinking source water can present a serious public health risk. To rapidly and effectively assess the source and human-infective potential of Cryptosporidium oocysts in water, sensitive detection and correct identification of oocysts to the species level (genotyping) are essential. In this study, we developed three real-time PCR genotyping assays, two targeting the small-subunit (SSU) rRNA gene (18S-LC1 and 18S-LC2 assays) and one targeting the 90-kDa heat shock protein (hsp90) gene (hsp90 assay), and evaluated the sensitivity and Cryptosporidium species detection range of these assays. Using fluorescence resonance energy transfer probes and melt curve analysis, the 18S-LC1 and hsp90 assays could differentiate common human-pathogenic species (C. parvum, C. hominis, and C. meleagridis), while the 18S-LC2 assay was able to differentiate nonpathogenic species (such as C. andersoni) from human-pathogenic ones commonly found in source water. In sensitivity evaluations, the 18S-LC2 and hsp90 genotyping assays could detect as few as 1 Cryptosporidium oocyst per sample. Thus, the 18S-LC2 and hsp90 genotyping assays might be used in environmental monitoring, whereas the 18S-LC1 genotyping assay could be useful for genotyping Cryptosporidium spp. in clinical specimens or wastewater samples.

  3. Targeting single-nucleotide polymorphisms in the 18S rRNA gene to differentiate Cyclospora species from Eimeria species by multiplex PCR.

    PubMed

    Orlandi, Palmer A; Carter, Laurenda; Brinker, Anna Marie; da Silva, Alexandre J; Chu, Dan-My; Lampel, Keith A; Monday, Steven R

    2003-08-01

    Cyclospora cayetanensis is a coccidian parasite that causes protracted diarrheal illness in humans. C. cayetanensis is the only species of this genus thus far associated with human illness, although Cyclospora species from other primates have been named. The current method to detect the parasite uses a nested PCR assay to amplify a 294-bp region of the small subunit rRNA gene, followed by restriction fragment length polymorphism (RFLP) or DNA sequence analysis. Since the amplicons generated from C. cayetanensis and Eimeria species are the same size, the latter step is required to distinguish between these different species. The current PCR-RFLP protocol, however, cannot distinguish between C. cayetanensis and these new isolates. The differential identification of such pathogenic and nonpathogenic parasites is essential in assessing the risks to human health from microorganisms that may be potential contaminants in food and water sources. Therefore, to expand the utility of PCR to detect and identify these parasites in a multiplex assay, a series of genus- and species-specific forward primers were designed that are able to distinguish sites of limited sequence heterogeneity in the target gene. The most effective of these unique primers were those that identified single-nucleotide polymorphisms (SNPs) at the 3' end of the primer. Under more stringent annealing and elongation conditions, these SNP primers were able to differentiate between C. cayetanensis, nonhuman primate species of Cyclospora, and Eimeria species. As a diagnostic tool, the SNP PCR protocol described here presents a more rapid and sensitive alternative to the currently available PCR-RFLP detection method. In addition, the specificity of these diagnostic primers removes the uncertainty that can be associated with analyses of foods or environmental sources suspected of harboring potential human parasitic pathogens.

  4. Multiple origins of the ascidian-Prochloron symbiosis: molecular phylogeny of photosymbiotic and non-symbiotic colonial ascidians inferred from 18S rDNA sequences.

    PubMed

    Yokobori, Shin-Ichi; Kurabayashi, Atsushi; Neilan, Brett A; Maruyama, Tadashi; Hirose, Euichi

    2006-07-01

    In the tropics, certain didemnid ascidians harbor the prokaryotic photosymbiont Prochloron. To date, this photosymbiosis has been found in four didemnid genera that include non-symbiotic species. Here, we report the molecular phylogeny of symbiotic and non-symbiotic didemnids based on their 18S rDNA sequences. The data cover all four genera containing symbiotic species and one other genus comprised of only non-symbiotic species. Near-complete nucleotide sequences of 18S rDNAs were determined for four non-didemnid species and 52 didemnid samples (five genera), including 48 photosymbiotic samples collected from the Ryukyu Archipelago, the Great Barrier Reef, Hawaii, and Bali. Our phylogenetic trees indicated a monophyletic origin of the family Didemnidae, as well as each of the didemnid genera. The results strongly support the hypothesis that establishment of the ascidian-Prochloron symbiosis occurred independently in the Didemnidae lineage at least once in each of the genera that possess symbiotic species.

  5. 18S rRNA Gene Variation among Common Airborne Fungi, and Development of Specific Oligonucleotide Probes for the Detection of Fungal Isolates

    PubMed Central

    Wu, Zhihong; Tsumura, Yoshihiko; Blomquist, Göran; Wang, Xiao-Ru

    2003-01-01

    In this study, we sequenced 18S rRNA genes (rDNA) from 49 fungal strains representing 31 species from 15 genera. Most of these species are common airborne fungi and pathogens that may cause various public health concerns. Sequence analysis revealed distinct divergence between Zygomycota and Ascomycota. Within Ascomycota, several strongly supported clades were identified that facilitate the taxonomic placement of several little-studied fungi. Wallemia appeared as the group most diverged from all the other Ascomycota species. Based on the 18S rDNA sequence variation, 108 oligonucleotide probes were designed for each genus and species included in this study. After homology searches and DNA hybridization evaluations, 33 probes were verified as genus or species specific. The optimal hybridization temperatures to achieve the best specificity for these 33 probes were determined. These new probes can contribute to the molecular diagnostic research for environmental monitoring. PMID:12957927

  6. Localization of 18S ribosomal genes in suckermouth armoured catfishes Loricariidae (Teleostei, Siluriformes) with discussion on the Ag-NOR evolution

    PubMed Central

    Alves, Anderson Luis; de Borba, Rafael Splendore; Pozzobon, Allan Pierre Bonetti; Oliveira, Claudio; Nirchio, Mauro; Granado, Angel; Foresti, Fausto

    2012-01-01

    Abstract The family Loricariidae with about 690 species divided into six subfamilies, is one of the world’s largest fish families. Cytogenetic studies conducted in the family showed that among 90 species analyzed the diploid number ranges from 2n=38 in Ancistrus sp. to 2n=96 in Hemipsilichthys gobio Luetken, 1874. In the present study, fluorescence in situ hybridization (FISH) was employed to determine the chromosomal localization of the 18S rDNA gene in four suckermouth armoured catfishes: Kronichthys lacerta (Nichols, 1919), Pareiorhaphis splendens (Bizerril, 1995), Liposarcus multiradiatus (Hancock, 1828) and Hypostomus prope plecostomus (Linnaeus, 1758). All species analyzed showed one chromosome pair with 18S rDNA sequences, as observed in the previous Ag-NORs analyses. The presence of size and numerical polymorphism was observed and discussed, with proposing a hypothesis of the Ag-NOR evolution in Loricariidae. PMID:24260671

  7. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  8. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity

    PubMed Central

    2010-01-01

    Background The 18S rRNA gene is one of the most important molecular markers, used in diverse applications such as molecular phylogenetic analyses and biodiversity screening. The Mollusca is the second largest phylum within the animal kingdom and mollusks show an outstanding high diversity in body plans and ecological adaptations. Although an enormous amount of 18S data is available for higher mollusks, data on some early branching lineages are still limited. Despite of some partial success in obtaining these data from Solenogastres, by some regarded to be the most "basal" mollusks, this taxon still remained problematic due to contamination with food organisms and general amplification difficulties. Results We report here the first authentic 18S genes of three Solenogastres species (Mollusca), each possessing a unique sequence composition with regions conspicuously rich in guanine and cytosine. For these GC-rich regions we calculated strong secondary structures. The observed high intra-molecular forces hamper standard amplification and appear to increase formation of chimerical sequences caused by contaminating foreign DNAs from potential prey organisms. In our analyses, contamination was avoided by using RNA as a template. Indication for contamination of previously published Solenogastres sequences is presented. Detailed phylogenetic analyses were conducted using RNA specific models that account for compensatory substitutions in stem regions. Conclusions The extreme morphological diversity of mollusks is mirrored in the molecular 18S data and shows elevated substitution rates mainly in three higher taxa: true limpets (Patellogastropoda), Cephalopoda and Solenogastres. Our phylogenetic tree based on 123 species, including representatives of all mollusk classes, shows limited resolution at the class level but illustrates the pitfalls of artificial groupings formed due to shared biased sequence composition. PMID:20214780

  9. Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGG) n repeat in eight species of true bugs (Hemiptera, Heteroptera)

    PubMed Central

    Grozeva, S.; Kuznetsova, V.G.; Anokhin, B.A.

    2011-01-01

    Abstract Eight species belonging to five true bug families were analyzed using DAPI/CMA3-staining and fluorescence in situ hybridization (FISH) with telomeric (TTAGG)n and 18S rDNA probes. Standard chromosomal complements are reported for the first time for Deraeocoris rutilus (Herrich-Schäffer, 1838) (2n=30+2m+XY) and Deraeocoris ruber(Linnaeus, 1758) (2n=30+2m+XY) from the family Miridae. Using FISH, the location of a 18S rDNA cluster was detected in these species and in five more species: Megaloceroea recticornis (Geoffroy, 1785) (2n=30+XY) from the Miridae; Oxycarenus lavaterae (Fabricius, 1787) (2n=14+2m+XY) from the Lygaeidae s.l.; Pyrrhocoris apterus (Linnaeus, 1758) (2n=22+X) from the Pyrrhocoridae; Eurydema oleracea (Linnaeus, 1758) (2n=12+XY) and Graphosoma lineatum (Linnaeus, 1758) (2n=12+XY) from the Pentatomidae. The species were found to differ with respect to location of a 18S rRNA gene cluster which resides on autosomes in Oxycarenus lavaterae and Pyrrhocoris apterus, whereas it locates on sex chromosomes in other five species. The 18S rDNA location provides the first physical landmark of the genomes of the species studied. The insect consensus telomeric pentanucleotide (TTAGG)n was demonstrated to be absent in all the species studied in this respect, Deraeocoris rutilus, Megaloceroea recticornis, Cimex lectularius Linnaeus, 1758 (Cimicidae), Eurydema oleracea, and Graphosoma lineatum, supporting the hypothesis that this motif was lost in early evolution of the Heteroptera and secondarily replaced with another motif (yet unknown) or the alternative telomerase-independent mechanisms of telomere maintenance. Dot-blot hybridization analysis of the genomic DNA from Cimex lectularius, Nabis sp. and Oxycarenus lavaterae with (TTAGG)n and six other telomeric probes likewise provided a negative result. PMID:24260641

  10. Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization.

    PubMed

    Liu, Z-L; Zhang, D; Hong, D-Y; Wang, X-R

    2003-01-01

    Fluorescence in situ hybridization (FISH) was employed on mitotic metaphase chromosome preparations of five Asian Pinus species: Pinus tabuliformis, Pinus yunnanensis, Pinus densata, Pinus massoniana and Pinus merkusii, using simultaneously DNA probes of the 18S rRNA gene and the 5S rRNA gene including the non-transcribed spacer sequences. The number and location of 18S rDNA sites varied markedly (5-10 pairs of strong signals) among the five pines. A maximum of 20 major 18S rDNA sites was observed in the diploid genome (2n = 24) of P. massoniana. The 5S rDNA FISH pattern was less variable, with one major site and one minor site commonly observed in each species. The differentiation of rDNA sites on chromosomes among the five pines correlates well with their phylogenic positions in Pinus as reconstructed from other molecular data. P. densata, a species of hybrid origin, resembles its parents ( P. tabuliformis and P. yunnanensis), including some components characteristic of each parent in its pattern. However, the species is unique, showing new features resulting possibly from recombination and genome reorganization.

  11. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences.

    PubMed

    Sun, Sang-Mi; Yang, Seung Hwan; Golokhvast, Kirill S; Le, Bao; Chung, Gyuhwa

    2016-01-01

    Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia.

  12. Molecular characterization of Argulus bengalensis and Argulus siamensis (Crustacea: Argulidae) infecting the cultured carps in West Bengal, India using 18S rRNA gene sequences

    PubMed Central

    Patra, Avijit; Mondal, Anjan; Banerjee, Sayani; Adikesavalu, Harresh; Joardar, Siddhartha Narayan; Abraham, Thangapalam Jawahar

    2016-01-01

    The present study characterized Argulus spp. infecting the cultured carps using 18S rRNA gene sequences, estimated the genetic similarity among Argulus spp. and established their phylogenetic relationship. Of the 320 fish samples screened, 34 fish (10.6%) had Argulus infection. The parasitic frequency index (PFI) was observed to be high (20%) in Hypophthalmichthys molitrix and Labeo bata. The frequency of infection was high in September (PFI: 17%) and October (PFI: 12.9%). The 18S rRNA sequences of five A. bengalensis (KF583878, KF192316, KM016968, KM016969, and KM016970) and one A. siamensis (KF583879) of this study showed genetic heterogeneity and exhibited 77-99% homology among the 18S rRNA gene sequences of Argulus spp. of NCBI GenBank database. Among the Indian Argulus spp. the sequence homology was 87–100%. Evolutionary pair-wise distances between Indian Argulus spp. and other Argulus spp. ranged from 0 to 20.20%. In the phylogenetic tree, all the crustaceans were clustered together as a separate clade with two distinct lineages. The lineage-1 comprised exclusive of Branchiura (Argulus spp.). All Argulus bengalensis clustered together and A. siamensis (KF583879) was closely related to Argulus sp. JN558648. The results of the present study provided baseline data for future work on population structure analysis of Indian Argulus species. PMID:28097169

  13. Co-located 18S/5S rDNA arrays: an ancient and unusual chromosomal trait in Julidini species (Labridae, Perciformes)

    PubMed Central

    Amorim, Karlla Danielle Jorge; Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Soares, Rodrigo Xavier; de Souza, Allyson Santos; da Costa, Gideão Wagner Werneck Felix; Molina, Wagner Franco

    2016-01-01

    Abstract Wrasses (Labridae) are extremely diversified marine fishes, whose species exhibit complex interactions with the reef environment. They are widely distributed in the Indian, Pacific and Atlantic oceans. Their species have displayed a number of karyotypic divergent processes, including chromosomal regions with complex structural organization. Current cytogenetic information for this family is phylogenetically and geographically limited and mainly based on conventional cytogenetic techniques. Here, the distribution patterns of heterochromatin, GC-specific chromosome regions and Ag-NORs, and the organization of 18S and 5S rDNA sites of the Atlantic species Thalassoma noronhanum (Boulenger, 1890), Halichoeres poeyi (Steindachner, 1867), Halichoeres radiatus (Linnaeus, 1758), Halichoeres brasiliensis (Bloch, 1791) and Halichoeres penrosei Starks, 1913, belonging to the tribe Julidini were analyzed. All the species exhibited 2n=48 chromosomes with variation in the number of chromosome arms among genera. Thalassoma noronhanum has 2m+46a, while species of the genus Halichoeres Rüppell, 1835 share karyotypes with 48 acrocentric chromosomes. The Halichoeres species exhibit differences in the heterochromatin distribution patterns and in the number and distribution of 18S and 5S rDNA sites. The occurrence of 18S/5S rDNA syntenic arrangements in all the species indicates a functionally stable and adaptive genomic organization. The phylogenetic sharing of this rDNA organization highlights a marked and unusual chromosomal singularity inside the family Labridae. PMID:28123678

  14. Analysis of Fungal Diversity in the Wheat Rhizosphere by Sequencing of Cloned PCR-Amplified Genes Encoding 18S rRNA and Temperature Gradient Gel Electrophoresis

    PubMed Central

    Smit, Eric; Leeflang, Paula; Glandorf, Boet; Dirk van Elsas, Jan; Wernars, Karel

    1999-01-01

    Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic

  15. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins.

    PubMed

    Primavesi, Lucia F; Wu, Huixia; Mudd, Elisabeth A; Day, Anil; Jones, Huw D

    2008-08-01

    The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications.

  16. Development of a cob-18S rRNA gene real-time PCR assay for quantifying Pfiesteria shumwayae in the natural environment.

    PubMed

    Zhang, Huan; Lin, Senjie

    2005-11-01

    Despite the fact that the heterotrophic dinoflagellate Pfiesteria shumwayae is an organism of high interest due to alleged toxicity, its abundance in natural environments is poorly understood. To address this inadequacy, a real-time quantitative PCR assay based on mitochondrial cytochrome b (cob) and 18S rRNA gene was developed and P. shumwayae abundance was investigated in several geographic locations. First, cob and its 5'-end region were isolated from a P. shumwayae culture, revealing three different copies, each consisting of an identical cob coding region and an unidentified region (X) of variable length and sequence. The unique sequences in cob and the X region were then used to develop a P. shumwayae-specific primer set. This primer set was used with reported P. shumwayae-specific 18S primers in parallel real-time PCRs to investigate P. shumwayae abundance from Maine to North Carolina along the U.S. east coast and along coasts in Chile, Hawaii, and China. Both genes generally gave similar results, indicating that this species was present, but at low abundance (mostly <10 cells x ml(-1)), in all the American coast locations investigated (with the exception of Long Island Sound, where which both genes gave negative results). Genetic variation was detected by use of both genes in most of the locations, and while cob consistently detected P. shumwayae or close genetic variants, some of the 18S PCR products were unrelated to P. shumwayae. We conclude that (i) the real-time PCR assay developed is useful for specific quantification of P. shumwayae, and (ii) P. shumwayae is distributed widely at the American coasts, but normally only as a minor component of plankton even in high-risk estuaries (Neuse River and the Chesapeake Bay).

  17. Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes.

    PubMed

    Kazi, Mudassar Anisoddin; Reddy, C R K; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters.

  18. Molecular Phylogeny and Barcoding of Caulerpa (Bryopsidales) Based on the tufA, rbcL, 18S rDNA and ITS rDNA Genes

    PubMed Central

    Kazi, Mudassar Anisoddin; Reddy, C. R. K.; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  19. Use of Subgenic 18S Ribosomal DNA PCR and Sequencing for Genus and Genotype Identification of Acanthamoebae from Humans with Keratitis and from Sewage Sludge

    PubMed Central

    Schroeder, Jill M.; Booton, Gregory C.; Hay, John; Niszl, Ingrid A.; Seal, David V.; Markus, Miles B.; Fuerst, Paul A.; Byers, Thomas J.

    2001-01-01

    This study identified subgenic PCR amplimers from 18S rDNA that were (i) highly specific for the genus Acanthamoeba, (ii) obtainable from all known genotypes, and (iii) useful for identification of individual genotypes. A 423- to 551-bp Acanthamoeba-specific amplimer ASA.S1 obtained with primers JDP1 and JDP2 was the most reliable for purposes i and ii. A variable region within this amplimer also identified genotype clusters, but purpose iii was best achieved with sequencing of the genotype-specific amplimer GTSA.B1. Because this amplimer could be obtained from any eukaryote, axenic Acanthamoeba cultures were required for its study. GTSA.B1, produced with primers CRN5 and 1137, extended between reference bp 1 and 1475. Genotypic identification relied on three segments: bp 178 to 355, 705 to 926, and 1175 to 1379. ASA.S1 was obtained from single amoeba, from cultures of all known 18S rDNA genotypes, and from corneal scrapings of Scottish patients with suspected Acanthamoeba keratitis (AK). The AK PCR findings were consistent with culture results for 11 of 15 culture-positive specimens and detected Acanthamoeba in one of nine culture-negative specimens. ASA.S1 sequences were examined for 6 of the 11 culture-positive isolates and were most closely associated with genotypic cluster T3-T4-T11. A similar distance analysis using GTSA.B1 sequences identified nine South African AK-associated isolates as genotype T4 and three isolates from sewage sludge as genotype T5. Our results demonstrate the usefulness of 18S ribosomal DNA PCR amplimers ASA.S1 and GTSA.B1 for Acanthamoeba-specific detection and reliable genotyping, respectively, and provide further evidence that T4 is the predominant genotype in AK. PMID:11326011

  20. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of acanthamoebae from humans with keratitis and from sewage sludge.

    PubMed

    Schroeder, J M; Booton, G C; Hay, J; Niszl, I A; Seal, D V; Markus, M B; Fuerst, P A; Byers, T J

    2001-05-01

    This study identified subgenic PCR amplimers from 18S rDNA that were (i) highly specific for the genus Acanthamoeba, (ii) obtainable from all known genotypes, and (iii) useful for identification of individual genotypes. A 423- to 551-bp Acanthamoeba-specific amplimer ASA.S1 obtained with primers JDP1 and JDP2 was the most reliable for purposes i and ii. A variable region within this amplimer also identified genotype clusters, but purpose iii was best achieved with sequencing of the genotype-specific amplimer GTSA.B1. Because this amplimer could be obtained from any eukaryote, axenic Acanthamoeba cultures were required for its study. GTSA.B1, produced with primers CRN5 and 1137, extended between reference bp 1 and 1475. Genotypic identification relied on three segments: bp 178 to 355, 705 to 926, and 1175 to 1379. ASA.S1 was obtained from single amoeba, from cultures of all known 18S rDNA genotypes, and from corneal scrapings of Scottish patients with suspected Acanthamoeba keratitis (AK). The AK PCR findings were consistent with culture results for 11 of 15 culture-positive specimens and detected Acanthamoeba in one of nine culture-negative specimens. ASA.S1 sequences were examined for 6 of the 11 culture-positive isolates and were most closely associated with genotypic cluster T3-T4-T11. A similar distance analysis using GTSA.B1 sequences identified nine South African AK-associated isolates as genotype T4 and three isolates from sewage sludge as genotype T5. Our results demonstrate the usefulness of 18S ribosomal DNA PCR amplimers ASA.S1 and GTSA.B1 for Acanthamoeba-specific detection and reliable genotyping, respectively, and provide further evidence that T4 is the predominant genotype in AK.

  1. Development of a cob-18S rRNA Gene Real-Time PCR Assay for Quantifying Pfiesteria shumwayae in the Natural Environment†

    PubMed Central

    Zhang, Huan; Lin, Senjie

    2005-01-01

    Despite the fact that the heterotrophic dinoflagellate Pfiesteria shumwayae is an organism of high interest due to alleged toxicity, its abundance in natural environments is poorly understood. To address this inadequacy, a real-time quantitative PCR assay based on mitochondrial cytochrome b (cob) and18S rRNA gene was developed and P. shumwayae abundance was investigated in several geographic locations. First, cob and its 5′-end region were isolated from a P. shumwayae culture, revealing three different copies, each consisting of an identical cob coding region and an unidentified region (X) of variable length and sequence. The unique sequences in cob and the X region were then used to develop a P. shumwayae-specific primer set. This primer set was used with reported P. shumwayae-specific 18S primers in parallel real-time PCRs to investigate P. shumwayae abundance from Maine to North Carolina along the U.S. east coast and along coasts in Chile, Hawaii, and China. Both genes generally gave similar results, indicating that this species was present, but at low abundance (mostly <10 cells · ml−1), in all the American coast locations investigated (with the exception of Long Island Sound, where which both genes gave negative results). Genetic variation was detected by use of both genes in most of the locations, and while cob consistently detected P. shumwayae or close genetic variants, some of the 18S PCR products were unrelated to P. shumwayae. We conclude that (i) the real-time PCR assay developed is useful for specific quantification of P. shumwayae, and (ii) P. shumwayae is distributed widely at the American coasts, but normally only as a minor component of plankton even in high-risk estuaries (Neuse River and the Chesapeake Bay). PMID:16269741

  2. Determination of phylogenetic relationships among Eimeria species, which parasitize cattle, on the basis of nuclear 18S rDNA sequence.

