Science.gov

Sample records for 18s small-subunit ssu

  1. Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera).

    PubMed

    Gillespie, J J; McKenna, C H; Yoder, M J; Gutell, R R; Johnston, J S; Kathirithamby, J; Cognato, A I

    2005-12-01

    We report the entire sequence (2864 nts) and secondary structure of the nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S) from the twisted-wing parasite Caenocholax fenyesi texensis Kathirithamby & Johnston (Strepsiptera: Myrmecolacidae). The majority of the base pairings in this structural model map on to the SSU rRNA secondary and tertiary helices that were previously predicted with comparative analysis. These regions of the core rRNA were unambiguously aligned across all Arthropoda. In contrast, many of the variable regions, as previously characterized in other insect taxa, had very large insertions in C. f. texensis. The helical base pairs in these regions were predicted with a comparative analysis of a multiple sequence alignment (that contains C. f. texensis and 174 published arthropod 18S rRNA sequences, including eleven strepsipterans) and thermodynamic-based algorithms. Analysis of our structural alignment revealed four unusual insertions in the core rRNA structure that are unique to animal 18S rRNA and in general agreement with previously proposed insertion sites for strepsipterans. One curious result is the presence of a large insertion within a hairpin loop of a highly conserved pseudoknot helix in variable region 4. Despite the extraordinary variability in sequence length and composition, this insertion contains the conserved sequences 5'-AUUGGCUUAAA-3' and 5'-GAC-3' that immediately flank a putative helix at the 5'- and 3'-ends, respectively. The longer sequence has the potential to form a nine base pair helix with a sequence in the variable region 2, consistent with a recent study proposing this tertiary interaction. Our analysis of a larger set of arthropod 18S rRNA sequences has revealed possible errors in some of the previously published strepsipteran 18S rRNA sequences. Thus we find no support for the previously recovered heterogeneity in the 18S molecules of strepsipterans. Our findings lend insight to the evolution of RNA structure and

  2. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  3. Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis.

    PubMed

    Nath, B Surendra; Gupta, S K; Bajpai, A K

    2012-12-01

    The life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect. PMID:23129193

  4. Characterization and phylogenetic relationships among microsporidia infecting silkworm, Bombyx mori, using inter simple sequence repeat (ISSR) and small subunit rRNA (SSU-rRNA) sequence analysis.

    PubMed

    Rao, S Nageswara; Nath, B Surendra; Saratchandra, B

    2005-06-01

    This study is the first report on the genetic characterization and relationships among different microsporidia infecting the silkworm, Bombyx mori, using inter simple sequence repeat PCR (ISSR-PCR) analysis. Six different microsporidians were distinguished through molecular DNA typing using ISSR-PCR. Thus, ISSR-PCR analysis can be a powerful tool to detect polymorphisms and identify microsporidians, which are difficult to study with microscopy because of their extremely small size. Of the 100 ISSR primers tested, only 28 primers had reproducibility and high polymorphism (93%). A total of 24 ISSR primers produced 55 unique genetic markers, which could be used to differentiate the microsporidians from each other. Among the 28 SSRs tested, the most abundant were (CA)n, (GA)n, and (GT)n repeats. The degree of band sharing was used to evaluate genetic similarity between different microsporidian isolates and to construct a phylogenetic tree using Jaccard's similarity coefficient. The results indicate that the DNA profiles based on ISSR markers can be used as diagnostic tools to identify different microsporidia with considerable accuracy. In addition, the small subunit ribosomal RNA (SSU-rRNA) sequence gene was amplified, cloned, and sequenced from each of the 6 microsporidian isolates. These sequences were compared with 20 other microsporidian SSU-rRNA sequences to develop a phylogenetic tree for the microsporidia isolated from the silkworms. This method was found to be useful in establishing the phylogenetic relationships among the different microsporidians isolated from silkworms. Of the 6 microsporidian isolates, NIK-1s revealed an SSU-rRNA gene sequence similar to Nosema bombycis, indicating that NIK-1s is similar to N. bombycis; the remaining 5 isolates, which differed from each other and from N. bombycis, were considered to be different variants belonging to the species N. bombycis. PMID:16121233

  5. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    PubMed

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  6. Phylogeny and systematics of demospongiae in light of new small-subunit ribosomal DNA (18S) sequences.

    PubMed

    Redmond, N E; Morrow, C C; Thacker, R W; Diaz, M C; Boury-Esnault, N; Cárdenas, P; Hajdu, E; Lôbo-Hajdu, G; Picton, B E; Pomponi, S A; Kayal, E; Collins, A G

    2013-09-01

    The most diverse and species-rich class of the phylum Porifera is Demospongiae. In recent years, the systematics of this clade, which contains more than 7000 species, has developed rapidly in light of new studies combining molecular and morphological observations. We add more than 500 new, nearly complete 18S sequences (an increase of more than 200%) in an attempt to further enhance understanding of the phylogeny of Demospongiae. Our study specifically targets representation of type species and genera that have never been sampled for any molecular data in an effort to accelerate progress in classifying this diverse lineage. Our analyses recover four highly supported subclasses of Demospongiae: Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha. Within Keratosa, neither Dendroceratida, nor its two families, Darwinellidae and Dictyodendrillidae, are monophyletic and Dictyoceratida is divided into two lineages, one predominantly composed of Dysideidae and the second containing the remaining families (Irciniidae, Spongiidae, Thorectidae, and Verticillitidae). Within Myxospongiae, we find Chondrosida to be paraphyletic with respect to the Verongida. We amend the latter to include species of the genus Chondrosia and erect a new order Chondrillida to contain remaining taxa from Chondrosida, which we now discard. Even with increased taxon sampling of Haploscleromorpha, our analyses are consistent with previous studies; however, Haliclona species are interspersed in even more clades. Haploscleromorpha contains five highly supported clades, each more diverse than previously recognized, and current families are mostly polyphyletic. In addition, we reassign Janulum spinispiculum to Haploscleromorpha and resurrect Reniera filholi as Janulum filholi comb. nov. Within the large clade Heteroscleromorpha, we confirmed 12 recently identified clades based on alternative data, as well as a sister-group relationship between the freshwater Spongillida and the family

  7. Morphology and Small-Subunit Ribosomal DNA Sequence of Henneguya Adiposa (Myxosporea) From Ictalurus punctatus (Siluriformes)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The original description of Henneguya adiposa, a myxozoan parasitizing channel catfish Ictalurus punctatus, is supplemented with new data on spore morphology, including photomicrographs and line drawings, as well as 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence. Elongate, translucent, linear...

  8. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants on RNA turnover: Progress report, May 1988--December 1988

    SciTech Connect

    Meagher, R.

    1989-01-01

    The goal of this work is to elucidate the mechanisms and determinants behind the light induced turnover and general chemical instability of Rubisco small subunit (SSU) RNA. Three approaches are being used: (A) to use molecular physiology to help define the phenomena and identify the possible cellular machinery involved in these processes; (B) SSU RNA stability will be assayed in transgenic plants; and (C) in vivo RNA structure is being examined via chemical modification of RNA. The tremendous success we have had with assaying in vivo RNA structure by DMS modification and a need to validate this technique with sufficient controls has resulted in our adding an additional goal to the project: to develop a DMS modification map of 18S rRNA and portions of Rubisco SSU RNA and predict a potential secondary structures.

  9. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms

    NASA Technical Reports Server (NTRS)

    Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.

    1994-01-01

    When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.

  10. Megraft: A software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metagenomic libraries represent subsamples of the total DNA found at a study site and offer unprecedented opportunities to study ecological and functional aspects of microbial communities. To examine the depth of the sequencing effort, rarefaction analysis of the ribosomal small sub-unit (SSU/16S/18...

  11. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP

    PubMed Central

    Sardana, Richa; White, Joshua P.; Johnson, Arlen W.

    2013-01-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome. PMID:23604635

  12. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    PubMed

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome. PMID:23604635

  13. Investigating the diversity of the 18S SSU rRNA hyper-variable region of Theileria in cattle and Cape buffalo (Syncerus caffer) from southern Africa using a next generation sequencing approach.

    PubMed

    Mans, Ben J; Pienaar, Ronel; Ratabane, John; Pule, Boitumelo; Latif, Abdalla A

    2016-07-01

    Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene. PMID:27084674

  14. Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences.

    PubMed

    Papillon, Daniel; Perez, Yvan; Caubit, Xavier; Le Parco, Yannick

    2006-03-01

    While the phylogenetic position of Chaetognatha has became central to the question of early bilaterian evolution, the internal systematics of the phylum are still not clear. The phylogenetic relationships of the chaetognaths were investigated using newly obtained small subunit ribosomal RNA nuclear 18S (SSU rRNA) sequences from 16 species together with 3 sequences available in GenBank. As previously shown with the large subunit ribosomal RNA 28S gene, two classes of Chaetognatha SSU rRNA gene can be identified, suggesting a duplication of the whole ribosomal cluster; allowing the rooting of one class of genes by another in phylogenetic analyses. Maximum Parsimony, Maximum Likelihood and Bayesian analyses of the molecular data, and statistical tests showed (1) that there are three main monophyletic groups: Sagittidae/Krohnittidae, Spadellidae/Pterosagittidae, and Eukrohniidae/Heterokrohniidae, (2) that the group of Aphragmophora without Pterosagittidae (Sagittidae/Krohnittidae) is monophyletic, (3) the Spadellidae/Pterosagittidae and Eukrohniidae/Heterokrohniidae families are very likely clustered, (4) the Krohnittidae and Pterosagittidae groups should no longer be considered as families as they are included in other groups designated as families, (5) suborder Ctenodontina is not monophyletic and the Flabellodontina should no longer be considered as a suborder, and (6) the Syngonata/Chorismogonata and the Monophragmophora/Biphragmophora hypotheses are rejected. Such conclusions are considered in the light of morphological characters, several of which are shown to be prone to homoplasy. PMID:16434216

  15. Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Rank, D N; Kothari, R K; Joshi, C G

    2011-09-01

    The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR-RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 10(5) vs. 1.3 × 10(4)) in per ml ruminal fluid. PMID:21744288

  16. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    PubMed Central

    Medina, Mónica; Collins, Allen G.; Silberman, Jeffrey D.; Sogin, Mitchell L.

    2001-01-01

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino–Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira–Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny. PMID:11504944

  17. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences

    NASA Technical Reports Server (NTRS)

    Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.

  18. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey; Sogin, Mitchell L.

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  19. Molecular evolution of rDNA in early diverging Metazoa: First comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera

    PubMed Central

    2008-01-01

    Background The cytoplasmic ribosomal small subunit (SSU, 18S) ribosomal RNA (rRNA) is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa. Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836), a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. Results We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges) and Calcarea (calcareous sponges). We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early metazoans, we present 52 SSU r

  20. Regulation of Plasmodium yoelii Oocyst Development by Strain- and Stage-Specific Small-Subunit rRNA

    PubMed Central

    Qi, Yanwei; Zhu, Feng; Eastman, Richard T.; Fu, Young; Zilversmit, Martine; Pattaradilokrat, Sittiporn; Hong, Lingxian; Liu, Shengfa; McCutchan, Thomas F.; Pan, Weiqing; Xu, Wenyue

    2015-01-01

    ABSTRACT One unique feature of malaria parasites is the differential transcription of structurally distinct rRNA (rRNA) genes at different developmental stages: the A-type genes are transcribed mainly in asexual stages, whereas the S-type genes are expressed mostly in sexual or mosquito stages. Conclusive functional evidence of different rRNAs in regulating stage-specific parasite development, however, is still absent. Here we performed genetic crosses of Plasmodium yoelii parasites with one parent having an oocyst development defect (ODD) phenotype and another producing normal oocysts to identify the gene(s) contributing to the ODD. The parent with ODD—characterized as having small oocysts and lacking infective sporozoites—was obtained after introduction of a plasmid with a green fluorescent protein gene into the parasite genome and subsequent passages in mice. Quantitative trait locus analysis of genome-wide microsatellite genotypes of 48 progeny from the crosses linked an ~200-kb segment on chromosome 6 containing one of the S-type genes (D-type small subunit rRNA gene [D-ssu]) to the ODD. Fine mapping of the plasmid integration site, gene expression pattern, and gene knockout experiments demonstrated that disruption of the D-ssu gene caused the ODD phenotype. Interestingly, introduction of the D-ssu gene into the same parasite strain (self), but not into a different subspecies, significantly affected or completely ablated oocyst development, suggesting a stage- and subspecies (strain)-specific regulation of oocyst development by D-ssu. This study demonstrates that P. yoelii D-ssu is essential for normal oocyst and sporozoite development and that variation in the D-ssu sequence can have dramatic effects on parasite development. PMID:25759501

  1. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas

    PubMed Central

    Meyer, Moritz T.; Genkov, Todor; Skepper, Jeremy N.; Jouhet, Juliette; Mitchell, Madeline C.; Spreitzer, Robert J.; Griffiths, Howard

    2012-01-01

    The pyrenoid is a subcellular microcompartment in which algae sequester the primary carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The pyrenoid is associated with a CO2-concentrating mechanism (CCM), which improves the operating efficiency of carbon assimilation and overcomes diffusive limitations in aquatic photosynthesis. Using the model alga Chlamydomonas reinhardtii, we show that pyrenoid formation, Rubisco aggregation, and CCM activity relate to discrete regions of the Rubisco small subunit (SSU). Specifically, pyrenoid occurrence was shown to be conditioned by the amino acid composition of two surface-exposed α-helices of the SSU: higher plant-like helices knock out the pyrenoid, whereas native algal helices establish a pyrenoid. We have also established that pyrenoid integrity was essential for the operation of an active CCM. With the algal CCM being functionally analogous to the terrestrial C4 pathway in higher plants, such insights may offer a route toward transforming algal and higher plant productivity for the future. PMID:23112177

  2. RNA Cytidine Acetyltransferase of Small-Subunit Ribosomal RNA: Identification of Acetylation Sites and the Responsible Acetyltransferase in Fission Yeast, Schizosaccharomyces pombe

    PubMed Central

    Taoka, Masato; Ishikawa, Daisuke; Nobe, Yuko; Ishikawa, Hideaki; Yamauchi, Yoshio; Terukina, Goro; Nakayama, Hiroshi; Hirota, Kouji; Takahashi, Nobuhiro; Isobe, Toshiaki

    2014-01-01

    The eukaryotic small-subunit (SSU) ribosomal RNA (rRNA) has two evolutionarily conserved acetylcytidines. However, the acetylation sites and the acetyltransferase responsible for the acetylation have not been identified. We performed a comprehensive MS-based analysis covering the entire sequence of the fission yeast, Schizosaccharomyces pombe, SSU rRNA and identified two acetylcytidines at positions 1297 and 1815 in the 3′ half of the rRNA. To identify the enzyme responsible for the cytidine acetylation, we searched for an S. pombe gene homologous to TmcA, a bacterial tRNA N-acetyltransferase, and found one potential candidate, Nat10. A temperature-sensitive strain of Nat10 with a mutation in the Walker A type ATP-binding motif abolished the cytidine acetylation in SSU rRNA, and the wild-type Nat10 supplemented to this strain recovered the acetylation, providing evidence that Nat10 is necessary for acetylation of SSU rRNA. The Nat10 mutant strain showed a slow-growth phenotype and was defective in forming the SSU rRNA from the precursor RNA, suggesting that cytidine acetylation is necessary for ribosome assembly. PMID:25402480

  3. Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?

    NASA Technical Reports Server (NTRS)

    Viscogliosi, E.; Edgcomb, V. P.; Gerbod, D.; Noel, C.; Delgado-Viscogliosi, P.; Sogin, M. L. (Principal Investigator)

    1999-01-01

    The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.

  4. Morphology and 18S rDNA of Henneguya gurlei (Myxosporea) from Ameiurus nebulosus (Siluriformes) in North Carolina

    USGS Publications Warehouse

    Iwanowicz, L.R.; Iwanowicz, D.D.; Pote, L.M.; Blazer, V.S.; Schill, W.B.

    2008-01-01

    Henneguya gurlei was isolated from Ameiurus nebulosus captured in North Carolina and redescribed using critical morphological features and 18S small-subunit ribosomal RNA (SSU rDNA) gene sequence. Plasmodia are white, spherical, or subspherical, occur in clusters, measure up to 1.8 mm in length, and are located on the dorsal, pectoral, and anal fins. Histologically, plasmodia are located in the dermis and subdermally, and the larger cysts disrupt the melanocyte pigment layer. The spore body is lanceolate, 18.2 ?? 0.3 ??m (range 15.7-20.3) in length, and 5.4 ?? 0.1 ??m (range 3.8-6.1) in width in valvular view. The caudal appendages are 41.1 ?? 1.1 ??m (range 34.0-49.7) in length. Polar capsules are pyriform and of unequal size. The longer polar capsule measures 6.2 ?? 0.1 ??m (range 5.48-7.06), while the shorter is 5.7 ?? 0.1 ??m (range 4.8-6.4) in length. Polar capsule width is 1.2 ?? 0.03 ??m (range 1.0-1.54). The total length of the spore is 60.9 ?? 1.2 ??m (range 48.7-68.5). Morphologically, this species is similar to other species of Henneguya that are known to infect ictalurids. Based on SSU rDNA sequences, this species is most closely related to H. exilis and H. ictaluri, which infect Ictalurus punctatus. ?? American Society of Parasitologists 2008.

  5. Sequence Variation in the Small-Subunit rRNA Gene of Plasmodium malariae and Prevalence of Isolates with the Variant Sequence in Sichuan, China

    PubMed Central

    Liu, Qing; Zhu, Shenghua; Mizuno, Sahoko; Kimura, Masatsugu; Liu, Peina; Isomura, Shin; Wang, Xingzhen; Kawamoto, Fumihiko

    1998-01-01

    By two PCR-based diagnostic methods, Plasmodium malariae infections have been rediscovered at two foci in the Sichuan province of China, a region where no cases of P. malariae have been officially reported for the last 2 decades. In addition, a variant form of P. malariae which has a deletion of 19 bp and seven substitutions of base pairs in the target sequence of the small-subunit (SSU) rRNA gene was detected with high frequency. Alignment analysis of Plasmodium sp. SSU rRNA gene sequences revealed that the 5′ region of the variant sequence is identical to that of P. vivax or P. knowlesi and its 3′ region is identical to that of P. malariae. The same sequence variations were also found in P. malariae isolates collected along the Thai-Myanmar border, suggesting a wide distribution of this variant form from southern China to Southeast Asia. PMID:9774600

  6. Redescriptions of three trachelocercid ciliates (Protista, Ciliophora, Karyorelictea), with notes on their phylogeny based on small subunit rRNA gene sequences.

    PubMed

    Yan, Ying; Xu, Yuan; Yi, Zhenzhen; Warren, Alan

    2013-09-01

    Three trachelocercid ciliates, Kovalevaia sulcata (Kovaleva, 1966) Foissner, 1997, Trachelocerca sagitta (Müller, 1786) Ehrenberg, 1840 and Trachelocerca ditis (Wright, 1982) Foissner, 1996, isolated from two coastal habitats at Qingdao, China, were investigated using live observation and silver impregnation methods. Data on their infraciliature and morphology are supplied. The small subunit rRNA (SSU rRNA) genes of K. sulcata and Trachelocerca sagitta were sequenced for the first time. Phylogenetic analyses based on SSU rRNA gene sequence data indicate that both organisms, and the previously sequenced Trachelocerca ditis, are located within the trachelocercid assemblage and that K. sulcata is sister to an unidentified taxon forming a clade that is basal to the core trachelocercids. PMID:23847285

  7. Redescription of Rhizodomus tagatzi (Ciliophora: Spirotrichea: Tintinnida), based on morphology and small subunit ribosomal RNA gene sequence.

    PubMed

    Saccà, Alessandro; Strüder-Kypke, Michaela C; Lynn, Denis H

    2012-01-01

    Herein, we redescribe a tintinnid ciliate that is most commonly known as Tintinnopsis corniger Hada, 1964; but it has been described several times with different names, specifically Tintinnopsis nudicauda Paulmier, 1997 and Rhizodomus tagatzi Strelkow & Wirketis, 1950. Neotype material was collected from the water column of the coastal saline Lake Faro, a meromictic basin connected to the Straits of Messina, Central Mediterranean. The Lake Faro population is characterized by a hyaline or sparsely agglomerated lorica, which made it possible to observe in detail the basal layer structure, usually concealed by abundant incrusting particles. Along with an improved description of the lorica, we provide novel information, such as the general zooid morphology, the ciliary pattern, and the small subunit rRNA (SSU rRNA) gene sequence. Our phylogenetic analysis, based on the SSU rRNA, groups this species with Tintinnopsis radix, while the first taxonomic study designated it as R. tagatzi, introducing a new genus due to peculiarities in lorica morphology. We conclude that the species should be known as R. tagatzi, the senior synonym for the species. However, we do not transfer any other species to this genus, despite strong molecular similarities. Although it is obvious that the genus Tintinnopsis is in need of a thorough revision, current molecular and cytological information for this genus is too sparse, and the type species has not yet been redescribed with modern methods. PMID:22452414

  8. Establishment of a continuous culture system for Entamoeba muris and analysis of the small subunit rRNA gene.

    PubMed

    Kobayashi, S; Suzuki, J; Takeuchi, T

    2009-06-01

    We established a culture system for Entamoeba muris (MG-EM-01 strain isolated from a Mongolian gerbil) using a modified Balamuth's egg yolk infusion medium supplemented with 4% adult bovine serum and Bacteroides fragilis cocultured with Escherichia coli. Further, encystation was observed in the culture medium. The morphological characteristics of E. muris are similar to those of Entamoeba coli (E. coli); moreover, the malic isoenzyme electrophoretic band, which shows species-specific electrophoretic mobility, of E. muris had almost the same mobility as that observed with the malic isoenzyme electrophorectic band of E. coli (UZG-EC-01 strain isolated from a gorilla). We determined the small subunit rRNA (SSU-rRNA) gene sequence of the MG-EM-01 strain, and this sequence was observed to show 82.7% homology with that of the UZG-EC-01 strain. Further, the resultant phylogenetic tree for molecular taxonomy based on the SSU-rRNA genes of the 21 strains of the intestinal parasitic amoeba species indicated that the MG-EM-01 strain was most closely related to E. coli. PMID:19585892

  9. Novel Eukaryotic Lineages Inferred from Small-Subunit rRNA Analyses of Oxygen-Depleted Marine Environments†

    PubMed Central

    Stoeck, Thorsten; Epstein, Slava

    2003-01-01

    Microeukaryotes in oxygen-depleted environments are among the most diverse, as well as the least studied, organisms. We conducted a cultivation-independent, small-subunit (SSU) rRNA-based survey of microeukaryotes in suboxic waters and anoxic sediments in the great Sippewisset salt marsh, Cape Cod, Mass. We generated two clone libraries and analyzed approximately 300 clones, which contained a large diversity of microeukaryotic SSU rRNA signatures. Only a few of these signatures were closely related (sequence similarity of >97%) to the sequences reported earlier. The bulk of our sequences represented deep novel branches within green algae, fungi, cercozoa, stramenopiles, alveolates, euglenozoa and unclassified flagellates. In addition, a significant number of detected rRNA sequences exhibited no affiliation to known organisms and sequences and thus represent novel lineages of the highest taxonomical order, most of them branching off the base of the global phylogenetic tree. This suggests that oxygen-depleted environments harbor diverse communities of novel organisms, which may provide an interesting window into the early evolution of eukaryotes. PMID:12732534

  10. Sequence and phylogenetic analysis of SSU rRNA gene of five microsporidia.

    PubMed

    Dong, ShiNan; Shen, ZhongYuan; Xu, Li; Zhu, Feng

    2010-01-01

    The complete small subunit rRNA (SSU rRNA) gene sequences of five microsporidia including Nosema heliothidis, and four novel microsporidia isolated from Pieris rapae, Phyllobrotica armta, Hemerophila atrilineata, and Bombyx mori, respectively, were obtained by PCR amplification, cloning, and sequencing. Two phylogenetic trees based on SSU rRNA sequences had been constructed by using Neighbor-Joining of Phylip software and UPGMA of MEGA4.0 software. The taxonomic status of four novel microsporidia was determined by analysis of phylogenetic relationship, length, G+C content, identity, and divergence of the SSU rRNA sequences. The results showed that the microsporidia isolated from Pieris rapae, Phyllobrotica armta, and Hemerophila atrilineata have close phylogenetic relationship with the Nosema, while another microsporidium isolated from Bombyx mori is closely related to the Endoreticulatus. So, we temporarily classify three novel species of microsporidia to genus Nosema, as Nosema sp. PR, Nosema sp. PA, Nosema sp. HA. Another is temporarily classified into genus Endoreticulatus, as Endoreticulatus sp. Zhenjiang. The result indicated as well that it is feasible and valuable to elucidate phylogenetic relationships and taxonomic status of microsporidian species by analyzing information from SSU rRNA sequences of microsporidia. PMID:19768503

  11. Ribosomal small subunit domains radiate from a central core.

    PubMed

    Gulen, Burak; Petrov, Anton S; Okafor, C Denise; Vander Wood, Drew; O'Neill, Eric B; Hud, Nicholas V; Williams, Loren Dean

    2016-01-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2'OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit. PMID:26876483

  12. Ribosomal small subunit domains radiate from a central core

    NASA Astrophysics Data System (ADS)

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O'Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-02-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2‧OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit.

  13. Ribosomal small subunit domains radiate from a central core

    PubMed Central

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O’Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-01-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2′OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit. PMID:26876483

  14. A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes

    PubMed Central

    Amaral-Zettler, Linda A.; McCliment, Elizabeth A.; Ducklow, Hugh W.; Huse, Susan M.

    2009-01-01

    Background Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU) ribosomal RNA (rRNA) genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of the SSU rRNA gene including the V9 region in eukaryotes. Methodology/Principal Findings We present a protocol for the amplicon pyrosequencing of V9 regions for eukaryotic environmental samples for biodiversity inventories and species richness estimation. The International Census of Marine Microbes (ICoMM) and the Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs) projects are already employing this protocol for tag sequencing of eukaryotic samples in a wide diversity of both marine and freshwater environments. Conclusions/Significance Massively parallel pyrosequencing of eukaryotic V9 hypervariable regions of SSU rRNA genes provides a means of estimating species richness from deeply-sampled populations and for discovering novel species from the environment. PMID:19633714

  15. Putative secondary structures of unusually long strepsipteran SSU rRNAs and its phylogenetic implications.

    PubMed

    Choe, C P; Hwang, U W; Kim, W

    1999-04-30

    We constructed the putative secondary structures of the small subunit rRNAs (SSU rRNA) from three strepsipteran insects. The primary sequences of the strepsipteran SSU rRNAs are unusually long due to unique and long insertions. In spite of these insertions, the basic shapes of their secondary structures are well maintained as shown in those of other eukaryotes, because these insertions appear mainly in the variable regions. The secondary structures for the V1, V3, V5, V8, and V9 regions are well conserved, even though the primary structures of V1, V5, and V8 regions are quite variable. However, the predicted secondary structures for the V2, V4, and V7 regions are quite different from those of other insects. In the V4 and V7 regions, helices specific to the Strepsiptera exist. These helices have not been reported in other organisms so far. Similarly, four eukaryotic specific helices (E8-1, E10-2, E23-4 and E45-1) not reported in insects exist in the V2, V4, and V8 regions. These helices are formed by the inserted sequences. The secondary structures of the expanded segments of the strepsipteran SSU rRNA were applied to infer the phylogenetic position of Strepsiptera, one of the most enigmatic problems in insect phylogeny. Only the secondary structure of the V7 region showed the weak Strepsiptera/Diptera sister-group relationship. PMID:10340475

  16. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences.

    PubMed

    Duff, R J; Nickrent, D L

    1999-03-01

    Phylogenetic relationships among embryophytes (tracheophytes, mosses, liverworts, and hornworts) were examined using 21 newly generated mitochondrial small-subunit (19S) rDNA sequences. The "core" 19S rDNA contained more phylogenetically informative sites and lower homoplasy than either nuclear 18S or plastid 16S rDNA. Results of phylogenetic analyses using parsimony (MP) and likelihood (ML) were generally congruent. Using MP, two trees were obtained that resolved either liverworts or hornworts as the basal land plant clade. The optimal ML tree showed hornworts as basal. That topology was not statistically different from the two MP trees, thus both appear to be equally viable evolutionary hypotheses. High bootstrap support was obtained for the majority of higher level embryophyte clades named in a recent morphologically based classification, e.g., Tracheophyta, Euphyllophytina, Lycophytina, and Spermatophytata. Strong support was also obtained for the following monophyletic groups: hornworts, liverworts, mosses, lycopsids, leptosporangiate and eusporangiate ferns, gymnosperms and angiosperms. This molecular analysis supported a sister relationship between Equisetum and leptosporangiate ferns and a monophyletic gymnosperms sister to angiosperms. The topologies of deeper clades were affected by taxon inclusion (particularly hornworts) as demonstrated by jackknife analyses. This study represents the first use of mitochondrial 19S rDNA for phylogenetic purposes and it appears well-suited for examining intermediate to deep evolutionary relationships among embryophytes. PMID:10077500

  17. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis.

    PubMed Central

    Godon, J J; Zumstein, E; Dabert, P; Habouzit, F; Moletta, R

    1997-01-01

    The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis. PMID:9212428

  18. Using Small Subunit Ribosomal RNA to Follow Dark Incorporation of 14C-bicarbonate by Bacteria and Archaea in Sandy Sediment

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Musat, N.; Kuypers, M. M.

    2007-12-01

    Small subunit ribosomal RNA (SSU rRNA) and the genes encoding it have become the basis of modern microbial phylogeny, and of numerous methods for characterizing the composition of bacterial, archaeal, and even eukaryotic communities as they occur in nature. A limitation of this approach has been that phylogeny alone is not a reliable guide to physiology, particularly for groups with no close relatives in culture. We have been developing ways of using the SSU rRNA molecule itself to identify and (eventually) quantify the carbon sources incorporated by particular phylogenetic groups. This can be done by taking advantage of natural variations in carbon isotopic composition among growth substrates, or by following incorporation of 13C- or 14C-labeled compounds. 14C has the advantage that natural background levels are negligible. In the present study, our goal is to identify species responsible for non-photosynthetic CO2 incorporation in sandy sediments of the German Wadden Sea. Sediment cores collected from the Janssand sand flats were percolated with 14C-bicarbonate at in situ temperature for 36-38h in the dark, total RNA isolated, and domain-specific oligonucleotide probes used to capture bacterial and archaeal SSU rRNA. Total and/or captured RNA was separated by denaturing polyacrylamide gel electrophoresis, and 14C detected by phosphor imager, autoradiography, or beta imager. Detection was fastest and most sensitive with the beta imager. Both Bacteria and Archaea had incorporated label, suggesting both groups may harbor non-photosynthetic autotrophs. The next step will be to use more specific capture probes. We are currently working to separate the captured domain-specific SSU rRNA on non-denaturing gels, with detection by the high-resolution mode of the beta imager, so that individual species incorporating label can be identified by RT-PCR and sequencing of labeled bands.

  19. Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of Rhizophagus irregularis and Gigaspora margarita is high and isolate-dependent.

    PubMed

    Thiéry, Odile; Vasar, Martti; Jairus, Teele; Davison, John; Roux, Christophe; Kivistik, Paula-Ann; Metspalu, Andres; Milani, Lili; Saks, Ülle; Moora, Mari; Zobel, Martin; Öpik, Maarja

    2016-06-01

    Arbuscular mycorrhizal (AM) fungi are known to exhibit high intra-organism genetic variation. However, information about intra- vs. interspecific variation among the genes commonly used in diversity surveys is limited. Here, the nuclear small subunit (SSU) rRNA gene, internal transcribed spacer (ITS) region and large subunit (LSU) rRNA gene portions were sequenced from 3 to 5 individual spores from each of two isolates of Rhizophagus irregularis and Gigaspora margarita. A total of 1482 Sanger sequences (0.5 Mb) from 239 clones were obtained, spanning ~4370 bp of the ribosomal operon when concatenated. Intrasporal and intra-isolate sequence variation was high for all three regions even though variant numbers were not exhausted by sequencing 12-40 clones per isolate. Intra-isolate nucleotide variation levels followed the expected order of ITS > LSU > SSU, but the values were strongly dependent on isolate identity. Single nucleotide polymorphism (SNP) densities over 4 SNP/kb in the ribosomal operon were detected in all four isolates. Automated operational taxonomic unit picking within the sequence set of known identity overestimated species richness with almost all cut-off levels, markers and isolates. Average intraspecific sequence similarity values were 99%, 96% and 94% for amplicons in SSU, LSU and ITS, respectively. The suitability of the central part of the SSU as a marker for AM fungal community surveys was further supported by its level of nucleotide variation, which is similar to that of the ITS region; its alignability across the entire phylum; its appropriate length for next-generation sequencing; and its ease of amplification in single-step PCR. PMID:27092961

  20. Morphology and small subunit rRNA gene sequence of Uronemita parabinucleata n. sp. (Ciliophora, Uronematidae), with an improved generic diagnosis.

    PubMed

    Liu, Mingjian; Gao, Feng; Al-Farraj, Saleh A; Hu, Xiaozhong

    2016-06-01

    The morphology and infraciliature of a new species, Uronemita parabinucleata n. sp., isolated from intertidal sediments in a coastal region in northern China, were investigated using live observation and silver impregnation methods. The new species is characterized by an in vivo body size of about 20-50×10-25μm, 22 or 23 somatic kineties, two macronuclear nodules, and one caudal cilium. Its small subunit ribosomal RNA gene (SSU rDNA) was sequenced and compared with those of other Uronemita species to reveal nucleotide differences. Phylogenetic analyses indicated that Uronemita is monophyletic and that the new species clusters with its congener Uronemita filificum, with full support provided by both Bayesian inference and maximum likelihood algorithms. Based on previous studies and the present study, an improved diagnosis of the genus Uronemita is supplied, which has been absent since the establishment of this genus. A key to the Uronemita species is also provided. PMID:26999559

  1. Structure of Csm2 elucidates the relationship between small subunits of CRISPR-Cas effector complexes.

    PubMed

    Venclovas, Česlovas

    2016-05-01

    Type I and type III CRISPR-Cas effector complexes share similar architecture and have homologous key subunits. However, the relationship between the so-called small subunits of these complexes remains a contentious issue. Here, it is shown that the recently solved structure of Thermotoga maritima Csm2 represents a dimer with the extensive structure swapping between monomers. Unswapping the structure generates a compact globular monomer which shares similar structure and surface properties with Cmr5, the small subunit of a related Cmr complex. Detailed analysis of available structures of small subunits reveals that they all have a common fold suggesting their common origin. PMID:27091242

  2. Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene

    PubMed Central

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally. PMID:23024768

  3. An overview of the secondary structure of the V4 region of eukaryotic small-subunit ribosomal RNA.

    PubMed Central

    Nickrent, D L; Sargent, M L

    1991-01-01

    The V4 region of the small subunit (18S) ribosomal RNA was examined in 72 different sequences representing a broad sample eukaryotic diversity. This domain is the most variable region of the 18S rRNA molecule and ranges in length from ca. 230 to over 500 bases. Based upon comparative analysis, secondary structural models were constructed for all sequences and the resulting generalized model shows that most organisms possess seven helices for this region. The protists and two insects show from one to as many as four helices in addition to the above seven. In this report, we summarize secondary structure information presented elsewhere for the V4 region, describe the general features for helical and apical regions, and identify signature sequences useful in helix identification. Our model generally agrees with other current concepts; however, we propose modifications or alternative structures for the start of the V4 region, the large protist inserts, and the sector that may possibly contain a pseudoknot. PMID:2014163

  4. Molecular characterization of Sarcocystis species from Polish roe deer based on ssu rRNA and cox1 sequence analysis.

    PubMed

    Kolenda, Rafał; Ugorski, Maciej; Bednarski, Michał

    2014-08-01

    Sarcocysts from four Polish roe deer were collected and examined by light microscopy, small subunit ribosomal RNA (ssu rRNA), and the subunit I of cytochrome oxidase (cox1) sequence analysis. This resulted in identification of Sarcocystis gracilis, Sarcocystis oviformis, and Sarcocystis silva. However, we were unable to detect Sarcocystis capreolicanis, the fourth Sarcocystis species found previously in Norwegian roe deer. Polish sarcocysts isolated from various tissues differed in terms of their shape and size and were larger than the respective Norwegian isolates. Analysis of ssu rRNA gene revealed the lack of differences between Sarcocystis isolates belonging to one species and a very low degree of genetic diversity between Polish and Norwegian sarcocysts, ranging from 0.1% for Sarcocystis gracilis and Sarcocystis oviformis to 0.44% for Sarcocystis silva. Contrary to the results of the ssu rRNA analysis, small intraspecies differences in cox1 sequences were found among Polish Sarcocystis gracilis and Sarcocystis silva isolates. The comparison of Polish and Norwegian cox1 sequences representing the same Sarcocystis species revealed similar degree of sequence identity, namely 99.72% for Sarcocystis gracilis, 98.76% for Sarcocystis silva, and 99.85% for Sarcocystis oviformis. Phylogenetic reconstruction and genetic population analyses showed an unexpected high degree of identity between Polish and Norwegian isolates. Moreover, cox1 gene sequences turned out to be more accurate than ssu rRNA when used to reveal phylogenetic relationships among closely related species. The results of our study revealed that the same Sarcocystis species isolated from the same hosts living in different geographic regions show a very high level of genetic similarity. PMID:24948101

  5. Expression of a foreign Rubisco small subunit in tobacco with reduced levels of the native protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cDNA, ArRbcS3, for the small subunit of Rubisco from Amaranthus retroflexus (pigweed) was expressed in tobacco (Nicotiana tabacum) under the control of a strong leaf-specific Lhcb promoter. The coding region of the ArRbcS3 was fused to the plastid targeting sequence of the native tobacco rbcS to...

  6. A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits.

    PubMed

    Cross, Joanna M; Clancy, Maureen; Shaw, Janine R; Boehlein, Susan K; Greene, Thomas W; Schmidt, Robert R; Okita, Thomas W; Hannah, L Curtis

    2005-02-01

    The heterotetrameric, allosterically regulated enzyme, adenosine-5'-diphosphoglucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch synthesis. Despite vast differences in allosteric properties and a long evolutionary separation, heterotetramers of potato small subunit and maize large subunit have activity comparable to either parent in an Escherichia coli expression system. In contrast, co-expression of maize small subunit with the potato large subunit produces little activity as judged by in vivo activity stain. To pinpoint the region responsible for differential activity, we expressed chimeric maize/potato small subunits in E. coli. This identified a 55-amino acid motif of the potato small subunit that is critical for glycogen production when expressed with the potato large subunit. Potato and maize small subunit sequences differ at five amino acids in this motif. Replacement experiments revealed that at least four amino acids of maize origin were required to reduce staining. An AGPase composed of a chimeric potato small subunit containing the 55-amino acid maize motif with the potato large subunit exhibited substantially less affinity for the substrates, glucose-1-phosphate and ATP and an increased Ka for the activator, 3-phosphoglyceric acid. Placement of the potato motif into the maize small subunit restored glycogen synthesis with the potato large subunit. Hence, a small polymorphic motif within the small subunit influences both catalytic and allosteric properties by modulating subunit interactions. PMID:15686515

  7. Ultrastructural characteristics and small subunit ribosomal DNA sequence of Vairimorpha cheracis sp. nov., (Microspora: Burenellidae), a parasite of the Australian yabby, Cherax destructor (Decapoda: Parastacidae).

    PubMed

    Moodie, Elizabeth G; Le Jambre, Leo F; Katz, Margaret E

    2003-11-01

    This is the first record of a species of Vairimorpha infecting a crustacean host. Vairimorpha cheracis sp. nov. was found in a highland population of the Australian freshwater crayfish, Cherax destructor. The majority of spores and earlier developmental stages of V. cheracis sp. nov. were found within striated muscle cells of the thorax, abdomen, and appendages of the crayfish. Only octosporoblastic sporogony within sporophorous vesicles (SPVs) was observed. Diplokaryotic sporonts separated into two uninucleate daughter cells, each of which gave rise to four sporoblasts in a rosette-shaped plasmodium, so that eight uninucleate spores were produced within the persistent ovoid SPV. Ultrastructural features of stages in the octosporoblastic sequence were similar to those described for Vairimorpha necatrix, the type species. Mature spores were pyriform in shape and averaged 3.4x1.9 microm in dimensions. The anterior polaroplast was lamellar in structure, and the posterior polaroplast vesicular. The polar filament was coiled 10-12 times, lateral to the posterior vacuole. The small subunit ribosomal DNA (SSU rDNA) of V. cheracis sp. nov. was sequenced and compared with other microsporidia. V. cheracis sp. nov. showed over 97% sequence identity with Vairimorpha imperfecta and five species of Nosema, and only 86% sequence identity with V. necatrix. The need for a taxonomic revision of the Nosema/Vairimorpha group of species is discussed. PMID:14726242

  8. Morphology and Small Subunit rDNA Phylogeny of Two New Marine Urostylid Ciliates, Caudiholosticha marina sp. nov. and Nothoholosticha flava sp. nov. (Ciliophora, Hypotrichia).

    PubMed

    Li, Ju; Chen, Xumiao; Xu, Kuidong

    2016-07-01

    Two marine urostylid ciliates, Caudiholosticha marina sp. nov. and Nothoholosticha flava sp. nov., isolated from intertidal sediment in the Yellow Sea, are investigated using morphological and small subunit rDNA phylogenetic analyses. Caudiholosticha marina is 210-310 μm × 40-55 μm in vivo, and has 10-20 macronuclear nodules, 23-37 midventral cirral pairs extending to 5-8 transverse cirri, and two caudal cirri. It differs from congeners by its marine habitat, larger size, macronuclear arrangement pattern and high number of midventral pairs. Molecular phylogenetic analyses indicate a polyphyly of Caudiholosticha. Nothoholosticha flava is yellow to brownish and 240-320 μm × 40-60 μm sized, and has a bipartite adoral zone, six frontal cirri in atypical bicorona, usually four frontoterminal, one buccal and 5-7 transverse cirri and 28-54 midventral pairs. Phylogenetic analyses allocate N. flava as sister of N. fasciola, type of the genus. The two Nothoholosticha species differ distinctly by the presence/absence of frontoterminal cirri, a feature often used to define genera in the Hypotrichia. However, the SSU rDNA sequence similarity between these two species is 99.3%, which weakens the justification for separating the new isolate at genus level. The taxonomic significance of frontoterminal cirri is discussed based on morphological and molecular data. PMID:26663360

  9. The small subunit rRNA gene sequence of the chonotrich Chilodochona carcini Jankowski, 1973 confirms chonotrichs as a dysteriid-derived clade (Phyllopharyngea, Ciliophora).

    PubMed

    Lynn, Denis H

    2016-08-01

    The chonotrichs are sessile ciliated protozoa that are ectosymbiotic on the body parts of a variety of crustaceans. They have long been considered a separate group because their sessile habit has resulted in the evolution of a very divergent body form and reproductive strategy compared to free-living ciliates. In the mid-20th Century, the free-living dysteriid cyrtophorian ciliates were proposed as a potential sister clade because the chonotrich bud or daughter cell showed similarities during division morphogenesis (i.e. ontogeny) to these free-living dysteriids. A single small subunit (SSU) rRNA gene sequence is available for the chonotrich Isochona sp. However, its authenticity has recently been questioned, and the placement of this sequence within the dysteriid clade has added to this controversy. In this report, the SSUrRNA gene sequence of the chonotrich Chilodochona carcini, ectosymbiotic on the green crab Carcinus maenas, is provided. Topology testing of the SSUrRNA gene phylogeny, constructed by Bayesian Inference, robustly supports the sister-group relationship of Isochona sp. and Chilodochona carcini, the monophyly of these two chonotrichs, and the divergence of the chonotrich clade within the dysteriid clade. PMID:27151876

  10. The Splicing Factor U2AF Small Subunit Is Functionally Conserved between Fission Yeast and Humans

    PubMed Central

    Webb, Christopher J.; Wise, Jo Ann

    2004-01-01

    The small subunit of U2AF, which functions in 3′ splice site recognition, is more highly conserved than its heterodimeric partner yet is less thoroughly investigated. Remarkably, we find that the small subunit of Schizosaccharomyces pombe U2AF (U2AFSM) can be replaced in vivo by its human counterpart, demonstrating that the conservation extends to function. Precursor mRNAs accumulate in S. pombe following U2AFSM depletion in a time frame consistent with a role in splicing. A comprehensive mutational analysis reveals that all three conserved domains are required for viability. Notably, however, a tryptophan in the pseudo-RNA recognition motif implicated in a key contact with the large subunit by crystallographic data is dispensable whereas amino acids implicated in RNA recognition are critical. Mutagenesis of the two zinc-binding domains demonstrates that they are neither equivalent nor redundant. Finally, two- and three-hybrid analyses indicate that mutations with effects on large-subunit interactions are rare whereas virtually all alleles tested diminished RNA binding by the heterodimer. In addition to demonstrating extraordinary conservation of U2AF small-subunit function, these results provide new insights into the roles of individual domains and residues. PMID:15121844

  11. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae.

    PubMed Central

    Van de Peer, Y; Rensing, S A; Maier, U G; De Wachter, R

    1996-01-01

    Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA. PMID:8755544

  12. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000

    SciTech Connect

    Spreitzer, Robert J.

    2000-10-04

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesis is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.

  13. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics

    NASA Technical Reports Server (NTRS)

    Winker, S.; Woese, C. R.

    1991-01-01

    The number of small subunit rRNA sequences is now great enough that the three domains Archaea, Bacteria and Eucarya (Woese et al., 1990) can be reliably defined in terms of their sequence "signatures". Approximately 50 homologous positions (or nucleotide pairs) in the small subunit rRNA characterize and distinguish among the three. In addition, the three can be recognized by a variety of nonhomologous rRNA characters, either individual positions and/or higher-order structural features. The Crenarchaeota and the Euryarchaeota, the two archaeal kingdoms, can also be defined and distinguished by their characteristic compositions at approximately fifteen positions in the small subunit rRNA molecule.

  14. Using the Multiple Analysis Approach to Reconstruct Phylogenetic Relationships among Planktonic Foraminifera from Highly Divergent and Length-polymorphic SSU rDNA Sequences

    PubMed Central

    Aurahs, Ralf; Göker, Markus; Grimm, Guido W.; Hemleben, Vera; Hemleben, Christoph; Schiebel, Ralf; Kučera, Michal

    2009-01-01

    The high sequence divergence within the small subunit ribosomal RNA gene (SSU rDNA) of foraminifera makes it difficult to establish the homology of individual nucleotides across taxa. Alignment-based approaches so far relied on time-consuming manual alignments and discarded up to 50% of the sequenced nucleotides prior to phylogenetic inference. Here, we investigate the potential of the multiple analysis approach to infer a molecular phylogeny of all modern planktonic foraminiferal taxa by using a matrix of 146 new and 153 previously published SSU rDNA sequences. Our multiple analysis approach is based on eleven different automated alignments, analysed separately under the maximum likelihood criterion. The high degree of congruence between the phylogenies derived from our novel approach, traditional manually homologized culled alignments and the fossil record indicates that poorly resolved nucleotide homology does not represent the most significant obstacle when exploring the phylogenetic structure of the SSU rDNA in planktonic foraminifera. We show that approaches designed to extract phylogenetically valuable signals from complete sequences show more promise to resolve the backbone of the planktonic foraminifer tree than attempts to establish strictly homologous base calls in a manual alignment. PMID:20140067

  15. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover in higher plants

    SciTech Connect

    Meagher, R.B.

    1990-02-01

    The goals of examining the mechanisms and determinants of RNA turnover in higher plants remain the same. We will continue with two of the major approaches (1) in vivo chemical modification of RNA structure and (2) analysis of Rubisco SSU RNA structure and turnover in transgenic plants. We plan to reduce the amount of molecular physiology (studies of transcription and steady state levels) to a minimum and expand these efforts into the analysis of plant rebonucleases. We have also broadened our examination of light induced turnover of rubisco SSU RNA to include general RNA turnover. We plan to identify specific 3{prime}->5{prime} precessive ribonuclease by complementation of E. coli mutants. The activity of these novel RNases and their potential role in plant RNA turnover and processing will be characterized.

  16. Synthesis of the small subunit of ribulose-bisphosphate carboxylase from genes cloned into plasmids containing the SP6 promoter.

    PubMed Central

    Anderson, S; Smith, S M

    1986-01-01

    DNA sequences encoding ribulose 1,5-bisphosphate carboxylase small subunit precursor from Pisum sativum L. have been transcribed from plasmids containing the SP6 promoter, and translated in a wheat germ cell-free system. The small subunit precursor polypeptide, its N-terminal leader sequence (transit peptide) and the mature small subunit have each been synthesized independently from three different plasmid constructs. The precursor polypeptide is imported into isolated pea chloroplasts and processed to the mature small subunit by a stromal proteinase. The mature polypeptide is neither imported, nor subject to proteolysis by stromal extracts. The transit peptide alone is very rapidly degraded by a stromal proteinase activity which can be inhibited by EDTA or 1,10-phenanthroline. The use of these gene constructs helps to establish the crucial role of the transit peptide in protein import into the chloroplast. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3827863

  17. Phylogenetic position of Cryothecomonas inferred from nuclear-encoded small subunit ribosomal RNA.

    PubMed

    Kühn, S; Lange, M; Medlin, L K

    2000-12-01

    The systematic position of the genus Cryothecomonas has been determined from an analysis of the nuclear-encoded small subunit ribosomal RNA gene of Cryothecomonas longipes and two strains of Cryothecomonas aestivalis. Our phylogenetic trees inferred from maximum likelihood, distance and maximum parsimony methods robustly show that the genus Cryothecomonas clusters within the phylum Cercozoa, and is related to the sarcomonad flagellate Heteromita globosa. Morphological data supporting the taxonomic placement of Cryothecomonas near the sarcomonad flagellates has been compiled from the literature. The high number of nucleotide substitutions found between two morphologically indistinguishable strains of Cryothecomonas aestivalis suggests the possibility of cryptic species within Cryothecomonas aestivalis. PMID:11212894

  18. Phylogenetic position of the genus Perkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA.

    PubMed

    Goggin, C L; Barker, S C

    1993-07-01

    Parasites of the genus Perkinsus destroy marine molluscs worldwide. Their phylogenetic position within the kingdom Protista is controversial. Nucleotide sequence data (1792 bp) from the small subunit rRNA gene of Perkinsus sp. from Anadara trapezia (Mollusca: Bivalvia) from Moreton Bay, Queensland, was used to examine the phylogenetic affinities of this enigmatic genus. These data were aligned with nucleotide sequences from 6 apicomplexans, 3 ciliates, 3 flagellates, a dinoflagellate, 3 fungi, maize and human. Phylogenetic trees were constructed after analysis with maximum parsimony and distance matrix methods. Our analyses indicate that Perkinsus is phylogenetically closer to dinoflagellates and to coccidean and piroplasm apicomplexans than to fungi or flagellates. PMID:8366895

  19. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    PubMed

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology. PMID:27170550

  20. Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.

    PubMed

    Kaushal, Prem S; Sharma, Manjuli R; Booth, Timothy M; Haque, Emdadul M; Tung, Chang-Shung; Sanbonmatsu, Karissa Y; Spremulli, Linda L; Agrawal, Rajendra K

    2014-05-20

    The mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing 13 membrane proteins that form essential components of the complexes involved in oxidative phosphorylation or ATP generation for the eukaryotic cell. The mammalian 55S mitoribosome contains significantly smaller rRNAs and a large mass of mitochondrial ribosomal proteins (MRPs), including large mito-specific amino acid extensions and insertions in MRPs that are homologous to bacterial ribosomal proteins and an additional 35 mito-specific MRPs. Here we present the cryo-EM structure analysis of the small (28S) subunit (SSU) of the 55S mitoribosome. We find that the mito-specific extensions in homologous MRPs generally are involved in inter-MRP contacts and in contacts with mito-specific MRPs, suggesting a stepwise evolution of the current architecture of the mitoribosome. Although most of the mito-specific MRPs and extensions of homologous MRPs are situated on the peripheral regions, they also contribute significantly to the formation of linings of the mRNA and tRNA paths, suggesting a tailor-made structural organization of the mito-SSU for the recruitment of mito-specific mRNAs, most of which do not possess a 5' leader sequence. In addition, docking of previously published coordinates of the large (39S) subunit (LSU) into the cryo-EM map of the 55S mitoribosome reveals that mito-specific MRPs of both the SSU and LSU are involved directly in the formation of six of the 15 intersubunit bridges. PMID:24799711

  1. Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome

    PubMed Central

    Kaushal, Prem S.; Sharma, Manjuli R.; Booth, Timothy M.; Haque, Emdadul M.; Tung, Chang-Shung; Sanbonmatsu, Karissa Y.; Spremulli, Linda L.; Agrawal, Rajendra K.

    2014-01-01

    The mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing 13 membrane proteins that form essential components of the complexes involved in oxidative phosphorylation or ATP generation for the eukaryotic cell. The mammalian 55S mitoribosome contains significantly smaller rRNAs and a large mass of mitochondrial ribosomal proteins (MRPs), including large mito-specific amino acid extensions and insertions in MRPs that are homologous to bacterial ribosomal proteins and an additional 35 mito-specific MRPs. Here we present the cryo-EM structure analysis of the small (28S) subunit (SSU) of the 55S mitoribosome. We find that the mito-specific extensions in homologous MRPs generally are involved in inter-MRP contacts and in contacts with mito-specific MRPs, suggesting a stepwise evolution of the current architecture of the mitoribosome. Although most of the mito-specific MRPs and extensions of homologous MRPs are situated on the peripheral regions, they also contribute significantly to the formation of linings of the mRNA and tRNA paths, suggesting a tailor-made structural organization of the mito-SSU for the recruitment of mito-specific mRNAs, most of which do not possess a 5′ leader sequence. In addition, docking of previously published coordinates of the large (39S) subunit (LSU) into the cryo-EM map of the 55S mitoribosome reveals that mito-specific MRPs of both the SSU and LSU are involved directly in the formation of six of the 15 intersubunit bridges. PMID:24799711

  2. Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria.

    PubMed

    Polet, Stephane; Berney, Cédric; Fahrni, José; Pawlowski, Jan

    2004-03-01

    In his grand monograph of Radiolaria, Ernst Haeckel originally included Phaeodarea together with Acantharea and Polycystinea, all three taxa characterized by the presence of a central capsule and the possession of axopodia. Cytological and ultrastructural studies, however, questioned the monophyly of Radiolaria, suggesting an independent evolutionary origin of the three taxa, and the first molecular data on Acantharea and Polycystinea brought controversial results. To test further the monophyly of Radiolaria, we sequenced the complete small subunit ribosomal RNA gene of three phaeodarians and three polycystines. Our analyses reveal that phaeodarians clearly branch among the recently described phylum Cercozoa, separately from Acantharea and Polycystinea. This result enhances the morphological variability within the phylum Cercozoa, which already contains very heterogeneous groups of protists. Our study also confirms the common origin of Acantharea and Polycystinea, which form a sister-group to the Cercozoa, and allows a phylogenetic reinterpretation of the morphological features of the three radiolarian groups. PMID:15144058

  3. Phylogenetic relationships of the green alga Volvox carteri deduced from small-subunit ribosomal RNA comparisons.

    PubMed

    Rausch, H; Larsen, N; Schmitt, R

    1989-09-01

    The 1788-nucleotide sequence of the small-subunit ribosomal RNA (srRNA) coding region from the chlorophyte Volvox carteri was determined. The secondary structure bears features typical of the universal model of srRNA, including about 40 helices and a division into four domains. Phylogenetic relationships to 17 other eukaryotes, including two other chlorophytes, were explored by comparing srRNA sequences. Similarity values and the inspection of phylogenetic trees derived by distance matrix methods revealed a close relationship between V. carteri and Chlamydomonas reinhardtii. The results are consistent with the view that these Volvocales, and the third green alga, Nanochlorum eucaryotum, are more closely related to higher plants than to any other major eukaryotic group, but constitute a distinct lineage that has long been separated from the line leading to the higher plants. PMID:2506359

  4. Large and small subunits of the Aujeszky's disease virus ribonucleotide reductase: nucleotide sequence and putative structure.

    PubMed

    Kaliman, A V; Boldogköi, Z; Fodor, I

    1994-09-13

    We determined the entire DNA sequence of two adjacent open reading frames of Aujeszky's disease virus encoding ribonucleotide reductase genes with the intergenic sequence of 9 bp. From the sequence analysis we deduce that ORFs encode large and small subunits, with sizes of 835 and 303 amino acids, respectively. Amino acid sequence comparison of ADV RR2 with that of equine herpesvirus type 1, bovine herpesvirus type 1, HSV-1 and varicella zoster virus revealed that 48% of amino acids represent clusters of residues conserved in all compared sequences. In the N-terminal part ADV RR1 shows low homology to the RR1 of other herpesviruses. Rest of the RR1 protein contains highly conserved amino acid sequences divided by blocks of low homology. PMID:8086454

  5. Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of small subunit residues

    SciTech Connect

    Jeyakanthan, Jeyaraman; Drevland, Randy; Gayathri, Dasara; Velmurugan, Devadasan; Shinkai, Akeo; Graham, David E

    2010-01-01

    The aconitase family of hydro-lyase enzymes includes three classes of proteins that catalyze the isomerization of -hydroxyacids to -hydroxyacids. Besides aconitase, isopropylmalate isomerase (IPMI) proteins specifically catalyze the isomerization of , -dicarboxylates with hydrophobic -chain groups, and homoaconitase (HACN) proteins catalyze the isomerization of tricarboxylates with variable chain length -carboxylate groups. These enzymes stereospecific hydro-lyase activities make them attractive catalysts to produce diastereomers from unsaturated precursors. However, sequence similarity and convergent evolution among these proteins leads to widespread misannotation and uncertainty about gene function. To find the substrate specificity determinants of homologous IPMI and HACN proteins from Methanocaldococcus jannaschii, the small-subunit HACN protein (MJ1271) was crystallized for X-ray diffraction. The structural model showed characteristic residues in a flexible loop region between 2 and 3 that distinguish HACN from IPMI and aconitase proteins. Site-directed mutagenesis of MJ1271 produced loop-region variant proteins that were reconstituted with wild-type MJ1003 large-subunit protein. The heteromers formed promiscuous hydro-lyases with reduced activity but broader substrate specificity. Both R26K and R26V variants formed relatively efficient IPMI enzymes, while the T27A variant had uniformly lower specificity constants for both IPMI and HACN substrates. The R26V T27Y variant resembles the MJ1277 IPMI small subunit in its flexible loop sequence, but demonstrated the broad substrate specificity of the R26V variant. These mutations may reverse the evolution of HACN activity from an ancestral IPMI gene, demonstrating the evolutionary potential for promiscuity in hydro-lyase enzymes. Understanding these specificity determinants enables the functional reannotation of paralogous HACN and IPMI genes in numerous genome sequences. These structural and kinetic results will

  6. Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

    PubMed Central

    2011-01-01

    Background Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the PaSSU intron in the rRNA small subunit gene of Phialophora americana isolate Wang 1046 is capable of in vitro splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme. Findings Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of Phialophora isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of Phialophora, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, Porpidia crustulata and Arthonia lapidicola. Conclusions The small putative group I introns in Phialophora have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses. PMID:21781325

  7. Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences.

    PubMed

    Maslov, D A; Yasuhira, S; Simpson, L

    1999-03-01

    In order to shed light on the phylogenetic position of diplonemids within the phylum Euglenozoa, we have sequenced small subunit rRNA (SSU rRNA) genes from Diplonema (syn. Isonema) papillatum and Diplonema sp. We have also analyzed a partial sequence of the mitochondrial gene for cytochrome c oxidase subunit I from D. papillatum. With both markers, the maximum likelihood method favored a closer grouping of diplonemids with kinetoplastids, while the parsimony and distance suggested a closer relationship of diplonemids with euglenoids. In each case, the differences between the best tree and the alternative trees were small. The frequency of codon usage in the partial D. papillatum COI was different from both related groups; however, as is the case in kinetoplastids but not in Euglena, both the non-canonical UGA codon and the canonical UGG codon were used to encode tryptophan in Diplonema. PMID:10724517

  8. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis.

    PubMed

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko; Machida, Yasunori

    2016-01-01

    Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4 These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  9. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    PubMed Central

    Matsumura, Yoko; Ohbayashi, Iwai; Takahashi, Hiro; Kojima, Shoko; Ishibashi, Nanako; Keta, Sumie; Nakagawa, Ayami; Hayashi, Rika; Saéz-Vásquez, Julio; Echeverria, Manuel; Sugiyama, Munetaka; Nakamura, Kenzo; Machida, Chiyoko

    2016-01-01

    ABSTRACT Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. PMID:27334696

  10. Caryotricha minuta (Xu et al., 2008) nov. comb., a unique marine ciliate (Protista, Ciliophora, Spirotrichea), with phylogenetic analysis of the ambiguous genus Caryotricha inferred from the small-subunit rRNA gene sequence.

    PubMed

    Miao, Miao; Shao, Chen; Jiang, Jiamei; Li, Liqiong; Stoeck, Thorsten; Song, Weibo

    2009-02-01

    A population of Kiitricha minuta Xu et al., 2008, a small kiitrichid ciliate, was isolated from a brackish water sample in Jiaozhou Bay, Qingdao, northern China. After comparison of its morphology and infraciliature, it is believed that this morphotype should be assigned to the genus Caryotricha; hence, a new combination is suggested, Caryotricha minuta (Xu et al., 2008) nov. comb. The small-subunit (SSU) rRNA gene sequence was determined in order to elucidate the phylogenetic position of this poorly known, ambiguous genus. The organism can be clearly separated from its congener, Caryotricha convexa Kahl, 1932, by the extremely shortened ventral cirral rows in the posterior ends. Based on the data available, an improved diagnosis is given for the genus: marine Kiitrichidae with prominent buccal field; two highly developed undulating membranes; non-grouped, uniform cirral rows on both ventral and dorsal sides; enlarged transverse cirri present, which are the only differentiated cirri; marginal cirri not present; one short migratory row located posterior to buccal field; structure of dorsal kineties generally in Kiitricha pattern. The sequence of the SSU rRNA gene of C. minuta differs by 13 % from that of Kiitricha marina. Molecular phylogenetic analyses (Bayesian inference, least squares, neighbour joining, maximum parsimony) indicate that Caryotricha, together with Kiitricha, diverges at a deep level from all other spirotrichs. Its branching position is between Phacodiniidia and Licnophoridia. The results strongly support the distinct separation of the Kiitricha-Caryotricha clade, which always branches basal to the Stichotrichia-Hypotrichia-Oligotrichia-Choreotrichia assemblage. These results also confirm the previous hypothesis that the Kiitricha-Caryotricha group, long assumed to be a close relation to the euplotids, represents a taxon at subclass level within the spirotrichs. PMID:19196791

  11. Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6 f.

    PubMed

    Wang, Fei; Johnson, Xenie; Cavaiuolo, Marina; Bohne, Alexandra-Viola; Nickelsen, Joerg; Vallon, Olivier

    2015-06-01

    In plants and algae, chloroplast gene expression is controlled by nucleus-encoded proteins that bind to mRNAs in a specific manner, stabilizing mRNAs or promoting their splicing, editing, or translation. Here, we present the characterization of two mRNA stabilization factors of the green alga Chlamydomonas reinhardtii, which both belong to the OctotricoPeptide Repeat (OPR) family. MCG1 is necessary to stabilize the petG mRNA, encoding a small subunit of the cytochrome b6 f complex, while MBI1 stabilizes the psbI mRNA, coding for a small subunit of photosystem II. In the mcg1 mutant, the small RNA footprint corresponding to the 5'-end of the petG transcript is reduced in abundance. In both cases, the absence of the small subunit perturbs assembly of the cognate complex. Whereas PetG is essential for formation of a functional cytochrome b6 f dimer, PsbI appears partly dispensable as a low level of PSII activity can still be measured in its absence. Thus, nuclear control of chloroplast gene expression is not only exerted on the major core subunits of the complexes, but also on small subunits with a single transmembrane helix. While OPR proteins have thus far been involved in translation or trans-splicing of plastid mRNAs, our results expand the potential roles of this repeat family to their stabilization. PMID:25898982

  12. A novel 3′ splice site recognition by the two zinc fingers in the U2AF small subunit

    PubMed Central

    Yoshida, Hisashi; Park, Sam-Yong; Oda, Takashi; Akiyoshi, Taeko; Sato, Mamoru; Shirouzu, Mikako; Tsuda, Kengo; Kuwasako, Kanako; Unzai, Satoru; Muto, Yutaka; Urano, Takeshi; Obayashi, Eiji

    2015-01-01

    The pre-mRNA splicing reaction of eukaryotic cells has to be carried out extremely accurately, as failure to recognize the splice sites correctly causes serious disease. The small subunit of the U2AF heterodimer is essential for the determination of 3′ splice sites in pre-mRNA splicing, and several single-residue mutations of the U2AF small subunit cause severe disorders such as myelodysplastic syndromes. However, the mechanism of RNA recognition is poorly understood. Here we solved the crystal structure of the U2AF small subunit (U2AF23) from fission yeast, consisting of an RNA recognition motif (RRM) domain flanked by two conserved CCCH-type zinc fingers (ZFs). The two ZFs are positioned side by side on the β sheet of the RRM domain. Further mutational analysis revealed that the ZFs bind cooperatively to the target RNA sequence, but the RRM domain acts simply as a scaffold to organize the ZFs and does not itself contact the RNA directly. This completely novel and unexpected mode of RNA-binding mechanism by the U2AF small subunit sheds light on splicing errors caused by mutations of this highly conserved protein. PMID:26215567

  13. Characterization of an ADP-glucose Pyrophosphorylase Small Subunit Gene Expressed in Developing Cotton (Gossypium hirsutum) Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ADP-glucose pyrophosphorylase (ADPGp) plays a rate limiting role in the biosynthesis of starch and has been shown to be involved in cell expansion of tobacco sepals. A cotton gene encoding ADPGp small subunit was isolated and sequenced. The gene contains 8 introns similar to other ADPGp genes. The o...

  14. Trichopodiella faurei n. sp. (Ciliophora, Phyllopharyngea, Cyrtophoria): morphological description and phylogenetic analyses based on SSU rRNA and group I intron sequences.

    PubMed

    Gong, Jun; Gao, Shan; Roberts, David McL; Al-Rasheid, Khaled A S; Song, Weibo

    2008-01-01

    A new marine cyrtophorian ciliate Trichopodiella faurei n. sp., which belongs to the order Dysteriida, family Hartmannulidae, was investigated at the morphological and molecular levels. A combination of morphological features of the organism including the oval body shape, 2-3 contractile vacuoles, 22-28 nematodesmal rods in the cytopharyngeal basket, and 31-39 somatic kineties, distinguishes it from all other known congeners. In reconstructed small subunit (SSU) rRNA phylogenies, T. faurei groups with Isochona, a representative genus of the subclass Chonotrichia. The similarity of the infraciliature between hartmannulids and several chonotrichian examples also suggests that these taxa should be closely related. A new S943 intron belonging to group IC1 was identified in the SSU rRNA gene of this species. This intron is phylogenetically related to the S891 introns previously found in the suctorians Acineta sp. and Tokophrya lemnarum, and their internal guide sequences share four nucleotides, indicating that these introns were vertically inherited from a common phyllopharyngean ancestor and that reverse splicing might have been involved in the transposition. PMID:19120794

  15. Morphology and SSU rDNA sequence analysis of two hypotrichous ciliates (Protozoa, Ciliophora, Hypotrichia) including the new species Metaurostylopsis parastruederkypkeae n. sp.

    NASA Astrophysics Data System (ADS)

    Lu, Borong; Wang, Chundi; Huang, Jie; Shi, Yuhong; Chen, Xiangrui

    2016-05-01

    The morphology and phylogeny of two hypotrichous ciliates, Metaurostylopsis parastruederkypkeae n. sp. and Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013 were investigated based on morphology, infraciliature and the small subunit (SSU) ribosomal RNA gene (rRNA) sequence. The new species, M. parastruederkypkeae n. sp. was identified according to its characteristics: body shape ellipsoidal, size about (165-200) × (45-60) μm in vivo, cell color reddish; two types of cortical granules including wheat grain-like and yellow-greenish larger ones along the marginal cirri rows and dorsal kineties and dot-like and reddish smaller ones, grouped around marginal cirri on ventral side and arranged in short lines on dorsal side; 26-41 adoral membranelles; three frontal and one parabuccal, five to seven frontoterminal, one buccal, and three to six transverse cirri; seven to thirteen midventral pairs; five to nine unpaired ventral cirri, five to seven left and three to five right marginal rows; and three complete dorsal kineties. Phylogenetic analysis based on SSU rDNA sequences showed that both Metaurostylopsis and Neourostylopsis are monophyletic. As the internal relationship between and within both genera are not clear, further studies on the species in these two genera are necessary. The key characteristics of all known twelve Metaurostylopsis-Apourostylopsis-Neourostylopsis species complex were updated.

  16. Investigation of the interaction between the large and small subunits of potato ADP-glucose pyrophosphorylase.

    PubMed

    Baris, Ibrahim; Tuncel, Aytug; Ozber, Natali; Keskin, Ozlem; Kavakli, Ibrahim Halil

    2009-10-01

    ADP-glucose pyrophosphorylase (AGPase), a key allosteric enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Current evidence indicates that the two subunit types play distinct roles in enzyme function. Recently the heterotetrameric structure of potato AGPase has been modeled. In the current study, we have applied the molecular mechanics generalized born surface area (MM-GBSA) method and identified critical amino acids of the potato AGPase LS and SS subunits that interact with each other during the native heterotetrameric structure formation. We have further shown the role of the LS amino acids in subunit-subunit interaction by yeast two-hybrid, bacterial complementation assay and native gel. Comparison of the computational results with the experiments has indicated that the backbone energy contribution (rather than the side chain energies) of the interface residues is more important in identifying critical residues. We have found that lateral interaction of the LS-SS is much stronger than the longitudinal one, and it is mainly mediated by hydrophobic interactions. This study will not only enhance our understanding of the interaction between the SS and the LS of AGPase, but will also enable us to engineer proteins to obtain better assembled variants of AGPase which can be used for the improvement of plant yield. PMID:19876371

  17. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover. Annual progress report

    SciTech Connect

    Meagher, R.B.