    PubMed

    Kokuzawa, Takuya; Ichikawa-Seki, Madoka; Itagaki, Tadashi

    2013-11-01

    We analyzed almost complete 18S rDNA sequences of 10 bovine Eimeria species, namely Eimeria alabamensis, E. auburnensis, E. bovis, E. bukidnonensis, E. canadensis, E. cylindrica, E. ellipsoidalis, E. subspherica, E. wyomingensis and E. zuernii. Although these sequences showed intraspecific variation in 8 species, the sequences of each species were clustered in monophyletic groups in all species, except E. auburnensis. The sequences constituted 3 distinct clusters in a phylogenetic tree with relatively high bootstrap values; however, the members including each cluster shared no similarities in oocyst morphology.

  3. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci.

    PubMed

    Paparini, Andrea; Gofton, Alexander; Yang, Rongchang; White, Nicole; Bunce, Michael; Ryan, Una M

    2015-01-01

    Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are

  4. [Mg2+ ions affect the structure of the central domain of the 18S rRNA in the vicinity of the ribosomal protein S13 binding site].

    PubMed

    Ivanov, A V; Malygin, A A; Karpova, G G

    2013-01-01

    It is known that Mg2+ ions at high concentrations stabilize the structure of the 16S rRNA in a conformation favorable for binding to the ribosomal proteins in the course of the eubacterial 30S ribosomal subunits assembly in vitro. Effect of Mg2+ on the formation of the 18S rRNA structure at the 40S subunit assembly remains poorly explored. In this paper, we show that the sequentional increase of the Mg2+ concentration from 0.5 mM to 20 mM leads to a significant decrease of the affinity of recombinant human ribosomal protein S13 (rpS13e) to a RNA transcript corresponding to the central domain fragment of the 18S rRNA (18SCD). The regions near the rpS13e binding site in 18SCD (including the nucleotides of helices H20 and H22), whose availabilities to hydroxyl radicals were dependent on the Mg2+ concentration, were determined. It was found that increase of the concentrations of Mg2+ results in the enhanced accessibilities of nucleotides G933-C937 and C1006-A1009 in helix H22 and reduces those of nucleotides A1023, A1024, and A1028-S1026 in the helix H20. Comparison of the results obtained with the crystallographic data on the structure of the central domain of 18S rRNA in the 40S ribosomal subunit led to conclusion that increase of Mg2+ concentrations results in the reorientation of helices H20 and H24 relatively helices H22 and H23 to form a structure, in which these helices are positioned the same way as in 40S subunits. Hence, saturation of the central domain of 18S rRNA with coordinated Mg2+ ions causes the same changes in its structure as rpS13e binding does, and leads to decreasing of this domain affinity to the protein.

  5. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation.

    PubMed Central

    Gulli, M P; Girard, J P; Zabetakis, D; Lapeyre, B; Melese, T; Caizergues-Ferrer, M

    1995-01-01

    Several nucleolar proteins, such as nucleolin, NOP1/fibrillarin, SSB1, NSR1 and GAR1 share a common glycine and arginine rich structural motif called the GAR domain. To identify novel nucleolar proteins from fission yeast we screened Schizosaccharomyces pombe genomic DNA libraries with a probe encompassing the GAR structural motif. Here we report the identification and characterization of a S.pombe gene coding for a novel nucleolar protein, designated gar2. The structure of the fission yeast gar2 is reminiscent of that of nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. In addition, like these proteins, gar2 has a nucleolar localisation. The disruption of the gar2+ gene affects normal cell growth, leads to an accumulation of 35S pre-rRNA and a decrease of mature 18S rRNA steady state levels. Moreover, ribosomal profiles of the mutant show an increase of free 60S ribosomal subunits and an absence of free 40S ribosomal subunits. gar2 is able to rescue a S.cerevisiae mutant lacking NSR1, thus establishing gar2 as a functional homolog of NSR1. We propose that gar2 helps the assembly of pre-ribosomal particles containing 18S rRNA. Images PMID:7596817

  6. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Luo, Zhu-Hua; Guo, Shuangshuang; Pang, Ka-Lai

    2016-03-01

    We investigated the diversity of fungal communities in 6 different deep-sea sediment samples of the Pacific Ocean based on three different types of clone libraries, including internal transcribed spacer (ITS), 18S rDNA, and 28S rDNA regions. A total of 1978 clones were generated from 18 environmental clone libraries, resulting in 140 fungal operational taxonomic units (OTUs), including 18 OTUs from ITS, 44 OTUs from 18S rDNA, and 78 OTUs from 28S rDNA gene primer sets. The majority of the recovered sequences belonged to diverse phylotypes of the Ascomycota and Basidiomycota. Additionally, our study revealed a total of 46 novel fungal phylotypes, which showed low similarities (<97%) with available fungal sequences in the GenBank, including a novel Zygomycete lineage, suggesting possible new fungal taxa occurring in the deep-sea sediments. The results suggested that 28S rDNA is an efficient target gene to describe fungal community in deep-sea environment.

  7. Molecular phylogenetic analysis of the coccidian cephalopod parasites Aggregata octopiana and Aggregata eberthi (Apicomplexa: Aggregatidae) from the NE Atlantic coast using 18S rRNA sequences.

    PubMed

    Castellanos-Martínez, Sheila; Pérez-Losada, Marcos; Gestal, Camino

    2013-08-01

    The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are identified in European waters. Extensive investigation of their morphology resulted in a redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus clarifying confusing descriptions recorded in the past. The present study sequenced the 18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo (NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed between A. octopiana samples from the same two areas, which suggest the existence of two species. Based on previous morphological evidence, host specificity data, and new molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the valid type species.

  8. 18S rDNA analysis of alkenone-producing haptophyte(s) preserved in surface sediments of Lake Toyoni, Japan

    NASA Astrophysics Data System (ADS)

    McColl, J. L.; Couto, J.; Bendle, J. A.; Henderson, A. C.; Seki, O.; Phoenix, V. R.; Toney, J. L.

    2013-12-01

    Alkenones (long chain ketones) are readily preserved in sedimentary archives and have the potential to provide quantitative reconstructions of past water temperature. Alkenones are produced by a limited number of haptophyte algae in the marine and also some lacustrine systems. However, lakes are heterogeneous: an individual lake will have a unique combination of ecological conditions, haptophyte species and seasonal alkenone production that contributes to the sedimentary record. Haptophyte algae species have different sensitivities to temperature; therefore identifying the alkenone producer(s) prior to down-core temperature reconstructions is critical before selecting the most appropriate temperature calibration. We present a study from Lake Toyoni, a freshwater lake in Hokkaido, Japan that has alkenones preserved in surface sediments. The aim of this study is to identify the alkenone producer(s) within the lake using 18S rDNA analyses. Preserved rDNA of planktonic phototrophic algae was extracted from surface sediments of Lake Toyoni and phylogenetic analyses of the rDNA sequences suggest alkenones are produced by a single haptophyte within the class Prymnesiophyceae (order Isochrysidales). The Lake Toyoni alkenone-producer shares a distinct phylotype with a haptophyte reported from water filter samples collected in Lake BrayaSø, Greenland (D'Andrea et al., 2006). Similarity between the 18S rDNA sequences from Lake Toyoni and Lake BrayaSø provides a basis for applying (and updating) the Greenland lake temperature calibration. Applying this temperature calibration (T°C = 40.8 [UK37] + 31.8, R2=0.96; n=34) to the surface sediment alkenone unsaturation index from Lake Toyoni gives an estimated lake surface temperature (LST) of 8°C. This is in line with observed LST at Lake Toyoni, which ranges between 7 - 22°C (Apr 2011 to Nov 2011). The occurrence and identification of a single alkenone producer in Lake Toyoni means problems posed by a mixture of haptophytes in

  9. Phylogeny of freshwater parasitic copepods in the Ergasilidae (Copepoda: Poecilostomatoida) based on 18S and 28S rDNA sequences.

    PubMed

    Song, Y; Wang, G T; Yao, W J; Gao, Q; Nie, P

    2008-01-01

    The phylogenetic relationships among the Ergasilidae genera are poorly understood. In this study, 14 species from four genera in the Ergasilidae including Sinergasilus, Ergasilus, Pseudergasilus, and Paraergasilus were collected in China, and their phylogenetic relationships were examined using neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods based on partial sequences of 18S and 28S ribosomal deoxyribonucleic acid, respectively. All the analyses suggest that the Sinergasilus and Paraergasilus are both monophyletic, but the Ergasilus is polyphyletic rather than monophyletic. Considering the relationships among the four genera, the phylogenetic analyses and subsequent hypothesis tests all suggest that Pseudergasilus clustered with some Ergasilus species may have a closer relationship with Sinergasilus rather than with Paraergasilus. It is proposed that the Sinergasilus and the Pseudergasilus species might have evolved from Ergasilus species.

  10. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants.

    PubMed

    Stenøien, H K

    2008-03-01

    The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential.

  11. Molecular characterization and phylogeny of Linguatula serrata (Pentastomida: Linguatulidae) based on the nuclear 18S rDNA and mitochondrial cytochrome c oxidase I gene

    PubMed Central

    MOHANTA, Uday Kumar; ITAGAKI, Tadashi

    2016-01-01

    Linguatula serrata, a cosmopolitan parasite, is commonly known as tongue worm belonging to the subclass Pentastomida.We collected the nymphal stage of the worm from mesenteric lymph nodes of cattle and identified these as L. serrata based on morphology and morphometry. The 18S rDNA sequences showed no intraspecific variation, although cox1 sequences showed 99.7–99.9% homology. In the phylogenies inferred from both gene loci, members of the genus Linguatula (order Porocephalida) were closer to those of the order Cephalobaenida than to those of Porocephalida, reflecting a mismatch with the corresponding morphology-based taxonomy. Accordingly, analyses of additional gene loci using a larger number of taxa across the Pentastomida should be undertaken to determine an accurate phylogenetic position within the Arthropoda. PMID:27941305

  12. Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences.

    PubMed Central

    Giribet, G; Carranza, S; Riutort, M; Baguñà, J; Ribera, C

    1999-01-01

    The internal phylogeny of the 'myriapod' class Chilopoda is evaluated for 12 species belonging to the five extant centipede orders, using 18S rDNA complete gene sequence and 28S rDNA partial gene sequence data. Equally and differentially weighted parsimony, neighbour-joining and maximum-likelihood were used for phylogenetic reconstruction, and bootstrapping and branch support analyses were performed to evaluate tree topology stability. The results show that the Chilopoda constitute a monophyletic group that is divided into two lines, Notostigmophora (= Scutigeromorpha) and Pleurostigmophora, as found in previous morphological analyses. The Notostigmophora are markedly modified for their epigenic mode of life. The first offshoot of the Pleurostigmophora are the Lithobiomorpha, followed by the Craterostigmomorpha and by the Epimorpha s. str. (= Scolopendromorpha + Geophilomorpha), although strong support for the monophyly of the Epimorpha s. lat. (= Craterostigmomorpha + Epimorpha s. str.) is only found in the differentially weighted parsimony analysis. PMID:10087567

  13. Protist 18S rRNA gene Sequence Analysis Reveals Multiple Sources of Organic Matter Contributing to Turbidity Maxima of the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Zuber, Peter A.

    2011-10-05

    The Columbia River estuary is traditionally considered a detritus-based ecosystem fueled in summer by organic matter (OM) from expired freshwater diatoms. Since Estuarine Turbidity Maxima (ETM) are sites of accumulation and transformation of this phytoplankton-derived OM, to further characterize the ETM protist assemblage, we collected in August 2007 bottom waters throughout an ETM event, as well as surface water during the peak of bottom turbidity, and performed biogeochemical, microscopic and molecular (18S rRNA gene clone libraries) analyses. These data confirmed that the majority of the particulate OM in ETMs is derived from chlorophyll a-poor particulate organic carbon tagged by DNA too damaged to be detected by molecular analysis.

  14. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.

    PubMed

    Giribet, G; Distel, D L; Polz, M; Sterrer, W; Wheeler, W C

    2000-09-01

    Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group

  15. Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities

    PubMed Central

    2016-01-01

    ABSTRACT The use of high-throughput sequencing technologies with the 16S rRNA gene for characterization of bacterial and archaeal communities has become routine. However, the adoption of sequencing methods for eukaryotes has been slow, despite their significance to natural and engineered systems. There are large variations among the target genes used for amplicon sequencing, and for the 18S rRNA gene, there is no consensus on which hypervariable region provides the most suitable representation of diversity. Additionally, it is unclear how much PCR/sequencing bias affects the depiction of community structure using current primers. The present study amplified the V4 and V8-V9 regions from seven microalgal mock communities as well as eukaryotic communities from freshwater, coastal, and wastewater samples to examine the effect of PCR/sequencing bias on community structure and membership. We found that degeneracies on the 3′ end of the current V4-specific primers impact read length and mean relative abundance. Furthermore, the PCR/sequencing error is markedly higher for GC-rich members than for communities with balanced GC content. Importantly, the V4 region failed to reliably capture 2 of the 12 mock community members, and the V8-V9 hypervariable region more accurately represents mean relative abundance and alpha and beta diversity. Overall, the V4 and V8-V9 regions show similar community representations over freshwater, coastal, and wastewater environments, but specific samples show markedly different communities. These results indicate that multiple primer sets may be advantageous for gaining a more complete understanding of community structure and highlight the importance of including mock communities composed of species of interest. IMPORTANCE The quantification of error associated with community representation by amplicon sequencing is a critical challenge that is often ignored. When target genes are amplified using currently available primers, differential

  16. Molecular organization of the 25S-18S rDNA IGS of Fagus sylvatica and Quercus suber: a comparative analysis.

    PubMed

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5'-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5'-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5'-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼ 2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family.

  17. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades.

  18. Prevalence of infection and 18S rRNA gene sequences of Cytauxzoon species in Iberian lynx (Lynx pardinus) in Spain.

    PubMed

    Millán, J; Naranjo, V; Rodríguez, A; de la Lastra, J M Pérez; Mangold, A J; de la Fuente, J

    2007-07-01

    The Iberian lynx (Lynx pardinus) is the most endangered felid in the world. Only about 160 individuals remain in 2 separate metapopulations in Southern Spain (Sierra Morena and Doñana). We obtained blood samples of 20 lynxes captured from 2004 to 2006, and determined the prevalence of infection and genetic diversity of Cytauxzoon spp. using 18S rRNA PCR and sequence analysis. Prevalence of infection was 15% (3 of 20). Cytauxzoon sp. was only detected in Sierra Morena. For phylogenetic analysis, we used the sequences reported in the present study and those characterized in different domestic and wild felids and ticks from North and South America, Asia and Europe. Three different Cytauxzoon sp. sequences were obtained. They were closely related to that obtained from a Spanish cat, but diverged in up to 1.0% with respect to the only previously reported sequence from an Iberian lynx. Conversely, the latter sequence clustered together with C. manul sequences obtained from Pallas cats (Otocolobus manul) in Mongolia. Our analysis yields a separate cluster of C. felis sequences from cats, wild felids and ticks in the United States and Brazil. These results suggest that at least 2 different Cytauxzoon spp. may be present in Iberian lynx. The apparent absence in one of the areas, together with the possibility of fatal cytauxzoonosis in lynxes makes necessary disease risks to be taken into account in management conservation strategies, such as translocations and re-introductions.

  19. Morphology and 18S rDNA sequencing identifies Henneguya visibilis n. sp., a parasite of Leporinus obtusidens from Mogi Guaçu River, Brazil.

    PubMed

    Moreira, Gabriel S A; Adriano, Edson A; Silva, Marcia R M; Ceccarelli, Paulo S; Maia, Antônio A M

    2014-01-01

    During a survey of myxozoan parasites of freshwater fish from the Mogi Guaçu River in São Paulo State, Brazil, plasmodia of Henneguya visibilis n. sp. were found on the fins of Leporinus obtusidens (Characiformes: Anostomidae). The plasmodia, which were observed on five out of eight (62.5%) L. obtusidens examined, were 400-1,000 μm long. Mature spores were elongated with a spore body 10.8 ± 0.6 μm long and 3.9 ± 0.2 μm wide, a caudal process 18 ± 1.2 μm long, and a total spore length of 26.8 ± 1.1 μm. Polar capsules were elongated 4.9 ± 0.3 μm long and 1.4 ± 0.1 μm wide. Histological examination indicated that the plasmodia developed in the connective tissue, and no inflammatory infiltrate was observed at the infection site. Ultrastructural analysis showed a plasmodium wall with a single membrane and several pinocytotic canals. Sporogenesis occurred from the periphery to the center of the plasmodia. Phylogenetic analysis of the 18S rDNA sequence using maximum likelihood and maximum parsimony methods showed H. visibilis n. sp. positioned in a sub-clade composed of Henneguya/Myxobolus parasites of several freshwater fish families.

  20. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities.

  1. The phylogenetic position of Myxobolus carnaticus (Myxozoa, Myxosporea, Bivalvulida) infecting gill lamellae of Cirrhinus mrigala (Hamilton, 1822) based on 18S rRNA sequence analysis

    PubMed Central

    Banerjee, Sayani; Patra, Avijit; Adikesavalu, Harresh; Mondal, Anjan; Jawahar Abraham, Thangapalam

    2015-01-01

    Myxozoans are an economically important group of microscopic parasites best known for the diseases they cause in commercially important fish hosts. The classification of myxosporeans is generally based on the morphology of their myxospores. Without molecular data, it is very difficult to identify new or existing species. DNA sequence information is therefore, a prerequisite to taxonomic and phylogenic studies of myxosporeans. In the present study, a myxozoan parasite, Myxobolus carnaticus, infecting the gill lamellae of mrigal carp, Cirrhinus mrigala, was characterized by the 18S rRNA gene sequence. The DNA sequence of M. carnaticus clustered phylogenetically with other gill infecting Myxobolus spp. of freshwater clades, forming a dichotomy with closely related M. pavlovskii (HM991164) that infects the gill lamellae epithelium of silver carp, Hypophthalmichthys molitrix with 95% similarity. Evolutionary pair-wise distances among M. carnaticus and other species of myxosporeans indicated high genetic diversity among myxosporeans. The present study demonstrated that tissue tropism, host specificity and habitat play important roles in phylogenetic relationships among myxozoan species. PMID:27844004

  2. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa.

    PubMed

    Cavalier-Smith, Thomas

    2014-10-01

    Gregarine 18S ribosomal DNA trees are hard to resolve because they exhibit the most disparate rates of rDNA evolution of any eukaryote group. As site-heterogeneous tree-reconstruction algorithms can give more accurate trees, especially for technically unusually challenging groups, I present the first site-heterogeneous rDNA trees for 122 gregarines and an extensive set of 452 appropriate outgroups. While some features remain poorly resolved, these trees fit morphological diversity better than most previous, evolutionarily less realistic, maximum likelihood trees. Gregarines are probably polyphyletic, with some 'eugregarines' and all 'neogregarines' (both abandoned as taxa) being more closely related to Cryptosporidium and Rhytidocystidae than to archigregarines. I establish a new subclass Orthogregarinia (new orders Vermigregarida, Arthrogregarida) for gregarines most closely related to Cryptosporidium and group Orthogregarinia, Cryptosporidiidae, and Rhytidocystidae as revised class Gregarinomorphea. Archigregarines are excluded from Gregarinomorphea and grouped with new orders Velocida (Urosporoidea superfam. n. and Veloxidium) and Stenophorida as a new sporozoan class Paragregarea. Platyproteum and Filipodium never group with Orthogregarinia or Paragregarea and are sufficiently different morphologically to merit a new order Squirmida. I revise gregarine higher-level classification generally in the light of site-heterogeneous-model trees, discuss their evolution, and also sporozoan cell structure and life-history evolution, correcting widespread misinterpretations.

  3. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA

    PubMed Central

    Zhang, Jun; McCann, Kathleen L.; Qiu, Chen; Gonzalez, Lauren E.; Baserga, Susan J.; Hall, Traci M. Tanaka

    2016-01-01

    Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C'-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease, Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins. PMID:27725644

  4. Molecular Characterization of Cryptosporidium spp. in Wild Rodents of Southwestern Iran Using 18s rRNA Gene Nested-PCR-RFLP and Sequencing Techniques

    PubMed Central

    Saki, Jasem; Asadpouri, Reza

    2016-01-01

    Background. Rodents could act as reservoir for Cryptosporidium spp. specially C. parvum, a zoonotic agent responsible for human infections. Since there is no information about Cryptosporidium infection in rodents of Ahvaz city, southwest of Iran, hence, this survey was performed to determine the prevalence and molecular characterization of Cryptosporidium spp. in this region. Materials and Methods. One hundred rodents were trapped from different regions of Ahvaz city. Intestine contents and fecal specimens of rodents were studied using both microscopy examination to identify oocyst and nested-polymerase chain reaction (PCR) technique for 18s rRNA gene detection. Eventually restriction fragment length polymorphism (RFLP) method using SspI and VspI restriction enzymes was carried out to genotype the species and then obtained results were sequenced. Results. Three out of 100 samples were diagnosed as positive and overall prevalence of Cryptosporidium spp. was 3% using both modified Ziehl-Neelsen staining under light microscope and nested-PCR (830 bp) methods. Afterwards, PCR-RFLP was performed on positive samples and C. parvum pattern was identified. Finally PCR-RFLP findings were sequenced and presence of C. parvum was confirmed again. Conclusions. Our study showed rodents could be potential reservoir for C. parvum. So an integrated program for control and combat with them should be adopted and continued. PMID:27956905

  5. Nanoscale copper sulfide hollow spheres with phase-engineered composition: covellite (CuS), digenite (Cu1.8S), chalcocite (Cu2S).

    PubMed

    Leidinger, Peter; Popescu, Radian; Gerthsen, Dagmar; Lünsdorf, Heinrich; Feldmann, Claus

    2011-06-01

    Covellite (CuS), digenite (Cu(1.8)S) and chalcocite (Cu(2)S) are prepared as nanoscaled hollow spheres by reaction at the liquid-to-liquid phase boundary of a w/o-microemulsion. According to electron microscopy (SEM, STEM, TEM, HRTEM) the hollow spheres exhibit an outer diameter of 32-36 nm, a wall thickness of 8-12 nm and an inner cavity of 8-16 nm in diameter. The phase composition is determined based on HRTEM, electron-energy loss spectroscopy, X-ray powder diffraction and thermal analysis. In face of the advanced morphology of the hollow spheres, precise control of its phase composition is nevertheless possible by adjusting the experimental conditions (i.e. type and concentration of the copper precursor, concentration of ammonia inside of the micelle). Such phase-engineering of nanoscale hollow spheres is firstly observed and might allow adjusting even further compositions/structures as well as tailoring of phase-specific properties in the future.

  6. Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology.