    1993-12-31

    An in vitro degradation system has been developed from petunia and soybean polysomes in order to investigate the mechanisms and determinants controlling RNA turnover in higher plants. This system faithfully degrades soybean ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) mRNA into the same products observed in total RNA preparations. In previous years it was shown that the most stable products represent a nested constellation of fragments, which are shortened from their 3{prime} ends, and have intact 5{prime} ends. Exogenous rbcS RNA tagged with novel 5{prime} sequence 15 or 56 bp long were synthesized in vitro as Sp6 and T7 runoff transcripts, respectively. When added to the system they were degraded faithfully into constellation of products which were 15 or 56 bp longer than the endogenous products, respectively. Detailed kinetics on the appearance of these exogenous products confirmed degradation proceeds in an overall 3{prime} to 5{prime} direction but suggested that there are multiple pathways through which the RNA may be degraded. To further demonstrate a precursor product relationships, in vitro synthesized transcripts truncated at their 3{prime} ends were shown to degrade into the expected smaller fragments previously mapped in the 5{prime} portion of the rbcS RNA.

  18. Differential distribution of calpain small subunit 1 and 2 in rat brain.

    PubMed

    Friedrich, Peter; Papp, Henrietta; Halasy, Katalin; Farkas, Attila; Farkas, Bence; Tompa, Peter; Kása, Peter

    2004-04-01

    Calpains, the Ca(2+)-dependent thiol proteases, are abundant in the nervous tissue. The ubiquitous enzyme forms in mammals are heterodimers consisting of a specific, micro or m, large (catalytic) subunit and, apparently, a common small (regulatory) subunit (CSS1). Recently, however, we described a second form of small subunit (CSS2), which is of restricted occurrence [Schád, E., Farkas, A., Jékely, G., Tompa, P. & Friedrich, P. (2002) Biochem. J., 362, 383-388]. Here we analysed the distribution of immunoreactivity in various parts of rat brain against two anti-CSS1 and two anti-CSS2 antibodies by correlated light and electron microscopy. Remarkably, the antibodies showed differential distribution in various parts of rat cortex: anti-CSS1 reacted mainly with perikarya and dendrites, whereas anti-CSS2 was more prominent in axons. In serial sections CSS2 and synaptophysin gave very similar patterns, i.e. these epitopes seem to colocalize. Electron microscopy confirmed that CSS1 was mainly localized postsynaptically in dendrites and somata, whereas CSS2 was found presynaptically. The hypothesis is advanced that these distinct distributions of calpain subunits may be related to the transport of these enzymes in nerve cells. PMID:15078555

  19. Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing

    PubMed Central

    Nunoura, Takuro; Takaki, Yoshihiro; Kazama, Hiromi; Hirai, Miho; Ashi, Juichiro; Imachi, Hiroyuki; Takai, Ken

    2012-01-01

    Microbial community structures in methane seep sediments in the Nankai Trough were analyzed by tag-sequencing analysis for the small subunit (SSU) rRNA gene using a newly developed primer set. The dominant members of Archaea were Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG 6), Marine Group I (MGI) and Deep Sea Archaeal Group (DSAG), and those in Bacteria were Alpha-, Gamma-, Delta- and Epsilonproteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. Diversity and richness were examined by 8,709 and 7,690 tag-sequences from sediments at 5 and 25 cm below the seafloor (cmbsf), respectively. The estimated diversity and richness in the methane seep sediment are as high as those in soil and deep-sea hydrothermal environments, although the tag-sequences obtained in this study were not sufficient to show whole microbial diversity in this analysis. We also compared the diversity and richness of each taxon/division between the sediments from the two depths, and found that the diversity and richness of some taxa/divisions varied significantly along with the depth. PMID:22510646

  20. Role of Small Subunit in Mediating Assembly of Red-type Form I Rubisco

    PubMed Central

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C.; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. PMID:25371207

  1. Isolation and Characterization of the Small Subunit of the Uptake Hydrogenase from the Cyanobacterium Nostoc punctiforme*

    PubMed Central

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-01-01

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS. PMID:23649626

  2. Description of Eurystomatella sinica n. gen., n. sp., with establishment of a new family Eurystomatellidae n. fam. (Protista, Ciliophora, Scuticociliatia) and analyses of its phylogeny inferred from sequences of the small-subunit rRNA gene.

    PubMed

    Miao, Miao; Wang, Yangang; Song, Weibo; Clamp, John C; Al-Rasheid, Khaled A S

    2010-02-01

    Recently, an undescribed marine ciliate was isolated from China. Investigation of its morphology and infraciliature revealed it as an undescribed species representing a new genus, Eurystomatella n. gen., the type of the new family Eurystomatellidae n. fam. The new family is defined by close-set, apically positioned oral membranelles and a dominant buccal field that is surrounded by an almost completely circular paroral membrane. The new genus is defined by having a small oral membranelle 1 (M1), bipartite M2 and well-developed M3, a body surface faintly sculptured with a silverline system in a quadrangular, reticulate pattern and a cytostome located at the anterior third of a large buccal field. The type species of the new genus, Eurystomatella sinica n. sp., is a morphologically unique form that is defined mainly by the combination of a conspicuously flattened body, several caudal cilia, extremely long cilia associated with the buccal apparatus and a contractile vacuole located subcaudally. According to phylogenetic analyses of small-subunit (SSU) rRNA gene sequences, Eurystomatella clusters with the genus Cyclidium, as a sister group to the family Pleuronematidae. The great divergence in both buccal and somatic ciliature between Eurystomatella and all other known scuticociliates supports the establishment of a new family for Eurystomatella. PMID:19651734

  3. Complication of Corticosteroid Treatment by Acute Plasmodium malariae Infection Confirmed by Small-Subunit rRNA Sequencing▿

    PubMed Central

    To, Kelvin K. W.; Teng, Jade L. L.; Wong, Samson S. Y.; Ngan, Antonio H. Y.; Yuen, Kwok-Yung; Woo, Patrick C. Y.

    2010-01-01

    We report a case of acute Plasmodium malariae infection complicating corticosteroid treatment for membranoproliferative glomerulonephritis in a patient from an area where P. malariae infection is not endemic. A peripheral blood smear showed typical band-form trophozoites compatible with P. malariae or Plasmodium knowlesi. SSU rRNA sequencing confirmed the identity to be P. malariae. PMID:20739487

  4. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit.

    PubMed

    Suzuki, T; Terasaki, M; Takemoto-Hori, C; Hanada, T; Ueda, T; Wada, A; Watanabe, K

    2001-08-31

    The mammalian mitochondrial ribosome (mitoribosome) has a highly protein-rich composition with a small sedimentation coefficient of 55 S, consisting of 39 S large and 28 S small subunits. In the previous study, we analyzed 39 S large subunit proteins from bovine mitoribosome (Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A., and Watanabe, K. (2001) J. Biol. Chem. 276, 21724-21736). The results suggested structural compensation for the rRNA deficit through proteins of increased molecular mass in the mitoribosome. We report here the identification of 28 S small subunit proteins. Each protein was separated by radical-free high-reducing two-dimensional polyacrylamide gel electrophoresis and analyzed by liquid chromatography/mass spectrometry/mass spectrometry using electrospray ionization/ion trap mass spectrometer to identify cDNA sequence by expressed sequence tag data base searches in silico. Twenty one proteins from the small subunit were identified, including 11 new proteins along with their complete cDNA sequences from human and mouse. In addition to these proteins, three new proteins were also identified in the 55 S mitoribosome. We have clearly identified a mitochondrial homologue of S12, which is a key regulatory protein of translation fidelity and a candidate for the autosomal dominant deafness gene, DFNA4. The apoptosis-related protein DAP3 was found to be a component of the small subunit, indicating a new function for the mitoribosome in programmed cell death. In summary, we have mapped a total of 55 proteins from the 55 S mitoribosome on the two-dimensional polyacrylamide gels. PMID:11402041

  5. Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment.

    PubMed

    Xie, Qiang; Tian, Xiaoxuan; Qin, Yan; Bu, Wenjun

    2009-02-01

    The SSU nrDNA (18S), is one of the most frequently sequenced molecular markers in phylogenetic studies. However, the length-hyper-variation at multiple positions of this gene can affect the accuracy of alignment greatly and this length variation makes alignment across arthropod orders a serious problem. The analyses of Hexapoda phylogeny is such a case. A more clear recognition of the distribution of the length-variable-regions is needed. In this study, the secondary structure of some length-variable-regions in the SSU nrRNA of Arthropoda was adjusted by the principle of co-variation. It is found that the extent of plasticity of some length-variable-region can extraordinarily be higher than 600 bases in hexapods. And the numbers of hyper length-variable-regions are largest in Strepsiptera and Sternorrhyncha (Hemiptera). Our study shows that some length-variable-regions can serve as synapomorphies for some groups. The phylogenetic comparison also suggested that the expansion of a lateral bulge could be the origin of a helix. PMID:19027081

  6. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis.

    PubMed

    Chaker-Margot, Malik; Hunziker, Mirjam; Barandun, Jonas; Dill, Brian D; Klinge, Sebastian

    2015-11-01

    Eukaryotic ribosome biogenesis involves a plethora of ribosome-assembly factors, and their temporal order of association with preribosomal RNA is largely unknown. By using Saccharomyces cerevisiae as a model organism, we developed a system that recapitulates and arrests ribosome assembly at early stages, thus providing in vivo snapshots of nascent preribosomal particles. Here we report the stage-specific order in which 70 ribosome-assembly factors associate with preribosomal RNA domains, thereby forming the 6-MDa small-subunit processome. PMID:26479197

  7. Residues in three conserved regions of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase are required for quaternary structure

    SciTech Connect

    Fitchen, J.H.; McIntosh, L. ); Knight, S.; Andersson, I.; Branden, C.I. )

    1990-08-01

    To explore the role of individual residues in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, small subunits with single amino acid substitutions in three regions of relative sequence conservation were produced by directed mutagenesis of the rbcS gene from Anabaena 7120. These altered small subunits were cosythesized with large subunits (from an expressed Anabaena rbcL gene) in Escherichia coli. Mutants were analyzed for effects on quaternary structure and catalytic activity. Changing Glu-13S (numbering used is that of the spinach enzyme) to Val, Trp-67S to Arg, Pro-73S to His, or Tyr-98S to Asn prevented accumulation of stable holoenzyme. Interpretation of these results using a model for the three-dimensional structure of the spinach enzyme based on x-ray crystallographic data suggests that our small subunit mutants containing substitutions at positions 13S and 67S probably do not assemble because of mispairing or nonpairing of charged residues on the interfacing surfaces of the large and small subunits. The failure of small subunits substituted at positions 73S or 98S to assemble correctly may result from disruption of intersubunit or intrasubunit hydrophobic pockets, respectively.

  8. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration

    PubMed Central

    Zhao, Lihong; Spassieva, Stefka; Gable, Kenneth; Gupta, Sita D.; Shi, Lan-Ying; Wang, Jieping; Bielawski, Jacek; Hicks, Wanda L.; Krebs, Mark P.; Naggert, Juergen; Hannun, Yusuf A.; Dunn, Teresa M.; Nishina, Patsy M.

    2015-01-01

    Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions. PMID:26438849

  9. Structural Comparison, Substrate Specificity, and Inhibitor Binding of AGPase Small Subunit from Monocot and Dicot: Present Insight and Future Potential

    PubMed Central

    Choudhury, Manabendra D.; Modi, Mahendra K.

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide. PMID:25276800

  10. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.

    PubMed

    Koch, Daniel J; Rückert, Christian; Albersmeier, Andreas; Hüser, Andrea T; Tauch, Andreas; Pühler, Alfred; Kalinowski, Jörn

    2005-10-01

    In a recent study, the putative regulatory gene cg0012 was shown to belong to the regulon of McbR, a global transcriptional regulator of sulphur metabolism in Corynebacterium glutamicum ATCC 13032. A deletion of cg0012, now designated ssuR (sulphonate sulphur utilization regulator), led to the mutant strain C. glutamicum DK100, which was shown to be blocked in the utilization of sulphonates as sulphur sources. According to DNA microarray hybridizations, transcription of the ssu and seu genes, encoding the sulphonate utilization system of C. glutamicum, was considerably decreased in C. glutamicum DK100 when compared with the wild-type strain. Electrophoretic mobility shift assays with purified SsuR protein demonstrated that the upstream regions of ssuI, seuABC, ssuD2 and ssuD1CBA contain SsuR binding sites. A nucleotide sequence alignment of the four DNA fragments containing the SsuR binding sites revealed a common 21 bp motif consisting of T-, GC- and A-rich domains. Mapping of the transcriptional start sites in front of ssuI, seuABC, ssuD2 and ssuD1CBA indicated that the SsuR binding sites are located directly upstream of identified promoter sequences and that the ssu genes are expressed by leaderless transcripts. Binding of the SsuR protein to its operator was shown to be diminished in vitro by the effector substance sulphate and its direct assimilation products adenosine 5'-phosphosulphate, sulphite and sulphide. Real-time reverse transcription polymerase chain reaction experiments verified that the expression of the ssu and seu genes was also repressed in vivo by the presence of sulphate or sulphite. Therefore, the regulatory protein SsuR activates the expression of the ssu and seu genes in C. glutamicum in the absence of the preferred sulphur source sulphate. PMID:16194234

  11. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  12. Genetic polymorphisms of loci D18S53, D18S59, and D18S488 in fetuses from a Chinese Tianjin Han population.

    PubMed

    Li, X Z; Liu, J; Shi, Y F; Ju, D; Zhang, Y; Yue, T F

    2016-01-01

    We investigated the genetic polymorphisms of three short tandem repeat (STR) loci, D18S53, D18S59, and D18S488, on chromosome 18 in fetuses from a Chinese Tianjin Han population. Sixty-four villus samples and 374 amniotic fluid samples were collected from fetuses. Quantitative fluorescence polymerase chain reaction was performed to amplify the STR loci, followed by scanned electrophoresis and quantitative analysis of the fluorescence signals. Hardy-Weinberg equilibrium (HWE) analysis was performed based on the genotype distributions of the STR loci to obtain the following population genetic data: genotype frequency, heterozygosity of observation (HO), polymorphism information content (PIC), probability of discrimination power (PD), and probability of exclusion (PE). We detected 15, 13, and 15 alleles of D18S53, D18S59, and D18S488, respectively. The genotype frequencies were found to be in line with HWE. The HO values of the three loci, D18S53, D18S59, and D18S488, were 0.797, 0.847, and 0.792; the PIC values were 0.81, 0.75, and 0.73; the PD values were 0.944, 0.901, and 0.881; and the PE values were 0.593, 0.689, and 0.585, respectively. D18S53, D18S59, and D18S488 loci are good genetic markers of chromosome 18, and show potential for use in the prenatal genetic diagnosis of Edwards' syndrome. PMID:27323182

  13. Cloning of the cDNAs for the small subunits of bovine and human DNA polymerase {delta} and chromosomal location of the human gene (POLD2)

    SciTech Connect

    Zhang, Jian; Tan, Cheng-Keat; Downey, K.M.

    1995-09-01

    cDNAs encoding the small subunit of bovine and human DNA polymerase {delta} have been cloned and sequenced. The predicted polypeptides, 50,885 and 51,289 Daltons, respectively, are 94% identical, similar to the catalytic subunits. The high degree of conservation of the polypeptides suggests an essential function for the small subunit in the heterodimeric core enzyme. Although the catalytic subunit of DNA polymerase 5 shares significant homology with those of the herpes virus family of DNA polymerases, the small subunit of mammalian DNA polymerase 6 is not homologous to the small subunit of either herpes simplex virus type 1 DNA polymerase (UL42 protein) or the Epstein-Barr virus DNA polymerase (BMRF1 protein). Searches of the protein databases failed to detect significant homology with any protein sequenced thus far. PCR analysis of DNA from a panel of human-hamster hybrid cell lines localized the gene (POLD2) for the small subunit of DNA polymerase 5 to human chromosome 7. 45 refs., 2 figs., 2 tabs.

  14. Morphology, ultrastructure, and small subunit rDNA phylogeny of the marine heterotrophic flagellate Goniomonas aff. amphinema.

    PubMed

    Martin-Cereceda, Mercedes; Roberts, Emily C; Wootton, Emma C; Bonaccorso, Elisa; Dyal, Patricia; Guinea, Almudena; Rogers, Dale; Wright, Chris J; Novarino, Gianfranco

    2010-01-01

    Marine goniomonads have a worldwide distribution but ultrastructural information has not been available so far. An isolate of the heterotrophic marine nanoflagellate Goniomonas (G. aff. amphinema) from North Wales (UK) has been studied, providing information on its morphology and cellular structure using video, electron, laser scanning confocal microscopy (LSCM), and atomic force microscopy. Here, we describe a new feature, a granular area, potentially involved in particle capture and feeding. The binding of the lectin wheat germ agglutinin to the granular area of cells with discharged ejectisomes indicates the adhesive nature of this novel feature. The presence of a microtubular intracellular cytopharynx, apparently also used for feeding, has been revealed by LSCM. The small subunit rRNA gene of the isolate has been sequenced (1,788 bp). Phylogenetic results corroborate significant genetic divergence within the marine members of Goniomonas. This work highlights the need for integrated morphological, ultrastructural, and molecular investigation when describing and studying heterotrophic nanoflagellates. PMID:20015186

  15. Phylogenetic positions of four hypotrichous ciliates (Protista, Ciliophora) based on SSU rRNA gene, with notes on their morphological characters.

    PubMed

    Yang, Caiting; Liu, An; Xu, Yusen; Xu, Yuan; Fan, Xinpeng; Al-Farraj, Saleh A; Ni, Bing; Gu, Fukang

    2015-01-01

     The morphology and infraciliature of the four hypotrichous ciliates; Rigidohymena inquieta (Stokes, 1887) Berger, 2011, Pattersoniella vitiphila Foissner, 1987, Notohymena australis Foissner & O' Donoghue, 1990, and Cyrtohymena (Cyrtohymenides) australis (Foissner, 1995) Foissner, 2004, collected from east China, were investigated by using live observation and protargol impregnation method. An improved diagnosis for R. inquieta was supplied based on descriptions of present and previous populations. New morphology and morphogenesis information based on Chinese populations of another three hypotrichids were also supplemented. The Small-subunit rRNA (SSU rRNA) gene sequences of the four species were characterized and their phylogenetic positions were revealed by means of Bayesian inference and Maximum-likelihood analysis. The analyses shows that R. inquieta clusters with other members of the subfamily Stylonychinae, which confirms the monophyly of the subfamily and verified R. inquieta as a separated species from R. candens though it differs from others mainly by body size. C. (C.) australis occupying the basal position of the clade which contains cyrtohymenids and some other groups, declines the idea of separating Cyrtohymena into two subgenus. Notohymena australis and China population of Pattersoniella vitiphila respectively clustering with their congeners correspond well with the systematics revealed by morphological similarities. PMID:26623736

  16. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    PubMed Central

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-01-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems. PMID:9055425

  17. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    PubMed

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-03-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems. PMID:9055425

  18. Crystal Structure of the Human Symplekin-Ssu72-CTD Phosphopeptide Complex

    SciTech Connect

    K Xiang; T Nigaike; S Xiang; T Kilic; M Beh; J Manley; L Tong

    2011-12-31

    Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3'-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs); it also participates in transcription initiation and termination by RNA polymerase II (Pol II). Symplekin mediates interactions between many different proteins in this machinery, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 {angstrom} resolution of the amino-terminal domain (residues 30-340) of human symplekin in a ternary complex with the Pol II carboxy-terminal domain (CTD) Ser5 phosphatase Ssu72 and a CTD Ser5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of antiparallel {alpha}-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-mass phosphotyrosine protein phosphatase, although Ssu72 has a unique active-site landscape as well as extra structural features at the C terminus that are important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, with the pSer5-Pro6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations. Although the active site of Ssu72 is about 25 {angstrom} from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but only when coupled to transcription. Because catalytically active Ssu72 overcomes this inhibition, our results show a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3'-end processing.

  19. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    SciTech Connect

    Fang, Zejun; Gong, Chaoju; Liu, Hong; Zhang, Xiaomin; Mei, Lingming; Song, Mintao; Qiu, Lanlan; Luo, Shuchai; Zhu, Zhihua; Zhang, Ronghui; Gu, Hongqian; Chen, Xiang

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and

  20. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    SciTech Connect

    Tai, Lin-Ru; Chou, Chang-Wei; Wu, Jing-Ying; Kirby, Ralph; Lin, Alan

    2013-11-15

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20{sub NLS} mutant gene and examined polysome profile of cells that had been transfected with the S20{sub NLS} gene. As a result, we observed the formation of recombinant 40S carried S20{sub NLS} but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20{sub NLS} in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20{sub NLS} in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20{sub NLS} is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20{sub NLS}. • Cytoplasm-retained S20{sub NLS} is crucial for creating a functional small subunit.

  1. Identification of bovine Neospora parasites by PCR amplification and specific small-subunit rRNA sequence probe hybridization.

    PubMed

    Ho, M S; Barr, B C; Marsh, A E; Anderson, M L; Rowe, J D; Tarantal, A F; Hendrickx, A G; Sverlow, K; Dubey, J P; Conrad, P A

    1996-05-01

    Neospora is a newly recognized genus of pathogenic coccidia, closely related to Toxoplasma gondii, that can cause abortion or congenital disease in a variety of domestic animal hosts. On the basis of the small-subunit rRNA gene sequences of Neospora spp. and other apicomplexa coccidia, oligonucleotide primers COC-1 and COC-2 were used for PCR amplification of conserved sequences of approximately 300 bp in size. A Neospora-specific chemiluminescent probe hybridized to Southern blots of amplification products from Neospora DNA but not to Southern blots with amplified DNA from the other coccidian parasites tested. A Toxoplasma-specific probe whose sequence differed from that of the probe for Neospora spp. by a single base pair was used to distinguish these parasites by specific Southern blot hybridization. The PCR system detected as few as one Neospora tachyzoite in the culture medium or five tachyzoites in samples of whole blood or amniotic fluid spiked with Neospora parasites. In addition, Neospora PCR products were successfully amplified from whole blood and amniotic fluid samples of experimentally infected bovine and rhesus macaque fetuses. These results indicate that this PCR and probe hybridization system could be a valuable adjunct to serology and immunohistochemistry for the diagnosis of Neospora infections in bovine or primate fetuses. PMID:8727903

  2. Phylogenetics of Bonamia parasites based on small subunit and internal transcribed spacer region ribosomal DNA sequence data.

    PubMed

    Hill, Kristina M; Stokes, Nancy A; Webb, Stephen C; Hine, P Mike; Kroeck, Marina A; Moore, James D; Morley, Margaret S; Reece, Kimberly S; Burreson, Eugene M; Carnegie, Ryan B

    2014-07-24

    The genus Bonamia (Haplosporidia) includes economically significant oyster parasites. Described species were thought to have fairly circumscribed host and geographic ranges: B. ostreae infecting Ostrea edulis in Europe and North America, B. exitiosa infecting O. chilensis in New Zealand, and B. roughleyi infecting Saccostrea glomerata in Australia. The discovery of B. exitiosa-like parasites in new locations and the observation of a novel species, B. perspora, in non-commercial O. stentina altered this perception and prompted our wider evaluation of the global diversity of Bonamia parasites. Samples of 13 oyster species from 21 locations were screened for Bonamia spp. by PCR, and small subunit and internal transcribed spacer regions of Bonamia sp. ribosomal DNA were sequenced from PCR-positive individuals. Infections were confirmed histologically. Phylogenetic analyses using parsimony and Bayesian methods revealed one species, B. exitiosa, to be widely distributed, infecting 7 oyster species from Australia, New Zealand, Argentina, eastern and western USA, and Tunisia. More limited host and geographic distributions of B. ostreae and B. perspora were confirmed, but nothing genetically identifiable as B. roughleyi was found in Australia or elsewhere. Newly discovered diversity included a Bonamia sp. in Dendostrea sandvicensis from Hawaii, USA, that is basal to the other Bonamia species and a Bonamia sp. in O. edulis from Tomales Bay, California, USA, that is closely related to both B. exitiosa and the previously observed Bonamia sp. from O. chilensis in Chile. PMID:25060496

  3. Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae.

    PubMed Central

    Sun, Z W; Tessmer, A; Hampsey, M

    1996-01-01

    Recessive mutations in the SSU71, SSU72 and SSU73 genes of Saccharomyces cerevisiae were identified as either suppressors or enhancers of a TFIIB defect (sua7-1) that confers both a cold-sensitive growth phenotype and a downstream shift in transcription start site selection. The SSU71 (TFG1) gene encodes the largest subunit of TFIIF and SSU72 encodes a novel protein that is essential for cell viability. Here we report that SSU73 is identical to RPB9, the gene encoding the 14.2 kDa subunit of RNA polymerase II. The ssu73-1 suppressor compensates for both the growth defect and the downstream shift in start site selection associated with sua7-1. These effects are similar to those of the ssu71-1 suppressor and distinct from the ssu72-1 enhancer. The ssu73-1 allele was retrieved and sequenced, revealing a nonsense mutation at codon 107. Consequently, ssu73-1 encodes a truncated form of Rpb9 lacking the C-terminal 16 amino acids. This Rpb9 derivative retains at least partial function since the ssu73-1 mutant exhibits none of the growth defects associated with rpb9 null mutants. However, in a SUA7+ background, ssu73-1 confers the same upstream shift at ADH1 as an rpb9 null allele. This suggests that the C-terminus of Rpb9 functions in start site selection and demonstrates that the previously observed effects of rpb9 mutations on start site selection are not necessarily due to complete loss of function. These results establish a functional interaction between TFIIB and the Rpb9 subunit of RNA polymerase II and suggest that these two components of the preinitiation complex interact during transcription start site selection. PMID:8692696

  4. Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences

    PubMed Central

    L.Cohen, B.

    1998-01-01

    Brachiopod and phoronid phylogeny is inferred from SSU rDNA sequences of 28 articulate and nine inarticulate brachiopods, three phoronids, two ectoprocts and various outgroups, using gene trees reconstructed by weighted parsimony, distance and maximum likelihood methods. Of these sequences, 33 from brachiopods, two from phoronids and one each from an ectoproct and a priapulan are newly determined. The brachiopod sequences belong to 31 different genera and thus survey about 10% of extant genus-level diversity. Sequences determined in different laboratories and those from closely related taxa agree well, but evidence is presented suggesting that one published phoronid sequence (GenBank accession UO12648) is a brachiopod-phoronid chimaera, and this sequence is excluded from the analyses. The chiton, Acanthopleura, is identified as the phenetically proximal outgroup; other selected outgroups were chosen to allow comparison with recent, non-molecular analyses of brachiopod phylogeny. The different outgroups and methods of phylogenetic reconstruction lead to similar results, with differences mainly in the resolution of weakly supported ancient and recent nodes, including the divergence of inarticulate brachiopod sub-phyla, the position of the rhynchonellids in relation to long- and short-looped articulate brachiopod clades and the relationships of some articulate brachiopod genera and species. Attention is drawn to the problem presented by nodes that are strongly supported by non-molecular evidence but receive only low bootstrap resampling support. Overall, the gene trees agree with morphology-based brachiopod taxonomy, but novel relationships are tentatively suggested for thecideidine and megathyrid brachiopods. Articulate brachiopods are found to be monophyletic in all reconstructions, but monophyly of inarticulate brachiopods and the possible inclusion of phoronids in the inarticulate brachiopod clade are less strongly established. Phoronids are clearly excluded from

  5. Nuclear localization of the Saccharomyces cerevisiae ribonucleotide reductase small subunit requires a karyopherin and a WD40 repeat protein

    PubMed Central

    Zhang, Zhen; An, Xiuxiang; Yang, Kui; Perlstein, Deborah L.; Hicks, Leslie; Kelleher, Neil; Stubbe, JoAnne; Huang, Mingxia

    2006-01-01

    Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides and is an essential enzyme for DNA replication and repair. Cells have evolved intricate mechanisms to regulate RNR activity to ensure high fidelity of DNA replication during normal cell-cycle progression and of DNA repair upon genotoxic stress. The RNR holoenzyme is composed of a large subunit R1 (α, oligomeric state unknown) and a small subunit R2 (β2). R1 binds substrates and allosteric effectors; R2 contains a diferric-tyrosyl radical [(Fe)2-Y·] cofactor that is required for catalysis. In Saccharomyces cerevisiae, R1 is predominantly localized in the cytoplasm, whereas R2, which is a heterodimer (ββ′), is predominantly in the nucleus. When cells encounter DNA damage or stress during replication, ββ′ is redistributed from the nucleus to the cytoplasm in a checkpoint-dependent manner, resulting in the colocalization of R1 and R2. We have identified two proteins that have an important role in ββ′ nuclear localization: the importin β homolog Kap122 and the WD40 repeat protein Wtm1. Deletion of either WTM1 or KAP122 leads to loss of ββ′ nuclear localization. Wtm1 and its paralog Wtm2 are both nuclear proteins that are in the same protein complex with ββ′. Wtm1 also interacts with Kap122 in vivo and requires Kap122 for its nuclear localization. Our results suggest that Wtm1 acts either as an adaptor to facilitate nuclear import of ββ′ by Kap122 or as an anchor to retain ββ′ in the nucleus. PMID:16432237

  6. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae).

    PubMed

    Rosser, Thomas G; Griffin, Matt J; Quiniou, Sylvie M A; Khoo, Lester H; Pote, Linda M

    2014-12-01

    In the southeastern USA, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. However, only two of these have confirmed life cycles that involve the oligochaete Dero digitata as the definitive host. During a health screening of farm-raised channel catfish, several fish presented with deformed primary lamellae. Lamellae harbored large, nodular, white pseudocysts 1.25 mm in diameter, and upon rupturing, these pseudocysts released Henneguya myxospores, with a typical lanceolate-shaped spore body, measuring 17.1 ± 1.0 μm (mean ± SD; range = 15.0-19.3 μm) in length and 4.8 ± 0.4 μm (3.7-5.6 μm) in width. Pyriform-shaped polar capsules were 5.8 ± 0.3 μm in length (5.1-6.4 μm) and 1.7 ± 0.1 μm (1.4-1.9 μm) in width. The two caudal processes were 40.0 ± 5.1 μm in length (29.5-50.0 μm) with a spore length of 57.2 ± 4.7 (46.8-66.8 μm). The contiguous SSU rRNA gene sequence obtained from myxospores of five excised cysts did not match any Henneguya sp. in GenBank. The greatest sequence homology (91% over 1,900 bp) was with Henneguya pellis, associated with blister-like lesions on the skin of blue catfish Ictalurus furcatus. Based on the unique combination of pseudocyst and myxospore morphology, tissue location, host, and SSU rRNA gene sequence data, we report this isolate to be a previously unreported species, Henneguya bulbosus sp. nov. PMID:25270236

  7. Polymorphisms in the 18S rDNA gene of Cystoisospora belli and clinical features of cystoisosporosis in HIV-infected patients.

    PubMed

    Resende, Deisy V; Pedrosa, André L; Correia, Dalmo; Cabrine-Santos, Marlene; Lages-Silva, Eliane; Meira, Wendell S F; Oliveira-Silva, Márcia B

    2011-03-01

    Intraspecific variability among Cystoisospora belli isolates and its clinical implications in human cystoisosporosis have not been established. In this study, the restriction fragment length polymorphisms in a 1.8-kb amplicon of the small subunit ribosomal DNA (SSU rDNA) of the parasite was investigated in 20 C. belli-positive stool samples obtained from 15 HIV-infected patients. Diarrheic syndrome was observed in all patients with cystoisosporosis and the number of diarrheic episodes per patient during hospitalization ranged from 1 to 26 (mean of 9.64 ± 9.30), with a mean duration of 2 to 12 days (mean of 5.90 ± 3 days). Three restriction profiles (RF) were generated with MboII digestion, which were named RFI, RFII, and RFIII. Two isolates obtained from a patient with extraintestinal cystoisosporosis showed distinct restriction profiles with MboII. This study demonstrates that patients can be infected with different C. belli genotypes, and this information may be useful for identifying new C. belli genotypes infecting humans. PMID:20967461

  8. Transcriptional regulation of a gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean tissue is linked to the phytochrome response.

    PubMed Central

    Berry-Lowe, S L; Meagher, R B

    1985-01-01

    The effects of white light, far-red light, and darkness on the transcription of a soybean ribulose-1,5-biphosphate carboxylase small subunit gene, SRS1, were investigated. RNA was labeled with [alpha-32P]UTP in nuclei isolated from plants grown under different conditions of light and darkness and used to probe Southern blots and dot blots. The levels of small subunit mRNA synthesis were normalized to ribosomal RNA synthesis. We demonstrate that the SRS1 gene is transcribed at a rate 16- to 32-fold higher in plants grown in the light than in those grown in darkness. Transcription of the small subunit increased dramatically when plants grown in darkness were given 30 min to 6 h of light and then leveled off after 24 to 48 h of exposure. When light-grown seedlings were exposed to greater than 2 h of darkness, a gradual decrease in transcription was detected. This decrease in transcription reached basal dark-grown levels after 48 h of exposure to darkness. The increase in transcription in etiolated seedlings treated with white light for 15 min could be reduced to basal levels if the treatment was followed by treatment with far-red light for 15 min. In addition, transcription in ligh-grown seedlings was reduced to basal levels when plants were exposed to far-red light for 15 min. The transcription of this ribulose-1,5-biphosphate carboxylase small subunit gene is strongly positively regulated by white light, is negatively regulated by far-red light, and exhibits a classic phytochrome-linked response. Images PMID:3837851

  9. Phylogenetic analysis of LSU and SSU rDNA group I introns of lichen photobionts associated with the genera Xanthoria and Xanthomendoza (Teloschistaceae, lichenized Ascomycetes)

    PubMed Central

    Nyati, Shyam; Bhattacharya, Debashish; Werth, Silke; Honegger, Rosmarie

    2013-01-01

    We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen-forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU-encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the Internal Transcribed Spacer Region (ITS), indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit (SSU) position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta. PMID:24415800

  10. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus

    PubMed Central

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623

  11. Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene.

    PubMed

    Nishiyama, T; Kato, M

    1999-08-01

    The basal relationship of bryophytes and tracheophytes is problematic in land plant phylogeny. In addition to cladistic analyses of morphological data, molecular phylogenetic analyses of the nuclear small-subunit ribosomal RNA gene and the plastic gene rbcL have been performed, but no confident conclusions have been reached. Using the maximum-likelihood (ML) method, we analyzed 4,563 bp of aligned sequences from plastid protein-coding genes and 1,680 bp from the nuclear 18S rRNA gene. In the ML tree of deduced amino acid sequences of the plastid genes, hornworts were basal among the land plants, while mosses and liverworts each formed a clade and were sister to each other. Total-evidence evaluation of rRNA data and plastid protein-coding genes by TOTALML had an almost identical result. PMID:10474899

  12. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1

    PubMed Central

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L.J.

    2015-01-01

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson–Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. PMID:25653167

  13. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1.

    PubMed

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L J

    2015-02-27

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson-Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. PMID:25653167

  14. Description of two marine amphisiellid ciliates, Amphisiella milnei (Kahl, 1932) Horváth, 1950 and A. sinica sp. nov. (Ciliophora: Hypotrichia), with notes on their ontogenesis and SSU rDNA-based phylogeny.