    PubMed

    Turbeville, J M; Field, K G; Raff, R A

    1992-03-01

    Partial 18S rRNA sequence of the nemertine Cerebratulus lacteus was obtained and compared with those of coelomate metazoans and acoelomate platyhelminths to test whether nemertines share a most recent common ancestor with the platyhelminths, as traditionally has been implied, or whether nemertines lie within a protostome coelomate clade, as suggested by more recent morphological analyses. Maximum-parsimony analysis supports the inclusion of the nemertine within a protostome-coelomate clade that falls within a more inclusive coelomate clade. Bootstrap analysis indicates strong support for a monophyletic Coelomata composed of a deuterostome and protostome-coelomate clade. Support for a monophyletic protostome Coelomata is weak. Inference by distance analysis is consistent with that of maximum parsimony. Analysis of down-weighted paired sites by maximum parsimony reveals variation in topology only within the protostome-coelomate clade. The relationships among the protostome coelomates cannot be reliably inferred from the partial sequences, suggesting that coelomate protostomes diversified rapidly. Results with evolutionary parsimony are consistent with the inclusion of the nemertine in a coelomate clade. The molecular inference corroborates recent morphological character analyses that reveal no synapomorphies of nemertines and flatworms but instead suggest that the circulatory system and rhynchocoel of nemertines are homologous to coelomic cavities of protostome coelomates, thus supporting the corresponding hypothesis that nemertines belong within a protostome-coelomate clade. The sequence data provide an independent test of morphological character homology.

  7. Detection of Kudoa septempunctata 18S ribosomal DNA in patient fecal samples from novel food-borne outbreaks caused by consumption of raw olive flounder (Paralichthys olivaceus).

    PubMed

    Harada, Tetsuya; Kawai, Takao; Jinnai, Michio; Ohnishi, Takahiro; Sugita-Konishi, Yoshiko; Kumeda, Yuko

    2012-09-01

    Kudoa septempunctata is a newly identified myxosporean parasite of olive flounder (Paralichthys olivaceus) and a suspected causative agent of several food-borne gastroenteritis outbreaks in Japan. Here, we report the detection of K. septempunctata 18S ribosomal DNA in fecal samples of outbreak patients using an efficient method based on real-time PCR. We first performed a spiking experiment to assess whether our previously developed real-time PCR assay was applicable to detect K. septempunctata in feces. Simultaneously, we compared the relative extraction efficacy of K. septempunctata DNA using three commercial kits. Finally, our detection method was validated by testing 45 clinical samples obtained from 13 food-borne outbreaks associated with the consumption of raw flounder and 41 fecal samples from diarrhea patients epidemiologically unrelated to the ingestion of raw fish. We found that the FastDNA Spin Kit for Soil (MP Biomedicals) was the most efficient method for extracting K. septempunctata DNA from fecal samples. Using this kit, the detection limit of our real-time PCR assay was 1.6 × 10(1) spores per g of feces, and positive results were obtained for 21 fecal and 2 vomitus samples obtained from the food-borne outbreaks. To our knowledge, this is the first report to describe the detection of K. septempunctata DNA in patient fecal samples. We anticipate that our detection method will be useful for confirming food-borne diseases caused by K. septempunctata in laboratory investigations.

  8. Seasonal and geographical distribution of near-surface small photosynthetic eukaryotes in the western North Pacific determined by pyrosequencing of 18S rDNA.

    PubMed

    Kataoka, Takafumi; Yamaguchi, Haruyo; Sato, Mayumi; Watanabe, Tsuyoshi; Taniuchi, Yukiko; Kuwata, Akira; Kawachi, Masanobu

    2017-02-01

    In this study, we investigated the distribution of small photosynthetic eukaryotes in the near-surface layer of the western North Pacific at four stations, including two oceanic stations where the subarctic Oyashio and subtropical Kuroshio currents influence a transition region and the bay mouth and head of the Sendai Bay, from April 2012 to May 2013. Flow cytometry was applied to sort small photosynthetic eukaryotes (<5 μm), and high-throughput sequencing of 18S rDNA was performed. Our taxonomic analysis showed that 19/195 operational taxonomic units (OTUs) were frequently distributed among all sites. Composition analysis showed that the OTUs had characteristic patterns and were divided into four main groups. Two groups reflected the low-saline water and winter season, with the characteristic OTUs belonging to diatoms; Chaetoceros and Leptocylindrus were characteristic of low saline water, and two diatom genera (Minidiscus and Minutocellus) and Cryptomonadales-related OTUs were prevalent in the winter. Our results indicate that the community composition of small photosynthetic eukaryotes seasonally changes in a dynamic manner according to variations in water properties.

  9. Structure of a human pre-40S particle points to a role for RACK1 in the final steps of 18S rRNA processing

    PubMed Central

    Larburu, Natacha; Montellese, Christian; O'Donohue, Marie-Françoise; Kutay, Ulrike; Gleizes, Pierre-Emmanuel; Plisson-Chastang, Célia

    2016-01-01

    Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3′-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation. PMID:27530427

  10. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana.

    PubMed Central

    Lim, K Y; Skalicka, K; Koukalova, B; Volkov, R A; Matyasek, R; Hemleben, V; Leitch, A R; Kovarik, A

    2004-01-01

    An approximately 135-bp sequence called the A1/A2 repeat was isolated from the transcribed region of the 26-18S rDNA intergenic spacer (IGS) of Nicotiana tomentosiformis. Fluorescence in situ hybridization (FISH) and Southern blot analysis revealed its occurrence as an independent satellite (termed an A1/A2 satellite) outside of rDNA loci in species of Nicotiana section Tomentosae. The chromosomal location, patterns of genomic dispersion, and copy numbers of its tandemly arranged units varied between the species. In more distantly related Nicotiana species the A1/A2 repeats were found only at the nucleolar organizer regions (NOR). There was a trend toward the elimination of the A1/A2 satellite in N. tabacum (tobacco), an allotetraploid with parents closely related to the diploids N. sylvestris and N. tomentosiformis. This process may have already commenced in an S(3) generation of synthetic tobacco. Cytosine residues in the IGS were significantly hypomethylated compared with the A1/A2 satellite. There was no clear separation between the IGS and satellite fractions in sequence analysis of individual clones and we found no evidence for CG suppression. Taken together the data indicate a dynamic nature of the A1/A2 repeats in Nicotiana genomes, with evidence for recurrent integration, copy number expansions, and contractions. PMID:15126410

  11. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA

    SciTech Connect

    Zhang, Jun; McCann, Kathleen L.; Qiu, Chen; Gonzalez, Lauren E.; Baserga, Susan J.; Hall, Traci M. Tanaka

    2016-10-11

    Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C’-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease, Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins.

  12. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected.

  13. Phylogenetic Analysis of Phenotypically Characterized Cryptococcus laurentii Isolates Reveals High Frequency of Cryptic Species

    PubMed Central

    Ferreira-Paim, Kennio; Ferreira, Thatiana Bragine; Andrade-Silva, Leonardo; Mora, Delio Jose; Springer, Deborah J.; Heitman, Joseph; Fonseca, Fernanda Machado; Matos, Dulcilena; Melhem, Márcia Souza Carvalho; Silva-Vergara, Mario León

    2014-01-01

    Background Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States. Methods In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region. Results BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99–100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified. Conclusions Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its

  14. Time-series of water column alkenones and 18S rRNA confirm that Uk'37 is a viable SST proxy in Narragansett Bay, RI

    NASA Astrophysics Data System (ADS)

    Salacup, J.; Theroux, S.; Herbert, T.; Prell, W. L.

    2011-12-01

    Alkenones, produced in the sunlit mixed layer by specific Haptophyte algae, are a well-established and widely-applied proxy for sea surface temperature (SST) in the world's open-oceans. However, the proxy's utility in estuarine environments remains largely untested. A reliable SST proxy is needed to identify the estuary's sensitivity and response to past and present global change because SST can exert strong control on stratification and circulation patterns, and thus oxygenation and ecosystem health, in these shallow basins. Knowing the estuaries response should help local managers and policy-makers plan mitigation and adaptation strategies. Additionally, the rapid deposition of both marine and terrestrial organic and inorganic material in estuarine systems makes them potential archives of high-resolution paleo-environmental information. A previous investigation of estuarine alkenones suggested that the Uk'37 proxy may be sensitive to the composition of the alkenone-producing Haptophyte population, which may be affected by local nutrient and fresh water fluxes. In particular, low-salinity coastal Haptophytes such as Isochrysis galbana may have a different relationship to SST than higher-salinity open-ocean Haptophytes and their presence may complicate interpretations of the Uk'37 proxy in estuaries. To better understand how the alkenone-based Uk'37 SST proxy is produced in estuarine systems, we present a two-year time-series (monthly-to-thrice-weekly resolution) of alkenone concentrations in particulate organic matter from Narragansett Bay. Alkenone concentrations are coupled with 18S ribosomal RNA (rRNA) measurements to identify the alkenone-producing population. Highest concentrations of alkenones are detected at different times in the upper and lower Bay such that the highest alkenone concentrations occur in the winter-spring (upper Bay) and summer/fall (lower Bay). This result is consistent with the established seasonal blooms and seasonal changes in nutrient

  15. Free-Living Protozoa in Two Unchlorinated Drinking Water Supplies, Identified by Phylogenic Analysis of 18S rRNA Gene Sequences▿ †

    PubMed Central

    Valster, Rinske M.; Wullings, Bart A.; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick

    2009-01-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20°C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa. PMID:19465529

  16. Sequence alignment of 18S ribosomal RNA and the basal relationships of Adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae.

    PubMed

    Shull, V L; Vogler, A P; Baker, M D; Maddison, D R; Hammond, P M

    2001-01-01

    Current hypotheses regarding family relationships in the suborder Adephaga (Coleoptera) are conflicting. Here we report full-length 18S ribosomal RNA sequences of 39 adephagans and 13 outgroup taxa. Data analysis focused on the impact of sequence alignment on tree topology, using two principally different approaches. Tree alignments, which seek to minimize indels and substitutions on the tree in a single step, as implemented in an approximate procedure by the computer program POY, were contrasted with a more traditional procedure based on alignments followed by phylogenetic inference based on parsimony, likelihood, and distance analyses. Despite substantial differences between the procedures, phylogenetic conclusions regarding basal relationships within Adephaga and relationships between the four suborders of Coleoptera were broadly similar. The analysis weakly supports monophyly of Adephaga, with Polyphaga usually as its sister, and the two small suborders Myxophaga and Archostemata basal to them. In some analyses, however, Polyphaga was reconstructed as having arisen from within Hydradephaga. Adephaga generally split into two monophyletic groups, corresponding to the terrestrial Geadephaga and the aquatic Hydradephaga, as initially proposed by Crowson in 1955, consistent with a single colonization of the aquatic environment by adephagan ancestors and contradicting the recent proposition of three independent invasions. A monophyletic Hydradephaga is consistently, though not strongly, supported under most analyses, and a parametric bootstrapping test significantly rejects an hypothesis of nonmonophyly. The enigmatic Trachypachidae, which exhibit many similarities to aquatic forms but whose species are entirely terrestrial, were usually recovered as a basal lineage within Geadephaga. Strong evidence opposes the view that terrestrial trachypachids are related to the dytiscoid water beetles.

  17. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data.

    PubMed

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  18. Use of 18S rRNA gene-based PCR assay for diagnosis of acanthamoeba keratitis in non-contact lens wearers in India.

    PubMed

    Pasricha, Gunisha; Sharma, Savitri; Garg, Prashant; Aggarwal, Ramesh K

    2003-07-01

    Identification of Acanthamoeba cysts and trophozoites in ocular tissues requires considerable expertise and is often time-consuming. An 18S rRNA gene-based PCR test, highly specific for the genus Acanthamoeba, has recently been reported in the molecular diagnosis of Acanthamoeba keratitis. This PCR assay was compared with conventional microbiological tests for the diagnosis of Acanthamoeba keratitis. In a pilot study, the PCR conditions with modifications were first tested on corneal scrapings from patients with culture-proven non-contact lens-related Acanthamoeba, bacterial, and fungal keratitis. This was followed by testing of corneal scrapings from 53 consecutive cases of microbial keratitis to determine sensitivity, specificity, and predictive values of the assay. All corneal scrapings from patients with proven Acanthamoeba keratitis showed a 463-bp amplicon, while no amplicon was obtained from patients with bacterial or fungal keratitis. Some of these amplified products were sequenced and compared with EMBL database reference sequences to validate these to be of Acanthamoeba origin. Out of 53 consecutive cases of microbial keratitis included for evaluating the PCR, 10 (18.9%) cases were diagnosed as Acanthamoeba keratitis on the basis of combined results of culture, smear, and PCR of corneal scrapings. Based on culture results as the "gold standard," the sensitivity of PCR was the same as that of the smear (87.5%); however, the specificity and the positive and negative predictive values of PCR were marginally higher than the smear examination (97.8 versus 95.6%, 87.5 versus 77.8%, and 97.8 versus 97.7%) although the difference was not significant. This study confirms the efficacy of the PCR assay and is the first study to evaluate a PCR-based assay against conventional methods of diagnosis in a clinical setting.

  19. Use of 18S rRNA Gene-Based PCR Assay for Diagnosis of Acanthamoeba Keratitis in Non-Contact Lens Wearers in India

    PubMed Central

    Pasricha, Gunisha; Sharma, Savitri; Garg, Prashant; Aggarwal, Ramesh K.

    2003-01-01

    Identification of Acanthamoeba cysts and trophozoites in ocular tissues requires considerable expertise and is often time-consuming. An 18S rRNA gene-based PCR test, highly specific for the genus Acanthamoeba, has recently been reported in the molecular diagnosis of Acanthamoeba keratitis. This PCR assay was compared with conventional microbiological tests for the diagnosis of Acanthamoeba keratitis. In a pilot study, the PCR conditions with modifications were first tested on corneal scrapings from patients with culture-proven non-contact lens-related Acanthamoeba, bacterial, and fungal keratitis. This was followed by testing of corneal scrapings from 53 consecutive cases of microbial keratitis to determine sensitivity, specificity, and predictive values of the assay. All corneal scrapings from patients with proven Acanthamoeba keratitis showed a 463-bp amplicon, while no amplicon was obtained from patients with bacterial or fungal keratitis. Some of these amplified products were sequenced and compared with EMBL database reference sequences to validate these to be of Acanthamoeba origin. Out of 53 consecutive cases of microbial keratitis included for evaluating the PCR, 10 (18.9%) cases were diagnosed as Acanthamoeba keratitis on the basis of combined results of culture, smear, and PCR of corneal scrapings. Based on culture results as the “gold standard,” the sensitivity of PCR was the same as that of the smear (87.5%); however, the specificity and the positive and negative predictive values of PCR were marginally higher than the smear examination (97.8 versus 95.6%, 87.5 versus 77.8%, and 97.8 versus 97.7%) although the difference was not significant. This study confirms the efficacy of the PCR assay and is the first study to evaluate a PCR-based assay against conventional methods of diagnosis in a clinical setting. PMID:12843065

  20. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

    PubMed Central

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  1. Characterization of Metarhizium viride Mycosis in Veiled Chameleons (Chamaeleo calyptratus), Panther Chameleons (Furcifer pardalis), and Inland Bearded Dragons (Pogona vitticeps).

    PubMed

    Schmidt, Volker; Klasen, Linus; Schneider, Juliane; Hübel, Jens; Pees, Michael

    2017-03-01

    Metarhizium viride has been associated with fatal systemic mycoses in chameleons, but subsequent data on mycoses caused by this fungus in reptiles are lacking. The aim of this investigation was therefore to obtain information on the presence of M. viride in reptiles kept as pets in captivity and its association with clinical signs and pathological findings as well as improvement of diagnostic procedures. Beside 18S ribosomal DNA (rDNA) (small subunit [SSU]) and internal transcribed spacer region 1 (ITS-1), a fragment of the large subunit (LSU) of 28S rDNA, including domain 1 (D1) and D2, was sequenced for the identification of the fungus and phylogenetic analysis. Cultural isolation and histopathological examinations as well as the pattern of antifungal drug resistance, determined by using agar diffusion testing, were additionally used for comparison of the isolates. In total, 20 isolates from eight inland bearded dragons (Pogona vitticeps), six veiled chameleons (Chamaeleo calyptratus), and six panther chameleons (Furcifer pardalis) were examined. Most of the lizards suffered from fungal glossitis, stomatitis, and pharyngitis or died due to visceral mycosis. Treatment with different antifungal drugs according to resistance patterns in all three different lizard species was unsuccessful. Sequence analysis resulted in four different genotypes of M. viride based on differences in the LSU fragment, whereas the SSU and ITS-1 were identical in all isolates. Sequence analysis of the SSU fragment revealed the first presentation of a valid large fragment of the SSU of M. viride According to statistical analysis, genotypes did not correlate with differences in pathogenicity, antifungal susceptibility, or species specificity.

  2. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch.

    PubMed

    Mallatt, Jon; Giribet, Gonzalo

    2006-09-01

    This work expands on a study from 2004 by Mallatt, Garey, and Shultz [Mallatt, J.M., Garey, J.R., Shultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178-191] that evaluated the phylogenetic relationships in Ecdysozoa (molting animals), especially arthropods. Here, the number of rRNA gene-sequences was effectively doubled for each major group of arthropods, and sequences from the phylum Kinorhyncha (mud dragons) were also included, bringing the number of ecdysozoan taxa to over 80. The methods emphasized maximum likelihood, Bayesian inference and statistical testing with parametric bootstrapping, but also included parsimony and minimum evolution. Prominent findings from our combined analysis of both genes are as follows. The fundamental subdivisions of Hexapoda (insects and relatives) are Insecta and Entognatha, with the latter consisting of collembolans (springtails) and a clade of proturans plus diplurans. Our rRNA-gene data provide the strongest evidence to date that the sister group of Hexapoda is Branchiopoda (fairy shrimps, tadpole shrimps, etc.), not Malacostraca. The large, Pancrustacea clade (hexapods within a paraphyletic Crustacea) divided into a few basic subclades: hexapods plus branchiopods; cirripedes (barnacles) plus malacostracans (lobsters, crabs, true shrimps, isopods, etc.); and the basally located clades of (a) ostracods (seed shrimps) and (b) branchiurans (fish lice) plus the bizarre pentastomids (tongue worms). These findings about Pancrustacea agree with a recent study by Regier, Shultz, and Kambic that used entirely different genes [Regier, J.C., Shultz, J.W., Kambic, R.E., 2005a. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395-401]. In Malacostraca, the stomatopod (mantis shrimp) was not at the base of the eumalacostracans

  3. Physical Mapping of the 5S and 18S rDNA in Ten Species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): Evolutionary Tendencies in the Genus

    PubMed Central

    César Venere, Paulo; Thums Konerat, Jocicléia; Henrique Zawadzki, Cláudio; Ricardo Vicari, Marcelo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus. PMID:25405240

  4. Physical mapping of the 5S and 18S rDNA in ten species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): evolutionary tendencies in the genus.

    PubMed

    Bueno, Vanessa; Venere, Paulo César; Thums Konerat, Jocicléia; Zawadzki, Cláudio Henrique; Vicari, Marcelo Ricardo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus.

  5. RAPHIDOPHYCEAE [CHADEFAUD EX SILVA] SYSTEMATICS AND RAPID IDENTIFICATION: SEQUENCE ANALYSES AND REAL-TIME PCR ASSAYS

    PubMed Central

    Bowers, Holly A.; Tomas, Carmelo; Tengs, Torstein; Kempton, Jason W.; Lewitus, Alan J.; Oldach, David W.

    2010-01-01

    Species within the class Raphidophyceae were associated with fish kill events in Japanese, European, Canadian, and U.S. coastal waters. Fish mortality was attributable to gill damage with exposure to reactive oxygen species (peroxide, superoxide, and hydroxide radicals), neurotoxins, physical clogging, and hemolytic substances. Morphological identification of these organisms in environmental water samples is difficult, particularly when fixatives are used. Because of this difficulty and the continued global emergence of these species in coastal estuarine waters, we initiated the development and validation of a suite of real-time polymerase chain reaction (PCR) assays. Sequencing was used to generate complete data sets for nuclear encoded small-subunit ribosomal RNA (SSU rRNA; 18S); internal transcribed spacers 1 and 2, 5.8S; and plastid encoded SSU rRNA (16S) for confirmed raphidophyte cultures from various geographic locations. Sequences for several Chattonella species (C. antiqua, C. marina, C. ovata, C. subsalsa, and C. verruculosa), Heterosigma akashiwo, and Fibrocapsa japonica were generated and used to design rapid and specific PCR assays for several species including C. verruculosa Hara et Chihara, C. subsalsa Biecheler, the complex comprised of C. marina Hara et Chihara, C. antiqua Ono and C. ovata, H. akashiwo Ono, and F. japonica Toriumi et Takano using appropriate loci. With this comprehensive data set, we were also able to perform phylogenetic analyses to determine the relationship between these species. PMID:20411032

  6. A molecular phylogenetic investigation of Opisthonecta and related genera (Ciliophora, Peritrichia, Sessilida).

    PubMed

    Williams, Daniel; Clamp, John C

    2007-01-01

    The gene encoding 18S small subunit ribosomal RNA (ssu rRNA) was sequenced in the sessiline peritrichs Opisthonecta minima and Opisthonecta matiensis, whose free-swimming, paedomorphic trophonts resemble telotrochs. Using these new sequences, phylogenetic trees were constructed with four different methods to test a previously published association between Opisthonecta henneguyi and members of the families Vorticellidae and Astylozoidae. All trees had similar topologies, with O. minima, O. henneguyi, Vorticella microstoma, and Astylozoon enriquesi forming a well-supported, certainly monophyletic clade. On the basis of genetic evidence, genera of the families Opisthonectidae and Astylozoidae are assigned to the family Vorticellidae, which already includes some species with free-swimming morphotypes. The ssu rRNA sequence of O. matiensis places it in the family Epistylididae; its taxonomic revision will be left to another group of authors. A close association of Ophrydium versatile with members of the family Vorticellidae was confirmed, casting doubt on the validity of the family Ophrydiidae. Epistylis galea, Campanella umbellaria, and Opercularia microdiscum are confirmed as comprising an extremely distinct, monophyletic, but morphologically heterogeneous clade that is basal to other clades of sessiline peritrichs.

  7. A molecular phylogenetic investigation of zoothamnium (ciliophora, peritrichia, sessilida).

    PubMed

    Clamp, John C; Williams, Daniel

    2006-01-01

    The gene coding for 18S small subunit ribosomal RNA (ssu rRNA) was sequenced in seven free-living, marine species of the sessiline peritrich genus Zoothamnium. These were Zoothamnium niveum, Zoothamnium alternans, Zoothamnium pelagicum, and four unidentified species. The ssu rRNA gene also was sequenced in Vorticella convallaria, Vorticella microstoma, and in an unidentified, freshwater species of Vorticella. Phylogenetic trees were constructed using these new sequences to test a previously published phylogenetic association between Zoothamnium arbuscula, currently in the family Zoothamniidae, and peritrichs in the family Vorticellidae. Trees constructed by means of neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods all had similar topologies. The seven new sequences of Zoothamnium species grouped into three well-supported clades, each of which contained a diversity of morphological types. The three clades formed a poorly supported, larger clade that was deeply divergent from Z. arbuscula, which remained more closely associated with vorticellid peritrichs. It is apparent that Zoothamnium is a richly diverse genus and that a much more intensive investigation, involving both morphological and molecular data and a wider selection of species, will be necessary to resolve its phylogeny. A greater amount of molecular diversity than is predicted by morphological data exists within all major clades of sessiline peritrichs that have been included in molecular phylogenies, indicating that characteristics of stalk and peristomial structure traditionally used to differentiate taxa at the generic level and above may not be uniformly reliable.