    PubMed

    Li, Liqiong; Zhao, Xiaolu; Ji, Daode; Hu, Xiaozhong; Al-Rasheid, Khaled A S; Al-Farraj, Saleh A; Song, Weibo

    2016-06-01

    The morphology and taxonomy of two marine Amphisiella species, isolated from mariculture waters in northern China, were investigated using standard techniques. One species corresponds well with the original description of the poorly known Amphisiella milnei (Kahl, 1932) Horváth, 1950 by remarkable characteristics, inter alia, (i) the additional cirri between the left frontal cirrus and the buccal cirrus, and (ii) ring-shaped structure in the anterior and posterior body portion (posterior one sometimes lacking). The detailed description of the cirral pattern and an informative ontogenetic stage first reveal that the additional cirri, which are uniformly absent in all congeners, originate from the frontal-ventral transverse cirral anlage I. The other species represents a new species of Amphisiella, A. sinica sp. nov. It is distinguished from its most closely related congener A. annulata (Kahl, 1928) Borror, 1972 by having numerous ring-shaped structures with a shallow brim more or less densely centralised at both ends of the body. Brief notes on the cell division and phylogenetic analyses based on small subunit (SSU) rRNA gene sequence for both organisms are also supplied in order to get further understanding of their systematic positions. The molecular information indicates that both organisms belong to two separate clades and confirms that the genus Amphisiella might be polyphyletic. PMID:27156119

  15. Identification of Species and Sources of Cryptosporidium Oocysts in Storm Waters with a Small-Subunit rRNA-Based Diagnostic and Genotyping Tool

    PubMed Central

    Xiao, Lihua; Alderisio, Kerri; Limor, Josef; Royer, Michael; Lal, Altaf A.

    2000-01-01

    The identification of Cryptosporidium oocysts in environmental samples is largely made by the use of an immunofluorescent assay. In this study, we have used a small-subunit rRNA-based PCR-restriction fragment length polymorphism technique to identify species and sources of Cryptosporidium oocysts present in 29 storm water samples collected from a stream in New York. A total of 12 genotypes were found in 27 positive samples; for 4 the species and probable origins were identified by sequence analysis, whereas the rest represent new genotypes from wildlife. Thus, this technique provides an alternative method for the detection and differentiation of Cryptosporidium parasites in environmental samples. PMID:11097935

  16. Mapping of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association.

    PubMed

    Xia, Lixin; Willison, LeAnna N; Porter, Lauren; Robotham, Jason M; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H

    2010-05-01

    The 11S globulins are members of the cupin protein superfamily and represent an important class of tree nut allergens for which a number of linear epitopes have been mapped. However, specific conformational epitopes for these allergens have yet to be described. We have recently reported a cashew Ana o 2 conformational epitope defined by murine mAb 2B5 and competitively inhibited by a subset of patient IgE antibodies. The 2B5 epitope appears to reside on the large (acidic) subunit, is dependent upon small (basic) subunit association for expression, and is highly susceptible to denaturation. Here we fine map the epitope using a combination of recombinant chimeric cashew Ana o 2-soybean Gly m 6 chimeras, deletion and point mutations, molecular modeling, and electron microscopy of 2B5-Ana o 2 immune complexes. Key residues appear confined to a 24 amino acid segment near the N-terminus of the large subunit peptide, a portion of which makes direct contact with the small subunit. These data provide an explanation for both the small subunit dependence and the structurally labile nature of the epitope. PMID:20362338

  17. Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit.

    PubMed

    Linebarger, Carla R Lyerly; Boehlein, Susan K; Sewell, Aileen K; Shaw, Janine; Hannah, L Curtis

    2005-12-01

    ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme in starch biosynthesis. However, plant AGPases differ in several parameters, including spatial and temporal expression, allosteric regulation, and heat stability. AGPases of cereal endosperms are heat labile, while those in other tissues, such as the potato (Solanum tuberosum) tuber, are heat stable. Sequence comparisons of heat-stable and heat-labile AGPases identified an N-terminal motif unique to heat-stable enzymes. Insertion of this motif into recombinant maize (Zea mays) endosperm AGPase increased the half-life at 58 degrees C more than 70-fold. Km values for physiological substrates were unaffected, although Kcat was doubled. A cysteine within the inserted motif gives rise to small subunit homodimers not found in the wild-type maize enzyme. Placement of this N-terminal motif into a mosaic small subunit containing the N terminus from maize endosperm and the C terminus from potato tuber AGPase increases heat stability more than 300-fold. PMID:16299180

  18. Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic analyses

    PubMed Central

    Fonseca, V. G.; Nichols, B.; Lallias, D.; Quince, C.; Carvalho, G. R.; Power, D. M.; Creer, S.

    2012-01-01

    Eukaryotic diversity in environmental samples is often assessed via PCR-based amplification of nSSU genes. However, estimates of diversity derived from pyrosequencing environmental data sets are often inflated, mainly because of the formation of chimeric sequences during PCR amplification. Chimeras are hybrid products composed of distinct parental sequences that can lead to the misinterpretation of diversity estimates. We have analyzed the effect of sample richness, evenness and phylogenetic diversity on the formation of chimeras using a nSSU data set derived from 454 Roche pyrosequencing of replicated, large control pools of closely and distantly related nematode mock communities, of known intragenomic identity and richness. To further investigate how chimeric molecules are formed, the nSSU gene secondary structure was analyzed in several individuals. For the first time in eukaryotes, chimera formation proved to be higher in both richer and more genetically diverse samples, thus providing a novel perspective of chimera formation in pyrosequenced environmental data sets. Findings contribute to a better understanding of the nature and mechanisms involved in chimera formation during PCR amplification of environmentally derived DNA. Moreover, given the similarities between biodiversity analyses using amplicon sequencing and those used to assess genomic variation, our findings have potential broad application for identifying genetic variation in homologous loci or multigene families in general. PMID:22278883

  19. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia.

    PubMed

    Cooper, Madalyn K; Phalen, David N; Donahoe, Shannon L; Rose, Karrie; Šlapeta, Jan

    2016-01-30

    Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations. PMID:26801593

  20. Structural and Physiological Analyses of the Alkanesulphonate-Binding Protein (SsuA) of the Citrus Pathogen Xanthomonas citri

    PubMed Central

    Tófoli de Araújo, Fabiano; Bolanos-Garcia, Victor M.; Pereira, Cristiane T.; Sanches, Mario; Oshiro, Elisa E.; Ferreira, Rita C. C.; Chigardze, Dimitri Y.; Barbosa, João Alexandre Gonçalves; de Souza Ferreira, Luís Carlos; Benedetti, Celso E.; Blundell, Tom L.; Balan, Andrea

    2013-01-01

    Background The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. Methodology/Principal Findings A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. Conclusions/Significance The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen. PMID:24282519

  1. New Data on Henneguya pellis (Myxozoa: Myxobolidae), A Parasite of Blue Catfish Ictalurus furcatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The original description of Henneguya pellis, a myxozoan parasitizing blue catfish Ictalurus furcatus, is supplemented with new data on histopathology, spore morphology, and 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence. Plasmodia presented as both internal and external, raised, cyst-like le...

  2. Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene

    PubMed Central

    Miller, Scott R.; Augustine, Sunny; Olson, Tien Le; Blankenship, Robert E.; Selker, Jeanne; Wood, A. Michelle

    2005-01-01

    Chlorophyll d-producing cyanobacteria are a recently described group of phototrophic bacteria that is a major focus of photosynthesis research, previously known only from marine environments in symbiosis with eukaryotes. We have discovered a free-living member of this group from a eutrophic hypersaline lake. Phylogenetic analyses indicated these strains are closely related to each other but not to prochlorophyte cyanobacteria that also use an alternative form of chlorophyll as the major light-harvesting pigment. We have also demonstrated that these bacteria acquired a fragment of the small-subunit rRNA gene encoding a conserved hairpin in the bacterial ribosome from a proteobacterial donor at least 10 million years before the present. Thus, our most widely used phylogenetic marker can be a mosaic of sequence fragments with widely divergent evolutionary histories. PMID:15637160

  3. Cloning and characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) cDNA from green microalga Ankistrodesmus convolutus.

    PubMed

    Thanh, Tran; Chi, Vu Thi Quynh; Abdullah, Mohd Puad; Omar, Hishamuddin; Noroozi, Mostafa; Napis, Suhaimi

    2011-11-01

    An initial study on gene cloning and characterization of unicellular green microalga Ankistrodesmus convolutus was carried out to isolate and characterize the full-length cDNA of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) as a first step towards elucidating the structure of A. convolutus RbcS gene. The full-length of A. convolutus RbcS cDNA (AcRbcS) contained 28 bp of 5' untranslated region (UTR), 225 bp of 3' non-coding region, and an open reading frame of 165 amino acids consisting of a chloroplast transit peptide with 24 amino acids and a mature protein of 141 amino acids. The amino acid sequence has high identity to those of other green algae RbcS genes. The AcRbcS contained a few conserved domains including protein kinase C phosphorylation site, tyrosine kinase phosphorylation site and N-myristoylation sites. The AcRbcS was successfully expressed in Escherichia coli and a ~21 kDa of anticipated protein band was observed on SDS-PAGE. From the phylogenetic analysis of RbcS protein sequences, it was found that the RbcS of A. convolutus has closer genetic relationship with green microalgae species compared to those of green seaweed and green macroalgae species. Southern hybridization analysis revealed that the AcRbcS is a member of a small multigene family comprising of two to six members in A. convolutus genome. Under different illumination conditions, RT-PCR analysis showed that AcRbcS transcription was reduced in the dark, and drastically recovered in the light condition. Results presented in this paper established a good foundation for further study on the photosynthetic process of A. convolutus and other green algae species where little information is known on Rubisco small subunit. PMID:21287365

  4. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1.

    PubMed

    Donalies, Ute E B; Stahl, Ulf

    2002-04-01

    Saccharomyces cerevisiae produces sulphite as an intermediate product during the assimilatory reduction of sulphate to sulphide. Three genes, MET3, MET14 and MET16, are essential for this reduction. We investigated the level of transcription of these genes in strains of S. cerevisiae with high, medium and low sulphite formation. The level of MET14- and MET16-mRNA varied with sulphite production, whereas the level of MET3-mRNA was very weak in almost all strains. We also analysed the effect of overexpression of MET14 and MET16 on sulphite formation. Two strains with low sulphite production were transformed with high-copy plasmids containing either or both MET14 and MET16. The overexpression of these two genes leads to a two- to three-fold sulphite formation. In addition, inactivation of MET10, encoding a subunit of the sulphite reductase, also leads to a distinct increase in sulphite formation; however, the cells became methionine auxotroph. The overexpression of SSU1, a gene encoding a putative sulphite pump, yields a slight increase in sulphite accumulation, whereas overexpression of SSU1, together with MET14, increases sulphite formation up to 10-fold. Furthermore, sulphite formation strongly depends on growth conditions, e.g. yeast transformants growing in wort produce much higher amounts of sulphite when compared to growth in minimal media. The addition of glucose can also increase the sulphite formation in strains overexpressing MET14 and/or SSU1 under oxygen-limiting conditions, while the addition of glucose has no significant effect under aerobic conditions. PMID:11921096

  5. Core Lipopolysaccharide-Specific Phage SSU5 as an Auxiliary Component of a Phage Cocktail for Salmonella Biocontrol

    PubMed Central

    Kim, Minsik; Kim, Sujin; Park, Bookyung

    2014-01-01

    Salmonella spp. are among the major food-borne pathogens that cause mild diarrhea to severe bacteremia. The use of bacteriophages to control various food-borne pathogens, including Salmonella, has emerged as a promising alternative to traditional chemotherapy. We isolated the Siphoviridae family phage SSU5, which can infect only rough strains of Salmonella. The blocking of SSU5 adsorption by periodate treatment of host Salmonella cells and spotting and adsorption assays with mutants that contain various truncations in their lipopolysaccharide (LPS) cores revealed that the outer core region of the LPS is a receptor of SSU5. SSU5 could infect O-antigen (O-Ag)-deficient Salmonella mutants that developed by challenging of O-Ag-specific phages, and consequently, it delayed the emergence of the phage-resistant Salmonella population in broth culture when treated together with phages using O-Ag as a receptor. Therefore, these results suggested that phage SSU5 would be a promising auxiliary component of a phage cocktail to control rough strains of Salmonella enterica serovar Typhimurium, which might emerge as resistant mutants upon infection by phages using O-Ag as a receptor. PMID:24271179

  6. Phylogenetic position of the Phacotaceae within the Chlamydophyceaeas revealed by analysis of 18S rDNA and rbcL sequences.

    PubMed

    Hepperle, D; Nozaki, H; Hohenberger, S; Huss, V A; Morita, E; Krienitz, L

    1998-10-01

    Four genera of the Phacotaceae (Phacotus, Pteromonas, Wislouchiella, Dysmorphococcus), a family of loricated green algal flagellates within the Volvocales, were investigated by means of transmission electron microscopy and analysis of the nuclear encoded small-subunit ribosomal RNA (18S rRNA) genes and the plastid-encoded rbcL genes. Additionally, the 18S rDNA of Haematococcus pluvialis and the rbcL sequences of Chlorogonium elongatum, C. euchlorum, Dunaliella parva, Chloromonas serbinowii, Chlamydomonas radiata, and C. tetragama were determined. Analysis of ultrastructural data justified the separation of the Phacotaceae into two groups. Phacotus, Pteromonas, and Wislouchiella generally shared the following characters: egg-shaped protoplasts, a single pyrenoid with planar thylakoid double-lamellae, three-layered lorica, flagellar channels as part of the central lorica layer, mitochondria located in the central cytoplasm, lorica development that occurs in mucilaginous zoosporangia that are to be lysed, and no acid-resistant cell walls. Dysmorphococcus was clearly different in each of the characters mentioned. Direct comparison of sequences of Phacotus lenticularis, Pteromonas sp., Pteromonas protracta, and Wislouchiella planctonica revealed DNA sequence homologies of >/=98. 0% within the 18S gene and 93.9% within the rbcL gene. D. globosus was quite different from these species, with a maximum of 92.9% homology in the 18S rRNA and 18S rDNA of Dunaliella salina, with 95.3%, and to the rbcL sequence of Chlamydomonas tetragama, with 90.3% sequence homology. Additionally, the Phacotaceae sensu stricto exclusively shared 10 (rbcL: 4) characters which were present neither in other Chlamydomonadales nor in Dysmorphococcus globosus. Different phylogenetic analysis methods confirmed the hypothesis that the Phacotaceae are polyphyletic. The Phacotaceae sensu stricto form a stable cluster with affinities to the

  7. [Molecular evolution of the sulphite efflux gene SSU1 in Saccharomyces cerevisiae].

    PubMed

    Peng, Li-Xin; Sun, Fei-Fei; Huang, Yan-Yan; Li, Zhen-Chong

    2013-11-01

    The SSU1 gene encoding a membrane sulfite pump is a main facilitator invovled in sulfite efflux. In Saccharomyce cerevisiae, various range of resistance to sulfite was observed among strains. To explore the evolution traits of SSU1 gene, the population data of S. cerevisiae were collected and analyzed. The phylogenetic analysis indicated that S. cerevisiae population can be classified into three sub-populations, and the positive selection was detected in population by McDonald-Kreitman test. The anaylsis of Ka/Ks ratios further showed that S. cerevisiae sub-population was undergoing positive selection. This finding was also supported by PAML branch model. Nine potential positive selection sites were predicted by branch-site model, and four sites exclusively belong to the sub-population under positive seletion. The data from ssulp protein structure demonstrated that three sites are substitutions between polar and hydrophobic amino acids, and only one site of substitutaion from basic amino acid to basic amino acid (345R/K). Because amino acid pKa values are crucial for sulfite pump to maintain their routine function, positive selection of these amino acid substitutions might affect sulfite efflux efficient. PMID:24579315

  8. Phylogenetic relationships of Trypanosoma chelodina and Trypanosoma binneyi from Australian tortoises and platypuses inferred from small subunit rRNA analyses.

    PubMed

    Jakes, K A; O'Donoghue, P J; Adlard, R D

    2001-11-01

    Trypanosome infections are often difficult to detect by conventional microscopy and their pleomorphy often confounds differential diagnosis. Molecular techniques are now being used to diagnose infections and to determine phylogenetic relationships between species. Complete small subunit rRNA gene sequences were determined for isolates of Trypanosoma chelodina from the Brisbane River tortoise (Emydura signata), the saw-shelled tortoise (Elseya latisternum), and the eastern snake-necked tortoise (Chelodina longicollis) from southeast Queensland, Australia. Partial sequence data were also obtained for T. binneyi from a platypus (Ornithorhynchus anatinus) from Tasmania. Phylogenetic relationships between T. chelodina, T. binneyi and other species were examined by maximum parsimony and likelihood methods. The Australian tortoise and platypus trypanosomes did not exhibit any close phylogenetic relationships with those of mammals, reptiles or amphibians, but were closely related to each other, and to fish trypanosomes. This contra-indicates their co-evolution with their vertebrate hosts but does not exclude co-evolution with different groups of invertebrate vectors, notably insects and leeches. PMID:11719959

  9. Isolation and characterization of cDNAs and genomic DNAs encoding ADP-glucose pyrophosphorylase large and small subunits from sweet potato.

    PubMed

    Zhou, Yu-Xi; Chen, Yu-Xiang; Tao, Xiang; Cheng, Xiao-Jie; Wang, Hai-Yan

    2016-04-01

    Sweet potato [Ipomoea batatas (L.) Lam.], the world's seventh most important food crop, is also a major industrial raw material for starch and ethanol production. In the plant starch biosynthesis pathway, ADP-glucose pyrophosphorylase (AGPase) catalyzes the first, rate-limiting step and plays a pivotal role in regulating this process. In spite of the importance of sweet potato as a starch source, only a few studies have focused on the molecular aspects of starch biosynthesis in sweet potato and almost no intensive research has been carried out on the AGPase gene family in this species. In this study, cDNAs encoding two small subunits (SSs) and four large subunits (LSs) of AGPase isoforms were cloned from sweet potato and the genomic organizations of the corresponding AGPase genes were elucidated. Expression pattern analysis revealed that the two SSs were constitutively expressed, whereas the four LSs displayed differential expression patterns in various tissues and at different developmental stages. Co-expression of SSs with different LSs in Escherichia coli yielded eight heterotetramers showing different catalytic activities. Interactions between different SSs and LSs were confirmed by a yeast two-hybrid experiment. Our findings provide comprehensive information about AGPase gene sequences, structures, expression profiles, and subunit interactions in sweet potato. The results can serve as a foundation for elucidation of molecular mechanisms of starch synthesis in tuberous roots, and should contribute to future regulation of starch biosynthesis to improve sweet potato starch yield. PMID:26499957

  10. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium.

    PubMed

    Peccia, J; Marchand, E A; Silverstein, J; Hernandez, M

    2000-07-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using (32)P radiolabels, probe specificity was characterized by hybridization dissociation temperature (T(d)) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined T(d)s. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris. PMID:10877807

  11. The Large Ribosomal Subunit Protein L9 Enables the Growth of EF-P Deficient Cells and Enhances Small Subunit Maturation

    PubMed Central

    Naganathan, Anusha; Wood, Matthew P.; Moore, Sean D.

    2015-01-01

    The loss of the large ribosomal protein L9 causes a reduction in translation fidelity by an unknown mechanism. To identify pathways affected by L9, we identified mutants of E. coli that require L9 for fitness. In a prior study, we characterized L9-dependent mutations in the essential GTPase Der (EngA). Here, we describe a second class of L9-dependent mutations that either compromise or inactivate elongation factor P (EF-P, eIF5A in eukaryotes). Without L9, Δefp cells are practically inviable. Cell fractionation studies revealed that, in both the Der and EF-P mutant cases, L9's activity reduces immature 16S rRNA in 30S particles and partially restores the abundance of monosomes. Inspired by these findings, we discovered that L9 also enhances 16S maturation in wild-type cells. Surprisingly, although the amount of immature 16S in 30S particles was found to be elevated in ΔrplI cells, the amount in polysomes was low and inversely correlated with the immature 16S abundance. These findings provide an explanation for the observed fitness increases afforded by L9 in these mutants and reveal particular physiological conditions in which L9 becomes critical. Additionally, L9 may affect the partitioning of small subunits containing immature 16S rRNA. PMID:25879934

  12. Further consideration of the phylogeny of some "traditional" heterotrichs (Protista, Ciliophora) of uncertain affinities, based on new sequences of the small subunit rRNA gene.

    PubMed

    Miao, Miao; Song, Weibo; Clamp, John C; Al-Rasheid, Khaled A S; Al-Khedhairy, Abdulaziz A; Al-Arifi, Saud

    2009-01-01

    The systematic relationships and taxonomic positions of the traditional heterotrich genera Condylostentor, Climacostomum, Fabrea, Folliculina, Peritromus, and Condylostoma, as well as the licnophorid genus Licnophora, were re-examined using new data from sequences of the gene coding for small subunit ribosomal RNA. Trees constructed using distance-matrix, Bayesian inference, and maximum-parsimony methods all showed the following relationships: (1) the "traditional" heterotrichs consist of several paraphyletic groups, including the current classes Heterotrichea, Armophorea and part of the Spirotrichea; (2) the class Heterotrichea was confirmed as a monophyletic assemblage based on our analyses of 31 taxa, and the genus Peritromus was demonstrated to be a peripheral group; (3) the genus Licnophora occupied an isolated branch on one side of the deepest divergence in the subphylum Intramacronucleata and was closely affiliated with spirotrichs, armophoreans, and clevelandellids; (4) Condylostentor, a recently defined genus with several truly unique morphological features, is more closely related to Condylostoma than to Stentor; (5) Folliculina, Eufolliculina, and Maristentor always clustered together with high bootstrap support; and (6) Climacostomum occupied a paraphyletic position distant from Fabrea, showing a close relationship with Condylostomatidae and Chattonidiidae despite of modest support. PMID:19527351

  13. Cryptic diversity of free-living parabasalids, Pseudotrichomonas keilini and Lacusteria cypriaca n. g., n. sp., as inferred from small subunit rDNA sequences.

    PubMed

    Yubuki, Naoji; Céza, Vít; Cepicka, Ivan; Yabuki, Akinori; Inagaki, Yuji; Nakayama, Takeshi; Inouye, Isao; Leander, Brian S

    2010-01-01

    Ultrastructural and molecular phylogenetic evidence indicate that the Parabasalia consists of seven main subgroups: the Trichomonadida, Honigbergiellida, Hypotrichomonadida, Tritrichomonadida, Cristamonadida, Spirotrichonymphida, and Trichonymphida. Only five species of free-living parabasalids are known: Monotrichomonas carabina, Ditrichomonas honigbergii, Honigbergiella sp., Tetratrichomonas undula, and Pseudotrichomonas keilini. Phylogenetic analyses show that free-living species do not form a clade and instead branch in several different positions within the context of their parasitic relatives. Because the diversity of free-living parabasalids is poorly understood, the systematics of these lineages is in a significant state of disarray. In order to better understand the phylogenetic distribution of free-living parabasalids, we sequenced the small subunit rDNA from three different strains reminiscent of P. keilini; the strains were isolated from different geographical locations: (1) mangrove sediments in Japan and (2) sediments in Cyprus. These data demonstrated that the free-living parabasalids P. keilini and Lacusteria cypriaca n. g., n. sp., form a paraphyletic assemblage near the origin of a clade consisting mostly of parasitic trichomonadids (e.g. Trichomonas vaginalis). This paraphyletic distribution of similar morphotypes indicates that free-living trichomonadids represent a compelling example of morphostasis that provides insight into the suite of features present in the most recent free-living ancestor of their parasitic relatives. PMID:20880033

  14. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans

    PubMed Central

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L. J.; Wöhnert, Jens; Entian, Karl-Dieter

    2016-01-01

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m1acp3Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. PMID:27084949

  15. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans.

    PubMed

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L J; Wöhnert, Jens; Entian, Karl-Dieter

    2016-05-19

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. PMID:27084949

  16. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs.

    PubMed

    Ito, Jun-ichi; Ikeda, Kazuyoshi; Yamada, Kazunori; Mizuguchi, Kenji; Tomii, Kentaro

    2015-01-01

    PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a database for detecting similar small-molecule binding sites on proteins. Since its initial release in 2011, PoSSuM has grown to provide information related to 49 million pairs of similar binding sites discovered among 5.5 million known and putative binding sites. This enlargement of the database is expected to enhance opportunities for biological and pharmaceutical applications, such as predictions of new functions and drug discovery. In this release, we have provided a new service named PoSSuM drug search (PoSSuMds) at http://possum.cbrc.jp/PoSSuM/drug_search/, in which we selected 194 approved drug compounds retrieved from ChEMBL, and detected their known binding pockets and pockets that are similar to them. Users can access and download all of the search results via a new web interface, which is useful for finding ligand analogs as well as potential target proteins. Furthermore, PoSSuMds enables users to explore the binding pocket universe within PoSSuM. Additionally, we have improved the web interface with new functions, including sortable tables and a viewer for visualizing and downloading superimposed pockets. PMID:25404129

  17. The Conserved Lys-95 Charged Residue Cluster Is Critical for the Homodimerization and Enzyme Activity of Human Ribonucleotide Reductase Small Subunit M2*

    PubMed Central

    Chen, Xinhuan; Xu, Zhijian; Zhang, Lingna; Liu, Hongchuan; Liu, Xia; Lou, Meng; Zhu, Lijun; Huang, Bingding; Yang, Cai-Guang; Zhu, Weiliang; Shao, Jimin

    2014-01-01

    Ribonucleotide reductase (RR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides for DNA synthesis. Human RR small subunit M2 exists in a homodimer form. However, the importance of the dimer form to the enzyme and the related mechanism remain unclear. In this study, we tried to identify the interfacial residues that may mediate the assembly of M2 homodimer by computational alanine scanning based on the x-ray crystal structure. Co-immunoprecipitation, size exclusion chromatography, and RR activity assays showed that the K95E mutation in M2 resulted in dimer disassembly and enzyme activity inhibition. In comparison, the charge-exchanging double mutation of K95E and E98K recovered the dimerization and activity. Structural comparisons suggested that a conserved cluster of charged residues, including Lys-95, Glu-98, Glu-105, and Glu-174, at the interface may function as an ionic lock for M2 homodimer. Although the measurements of the radical and iron contents showed that the monomer (the K95E mutant) was capable of generating the diiron and tyrosyl radical cofactor, co-immunoprecipitation and competitive enzyme inhibition assays indicated that the disassembly of M2 dimer reduced its interaction with the large subunit M1. In addition, the immunofluorescent and fusion protein-fluorescent imaging analyses showed that the dissociation of M2 dimer altered its subcellular localization. Finally, the transfection of the wild-type M2 but not the K95E mutant rescued the G1/S phase cell cycle arrest and cell growth inhibition caused by the siRNA knockdown of M2. Thus, the conserved Lys-95 charged residue cluster is critical for human RR M2 homodimerization, which is indispensable to constitute an active holoenzyme and function in cells. PMID:24253041

  18. Small subunit of a cold-resistant plant, Timothy, does not significantly alter the catalytic properties of Rubisco in transgenic rice.

    PubMed

    Fukayama, Hiroshi; Koga, Atsushi; Hatanaka, Tomoko; Misoo, Shuji

    2015-04-01

    Effects of overexpression of high activity-type Rubisco small subunit (RbcS) from a cold-resistant plant, timothy (Phleum pratense), on kinetic properties of Rubisco were studied in rice (Oryza sativa). The full-length mRNA sequence of timothy RbcS (PpRbcS1) was determined by 5'RACE and 3'RACE. The coding sequence of PpRbcS1 was fused to the chlorophyll a/b-binding protein promoter and introduced into rice. PpRbcS was highly expressed in leaf blade and accounted for approximately 30 % of total RbcS in homozygous transgenic lines. However, the catalytic turnover rate and K m for CO2 of Rubisco did not significantly change in these transgenic lines compared to non-transgenic rice, suggesting that PpRbcS1 is not effective for improvement of catalytic efficiency of rice Rubisco. The photosynthetic rate and growth were essentially unchanged, whereas the photosynthetic rate at low CO2 condition was marginally increased in transgenic lines. Rubisco content was significantly increased, whereas soluble protein, nitrogen, and chlorophyll contents were unchanged in transgenic lines compared to non-transgenic rice. Because the kinetic properties were similar, observed slight increase in photosynthetic rate at low CO2 is considered to be large due to increase in Rubisco content in transgenic lines. Introduction of foreign RbcS is an effective approach for the improvement of Rubisco kinetics and photosynthesis. However, in this study, it was suggested that RbcS of high activity-type Rubisco, even showing higher amino acid identity with rice RbcS, did not always enhance the catalytic turnover rate of Rubisco in rice. Thus, we should carefully select RbcS to be overexpressed before introduction. PMID:25595546

  19. Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis

    PubMed Central

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities. PMID:24594623

  20. Mutations in Nu1, the gene encoding the small subunit of bacteriophage lambda terminase, suppress the postcleavage DNA packaging defect of cosB mutations.

    PubMed Central

    Cai, Z H; Hwang, Y; Cue, D; Catalano, C; Feiss, M

    1997-01-01

    The linear double-stranded DNA molecules in lambda virions are generated by nicking of concatemeric intracellular DNA by terminase, the lambda DNA packaging enzyme. Staggered nicks are introduced at cosN to generate the cohesive ends of virion DNA. After nicking, the cohesive ends are separated by terminase; terminase bound to the left end of the DNA to be packaged then binds the empty protein shell, i.e., the prohead, and translocation of DNA into the prohead occurs. cosB, a site adjacent to cosN, is a terminase binding site. cosB facilitates the rate and fidelity of the cosN cleavage reaction by serving as an anchoring point for gpNu1, the small subunit of terminase. cosB is also crucial for the formation of a stable terminase-DNA complex, called complex I, formed after cosN cleavage. The role of complex I is to bind the prohead. Mutations in cosB affect both cosB functions, causing mild defects in cosN cleavage and severe packaging defects. The lethal cosB R3- R2- R1- mutation contains a transition mutation in each of the three gpNu1 binding sites of cosB. Pseudorevertants of lambda cosB R3- R2- R1- DNA contain suppressor mutations affecting gpNu1. Results of experiments that show that two such suppressors, Nu1ms1 and Nu1ms3, do not suppress the mild cosN cleavage defect caused by the cosB R3- R2- R1- mutation but strongly suppress the DNA packaging defect are presented. It is proposed that the suppressing terminases, unlike the wild-type enzyme, are able to assemble a stable complex I with cosB R3- R2- R1- DNA. Observations on the adenosine triphosphatase activities and protease susceptibilities of gpNu1 of the Nu1ms1 and Nu1ms3 terminases indicate that the conformation of gpNu1 is altered in the suppressing terminases. PMID:9098042

  1. Design and Validation of Four New Primers for Next-Generation Sequencing To Target the 18S rRNA Genes of Gastrointestinal Ciliate Protozoa

    PubMed Central

    Wright, André-Denis G.

    2014-01-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen. PMID:24973070

  2. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5' external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA.

    PubMed Central

    Hughes, J M; Ares, M

    1991-01-01

    Multiple processing events are required to convert a single eukaryotic pre-ribosomal RNA (pre-rRNA) into mature 18S (small subunit), 5.8S and 25-28S (large subunit) rRNAs. We have asked whether U3 small nucleolar RNA is required for pre-rRNA processing in vivo by depleting Saccharomyces cerevisiae of U3 by conditional repression of U3 synthesis. The resulting pattern of accumulation and depletion of specific pre-rRNAs indicates that U3 is required for multiple events leading to the maturation of 18S rRNA. These include an initial cleavage within the 5' external transcribed spacer, resembling the U3 dependent initial processing event of mammalian pre-rRNA. Formation of large subunit rRNAs is unaffected by U3 depletion. The similarity between the effects of U3 depletion and depletion of U14 small nucleolar RNA and the nucleolar protein fibrillarin (NOP1) suggests that these could be components of a single highly conserved processing complex. Images PMID:1756730

  3. Structural and functional studies of Bud23–Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes

    PubMed Central

    Létoquart, Juliette; Huvelle, Emmeline; Wacheul, Ludivine; Bourgeois, Gabrielle; Zorbas, Christiane; Graille, Marc; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2014-01-01

    The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N7-methylguanosine (m7G) introduced at position 1575 on 18S rRNA by Bud23–Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23–Trm112 in the apo and S-adenosyl-l-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23–Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23–Trm112 binds precursor ribosomes at an early nucleolar stage, m7G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23–Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23–Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction. PMID:25489090

  4. Streptococcus suis Type 2 SSU0587 Protein is a Beta-Galactosidase That Contributes to Bacterial Adhesion but Not to Virulence in Mice

    PubMed Central

    TANG, Yulong; ZHANG, Xiaoyan; YIN, Yulong; HARDWIDGE, Philip R.; FANG, Weihuan

    2014-01-01

    ABSTRACT Bacterial surface proteins play key roles in virulence and often contribute to bacterial adhesion and invasion. We discovered that the Streptococcus suis type 2 (SS2) gene SSU0587 encodes a protein of 1,491 amino acids that possesses β-galactosidase activity. The surface association of the protein was dependent upon sortase activity. Deleting SSU0587 from clinical SS2 isolate JX081101 caused a loss of both β-galactosidase activity and adherence to microvascular endothelial cells. Deleting SSU0587 had no measurable impact on either invasion of microvascular endothelial cells or on virulence in a murine infection model, although the concentration of JX081101ΔSSU0587 was reduced in the brains of infected mice, as compared with the pathogen loads of the wild-type strain. PMID:24670993

  5. Streptococcus suis type 2 SSU0587 protein is a beta-galactosidase that contributes to bacterial adhesion but not to virulence in mice.

    PubMed

    Tang, Yulong; Zhang, Xiaoyan; Yin, Yulong; Hardwidge, Philip R; Fang, Weihuan

    2014-07-01

    Bacterial surface proteins play key roles in virulence and often contribute to bacterial adhesion and invasion. We discovered that the Streptococcus suis type 2 (SS2) gene SSU0587 encodes a protein of 1,491 amino acids that possesses β-galactosidase activity. The surface association of the protein was dependent upon sortase activity. Deleting SSU0587 from clinical SS2 isolate JX081101 caused a loss of both β-galactosidase activity and adherence to microvascular endothelial cells. Deleting SSU0587 had no measurable impact on either invasion of microvascular endothelial cells or on virulence in a murine infection model, although the concentration of JX081101ΔSSU0587 was reduced in the brains of infected mice, as compared with the pathogen loads of the wild-type strain. PMID:24670993

  6. A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU

    NASA Astrophysics Data System (ADS)

    McLandress, C.; Shepherd, T. G.; Jonsson, A. I.; von Clarmann, T.; Funke, B.

    2015-08-01

    A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980-2012 are -0.63 ± 0.13, -0.71 ± 0.15 and -0.80 ± 0.17 K decade-1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade-1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere-ocean models over the 1980-2012 period, including the continued cooling over the first decade of the 21st century.

  7. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode. PMID:25604341

  8. Molecular analysis of complete ssu to lsu rdna sequence in the harmful dinoflagellate alexandrium tamarense (korean isolate, HY970328M)

    NASA Astrophysics Data System (ADS)

    Ki, Jang-Seu; Han, Myung-Soo

    2005-09-01

    New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

  9. Assessment of Helminth Biodiversity in Wild Rats Using 18S rDNA Based Metagenomics

    PubMed Central

    Tsai, Isheng J.; Palomares-Rius, Juan Emilio; Yoshida, Ayako; Ogura, Yoshitoshi; Hayashi, Tetsuya; Maruyama, Haruhiko; Kikuchi, Taisei

    2014-01-01

    Parasite diversity has important implications in several research fields including ecology, evolutionary biology and epidemiology. Wide-ranging analysis has been restricted because of the difficult, highly specialised and time-consuming processes involved in parasite identification. In this study, we assessed parasite diversity in wild rats using 18S rDNA-based metagenomics. 18S rDNA PCR products were sequenced using an Illumina MiSeq sequencer and the analysis of the sequences using the QIIME software successfully classified them into several parasite groups. The comparison of the results with those obtained using standard methods including microscopic observation of helminth parasites in the rat intestines and PCR amplification/sequencing of 18S rDNA from isolated single worms suggests that this new technique is reliable and useful to investigate parasite diversity. PMID:25340824

  10. Magic wavelengths for the 5 s - 18 s transition in rubidium

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Elizabeth; Norris, David; Koller, Silvio; Wyllie, Robert; Brown, Roger; Porto, Trey; Safronova, Ulyana; Safronova, Marianna

    2015-05-01

    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5 s - 18 s transition of rubidium near the 18 s - 6 p resonances. We compare the calculation to experiment by measuring the light shift for atoms held in a crossed optical dipole trap with wavelength tuned around the 18 s - 6p3 / 2 resonance at the experimentally convenient wavelength of 1064 nm.