  8. Seasonal Diversity of Planktonic Protists in Southwestern Alberta Rivers over a 1-Year Period as Revealed by Terminal Restriction Fragment Length Polymorphism and 18S rRNA Gene Library Analyses

    PubMed Central

    Thomas, Matthew C.; Selinger, L. Brent

    2012-01-01

    The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure. PMID:22685143

  9. TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification.

    PubMed

    Pinto, C Miguel; Kalko, Elisabeth K V; Cottontail, Iain; Wellinghausen, Nele; Cottontail, Veronika M

    2012-08-01

    We report TcBat, a recently described genetic lineage of Trypanosoma cruzi, in fruit-eating bats Artibeus from Panama. Infections were common (11.6% prevalence), but no other T. cruzi cruzi genotypes were detected. Phylogenetic analyses show an unambiguous association with Brazilian TcBat, but raise questions about the phylogenetic placement of this genotype using the 18S rRNA gene alone. However, analyses with three concatenated genes (18S rRNA, cytb, and H2B) moderately support TcBat as sister to the discrete typing unit (DTU) TcI. We demonstrate that short fragments (>500 bp) of the 18S rRNA gene are useful for identification of DTUs of T. cruzi, and provide reliable phylogenetic signal as long as they are analyzed within a matrix with reference taxa containing additional informative genes. TcBat forms a very distinctive monophyletic group that may be recognized as an additional DTU within T. cruzi cruzi.

  10. Phylogenetic position of the enigmatic clawless eutardigrade genus Apodibius Dastych, 1983 (Tardigrada), based on 18S and 28S rRNA sequence data from its type species A. confusus.

    PubMed

    Dabert, Miroslawa; Dastych, Hieronymus; Hohberg, Karin; Dabert, Jacek

    2014-01-01

    The systematics of Eutardigrada, the largest lineage among the three classes of the phylum Tardigrada, is based mainly on the morphology of the leg claws and of the buccal apparatus. However, three members of the rarely recorded and poorly known limno-terrestrial eutardigrade genus Apodibius have no claws on their strongly reduced legs, a unique character among all tardigrades. This absence of all claws makes the systematic position of Apodibius one of the most enigmatic among the whole class. Until now all known associates of the genus Apodibius have been located in the incertae sedis species group or, quite recently, included into the Necopinatidae family. In the present study, phylogenetic analyses of 18S and 28S rRNA sequence data from 31 tardigrade species representing four parachelan superfamilies (Isohypsibioidea, Hypsibioidea, Macrobiotoidea, Eohypsibioidea), the apochelan Milnesium tardigradum, and the type species of the genus Apodibius, A. confusus, indicated close relationship of the Apodibius with tardigrade species recently included in the superfamily Isohypsibioidea. This result was well-supported and consistent across all markers (separate 18S rRNA, 28S rRNA, and combined 18S rRNA+28S rRNA datasets) and methods (MP, ML) applied.

  11. Metahyphopichia laotica gen. nov., sp. nov., a polymorphic yeast related to Hyphopichia.

    PubMed

    Sipiczki, Matthias; Pfliegler, Walter P; Safar, Silvana V B; Morais, Paula B; Rosa, Carlos A

    2016-07-01

    Four strains alternating between yeast and filamentous growth morphologies were isolated from flowers in two regions of Laos. In liquid environment the isolates propagated by budding and developed irregularly shaped pseudohyphae. On solid media, their yeast cells switched to hyphal growth which could return to the yeast phase by developing lateral blastoconidia. The sequences of the D1/D2 domains of the large subunit (LSU) 26S rRNA genes, the internal transcribed spacer (ITS) regions and the small subunit (SSU) 18S rRNA genes were identical in the four strains and differed from the corresponding sequences of other yeast species available in databases by at least 11 % (D1/D2), 13 % (ITS) and 7 % (SSU). In an independent project, two strains with D1/D2 and ITS sequences very similar to those of the Laotian strains were found in bark samples collected in Brazil. The six strains also differed from the closest yeast species in physiological properties, indicating that they represented a hitherto undescribed species. Phylogenetic analysis of the D1/D2 sequences, and the concatenated sequences of the SSU rRNA genes, D1/D2 domains of LSU rRNA genes as well as the protein-encoding genes ACT1 and TEF1 placed thestrains close to Hyphopichia. To reflect this position, the novel genus name Metahyphopichia gen. nov. and the novel species name Metahyphopichia laotica gen. nov., sp. nov. are proposed for them. The type strain of the type species is 11-1006T(=CBS 13022T=CCY 092-001-001T=NCAIM Y.02126T) and was isolated in Luang Prabang (Laos). MycoBank registration numbers are MB 808253 (Metahyphopichia) and MB 808254 (Metahyphopichia laotica).

  12. Secondary structures of rRNAs from all three domains of life.

    PubMed

    Petrov, Anton S; Bernier, Chad R; Gulen, Burak; Waterbury, Chris C; Hershkovits, Eli; Hsiao, Chiaolong; Harvey, Stephen C; Hud, Nicholas V; Fox, George E; Wartell, Roger M; Williams, Loren Dean

    2014-01-01

    Accurate secondary structures are important for understanding ribosomes, which are extremely large and highly complex. Using 3D structures of ribosomes as input, we have revised and corrected traditional secondary (2°) structures of rRNAs. We identify helices by specific geometric and molecular interaction criteria, not by co-variation. The structural approach allows us to incorporate non-canonical base pairs on parity with Watson-Crick base pairs. The resulting rRNA 2° structures are up-to-date and consistent with three-dimensional structures, and are information-rich. These 2° structures are relatively simple to understand and are amenable to reproduction and modification by end-users. The 2° structures made available here broadly sample the phylogenetic tree and are mapped with a variety of data related to molecular interactions and geometry, phylogeny and evolution. We have generated 2° structures for both large subunit (LSU) 23S/28S and small subunit (SSU) 16S/18S rRNAs of Escherichia coli, Thermus thermophilus, Haloarcula marismortui (LSU rRNA only), Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We provide high-resolution editable versions of the 2° structures in several file formats. For the SSU rRNA, the 2° structures use an intuitive representation of the central pseudoknot where base triples are presented as pairs of base pairs. Both LSU and SSU secondary maps are available (http://apollo.chemistry.gatech.edu/RibosomeGallery). Mapping of data onto 2° structures was performed on the RiboVision server (http://apollo.chemistry.gatech.edu/RiboVision).

  13. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994.

    PubMed Central

    Gutell, R R

    1994-01-01

    A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural diversity currently known for this class of rRNAs. These structure diagrams are available online through our computer-network WWW server and anonymous ftp, as well as from the author in hardcopy format. PMID:7524024

  14. Rnr4p, a novel ribonucleotide reductase small-subunit protein.

    PubMed Central

    Wang, P J; Chabes, A; Casagrande, R; Tian, X C; Thelander, L; Huffaker, T C

    1997-01-01

    Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex. PMID:9315671

  15. Eukaryote-specific extensions in ribosomal proteins of the small subunit: Structure and function

    PubMed Central

    Ghosh, Arnab; Komar, Anton A

    2015-01-01

    High-resolution structures of yeast ribosomes have improved our understanding of the architecture and organization of eukaryotic rRNA and proteins, as well as eukaryote-specific extensions present in some conserved ribosomal proteins. Despite this progress, assignment of specific functions to individual proteins and/or eukaryote-specific protein extensions remains challenging. It has been suggested that eukaryote-specific extensions of conserved proteins from the small ribosomal subunit may facilitate eukaryote-specific reactions in the initiation phase of protein synthesis. This review summarizes emerging data describing the structural and functional significance of eukaryote-specific extensions of conserved small ribosomal subunit proteins, particularly their possible roles in recruitment and spatial organization of eukaryote-specific initiation factors. PMID:26779416

  16. Small Subunits of Serine Palmitoyltransferase (ssSPTs) and Their Physiological Roles

    DTIC Science & Technology

    2014-02-12

    blast homology searches of Tsc3p against the human genome showed no candidate homologs. However, recently two functional orthologs of Tsc3p, the small...ssSPTs in Schizosaccharomyces pombe   INTRODUCTION: Schizosaccharomyces pombe forms a major clade of the ‘Ascomycete fungi ’ but it is believed...homology search against the C. elegans genome database, using human ssSPTa as the query sequence. Blast analysis yielded one questionable homolog

  17. PHYLOGENETIC ANALYSIS OF CRYPTOSPORIDIUM PARASITES BASED ON THE SMALL SUBUNIT RIBOSOMAL RNA GENE LOCUS

    EPA Science Inventory

    ABSTRACT
    Biologic data support the presence of multiple species in the genus Cryptosporidium, but
    a recent analysis of the available genetic data has suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxono...

  18. Yeast Dun1 Kinase Regulates Ribonucleotide Reductase Small Subunit Localization in Response to Iron Deficiency.

    PubMed

    Sanvisens, Nerea; Romero, Antonia M; Zhang, Caiguo; Wu, Xiaorong; An, Xiuxiang; Huang, Mingxia; Puig, Sergi

    2016-04-29

    Ribonucleotide reductase (RNR) is an essential iron-dependent enzyme that catalyzes deoxyribonucleotide synthesis in eukaryotes. Living organisms have developed multiple strategies to tightly modulate RNR function to avoid inadequate or unbalanced deoxyribonucleotide pools that cause DNA damage and genome instability. Yeast cells activate RNR in response to genotoxic stress and iron deficiency by facilitating redistribution of its small heterodimeric subunit Rnr2-Rnr4 from the nucleus to the cytoplasm, where it forms an active holoenzyme with large Rnr1 subunit. Dif1 protein inhibits RNR by promoting nuclear import of Rnr2-Rnr4. Upon DNA damage, Dif1 phosphorylation by the Dun1 checkpoint kinase and its subsequent degradation enhances RNR function. In this report, we demonstrate that Dun1 kinase triggers Rnr2-Rnr4 redistribution to the cytoplasm in response to iron deficiency. We show that Rnr2-Rnr4 relocalization by low iron requires Dun1 kinase activity and phosphorylation site Thr-380 in the Dun1 activation loop, but not the Dun1 forkhead-associated domain. By using different Dif1 mutant proteins, we uncover that Dun1 phosphorylates Dif1 Ser-104 and Thr-105 residues upon iron scarcity. We observe that the Dif1 phosphorylation pattern differs depending on the stimuli, which suggests different Dun1 activating pathways. Importantly, the Dif1-S104A/T105A mutant exhibits defects in nucleus-to-cytoplasm redistribution of Rnr2-Rnr4 by iron limitation. Taken together, these results reveal that, in response to iron starvation, Dun1 kinase phosphorylates Dif1 to stimulate Rnr2-Rnr4 relocalization to the cytoplasm and promote RNR function.

  19. Plasmids containing small subunit ribosomal RNA gene fragments from Babesia bovis and Babesia bigemina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BEI Resources was developed by NIAID as a centralized biological resource center for research reagents to the scientific community (http://www.beiresources.org/). They have a considerable amount of reagents and isolates for parasitologists working with Entamoeba histolytica, Giardia, Toxoplasma, and...

  20. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms.

    PubMed Central

    Telford, Maximilian J; Lockyer, Anne E; Cartwright-Finch, Chloë; Littlewood, D Timothy J

    2003-01-01

    The phylogenetic position of the phylum Platyhelminthes has been re-evaluated in the past decade by analysis of diverse molecular datasets. The consensus is that the Rhabditophora + Catenulida, which includes most of the flatworm taxa, are not primitively simple basal bilaterians but are related to coelomate phyla such as molluscs. The status of two other groups of acoelomate worms, Acoela and Nemertodermatida, is less clear. Although many characteristics unite these two groups, initial molecular phylogenetic studies placed the Nemertodermatida within the Rhabditophora, but placed the Acoela at the base of the Bilateria, distant from other flatworms. This contradiction resulted in scepticism about the basal position of acoels and led to calls for further data. We have sequenced large subunit ribosomal RNA genes from 13 rhabditophorans + catenulids, three acoels and one nemertodermatid, tripling the available data. Our analyses strongly support a basal position of both acoels and nemertodermatids. Alternative hypotheses are significantly less well supported by the data. We conclude that the Nemertodermatida and Acoela are basal bilaterians and, owing to their unique body plan and embryogenesis, should be recognized as a separate phylum, the Acoelomorpha. PMID:12803898

  1. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product.

  2. Basic cytogenetics and physical mapping of 5S and 18S ribosomal genes in Hoplias malabaricus (Osteichthyes, Characiformes, Erythrinidae) from isolated natural lagoons: a conserved karyomorph along the Iguaçu river basin

    PubMed Central

    Gemi, Gisele; Lui, Roberto Laridondo; Treco, Fernando Rodrigo; Paiz, Leonardo Marcel; Moresco, Rafaela Maria; Margarido, Vladimir Pavan

    2014-01-01

    Abstract Erythrinidae include Neotropical teleost fish that are widely distributed in South America. Hoplias Gill, 1903 include two large groups: H. malabaricus Bloch, 1794 and H. lacerdae Miranda Ribeiro, 1908. Hoplias malabaricus is characterized by remarkable karyotype diversity, with some karyomorphs widely distributed geographically while others are more restricted to certain river basins. Cytogenetic analyzes were performed in a population of Hoplias malabaricus from the Wildlife Refuge of Campos de Palmas, the Iguaçu River basin. The specimens showed diploid number of 42 chromosomes (24m+18sm) without differentiated sex chromosomes system. The impregnation by silver nitrate showed multiple AgNORs. Seven pairs (4, 7, 10, 13, 16, 20 and 21) carrying 18S rDNA were detected by FISH. Heterochromatin was verified in the centromeric and pericentromeric region of most chromosomes and the terminal region of some pairs. FISH with 5S rDNA probes showed two chromosome pairs carrying these sites in the interstitial region (8 and 14). The data obtained in this study are similar to those found for two other populations of H. malabaricus already studied in the basin of the Iguaçu River, confirming the hypothesis that this species is natural, not having been introduced, as well as having an intrinsic characteristic, such as the largest number of sites of 18S rDNA. PMID:25349672

  3. DEVELOPING AN APICOMPLEXAN DNA BARCODOING SYSTEM TO DETECT BLOOD PARASITES OF SMALL CORAL REEF FISHES.

    PubMed

    Sikkel, Paul; Renoux, Lance P; Dolan, Maureen; Smit, Nico; Cook, Courtney

    2017-04-10

    Apicomplexan parasites are obligate parasites of many species of vertebrates. To date, there is very limited understanding of these parasites in the most diverse group of vertebrates, actinopterygian fishes. While DNA barcoding targeting the eukaryotic 18S small subunit (SSU) rRNA gene sequence has been useful in identifying apicomplexans in tetrapods, identification of apicomplexans infecting fishes has relied solely on morphological identification by microscopy. In this study, a DNA barcoding method was developed that targets the 18S rRNA gene primers for identification apicomplexans parasitizing certain actinopterygian fishes. A lead primer set was selected showing no cross reactivity to the overwhelming abundant host DNA and successfully confirmed 34 of the 41 (82.9%) microscopically verified parasitized fish blood samples analyzed in this study. Furthermore, this DNA barcoding method identified four additional samples that screened negative for parasitemia suggesting this molecular method may provide improved sensitivity over morphological characterization by microscopy. In addition, this PCR screening method for fish apicomplexans using Whatman FTA preserved DNA was tested in efforts leading to a more simplified field collection, transport and sample storage method as well as a streamlining sample processing important for DNA barcoding large sample sets.

  4. A low-virulence Eimeria intestinalis isolate from rabbit (Oryctolagus cuniculus) in China: molecular identification, pathogenicity, and immunogenicity.

    PubMed

    Shi, Tuanyuan; Bao, Guolian; Fu, Yuan; Suo, Xun; Hao, Lili

    2014-03-01

    An Eimeria intestinalis isolated from a rabbit in China was first identified by amplifying the 18S small subunit (SSU) ribosomal RNA gene. The size of the amplified fragment was 1521 bp. The 18S SSU RNA gene of the E. intestinalis isolate shared 99% sequence identity with E. intestinalis isolates from France and the Czech Republic, with 100 and 96% coverage, respectively. Then, the pathogenicity and immunogenicity of the E. intestinalis isolate were evaluated in specific pathogen free (SPF) rabbits. In the pathogenicity assay, SPF rabbits in four groups were infected with 5 × 10(3), 5 × 10(4), 5 × 10(5), and 0 sporulated oocysts, respectively. Clinical signs including diarrhoea, constipation, loss of appetite, and reduction of body weight gain were observed in rabbits inoculated with 5 × 10(4) and 5 × 10(5) oocysts. And one rabbit (25 %) inoculated with 5 × 10(5) oocysts died 15 days after the inoculation. In the immunogenicity assay, SPF rabbits in five groups (named B1, B2, B3, B4, and B5) were immunised with 5 × 10(1), 5 × 10(2), 5 × 10(3), 0, and 0 sporulated oocysts, respectively. All rabbits but the B5 group were challenged with 1 × 10(6) oocysts. After the challenge, no or slight clinical signs were seen in rabbits of the B2 and B3 groups. Compared with the control, a 69.6 and 84.5% reduction of oocyst output was observed in the B2 and B3 groups, respectively. The body weight gain of the two groups was obviously higher than that of the challenge control group. All the results show that the E. intestinalis isolate has low virulence but immunogenicity in rabbit.

  5. Verification of false-positive blood culture results generated by the BACTEC 9000 series by eubacterial 16S rDNA and panfungal 18S rDNA directed polymerase chain reaction (PCR).

    PubMed

    Daxboeck, Florian; Dornbusch, Hans Jürgen; Krause, Robert; Assadian, Ojan; Wenisch, Christoph

    2004-01-01

    A small but significant proportion of blood cultures processed by the BACTEC 9000 series systems is signaled positive, while subsequent Gram's stain and culture on solid media yield no pathogens. In this study, 15 "false-positive" vials (7 aerobes, 8 anaerobes) from 15 patients were investigated for the presence of bacteria and fungi by eubacterial 16S rDNA and panfungal 18S rDNA amplification, respectively. All samples turned out negative by both methods. Most patients (7) had neutropenia, which does not support the theory that high leukocyte counts enhance the generation of false-positive results. In conclusion, the results of this study indicate that false-negative results generated by the BACTEC 9000 series are inherent to the automated detection and not due to the growth of fastidious organisms.

  6. Population studies for STR loci (D3S1358, D5S818, D7S820, D18S51 and FGA) in NWFP and Sindhi populations of Pakistan for forensic use.

    PubMed

    Saqib Shahzad, M; Abbas Bokhari, S Yassir; Rao, Abdul Qayyum; Raza, M Hashim; Ullah, Obaid; Zia-Ur-rahman; Shahid, A Ali; Ahmad, Zahoor; Riazuddin, S

    2004-01-01

    CEMB's Forensic DNA typing project is directed towards the introduction of DNA typing technique in Pakistan's criminal justice system so as to exonerate an innocent and wrongly accused person and incriminates the culprit. The present study is a part of the project of CEMB to analyze Sindhi and NWFP (North West Frontier Province) populations for five STR (Short Tandem Repeat) loci out of 13 CODIS (Combined DNA Index System) loci. Allelic frequencies and heterozygosity for STR markers D3S1358, D5S818, D7S820, D18S51 and FGA (FIBRA) were determined. Samples from unrelated individuals were amplified by multiplex PCR using the unlabelled primers for these markers followed by denaturing Polyacrylamide Gel Electrophoresis (PAGE). Statistical analysis was performed to determine the allelic frequencies and was evaluated using the Chi Square Test.

  7. Crude Extracts, Flavokawain B and Alpinetin Compounds from the Rhizome of Alpinia mutica Induce Cell Death via UCK2 Enzyme Inhibition and in Turn Reduce 18S rRNA Biosynthesis in HT-29 Cells

    PubMed Central

    Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir

    2017-01-01

    Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer. PMID:28103302

  8. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA.

    PubMed

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio, Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group.

  9. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    USGS Publications Warehouse

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  10. Crude Extracts, Flavokawain B and Alpinetin Compounds from the Rhizome of Alpinia mutica Induce Cell Death via UCK2 Enzyme Inhibition and in Turn Reduce 18S rRNA Biosynthesis in HT-29 Cells.

    PubMed

    Malami, Ibrahim; Abdul, Ahmad Bustamam; Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir

    2017-01-01

    Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer.

  11. Phylogenetic Delineation of the Novel Phylum Armatimonadetes (Former Candidate Division OP10) and Definition of Two Novel Candidate Divisions

    PubMed Central

    Herbold, C. W.; Dunfield, P. F.; Morgan, X. C.; McDonald, I. R.; Stott, M. B.

    2013-01-01

    Small-subunit (SSU) rRNA gene sequences associated with the phylum Armatimonadetes were analyzed using multiple phylogenetic methods, clarifying both the phylum boundary and the affiliation of previously ambiguous groupings. Here we define the Armatimonadetes as 10 class-level groups and reclassify two previously associated groups as candidate divisions WS1 and FBP. PMID:23377935

  12. High-throughput amplicon sequencing reveals distinct communities within a corroding concrete sewer system.

    PubMed

    Cayford, Barry I; Dennis, Paul G; Keller, Jurg; Tyson, Gene W; Bond, Philip L

    2012-10-01

    Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages.

  13. Draft Genome Sequence of “Rathayibacter tanaceti” Strain VKM Ac-2596 Isolated from Tanacetum vulgare Infested by a Foliar Nematode

    PubMed Central

    Starodumova, Irina P.; Tarlachkov, Sergey V.; Dorofeeva, Lubov V.; Avtukh, Alexander N.; Evtushenko, Lyudmila I.

    2016-01-01

    The draft genome of “Rathayibacter tanaceti” VKM Ac-2596 is 3.17 Mb in size with an average G+C content of 70.7% and comprises at least two nonidentical copies of ribosomal small subunit (SSU-rRNA) genes. The semiconductor sequencing platform Ion Torrent was used. PMID:27313291

  14. High-Throughput Amplicon Sequencing Reveals Distinct Communities within a Corroding Concrete Sewer System

    PubMed Central

    Dennis, Paul G.; Keller, Jurg; Tyson, Gene W.

    2012-01-01

    Microbially induced concrete corrosion (MICC) is an important problem in sewers. Here, small-subunit (SSU) rRNA gene amplicon pyrosequencing was used to characterize MICC communities. Microbial community composition differed between wall- and ceiling-associated MICC layers. Acidithiobacillus spp. were present at low abundances, and the communities were dominated by other sulfur-oxidizing-associated lineages. PMID:22843532

  15. Detection of Cryptosporidium species in feces or gastric contents from snakes and lizards as determined by polymerase chain reaction analysis and partial sequencing of the 18S ribosomal RNA gene.

    PubMed

    Richter, Barbara; Nedorost, Nora; Maderner, Anton; Weissenböck, Herbert

    2011-05-01

    Cryptosporidiosis is a well-known gastrointestinal disease of snakes and lizards. In the current study, 672 samples (feces and/or gastric contents or regurgitated food items) of various snakes and lizards were examined for the presence of cryptosporidia by polymerase chain reaction (PCR) assay targeting a part of the 18S ribosomal RNA gene. A consecutive sequencing reaction was used to identify the cryptosporidian species present in PCR-positive samples. Cryptosporidium varanii (saurophilum) was detected in 17 out of 106 (16%) samples from corn snakes (Pantherophis guttatus) and in 32 out of 462 (7%) samples from leopard geckos (Eublepharis macularius). Cryptosporidium serpentis was found in 8 out of 462 (2%) leopard gecko samples, but in no other reptile. The Cryptosporidium sp. "lizard genotype" was present in 1 leopard gecko sample, and 1 sample from a corn snake showed a single nucleotide mismatch to this genotype. Pseudoparasitic cryptosporidian species were identified in 5 out of 174 (3%) ophidian samples, but not in lizards. Other sequences did not show complete similarity to previously published Cryptosporidium sequences. The results stress the importance for diagnostic methods to be specific for Cryptosporidium species especially in snakes and show a relatively high prevalence of C. varanii in leopard geckos and corn snakes.

  16. Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples

    PubMed Central

    Balzano, Sergio; Marie, Dominique; Gourvil, Priscillia; Vaulot, Daniel

    2012-01-01

    The composition of photosynthetic pico and nanoeukaryotes was investigated in the North East Pacific and the Arctic Ocean with special emphasis on the Beaufort Sea during the MALINA cruise in summer 2009. Photosynthetic populations were sorted using flow cytometry based on their size and pigment fluorescence. Diversity of the sorted photosynthetic eukaryotes was determined using terminal-restriction fragment length polymorphism analysis and cloning/sequencing of the 18S ribosomal RNA gene. Picoplankton was dominated by Mamiellophyceae, a class of small green algae previously included in the prasinophytes: in the North East Pacific, the contribution of an Arctic Micromonas ecotype increased steadily northward becoming the only taxon occurring at most stations throughout the Beaufort Sea. In contrast, nanoplankton was more diverse: North Pacific stations were dominated by Pseudo-nitzschia sp. whereas those in the Beaufort Sea were dominated by two distinct Chaetoceros species as well as by Chrysophyceae, Pelagophyceae and Chrysochromulina spp.. This study confirms the importance of Arctic Micromonas within picoplankton throughout the Beaufort Sea and demonstrates that the photosynthetic picoeukaryote community in the Arctic is much less diverse than at lower latitudes. Moreover, in contrast to what occurs in warmer waters, most of the key pico- and nanoplankton species found in the Beaufort Sea could be successfully established in culture. PMID:22278671

  17. Cytogenetic analysis of the tamaraw (Bubalus mindorensis): a comparison of R-banded karyotype and chromosomal distribution of centromeric satellite DNAs, telomeric sequence, and 18S-28S rRNA genes with domestic water buffaloes.

    PubMed

    Tanaka, K; Matsuda, Y; Masangkay, J S; Solis, C D; Anunciado, R V; Kuro-o, M; Namikawa, T

    2000-01-01

    The karyotype of the tamaraw (Bubalus mindorensis, 2n = 46) was investigated by RBG-banding technique and compared with those of the river and the swamp cytotypes of domestic water buffalo (B. bubalis). The tamaraw karyotype consisted of 6 submetacentric and 16 acrocentric autosome pairs (NAA = 56), and X and Y chromosomes. The RBG-banded karyotype of the three taxa had a high degree of homology, and the tamaraw karyotype could be explained by a Robertsonian translocation between chromosomes 7 and 15 and by a telomere-centromere tandem fusion between chromosomes 4p and 12 of the standardized river buffalo cytotype (2n = 50, NAA = 58). The buffalo satellite I and II DNAs were localized to the centromeric regions of all the tamaraw chromosomes. The biarmed chromosome 2 of the tamaraw resulting from the fusion between chromosomes 7 and 15 of the standard contained much larger amounts of the satellite I DNA than the other biarmed chromosomes, suggesting that this chromosome was formed by a relatively recent Robertsonian fusion. The (TTAGGG)n telomeric sequence was specifically localized to the telomeric region of all the buffalo chromosomes. The 18S + 28S rDNA was localized to the telomeric regions of the chromosomes 5p, 7, 19, 21, and 22 of the tamaraw and of their homologous chromosomes in the river and swamp buffalo cytotypes.

  18. Quantitative detection of Cryptosporidium oocyst in water source based on 18S rRNA by alternately binding probe competitive reverse transcription polymerase chain reaction (ABC-RT-PCR).

    PubMed

    Kishida, Naohiro; Miyata, Ryo; Furuta, Atsushi; Izumiyama, Shinji; Tsuneda, Satoshi; Sekiguchi, Yuji; Noda, Naohiro; Akiba, Michihiro

    2012-01-01

    We describe an assay for simple and cost-effective quantification of Cryptosporidium oocysts in water samples using a recently developed quantification method named alternately binding probe competitive PCR (ABC-PCR). The assay is based on the detection of 18S rRNA specific for Cryptosporidium oocysts. The standard curve of the ABC-PCR assay had a good fitting to a rectangular hyperbola with a correlation coefficient (R) of 0.9997. Concentrations of Cryptosporidium oocysts in real river water samples were successfully quantified by the ABC-reverse transcription (RT)-PCR assay. The quantified values by the ABC-RT-PCR assay very closely resemble those by the real-time RT-PCR assay. In addition, the quantified concentration in most water samples by the ABC-RT-PCR assay was comparable to that by conventional microscopic observation. Thus, Cryptosporidium oocysts in water samples can be accurately and specifically determined by the ABC-RT-PCR assay. As the only equipment that is needed for this end-point fluorescence assay is a simple fluorometer and a relatively inexpensive thermal cycler, this method can markedly reduce time and cost to quantify Cryptosporidium oocysts and other health-related water microorganisms.

  19. Chromosome studies of Astyanax jacuhiensis Cope, 1894 (Characidae) from the Tramandai River Basin, Brazil, using in situ hybridization with the 18S rDNA probe, DAPI and CMA3 staining.

    PubMed

    da Silva, Laura Lahr Lourenço; Giuliano-Caetano, Lucia; Dias, Ana Lúcia

    2012-01-01

    The genus Astyanax comprises 86 species of fish distributed in Brazilian river basins and is considered of the Incertae sedis group within the family Characidae. This study presents an analysis of 12 specimens of Astyanax jacuhiensis from the Tramandai River Basin, RS Brazil: 6 from the Maquiné River and 6 from the Quadros Lagoon. All specimens showed a diploid number equal to 50 chromosomes with different karyotypic formula between the two localities. The population from the Maquiné River showed 10m+26sm+6st+8a (FN=92). Fish from the Quadros Lagoon showed 12m+20sm+6st+12a (FN=88). AgNORs were evidenced in the short arm of one acrocentric chromosome pair in both populations, confirmed by FISH with the 18S rDNA probe. CMA3 fluorochrome corresponded with the AgNOR sites, while DAPI staining was negative in these regions. C banding revealed that heterochromatin was weakly distributed, mainly in the pericentromeric and terminal regions in most chromosomes. Analyses of male gonadal tissue were conducted with the objective of characterizing the meiotic chromosome behavior in A. jacuhiensis. The following stages were evidenced: spermatogonial with 50 chromosomes, pachytene and metaphase I with 25 bivalents, and metaphase II with 25 chromosomes, thus confirming the diploid number of the species. Chromosomal abnormalities were not observed. This study shows preliminary data on A. jacuhiensis from the Tramandai River Basin, contributing with more chromosomal information for this group of fish.

  20. Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Lu, Xinxin; Mou, Xiaozhen; Ashbolt, Nicholas J

    2014-05-01

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, yet knowledge about the microbial composition of DW biofilms developed on common in-premise plumbing material is limited. Utilizing 16S and 18S rRNA gene pyrosequencing, this study characterized the microbial community structure within DW biofilms established on unplasticized polyvinyl chloride (uPVC) and copper (Cu) surfaces and the impact of introducing Legionella pneumophila (Lp) and Acanthamoeba polyphaga. Mature (> 1 year old) biofilms were developed before inoculation with sterilized DW (control, Con), Lp, or Lp and A. polyphaga (LpAp). Comparison of uPVC and Cu biofilms indicated significant differences between bacterial (P = 0.001) and eukaryotic (P < 0.01) members attributable to the unique presence of several family taxa: Burkholderiaceae, Characeae, Epistylidae, Goniomonadaceae, Paramoebidae, Plasmodiophoridae, Plectidae, Sphenomonadidae, and Toxariaceae within uPVC biofilms; and Enterobacteriaceae, Erythrobacteraceae, Methylophilaceae, Acanthamoebidae, and Chlamydomonadaceae within Cu biofilms. Introduction of Lp alone or with A. polyphaga had no effect on bacterial community profiles (P > 0.05) but did affect eukaryotic members (uPVC, P < 0.01; Cu, P = 0.001). Thus, established DW biofilms host complex communities that may vary based on substratum matrix and maintain consistent bacterial communities despite introduction of Lp, an environmental pathogen.

  1. Conformation of yeast 18S rRNA. Direct chemical probing of the 5' domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible.

    PubMed Central

    Lempereur, L; Nicoloso, M; Riehl, N; Ehresmann, C; Ehresmann, B; Bachellerie, J P

    1985-01-01

    The structure of the 5' domain of yeast 18S rRNA has been probed by dimethyl sulfate (DMS), either in "native" deproteinized molecules or in the 40S ribosomal subunits. DMS-reacted RNA has been used as a template for reverse transcription and a large number of reactive sites, corresponding to all types of bases have been mapped by a primer extension procedure, taking advantage of blocks in cDNA elongation immediately upstream from bases methylated at atom positions involved in the base-pair recognition of the template. Since the same atom positions are protected from DMS in base-paired nucleotides, the secondary structure status of each nucleotide can be directly assessed in this procedure, thus allowing to evaluate the potential contribution of proteins in modulating subunit rRNA conformation. While the DMS probing of deproteinized rRNA confirms a number of helical stems predicted by phylogenetic comparisons, it is remarkable that a few additional base-pairings, while proven by the comparative analysis, appear to require the presence of the bound ribosomal subunit proteins to be stabilized. Images PMID:2417197

  2. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons

    PubMed Central

    Qi, Xiemin; Liu, Biao; Song, Qinxin; Zou, Bingjie; Bu, Ying; Wu, Haiping; Ding, Li; Zhou, Guohua

    2016-01-01

    Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line. PMID:27462344

  3. 18S Ribosomal DNA Typing and Tracking of Acanthamoeba Species Isolates from Corneal Scrape Specimens, Contact Lenses, Lens Cases, and Home Water Supplies of Acanthamoeba Keratitis Patients in Hong Kong

    PubMed Central

    Booton, G. C.; Kelly, D. J.; Chu, Y.-W.; Seal, D. V.; Houang, E.; Lam, D. S. C.; Byers, T. J.; Fuerst, P. A.

    2002-01-01

    We examined partial 18S ribosomal DNA (Rns) sequences of Acanthamoeba isolates cultured in a study of microbial keratitis in Hong Kong. Sequence differences were sufficient to distinguish closely related strains and were used to examine links between strains obtained from corneal scrape specimens, contact lenses, lens cases, lens case solutions, and home water-supply faucets of patients with Acanthamoeba. We also looked for evidence of mixed infections. Identification of Acanthamoeba Rns genotypes was based on sequences of ∼113 bp within the genus-specific amplicon ASA.S1. This permitted genotype identification by using nonaxenic cultures. Of 13 specimens obtained from corneal scrapes, contact lenses, lens cases, or lens case solutions, 12 were Rns genotype T4 and the remaining one was Rns genotype T3. The sequences of corneal scrape specimens of two patients also were the same as those obtained from their contact lenses or lens case specimens. A possible triple-strain infection was indicated by three different T4 sequences in cultures from one patient's lenses. Although faucet water used by patients to clean their lenses is a possible source of infections, specimens isolated from the faucets at two Acanthamoeba keratitis patients' homes differed from their corneal scrape or lens specimens. The overall results demonstrate the potential of this Rns region for tracking Acanthamoeba keratitis strains in infections and for distinguishing single-strain and closely related multiple-strain infections even when other microorganisms might be present with the cultured specimens. They also confirm the predominance of Rns genotype T4 strains in Acanthamoeba keratitis infections. PMID:11980931

  4. 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong.

    PubMed

    Booton, G C; Kelly, D J; Chu, Y-W; Seal, D V; Houang, E; Lam, D S C; Byers, T J; Fuerst, P A

    2002-05-01

    We examined partial 18S ribosomal DNA (Rns) sequences of Acanthamoeba isolates cultured in a study of microbial keratitis in Hong Kong. Sequence differences were sufficient to distinguish closely related strains and were used to examine links between strains obtained from corneal scrape specimens, contact lenses, lens cases, lens case solutions, and home water-supply faucets of patients with Acanthamoeba. We also looked for evidence of mixed infections. Identification of Acanthamoeba Rns genotypes was based on sequences of approximately 113 bp within the genus-specific amplicon ASA.S1. This permitted genotype identification by using nonaxenic cultures. Of 13 specimens obtained from corneal scrapes, contact lenses, lens cases, or lens case solutions, 12 were Rns genotype T4 and the remaining one was Rns genotype T3. The sequences of corneal scrape specimens of two patients also were the same as those obtained from their contact lenses or lens case specimens. A possible triple-strain infection was indicated by three different T4 sequences in cultures from one patient's lenses. Although faucet water used by patients to clean their lenses is a possible source of infections, specimens isolated from the faucets at two Acanthamoeba keratitis patients' homes differed from their corneal scrape or lens specimens. The overall results demonstrate the potential of this Rns region for tracking Acanthamoeba keratitis strains in infections and for distinguishing single-strain and closely related multiple-strain infections even when other microorganisms might be present with the cultured specimens. They also confirm the predominance of Rns genotype T4 strains in Acanthamoeba keratitis infections.

  5. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  6. Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp. nov. (genotype T19).

    PubMed

    Corsaro, Daniele; Walochnik, Julia; Köhsler, Martina; Rott, Marilise B

    2015-07-01

    Acanthamoeba species are ubiquitous amoebae able to cause important infections in humans and other vertebrates. The full/near-full sequences (>2000 bp) of the small subunit ribosomal RNA gene (SSU rDNA or 18S rDNA) are used to cluster Acanthamoeba as genotypes, labeled T1 to T20. Genotype T15 remains an exception, being described only partially on a 1500-bp fragment. Strains are thus usually identified based on their 18S identity matches with reference strains, often using shorter (<500 bp) diagnostic fragments of the gene. Nevertheless, short fragments (<1000 bp) have been used to propose genotypes. This has been criticized, and doubts arise therefore on possible confusion leading to classify distinct partial sequences with a same label(s). We demonstrate herein that several partial sequences misassigned either to T16 or to T4, actually belong to at least two separate and distinct genotypes. We obtained the full 18S rDNA of a strain previously typed as T16 on the basis of a small fragment and demonstrated that it actually belongs to the recently described T19. We propose the name Acanthamoeba micheli sp. nov., for this strain. Furthermore, partial molecular phylogenies were performed to show that several other misassigned T16 partial sequences belong to a new genotype. This latter includes also misassigned T4 partial sequences, only recently available as full sequences and labeled as T20. We thus reassign these partial sequences to the genotype T20. Longer sequences, ideally at least 90 % of the total gene length, should be obtained from strains to ensure reliable diagnostic and phylogenetic results.

  7. Detection of Giardia duodenalis assemblage E infections at the Tibetan Plateau Area: Yaks are suitable hosts.

    PubMed

    Wang, Guanghua; Wang, Ge-Ping; Li, Xiu-Ping; Ma, Li-Qing; Karanis, Gabriele; Christodoulou-Vafeiadou, Eleni; Karanis, Panagiotis

    2017-05-01

    The prevalence of Giardia duodenalis (G. duodenalis) assemblages in yaks is poorly known. The present study examined 297 fecal samples from weaned yak, 4-7 months of age, from 3 different farms, in Tibetan Plateau Area (TPA) of the Qinghai Province in Western China. The prevalence of infection was determined by light and immunofluorescence microscopy, and nested-PCR. PCR was performed for the small subunit ribosomal RNA (SSU) amplified 16 positive for G. duodenalis products. The prevalence of Giardia species was 5.0% (15/297) on light microscopic analysis, 6.1% (18/297) on immunofluorescence test (IFT) and 5.4% (16/297) on nested-PCR. The overall prevalence with the three methods was 5.5%. Ten of the 16 PCR products have been successfully sequenced. Sequence results and phylogenetic analysis of the 18S rRNA sequence data using MEGA5.0 and DNAstar7.0 identified all samples of interest as G. duodenalis assemblage E. This study revealed for the first time the presence of G. duodenalis in yaks from the Qinghai province in China and confirmed that yak is a suitable host for Giardia parasites. The results provide useful information about G. duodenalis prevalence and the epidemiological significance of yak a suitable host to harbor Giardia infections.

  8. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data.

    PubMed

    Bengtsson-Palme, Johan; Hartmann, Martin; Eriksson, Karl Martin; Pal, Chandan; Thorell, Kaisa; Larsson, Dan Göran Joakim; Nilsson, Rolf Henrik

    2015-11-01

    The ribosomal rRNA genes are widely used as genetic markers for taxonomic identification of microbes. Particularly the small subunit (SSU; 16S/18S) rRNA gene is frequently used for species- or genus-level identification, but also the large subunit (LSU; 23S/28S) rRNA gene is employed in taxonomic assignment. The METAXA software tool is a popular utility for extracting partial rRNA sequences from large sequencing data sets and assigning them to an archaeal, bacterial, nuclear eukaryote, mitochondrial or chloroplast origin. This study describes a comprehensive update to METAXA - METAXA2 - that extends the capabilities of the tool, introducing support for the LSU rRNA gene, a greatly improved classifier allowing classification down to genus or species level, as well as enhanced support for short-read (100 bp) and paired-end sequences, among other changes. The performance of METAXA2 was compared to other commonly used taxonomic classifiers, showing that METAXA2 often outperforms previous methods in terms of making correct predictions while maintaining a low misclassification rate. METAXA2 is freely available from http://microbiology.se/software/metaxa2/.

  9. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny.

    PubMed

    Gugerli, F; Sperisen, C; Büchler, U; Brunner, I; Brodbeck, S; Palmer, J D; Qiu, Y L

    2001-11-01

    The second intron in the mitochondrial gene nad1 was surveyed using PCR, DNA sequencing, or Southern hybridization in 323 species (313 genera, 212 families) of seed plants. The intron was absent in all 22 species (22 genera, 8 families) of non-Pinaceae conifers studied, in Welwitschia mirabilis, and in seven angiosperms. Whereas absence of the intron in seven angiosperms and Welwitschia is likely due to seven independent losses when evaluated against the recently published multigene phylogenies, the lack of the intron in all non-Pinaceae conifers can be best explained by a single loss. These data suggest that the non-Pinaceae conifers represent a monophyletic group. We also conducted a phylogenetic analysis of seed plants using a combined data set of the partial exon and intron sequences of nad1 generated from this study and published sequences of mitochondrial cox1 and small subunit (SSU) rDNA, chloroplast rbcL, and nuclear 18S rDNA. The results supported the split of conifers into two groups: Pinaceae and non-Pinaceae conifers. The Gnetales were sister to Pinaceae, in agreement with the conclusion from other recent molecular phylogenetic studies that refute the anthophyte hypothesis.

  10. Acanthamoeba everywhere: high diversity of Acanthamoeba in soils.

    PubMed

    Geisen, Stefan; Fiore-Donno, Anna Maria; Walochnik, Julia; Bonkowski, Michael

    2014-09-01

    Acanthamoeba is a very abundant genus of soil protists with fundamental importance in nutrient cycling, but several strains can also act as human pathogens. The systematics of the genus is still unclear: currently 18 small-subunit (SSU or 18S) ribosomal RNA sequence types (T1-T18) are recognized, which sometimes contain several different morphotypes; on the other hand, some morphological identical strains belong to different sequence types, sometimes appearing in paraphyletic positions. In this study, we cultivated 65 Acanthamoeba clones from soil samples collected under grassland at three separate locations in the Netherlands, in Sardinia and at high altitude mountains in Tibet. We obtained 24 distinct partial sequences, which predominantly grouped within sequence type T4 followed by T2, T13, T16 and "OX-1" (in the T2/T6 clade). Our sequences were 98-99% similar, but none was identical to already known Acanthamoeba sequences. The community composition of Acanthamoeba strains differed between locations, T4 being the dominant sequence type in Sardinia and Tibet, but represented only half of the clones from soils in the Netherlands. The other half of clones from the Dutch soils was made up by T2, T16 and "OX-1", while T13 was only found in Sardinia and Tibet. None of the sequences was identical between localities. Several T4 clones from all three localities and all T13 clones grew at 37 °C while one T4 clone was highly cytopathogenic.

  11. A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei

    PubMed Central

    Fleming, Ian M. C.; Paris, Zdeněk; Gaston, Kirk W.; Balakrishnan, R.; Fredrick, Kurt; Rubio, Mary Anne T.; Alfonzo, Juan D.

    2016-01-01

    Most eukaryotic ribosomes contain 26/28S, 5S, and 5.8S large subunit ribosomal RNAs (LSU rRNAs) in addition to the 18S rRNA of the small subunit (SSU rRNA). However, in kinetoplastids, a group of organisms that include medically important members of the genus Trypanosoma and Leishmania, the 26/28S large subunit ribosomal RNA is uniquely composed of 6 rRNA fragments. In addition, recent studies have shown the presence of expansion segments in the large ribosomal subunit (60S) of Trypanosoma brucei. Given these differences in structure, processing and assembly, T. brucei ribosomes may require biogenesis factors not found in other organisms. Here, we show that one of two putative 3-methylcytidine methyltransferases, TbMTase37 (a homolog of human methyltransferase-like 6, METTL6), is important for ribosome stability in T. brucei. TbMTase37 localizes to the nucleolus and depletion of the protein results in accumulation of ribosomal particles lacking srRNA 4 and reduced levels of polysome associated ribosomes. We also find that TbMTase37 plays a role in cytokinesis, as loss of the protein leads to multi-flagellated and multi-nucleated cells. PMID:26888608

  12. Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

    PubMed Central

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered. PMID:25289639

  13. Choreography of molecular movements during ribosome progression along mRNA.

    PubMed

    Belardinelli, Riccardo; Sharma, Heena; Caliskan, Neva; Cunha, Carlos E; Peske, Frank; Wintermeyer, Wolfgang; Rodnina, Marina V

    2016-04-01

    During translation elongation, ribosome translocation along an mRNA entails rotations of the ribosomal subunits, swiveling motions of the small subunit (SSU) head and stepwise movements of the tRNAs together with the mRNA. Here, we reconstructed the choreography of the collective motions of the Escherichia coli ribosome during translocation promoted by elongation factor EF-G, by recording the fluorescence signatures of nine different reporters placed on both ribosomal subunits, tRNA and mRNA. We captured an early forward swiveling of the SSU head taking place while the SSU body rotates in the opposite, clockwise direction. Backward swiveling of the SSU head starts upon tRNA translocation and continues until the post-translocation state is reached. This work places structures of translocation intermediates along a time axis and unravels principles of the motions of macromolecular machines.