  11. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  12. Phylogeny of protostome worms derived from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1995-07-01

    The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade. PMID:7659019

  13. Phylogeny of chloromonas (chlorophyceae): A study of 18S ribosomal RNA gene sequences

    SciTech Connect

    Buchheim, M.A.; Buchheim, J.A.; Chapman, R.L.

    1997-04-01

    The unicellular, biflagellate genus Chloromonas differs from its ally, Chlamydomonas, primarily by the absence of pyrenoids in the vegetative stage of the former. As with most green flagellate genera, little is known about phylogenetic affinities within and among Chloromonas species. Phylogenetic analyses of nuclear-encoded small-subunit ribosomal RNA gene sequences demonstrate that a sampling of five Chloromonas taxa, obtained from major culture collections, do not form a monophyletic group. However, only three of these isolates, Chloromonas clathrata, Chloromonas serbinowi, and Chloromonas rosae, are diagnosable morphologically as Chloromonas species by the absence of a pyrenoid in the vegetative stage. The three diagnosable Chloromonas taxa form an alliance with two pyrenoid-bearing chlamydomonads, Chlamydomonas augustae and Chlamydomonas macrostellata. With the exception of Chloromonas serbinowi, which represents the basal lineage within the clade, each of the diagnosable Chloromonas taxa and their pyrenoid-bearing Chlamydomonas allies were isolated originally from mountain soils, snow, or cold peat. These observations suggest that hibitat, independent of pyrenoid status, may be most closely linked to the natural history of this clade of chlamydomonad flagellates. 51 refs., 3 figs., 3 tabs.

  14. Modified nucleotides in T1 RNase oligonucleotides of 18S ribosomal RNA of the Novikoff hepatoma.

    PubMed

    Choi, Y C; Busch, H

    1978-06-27

    The primary structure of 18S rRNA of the Novikoff hepatoma cells was investigated. Regardless of whether the primary sequence of 18S rRNA is finally determined by RNA sequencing methods or DNA sequencing methods, it is important to identify numbers and types of the modified nucleotides and accordingly the present study was designed to localize the modified regions in T1 RNase derived oligonucleotide. Modified nucleotides found in 66 different oligonucleotide sequences included 2 m62A, 1 m6A, 1 m7G, 1m1cap3psi, 7 Cm, 13 Am, 9 Gm, 11 Um, and 38 psi residues. A number of these modified nucleotides are now placed in defined sequences of T1 RNase oligonucleotides which are now being searched for in larger fragments derived from partial T1 RNase digests of 18S rRNA. Improved homochromatography fingerprinting (Choi et al. (1976) Cancer Res. 36, 4301) of T1 RNase derived oligonucleotides provided a distinctive pattern for 18S rRNA of Novikoff hepatoma ascites cells. The 116 spots obtained by homochromatography contain 176 oligonucleotide sequences. PMID:209819

  15. Analysis of the primary sequence and secondary structure of the unusually long SSU rRNA of the soil bug, Armadillidium vulgare.

    PubMed

    Choe, C P; Hancock, J M; Hwang, U W; Kim, W

    1999-12-01

    The complete nucleotide sequence of the SSU rRNA gene from the soil bug, Armadillidium vulgare (Crustacea, Isopoda), was determined. It is 3214 bp long, with a GC content of 56.3%. It is not only the longest SSU rRNA gene among Crustacea but also longer than any other SSU rRNA gene except that of the strepsipteran insect, Xenos vesparum (3316 bp). The unusually long sequence of this species is explained by the long sequences of variable regions V4 and V7, which make up more than half of the total length. RT-PCR analysis of these two regions showed that the long sequences also exist in the mature rRNA and sequence simplicity analysis revealed the presence of slippage motifs in these two regions. The putative secondary structure of the rRNA is typical for eukaryotes except for the length and shape variations of the V2, V4, V7, and V9 regions. Each of the V2, V4, and V7 regions was elongated, while the V9 region was shortened. In V2, two bulges, located between helix 8 and helix 9 and between helix 9 and helix 10, were elongated. In V4, stem E23-3 was dramatically expanded, with several small branched stems. In V7, stem 43 was branched and expanded. Comparisons with the unusually long SSU rRNAs of other organisms imply that the increase in total length of SSU rRNA is due mainly to expansion in the V4 and V7 regions. PMID:10594181

  16. Microbial succession in the traditional Chinese Luzhou-flavor liquor fermentation process as evaluated by SSU rRNA profiles.

    PubMed

    Xiang, Wenliang; Li, Ke; Liu, Seng; Xing, Yage; Li, Mingyuan; Che, Zhenming

    2013-03-01

    The community succession of microbes inhabited in the fermenting lees of Luzhou-flavor liquor was investigated based on small-subunit rRNA culture independent method. All sequences recovered from fermenting lees respectively fell into the genera of Lactobacillus, Streptococcus, Bacillus, Staphylococcus, Clostridium, Pelobacter, Actobacter, Serratia, Burkholderia, Rhodoccous, Corynebacterium, Arthrobacter, Microbacterium, Curtobacterium, Leptotrichia, Methanocuuleus, Saccharomyces, Zygosaccharomyces, Saccharomycopsis, Pichia, Talaromyces, Aspergillus, Eurotium, Fomitopsis and Trichosporon. The fungal Pichia, Saccharomycopsis and Talaromyces were most abundant in the lees fermented for 1 day, the fungal Eurotium and the bacteria Burkholderia, Streptococcus and Lactobacillus were dominant in the lees fermented for 7 days, only the bacteria Lactobacillus, Burkholderia were prevalent in the lees fermented for 60 days. Most genera almost existed in the fermenting lees, while their distributions were significantly different in 1, 7 and 60 days fermented lees. The prokaryotic community similarity coefficient was from 0.5000 to 0.5455 and followed to 0.1523, and that of eukaryotic community was from 0.5466 to 0.5259 and to 0.3750 when compared at species level. These results suggested that many microbes in lees have community successions associated with fermenting and that such successions maybe contribute the fermentation process of Luzhou-flavor liquor and is main reasons that the characteristic flavor factors are produced. PMID:23180546

  17. Community analysis of arbuscular mycorrhizal fungi in roots of Poncirus trifoliata and Citrus reticulata based on SSU rDNA.

    PubMed

    Wang, Peng; Wang, Yin

    2014-01-01

    Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliata L. Raf.) and red tangerine (Citrus reticulata Blanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus of Glomus Sensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering with Glomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards. PMID:25162057

  18. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets

  19. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae

    PubMed Central

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-01-01

    Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  20. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae.

    PubMed

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-02-27

    Methylation of ribose sugars at the 2'-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2'-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5' central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D' box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  1. Details of gastropod phylogeny inferred from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Steiner, G; Backeljau, T; De Wachter, R

    1998-02-01

    Some generally accepted viewpoints on the phylogenetic relationships within the molluscan class Gastropoda are reassessed by comparing complete 18S rRNA sequences. Phylogenetic analyses were performed using the neighbor-joining and maximum parsimony methods. The previously suggested basal position of Archaeogastropoda, including Neritimorpha and Vetigastropoda, in the gastropod clade is confirmed. The present study also provides new molecular evidence for the monophyly of both Caenogastropoda and Euthyneura (Pulmonata and Opisthobranchia), making Prosobranchia paraphyletic. The relationships within Caenogastropoda and Euthyneura data turn out to be very unstable on the basis of the present 18S rRNA sequences. The present 18S rRNA data question, but are insufficient to decide on, muricacean (Neogastropoda), neotaenioglossan, pulmonate, or stylommatophoran monophyly. The analyses also focus on two systellommatophoran families, namely, Veronicellidae and Onchidiidae. It is suggested that Systellommatophora are not a monophyletic unit but, due to the lack of stability in the euthyneuran clade, their affinity to either Opisthobranchia or Pulmonata could not be determined. PMID:9479694

  2. New Hosts of Simplicimonas similis and Trichomitus batrachorum Identified by 18S Ribosomal RNA Gene Sequences

    PubMed Central

    Dimasuay, Kris Genelyn B.; Lavilla, Orlie John Y.; Rivera, Windell L.

    2013-01-01

    Trichomonads are obligate anaerobes generally found in the digestive and genitourinary tract of domestic animals. In this study, four trichomonad isolates were obtained from carabao, dog, and pig hosts using rectal swab. Genomic DNA was extracted using Chelex method and the 18S rRNA gene was successfully amplified through novel sets of primers and undergone DNA sequencing. Aligned isolate sequences together with retrieved 18S rRNA gene sequences of known trichomonads were utilized to generate phylogenetic trees using maximum likelihood and neighbor-joining analyses. Two isolates from carabao were identified as Simplicimonas similis while each isolate from dog and pig was identified as Pentatrichomonas hominis and Trichomitus batrachorum, respectively. This is the first report of S. similis in carabao and the identification of T. batrachorum in pig using 18S rRNA gene sequence analysis. The generated phylogenetic tree yielded three distinct groups mostly with relatively moderate to high bootstrap support and in agreement with the most recent classification. Pathogenic potential of the trichomonads in these hosts still needs further investigation. PMID:23936631

  3. Identification of a potential fungal species by 18S rDNA for ligninases production.

    PubMed

    Ferhan, M; Santos, S N; Melo, I S; Yan, N; Sain, M

    2013-12-01

    Fungal species for ligninases production was investigated by 18S ribosomal DNA sequence analysis. Two primer sets were chosen to amplify a major part of the 18S rDNA, which resulted in intense PCR product of approximately 550-820 bp in size per sample. The results suggest that the 18S rDNA-based approach is a useful tool for identification of unknown potential fungal species for ligninases production. The isolated fungal species produces mainly manganese peroxidase (MnP). The enzyme oxidized a variety of the usual MnP substrates, including lignin related polyphenols. Time course studies showed that maximum production of ligninolytic enzymes MnP (64 IU L⁻¹), lignin peroxidase (26.35 IU L⁻¹), and laccase (5.44 IU L⁻¹), respectively, were achieved after 10 days of cultivation under optimum conditions. Furthermore, the biological decolorization of Remazol Brilliant Blue R dye following 10 days of cultivation was 94 %. NCBI BLAST was used to search for closest matched sequences in the GenBank database and based on sequence homology the first BLAST hit was Dothioraceae sp. LM572 with accession number EF060858.1. PMID:23744034

  4. Phylogenetic Analysis of Myobia musculi (Schranck, 1781) by Using the 18S Small Ribosomal Subunit Sequence

    PubMed Central

    Feldman, Sanford H; Ntenda, Abraham M

    2011-01-01

    We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574

  5. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses.

    PubMed

    Nakada, Takashi; Misawa, Kazuharu; Nozaki, Hisayoshi

    2008-07-01

    The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses. PMID:18430591

  6. Phylogeny of the Eustigmatophyceae Based upon 18S rDNA, with Emphasis on Nannochloropsis.

    PubMed

    Andersen, R A; Brett, R W; Potter, D; Sexton, J P

    1998-02-01

    Complete 18S rDNA sequences were determined for 25 strains representing five genera of the Eustigmatophyceae, including re-examination of three strains with previously published sequences. Parsimony analysis of these and 44 published sequences for other heterokont chromophytes (unalignable sites removed) revealed that the Eustigmatophyceae were a monophyletic group. Analysis of eustigmatophyte taxa only (complete gene analyzed) supported the current familial classification scheme. Twenty one strains of Nannochloropsis were also examined using light microscopy. Gross morphology of cells was variable and overlapped among the strains; cell size was consistent within strains but sometimes varied considerably among strains of a species. The 18S rDNA of N. gaditana, N. oculata and N. salina was re-sequenced for strains used in previous publications and one or more nucleotide differences were found. Nucleotide sequences for Nannochloropsis species varied by up to 32 nucleotides. Identical sequences were found for six strains of N. salina, five strains of N. gadifana, four strains of N. granulata, and two strains of N. oculata, respectively. Four strains could not be assigned to described species and may represent two new species. The unique 18S rDNA sequences for each sibling species of Nannochloropsis demonstrates the presence of considerable genetic diversity despite the extremely simple morphology in this genus. PMID:23196114

  7. Magic wavelengths for the 5 s -18 s transition in rubidium

    NASA Astrophysics Data System (ADS)

    Goldschmidt, E. A.; Norris, D. G.; Koller, S. B.; Wyllie, R.; Brown, R. C.; Porto, J. V.; Safronova, U. I.; Safronova, M. S.

    2015-03-01

    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5 s -18 s transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value.

  8. Phylogenetic relationships among higher Nemertean (Nemertea) Taxa inferred from 18S rDNA sequences.

    PubMed

    Sundberg, P; Turbeville, J M; Lindh, S

    2001-09-01

    We estimated the phylogenetic relationships of 15 nemertean (phylum Nemertea) species from the four subclasses Hoplo-, Hetero-, Palaeo-, and Bdellonemertea with 18S rDNA sequence data. Three outgroup taxa were used for rooting: Annelida, Platyhelminthes, and Mollusca. Parsimony and maximum-likelihood analyses supported the monophyletic status of the Heteronemertea and a taxon consisting of hoplonemerteans and Bdellonemertea, while indicating that Palaeonemertea is paraphyletic. The monophyletic status of the two nemertean classes Anopla and Enopla is not supported by the data. The unambiguous clades are well supported, as assessed by a randomization test (bootstrapping) and branch support values. PMID:11527461

  9. Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia.

    PubMed

    Shalchian-Tabrizi, Kamran; Kauserud, Håvard; Massana, Ramon; Klaveness, Dag; Jakobsen, Kjetill S

    2007-04-01

    Telonemia has recently been described as a new eukaryotic phylum with uncertain evolutionary origin. So far, only two Telonemia species, Telonema subtilis and Telonema antarcticum, have been described, but there are substantial variations in size and morphology among Telonema isolates and field observations, indicating a hidden diversity of Telonemia-like species and populations. In this study, we investigated the diversity and the global distribution of this group by analyzing 18S rDNA sequences from marine environmental clone libraries published in GenBank as well as several unpublished sequences from the Indian Ocean. Phylogenetic analyses of the identified sequences suggest that the Telonemia phylum includes several undescribed 18S rDNA phylotypes, probably corresponding to a number of different species and/or populations. The Telonemia phylotypes form two main groups, here referred to as Telonemia Groups 1 and 2. Some of the closely related sequences originate from separate oceans, indicating worldwide distributions of various Telonemia phylotypes, while other phylotypes seem to have limited geographical distribution. Further investigations of the evolutionary relationships within Telonemia should be conducted on isolated cultures of Telonema-like strains using multi-locus sequencing and morphological data. PMID:17196879

  10. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  11. ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae).

    PubMed

    Schmitt, Susanne; Hentschel, Ute; Zea, Sven; Dandekar, Thomas; Wolf, Matthias

    2005-03-01

    18S ribosomal DNA and internal transcribed spacer 2 (ITS-2) full-length sequences, each of which was sequenced three times, were used to construct phylogenetic trees with alignments based on secondary structures, in order to elucidate genealogical relationships within the Aplysinidae (Verongida). The first poriferan ITS-2 secondary structures are reported. Altogether 11 Aplysina sponges and 3 additional sponges (Verongula gigantea, Aiolochroia crassa, Smenospongia aurea) from tropical and subtropical oceans were analyzed. Based on these molecular studies, S. aurea, which is currently affiliated with the Dictyoceratida, should be reclassified to the Verongida. Aplysina appears as monophyletic. A soft form of Aplysina lacunosa was separated from other Aplysina and stands at a basal position in both 18S and ITS-2 trees. Based on ITS-2 sequence information, the Aplysina sponges could be distinguished into a single Caribbean-Eastern Pacific cluster and a Mediterranean cluster. The species concept for Aplysina sponges as well as a phylogenetic history with a possibly Tethyan origin is discussed. PMID:15871043

  12. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  13. SSU Ribosomal DNA-Based Monitoring of Nematode Assemblages Reveals Distinct Seasonal Fluctuations within Evolutionary Heterogeneous Feeding Guilds

    PubMed Central

    Vervoort, Mariëtte T. W.; Vonk, J. Arie; Mooijman, Paul J. W.; Van den Elsen, Sven J. J.; Van Megen, Hanny H. B.; Veenhuizen, Peter; Landeweert, Renske; Bakker, Jaap; Mulder, Christian; Helder, Johannes

    2012-01-01

    Soils are among the most complex, diverse and competitive habitats on Earth and soil biota are responsible for ecosystem services such as nutrient cycling, carbon sequestration and remediation of freshwater. The extreme biodiversity prohibits the making of a full inventory of soil life. Hence, an appropriate indicator group should be selected to determine the biological condition of soil systems. Due to their ubiquity and the diverse responses to abiotic and biotic changes, nematodes are suitable indicators for environmental monitoring. However, the time-consuming microscopic analysis of nematode communities has limited the scale at which this indicator group is used. In an attempt to circumvent this problem, a quantitative PCR-based tool for the detection of a consistent part of the soil nematofauna was developed based on a phylum-wide molecular framework consisting of 2,400 full-length SSU rDNA sequences. Taxon-specific primers were designed and tested for specificity. Furthermore, relationships were determined between the quantitative PCR output and numbers of target nematodes. As a first field test for this DNA sequence signature-based approach, seasonal fluctuations of nematode assemblages under open canopy (one field) and closed canopy (one forest) were monitored. Fifteen taxa from four feeding guilds (covering ∼ 65% of the free-living nematode biodiversity at higher taxonomical level) were detected at two trophic levels. These four feeding guilds are composed of taxa that developed independently by parallel evolution and we detected ecologically interpretable patterns for free-living nematodes belonging to the lower trophic level of soil food webs. Our results show temporal fluctuations, which can be even opposite within taxa belonging to the same guild. This research on nematode assemblages revealed ecological information about the soil food web that had been partly overlooked. PMID:23112818

  14. Comprehensive Phylogenetic Reconstruction of Amoebozoa Based on Concatenated Analyses of SSU-rDNA and Actin Genes

    PubMed Central

    Lahr, Daniel J. G.; Grant, Jessica; Nguyen, Truc; Lin, Jian Hua; Katz, Laura A.

    2011-01-01

    Evolutionary relationships within Amoebozoa have been the subject of controversy for two reasons: 1) paucity of morphological characters in traditional surveys and 2) haphazard taxonomic sampling in modern molecular reconstructions. These along with other factors have prevented the erection of a definitive system that resolves confidently both higher and lower-level relationships. Additionally, the recent recognition that many protosteloid amoebae are in fact scattered throughout the Amoebozoa suggests that phylogenetic reconstructions have been excluding an extensive and integral group of organisms. Here we provide a comprehensive phylogenetic reconstruction based on 139 taxa using molecular information from both SSU-rDNA and actin genes. We provide molecular data for 13 of those taxa, 12 of which had not been previously characterized. We explored the dataset extensively by generating 18 alternative reconstructions that assess the effect of missing data, long-branched taxa, unstable taxa, fast evolving sites and inclusion of environmental sequences. We compared reconstructions with each other as well as against previously published phylogenies. Our analyses show that many of the morphologically established lower-level relationships (defined here as relationships roughly equivalent to Order level or below) are congruent with molecular data. However, the data are insufficient to corroborate or reject the large majority of proposed higher-level relationships (above the Order-level), with the exception of Tubulinea, Archamoebae and Myxogastrea, which are consistently recovered. Moreover, contrary to previous expectations, the inclusion of available environmental sequences does not significantly improve the Amoebozoa reconstruction. This is probably because key amoebozoan taxa are not easily amplified by environmental sequencing methodology due to high rates of molecular evolution and regular occurrence of large indels and introns. Finally, in an effort to facilitate

  15. Morphology and small-subunit rRNA gene sequences of two novel marine ciliates, Metanophrys orientalis spec. nov. and Uronemella sinensis spec. nov. (Protista, Ciliophora, Scuticociliatia), with an improved diagnosis of the genus Uronemella.

    PubMed

    Pan, Xuming; Zhu, Mingzhuang; Ma, Honggang; Al-Rasheid, Khaled A S; Hu, Xiaozhong

    2013-09-01

    The morphology and infraciliature of two novel marine scuticociliates, Metanophrys orientalis spec. nov. and Uronemella sinensis spec. nov., collected from sandy beaches at Qingdao, China, were investigated using live observation and protargol-staining methods. Metanophrys orientalis spec. nov. is distinguished by the following characteristics: marine habitat and a slender to elongate oval body with pointed anterior end and rounded caudal end, in vivo about 25-50 µm long; buccal field about a quarter to a third of body length; nine or ten somatic kineties with dikinetids approximately in anterior half of body, monokinetids in posterior half; membranelles 1 and 2 almost equal in length and composed of two and three longitudinal rows of kinetids respectively; paroral membrane with zigzag structure extending anteriorly to middle portion of membranelle 2; contractile vacuole pore located at posterior end of somatic kinety 1. The genus Uronemella is redefined as follows: marine form with an elongate-elliptical or inverted pear-shaped body; apical plate conspicuous; buccal field about two-thirds of body length, cytostome subequatorially located; oral apparatus Uronema-like; somatic kineties comprising a mixture of dikinetids and monokinetids. Uronemella sinensis spec. nov. is recognized by having an elongate-elliptical body with truncated apical frontal plate, size in vivo about 25-35 × 15-20 µm, nine or ten somatic kineties, membranelle 1 consisting of two or three basal bodies, contractile vacuole pore at posterior end of somatic kinety 1. This study also compared the small-subunit rRNA gene sequences of these two species with other closely related species to show the sequence divergence, which ranged from 3.53 to 9.60%. Phylogenetic analyses support the contention that the genus Uronemella is monophyletic, while Metanophrys is non-monophyletic. PMID:23859947

  16. Reconsideration of systematic relationships within the order Euplotida (Protista, Ciliophora) using new sequences of the gene coding for small-subunit rRNA and testing the use of combined data sets to construct phylogenies of the Diophrys-complex.

    PubMed

    Yi, Zhenzhen; Song, Weibo; Clamp, John C; Chen, Zigui; Gao, Shan; Zhang, Qianqian

    2009-03-01

    Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the "typical" euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae-Certesiidae-Aspidiscidae-Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information. PMID:19121402

  17. Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene.

    PubMed

    Honda, D; Yokochi, T; Nakahara, T; Raghukumar, S; Nakagiri, A; Schaumann, K; Higashihara, T

    1999-01-01

    Labyrinthulids and thraustochytrids are unicellular heterotrophs, formerly considered as fungi, but presently are recognized as members in the stramenopiles of the kingdom Protista sensu lato. We determined the 18S ribosomal RNA gene sequences of 14 strains from different species of the six genera and analyzed the molecular phylogenetic relationships. The results conflict with the current classification based on morphology, at the genus and species levels. These organisms are separated, based on signature sequences and unique inserted sequences, into two major groups, which were named the labyrinthulid phylogenetic group and the thraustochytrid phylogenetic group. Although these groupings are in disagreement with many conventional taxonomic characters, they correlated better with the sugar composition of the cell wall. Thus, the currently used taxonomic criteria need serious reconsideration. PMID:10568038

  18. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis.

    PubMed

    Hanelt, B; Van Schyndel, D; Adema, C M; Lewis, L A; Loker, E S

    1996-11-01

    The Orthonectida is a small, poorly known phylum of parasites of marine invertebrates. Their phylogenetic placement is obscure; they have been considered to be multicellular protozoans, primitive animals at a "mesozoan" grade of organization, or secondarily simplified flatworm-like organisms. The best known species in the phylum, Rhopalura ophiocomae, was collected on San Juan Island, Wash. and a complete 18S rDNA sequence was obtained. Using the models of minimum evolution and parsimony, phylogenetic analyses were undertaken and the results lend support to the following hypotheses about orthonectids: (1) orthonectids are more closely aligned with triploblastic metazoan taxa than with the protist or diploblastic metazoan taxa considered in this analysis; (2) orthonectids are not derived members of the phylum Platyhelminthes; and (3) orthonectids and rhombozoans are not each other's closest relatives, thus casting further doubt on the validity of the phylum Mesozoa previously used to encompass both groups. PMID:8896370

  19. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters

    PubMed Central

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-01-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI’s SRA database (BioProject PRJNA294919). PMID:26904716

  20. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded. PMID:10603259

  1. 18S rDNA polymerase chain reaction and sequencing in onychomycosis diagnostics.

    PubMed

    Walberg, Mette; Mørk, Cato; Sandven, Per; Jorde, Anne Tomine; Bjørås, Magnar; Gaustad, Peter

    2006-01-01

    Diagnostic approaches to onychomycosis have traditionally been based on a combination of culture and microscopy. In the present study clinical specimens from 346 patients with suspected onychomycosis were analysed by 18S polymerase chain reaction (detection) followed by sequencing and subsequent database search (identification) in parallel with routine culture on agar (detection and identification). In 49 samples Trichophyton rubrum was identified by culture and sequencing. In 67 additional culture negative samples, a positive dermatophyte sequence was obtained (T. rubrum in 54, T. mentagrophytes in 5, and T. species in 8 samples). Fifteen samples cultured positive while no sequence was obtained. Two hundred and seven samples were negative by culture as well as by sequencing. Nails from 10 healthy controls were negative by culture and sequencing. In conclusion, the number of specimens that were positive by polymerase chain reaction was more than double the number that were positive by culture alone. PMID:16710579

  2. A variant of Plasmodium ovale; analysis of its 18S ribosomal RNA gene sequence.

    PubMed

    Miyake, H; Suwa, S; Kimura, M; Wataya, Y

    1997-01-01

    We report here a new variant of human malaria parasite found by comparison of diagnostic results obtained from a new DNA diagnostic method named microtiter plate-hybridization (MPH) and traditional microscopic method. Total five cases of malaria were diagnosed as microscopy-positive but MPH-negative; one case was found in epidemiological research in Vietnam and four cases were obtained from imported malaria in Japan. Although they were quite similar to typical P. ovale morphologically in microscopy, sequence analysis of PCR-amplified DNA fragment revealed that their 18S ribosomal RNA gene sequence was different from published sequence of P. ovale. Combination of MPH and microscopic examination provides us a new method for detection of a new type of malaria parasite which is difficult to distinguish morphologically. PMID:9586115

  3. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters.

    PubMed

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-03-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI's SRA database (BioProject PRJNA294919). PMID:26904716

  4. Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers

    PubMed Central

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M.; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies. PMID:24516555

  5. Identification of new 18S rRNA strains of Babesia canis isolated from dogs with subclinical babesiosis.

    PubMed

    Łyp, P; Adaszek, Ł; Furmaga, B; Winiarczyk, S

    2015-01-01

    In this study, we used PCR to detect and characterize B. canis from naturally infected dogs in Poland with subclinical babesiosis by amplifying and sequencing a portion of the 18S ribosomal RNA (rRNA) gene. Venous blood samples were collected from ten dogs with subclinical babesiosis. A 559-bp fragment of the B. canis 18S rRNA gene was amplified by PCR. Sequencing of the PCR products led to the identification of a new variant of Babesia canis, differing from the previously detected protozoa genotypes (18S rRNA-A and 18S rRNA-B) with nucleotide substitutions in positions 150 and 151 of the tested gene fragment. The results indicate the emergence within the Polish territory of a new, previously unencountered Babesia canis genotype responsible for the development of subclinical babesiosis. PMID:26618590

  6. Chromosome Mapping of 18S Ribosomal RNA Genes in Eleven Hypostomus Species (Siluriformes, Loricariidae): Diversity Analysis of the Sites.

    PubMed

    Rubert, Marceléia; da Rosa, Renata; Zawadzki, Claudio H; Mariotto, Sandra; Moreira-Filho, Orlando; Giuliano-Caetano, Lucia

    2016-08-01

    We investigated the chromosomal distribution of 18S ribosomal DNA (rDNA) in different populations of 11 species of Hypostomus collected in important Brazilian basins, namely South Atlantic, Upper Paraná, and Paraguay applying the fluorescence in situ hybridization (FISH). Hypostomus cochliodon, Hypostomus commersoni, Hypostomus hermanni, Hypostomus regani, Hypostomus albopunctatus, Hypostomus paulinus, Hypostomus aff. paulinus, Hypostomus iheringii, and Hypostomus mutucae presented multiple 18S rDNA sites while Hypostomus strigaticeps and Hypostomus nigromaculatus exhibited a single pair of chromosomes with 18S rDNA sites. The studied species presented variations in the number and position of these sites. The results accomplished were similar to those obtained by the analysis of AgNORs, revealing the same interspecific variability. Each species exhibited distinctive patterns of AgNOR and 18S rDNA distribution, which can be considered cytogenetic markers in each species of the genus and help improve the discussions on the phylogeny of the group. PMID:27192329

  7. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation

    PubMed Central

    Oh, Sungwhan F.; Pillai, Padmini S.; Recchiuti, Antonio; Yang, Rong; Serhan, Charles N.

    2011-01-01

    E-series resolvins are antiinflammatory and pro-resolving lipid mediators derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) that actively clear inflammation to promote tissue homeostasis. Aspirin, in addition to exerting antithrombotic actions, also triggers the biosynthesis of these specialized pro-resolving mediators. Here, we used metabolomic profiling to investigate the biosynthesis of E-series resolvins with specific chiral chemistry in serum from human subjects and present evidence for new 18S series resolvins. Aspirin increased endogenous formation of 18S-hydroxyeicosapentaenoate (18S-HEPE) compared with 18R-HEPE, a known resolvin precursor. Human recombinant 5-lipoxygenase used both enantiomers as substrates, and recombinant LTA4 hydrolase (LTA4H) converted chiral 5S(6)-epoxide–containing intermediates to resolvin E1 and 18S-resolvin E1 (RvE1 and 18S-RvE1, respectively). 18S-RvE1 bound to the leukocyte GPCRs ChemR23 and BLT1 with increased affinity and potency compared with the R-epimer, but was more rapidly inactivated than RvE1 by dehydrogenase. Like RvE1, 18S-RvE1 enhanced macrophage phagocytosis of zymosan, E. coli, and apoptotic neutrophils and reduced both neutrophil infiltration and proinflammatory cytokines in murine peritonitis. These results demonstrate two parallel stereospecific pathways in the biosynthesis of E-series resolvins, 18R- and 18S-, which are antiinflammatory, pro-resolving, and non-phlogistic and may contribute to the beneficial actions of aspirin and ω-3 polyunsaturated fatty acids. PMID:21206090

  8. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data

    PubMed Central

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-01-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862

  9. Avian malaria in captive psittacine birds: detection by microscopy and 18S rRNA gene amplification.

    PubMed

    Belo, N O; Passos, L F; Júnior, L M C; Goulart, C E; Sherlock, T M; Braga, E M

    2009-03-01

    A cross-sectional survey was conducted to estimate the occurrence of malaria infection among captive psittacine birds (n=127) from three zoological gardens in Brazil. Malaria infection was evaluated by the association of direct examination of blood smears with amplification of the 18SSU rRNA gene of the Plasmodium genus, demonstrating an overall occurrence of 36%. Most infected bird species were Amazona aestiva (28/73), Ara ararauna (6/10), and Amazona amazonica (3/10). The low parasitemias observed among the infected birds suggest a chronic infection. The sequence analyses of 10 isolates indicate a potential occurrence of four distinct Plasmodium lineages. These findings provide new data on malarial infection in captive psittacine birds, and emphasize the need for better control of importation and exportation of these birds. PMID:18937986

  10. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  11. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  12. Sequence requirements for maturation of the 5' terminus of human 18 S rRNA in vitro.

    PubMed

    Yu, Y T; Nilsen, T W

    1992-05-01

    Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s). PMID:1577760

  13. Induction of the superoxide anion radical scavenging capacity of dried 'funori'Gloiopeltis furcata by Lactobacillus plantarum S-SU1 fermentation.

    PubMed

    Kuda, Takashi; Nemoto, Maki; Kawahara, Miho; Oshio, Satoshi; Takahashi, Hajime; Kimura, Bon

    2015-08-01

    To understand the beneficial properties of edible algae obtained from the north-eastern (Sanriku) Satoumi region of Japan, the antioxidant properties of hot aqueous extract solutions (AES) obtained from 18 dried algal products were determined. The samples included 4 Ceratophyllum demersum (matsumo), 5 Undaria pinnatifida (wakame), 5 Laminaria japonica (kombu), and 2 each of Gloiopeltis furcate (funori) and G. tenax (funori). Of these products, the total phenolic content and Fe-reducing power were highest in matsumo. On the other hand, the polysaccharide content, viscosity, and superoxide anion radical (O2˙(-))-scavenging capacity were highest in funori. Lactobacillus plantarum S-SU3, isolated from the intestine of Japanese surfperch, and Lb. plantarum S-SU1, isolated from salted squid, could ferment the AES of matsumo and funori, respectively. Although the Fe-reducing power of the matsumo solution was reduced due to fermentation, the O2˙(-)-scavenging capacity of the funori solution was increased by fermentation. Furthermore, the fermented funori suspension protected Saccharomyces cerevisiae, a live cell model, against H2O2 toxicity. These results suggest that the fermented funori is a promising functional food material that is capable of protecting against reactive oxygen species. PMID:26110834

  14. Morphology, ontogenetic features and SSU rRNA gene-based phylogeny of a soil ciliate, Bistichella cystiformans spec. nov. (Protista, Ciliophora, Stichotrichia).