  14. IDENTIFICATION OF CRYPTOSPORIDIUM SPECIES AND SOURCES IN RAW WASTEWATER USING A SMALL SUBUNIT RRNA-BASED PCR-RFLP TOOL

    EPA Science Inventory

    The species composition and source of Cryptosporidium oocysts in wastewater have never been determined, even though it is widely assumed that these oocysts are from human sewage. Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate hum...

  15. Preparation of polyclonal antibodies of Rubisco large and small subunits and their application in the functional analysis of the genes.

    PubMed

    Ma, Peng-Da; Lu, Tian-Cheng; Zhou, Xiao-Fu; Zhu, Xiao-Juan; Wang, Xing-Zhi

    2004-09-01

    Spinach Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) large (rbcL) and small (rbcS) subunits were separated by SDS-PAGE, and protein amount and purity were determined by Bradford assay. Polyclonal antibodies against rbcL and rbcS subunit were generated in female BALB/c mice and had no cross-reaction with each other. A total of 81 microg antigens were used and 0.3 ml anti-sera with titer of 1:5000 were yielded. The antibodies were also applicable to study rbcL and rbcS in tobacco plant Nicotiana benthamiana. Potato virus X vector pGR107 induced silencing of rbcS gene by Agrobacterium in Nicotiana benthamiana was performed. The expression level of rbcL and rbcS was lower in rbcS silenced plants than that in control plants as detected by the corresponding antibodies. This implied that the expression of rbcL was regulated by rbcS.

  16. Phytoplankton distribution patterns in the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids

    PubMed Central

    Treusch, Alexander H; Demir-Hilton, Elif; Vergin, Kevin L; Worden, Alexandra Z; Carlson, Craig A; Donatz, Michael G; Burton, Robert M; Giovannoni, Stephen J

    2012-01-01

    Phytoplankton species vary in their physiological properties, and are expected to respond differently to seasonal changes in water column conditions. To assess these varying distribution patterns, we used 412 samples collected monthly over 12 years (1991–2004) at the Bermuda Atlantic Time-Series Study site, located in the northwestern Sargasso Sea. We measured plastid 16S ribosomal RNA gene abundances with a terminal restriction fragment length polymorphism approach and identified distribution patterns for members of the Prymnesiophyceae, Pelagophyceae, Chrysophyceae, Cryptophyceae, Bacillariophyceae and Prasinophyceae. The analysis revealed dynamic bloom patterns by these phytoplankton taxa that begin early in the year, when the mixed layer is deep. Previously, unreported open-ocean prasinophyte blooms dominated the plastid gene signal during convective mixing events. Quantitative PCR confirmed the blooms and transitions of Bathycoccus, Micromonas and Ostreococcus populations. In contrast, taxa belonging to the pelagophytes and chrysophytes, as well as cryptophytes, reached annual peaks during mixed layer shoaling, while Bacillariophyceae (diatoms) were observed only episodically in the 12-year record. Prymnesiophytes dominated the integrated plastid gene signal. They were abundant throughout the water column before mixing events, but persisted in the deep chlorophyll maximum during stratified conditions. Various models have been used to describe mechanisms that drive vernal phytoplankton blooms in temperate seas. The range of taxon-specific bloom patterns observed here indicates that different ‘spring bloom' models can aptly describe the behavior of different phytoplankton taxa at a single geographical location. These findings provide insight into the subdivision of niche space by phytoplankton and may lead to improved predictions of phytoplankton responses to changes in ocean conditions. PMID:21955994

  17. Phytoplankton distribution patterns in the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids.

    PubMed

    Treusch, Alexander H; Demir-Hilton, Elif; Vergin, Kevin L; Worden, Alexandra Z; Carlson, Craig A; Donatz, Michael G; Burton, Robert M; Giovannoni, Stephen J

    2012-03-01

    Phytoplankton species vary in their physiological properties, and are expected to respond differently to seasonal changes in water column conditions. To assess these varying distribution patterns, we used 412 samples collected monthly over 12 years (1991-2004) at the Bermuda Atlantic Time-Series Study site, located in the northwestern Sargasso Sea. We measured plastid 16S ribosomal RNA gene abundances with a terminal restriction fragment length polymorphism approach and identified distribution patterns for members of the Prymnesiophyceae, Pelagophyceae, Chrysophyceae, Cryptophyceae, Bacillariophyceae and Prasinophyceae. The analysis revealed dynamic bloom patterns by these phytoplankton taxa that begin early in the year, when the mixed layer is deep. Previously, unreported open-ocean prasinophyte blooms dominated the plastid gene signal during convective mixing events. Quantitative PCR confirmed the blooms and transitions of Bathycoccus, Micromonas and Ostreococcus populations. In contrast, taxa belonging to the pelagophytes and chrysophytes, as well as cryptophytes, reached annual peaks during mixed layer shoaling, while Bacillariophyceae (diatoms) were observed only episodically in the 12-year record. Prymnesiophytes dominated the integrated plastid gene signal. They were abundant throughout the water column before mixing events, but persisted in the deep chlorophyll maximum during stratified conditions. Various models have been used to describe mechanisms that drive vernal phytoplankton blooms in temperate seas. The range of taxon-specific bloom patterns observed here indicates that different 'spring bloom' models can aptly describe the behavior of different phytoplankton taxa at a single geographical location. These findings provide insight into the subdivision of niche space by phytoplankton and may lead to improved predictions of phytoplankton responses to changes in ocean conditions.

  18. NRF-1, and AP-1 regulate the promoter of the human calpain small subunit 1 (CAPNS1) gene.

    PubMed

    Asangani, Irfan A; Rasheed, Suhail A K; Leupold, Jörg H; Post, Stefan; Allgayer, Heike

    2008-02-29

    Ubiquitously expressed micro- and m-calpain are cysteine proteases with broad functions in cell spreading, migration, proliferation, apoptosis, and in tumor invasion. They are heterodimers, with a distinct large 80-kDa catalytic, and a common small 28-kDa regulatory subunit (Capn4/CAPNS1). CAPNS1 is required to maintain stability and activity of both calpains. Despite its biological importance, the transcriptional regulation of this gene has not been studied, and the CAPNS1 promoter has not yet been characterized. In this study, we identified the main transcriptional start site, and cloned and characterized the ~2.0 kb upstream region of the CAPNS1 gene. Deletion analysis identified the core promoter located within region -187/+174. Site-directed mutagenesis, EMSA- and supershift analysis identified Sp1-, NRF-1-, and AP-1-binding elements within the CAPNS1 core promoter. Binding of NRF-1, Sp1 and AP-1 to the natural core promoter was confirmed by chromatin immunoprecipitation (ChIP). Site-directed mutagenesis at the NRF-1 site in HeLa and MCF7 cells substantially reduced core promoter activity by 70%, whereas mutation of the AP-1-binding and Sp1-binding site reduced promoter activity by 50% and 30%, respectively. Double mutation of the NRF-1 and the AP-1 site reduced promoter activity by 90%. In Drosophila SL2 cells, ectopic expression of NRF-1 led to a significant induction of CAPNS1 promoter activity. Furthermore, an siRNA against NRF-1 substantially reduced promoter activity in HeLa cells, which was paralleled by a significant downregulation of CAPNS1 mRNA. These results reveal that especially NRF-1, along with AP-1 and, to a minor extent, an Sp1 site, is essential for human CAPNS1 promoter activity and gene expression.

  19. Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three stunt nematode species, Tylenchorhynchus leviterminalis, T. claytoni and Bitylenchus dubius were characterized with segments of small subunit 18S and large subunit 28S rDNA sequences and placed in molecular phylogenetic context with other taxa of Telotylechidae in GenBank. In 18S trees, the sp...

  20. Heterogeneous rates of molecular evolution among cryptic species of the ciliate morphospecies Chilodonella uncinata

    PubMed Central

    Katz, Laura A.; DeBerardinis, Jennifer; Hall, Meaghan S.; Kovner, Alexandra M.; Dunthorn, Micah; Muse, Spencer V.

    2012-01-01

    While molecular analyses have provided insight into the phylogeny of ciliates, the few studies assessing intraspecific variation have largely relied on just a single locus (e.g. nuclear small subunit rDNA (nSSU-rDNA) or mitochondrial cytochrome oxidase I). In this study, we characterize the diversity of several nuclear protein-coding genes plus both nSSU-rDNA and mitochondrial small subunit rDNA (mtSSU-rDNA) of five isolates of the ciliate morphospecies Chilodonella uncinata. Although these isolates have nearly identical nSSU-rDNA sequences, they differ by up to 8.0% in mtSSU-rDNA. Comparative analyses of all loci, including β-tubulin paralogs, indicate a lack of recombination between strains, demonstrating that the morphospecies C. uncinata consists of multiple cryptic species. Further, there is considerable variation in substitution rates among loci as some protein-coding domains are nearly identical between isolates while others differ by up to 13.2% at the amino acid level. Combining insights on macronuclear variation among isolates, the focus of this study, with published data from the micronucleus of two of these isolates indicates that C. uncinata lineages are able to maintain both highly divergent and highly conserved genes within a rapidly evolving germline genome. PMID:22258433

  1. Myxobolus chushi n. sp. (Myxozoa:Myxosporea) parasitizing Schizothorax niger (Heckel), a native cyprinid fish from Wullar Lake in Kashmir Himalayas.

    PubMed

    Dar, Shoaib Ali; Kaur, Harpreet; Chishti, M Z

    2017-02-21

    In the study, a new species, Myxobolus chushi n. sp. infecting gills of wild specimens of Schizothorax niger (Heckel) inhabiting Wullar Lake in Kashmir Himalayas, (J&K) India has been described based on morphology of the myxospore and using partial 18S rDNA sequencing. Pathological changes in the gills have been studied with the help of histological sections stained with Luna's method. Twenty fish specimens were examined, out of which four had oval, white plasmodia in gills measuring 2.0×0.5mm. The myxospores were spherical to ovoidal in shape with slightly attenuated posterior end, measuring 11.17±0.23 (10.60-11.40)μm in length and 9.14±0.06 (8.80-9.20)μm in width, having a prominent pore at the anterior end. The polar capsules were pyriform in shape, measuring 4.25±0.15 (4.00-4.40)μm in length and 2.38±0.27 (2.00-2.65)μm in width having polar filaments forming coils up to 5 in number. Parietal folds 9 in number present on the posterior part of the shell. The intensity of infection was recorded to be moderate as indicated by gill plasmodial index (GPI=2). The plasmodium was located in the vascular network occupying whole of the gill lamella therefore typed as intralamellar vascular type, LV3. Analysis of 18S small subunit (SSU) rDNA sequence of the isolate demonstrated 90% homogeneity with M. sp. KLT-2014 infecting scales of Labeo rohita from Myanmar and 89% with M. dermiscalis infecting scales of Labeo rohita from India.

  2. Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen. nov., a new member of the Saccharomycetales.

    PubMed

    Kurtzman, Cletus P; Robnett, Christie J

    2010-05-01

    The relatedness among methanol-assimilating yeasts assigned to the genus Ogataea and neighboring taxa (Phylum Ascomycota, Subphylum Saccharomycotina, Class Saccharomycetes, Order Saccharomycetales) was determined from phylogenetic analyses of gene sequences for nuclear large and small subunit (SSU) rRNAs, translation elongation factor-1alpha and mitochondrial SSU rRNA. On the basis of the analyses, Williopsis salicorniae and seven species of Pichia are proposed for transfer to the genus Ogataea, which has been emended, and Pichia angophorae, a nonhyphal species, is proposed for transfer to the mycelium forming genus Ambrosiozyma. Pichia toletana and Pichia xylosa form an independent lineage and are assigned to the genus Peterozyma, which is newly proposed.

  3. A molecular perspective on ecological differentiation and biogeography of cyclotrichiid ciliates.

    PubMed

    Bass, David; Brown, Nick; Mackenzie-Dodds, Jackie; Dyal, Patricia; Nierzwicki-Bauer, Sandra A; Vepritskiy, Alexey A; Richards, Thomas A

    2009-01-01

    Cyclotrichiids are of ecological and evolutionary interest by virtue of their importance in red tide formation, their highly divergent small subunit (SSU) ribosomal RNA (rRNA) genes, kleptoplastidy, and utility as indicators of eutrophication. However, only seven strains have had their SSU rRNA genes sequenced and their environmental diversity and distribution are largely unknown. We probed 67 globally dispersed freshwater column/sediment and soil DNA samples (eDNAs) and constructed 24 environmental gene libraries using polymerase chain reaction primers specific to an uncharacterised cyclotrichiid subgroup. We reveal a novel, globally ubiquitous freshwater clade comprising 25 genetically distinct SSU ribosomal DNA (rDNA) sequences (SSU-types). Some identical SSU-types were detected at globally widely distributed sites. The SSU-types form four distinct phylogenetic clusters according to marine or non-marine provenance, suggesting at least one major marine-freshwater evolutionary transition within the cyclotrichiids. We used the same primers to sample intensively 18 sampling points in 13 closely situated lakes, each characterised by 14 environmental variables, and showed that molecular detection or non-detection of cyclotrichiids was most significantly influenced by levels of total phosphorus, dissolved organic carbon, and chlorophyll a. Within the subset of lakes in which cyclotrichiids were detected, closely related SSU-types differed in their ecological preferences to pH, total phosphorus, and sample depth.

  4. The effects of sulfur intercalation on the optical properties of artificial `hackmanite', Na8[Al6Si6O24]Cl1.8S0.1; `sulfosodalite', Na8[Al6Si6O24]S; and natural tugtupite, Na8[Be2Al2Si8O24](Cl,S)2-δ

    NASA Astrophysics Data System (ADS)

    Warner, T. E.; Hutzen Andersen, J.

    2012-02-01

    The minerals `hackmanite' and tugtupite exhibit tenebrescence (reversible photochromism) and photoluminescence. These features are generally attributed to the presence of sulfide species within their structures. But how these optical properties might be affected by intercalating additional amounts of sulfur into their structures was until now unknown. Artificial `hackmanite', Na8[Al6Si6O24]Cl1.8S0.1, and `sulfosodalite', Na8[Al6Si6O24]S, were heated with sulfur in evacuated quartz-glass ampoules over the temperature range 450-1,050°C. This work has shown that sulfur intercalation into Na8[Al6Si6O24]Cl1.8S0.1 destroys the tenebrescence and induces a permanently pale blue and, at higher temperature, a pale green coloration. The effect on Na8[Al6Si6O24]S induced similar colorations but of a deeper hue. Annealing tugtupite, Na8[Be2Al2Si8O24](Cl,S)2-δ under a sulfur atmosphere over the range 600-700°C, destroyed the tenebrescence and resulted in a colorless tugtupite; but did not effect the photoluminescence. This suggests that the chemical species responsible for the tenebrescence in tugtupite is unlikely to be the same as that for the luminescence.

  5. Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization.

    PubMed

    Koizumi, Yoshikazu; Kojima, Hisaya; Fukui, Manabu

    2004-08-01

    Vertical distributions of dominant bacterial populations in saline meromictic Lake Kaiike were investigated throughout the water column and sediment by quantitative oligonucleotide probe membrane hybridization. Three oligonucleotide probes specific for the small-subunit (SSU) rRNA of three groups of Chlorobiaceae were newly designed. In addition, three general domain (Bacteria, Archaea, and Eukarya)-specific probes, two delta-Proteobacteria-specific probes, a Chlorobiaceae-specific probe, and a Chloroflexi-specific probe were used after optimization of their washing conditions. The abundance of the sum of SSU rRNAs hybridizing with probes specific for three groups of Chlorobiaceae relative to total SSU rRNA peaked in the chemocline, accounting for up to 68%. The abundance of the delta-proteobacterial SSU rRNA relative to total SSU rRNA rapidly increased just below the chemocline up to 29% in anoxic water and peaked at the 2- to 3-cm sediment depth at ca. 34%. The abundance of SSU rRNAs hybridizing with the probe specific for the phylum Chloroflexi relative to total SSU rRNA was highest (31 to 54%) in the top of the sediment but then steeply declined with depth and became stable at 11 to 19%, indicating the robust coexistence of sulfate-reducing bacteria and Chloroflexi in the top of the sediment. Any SSU rRNA of Chloroflexi in the water column was under the detection limit. The summation of the signals of group-specific probes used in this study accounted for up to 89% of total SSU rRNA, suggesting that the DGGE-oligonucleotide probe hybridization approach, in contrast to conventional culture-dependent approaches, was very effective in covering dominant populations.

  6. Application of peptide nucleic acid (PNA)-PCR clamping technique to investigate the community structures of rhizobacteria associated with plant roots.

    PubMed

    Sakai, Masao; Ikenaga, Makoto

    2013-03-01

    The contamination of plant organelle (mitochondria and plastid) genes in the DNA extraction step becomes a major drawback in investigating the community structures of bacteria associated with plant samples. This is because organelle small subunit ribosomal RNA (SSU rRNA) genes are easily amplified by polymerase chain reaction (PCR) with a set of universal primers for bacteria. To suppress the PCR amplification of the organelle SSU rRNA genes, a peptide nucleic acid (PNA)-PCR clamping technique was applied for selective amplification of bacterial SSU rRNA genes. The PNA oligomers, which had sequences that were complementary to mitochondria and plastid SSU rRNA genes, were designed to overlap the region in the 1492r primer-binding site. PCR with the PNA oligomers significantly suppressed the amplification of the organelle SSU rRNA genes from spinach and cucumber roots. Terminal restriction fragment length polymorphism (T-RFLP) analysis showed that the conventional amplification without PNA oligomers generated the predominant T-RFLP fragments derived from mitochondria and plastids, whereas there was little detection of the rhizobacterial fragments. In contrast, several other T-RFLP fragments derived from rhizobacteria were detected in the products amplified with PNA oligomers, thereby enabling us to differentiate the community structures in spinach and cucumber roots. Thus, application of PNA-PCR clamping was considered to be effective and is a useful technique to amplify the rhizobacterial SSU rRNA genes from selectively extracted DNA containing plant mitochondria and plastid genes.

  7. Morphological and molecular characterization of Pseudocohnilembus longisetus Thompson, 1965 from farmed black rockfish Sebastes schlegelii in Korea.

    PubMed

    Whang, Ilson; Kang, Hyun-Sil; Lee, Jehee

    2011-06-30

    The morphology, infraciliature, silverline system, and the small subunit ribosomal RNA (SSU rRNA) of the little-known marine scuticociliate Pseudocohnilembus longisetusThompson, 1965 from the diseased black rockfish Sebastes schlegelii in Korea were studied. This scuticociliate possessed the typical characteristics of the genus Pseudocohnilembus, but could be discriminated from Pseudocohnilembus hargisi, and Pseudocohnilembus persalinus in terms of the body size, shape, the number of somatic kineties and kinetids in somatic kinety 1, and the number/position of contractile vacuole pores. The SSU rRNA gene of P. longisetus was sequenced in order to gain a better understanding of appropriate phylogenetic classification. The SSU rRNA was 1754 bp and the sequence was deposited in GenBank under accession number FJ899594. The SSU rRNA gene sequences of P. longisetus had an identity of 98.1%, 96.8% and 95.3% with P. hargisi, P. persalinus, and Pseudocohnilembus marinus SSU rRNA sequences, respectively. Our population of P. longisetus belonged to the genus Pseudocohnilembus and was in an isolated position based on the SSU rRNA gene tree, which was consistent with the conclusions based on the morphological studies. However, further investigation is required to determine the pathogenicity of this species.

  8. A new host record of Sphaerospora epinepheli (Myxosporea: Bivalvulida) occurring on orange-spotted grouper Epinephelus coioides from Thailand: epidemiology, histopathology and phylogenetic position.

    PubMed

    U-taynapun, Kittichon; Chirapongsatonkul, Nion; Maneesaay, Phudit; Itami, Toshiaki; Tantikitti, Chutima

    2012-09-10

    In 1991, the first record of Sphaerospora epinepheli was described as a kidney parasite of wild and cultured malabar grouper, Epinephelus malabaricus, along coastlines of Thailand, the Gulf of Thailand and the Andaman Sea. However, the present study detected high infection of this parasite in kidney renal tubes of orange spotted grouper, Epinephelus coioides, collected from Andaman Sea. The highest infection rate of 36.82% was observed during the rainy season in 2009 in Phang-Nga Bay, in the north of Andaman Sea, which is an important grouper production site in Thailand. The biological and histopathological data of the parasite in this new host record are presented. Species classification is described based on morphological data of mature spore and molecular analysis of myxosporean 18S rDNA phylogeny including that of S. epinepheli which infected E. malabaricus. The genetic position of this parasite found in two host species was also studied. The phylogenetic tree analysis of small-subunit rDNA sequences of S. epinepheli from both infected hosts was constructed using two algorithms, maximum likelihood (ML) and Bayesian inference (BI). They were placed in the clustered basal sphaerosporid clade that contain four long SSU rDNA sphaerosporid species including Sphaerospora truttae, Sphaerospora elegans, Sphaerospora ranae, Sphaerospora fugu and Bipteria formosa with strong bootstrap supports. Histopathologically, renal intratubular myxosporean spores were associated with tubulonephosis, tubular necrosis, chronic interstitial nephritis and mimic membranoproliferative glomerulonephritis. This myxosporean parasite appears to be a significant pathogen on the basis of pathological changes in the renal tubules and is highly distributed in orange-spotted grouper.

  9. Hexaplex PCR Detection System for Identification of Five Human Plasmodium Species with an Internal Control

    PubMed Central

    Chew, Ching Hoong; Lim, Yvonne Ai Lian; Lee, Ping Chin; Mahmud, Rohela

    2012-01-01

    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies. PMID:23035191

  10. Hexaplex PCR detection system for identification of five human Plasmodium species with an internal control.

    PubMed

    Chew, Ching Hoong; Lim, Yvonne Ai Lian; Lee, Ping Chin; Mahmud, Rohela; Chua, Kek Heng

    2012-12-01

    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies.

  11. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats

    NASA Technical Reports Server (NTRS)

    Ruff-Roberts, A. L.; Kuenen, J. G.; Ward, D. M.

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.

  12. Ribosomal RNA sequence suggest microsporidia are extremely ancient eukaryotes

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Maddox, J. V.; Friedman, S.; Debrunner-Vossbrinck, B. A.; Woese, C. R.

    1987-01-01

    A comparative sequence analysis of the 18S small subunit ribosomal RNA (rRNA) of the microsporidium Vairimorpha necatrix is presented. The results show that this rRNA sequence is more unlike those of other eukaryotes than any known eukaryote rRNA sequence. It is concluded that the lineage leading to microsporidia branched very early from that leading to other eukaryotes.

  13. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms.