    PubMed

    Fan, Yangbo; Hu, Xiaozhong; Gao, Feng; Al-Farraj, Saleh A; Al-Rasheid, Khaled A S

    2014-12-01

    The morphology, ontogeny and SSU rRNA gene-based phylogeny of Bistichella cystiformans spec. nov., isolated from the slightly saline soil of a mangrove wetland in Zhanjiang, southern China, were investigated. The novel species was characterized by having five to eight buccal cirri arranged in a row, three to five transverse cirri, four macronuclear nodules aligned, and 17-32 and 20-34 cirri in frontoventral rows V and VI, respectively, both extending to the transverse cirri. The main ontogenetic features of the novel species were as follows: (1) the parental adoral zone of the membranelles is completely inherited by the proter; (2) the frontoventral and transverse cirri are formed in a six-anlagen mode; (3) basically, the frontal-ventral-transverse cirral anlagen II-V generate one transverse cirrus each at their posterior ends, while anlage VI provides no transverse cirrus; (4) both marginal rows and dorsal kineties develop intrakinetally, no dorsal kinety fragment is formed; and (5) the macronuclear nodules fuse into a single mass at the middle stage. Phylogenetic analyses based on the SSU rRNA gene showed that the novel species groups with the clade containing Bistichella variabilis, Parabistichella variabilis, Uroleptoides magnigranulosus and two species of the genus Orthoamphisiella. Given present knowledge, it was considered to be still too early to come to a final conclusion regarding the familial classification of the genus Bistichella; further investigations of key taxa with additional molecular markers are required. PMID:25242538

  15. cis-Proline-mediated Ser(P)[superscript 5] Dephosphorylation by the RNA Polymerase II C-terminal Domain Phosphatase Ssu72

    SciTech Connect

    Werner-Allen, Jon W.; Lee, Chul-Jin; Liu, Pengda; Nicely, Nathan I.; Wang, Su; Greenleaf, Arno L.; Zhou, Pei

    2012-05-16

    RNA polymerase II coordinates co-transcriptional events by recruiting distinct sets of nuclear factors to specific stages of transcription via changes of phosphorylation patterns along its C-terminal domain (CTD). Although it has become increasingly clear that proline isomerization also helps regulate CTD-associated processes, the molecular basis of its role is unknown. Here, we report the structure of the Ser(P){sup 5} CTD phosphatase Ssu72 in complex with substrate, revealing a remarkable CTD conformation with the Ser(P){sup 5}-Pro{sup 6} motif in the cis configuration. We show that the cis-Ser(P){sup 5}-Pro{sup 6} isomer is the minor population in solution and that Ess1-catalyzed cis-trans-proline isomerization facilitates rapid dephosphorylation by Ssu72, providing an explanation for recently discovered in vivo connections between these enzymes and a revised model for CTD-mediated small nuclear RNA termination. This work presents the first structural evidence of a cis-proline-specific enzyme and an unexpected mechanism of isomer-based regulation of phosphorylation, with broad implications for CTD biology

  16. Initial results on the molecular phylogeny of the Nudibranchia (Gastropoda, Opisthobranchia) based on 18S rDNA data.

    PubMed

    Wollscheid, E; Wägele, H

    1999-11-01

    This study investigated nudibranch phylogeny on the basis of 18S rDNA sequence data. 18S rDNA sequence data of 19 taxa representing the major living orders and families of the Nudibranchia were analyzed. Representatives of the Cephalaspidea, Anaspidea, Gymnomorpha, Prosobranchia, and Pulmonata were also sequenced and used as outgroups. An additional 28 gastropod sequences taken from GenBank were also included in our analyses. Phylogenetic analyses of these more than 50 gastropod taxa provide strong evidence for support of the monophyly of the Nudibranchia. The monophyly of the Doridoidea, Cladobranchia, and Aeolidoidea within the Nudibranchia are also strongly supported. Phylogenetic utility and information content of the 18S rDNA sequences for Nudibranchia, and Opisthobranchia in general, are examined using the program SplitsTree as well as phylogenetic reconstructions using distance and parsimony approaches. 0Results based on these molecular data are compared with hypotheses about nudibranch phylogeny inferred from morphological data. PMID:10603252

  17. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    PubMed Central

    Santos, Henrique F.; Cury, Juliano C.; Carmo, Flavia L.; Rosado, Alexandre S.; Peixoto, Raquel S.

    2010-01-01

    Background Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. Methodology/Principal Findings We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. Conclusions/Significance We believe that

  18. A phylogenetic study on galactose-containing Candida species based on 18S ribosomal DNA sequences.

    PubMed

    Suzuki, Motofumi; Suh, Sung-Oui; Sugita, Takashi; Nakase, Takashi

    1999-10-01

    Phylogenetic relationships of 33 Candida species containing galactose in the cells were investigated by using 18S ribosomal DNA sequence analysis. Galactose-containing Candida species and galactose-containing species from nine ascomycetous genera were a heterogeneous assemblage. They were divided into three clusters (II, III, and IV) which were phylogenetically distant from cluster I, comprising 9 galactose-lacking Candida species, C. glabrata, C. holmii, C. krusei, C. tropicalis (the type species of Candida), C. albicans, C. viswanathii, C. maltosa, C. parapsilosis, C. guilliermondii, and C. lusitaniae, and 17 related ascomycetous yeasts. These three clusters were also phylogenetically distant from Schizosaccharomyces pombe, which contains galactomannan in its cell wall. Cluster II comprised C. magnoliae, C. vaccinii, C. apis, C. gropengiesseri, C. etchellsii, C. floricola, C. lactiscondensi, Wickerhamiella domercqiae, C. versatilis, C. azyma, C. vanderwaltii, C. pararugosa, C. sorbophila, C. spandovensis, C. galacta, C. ingens, C. incommunis, Yarrowia lipolytica, Galactomyces geotrichum, and Dipodascus albidus. Cluster III comprised C. tepae, C. antillancae and its synonym C. bondarzewiae, C. ancudensis, C. petrohuensis, C. santjacobensis, C. ciferrii (anamorph of Stephanoascus ciferrii), Arxula terrestris, C. castrensis, C. valdiviana, C. paludigena, C. blankii, C. salmanticensis, C. auringiensis, C. bertae, and its synonym C. bertae var. chiloensis, C. edax (anamorph of Stephanoascus smithiae), Arxula adeninivorans, and C. steatolytica (synonym of Zygoascus hellenicus). Cluster IV comprised C. cantarellii, C. vinaria, Dipodascopsis uninucleata, and Lipomyces lipofer. Two galactose-lacking and Q-8-forming species, C. stellata and Pichia pastoris, and 5 galactose-lacking and Q-9-forming species, C. apicola, C. bombi, C. bombicola, C. geochares, and C. insectalens, were included in Cluster II. Two galactose-lacking and Q-9-forming species, C. drimydis and C

  19. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis.

    PubMed

    Michael, E S; Kuliopulos, A; Covic, L; Steer, M L; Perides, G

    2013-03-01

    Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2(-/-) mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca(2+) concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP. PMID:23275617

  20. Metabolism of 18S rRNA in rat liver cells in different functional states of protein-synthesizing apparatus

    SciTech Connect

    Chirkov, G.P.; Druzhinina, M.K.; Todorov, I.N.

    1986-04-10

    The ratio of the absolute radioactivities of 28S and 18S RNAs in the fractions of membrane-bound and free polysomes and the fraction of free rat liver ribosomes was studied under conditions of inhibition of translation by cycloheximide, insulin, and cAMP. It was found that insulin and cAMP, in contrast to cycloheximide, do not induce selective degradation of 18S rRNA. The results are discussed from the standpoint of the possible role of the phosphorylation of protein S6 in the degradation of the 40S ribosomal subunit.

  1. “Invisible” silver and gold in supergene digenite (Cu1.8S)

    NASA Astrophysics Data System (ADS)

    Reich, Martin; Chryssoulis, Stephen L.; Deditius, Artur; Palacios, Carlos; Zúñiga, Alejandro; Weldt, Magdalena; Alvear, Macarena

    2010-11-01

    Despite its potential economic and environmental importance, the study of trace metals in supergene (secondary) Cu-sulfides has been seriously overlooked in the past decades. In this study, the concentration and mineralogical form of "invisible" precious metals (Ag, Au) and metalloids (As, Sb, Se, Te) in supergene digenite (Cu 1.8S) from various Cu deposits in the Atacama Desert of northern Chile, the world's premier Cu province, were determined in detail using a combination of microanalytical techniques. Secondary ion mass spectrometry (SIMS) and electron microprobe analyzer (EMPA) measurements reveal that, apart from hosting up to ˜11,000 ppm Ag, supergene digenite can incorporate up to part-per-million contents of Au (˜6 ppm) and associated metalloids such as As (˜300 ppm), Sb (˜60 ppm), Se (˜96 ppm) and Te (˜18 ppm). SIMS analyses of trace metals show that Ag and Au concentrations strongly correlate with As in supergene digenite, defining wedge-shaped zones in Ag-As and Au-As log-log spaces. SIMS depth profiling and high-resolution transmission electron microscopy (HRTEM) observations reveal that samples with anomalously high Ag/As (>˜30) and Au/As (>˜0.03) ratios plot above the wedge zones and contain nanoparticles of metallic Ag and Au, while samples with lower ratios contain Ag and Au that is structurally bound to the Cu-sulfide matrix. The Ag-Au-As relations reported in this study strongly suggest that the incorporation of precious metals in Cu-sulfides formed under supergene, low-temperature conditions respond to the incorporation of a minor component, in this case As. Therefore, As might play a significant role by increasing the solubility of Ag and Au in supergene digenite and controlling the formation and occurrence of Ag and Au nanoparticles. Considering the fact that processes of supergene enrichment in Cu deposits can be active from tens of millions of years (e.g. Atacama Desert), we conclude that supergene digenite may play a previously unforeseen role in scavenging precious metals from undersaturated (or locally slightly supersaturated) solutions in near-surface environments.

  2. 18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species.

    PubMed

    Albaina, Aitor; Aguirre, Mikel; Abad, David; Santos, María; Estonba, Andone

    2016-03-01

    The potential of the 18S rRNA V9 metabarcoding approach for diet assessment was explored using MiSeq paired-end (PE; 2 × 150 bp) technology. To critically evaluate the method's performance with degraded/digested DNA, the diets of two zooplanktivorous fish species from the Bay of Biscay, European sardine (Sardina pilchardus) and European sprat (Sprattus sprattus), were analysed. The taxonomic resolution and quantitative potential of the 18S V9 metabarcoding was first assessed both in silico and with mock and field plankton samples. Our method was capable of discriminating species within the reference database in a reliable way providing there was at least one variable position in the 18S V9 region. Furthermore, it successfully discriminated diet between both fish species, including habitat and diel differences among sardines, overcoming some of the limitations of traditional visual-based diet analysis methods. The high sensitivity and semi-quantitative nature of the 18S V9 metabarcoding approach was supported by both visual microscopy and qPCR-based results. This molecular approach provides an alternative cost and time effective tool for food-web analysis. PMID:27087935

  3. Sequencing and characterization of full-length sequence of 18S rRNA gene from the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Variation within this gene is rare but it has been observed in few metazoan species. For the first time, we h...

  4. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks

    EPA Science Inventory

    The goal of this study was to characterize microbial eukaryotes over a 12 month period, so as to provide insight into the occurrence of potentially important predators and bacterial hosts in hot and cold premise plumbing. Nearly 6,300 partial (600 bp) 18S rRNA gene sequences from...

  5. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice.

    PubMed

    Kawahara, Miho; Nemoto, Maki; Nakata, Toru; Kondo, Saya; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi

    2015-06-01

    Six lactic acid bacteria strains (four Lactobacillus plantarum strains and one each of Lactococcus lactis subsp. lactis and Pediococcus pentosaceus) have been isolated and shown to possess anti-oxidant activity. In this study, we determined their acid, bile, salt resistance, and adhesion activity on human enterocyte-like HT-29-Luc and Caco-2 cells. An isolate Lc. lactis S-SU2 showed highest bile resistance and adhesion activity compared to type strains. S-SU2 could ferment both 10% skimmed milk and soy milk while the type strain could not ferment soy milk. Soy milk fermented with S-SU2 showed an increased nitric oxide (NO) secretion in the mouse macrophage RAW264.7 cells without bacterial lipopolysaccharide (LPS). Furthermore, the inhibitory effects of the fermented soy milk on Escherichia coli O111 LPS-induced NO secretion were higher than those of fresh soy milk. Inflammatory bowel disease (IBD) was induced in mice fed either 5% (w/v) dextran sodium sulfate (DSS) in drinking water or 50% soy milk in drinking water. Shortening of colon length, breaking of epithelial cells, lowering liver and thymus weights, and enlargement of spleen are some of the characteristics observed in the IBD, which were prevented by the use of soy milk fermented with Lc. lactis S-SU2. PMID:25887264

  6. Gene cloning of the 18S rRNA of an ancient viable moss from the permafrost of northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Marsic, Damien; Hoover, Richard B.; Gilichinsky, David A.; Ng, Joseph D.

    1999-12-01

    A moss plant dating as much as 40,000 years old was collected from the permafrost of the Kolyma Lowlands of Northeastern Siberia. The plant tissue was revived and cultured for the extraction of its genomic DNA. Using the polymerase chain reaction technique, the 18S ribosomal RNA gene was cloned and its sequence studied. Comparative sequence analysis of the cloned ribosomal DNA to other known 18S RNA showed very high sequence identity and was revealed to be closest to the moss specie, Aulacomnium turgidum. The results of this study also show the ability of biological organisms to rest dormant in deep frozen environments where they can be revived and cultured under favorable conditions. This is significant in the notion that celestial icy bodies can be media to preserve biological function and genetic material during long term storage or transport.

  7. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene.

    PubMed

    Urata, Makoto

    2015-06-01

    Seven nuclear and mitochondrial DNA markers were examined in 12 specimens of Ptychodera flava, a model acorn worm used in molecular biology, collected in Japan from three local populations with different modes of living. A comparison of intraspecific results did not show genetically isolated populations despite the species' enclave habitats and asexual reproduction. Moreover, both the nuclear 18S ribosomal RNA gene and mitochondrial 16S ribosomal RNA gene sequences were identical to those from Moorea in French Polynesia, nearly 10,000 kilometers away from Japan. I also provide the first definitive information regarding polymorphisms in 18S ribosomal RNA gene, the external transcribed spacer (ETS), internal transcribed spacers (ITS), and mitochondrial cytochrome c oxidase subunit 1 (mtCO1) sequence in hemichordates using newly designed primer sets, and I show both high larval vagility and certain criteria for the molecular identification of this species. PMID:26003987

  8. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones. PMID:24681200

  9. Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae)

    PubMed Central

    2009-01-01

    The location of 18S and 5S rDNA sites was determined in eight species and populations of the fish genus Triportheus by using fluorescent in situ hybridization (FISH). The males and females of all species had 2n = 52 chromosomes and a ZZ/ZW sex chromosome system. A single 18S rDNA site that was roughly equivalent to an Ag-NOR was detected on the short arms of a submetacentric pair in nearly all species, and up to two additional sites were also observed in some species. In addition, another 18S rDNA cluster was identified in a distal region on the long arms of the W chromosome; this finding corroborated previous evidence that this cluster would be a shared feature amongst Triportheus species. In T. angulatus, a heterozygotic paracentric inversion involving the short arms of one homolog of a metacentric pair was associated with NORs. The 5S rDNA sites were located on the short arms of a single submetacentric chromosomal pair, close to the centromeres, except in T. auritus, which had up to ten 5S rDNA sites. The 18S and 5S rDNA sites were co-localized and adjacent on the short arms of a chromosomal pair in two populations of T. nematurus. Although all Triportheus species have a similar karyotypic macrostructure, the results of this work show that in some species ribosomal genes may serve as species-specific markers when used in conjunction with other putatively synapomorphic features. PMID:21637644

  10. Cellular identification of a novel uncultured marine stramenopile (MAST-12 Clade) small-subunit rRNA gene sequence from a norwegian estuary by use of fluorescence in situ hybridization-scanning electron microscopy.

    PubMed

    Kolodziej, Karolina; Stoeck, Thorsten

    2007-04-01

    Revealing the cellular identity of organisms behind environmental eukaryote rRNA gene sequences is a major objective in microbial diversity research. We sampled an estuarine oxygen-depleted microbial mat in southwestern Norway and retrieved an 18S rRNA gene signature that branches in the MAST-12 clade, an environmental marine stramenopile clade. Detailed phylogenetic analyses revealed that MAST-12 branches among the heterotrophic stramenopiles as a sister of the free-living Bicosoecida and the parasitic genus Blastocystis. Specific sequence signatures confirmed a relationship to these two groups while excluding direct assignment. We designed a specific oligonucleotide probe for the target sequence and detected the corresponding organism in incubation samples using fluorescence in situ hybridization (FISH). Using the combined FISH-scanning electron microscopy approach (T. Stoeck, W. H. Fowle, and S. S. Epstein, Appl. Environ. Microbiol. 69:6856-6863, 2003), we determined the morphotype of the target organism among the very diverse possible morphologies of the heterotrophic stramenopiles. The unpigmented cell is spherical and about 5 mum in diameter and possesses a short flagellum and a long flagellum, both emanating anteriorly. The long flagellum bears mastigonemes in a characteristic arrangement, and its length (30 mum) distinguishes the target organism from other recognized heterotrophic stramenopiles. The short flagellum is naked and often directed posteriorly. The organism possesses neither a lorica nor a stalk. The morphological characteristics that we discovered should help isolate a representative of a novel stramenopile group, possibly at a high taxonomic level, in order to study its ultrastructure, physiological capabilities, and ecological role in the environment. PMID:17293516

  11. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    PubMed Central

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel JP; Delsuc, Frédéric

    2009-01-01

    Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1) Phlebobranchia + Thaliacea + Aplousobranchia, 2) Appendicularia, and 3) Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models suggest a sister

  12. Phylogenetic analysis of widely cultivated Ganoderma in China based on the mitochondrial V4-V6 region of SSU rDNA.

    PubMed

    Zhou, X W; Su, K Q; Zhang, Y M

    2015-01-01

    Ganoderma mushroom is one of the most prescribed traditional medicines and has been used for centuries, particularly in China, Japan, Korea, and other Asian countries. In this study, different strains of Ganoderma spp and the genetic relationships of the closely related strains were identified and investigated based on the V4-V6 region of mitochondrial small subunit ribosomal DNA of the Ganoderma species. The sizes of the mitochondrial ribosomal DNA regions from different Ganoderma species showed 2 types of sequences, 2.0 or 0.5 kb. A phylogenetic tree was constructed, which revealed a high level of genetic diversity in Ganoderma species. Ganoderma lucidum G05 and G. eupense G09 strains were clustered into a G. resinaceum group. Ganoderma spp G29 and G22 strains were clustered into a G. lucidum group. However, Ganoderma spp G19, G20, and G21 strains were clustered into a single group, the G. lucidum AF214475, G. sinense, G. strum G17, G. strum G36, and G. sinense G10 strains contained an intron and were clustered into other groups. PMID:25730027

  13. Phylogenetic Relationships among the Cryptophyta: Analyses of Nuclear-Encoded SSU rRNA Sequences Support the Monophyly of Extant Plastid-Containing Lineages.

    PubMed

    Marin, B; Klingberg, M; Melkonian, M

    1998-09-01

    The Cryptophyta comprise photoautotrophic protists with complex plastids which harbor a remnant eukaryotic nucleus (nucleomorph) and a few heterotrophic taxa which either lack a plastid (Goniomonas) or contain a complex plastid devoid of pigments (Ieucoplast; Chilomonas). To resolve the phylogenetic relationships between photosynthetic, leucoplast-containing and aplastidial taxa, we determined complete nuclear-encoded SSU rRNA-sequences from 12 cryptophyte taxa representing the genera Cryptomonas, Chilomonas, Rhodomonas, Chroomonas, Hemiselmis, Proteomonas and Teleaulax and, as an outgroup taxon, Cyanoptyche gloeocystis (Glaucocystophyta). Phylogenetic analyses of SSU rRNA sequences from a total of 24 cryptophyte taxa rooted with 4 glaucocystophyte taxa using distance, parsimony and likelihood methods as well as LogDet transformations invariably position the aplastidial genus Goniomonas as a sister taxon to a monophyletic lineage consisting of all plastid containing cryptophytes including Chilomonas. Among the plastid-containing taxa, we identify six major clades each supported by high bootstrap values: clade I (Cryptomonas and Chilomonas), clade II (Rhodomonas, Pyrenomonas, Rhinomonas and Storeatula), clade III (Guillardia and the 'unidentified cryptophyte' strain CCMP 325), clade IV (Teleaulax and Geminigera), clade V (Proteomonas) and clade VI (Hemiselmis, Chroomonas and Komma). Clade I (Cryptomonas and Chilomonas) represents a sister group to clades II-VI which together form a monophyletic lineage; the phylogenetic relationships between clades II-VI remain largely unresolved. Chilomonas is positioned within the Cryptomonas clade and thus presumably evolved from a photosynthetic taxon of this genus. In our analysis the characters blue and red pigmentation do not correspond with a basal subdivision of the phylum, thus rejecting this character for higher-level classification of cryptophytes. However, different spectroscopic subtypes of phycoerythrin (PE I-III) and

  14. Cytogenetic Analysis and Chromosomal Characteristics of the Polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China

    PubMed Central

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies. PMID:25699679

  15. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  16. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. PMID:23205499

  17. A contribution to the taxonomy of the genus Rinodina (Physciaceae, lichenized Ascomycotina) using combined ITS and mtSSU rDNA data

    PubMed Central

    NADYEINA, Olga; GRUBE, Martin; MAYRHOFER, Helmut

    2011-01-01

    To test the phylogenetic position of phenotypically peculiar species in the Physciaceae we generated 47 new sequences (26 of nrITS region and 21 of mtSSU rDNA) from 19 crustose taxa of Physciaceae mainly from the genus Rinodina. Phylogenetic analysis confirmed the Buellia and Physcia groups. The analysis revealed a considerable variability of characters traditionally used for classification, especially in the delimitation of the genera Buellia and Rinodina. While ascus types agree well with the distinction of the Buellia and Physcia groups, none of the other traditional characters, including excipulum type and ascospore thickening, were consistent within subclades of the Physcia group. We suggest that both excipulum type and ascospore characters are rather dynamic in the evolution of Rinodina species and only appear consistent in morphologically more complex foliose and fruticose groups, which are characterized by thallus characters not present in the crustose groups. Two recent taxonomic changes are supported by molecular characters: Endohyalina insularis (syn. ‘Rinodina’ insularis) and Rinodina lindingeri (syn. ‘Buellia’ lindingeri). In addition Rinodina parvula (syn. ‘Buellia’ parvula) is reinstated. New records for Endohyalina brandii, E. diederichii, E. insularis and Rinodina albana are presented. PMID:22121298

  18. Morphology of three Litonotus species (Ciliophora: Pleurostomatida) from China seas, with brief notes on their SSU rDNA-based phylogeny.

    PubMed

    Pan, Hongbo; Li, Lifang; Wu, Lei; Miao, Miao; Al-Rasheid, Khaled A S; Song, Weibo

    2015-10-01

    The morphology and ciliary pattern of three brackish pleurostomatid ciliates, Litonotus gracilis spec. nov., L. tropicus spec. nov., and L. duplostriatus, were investigated. Litonotus gracilis differs from its congeners by body size (200-400×15-40μm in vivo), body shape (slenderly spindle-shaped, long neck), the number of somatic kineties (6-7 left and 11-17 right somatic kineties), long bar-shaped extrusomes arranged along oral slit, tiny cortical granules arranged like honeycomb, one subterminally located contractile vacuole and, usually, four macronuclear nodules. Litonotus tropicus is characterized by four contractile vacuoles dorsally located, 8-11 right and four or five left somatic kineties. Litonotus duplostriatus is lanceolate-shaped, with 11-14 right and five or six left somatic kineties, one subterminally located contractile vacuole, fusiform-shaped extrusomes distributed along oral slit. Litonotus dragescoiPan et al., 2013 is not a valid name, it still be named as Litonotus fasciolatus (basionym Loxophyllum fasciolatusDragesco, 1966). Molecular phylogenetic analyses based on SSU rDNA sequence data indicate that neither the family Litonotidae nor the genus Litonotus is monophyletic, and L. gracilis has a closer relationship with the genus Kentrophyllum than with other Litonotus species. PMID:26479946

  19. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    PubMed Central

    2010-01-01

    Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement. PMID:20051104

  20. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans.

    PubMed

    Rooney, Alejandro P

    2004-09-01

    In many species of the protist phylum Apicomplexa, ribosomal RNA (rRNA) gene copies are structurally and functionally heterogeneous, owing to distinct requirements for rRNA-expression patterns at different developmental stages. The genomic mechanisms underlying the maintenance of this system over long-term evolutionary history are unclear. Therefore, the aim of this study was to investigate what processes underlie the long-term evolution of apicomplexan 18S genes in representative species. The results show that these genes evolve according to a birth-and-death model under strong purifying selection, thereby explaining how divergent 18S genes are generated over time while continuing to maintain their ability to produce fully functional rRNAs. In addition, it was found that Cryptosporidium parvum undergoes a rapid form of birth-and-death evolution that may facilitate host-specific adaptation, including that of type I and II strains found in humans. This represents the first case in which an rRNA gene family has been found to evolve under the birth-and-death model. PMID:15175411

  1. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae)

    PubMed Central

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Abstract Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country’s economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 ‘Azul’, Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies. PMID:24260700

  2. Retroposons do jump: a B2 element recently integrated in an 18S rDNA gene.

    PubMed Central

    Oberbäumer, I

    1992-01-01

    Several cDNA clones were isolated from cDNA libraries constructed with mRNA longer than 28S RNA from the murine cell line PYS-2/12. The plasmids have inserts containing 1-1.2 kb of the ribosomal 5' external transcribed spacer followed by nearly 700 nt of sequence for 18S rRNA and ending with a B2 element (retroposon). The cloned sequence differed in a few positions from published ribosomal sequences. The 3' adjacent genomic sequence was obtained by polymerase chain reaction (PCR) and showed that the B2 element has a poly(A) tail of about 50 nt and is surrounded by perfect direct repeats of 15 nt. Analysis of genomic DNA from several murine cell lines revealed that PYS cells contain at least one copy of 18S RNA with the B2 element which is not present in the genome of other murine cell lines derived from the same teratocarcinoma. Similarly, rRNA transcripts containing the B2 element were only detected in PYS cells. According to the publication dates of the different cell lines, the B2 element must have been integrated into an rRNA transcription unit during the years 1970 through 1974 thus proving that retroposons (SINEs) can still be inserted into the genome in our times. Images PMID:1311830

  3. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth

    PubMed Central

    Bai, Dongmei; Zhang, Jinfang; Li, Tingting; Hang, Runlai; Liu, Yong; Tian, Yonglu; Huang, Dadu; Qu, Linglong; Cao, Xiaofeng; Ji, Jiafu; Zheng, Xiaofeng

    2016-01-01

    Dysfunctions in ribosome biogenesis cause developmental defects and increased cancer susceptibility; however, the connection between ribosome assembly and tumorigenesis remains unestablished. Here we show that hCINAP (also named AK6) is required for human 18S rRNA processing and 40S subunit assembly. Homozygous CINAP−/− mice show embryonic lethality. The heterozygotes are viable and show defects in 18S rRNA processing, whereas no delayed cell growth is observed. However, during rapid growth, CINAP haploinsufficiency impairs protein synthesis. Consistently, hCINAP depletion in fast-growing cancer cells inhibits ribosome assembly and abolishes tumorigenesis. These data demonstrate that hCINAP reduction is a specific rate-limiting controller during rapid growth. Notably, hCINAP is highly expressed in cancers and correlated with a worse prognosis. Genome-wide polysome profiling shows that hCINAP selectively modulates cancer-associated translatome to promote malignancy. Our results connect the role of hCINAP in ribosome assembly with tumorigenesis. Modulation of hCINAP expression may be a promising target for cancer therapy. PMID:27477389

  4. Optical and electrical stability of viral-templated copper sulfide (Cu{sub 1.8}S) films

    SciTech Connect

    Shahriar Zaman, Mohammed; Bernard Grajeda, Gabriel; Haberer, Elaine D.

    2014-04-14

    The optical and electrical stabilities of viral-templated non-stoichiometric copper sulfide, digenite (Cu{sub 1.8}S) films were investigated. The films were composed of large agglomerates of randomly aligned Cu{sub 1.8}S-coated M13 filamentous phage. Free carrier optical absorption associated with localized surface plasmon resonance (LSPR) was observed in the near infrared spectral region, and the films were electrically active, displaying a linear current-voltage relationship. Under ambient conditions, the magnitude of the LSPR absorption increased, following a power law relationship with time, and the electrical resistance of viral-templated films decreased significantly. In contrast, the resistance of films stored under low oxygen, low humidity conditions experienced a smaller reduction in electrical resistance. Changes in optical and electrical film properties under ambient conditions were associated with an increase in free carrier concentration within the copper chalcogenide material due to oxygen exposure. X-ray photoelectron spectroscopy was used to relate this increase in free carrier concentration to compositional changes on the viral-templated material surface.

  5. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  6. Evaluating multiple alternative hypotheses for the origin of Bilateria: An analysis of 18S rRNA molecular evidence

    PubMed Central

    Collins, Allen G.

    1998-01-01

    Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians. PMID:9860990

  7. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections.

    PubMed

    Yang, Rongchang; Palermo, Cindy; Chen, Linda; Edwards, Amanda; Paparini, Andrea; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una

    2015-12-15

    Cryptosporidium is an enteric parasite that infects humans and a wide range of animals. Relatively little is known about the epidemiology and taxonomy of Cryptosporidium in fish. In the present study, a total of 775 fish, belonging to 46 species and comprising ornamental fish, marine fish and freshwater fish were screened for the prevalence of Cryptosporidium by PCR. The overall prevalence of Cryptosporidium in fish was 5.3% (41/775), with prevalences ranging from 1.5 to 100% within individual host species. Phylogenetic analysis of these Cryptosporidium isolates as well as 14 isolates from previous studies indicated extensive genetic diversity as well as evidence for mixed infections. At the 18S locus the following species were identified; Cryptosporidium molnari-like genotype (n=14), Cryptosporidium huwi (n=8), piscine genotype 2 (n=4), piscine genotype 3-like (n=1), piscine genotype 4 (n=2), piscine genotype 5 (n=13), piscine genotype 5-like (n=1) and five novel genotypes (n=5). At the actin locus, species identification agreed with the 18S locus for only 52.3% of isolates sequenced, indicating high levels of mixed infections. Future studies will need to employ both morphological characterization and deep sequencing amplicon-based technologies to better understand the epidemiological and phylogenetic relationships of piscine-derived Cryptosporidium species and genotypes, particularly when mixed infections are detected. PMID:26527238

  8. Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera.

    PubMed

    Gokhman, Vladimir E; Anokhin, Boris A; Kuznetsova, Valentina G

    2014-08-01

    Karyotypes of six species belonging to three main clades of parasitoid Hymenoptera, the superfamilies Ichneumonoidea (Ichneumonidae: Ichneumon amphibolus), Cynipoidea (Cynipidae: Diplolepis rosae) and Chalcidoidea (Eurytomidae: Eurytoma robusta, Eu. serratulae and Eu. compressa, and Torymidae: Torymus bedeguaris) were studied using FISH with 18S rDNA and telomeric (TTAGG)n probes. Haploid karyotypes of D. rosae, Eu. robusta and Eu. serratulae carried the only 18S rDNA hybridization signal, whereas those of I. amphibolus and Eu. compressa carried three and two rDNA clusters respectively. In addition, three rDNA sites were visualized in the aneuploid female of T. bedeguaris. The number of rDNA clusters in parasitoid Hymenoptera generally correlates to the chromosome number. Apart from the overwhelming majority of the studied species of aculeate Hymenoptera, no hybridization signals were obtained from FISH with the telomeric (TTAGG)n probe in the examined parasitoid species. These data suggest absence of the canonical (TTAGG)n insect telomeric motif in the Ichneumonoidea, Cynipoidea and Chalcidoidea, and perhaps in parasitoid Hymenoptera in general. PMID:24992984

  9. Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations

    PubMed Central

    2010-01-01

    Background Recent surveys of eukaryote 18S rDNA diversity in marine habitats have uncovered worldwide distribution of the heterotrophic eukaryote phylum Telonemia. Here we investigate the diversity and geographic distribution of Telonemia sequences by in-depth sequencing of several new 18S rDNA clone libraries from both marine and freshwater sites by using a Telonemia-specific PCR strategy. Results In contrast to earlier studies that have employed eukaryote-wide PCR design, we identified a large and unknown diversity of phylotypes and the first rigorous evidence for several freshwater species, altogether comprising 91 unique sequences. Phylogenies of these and publicly available sequences showed 20 statistically supported sub-clades as well as several solitary phylotypes with no clear phylogenetic affiliation. Most of these sub-clades were composed of phylotypes from different geographic regions. Conclusions By using specific PCR primers we reveal a much larger diversity of Telonemia from environmental samples than previously uncovered by eukaryote-wide primers. The new data substantially diminish the geographic structuring of clades identified in earlier studies. Nevertheless, since these clades comprise several distinct phylotypes we cannot exclude endemicity at species level. We identified two freshwater clades and a few solitary phylotypes, implying that Telonemia have colonized freshwater habitats and adapted to the different environmental and ecological conditions at independent occasions. PMID:20534135

  10. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA.

    PubMed Central

    Wada, H; Satoh, N

    1994-01-01

    Almost the entire sequences of 18S rDNA were determined for two chaetognaths, five echinoderms, a hemichordate, and two urochordates (a larvacean and a salp). Phylogenetic comparisons of the sequences, together with those of other deuterostomes (an ascidian, a cephalochordate, and vertebrates) and protostomes (an arthropod and a mollusc), suggest the monophyly of the deuterostomes, with the exception of the chaetognaths. Chaetognaths may not be a group of deuterostomes. The deuterostome group closest to vertebrates was the group of cephalochordates. Ascidians, larvaceans, and salps seem to form a discrete group (urochordates), in which the early divergence of larvaceans is evident. These results support the hypothesis that chordates evolved from free-living ancestors. PMID:8127885

  11. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data. PMID:15012964

  12. Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

    PubMed Central

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  13. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  14. Short communication: Genetic variants of Sarcocystis cruzi in infected Malaysian cattle based on 18S rDNA.

    PubMed

    Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling

    2015-12-01

    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population. PMID:26679818

  15. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. PMID:27084467

  16. SSU rDNA sequence diversity and seasonally differentiated distribution of nanoplanktonic ciliates in neritic Bohai and Yellow Seas as revealed by T-RFLP.

    PubMed

    Dong, Jun; Shi, Fei; Li, Han; Zhang, Xiaoming; Hu, Xiaozhong; Gong, Jun

    2014-01-01

    Nanociliates have been frequently found to be important players in the marine microbial loop, however, little is known about their diversity and distribution in coastal ecosystems. We investigated the molecular diversity and distribution patterns of nanoplanktonic oligotrich and choreotrich (OC) ciliates in surface water of three neritic basins of northern China, the South Yellow Sea (SYS), North Yellow Sea (NYS), and Bohai Sea (BS) in June and November 2011. SSU rRNA gene clone libraries generated from three summertime samples (sites B38, B4 and H8) were analyzed and revealed a large novel ribotype diversity, of which many were low-abundant phylotypes belonging to the subclass Oligotrichia, but divergent from described morphospecies. Based on the data of terminal-restriction fragment length polymorphism (T-RFLP) analysis of all 35 samples, we found that the T-RF richness was generally higher in the SYS than in the BS, and negatively correlated with the molar ratio of P to Si. Overall, multidimensional scaling and permutational multivariate analysis of variance of the community turnover demonstrated a distinct seasonal pattern but no basin-to-basin differentiation across all samples. Nevertheless, significant community differences among basins were recognized in the winter dataset. Mantel tests showed that the environmental factors, P:Si ratio, water temperature and concentration of dissolved oxygen (DO), determined the community across all samples. However, both biogeographic distance and environment shaped the community in winter, with DO being the most important physicochemical factor. Our results indicate that the stoichiometric ratio of P:Si is a key factor, through which the phytoplankton community may be shaped, resulting in a cascade effect on the diversity and community composition of OC nanociliates in the N-rich, Si-limited coastal surface waters, and that the Yellow Sea Warm Current drives the nanociliate community, and possibly the microbial food webs

  17. Variations of SSU rDNA group I introns in different isolates of Cordyceps militaris and the loss of an intron during cross-mating.

    PubMed

    Lian, Tiantian; Yang, Tao; Sun, Junde; Guo, Suping; Yang, Huaijun; Dong, Caihong

    2014-08-01

    Cordyceps militaris, the type species of genus Cordyceps, is one of the most popular mushrooms and a nutraceutical in eastern Asia. It is considered a model organism for the study of Cordyceps species because it can complete its life cycle when cultured in vitro. In the present study, the occurrence and sequence variation of SSU rDNA group I introns, Cmi.S943 and Cmi.S1199, among different isolates of C. militaris were analyzed. Based on the secondary structure predictions, the Cmi.S943 intron has been placed in subgroup IC1, and the Cmi.S1199 intron has been placed in subgroup IE. No significant similarity between Cmi.S943 and Cmi.S1199 suggested different origins. Three genotypes, based on the frequency and distribution of introns, were described to discriminate the 57 surveyed C. militaris strains. It was found that the genotype was related to the stroma characteristics. The stromata of all of the genotype II strains, which possessed only Cmi.S943, could produce perithecium. In contrast, the stromata of all genotype III strains, which had both Cmi.S943 and Cmi.S1199, could not produce perithecium. Cmi.S1199 showed the lowest level of intra-specific variation among the tested strains. Group I introns can be lost during strain cross-mating. Therefore, we presumed that during cross-mating and recombination, intron loss could be driven by positive Darwinian selection due to the energetic cost of transcribing long introns. PMID:24996897

  18. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis

    PubMed Central

    Devente, Savannah R.; Kirk, Michelle R.; Seedorf, Henning; Dehority, Burk A.