    PubMed

    Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A P; Stentiford, Grant D; Flegel, Timothy W; Sritunyalucksana, Kallaya; Itsathitphaisarn, Ornchuma

    2016-01-01

    Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.

  14. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis.

    PubMed

    Wang, Guodong; Dixon, Richard A

    2009-06-16

    Myrcene, which accounts for 30-50% of the essential oil in hop (Humulus lupulus L.) trichomes, derives from geranyl diphosphate (GPP), the common precursor of monoterpenes. Full-length sequences of heterodimeric GPP synthase small subunit (GPPS.SSU, belonging to the SSU I subfamily) and large subunit (LSU) cDNAs were mined from a hop trichome cDNA library. The SSU was inactive, whereas the LSU produced GPP, farnesyl diphosphate, and geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and isopentenyl diphosphate in vitro. Coexpression of both subunits in Escherichia coli yielded a heterodimeric enzyme exhibiting altered ratios of GPP and GGPP synthase activities and greatly enhanced catalytic efficiency. Transcript analysis suggested that the heterodimeric geranyl(geranyl)diphosphate synthase [G(G)PPS] is involved in myrcene biosynthesis in hop trichomes. The critical role of the conserved CxxxC motif (where "x" can be any hydrophobic amino acid residue) in physical interactions between the 2 subunits was demonstrated by using site-directed mutagenesis, and this motif was used in informatic searches to reveal a previously undescribed SSU subfamily (SSU II) present in both angiosperms and gymnosperms. The evolution and physiological roles of SSUs are discussed.

  15. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms

    PubMed Central

    Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A. P.; Stentiford, Grant D.; Flegel, Timothy W.; Sritunyalucksana, Kallaya

    2016-01-01

    Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers. PMID:27832178

  16. Are microbes fundamentally different than macroorganisms? Convergence and a possible case for neutral phenotypic evolution in testate amoeba (Amoebozoa: Arcellinida)

    PubMed Central

    Oliverio, Angela M.; Grant, Jessica; Katz, Laura A.

    2015-01-01

    This study reveals extensive phenotypic convergence based on the non-monophyly of genera and morphospecies of testate (shelled) amoebae. Using two independent markers, small subunit ribosomal DNA (ssu-rDNA) and mitochondrial cytochrome oxidase I (COI), we demonstrate discordance between morphology and molecules for ‘core Nebela’ species (Arcellinida; Amoebozoa). Prior work using just a single locus, ssu-rDNA, also supported the non-monophyly of the genera Hyalosphenia and Nebela as well as for several morphospecies within these genera. Here, we obtained COI gene sequences of 59 specimens from seven morphospecies and ssu-rDNA gene sequences of 50 specimens from six morphospecies of hyalosphenids. Our analyses corroborate the prior ssu-rDNA findings of morphological convergence in test (shell) morphologies, as COI and ssu-rDNA phylogenies are concordant. Further, the monophyly of morphospecies is rejected using approximately unbiased tests. Given that testate amoebae are used as bioindicators in both palaeoecological and contemporary studies of threatened ecosystems such as bogs and fens, understanding the discordance between morphology and genetics in the hyalosphenids is essential for interpretation of indicator species. Further, while convergence is normally considered the result of natural selection, it is possible that neutrality underlies phenotypic evolution in these microorganisms. PMID:27019725

  17. IDENTIFICATION OF SPECIES AND SOURCES OF CRYPTOSPORIDIUM OOCYSTS IN STORM WATERS BY A SMALL SUBUNIT RRNA-BASED DIAGNOSTIC AND GENOTYPING TOOL

    EPA Science Inventory

    The identification of Cryptosporidium oocysts in environmental samples is largely made by the use of immunofluorescent assay (IFA). because IFA detects oocysts from all Cryptosporidium parasites, the species distribution and source of Cryptosporidium parasites in environmental sa...

  18. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover at the University of Georgia Complex Carbohydrate Research Foundation (UGRF)

    SciTech Connect

    Meagher, R.B.

    1990-07-01

    The experimental approaches which were used to examine RNA turnover outlined in our 1988 proposal are given. The first approach evaluates RNA structure in vivo by chemical modification. The second approach investigates molecular physiology by studying light regulated changes in rbcS RNA turnover rates. The third approach examines the determinants of RNA turnover in transgenic plants by searching for a transgenic system to examine light regulated RNA turnover. The structure of soybean rbcS RNA degradation products was studies in transgenic petunia. The fourth approach investigates the molecular evolution of RbcS sequences. 8 figs. (FL)

  19. IDENTIFICATION OF CRYPTOSPORIDIUM SPECIES AND THE SOURCES IN RAW WASTEWATER USING A SMALL SUBUNIT RRNA-BASED PCR-RFLP TOOL

    EPA Science Inventory

    The species composition and source of Cryptosporidium oocysts in wastewater have never been determined, even though it is widely assumed that these oocysts are from human sewage. Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate hum...

  20. "The Source of Learning Is Thought" Reading the "Chin-ssu lu" (???) with a "Western Eye"

    ERIC Educational Resources Information Center

    Reichenbach, Roland

    2016-01-01

    The contribution focuses on Neo-Confucian texts as collected by Zhu Xi (?? 1130-1200) and Lü Zuqian (1137-1181) and is a look from the "outside", from the perspective of German theories of Bildung ("self-cultivation"). It aims at demonstrating that among other insights that today's readers may gather from Neo-Confucian…

  1. Dynamics of ribosome scanning and recycling revealed by translation complex profiling.

    PubMed

    Archer, Stuart K; Shirokikh, Nikolay E; Beilharz, Traude H; Preiss, Thomas

    2016-07-28

    Regulation of messenger RNA translation is central to eukaryotic gene expression control. Regulatory inputs are specified by them RNA untranslated regions (UTRs) and often target translation initiation. Initiation involves binding of the 40S ribosomal small subunit (SSU) and associated eukaryotic initiation factors (eIFs)near the mRNA 5′ cap; the SSU then scans in the 3′ direction until it detects the start codon and is joined by the 60S ribosomal large subunit (LSU) to form the 80S ribosome. Scanning and other dynamic aspects of the initiation model have remained as conjectures because methods to trap early intermediates were lacking. Here we uncover the dynamics of the complete translation cycle in live yeast cells using translation complex profile sequencing (TCP-seq), a method developed from the ribosome profiling approach. We document scanning by observing SSU footprints along 5′ UTRs. Scanning SSU have 5′-extended footprints (up to~75 nucleotides), indicative of additional interactions with mRNA emerging from the exit channel, promoting forward movement. We visualized changes in initiation complex conformation as SSU footprints coalesced into three major sizes at start codons (19, 29 and 37 nucleotides). These share the same 5′ start site but differ at the 3′ end, reflecting successive changes at the entry channel from an open to a closed state following start codon recognition. We also observe SSU 'lingering' at stop codons after LSU departure. Our results underpin mechanistic models of translation initiation and termination, built on decades of biochemical and structural investigation, with direct genome-wide in vivo evidence. Our approach captures ribosomal complexes at all phases of translation and will aid in studying translation dynamics in diverse cellular contexts. Dysregulation of translation is common in disease and, for example, SSU scanning is a target of anti-cancer drug development. TCP-seq will prove useful in discerning differences

  2. Drinking water: a possible source of Blastocystis spp. subtype 1 infection in schoolchildren of a rural community in central Thailand.

    PubMed

    Leelayoova, Saovanee; Siripattanapipong, Suradej; Thathaisong, Umaporn; Naaglor, Tawee; Taamasri, Paanjit; Piyaraj, Phunlerd; Mungthin, Mathirut

    2008-09-01

    In January 2005, a survey of intestinal parasitic infections was performed in a primary school, central Thailand. Of 675 stool samples, Blastocystis was identified with a prevalence of 18.9%. Genetic characterization of Blastocystis showed subtype 1 (77.9%) and subtype 2 (22.1%). Study of the water supply in this school was performed to find the possible sources of Blastocystis. Blastocystis from one water sample was identified as subtype 1, which had a nucleotide sequence of small subunit (SSU) ribosomal RNA (rRNA) gene that was 100% identical to that of Blastocystis infected in schoolchildren. Our information supports the evidence of water-borne transmission in this population.

  3. Genetic relatedness among Filobasidiella species.

    PubMed

    Sivakumaran, Swarna; Bridge, Paul; Roberts, Peter

    2002-01-01

    The three accepted species of Filobasidiella, F. neoformans, F. depauperata, and F. lutea, are compared morphologically and by molecular analysis. Sequences of the internally transcribed spacer (ITS) and the small subunit (SSU) gene of the ribosomal RNA (rRNA) gene cluster were obtained, and analysed by Neighbor-joining and Maximum parsimony methods. The three species of Filobsidiella are shown to form a single monophyletic clade, rooted by Tremella mesenterica. F. lutea was recovered as a distinct, but closely related taxon with the Filobasidiella clade. This is the first report of DNA sequences from herbarium specimens of F. lutea.

  4. Marine Fungi: Their Ecology and Molecular Diversity

    NASA Astrophysics Data System (ADS)

    Richards, Thomas A.; Jones, Meredith D. M.; Leonard, Guy; Bass, David

    2012-01-01

    Fungi appear to be rare in marine environments. There are relatively few marine isolates in culture, and fungal small subunit ribosomal DNA (SSU rDNA) sequences are rarely recovered in marine clone library experiments (i.e., culture-independent sequence surveys of eukaryotic microbial diversity from environmental DNA samples). To explore the diversity of marine fungi, we took a broad selection of SSU rDNA data sets and calculated a summary phylogeny. Bringing these data together identified a diverse collection of marine fungi, including sequences branching close to chytrids (flagellated fungi), filamentous hypha-forming fungi, and multicellular fungi. However, the majority of the sequences branched with ascomycete and basidiomycete yeasts. We discuss evidence for 36 novel marine lineages, the majority and most divergent of which branch with the chytrids. We then investigate what these data mean for the evolutionary history of the Fungi and specifically marine-terrestrial transitions. Finally, we discuss the roles of fungi in marine ecosystems.

  5. Molecular identification of cryptic species of Ceratomyxa Thélohan, 1892 (Myxosporea: Bivalvulida) including the description of eight novel species from apogonid fishes (Perciformes: Apogonidae) from Australian waters.

    PubMed

    Heiniger, Holly; Adlard, Robert D

    2013-09-01

    Ceratomyxa parasites from the gall bladders of 23 species of cardinalfishes (family Apogonidae) from Australian waters were examined for their taxonomic identity and phylogenetic relatedness. We identified 15 of the 23 apogonid fish species infected with species of Ceratomyxa. Although the majority of apogonid species harboured only a single Ceratomyxa species, four were found with multiple species of Ceratomyxa. This study describes eight novel species using a combination of morphological, small subunit ribosomal DNA (SSU rDNA) and biological characters. Six Ceratomyxa species are reported from single apogonid species, while two are reported from multiple host species. Molecular data were critical in identifying several morphologically cryptic species. However, our results suggest that SSU rDNA was not capable of distinguishing all the species present in the current study system and alternative genetic markers should be investigated in the future.

  6. Inferring the Ancient History of the Translation Machinery and Genetic Code via Recapitulation of Ribosomal Subunit Assembly Orders

    PubMed Central

    Fournier, Gregory P.; Neumann, Justin E.; Gogarten, J. Peter

    2010-01-01

    Universally conserved positions in ribosomal proteins have significant biases in amino acid usage, likely indicating the expansion of the genetic code at the time leading up to the most recent common ancestor(s) (MRCA). Here, we apply this principle to the evolutionary history of the ribosome before the MRCA. It has been proposed that the experimentally determined order of assembly for ribosomal subunits recapitulates their evolutionary chronology. Given this model, we produce a probabilistic evolutionary ordering of the universally conserved small subunit (SSU) and large subunit (LSU) ribosomal proteins. Optimizing the relative ordering of SSU and LSU evolutionary chronologies with respect to minimizing differences in amino acid usage bias, we find strong compositional evidence for a more ancient origin for early LSU proteins. Furthermore, we find that this ordering produces several trends in specific amino acid usages compatible with models of genetic code evolution. PMID:20208990

  7. Inferring the ancient history of the translation machinery and genetic code via recapitulation of ribosomal subunit assembly orders.

    PubMed

    Fournier, Gregory P; Neumann, Justin E; Gogarten, J Peter

    2010-03-01

    Universally conserved positions in ribosomal proteins have significant biases in amino acid usage, likely indicating the expansion of the genetic code at the time leading up to the most recent common ancestor(s) (MRCA). Here, we apply this principle to the evolutionary history of the ribosome before the MRCA. It has been proposed that the experimentally determined order of assembly for ribosomal subunits recapitulates their evolutionary chronology. Given this model, we produce a probabilistic evolutionary ordering of the universally conserved small subunit (SSU) and large subunit (LSU) ribosomal proteins. Optimizing the relative ordering of SSU and LSU evolutionary chronologies with respect to minimizing differences in amino acid usage bias, we find strong compositional evidence for a more ancient origin for early LSU proteins. Furthermore, we find that this ordering produces several trends in specific amino acid usages compatible with models of genetic code evolution.

  8. Morphology and molecular phylogeny of two colepid species from China, Coleps amphacanthus Ehrenberg, 1833 and Levicoleps biwae jejuensis Chen et al., 2016 (Ciliophora, Prostomatida)

    PubMed Central

    LU, Bo-Rong; MA, Ming-Zhen; GAO, Feng; SHI, Yu-Hong; CHEN, Xiang-Rui

    2016-01-01

    Two colepid ciliates, Coleps amphacanthus Ehrenberg, 1833 and Levicoleps biwae jejuensis Chen et al., 2016, were first recorded in China. Their living morphology, infraciliature and small subunit (SSU) rRNA gene sequences were determined using standard methods. The improved diagnosis of Coleps amphacanthus is as follows:cell size about 100×50 μm in vivo, barrel-shaped; 22-28 ciliary rows each composed of about 14-21 monokinetids and two perioral dikinetids; 5-10 caudal cilia; and one terminal contractile vacuole. Levicoleps biwae jejuensis was also investigated, with an improved diagnosis given based on previous and present work. The phylogenetic analyses based on SSU rRNA gene sequences revealed that all Coleps species were grouped together, except for Coleps amphacanthus, which was grouped into a clade of the genus Levicoleps. PMID:27265656

  9. Blastocystis phylogeny among various isolates from humans to insects.

    PubMed

    Yoshikawa, Hisao; Koyama, Yukiko; Tsuchiya, Erika; Takami, Kazutoshi

    2016-12-01

    Blastocystis is a common unicellular eukaryotic parasite found not only in humans, but also in various kinds of animal species worldwide. Since Blastocystis isolates are morphologically indistinguishable, many molecular biological approaches have been applied to classify these isolates. The complete or partial sequences of the small subunit rRNA gene (SSU rDNA) are mainly used for comparisons and phylogenetic analyses among Blastocystis isolates. However, various lengths of the partial SSU rDNA sequence have been used for phylogenetic inference among genetically different isolates. Based on the complete SSU rDNA sequences, consensus terminology of nine subtypes (STs) of Blastocystis sp. that were supported by phylogenetically monophyletic nine clades was proposed in 2007. Thereafter, eight additional kinds of STs comprising non-human mammalian Blastocystis isolates have been reported based on the phylogeny of SSU rDNA sequences, while STs 11 and 12 were only proposed on the base of partial sequences. Although many sequence data from mammalian and avian Blastocystis are registered in GenBank, only limited data on SSU rDNA are available for poikilotherm-derived Blastocystis isolates. Therefore, the phylogenetic positions of the reptilian/amphibian Blastocystis clades are unstable. The phylogenetic inference of various STs comprising mammalian and/or avian Blastocystis isolates was verified herein based on comparisons between partial and complete SSU rDNA sequences, and the phylogenetic positions of reptilian and amphibian Blastocystis isolates were also investigated using 14 new Blastocystis isolates from reptiles with all known isolates from other reptilians, amphibians, and insects registered in GenBank.

  10. Coordinate, Organ-Specific and Developmental Regulation of Ribulose 1,5-Bisphosphate Carboxylase Gene Expression in Amaranthus hypochondriacus1

    PubMed Central

    Nikolau, Basil J.; Klessig, Daniel F.

    1987-01-01

    The expression of the genes encoding the large subunit (LSU) and small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase (RuBPCase) was examined in roots, stems, cotyledons, and leaves of amaranth during the development of these tissues. The highest accumulation of LSU and SSU polypeptides occurred in cotyledons and leaves. Their steady state levels were approximately 20-fold lower in stems, while in roots neither LSU and SSU polypeptides nor their respective mRNAs could be detected. In cotyledons and leaves accumulation of these two polypeptides reached peak levels during the expansion stage of each tissue and then declined, reflecting changes in the synthesis, not turnover, of these proteins. In cotyledons and stems, the rates of synthesis of LSU and SSU polypeptides correlated with the levels of their respective mRNA, suggesting regulation primarily at the transcriptional level. In contrast, the dramatic and specific decrease in the synthesis of these two proteins during the last stages of development of the leaves could only partially be accounted for by the modest reduction in their mRNAs. Neither the translatability of these mRNAs, as assayed in cell-free systems, nor the stability of LSU and SSU polypeptides were altered, thus implying that control was being exerted at the translational level. During the development of these different organs, the expression of the LSU and SSU genes were generally coordinately regulated both at the levels of protein synthesis and mRNA accumulation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16665651

  11. Molecular data and phylogeny of Nosema infecting lepidopteran forest defoliators in the genera Choristoneura and Malacosoma.

    PubMed

    Kyei-Poku, George; Gauthier, Debbie; van Frankenhuyzen, Kees

    2008-01-01

    Nosema isolates from five lepidopteran forest defoliators, Nosema fumiferanae from spruce budworm, Choristoneura fumiferana; a Nosema sp. from jack pine budworm, Choristoneura pinus pinus and western spruce budworm, Choristoneura occidentalis (Nosema sp. CPP and Nosema sp. CO, respectively); Nosema thomsoni from large aspen tortrix, Choristoneura conflictana; and Nosema disstriae, from the forest tent caterpillar, Malacosoma disstria were compared based on their small subunit (SSU) ribosomal RNA (rRNA) gene sequences. Four of the species sequenced, N. fumiferanae, Nosema sp. CPP, Nosema sp. CO, and N. disstriae have a high SSU rDNA sequence identity (0.6%-1.5%) and are members of the "true Nosema" clade. They all showed the reverse arrangement of the (large subunit [LSU]-internal transcribed spacer [ITS]-SSU) of the rRNA gene. The fifth species, N. thomsoni has the usual (SSU-ITS-LSU) arrangement and is not a member of this clade showing only an 82% sequence similarity. We speculate, therefore, that a genetic reversal may have occurred in the common ancestor to the "true Nosema" clade. Although, the mechanism for rearrangement of the rRNA gene subunits is not known we provide a possible explanation for the localization. N. fumiferanae, Nosema sp. CPP, and Nosema sp. CO clustered together on the inferred phylogenetic tree. The high sequence similarities, the reverse arrangement in the rRNA gene subunits, and the phylogenetic clustering suggest that these three species are closely related but separate species.

  12. Light-mediated control of translational initiation of ribulose-1, 5-bisphosphate carboxylase in amaranth cotyledons.

    PubMed Central

    Berry, J O; Breiding, D E; Klessig, D F

    1990-01-01

    In cotyledons of 6-day-old amaranth seedlings, the large subunit (LSU) and the small subunit (SSU) polypeptides of ribulose-1,5-bisphosphate carboxylase are not synthesized in the absence of light. When dark-grown seedlings were transferred into light, synthesis of both polypeptides was induced within the first 3 to 5 hr of illumination without any significant changes in levels of their mRNAs. In cotyledons of light-grown seedlings and of dark-grown seedlings transferred into light for 5 hr (where ribulose-1,5-bisphosphate carboxylase synthesis was readily detected in vivo), the LSU and SSU mRNAs were associated with polysomes. In cotyledons of dark-grown seedlings, these two mRNAs were not found on polysomes. In contrast to the SSU message, mRNAs encoding the nonlight-regulated, nuclear-encoded proteins actin and ubiquitin were associated with polysomes regardless of the light conditions. Similarly, mRNA from at least one chloroplast-encoded gene (rpl2) was found on polysomes in the dark as well as in the light. These results indicate an absence of translational initiation in cotyledons of dark-grown seedlings which is specific to a subset of nuclear- and chloroplast-encoded genes including the SSU and LSU, respectively. Upon illumination, synthesis of both polypeptides, and possibly other proteins involved in light-mediated chloroplast development, was induced at the level of translational initiation. PMID:2152128

  13. [Population database on: D1S1656, D2S441, D2S1338, D3S1358, D8S1179, D10S1248, D22S1045, D12S391, D16S539, D18S51, D19S433, D21S11, FGA, TH01, vWA loci included in NGM system based on one thousand unrelated individuals from Lodz region of Central Poland].

    PubMed

    Jacewicz, Renata; Markiewicz, Beata; Wojtkiewicz, Rafał; Jędrzejczyk, Maciej; Berent, Jarosław

    A population data obtained on the basis of sample of 1000 unrelated individuals of Polish ancestry living in Lodz region of Central Poland with use of fluorescent multiplex-PCR and capillary electrophoresis were presented. Evaluation included 15 polymorphic loci DNA - STR from NGM multiplex-PCR set, ie. D1S1656, D2S441, D2S1338, D3S1358, D8S1179, D10S1248, D12S391, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, TH01, vWA. The allele frequency distribution and crucial statistical parameters for the investigated markers and the whole set were calculated. The compliance of the studied population with Hardy-Weinberg equilibrium, independence of inheritance and high parameters of the usefulness in forensic genetics have been demonstrated. The interpopulation comparison performed by the "neighbor-joining" method as well as multidimensional scaling depicted the genetic distances dividing the examined Polish population from other populations of Poland, Europe and the world.

  14. Pathway of assembly of ribulosebisphosphate carboxylase/oxygenase from Anabaena 7210 expressed in Escherichia coli

    SciTech Connect

    Gurevitz, M.; Somerville, C.R.; McIntosh, L.

    1985-10-01

    The authors have placed the genes encoding ribulosebisphosphate carboxylase/oxygenase from the Anabaena 7120 operon under transcriptional control of the lac promoter carried on the Escherichia coli plasmid pUC19. The genes encoding both the large and small subunit polypeptides (rbcL and rbcS) are transcribed and translated so that approx. = 0.6% of the soluble protein in E. coli extracts is a fully functional holoenzyme with a sedimentation coefficient of approximately 18S, which contains stoichiometric amounts of the two subunits. However, expression of the large subunit polypeptide vastly exceeds that of the small subunit because the majority of transcripts terminate in the intergenic region between the rbcL and rbcS genes. As a result, excess large subunit is synthesized and accumulates in E. coli as an insoluble and catalytically inactive form. Because small subunit is found only in the high molecular weight soluble form of ribulosebisphosphate carboxylase/oxygenase, the authors propose that the small subunit promotes assembly of the hexadecameric form of the enzyme via heterodimers of large and small subunits.

  15. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera

    PubMed Central

    Aveskamp, M.M.; de Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Crous, P.W.