    2015-01-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. PMID:25616800

  19. Physical mapping of 18S and 5S genes in pelagic species of the genera Caranx and Carangoides (Carangidae).

    PubMed

    Jacobina, U P; Bertollo, L A C; Bello Cioffi, M; Molina, W F

    2014-01-01

    In Carangidae, Caranx is taxonomically controversial because of slight morphological differences among species, as well as because of its relationship with the genus Carangoides. Cytogenetic data has contributed to taxonomic and phylogenetic classification for some groups of fish. In this study, we examined the chromosomes of Caranx latus, Caranx lugubris, and Carangoides bartholomaei using classical methods, including conventional staining, C-banding, silver staining for nuclear organizer regions, base-specific fluorochrome, and 18S and 5S ribosomal sequence mapping using in situ hybridization. These 3 species showed chromosome numbers of 2n = 48, simple nuclear organizer regions (pair 1), and mainly centromeric heterochomatin. However, C. latus (NF = 50) and C. bartholomaei (NF = 50) showed a structurally conserved karyotype compared with C. lugubris (NF = 54), with a larger number of 2-armed chromosomes. The richness of GC-positive heterochromatic segments and sites in 5S rDNA in specific locations compared to the other 2 species reinforce the higher evolutionary dynamism in C. lugubris. Cytogenetic aspects shared between C. latus and C. bartholomaei confirm the remarkable phylogenetic proximity between these genera. PMID:25501173

  20. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA Sequences.

    PubMed

    Rivadavia, Fernando; Kondo, Katsuhiko; Kato, Masahiro; Hasebe, Mitsuyasu

    2003-01-01

    The sundew genus Drosera consists of carnivorous plants with active flypaper traps and includes nearly 150 species distributed mainly in Australia, Africa, and South America, with some Northern Hemisphere species. In addition to confused intrageneric classification of Drosera, the intergeneric relationships among the Drosera and two other genera in the Droseraceae with snap traps, Dionaea and Aldrovanda, are problematic. We conducted phylogenetic analyses of DNA sequences of the chloroplast rbcL gene for 59 species of Drosera, covering all sections except one. These analyses revealed that five of 11 sections, including three monotypic sections, are polyphyletic. Combined rbcL and 18S rDNA sequence data were used to infer phylogenetic relationships among Drosera, Dionaea, and Aldrovanda. This analysis revealed that all Drosera species form a clade sister to a clade including Dionaea and Aldrovanda, suggesting that the snap traps of Aldrovanda and Dionaea are homologous despite their morphological differences. MacClade reconstructions indicated that multiple episodes of aneuploidy occurred in a clade that includes mainly Australian species, while the chromosome numbers in the other clades are not as variable. Drosera regia, which is native to South Africa, and most species native to Australia, were clustered basally, suggesting that Drosera originated in Africa or Australia. The rbcL tree indicates that Australian species expanded their distribution to South America and then to Africa. Expansion of distribution to the Northern Hemisphere from the Southern Hemispere occurred in a few different lineages. PMID:21659087

  1. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    PubMed

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses. PMID:17685227

  2. Chromosomal localization of 18S rDNA and telomere sequence in the aye-aye, Daubentonia madagascariensis.

    PubMed

    Rakotoarisoa, G; Hirai, Y; Go, Y; Kawamoto, Y; Shima, T; Koyama, N; Randrianjafy, A; Mora, R; Hirai, H

    2000-10-01

    Chromosomal localization of 18S rDNA and telomere sequence was attempted on the chromosomes of the aye-aye (2n = 30) using fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS), respectively. The rDNA was localized at the tip or whole of the short arm of acrocentric chromosomes 13 and 14 in all spreads observed. However, post-FISH silver-nitrate (Ag) staining showed that transcriptional activity of the rRNA genes was variable, particularly in chromosome 14, which was most frequently negative in one homologue carrying the smaller copy number of rDNA. This observation supports, at the molecular cytogenetic level, previous data concerning the relationship between the copy number of rDNA and its trancriptional activity. On the other hand, telomere sequence was localized only at the telomeric region of all chromosomes, the so-called telomere-only pattern, a characteristic similar to that of the greater bushbaby. These data may provide information on the chromosomal evolution of the lemur, because locations of rDNA and telomere sequences frequently offer important clues in reconstruction of karyotype differentiation. PMID:11245223

  3. Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis

    PubMed Central

    Sha, Jian; Rosenzweig, Jason A.; Kozlova, Elena V.; Wang, Shaofei; Erova, Tatiana E.; Kirtley, Michelle L.; van Lier, Christina J.

    2013-01-01

    Aeromonas hydrophila, a Gram-negative bacterium, is an emerging human pathogen equipped with both a type 3 and a type 6 secretion system (T6SS). In this study, we evaluated the roles played by paralogous T6SS effector proteins, hemolysin co-regulated proteins (Hcp-1 and -2) and valine glycine repeat G (VgrG-1, -2 and -3) protein family members in A. hydrophila SSU pathogenesis by generating various combinations of deletion mutants of the their genes. In addition to their predicted roles as structural components and effector proteins of the T6SS, our data clearly demonstrated that paralogues of Hcp and VgrG also influenced bacterial motility, protease production and biofilm formation. Surprisingly, there was limited to no observed functional redundancy among and/or between the aforementioned T6SS effector paralogues in multiple assays. Our data indicated that Hcp and VgrG paralogues located within the T6SS cluster were more involved in forming T6SS structures, while the primary roles of Hcp-1 and VgrG-1, located outside of the T6SS cluster, were as T6SS effectors. In terms of influence on bacterial physiology, Hcp-1, but not Hcp-2, influenced bacterial motility and protease production, and in its absence, increases in both of the aforementioned activities were observed. Likewise, VgrG-1 played a major role in regulating bacterial protease production, while VgrG-2 and VgrG-3 were critical in regulating bacterial motility and biofilm formation. In an intraperitoneal murine model of infection, all Hcp and VgrG paralogues were required for optimal bacterial virulence and dissemination to mouse peripheral organs. Importantly, the observed phenotypic alterations of the T6SS mutants could be fully complemented. Taking these results together, we have further established the roles played by the two known T6SS effectors of A. hydrophila by defining their contributions to T6SS function and virulence in both in vitro and in vivo models of infection. PMID:23519162

  4. A Weak C′ Box Renders U3 snoRNA Levels Dependent on hU3-55K Binding ▿

    PubMed Central

    Knox, Andrew Alexander; McKeegan, Kenneth Scott; Debieux, Charles Maurice; Traynor, Adele; Richardson, Hannah; Watkins, Nicholas James

    2011-01-01

    The rate of ribosome biogenesis, which is downregulated in terminally differentiated cells and upregulated in most cancers, regulates the growth rate and is linked to the cell's proliferative potential. The U3 box C/D small nucleolar RNP (snoRNP) is an integral component of the small subunit (SSU) processome and is essential for 18S rRNA processing. We show that U3 snoRNP assembly, and therefore U3 snoRNA accumulation, is regulated through the U3-specific protein hU3-55K. Furthermore, we report that the levels of several SSU processome components, including the U3 snoRNA but not other box C/D snoRNAs, are specifically downregulated during human lung (CaCo-2) and colon (CaLu-3) epithelial cell differentiation. c-Myc is reported to play an integral role in regulating ribosome production by controlling the expression of many ribosome biogenesis factors. Our data, however, indicate that this regulation is not dependent on c-Myc since the level of this protein does not change during epithelial cell differentiation. In addition, depletion of c-Myc had only a mild affect on the levels of SSU processome proteins. CaCo-2 cells are colon adenocarcinoma epithelial cells that are believed to revert to their precancerous state during differentiation. This suggests a significant increase in the levels of specific SSU processome components during tumorogenesis. PMID:21505065

  5. Outside-in recrystallization of ZnS-Cu1.8 S hollow spheres with interdispersed lattices for enhanced visible light solar hydrogen generation.

    PubMed

    Zhu, Ting; Nuo Peh, Connor Kang; Hong, Minghui; Ho, Ghim Wei

    2014-09-01

    For the first time an earth-abundant and nontoxic ZnS-Cu(1.8) S hybrid photocatalyst has been engineered with well-defined nanosheet hollow structures by a template-engaged method. In contrast to conventional surface coupling and loading, the unique outside-in recrystallization promotes co-precipitation of ZnS and Cu(1.8) S into homogeneous interdispersed lattices, hence forming a hybrid semiconductor with visible responsive photocatalytic activity. The as-derived ZnS-Cu(1.8) S semiconductor alloy is tailored into a hierarchical hollow structure to provide readily accessible porous shells and interior spaces for effective ion transfer/exchange. Notably, this synergistic morphology, interface and crystal lattice engineering, aim towards the design of novel nanocatalysts for various sustainable environmental and energy applications. PMID:25043270

  6. The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta divisio nova/ Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny.

    PubMed

    Okamoto, Noriko; Inouye, Isao

    2005-08-01

    The katablepharids are a morphologically well-defined group of heterotrophic flagellates. Since their original description in 1939, they have been classified in the Cryptophyceae (Cryptophyta) based on their similar cell shape, flagellar orientation, and the presence of ejectisomes visible by light microscopy. However, electron microscopy suggests that the katablepharids are distinct from cryptomonads. A possible affinity with the Alveolata has been proposed which is mainly based on the resemblance of their feeding apparatus to the apical complex of the Apicomplexa or to the tentacles of the Ciliophora. In this study, we provide the first SSU rDNA and beta-tubulin molecular sequence data for two katablepharids: Katablepharis japonica sp. nov. and Leucocryptos marina. We reveal that the katablepharids are not closely related to the Alveolata; rather, phylogenetic reconstruction analyses of SSU rDNA and beta-tubulin suggest that the katablepharids are a distant sister group of the Cryptophyta. We therefore conclude that the katablepharids should be a group equivalent to the Cryptophyta and propose Katablepharidophyta divisio nova (ICBN)/Kathablepharida phylum novum (ICZN). PMID:16171184

  7. Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase.

    PubMed Central

    Tokuhisa, J G; Vijayan, P; Feldmann, K A; Browse, J A

    1998-01-01

    Poikilothermic organisms require mechanisms that allow survival at chilling temperatures (2 to 15 degreesC). We have isolated chilling-sensitive mutants of Arabidopsis, a plant that is very chilling resistant, and are characterizing them to understand the genes involved in chilling resistance. The T-DNA-tagged mutant paleface1 (pfc1) grows normally at 22 degrees C but at 5 degrees C exhibits a pattern of chilling-induced chlorosis consistent with a disruption of chloroplast development. Genomic DNA flanking the T-DNA was cloned and used to isolate wild-type genomic and cDNA clones. The PFC1 transcript is present at a low level in wild-type plants and was not detected in pfc1 plants. Wild-type Arabidopsis expressing antisense constructs of PFC1 grew normally at 22 degrees C but showed chilling-induced chlorosis, confirming that the gene is essential for low-temperature development of chloroplasts. The deduced amino acid sequence of PFC1 has identity with rRNA methylases found in bacteria and yeast that modify specific adenosines of pre-rRNA transcripts. The pfc1 mutant does not have these modifications in the small subunit rRNA of the plastid. PMID:9596631

  8. PCR amplification of a multi-copy mitochondrial gene (cox3) improves detection of Cytauxzoon felis infection as compared to a ribosomal gene (18S).

    PubMed

    Schreeg, Megan E; Marr, Henry S; Griffith, Emily H; Tarigo, Jaime L; Bird, David M; Reichard, Mason V; Cohn, Leah A; Levy, Michael G; Birkenheuer, Adam J

    2016-07-30

    Cytauxzoon felis is a tick-transmitted protozoan parasite that infects felids. Clinical disease caused by acute C. felis infection rapidly progresses in domestic cats, leading to high morbidity and mortality. Accurately diagnosing cytauxzoonosis as soon as possible during acute infection would allow for earlier initiation of antiprotozoal therapy which could lead to higher survival rates. Molecular detection of parasite rRNA genes (18S) by PCR has previously been shown to be a sensitive method of diagnosing C. felis infections. Based on evidence from related apicomplexan species, we hypothesized that C. felis mitochondrial genes would exist at higher copy numbers than 18S and would be a more sensitive diagnostic target. In this study we have designed a PCR assay targeting the C. felis mitochondrial gene cytochrome c oxidase subunit III (cox3). Herein we demonstrate that (1) the cox3 PCR can detect as low as 1 copy of DNA target and can detect C. felis in samples with known mitochondrial sequence heterogeneity, (2) cox3 copy number is increased relative to 18S in blood and tissue samples from acutely infected cats, and (3) the cox3 PCR is more sensitive than 18S PCR for detection of C. felis during early infections. PMID:27369587

  9. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya.

    PubMed

    Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan

    2016-09-01

    We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05). PMID:27423733

  10. Physical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae)

    PubMed Central

    Kharrat-Souissi, Amina; Siljak-Yakovlev, Sonja; Pustahija, Fatima; Chaieb, Mohamed

    2012-01-01

    Abstract The Buffelgrass (Cenchrus ciliaris L., Poaceae) is one of the most important pasturage grasses due to its high productivity and good forage qualities. This species possess a high adaptability to bioclimatic constraints of arid zones and may be used for the restoration of degraded arid ecosystems. Tunisian populations present three ploidy levels (4x, 5x and 6x) with a basic chromosome number x=9. This study reported for the first time the distribution of the ribosomal genes (rRNA) for pentaploid and hexaploid cytotypes of Cenchrus ciliaris. Molecular cytogenetic study using double fluorescence in situ hybridization has shown that the two rDNA families, 5S and 18S-5.8S-26S (18S), displayed intraspecific variation in number of loci among different ploidy levels. Each ploidy level was characterized by specific number of both 5S and 18S rDNA loci (two loci in tetraploid, five in pentaploid and six in hexaploid level). For three studied cytotypes (4x, 5x and 6x) all 5S rDNA loci were localized on the subcentromeric region of chromosomes, while 18S loci were situated on the telomeric region of short chromosome arms. Data of the FISH experiments show proportional increase of ribosomal loci number during polyploidization processes. PMID:24260668

  11. Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water

    PubMed Central

    Li, Na; Neumann, Norman F.; Ruecker, Norma; Alderisio, Kerri A.; Sturbaum, Gregory D.; Villegas, Eric N.; Chalmers, Rachel; Monis, Paul; Feng, Yaoyu

    2015-01-01

    The occurrence of Cryptosporidium oocysts in drinking source water can present a serious public health risk. To rapidly and effectively assess the source and human-infective potential of Cryptosporidium oocysts in water, sensitive detection and correct identification of oocysts to the species level (genotyping) are essential. In this study, we developed three real-time PCR genotyping assays, two targeting the small-subunit (SSU) rRNA gene (18S-LC1 and 18S-LC2 assays) and one targeting the 90-kDa heat shock protein (hsp90) gene (hsp90 assay), and evaluated the sensitivity and Cryptosporidium species detection range of these assays. Using fluorescence resonance energy transfer probes and melt curve analysis, the 18S-LC1 and hsp90 assays could differentiate common human-pathogenic species (C. parvum, C. hominis, and C. meleagridis), while the 18S-LC2 assay was able to differentiate nonpathogenic species (such as C. andersoni) from human-pathogenic ones commonly found in source water. In sensitivity evaluations, the 18S-LC2 and hsp90 genotyping assays could detect as few as 1 Cryptosporidium oocyst per sample. Thus, the 18S-LC2 and hsp90 genotyping assays might be used in environmental monitoring, whereas the 18S-LC1 genotyping assay could be useful for genotyping Cryptosporidium spp. in clinical specimens or wastewater samples. PMID:26092455

  12. Development and Evaluation of Three Real-Time PCR Assays for Genotyping and Source Tracking Cryptosporidium spp. in Water.

    PubMed

    Li, Na; Neumann, Norman F; Ruecker, Norma; Alderisio, Kerri A; Sturbaum, Gregory D; Villegas, Eric N; Chalmers, Rachel; Monis, Paul; Feng, Yaoyu; Xiao, Lihua

    2015-09-01

    The occurrence of Cryptosporidium oocysts in drinking source water can present a serious public health risk. To rapidly and effectively assess the source and human-infective potential of Cryptosporidium oocysts in water, sensitive detection and correct identification of oocysts to the species level (genotyping) are essential. In this study, we developed three real-time PCR genotyping assays, two targeting the small-subunit (SSU) rRNA gene (18S-LC1 and 18S-LC2 assays) and one targeting the 90-kDa heat shock protein (hsp90) gene (hsp90 assay), and evaluated the sensitivity and Cryptosporidium species detection range of these assays. Using fluorescence resonance energy transfer probes and melt curve analysis, the 18S-LC1 and hsp90 assays could differentiate common human-pathogenic species (C. parvum, C. hominis, and C. meleagridis), while the 18S-LC2 assay was able to differentiate nonpathogenic species (such as C. andersoni) from human-pathogenic ones commonly found in source water. In sensitivity evaluations, the 18S-LC2 and hsp90 genotyping assays could detect as few as 1 Cryptosporidium oocyst per sample. Thus, the 18S-LC2 and hsp90 genotyping assays might be used in environmental monitoring, whereas the 18S-LC1 genotyping assay could be useful for genotyping Cryptosporidium spp. in clinical specimens or wastewater samples. PMID:26092455

  13. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella

    PubMed Central

    2010-01-01

    Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 μmol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days. PMID:20377865

  14. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage. PMID:26319789

  15. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

    PubMed Central

    Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.

    2015-01-01

    Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239

  16. Genetic characterization and phylogenetic relationships based on 18S rRNA and ITS1 region of small form of canine Babesia spp. from India.

    PubMed

    Mandal, M; Banerjee, P S; Garg, Rajat; Ram, Hira; Kundu, K; Kumar, Saroj; Kumar, G V P P S Ravi

    2014-10-01

    Canine babesiosis is a vector borne disease caused by intra-erythrocytic apicomplexan parasites Babesia canis (large form) and Babesia gibsoni (small form), throughout the globe. Apart from few sporadic reports on the occurrence of B. gibsoni infection in dogs, no attempt has been made to characterize Babesia spp. of dogs in India. Fifteen canine blood samples, positive for small form of Babesia, collected from northern to eastern parts of India, were used for amplification of 18S rRNA gene (∼1665bp) of Babesia sp. and partial ITS1 region (∼254bp) of B. gibsoni Asian genotype. Cloning and sequencing of the amplified products of each sample was performed separately. Based on sequences and phylogenetic analysis of 18S rRNA and ITS1 sequences, 13 were considered to be B. gibsoni. These thirteen isolates shared high sequence identity with each other and with B. gibsoni Asian genotype. The other two isolates could not be assigned to any particular species because of the difference(s) in 18S rRNA sequence with B. gibsoni and closer identity with Babesiaoccultans and Babesiaorientalis. In the phylogenetic tree, all the isolates of B. gibsoni Asian genotype formed a separate major clade named as Babesia spp. sensu stricto clade with high bootstrap support. The two unnamed Babesia sp. (Malbazar and Ludhiana isolates) clustered close together with B. orientalis, Babesia sp. (Kashi 1 isolate) and B. occultans of bovines. It can be inferred from this study that 18S rRNA gene and ITS1 region are highly conserved among 13 B. gibsoni isolates from India. It is the maiden attempt of genetic characterization by sequencing of 18S rRNA gene and ITS1 region of B. gibsoni from India and is also the first record on the occurrence of an unknown Babesia sp. of dogs from south and south-east Asia. PMID:25120099

  17. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.

    PubMed

    Whiting, M F; Carpenter, J C; Wheeler, Q D; Wheeler, W C

    1997-03-01

    Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of

  18. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  19. Human NAT10 Is an ATP-dependent RNA Acetyltransferase Responsible for N4-Acetylcytidine Formation in 18 S Ribosomal RNA (rRNA)*

    PubMed Central

    Ito, Satoshi; Horikawa, Sayuri; Suzuki, Tateki; Kawauchi, Hiroki; Tanaka, Yoshikazu; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Human N-acetyltransferase 10 (NAT10) is known to be a lysine acetyltransferase that targets microtubules and histones and plays an important role in cell division. NAT10 is highly expressed in malignant tumors, and is also a promising target for therapies against laminopathies and premature aging. Here we report that NAT10 is an ATP-dependent RNA acetyltransferase responsible for formation of N4-acetylcytidine (ac4C) at position 1842 in the terminal helix of mammalian 18 S rRNA. RNAi-mediated knockdown of NAT10 resulted in growth retardation of human cells, and this was accompanied by high-level accumulation of the 30 S precursor of 18 S rRNA, suggesting that ac4C1842 formation catalyzed by NAT10 is involved in rRNA processing and ribosome biogenesis. PMID:25411247

  20. 18S rRNA Gene Variation among Common Airborne Fungi, and Development of Specific Oligonucleotide Probes for the Detection of Fungal Isolates

    PubMed Central

    Wu, Zhihong; Tsumura, Yoshihiko; Blomquist, Göran; Wang, Xiao-Ru

    2003-01-01

    In this study, we sequenced 18S rRNA genes (rDNA) from 49 fungal strains representing 31 species from 15 genera. Most of these species are common airborne fungi and pathogens that may cause various public health concerns. Sequence analysis revealed distinct divergence between Zygomycota and Ascomycota. Within Ascomycota, several strongly supported clades were identified that facilitate the taxonomic placement of several little-studied fungi. Wallemia appeared as the group most diverged from all the other Ascomycota species. Based on the 18S rDNA sequence variation, 108 oligonucleotide probes were designed for each genus and species included in this study. After homology searches and DNA hybridization evaluations, 33 probes were verified as genus or species specific. The optimal hybridization temperatures to achieve the best specificity for these 33 probes were determined. These new probes can contribute to the molecular diagnostic research for environmental monitoring. PMID:12957927

  1. Homology of the 3' terminal sequences of the 18S rRNA of Bombyx mori and the 16S rRNA of Escherchia coli.

    PubMed Central

    Samols, D R; Hagenbuchle, O; Gage, L P

    1979-01-01

    The terminal 220 base pairs (bp) of the gene for 18S rRNA and 18 bp of the adjoining spacer rDNA of the silkworm Bombyx mori have been sequenced. Comparison with the sequence of the 16S rRNA gene of Escherichia coli has shown that a region including 45 bp of the B. mori sequence at the 3' end is remarkably homologous with the 3' terminal E. coli sequence. Other homologies occur in the terminal regions of the 18S and 16S rRNAs, including a perfectly conserved stretch of 13 bp within a longer homology located 150--200 bp from the 3' termini. These homologies are the most extensive so far reported between prokaryotic and eukaryotic genomic DNA. Images PMID:390496

  2. Spectral sensitivity of p-Cu{sub 1.8}S/n{sup -}-ZnS/n-(II-VI) heterostructures

    SciTech Connect

    Komaschenko, V. N. Kolezhuk, K. V.; Yaroshenko, N. V.; Sheremetova, G. I.; Bobrenko, Yu. N.

    2006-03-15

    Photosensitivity of multilayered p-Cu{sub 1.8}S/n{sup -}-(II-VI)/n-(II-VI) heterostructures beyond the fundamental-absorption edge of the wide-gap component is studied experimentally, and a simple model is suggested as an explanation of this photosensitivity. It is established that an effective method for reducing the photosensitivity of the structures beyond the ultraviolet spectral region consists in decreasing the probability of dominant tunneling processes, by increasing the thickness of the wide-gap layer, giving rise to a blocking barrier for photogenerated minority charge carriers. It is shown that the p-Cu{sub 1.8}S/n{sup -}-ZnS/n-CdSe heterostructures are promising for the development of efficient 'solar-blind' detectors of ultraviolet radiation.

  3. A Single Acetylation of 18 S rRNA Is Essential for Biogenesis of the Small Ribosomal Subunit in Saccharomyces cerevisiae*

    PubMed Central

    Ito, Satoshi; Akamatsu, Yu; Noma, Akiko; Kimura, Satoshi; Miyauchi, Kenjyo; Ikeuchi, Yoshiho; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Biogenesis of eukaryotic ribosome is a complex event involving a number of non-ribosomal factors. During assembly of the ribosome, rRNAs are post-transcriptionally modified by 2′-O-methylation, pseudouridylation, and several base-specific modifications, which are collectively involved in fine-tuning translational fidelity and/or modulating ribosome assembly. By mass-spectrometric analysis, we demonstrated that N4-acetylcytidine (ac4C) is present at position 1773 in the 18 S rRNA of Saccharomyces cerevisiae. In addition, we found an essential gene, KRE33 (human homolog, NAT10), that we renamed RRA1 (ribosomal RNA cytidine acetyltransferase 1) encoding an RNA acetyltransferase responsible for ac4C1773 formation. Using recombinant Rra1p, we could successfully reconstitute ac4C1773 in a model rRNA fragment in the presence of both acetyl-CoA and ATP as substrates. Upon depletion of Rra1p, the 23 S precursor of 18 S rRNA was accumulated significantly, which resulted in complete loss of 18 S rRNA and small ribosomal subunit (40 S), suggesting that ac4C1773 formation catalyzed by Rra1p plays a critical role in processing of the 23 S precursor to yield 18 S rRNA. When nuclear acetyl-CoA was depleted by inactivation of acetyl-CoA synthetase 2 (ACS2), we observed temporal accumulation of the 23 S precursor, indicating that Rra1p modulates biogenesis of 40 S subunit by sensing nuclear acetyl-CoA concentration. PMID:25086048

  4. Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana.

    PubMed

    Sikorski, Pawel J; Zuber, Hélène; Philippe, Lucas; Sement, François M; Canaday, Jean; Kufel, Joanna; Gagliardi, Dominique; Lange, Heike

    2015-09-01

    The biosynthesis of ribosomal RNA and its incorporation into functional ribosomes is an essential and intricate process that includes production of mature ribosomal RNA from large precursors. Here, we analyse the contribution of the plant exosome and its co-factors to processing and degradation of 18S pre-RNAs in Arabidopsis thaliana. Our data show that, unlike in yeast and humans, an RRP6 homologue, the nucleolar exoribonuclease RRP6L2, and the exosome complex, together with RRP44, function in two distinct steps of pre-18S rRNA processing or degradation in Arabidopsis. In addition, we identify TRL (TRF4/5-like) as the terminal nucleotidyltransferase that is mainly responsible for oligoadenylation of rRNA precursors in Arabidopsis. We show that TRL is required for efficient elimination of the excised 5' external transcribed spacer and of 18S maturation intermediates that escaped 5' processing. Our data also suggest involvement of additional nucleotidyltransferases, including terminal uridylyltransferase(s), in modifying rRNA processing intermediates in plants. PMID:26216451

  5. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis

    PubMed Central

    Zorbas, Christiane; Nicolas, Emilien; Wacheul, Ludivine; Huvelle, Emmeline; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2015-01-01

    At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features. PMID:25851604

  6. Genetic variation and identification of cultivated Fallopia multiflora and its wild relatives by using chloroplast matK and 18S rRNA gene sequences.

    PubMed

    Yan, Ping; Pang, Qi-Hua; Jiao, Xu-Wen; Zhao, Xuan; Shen, Yan-Jing; Zhao, Shu-Jin

    2008-10-01

    FALLOPIA MULTIFLORA (Thunb.) Harald . has been widely and discriminatingly used in China for the study and treatment of anemia, swirl, deobstruent, pyrosis, insomnia, amnesia, atheroma and also for regulating immune functions. However, there is still confusion about the herbal drug's botanical origins and the phylogenetic relationship between the cultivars and the wild relatives. In order to develop an efficient method for identification, a molecular analysis was performed based on 18 S rRNA gene and partial MATK gene sequences. The 18 S rRNA gene sequences of F. MULTIFLORA were 1809 bp in length and were highly conserved, indicating that the cultivars and the wild F. MULTIFLORA have the same botanical origin. Based on our 18 S rRNA gene sequences analysis, F. MULTIFLORA could be easily distinguished at the DNA level from adulterants and some herbs with similar components. The MATK gene partial sequences were found to span 1271 bp. The phylogenetic relation of F. MULTIFLORA based on the MATK gene showed that all samples in this paper were divided into four clades. The sequences of the partial MATK gene had many permutations, which were related to the geographical distributions of the samples. MATK gene sequences provided valuable information for the identification of F. MULTIFLORA. New taxonomic information could be obtained to authenticate the botanical origin of the F. MULTIFLORA, the species and the medicines made of it. PMID:18759218

  7. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences

    PubMed Central

    Sun, Sang-Mi; Yang, Seung Hwan

    2016-01-01

    Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia. PMID:27190985

  8. Application of Locked Nucleic Acid (LNA) Oligonucleotide–PCR Clamping Technique to Selectively PCR Amplify the SSU rRNA Genes of Bacteria in Investigating the Plant-Associated Community Structures

    PubMed Central

    Ikenaga, Makoto; Sakai, Masao

    2014-01-01

    The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide–PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3′ end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide–PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes. PMID:25030190

  9. Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes.

    PubMed

    Kazi, Mudassar Anisoddin; Reddy, C R K; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  10. Molecular Phylogeny and Barcoding of Caulerpa (Bryopsidales) Based on the tufA, rbcL, 18S rDNA and ITS rDNA Genes

    PubMed Central

    Kazi, Mudassar Anisoddin; Reddy, C. R. K.; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  11. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins.

    PubMed

    Primavesi, Lucia F; Wu, Huixia; Mudd, Elisabeth A; Day, Anil; Jones, Huw D

    2008-08-01

    The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications. PMID:17710559

  12. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci.

    PubMed

    Paparini, Andrea; Gofton, Alexander; Yang, Rongchang; White, Nicole; Bunce, Michael; Ryan, Una M

    2015-01-01

    Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are

  13. Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes.

    PubMed

    Huang, Jianzhong; Aki, Tsunehiro; Yokochi, Toshihiro; Nakahara, Toro; Honda, Daiske; Kawamoto, Seiji; Shigeta, Seiko; Ono, Kazuhisa; Suzuki, Osamu

    2003-01-01

    Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids. PMID:14730428

  14. Molecular analysis of 18S rRNA gene of Cryptosporidium parasites from patients living in Iran, Malawi, Nigeria and Vietnam.

    PubMed

    Ghaffari, Salman; Kalantari, Narges

    2012-01-01

    Cryptosporidium species are one of the most common causes of gastrointestinal infection in humans around the world. This study has aimed to investigate the hyper variable region of the 18S rRNA gene in Cryptosporidium for exact parasite identification. DNA was extracted from 26 fecal samples from which initially Cryptosporidium oocysts were identified by Ziehl-Neelsen acid-fast , Auramine phenol and ELISA techniques. Nested PCR, targeting the most polymorphic region of the 18S rRNA gene and genotyping was performed by restriction endonuclease digestion of the PCR product followed by nucleotide sequencing and phylogenic analysis. Among 26 isolates analyzed, three species of Cryptosporidium were identified; 38.5% of the isolates were C. hominis while 53.8% of the isolates were C. parvum and 7.7% of the isolates were C. meleagridis, which the last two species have the potentially zoonotic transmission. The only 11T subtype of C. hominis was demonstrated. These strains clustered distinctly into either human or animal origin regardless of the geographical origin, age, or immunity status of the patients. In summary, this work is the first report of C. meleagridis infecting human in Iran. Moreover, it suggested that multi-locus study of Cryptosporidium species in developing countries would be necessary to determine the extent of transmission of cryptosporidiosis in the populations. PMID:24551771

  15. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae sedis).

    PubMed

    Moriya, M; Nakayama, T; Inouye, I

    2000-05-01

    A new heterotrophic flagellate Wobblia lunata gen. et sp. nov. is described. This organism usually attaches to the substratum showing a wobbling motion, and sometimes glides on the substratum or swims freely in the medium. W. lunata has various features characteristic of the stramenopiles. These include a hairy flagellum with tripartite tubular hairs, a mitochondrion with tubular cristae, arrangement of flagellar apparatus components and a double helix in the flagellar transition zone. W. lunata shares a double helix with heterotrophic stramenopiles, including Developayella elegans, oomycetes, hyphochytrids, opalinids and proteromonads, and could be placed in the phylum Bigyra Cavalier-Smith. However, from 18S rDNA tree analysis, these organisms form two distantly-related clades in the stramenopiles, and Wobblia appears at the base of the stramenopiles. Evaluation of morphological features and comparison of 18S rDNA sequences indicate that W. lunata is a member of the stramenopiles, but it is distinct from any other stramenopiles so far described. Its phylogenetic position within the stramenopiles is uncertain and therefore W. lunata is described as a stramenopile incertae sedis. PMID:10896132

  16. The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K.

    PubMed

    Wei, Wang; Hong-Lan, Yang; HuiFang, Bao; Daoyuan, Zhang; Qi-mu-ge, Shan; Woof, Andrew J

    2010-07-01

    In order to test whether 18S rDNA can influence positively xylanase gene effective expression in the yeast of Candida utilis, a targeting vector pGLR9K-XA was constructed by adding an interested gene xynA from Streptomyces olivaceoviridis into the vector pGLR9K which is constructed by ourselves. pGLR9K contains the 18S rDNA, GAP promoter and CYH resistance gene sequence, all of which is from C. utilis. Then the vector pGLR9K-XA was transformed into C. utilis. To test the vector and transformed system, PCR, Southern blot and DNS methods were used. The results showed that xylanase gene can be detected in the chromosome DNA of recombinant C. utilis and the enzyme activity of xylanase is up to 60 IU ml(-1) in the study. It is suggested that this system can be used to express exogenous genes in C. utilis as a bioreactors. This is the first report that xylanase gene was expressed in C. utilis. PMID:19731075

  17. Physical mapping of 18S and 5S rDNA loci and histone H3 gene in grasshopper species of the subfamily Gomphocerinae (Acrididae).

    PubMed

    Silva-Neto, L C; Bernardino, A C S; Loreto, V; Moura, R C

    2015-01-01

    In this study, fluorescence in situ hybridization (FISH) analysis was used to determine and compare the numbers and chromosomal locations of two multigene families (rDNA and histone H3) in four Neotropical species of gomphocerine grasshoppers. FISH using the 18S rDNA probe identified a single site on the S9 chromosome of Amblytropidia sp and Cauratettix borelli, a single site on chromosome M6 of Compsacris pulcher, and two sites (chromosomes L1 and L2) in Orphulella punctata. By contrast, FISH with a 5S rDNA probe identified dispersion of this sequence in the genomes of the four species, with evidence of intraspecific variations. Amblytropidia sp had six to eight FISH signals on autosomal chromosomes, while C. pulcher exhibited a signal only on the M5 bivalent. The histone H3 gene was less variable and was restricted to a single pair in all species. The conservation of the numbers and locations of 18S rDNA and H3 genes in conjunction with data from the literature was useful for evaluating karyotype evolution in this subfamily. The variation in the number and sizes of 5S rDNA sites indicates a process of recent dispersion that might have been mediated by transposition. PMID:26634462

  18. HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation

    PubMed Central

    Malygin, Alexey A.; Kossinova, Olga A.; Shatsky, Ivan N.; Karpova, Galina G.