    2010-01-01

    Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region. A total of 324 strains were included in the analyses of which most belonged to Phoma taxa, whilst 54 to related pleosporalean fungi. In total, 206 taxa were investigated, of which 159 are known to have affinities to Phoma. The phylogenetic analysis revealed that the current Boeremaean subdivision is incorrect from an evolutionary point of view, revealing the genus to be highly polyphyletic. Phoma species are retrieved in six distinct clades within the Pleosporales, and appear to reside in different families. The majority of the species, however, including the generic type, clustered in a recently established family, Didymellaceae. In the second part of this study, the phylogenetic variation of the species and varieties in this clade was further assessed. Next to the genus Didymella, which is considered to be the sole teleomorph of Phoma s. str., we also retrieved taxa belonging to the teleomorph genera

  16. Taxonomy and Phylogeny of Polyporus Group Melanopus (Polyporales, Basidiomycota) from China

    PubMed Central

    Zhou, Jun-Liang; Zhu, Lin; Chen, Hong; Cui, Bao-Kai

    2016-01-01

    Melanopus is a morphological group of Polyporus which contains species with a black cuticle on the stipe. In this article, taxonomic and phylogenetic studies on Melanopus group were carried out on the basis of morphological characters and phylogenetic evidence of DNA sequences of multiple loci including the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), the small subunit nuclear ribosomal RNA gene (nSSU), the small subunit mitochondrial rRNA gene sequences (mtSSU), the translation elongation factor 1-α gene (EF1-α), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and β-tubulin gene sequences (β-tubulin). The phylogenetic result confirmed that the previously so-called Melanopus group is not a monophyletic assemblage, and species in this group distribute into two distinct clades: the Picipes clade and the Squamosus clade. Four new species of Picipes are described, and nine new combinations are proposed. A key to species of Picipes is provided. PMID:27486931

  17. Phylogeny of the genus Synchytrium and the development of TaqMan PCR assay for sensitive detection of Synchytrium endobioticum in soil.

    PubMed

    Smith, Donna S; Rocheleau, Hélène; Chapados, Julie T; Abbott, Cathryn; Ribero, Sharon; Redhead, Scott A; Lévesque, C André; De Boer, Solke H

    2014-04-01

    Potato wart, caused by the fungal pathogen Synchytrium endobioticum, is a serious disease with the potential to cause significant economic damage. The small subunit (SSU) and internal transcribed spacer (ITS) ribosomal DNA (rDNA) were sequenced for several Synchytrium spp., showing a high rate of variability for both of these markers among the different species and monophyly of the genus within phylum Chytridiomycota. The intergenic nontranscribed spacer (IGS) of rDNA was sequenced for different pathotypes and showed no intraspecific variation within S. endobioticum, similar to the other rDNA markers from this study. To facilitate screening for the pathogen in soil, three TaqMan polymerase chain reaction (PCR) assays were developed from SSU, ITS, and IGS rDNA sequences to detect S. endobioticum sporangia in the chloroform-flotation fraction of sieved soil extracts. In the screening portion of the method, a first TaqMan assay targeting the SSU rDNA was developed with positive results that were further confirmed with amplicon melt analysis. A synthetic reaction control cloned into a plasmid was incorporated into the procedure, facilitating the validation of negative results. The presence of the reaction control did not adversely affect the efficiency of the SSU target amplification. A second TaqMan assay targeting the ITS-1 region was developed as a confirmatory test. There was 100% accordance between the SSU and ITS-1 TaqMan assays. Utilizing these two assays in tandem achieved good specificity for S. endobioticum, generating negative results with the cloned SSU and ITS-1 regions from all 14 other Synchytrium spp. considered. Spike recovery experiments indicated that these assays, targeting the SSU and ITS-1 rDNA regions, developed from a phylogeny dataset of the genus, could reliably detect a single sporangium in the chloroform flotation fraction of a soil extract. Good correlation between microscopic detection of sporangia and PCR results in both positive and

  18. Morphological and molecular characterization of Ceratomyxa gurnardi sp. n. (Myxozoa: Ceratomyxidae) infecting the gallbladder of the grey gurnard Eutrigla gurnardus (L.) (Scorpaeniformes, Triglidae).

    PubMed

    Sobecka, Ewa; Szostakowska, Beata; Ziętara, Marek S; Więcaszek, Beata

    2013-02-01

    The myxosporean specimens were noted in grey gurnard Eutrigla gurnardus (L.) from the area near the Shetland Islands. The structure and dimensions of its vegetative stage differ from earlier descriptions. A sequence of small subunit ribosomal RNA gene obtained during the current study differs from other Ceratomyxa spp. available in GenBank. A phylogenetic position of parasite based on the 18S rDNA fragment was estimated. The proposed name for this myxosporean is Ceratomyxa gurnardi sp. n.

  19. Molecular phylogeny of the family Vorticellidae (Ciliophora, Peritrichia) using combined datasets with a special emphasis on the three morphologically similar genera Carchesium, Epicarchesium and Apocarchesium.

    PubMed

    Sun, Ping; Clamp, John C; Xu, Dapeng; Kusuoka, Yasushi; Hori, Manabu

    2011-04-01

    Little is known about the phylogeny of the family Vorticellidae at the generic level because few comprehensive analyses of molecular phylogenetic relationships between members of this group have, so far, been done. As a result, the phylogenetic positions of some genera that were based originally on morphological analyses remain controversial. In the present study, we performed phylogenetic analyses of vorticellids based on the sequence of the small-subunit (SSU) rRNA gene, including one species of the genus Apocarchesium, for which no sequence has previously been reported. Phylogenetic trees were reconstructed with SSU rRNA gene sequences by using four different methods (Bayesian analysis, maximum-likelihood, neighbour-joining and maximum-parsimony) and had a consistent branching pattern. Members of the genera Vorticella (except V. microstoma) and Carchesium formed a clearly defined, well supported clade that was divergent from the clade comprising members of the genera Pseudovorticella and Epicarchesium, suggesting that the differences in the silverline system (transverse vs reticulate) among vorticellids may be the result of genuine evolutionary divergence. Members of the newly established genus Apocarchesium clustered within the family Vorticellidae basal to the clade containing members of the genera Pseudovorticella and Epicarchesium and were distinct from members of the genus Carchesium, supporting the validity of Apocarchesium as a novel genus. Additional phylogenetic analyses of 21 strains representing seven genera from the families Vorticellidae and Zoothamniidae were performed with single datasets (ITS1-5.8S-ITS2, ITS2 alone) and combined datasets (SSU rRNA+ITS1-5.8S-ITS2, SSU rRNA+ITS2) to explore further the phylogenetic relationship between the three morphologically similar genera Carchesium, Epicarchesium and Apocarchesium, using characteristics not included in previous analyses. The phylogenetic trees reconstructed with combined datasets were more

  20. Technical considerations in the use of 18s rRNA in gene expression studies

    EPA Science Inventory

    Gene expression analysis is now commonly used in ecotoxicological studies to indicate exposure of an organism to xenobiotics. For example, the vitellogenin gene is used to diagnose exposure of fish to environmental estrogens. Reverse transcription polymerase chain reaction (RT-PC...

  1. Climate Variability and Trends in SSU Radiances: A Comparison of Model Predictions and Satellite Observations in the Middle Stratosphere.

    NASA Astrophysics Data System (ADS)

    Brindley, H. E.; Geer, A. J.; Harries, J. E.

    1999-11-01

    Several recent studies have highlighted the potential of utilizing statistical techniques to pattern match observations and model simulations in order to establish a causal relationship between anthropogenic activity and climate change. Up to now these have tended to concentrate upon the spatial or vertical patterns of temperature change. Given the availability of contiguous, global-scale satellite observations over the past two decades, in this paper the authors seek to employ an analogous technique to spatially match model predictions to directly measured radiances. As part of the initial investigations, the technique to channel 1 of the Stratospheric Sounding Unit, sensitive to stratospheric temperature and carbon dioxide concentrations, is applied. Over the majority of the globe the observations show a negative trend in brightness temperature, with significant decreases occurring throughout the Tropics. The influence of the volcanic eruptions of El Chichón and Mount Pinatubo can also be clearly identified. Simulated brightness temperature fields, against which the satellite data are compared, are calculated using atmospheric temperature profiles from a transient climate change run of the Hadley Centre GCM. The modeled change pattern also indicates a global reduction in brightness temperature but with an altered spatial distribution relative to the observations. This tendency is reflected in the trends seen in the correlation statistics. One, dominated by the spatial mean change, shows a significant positive trend; while the other, influenced by patterns around this mean, exhibits a reducing correlation with time. Possible reasons for this behavior are discussed, and the importance of both improving model parameterizations and performing additional`unforced' simulations to assess the role of natural variability is stressed.

  2. Characterization of Giardia lamblia genotypes in dogs from Tucson, Arizona using SSU-rRNA and β-giardin sequences.

    PubMed

    Johansen, K M; Castro, N S; Lancaster, K E; Madrid, E; Havas, A; Simms, J; Sterling, C R

    2014-01-01

    The objective of this study was to determine if human genotypes of Giardia lamblia could be found in canine companion animals from urban and peri-urban environments in Tucson, Arizona. Canine fecal samples collected from the Humane Society of Southern Arizona between July 2006 and April 2009 were screened for G. lamblia infection using immunofluorescent microscopy and confirmed by polymerase chain reaction (PCR). Of the 672 samples screened, 196 were found positive by IFA and 185 of those positive were successfully amplified through PCR. Sequencing analysis showed samples were primarily of the C or D genotypes (n =154), or showing a mix of the C and D genotypes (n =10). One sample showed a mixed infection of a human genotype (A) and a dog-specific genotype (C). These data are consistent with previous studies showing dog specific genotypes to be dominant in environments where dog-to-dog transmission is likely to occur, and provides further evidence that multiple genes should be targeted for more accurate genotype characterization.

  3. Ancient mitochondrial DNA analyses of ascaris eggs discovered in coprolites from joseon tomb.

    PubMed

    Oh, Chang Seok; Seo, Min; Hong, Jong Ha; Chai, Jong-Yil; Oh, Seung Whan; Park, Jun Bum; Shin, Dong Hoon

    2015-04-01

    Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples.

  4. Molecular and histological identification of Marteilioides infection in Suminoe Oyster Crassostrea ariakensis, Manila Clam Ruditapes philippinarum and Pacific Oyster Crassostrea gigas on the south coast of Korea.

    PubMed

    Limpanont, Yanin; Yanin, Limpanont; Kang, Hyun-Sil; Hong, Hyun-Ki; Jeung, Hee-Do; Kim, Bong-Kyu; Le, Thanh Cuong; Kim, Young-Ok; Choi, Kwang-Sik

    2013-11-01

    The oyster ovarian parasite Marteilioides chungmuensis has been reported from Korea and Japan, damaging the oyster industries. Recently, Marteilioides-like organisms have been identified in other commercially important marine bivalves. In this study, we surveyed Marteilioides infection in the Manila clam Ruditapes philippinarum, Suminoe oyster Crassostrea ariakensis, and Pacific oyster Crassostrea gigas, using histology and Marteilioides-specific small subunit (SSU) rDNA PCR. The SSU rDNA sequence of M. chungmuensis (1716 bp) isolated from C. gigas in Tongyoung bay was 99.9% similar to that of M. chungmuensis reported in Japan. Inclusions of multi-nucleated bodies in the oocytes, typical of Marteilioides infection, were identified for the first time in Suminoe oysters. The SSU rDNA sequence of a Marteilioides-like organism isolated from Suminoe oysters was 99.9% similar to that of M. chungmuensis. Marteilioides sp. was also observed from 7 Manila clams of 1840 individuals examined, and the DNA sequences of which were 98.2% similar to the known sequence of M. chungmuensis. Unlike Marteilioides infection of Pacific oysters, no remarkable pathological symptoms, such as large multiple lumps on the mantle, were observed in infected Suminoe oysters or Manila clams. Distribution of the infected Manila clams, Suminoe oysters and Pacific oysters was limited to small bays on the south coast, suggesting that the southern coast is the enzootic area of Marteilioides infection.

  5. Low abundance of Archaeorhizomycetes among fungi in soil metatranscriptomes

    PubMed Central

    Choma, Michal; Bárta, Jiří; Šantrůčková, Hana; Urich, Tim

    2016-01-01

    The Archaeorhizomycetes are recently discovered fungi with poorly resolved ecology. Even their abundance in soil fungal communities is currently disputed. Here we applied a PCR-independent, RNA-based metatranscriptomic approach to determine their abundance among fungi in eleven different soils across Europe. Using small subunit (SSU) ribosomal RNA transcripts as marker, we detected Archaeorhizomycetes in 17 out of 28 soil metatranscriptomes. They had average relative SSU rRNA abundance of 2.0% with a maximum of 9.4% among fungal SSU rRNAs. Network analysis revealed that they co-occur with arbuscular mycorrhizal Glomerales, which is in line with their previously suggested association with plant roots. Moreover, Archaeorhizomycetes ranked among the potential keystone taxa. This metatranscriptomic survey exemplifies the usage of non-targeted molecular approaches for the study of soil fungi. It provides PCR- and DNA-independent evidence for the low abundance of Archaeorhizomycetes in soil fungal communities, although they might be non-negligible players despite their low abundance. PMID:28009005

  6. Monophyly or polyphyly? Possible conflict between morphological and molecular interpretations of the well-known genus Zoothamnium (Ciliophora, Peritrichia)

    NASA Astrophysics Data System (ADS)

    Li, Lifang; Ma, Honggang; Al-Rasheid, Khaled A. S.

    2015-03-01

    In this paper, we explore possible conflict between morphological and molecular interpretations of phylogenetic relationships within the well-known peritrichous genus Zoothamnium. On the basis of morphological evidence, for a long time this genus has been believed to be a well-defined monophyletic taxon. Nonetheless, Zoothamnium exhibits higher genetic diversity than the gross morphology of its species. Here, we used all available genetic information for the small subunit of ribosomal RNA (SSU rRNA) and internal transcribed spacer region (ITS1-5.8S-ITS2) for this genus to reconstruct phylogenies for four datasets (SSU rRNA, ITS1, ITS2, and ITS1-5.8S-ITS2) and a combined dataset (SSU rRNA+ITS1-5.8SITS2) using different phylogenetic methods and with consideration of the secondary structure of the genes. Confidence in phylogenetic tree selection was assessed with the approximately unbiased test. The molecular results showed both that Zoothamnium is more likely to be polyphyletic, and morphologically similar genera Zoothamnopsis and Myoschiston were always nested among Zoothamnium species. Accordingly, as with some other groups of ciliates, to understand more fully the correct phylogeny of Zoothamnium there remains a need for additional data from both morphological and molecular studies, covering additional Zoothamnium spp. and members of closely related genera (e.g. Zoothamnopsis, Myoschiston, and Epistylis).

  7. Two-gene phylogeny of bright-spored Myxomycetes (slime moulds, superorder Lucisporidia).

    PubMed

    Fiore-Donno, Anna Maria; Clissmann, Fionn; Meyer, Marianne; Schnittler, Martin; Cavalier-Smith, Thomas

    2013-01-01

    Myxomycetes, or plasmodial slime-moulds, are one of the largest groups in phylum Amoebozoa. Nonetheless, only ∼10% are in the database for the small subunit (SSU) ribosomal RNA gene, the most widely used gene for phylogenetics and barcoding. Most sequences belong to dark-spored Myxomycetes (order Fuscisporida); the 318 species of superorder Lucisporidia (bright-spored) are represented by only eleven genuine sequences. To compensate for this, we provide 66 new sequences, 37 SSU rRNA and 29 elongation factor 1-alpha (EF-1α), for 82% of the genera of Lucisporidia. Phylogenetic analyses of single- and two-gene alignments produce congruent topologies and reveal both morphological characters that have been overemphasised and those that have been overlooked in past classifications. Both classical orders, Liceida and Trichiida, and several families and genera are para/polyphyletic; some previously unrecognised clades emerge. We discuss possible evolutionary pathways. Our study fills a gap in the phylogeny of Amoebozoa and provides an extensive SSU rRNA sequence reference database for environmental sampling and barcoding. We report a new group I intron insertion site for Myxomycetes in one Licea.

  8. Improved resolution of bacteria by high throughput sequence analysis of the rRNA internal transcribed spacer

    PubMed Central

    Ruegger, Paul M.; Clark, Robin T.; Weger, John R.; Braun, Jonathan; Borneman, James

    2014-01-01

    Current high throughput sequencing (HTS) methods are limited in their ability to resolve bacteria at or below the genus level. While the impact of this limitation may be relatively minor in whole-community analyses, it constrains the use of HTS as a tool for identifying and examining individual bacteria of interest. The limited resolution is a consequence of both short read lengths and insufficient sequence variation within the commonly targeted variable regions of the small-subunit rRNA (SSU) gene. The goal of this work was to improve the resolving power of bacterial HTS. We developed an assay targeting the hypervariable rRNA internal transcribed spacer (ITS) region residing between the SSU and large-subunit (LSU) rRNA genes. Comparisons of the ITS region and two SSU regions using annotated bacterial genomes in GenBank showed much greater resolving power is possible with the ITS region. This report presents a new HTS method for analyzing bacterial composition with improved capabilities. The greater resolving power enabled by the ITS region arises from its high sequence variation across a wide range of bacterial taxa and an associated decrease in taxonomic heterogeneity within its OTUs. Although the method should be adaptable to any HTS platform, this report presents PCR primers, amplification parameters, and protocols for Illumina-based analyses. PMID:25034229

  9. Two-Gene Phylogeny of Bright-Spored Myxomycetes (Slime Moulds, Superorder Lucisporidia)

    PubMed Central

    Fiore-Donno, Anna Maria; Clissmann, Fionn; Meyer, Marianne; Schnittler, Martin; Cavalier-Smith, Thomas

    2013-01-01

    Myxomycetes, or plasmodial slime-moulds, are one of the largest groups in phylum Amoebozoa. Nonetheless, only ∼10% are in the database for the small subunit (SSU) ribosomal RNA gene, the most widely used gene for phylogenetics and barcoding. Most sequences belong to dark-spored Myxomycetes (order Fuscisporida); the 318 species of superorder Lucisporidia (bright-spored) are represented by only eleven genuine sequences. To compensate for this, we provide 66 new sequences, 37 SSU rRNA and 29 elongation factor 1-alpha (EF-1α), for 82% of the genera of Lucisporidia. Phylogenetic analyses of single- and two-gene alignments produce congruent topologies and reveal both morphological characters that have been overemphasised and those that have been overlooked in past classifications. Both classical orders, Liceida and Trichiida, and several families and genera are para/polyphyletic; some previously unrecognised clades emerge. We discuss possible evolutionary pathways. Our study fills a gap in the phylogeny of Amoebozoa and provides an extensive SSU rRNA sequence reference database for environmental sampling and barcoding. We report a new group I intron insertion site for Myxomycetes in one Licea. PMID:23667494

  10. Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa.

    PubMed

    Simpson, Alastair G B; Roger, Andrew J

    2004-01-01

    The deepest-level relationships amongst Euglenozoa remain poorly resolved, despite a rich history of morphological examination and numerous molecular phylogenetic studies of small subunit ribosomal RNA (SSU rRNA) data. We address this question using two nuclear-encoded proteins, the cytosolic isoforms of heat shock protein 90 (hsp90) and heat shock protein 70 (hsp70). For both proteins we examined sequences from the three primary groups within Euglenozoa (euglenids, diplonemids, and kinetoplastids), and from their close relatives, Heterolobosea. Maximum likelihood (ML) and ML distance analyses of these proteins support a close relationship between diplonemids and kinetoplastids to the exclusion of the euglenid Euglena gracilis. In hsp90 and combined protein analyses bootstrap support is very strong and alternative topologies are generally rejected by 'approximately unbiased' (AU) tests. This result is consistent with recent molecular biological and morphological data, but contradicts early structural accounts and many SSU rRNA analyses that favour a closer relationship between diplonemids and euglenids. However, a re-examination of an important SSU rRNA data set highlights the instability of the inferences from this marker. The protein analyses also suggest that bodonids are paraphyletic, with trypanosomatids grouping with 'clade 2' and 'clade 3' bodonids to the exclusion of 'clade 1' bodonids.

  11. Comparison of ribosomal DNA length and restriction site polymorphisms in Gremmeniella and Ascocalyx isolates.

    PubMed Central

    Bernier, L; Hamelin, R C; Ouellette, G B

    1994-01-01

    The small subunit (SSU) and the internal transcribed spacer (ITS) of nuclear ribosomal DNA genes from 27 specimens of the fungal genera Gremmeniella and Ascocalyx were amplified by PCR. Length polymorphisms were observed in the SSU and allowed the differentiation of four groups among the isolates tested: (i) Ascocalyx abietis; (ii) Gremmeniella isolates from Picea spp.; (iii) Gremmeniella isolates from Abies balsamea; and (iv) Gremmeniella isolates from Abies sacchalinensis, Larix spp., and Pinus spp. The amplified ITS was the same length for all Gremmeniella specimens and was 60 bp longer in A. abietis. Phylogenetic analysis of length polymorphisms and of 24 restriction sites in the SSU and ITS showed that Gremmeniella isolates were more related to each other than to the Ascocalyx isolate. Furthermore, seven groups were evident within the genus Gremmeniella. Our results confirm that Gremmeniella and Ascocalyx should be kept as different taxa and suggest that the taxonomy of the former could be revised to consider isolates from Abies balsamea and from Picea spp. to be two different varieties while incorporating Gremmeniella laricina into G. abietina, as a new variety. Images PMID:7912501

  12. Nitrospira-dominated biofilm within a thermal artesian spring: a case for nitrification-driven primary production in a geothermal setting.

    PubMed

    Marks, C R; Stevenson, B S; Rudd, S; Lawson, P A

    2012-09-01

    Water chemistry, energetic modeling, and molecular analyses were combined to investigate the microbial ecology of a biofilm growing in a thermal artesian spring within Hot Springs National Park, AR. This unique fresh water spring has a low dissolved chemical load and is isolated from both light and direct terrestrial carbon input - resulting in an oligotrophic ecosystem limited for fixed carbon and electron donors. Evaluation of energy yields of lithotrophic reactions putatively linked to autotrophy identified the aerobic oxidation of methane, hydrogen, sulfide, ammonia, and nitrite as the most exergonic. Small subunit (SSU) rRNA gene libraries from biofilm revealed a low-diversity microbial assemblage populated by bacteria and archaea at a gene copy ratio of 45:1. Members of the bacterial family 'Nitrospiraceae', known for their autotrophic nitrite oxidation, dominated the bacterial SSU rRNA gene library (approximately 45%). Members of the Thaumarchaeota ThAOA/HWCGIII (>96%) and Thaumarchaeota Group I.1b (2.5%), which both contain confirmed autotrophic ammonia oxidizers, dominated the archaeal SSU rRNA library. Archaea appear to dominate among the ammonia oxidizers, as only ammonia monooxygenase subunit A (amoA) genes belonging to members of the Thaumarchaeota were detected. The geochemical, phylogenetic, and genetic data support a model that describes a novel thermophilic biofilm built largely by an autotrophic nitrifying microbial assemblage. This is also the first observation of 'Nitrospiraceae' as the dominant organisms within a geothermal environment.