    2013-01-01

    Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES–rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors. PMID:23873958

  19. Loop-mediated isothermal amplification assay for detection of Histomonas meleagridis infection in chickens targeting the 18S rRNA sequences.

    PubMed

    Xu, Jinjun; Qu, Chanbao; Tao, Jianping

    2014-01-01

    Histomonas meleagridis is the causative agent of histomonosis, a disease of gallinaceous fowl characterized by necrotic typhlitis, hepatitis, and high mortality. To develop a rapid and sensitive method for specific detection of H. meleagridis, an assay based on loop-mediated isothermal amplification (LAMP) targeting the 18S rRNA gene was established. The detection limit of the LAMP assay was 10 copies for standard plasmids containing an 18S rRNA gene fragment, which was superior to that of a classical PCR method. Specificity tests revealed that there was no cross-reaction with other protozoa such as Trichomonas gallinae, Blastocytis sp, Tetratrichomonas gallinarum, Plasmodium gallinaceum, Toxoplasma gondii, Eimeria tenella, Leucocytozoon caulleryi and Leucocytozoon sabrazesi. The assay was evaluated for its diagnostic utility using liver and caeca samples collected from suspected field cases, the detection rate was 100 and 97.92%, respectively. These results indicate that the LAMP assay may be a useful tool for rapid detection and identification of H. meleagridis in poultry. PMID:24320623

  20. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Luo, Zhu-Hua; Guo, Shuangshuang; Pang, Ka-Lai

    2016-03-01

    We investigated the diversity of fungal communities in 6 different deep-sea sediment samples of the Pacific Ocean based on three different types of clone libraries, including internal transcribed spacer (ITS), 18S rDNA, and 28S rDNA regions. A total of 1978 clones were generated from 18 environmental clone libraries, resulting in 140 fungal operational taxonomic units (OTUs), including 18 OTUs from ITS, 44 OTUs from 18S rDNA, and 78 OTUs from 28S rDNA gene primer sets. The majority of the recovered sequences belonged to diverse phylotypes of the Ascomycota and Basidiomycota. Additionally, our study revealed a total of 46 novel fungal phylotypes, which showed low similarities (<97%) with available fungal sequences in the GenBank, including a novel Zygomycete lineage, suggesting possible new fungal taxa occurring in the deep-sea sediments. The results suggested that 28S rDNA is an efficient target gene to describe fungal community in deep-sea environment.

  1. Molecular phylogenetic analysis of the coccidian cephalopod parasites Aggregata octopiana and Aggregata eberthi (Apicomplexa: Aggregatidae) from the NE Atlantic coast using 18S rRNA sequences.

    PubMed

    Castellanos-Martínez, Sheila; Pérez-Losada, Marcos; Gestal, Camino

    2013-08-01

    The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are identified in European waters. Extensive investigation of their morphology resulted in a redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus clarifying confusing descriptions recorded in the past. The present study sequenced the 18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo (NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed between A. octopiana samples from the same two areas, which suggest the existence of two species. Based on previous morphological evidence, host specificity data, and new molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the valid type species. PMID:23498588

  2. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation.

    PubMed Central

    Gulli, M P; Girard, J P; Zabetakis, D; Lapeyre, B; Melese, T; Caizergues-Ferrer, M

    1995-01-01

    Several nucleolar proteins, such as nucleolin, NOP1/fibrillarin, SSB1, NSR1 and GAR1 share a common glycine and arginine rich structural motif called the GAR domain. To identify novel nucleolar proteins from fission yeast we screened Schizosaccharomyces pombe genomic DNA libraries with a probe encompassing the GAR structural motif. Here we report the identification and characterization of a S.pombe gene coding for a novel nucleolar protein, designated gar2. The structure of the fission yeast gar2 is reminiscent of that of nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. In addition, like these proteins, gar2 has a nucleolar localisation. The disruption of the gar2+ gene affects normal cell growth, leads to an accumulation of 35S pre-rRNA and a decrease of mature 18S rRNA steady state levels. Moreover, ribosomal profiles of the mutant show an increase of free 60S ribosomal subunits and an absence of free 40S ribosomal subunits. gar2 is able to rescue a S.cerevisiae mutant lacking NSR1, thus establishing gar2 as a functional homolog of NSR1. We propose that gar2 helps the assembly of pre-ribosomal particles containing 18S rRNA. Images PMID:7596817

  3. Development of 18S rRNA-targeted oligonucleotide probes for specific detection of Hartmannella and Naegleria in Legionella-positive environmental samples.

    PubMed

    Grimm, D; Ludwig, W F; Brandt, B C; Michel, R; Schleifer, K H; Hacker, J; Steinert, M

    2001-04-01

    Aquatic protozoa are natural hosts of the human pathogen Legionella pneumophila. The fluorescence labeled 16S rRNA-targeted oligonucleotide probe LEGPNE1 has recently been shown to specifically detect extracellular legionellae as well as intracellular legionellae parasitizing protozoa. In this study we designed oligonucleotide probes which are complementary to distinct regions of the 18S rRNA of the Legionella host organisms of the genera Hartmannella and Naegleria. The specificity of the probes, HART498 and NAEG1088, was tested by in situ hybridization of various laboratory reference strains. In order to evaluate the fluorescent probes for environmental studies three selected Legionella-positive cold water habitats were examined for the presence of these protozoa. Traditional culture methods followed by morphological identification revealed an almost consistent presence of Naegleria spp. in cold water habitats. Other protozoa species including Acanthamoeba spp., Echinamoeba spp., Hartmannella spp., Platyamoeba placida, Saccamoeba spp., Thecamoeba quadrilineata, and Vexillifera spp. were found sporadically. Concomitant analysis of the pH, conductivity and temperature of the water samples revealed no preference of Legionella or the respective protozoa for certain environmental conditions. The specificity of the newly designed 18S rRNA probes demonstrates that they are valuable and rapid tools for the identification of culturable environmental protozoa. PMID:11403402

  4. 18S rDNA analysis of alkenone-producing haptophyte(s) preserved in surface sediments of Lake Toyoni, Japan

    NASA Astrophysics Data System (ADS)

    McColl, J. L.; Couto, J.; Bendle, J. A.; Henderson, A. C.; Seki, O.; Phoenix, V. R.; Toney, J. L.

    2013-12-01

    Alkenones (long chain ketones) are readily preserved in sedimentary archives and have the potential to provide quantitative reconstructions of past water temperature. Alkenones are produced by a limited number of haptophyte algae in the marine and also some lacustrine systems. However, lakes are heterogeneous: an individual lake will have a unique combination of ecological conditions, haptophyte species and seasonal alkenone production that contributes to the sedimentary record. Haptophyte algae species have different sensitivities to temperature; therefore identifying the alkenone producer(s) prior to down-core temperature reconstructions is critical before selecting the most appropriate temperature calibration. We present a study from Lake Toyoni, a freshwater lake in Hokkaido, Japan that has alkenones preserved in surface sediments. The aim of this study is to identify the alkenone producer(s) within the lake using 18S rDNA analyses. Preserved rDNA of planktonic phototrophic algae was extracted from surface sediments of Lake Toyoni and phylogenetic analyses of the rDNA sequences suggest alkenones are produced by a single haptophyte within the class Prymnesiophyceae (order Isochrysidales). The Lake Toyoni alkenone-producer shares a distinct phylotype with a haptophyte reported from water filter samples collected in Lake BrayaSø, Greenland (D'Andrea et al., 2006). Similarity between the 18S rDNA sequences from Lake Toyoni and Lake BrayaSø provides a basis for applying (and updating) the Greenland lake temperature calibration. Applying this temperature calibration (T°C = 40.8 [UK37] + 31.8, R2=0.96; n=34) to the surface sediment alkenone unsaturation index from Lake Toyoni gives an estimated lake surface temperature (LST) of 8°C. This is in line with observed LST at Lake Toyoni, which ranges between 7 - 22°C (Apr 2011 to Nov 2011). The occurrence and identification of a single alkenone producer in Lake Toyoni means problems posed by a mixture of haptophytes in

  5. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA.

    PubMed

    Marcili, A; Lima, L; Cavazzana, M; Junqueira, A C V; Veludo, H H; Maia Da Silva, F; Campaner, M; Paiva, F; Nunes, V L B; Teixeira, M M G

    2009-05-01

    We characterized 15 Trypanosoma cruzi isolates from bats captured in the Amazon, Central and Southeast Brazilian regions. Phylogenetic relationships among T. cruzi lineages using SSU rDNA, cytochrome b, and Histone H2B genes positioned all Amazonian isolates into T. cruzi I (TCI). However, bat isolates from the other regions, which had been genotyped as T. cruzi II (TC II) by the traditional genotyping method based on mini-exon gene employed in this study, were not nested within any of the previously defined TCII sublineages, constituting a new genotype designated as TCbat. Phylogenetic analyses demonstrated that TCbat indeed belongs to T. cruzi and not to other closely related bat trypanosomes of the subgenus Schizotrypanum, and that although separated by large genetic distances TCbat is closest to lineage TCI. A genotyping method targeting ITS1 rDNA distinguished TCbat from established T. cruzi lineages, and from other Schizotrypanum species. In experimentally infected mice, TCbat lacked virulence and yielded low parasitaemias. Isolates of TCbat presented distinctive morphological features and behaviour in triatomines. To date, TCbat genotype was found only in bats from anthropic environments of Central and Southeast Brazil. Our findings indicate that the complexity of T. cruzi is larger than currently known, and confirmed bats as important reservoirs and potential source of T. cruzi infections to humans. PMID:19368741

  6. Phylogenetic Analysis of Lacazia loboi Places This Previously Uncharacterized Pathogen within the Dimorphic Onygenales

    PubMed Central

    Herr, Roger A.; Tarcha, Eric J.; Taborda, Paulo R.; Taylor, John W.; Ajello, Libero; Mendoza, Leonel

    2001-01-01

    Lacazia loboi is the last of the classical fungal pathogens to remain a taxonomic enigma, primarily because it has resisted cultivation and only causes cutaneous and subcutaneous infections in humans and dolphins in the New World tropics. To place it in the evolutionary tree of life, as has been done for the other enigmatic human pathogens Pneumocystis carinii and Rhinosporidium seeberi, we amplified its 18S small-subunit ribosomal DNA (SSU rDNA) and 600 bp of its chitin synthase-2 gene. Our phylogenetic analysis indicated that L. loboi is the sister taxon of the human dimorphic fungal pathogen Paracoccidioides brasiliensis and that both species belong with the other dimorphic fungal pathogens in the order Onygenales. The low nucleotide variation among three P. brasiliensis 18S SSU rDNA sequences contrasts with the surprising amount of nucleotide differences between the two sequences of L. loboi used in this study, suggesting that the nucleic acid epidemiology of this hydrophilic pathogen will be rewarding. PMID:11136789

  7. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants.

    PubMed

    Stenøien, H K

    2008-03-01

    The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential. PMID:18205784

  8. Genus Tetrastemma Ehrenberg, 1831 (Phylum Nemertea)--a natural group? Phylogenetic relationships inferred from partial 18S rRNA sequences.

    PubMed

    Strand, Malin; Sundberg, Per

    2005-10-01

    We investigated the monophyletic status of the hoplonemertean taxon Tetrastemma by reconstructing the phylogeny for 22 specimens assigned to this genus, together with another 25 specimens from closely related hoplonemertean genera. The phylogeny was based on partial 18S rRNA sequences using Bayesian and maximum likelihood analyses. The included Tetrastemma-species formed a well-supported clade, although the within-taxon relationships were unsettled. We conclude that the name Tetrastemma refers to a monophyletic taxon, but that it cannot be defined by morphological synapomorphies, and our results do not imply that all the over 100 species assigned to this genus belong to it. The results furthermore indicate that the genera Amphiporus and Emplectonema are non-monophyletic. PMID:16182152

  9. Crystal Structure of Rcl1 an Essential Component of the Eukaryal pre-rRNA Processosome Implicated in 18s rRNA Biogenesis

    SciTech Connect

    T Tanaka; P Smith; S Shuman

    2011-12-31

    Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3'-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 {angstrom} crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.

  10. Protist 18S rRNA gene Sequence Analysis Reveals Multiple Sources of Organic Matter Contributing to Turbidity Maxima of the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Zuber, Peter A.

    2011-10-05

    The Columbia River estuary is traditionally considered a detritus-based ecosystem fueled in summer by organic matter (OM) from expired freshwater diatoms. Since Estuarine Turbidity Maxima (ETM) are sites of accumulation and transformation of this phytoplankton-derived OM, to further characterize the ETM protist assemblage, we collected in August 2007 bottom waters throughout an ETM event, as well as surface water during the peak of bottom turbidity, and performed biogeochemical, microscopic and molecular (18S rRNA gene clone libraries) analyses. These data confirmed that the majority of the particulate OM in ETMs is derived from chlorophyll a-poor particulate organic carbon tagged by DNA too damaged to be detected by molecular analysis.

  11. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution.

    PubMed

    Morard, Raphaël; Darling, Kate F; Mahé, Frédéric; Audic, Stéphane; Ujiié, Yurika; Weiner, Agnes K M; André, Aurore; Seears, Heidi A; Wade, Christopher M; Quillévéré, Frédéric; Douady, Christophe J; Escarguel, Gilles; de Garidel-Thoron, Thibault; Siccha, Michael; Kucera, Michal; de Vargas, Colomban

    2015-11-01

    Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent. PMID:25828689

  12. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.

    PubMed

    Giribet, G; Distel, D L; Polz, M; Sterrer, W; Wheeler, W C

    2000-09-01

    Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group

  13. Intracellular Diversity of the V4 and V9 Regions of the 18S rRNA in Marine Protists (Radiolarians) Assessed by High-Throughput Sequencing

    PubMed Central

    Decelle, Johan; Romac, Sarah; Sasaki, Eriko; Not, Fabrice; Mahé, Frédéric

    2014-01-01

    Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism) that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454 pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia, AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the 97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity and richness of protists in the environment. PMID:25090095

  14. Molecular organization of the 25S-18S rDNA IGS of Fagus sylvatica and Quercus suber: a comparative analysis.

    PubMed

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5'-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5'-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5'-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼ 2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family. PMID:24893289

  15. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: Implications for the evolutionary history of the double karyomastigont of diplomonads

    PubMed Central

    2008-01-01

    Background Fornicata is a relatively recently established group of protists that includes the diplokaryotic diplomonads (which have two similar nuclei per cell), and the monokaryotic enteromonads, retortamonads and Carpediemonas, with the more typical one nucleus per cell. The monophyly of the group was confirmed by molecular phylogenetic studies, but neither the internal phylogeny nor its position on the eukaryotic tree has been clearly resolved. Results Here we have introduced data for three genes (SSU rRNA, α-tubulin and HSP90) with a wide taxonomic sampling of Fornicata, including ten isolates of enteromonads, representing the genera Trimitus and Enteromonas, and a new undescribed enteromonad genus. The diplomonad sequences formed two main clades in individual gene and combined gene analyses, with Giardia (and Octomitus) on one side of the basal divergence and Spironucleus, Hexamita and Trepomonas on the other. Contrary to earlier evolutionary scenarios, none of the studied enteromonads appeared basal to diplokaryotic diplomonads. Instead, the enteromonad isolates were all robustly situated within the second of the two diplomonad clades. Furthermore, our analyses suggested that enteromonads do not constitute a monophyletic group, and enteromonad monophyly was statistically rejected in 'approximately unbiased' tests of the combined gene data. Conclusion We suggest that all higher taxa intended to unite multiple enteromonad genera be abandoned, that Trimitus and Enteromonas be considered as part of Hexamitinae, and that the term 'enteromonads' be used in a strictly utilitarian sense. Our result suggests either that the diplokaryotic condition characteristic of diplomonads arose several times independently, or that the monokaryotic cell of enteromonads originated several times independently by secondary reduction from the diplokaryotic state. Both scenarios are evolutionarily complex. More comparative data on the similarity of the genomes of the two nuclei of

  16. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities. PMID:26224512

  17. An 18S ribosomal DNA barcode for the study of Isomermis lairdi, a parasite of the blackfly Simulium damnosum s.l.

    PubMed

    Crainey, J L; Wilson, M D; Post, R J

    2009-09-01

    The mermithid parasite, Isomermis lairdi Mondet, Poinar & Bernadou (Nematoda: Mermithidae), is known to have a major impact on populations of Simulium damnosum s.l. Theobald (Diptera: Simuliidae) and on their efficiency as vectors of Onchocerca volvulus (Leuckart) (Nematoda: Filarioidea). However, the value of I. lairdi and other mermithid parasites as potential means of integrated vector control has not been fully realized. This is partly because traditional taxonomic approaches have been insufficient for describing and analysing important aspects of their biology and host range. In total, rDNA barcode sequences have been obtained from over 70 I. lairdi mermithids found parasitizing S. damnosum s.l. larvae in three different rivers. No two sequences were found to vary by more than 0.5%, and cytospecies identification of mermithid hosts revealed that I. lairdi with identical rDNA barcodes can parasitize multiple cytoforms of the S. damnosum complex, including S. squamosum (Enderlein). Phylogenetic analysis using a partial sequence from the 18S ribosomal DNA barcode, grouped I. lairdi in a monophyletic group with Gastromermis viridis Welch (Nematoda: Mermithidae) and Isomermis wisconsinensis Welch (Nematoda: Mermithidae). PMID:19712154

  18. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected. PMID:26497420

  19. Phylogeny and classification of the Litostomatea (Protista, Ciliophora), with emphasis on free-living taxa and the 18S rRNA gene.

    PubMed

    Vd'ačný, Peter; Bourland, William A; Orsi, William; Epstein, Slava S; Foissner, Wilhelm

    2011-05-01

    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of species ranging from aerobic, free-living predators to anaerobic endocommensals. This is traditionally reflected by classifying the Litostomatea into the subclasses Haptoria and Trichostomatia. The morphological classifications of the Haptoria conflict with the molecular phylogenies, which indicate polyphyly and numerous homoplasies. Thus, we analyzed the genealogy of 53 in-group species with morphological and molecular methods, including 12 new sequences from free-living taxa. The phylogenetic analyses and some strong morphological traits show: (i) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea and (ii) three distinct lineages (subclasses): the Rhynchostomatia comprising Tracheliida and Dileptida; the Haptoria comprising Lacrymariida, Haptorida, Didiniida, Pleurostomatida and Spathidiida; and the Trichostomatia. The curious Homalozoon cannot be assigned to any of the haptorian orders, but is basal to a clade containing the Didiniida and Pleurostomatida. The internal relationships of the Spathidiida remain obscure because many of them and some "traditional" haptorids form separate branches within the basal polytomy of the order, indicating one or several radiations and convergent evolution. Due to the high divergence in the 18S rRNA gene, the chaeneids and cyclotrichiids are classified incertae sedis. PMID:21333743

  20. Phylogenetic position of the yeast-like symbiotes of Tagosodes orizicolus (Homoptera: Delphacidae) based on 18S ribosomal DNA partial sequences.

    PubMed

    Xet-Mull, Ana M; Quesada, Tania; Espinoza, Ana M

    2004-09-01

    Tagosodes orizicolus Muir (Homoptera: Delphacidae), the endemic delphacid species of tropical America carries yeast-like symbiotes (YLS) in the abdominal fat bodies and the ovarial tissues, like other rice planthoppers of Asia. These YLS are obligate symbiotes, which are transmitted transovarially, and maintain a mutualistic relationship with the insect host. This characteristic has made in vitro culture and classification of YLS rather difficult using conventional methods. Nevertheless, microorganisms of similar characteristics have been successfully classified by using molecular taxonomy. In the present work, the YLS of Tagosodes orizicolus (YLSTo) were purified on Percoll gradients, and specific segments of 18S rDNA were amplified by PCR, cloned and sequenced. Sequences were aligned by means of the CLUSTAL V (DNASTAR) program; phylogenetic trees were constructed with the Phylogeny Inference Package (PHYLIP), showing that YLSTo belong to the fungi class Pyrenomycetes, phylum Ascomycota. Similarities between 98% and 100% were observed among YLS of the rice delphacids Tagosodes orizicolus, Nilaparvata lugens, Laodelphax striatellus and Sogatella fur cifera, and between 89.8% and 90.8% when comparing the above to YLS of the aphid Hamiltonaphis styraci. These comparisons revealed that delphacid YLS are a highly conserved monophyletic group within the Pyrenomycetes and are closely related to Hypomyces chrysospermus. PMID:17361570

  1. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana.

    PubMed Central

    Lim, K Y; Skalicka, K; Koukalova, B; Volkov, R A; Matyasek, R; Hemleben, V; Leitch, A R; Kovarik, A

    2004-01-01

    An approximately 135-bp sequence called the A1/A2 repeat was isolated from the transcribed region of the 26-18S rDNA intergenic spacer (IGS) of Nicotiana tomentosiformis. Fluorescence in situ hybridization (FISH) and Southern blot analysis revealed its occurrence as an independent satellite (termed an A1/A2 satellite) outside of rDNA loci in species of Nicotiana section Tomentosae. The chromosomal location, patterns of genomic dispersion, and copy numbers of its tandemly arranged units varied between the species. In more distantly related Nicotiana species the A1/A2 repeats were found only at the nucleolar organizer regions (NOR). There was a trend toward the elimination of the A1/A2 satellite in N. tabacum (tobacco), an allotetraploid with parents closely related to the diploids N. sylvestris and N. tomentosiformis. This process may have already commenced in an S(3) generation of synthetic tobacco. Cytosine residues in the IGS were significantly hypomethylated compared with the A1/A2 satellite. There was no clear separation between the IGS and satellite fractions in sequence analysis of individual clones and we found no evidence for CG suppression. Taken together the data indicate a dynamic nature of the A1/A2 repeats in Nicotiana genomes, with evidence for recurrent integration, copy number expansions, and contractions. PMID:15126410

  2. Morphology and 18S rDNA phylogeny of Hemicycliostyla sphagni (Ciliophora, Hypotricha) from Brazil with redefinition of the genus Hemicycliostyla.

    PubMed

    Paiva, Thiago da Silva; Borges, Bárbara do Nascimento; da Silva-Neto, Inácio Domingos; Harada, Maria Lúcia

    2012-01-01

    Morphology of the urostylid ciliate Hemicycliostyla sphagni Stokes, 1886, the type of Hemicycliostyla Stokes, 1886, is investigated based on live and protargol-impregnated specimens from a Brazilian population. The absence of transverse cirri, which has been considered the main diagnostic feature of Hemicycliostyla, separating it from Pseudourostyla Borror, 1972, was found to vary within the studied population, with 50% of the specimens exhibiting inconspicuous and/or rudimentary transverse cirri. A redefinition of Hemicycliostyla was possible based on combined features of interphase and divisional morphogenesis: Retroextendia Berger, 2006, with bi- or multicoronal frontal cirral pattern; fronto-terminal cirri present; multiple left and right marginal cirral rows that replicate independently via within-row development, each parental row producing one primordium per divider; caudal cirri lacking; and presence/absence of transverse cirri may be intrapopulationally variable. Phylogenetic analyses of the 18S rDNA marker unambiguously placed H. sphagni as sister group of Pseudourostyla franzi Foissner, 1987, which is herein transferred to Hemicycliostyla as Hemicycliostyla franzi comb. nov. PMID:21357456

  3. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades. PMID:17560131

  4. Time-series of water column alkenones and 18S rRNA confirm that Uk'37 is a viable SST proxy in Narragansett Bay, RI

    NASA Astrophysics Data System (ADS)

    Salacup, J.; Theroux, S.; Herbert, T.; Prell, W. L.

    2011-12-01

    Alkenones, produced in the sunlit mixed layer by specific Haptophyte algae, are a well-established and widely-applied proxy for sea surface temperature (SST) in the world's open-oceans. However, the proxy's utility in estuarine environments remains largely untested. A reliable SST proxy is needed to identify the estuary's sensitivity and response to past and present global change because SST can exert strong control on stratification and circulation patterns, and thus oxygenation and ecosystem health, in these shallow basins. Knowing the estuaries response should help local managers and policy-makers plan mitigation and adaptation strategies. Additionally, the rapid deposition of both marine and terrestrial organic and inorganic material in estuarine systems makes them potential archives of high-resolution paleo-environmental information. A previous investigation of estuarine alkenones suggested that the Uk'37 proxy may be sensitive to the composition of the alkenone-producing Haptophyte population, which may be affected by local nutrient and fresh water fluxes. In particular, low-salinity coastal Haptophytes such as Isochrysis galbana may have a different relationship to SST than higher-salinity open-ocean Haptophytes and their presence may complicate interpretations of the Uk'37 proxy in estuaries. To better understand how the alkenone-based Uk'37 SST proxy is produced in estuarine systems, we present a two-year time-series (monthly-to-thrice-weekly resolution) of alkenone concentrations in particulate organic matter from Narragansett Bay. Alkenone concentrations are coupled with 18S ribosomal RNA (rRNA) measurements to identify the alkenone-producing population. Highest concentrations of alkenones are detected at different times in the upper and lower Bay such that the highest alkenone concentrations occur in the winter-spring (upper Bay) and summer/fall (lower Bay). This result is consistent with the established seasonal blooms and seasonal changes in nutrient

  5. Ribosomal Protein S14 of Saccharomyces cerevisiae Regulates Its Expression by Binding to RPS14B Pre-mRNA and to 18S rRNA

    PubMed Central

    Fewell, Sheara W.; Woolford, John L.

    1999-01-01

    Production of ribosomal protein S14 in Saccharomyces cerevisiae is coordinated with the rate of ribosome assembly by a feedback mechanism that represses expression of RPS14B. Three-hybrid assays in vivo and filter binding assays in vitro demonstrate that rpS14 directly binds to an RNA stem-loop structure in RPS14B pre-mRNA that is necessary for RPS14B regulation. Moreover, rpS14 binds to a conserved helix in 18S rRNA with approximately five- to sixfold-greater affinity. These results support the model that RPS14B regulation is mediated by direct binding of rpS14 either to its pre-mRNA or to rRNA. Investigation of these interactions with the three-hybrid system reveals two regions of rpS14 that are involved in RNA recognition. D52G and E55G mutations in rpS14 alter the specificity of rpS14 for RNA, as indicated by increased affinity for RPS14B RNA but reduced affinity for the rRNA target. Deletion of the C terminus of rpS14, where multiple antibiotic resistance mutations map, prevents binding of rpS14 to RNA and production of functional 40S subunits. The emetine-resistant protein, rpS14-EmRR, which contains two mutations near the C terminus of rpS14, does not bind either RNA target in the three-hybrid or in vitro assays. This is the first direct demonstration that an antibiotic resistance mutation alters binding of an r protein to rRNA and is consistent with the hypothesis that antibiotic resistance mutations can result from local alterations in rRNA structure. PMID:9858605

  6. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data.

    PubMed

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  7. Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA genes.

    PubMed

    Lie, Alle A Y; Liu, Zhenfeng; Hu, Sarah K; Jones, Adriane C; Kim, Diane Y; Countway, Peter D; Amaral-Zettler, Linda A; Cary, S Craig; Sherr, Evelyn B; Sherr, Barry F; Gast, Rebecca J; Caron, David A

    2014-07-01

    Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages. PMID:24814788

  8. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

    PubMed Central

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  9. Free-Living Protozoa in Two Unchlorinated Drinking Water Supplies, Identified by Phylogenic Analysis of 18S rRNA Gene Sequences▿ †

    PubMed Central

    Valster, Rinske M.; Wullings, Bart A.; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick

    2009-01-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20°C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa. PMID:19465529

  10. Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.

    PubMed

    Hedin, Marshal; Bond, Jason E

    2006-11-01

    Mygalomorph spiders, which include the tarantulas, trapdoor spiders, and their kin, represent one of three main spider lineages. Mygalomorphs are currently classified into 15 families, comprising roughly 2500 species and 300 genera. The few published phylogenies of mygalomorph relationships are based exclusively on morphological data and reveal areas of both conflict and congruence, suggesting the need for additional phylogenetic research utilizing new character systems. As part of a larger combined evidence study of global mygalomorph relationships, we have gathered approximately 3.7 kb of rRNA data (18S and 28S) for a sample of 80 genera, representing all 15 mygalomorph families. Taxon sampling was particularly intensive across families that are questionable in composition-Cyrtaucheniidae and Nemesiidae. The following primary results are supported by both Bayesian and parsimony analyses of combined matrices representing multiple 28S alignments: (1) the Atypoidea, a clade that includes the families Atypidae, Antrodiaetidae, and Mecicobothriidae, is recovered as a basal lineage sister to all other mygalomorphs, (2) diplurids and hexathelids form a paraphyletic grade at the base of the non-atypoid clade, but neither family is monophyletic in any of our analyses, (3) a clade consisting of all sampled nemesiids, Microstigmata and the cyrtaucheniid genera Kiama, Acontius, and Fufius is consistently recovered, (4) other sampled cyrtaucheniids are fragmented across three separate clades, including a monophyletic North American Euctenizinae and a South African clade, (5) of the Domiothelina, only idiopids are consistently recovered as monophyletic; ctenizids are polyphyletic and migids are only weakly supported. The Domiothelina is not monophyletic. The molecular results we present are consistent with more recent hypotheses of mygalomorph relationship; however, additional work remains before mygalomorph classification can be formally reassessed with confidence

  11. Wide genetic variations at 18S ribosomal RNA locus of Cyclospora cayetanensis isolated from Egyptian patients using high resolution melting curve.

    PubMed

    Hussein, Eman M; El-Moamly, Amal A; Mahmoud, Moushira A; Ateek, Nayera S

    2016-07-01

    A variable clinical picture of cyclosporiasis including gastrointestinal tract (GIT) symptomatic or asymptomatic beside extraintestinal consequences suggests a possibility of heterogenicity of Cyclospora cayetanensis. The present work aimed to explore the possibility of genetic variation of C. cayetanensis using high-resolution melting (HRM) curve of polymerase chain reaction (PCR) amplified 18S rRNA genes. DNAs extracted from the stool samples of 70 cyclosporiasis patients were amplified and scanned by PCR/HRM curve. The results showed that there are four different genotypic profiles of C. cayetanensis with presence of mixed ones. Although Tm of all profiles was within the same range, they were discerned by plotting of the temperature-shifted florescence difference between normalized melting curves (dF/dT). Genotypic profile I was found alone in 40 % of patients and mixed with genotypic profile II and/or III in 25.7 % of patients, followed by genotypic profile II in 14.3 % then genotypic profile III and IV (10 % each). A significant relation was found between genotypic profiles and GIT symptomatic status as profile I and profile II were mostly detected in patients with acute GIT symptoms without or with chronic illness, respectively, while profile IV cases only were GIT asymptomatic. Statistical significance relations between genotypic profiles and age, gender, residence and oocyst shape index were determined. In conclusion, PCR/HRM proved a wide variation on C. cayetanensis genes that could be reflected on its pathogenic effects and explaining the variability of the clinical manifestations presented by cyclosporiasis patients. PMID:27041342

  12. Optimization of PCR—RFLP Directly from the Skin and Nails in Cases of Dermatophytosis, Targeting the ITS and the 18S Ribosomal DNA Regions

    PubMed Central

    Elavarashi, Elangovan; Kindo, Anupma Jyoti; Kalyani, Jagannathan

    2013-01-01

    Purpose: A pan fungal primer targeting the Internal Transcribed Spacer (ITS) region and optimization of PCR-RFLP using a dermatophyte specific primer targeted the 18S ribosomal DNA (rDNA) region were performed for the identification of dermatophyte species and strains directly from clinical specimens. Materials and Methods: One hundred and thirty eight specimens (129 skin scrapings and 9 nail clippings) from clinically suspected cases of dermatophytosis were collected and subjected to direct microscopy and culture. Among them, 66 skin scrapings and 3 nail clippings were processed for genotyping by PCR-RFLP analysis using the Mva I, Hae III and the Dde I restriction enzymes. Results: Of the 138 specimens, 81 specimens were positive for dermatophytosis, the most common one being Trichophyton rubrum (47), followed by Trichophyton mentagrophytes (25) and Epidermophyton floccosum (9). Of the 47 T. rubrum isolates, 10 were T. rubrum var. raubitschekii which were identified phenotypically as urease positive and by DNA sequencing. Since they exhibited minor morphological and physiological features, they have currently been synonymized with T. rubrum. Of the 25 T. mentagrophytes isolates, three were Trichophyton interdigitale, which were identified by DNA sequencing. Among the 66 skin specimens smear, culture and PCR showed the presence of dermatophytes in 36 (54.54%), 42 (63.63%) and 47 (71.21%) cases respectively. Among the three nail specimens, only one was found to be positive for dermatophytosis by smear, culture and PCR. Conclusion: Amplification of the dermatophyte specific primer is appropriate in the identification of dermatophytes directly from the clinical material. PCR targeting the ITS region by using the Mva I and the Dde I enzymes was equally good for the RFLP analysis. However, by using the above three restriction enzymes, no strain variations were detected among the T. rubrum and the T. mentagrophytes strains. PMID:23730638

  13. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch.

    PubMed

    Mallatt, Jon; Giribet, Gonzalo

    2006-09-01

    This work expands on a study from 2004 by Mallatt, Garey, and Shultz [Mallatt, J.M., Garey, J.R., Shultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178-191] that evaluated the phylogenetic relationships in Ecdysozoa (molting animals), especially arthropods. Here, the number of rRNA gene-sequences was effectively doubled for each major group of arthropods, and sequences from the phylum Kinorhyncha (mud dragons) were also included, bringing the number of ecdysozoan taxa to over 80. The methods emphasized maximum likelihood, Bayesian inference and statistical testing with parametric bootstrapping, but also included parsimony and minimum evolution. Prominent findings from our combined analysis of both genes are as follows. The fundamental subdivisions of Hexapoda (insects and relatives) are Insecta and Entognatha, with the latter consisting of collembolans (springtails) and a clade of proturans plus diplurans. Our rRNA-gene data provide the strongest evidence to date that the sister group of Hexapoda is Branchiopoda (fairy shrimps, tadpole shrimps, etc.), not Malacostraca. The large, Pancrustacea clade (hexapods within a paraphyletic Crustacea) divided into a few basic subclades: hexapods plus branchiopods; cirripedes (barnacles) plus malacostracans (lobsters, crabs, true shrimps, isopods, etc.); and the basally located clades of (a) ostracods (seed shrimps) and (b) branchiurans (fish lice) plus the bizarre pentastomids (tongue worms). These findings about Pancrustacea agree with a recent study by Regier, Shultz, and Kambic that used entirely different genes [Regier, J.C., Shultz, J.W., Kambic, R.E., 2005a. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395-401]. In Malacostraca, the stomatopod (mantis shrimp) was not at the base of the eumalacostracans

  14. Physical Mapping of the 5S and 18S rDNA in Ten Species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): Evolutionary Tendencies in the Genus

    PubMed Central

    César Venere, Paulo; Thums Konerat, Jocicléia; Henrique Zawadzki, Cláudio; Ricardo Vicari, Marcelo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus. PMID:25405240

  15. Chromosome mapping of 18S rDNA and 5S rDNA by dual-color fluorescence in situ hybridization in the half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Jiang, L; Jiang, J; Liu, J; Yuan, J; Chen, Y; Zhang, Q; Wang, X

    2014-01-01

    Half-smooth tongue sole (Cynoglossus semilaevis) is an important aquaculture flatfish in China. Cytogenetic analysis has revealed that its sex determination system is female heterogametic (ZZ/ZW). The W chromosome is morphologically larger and has been considered evolutionarily younger than any other chromosome in the set. However, the genetic origin and evolution process of this neo-chromosome remains unclear. In this study, 2 tandem arrays of rRNA genes were chosen to address this question. Both the major rDNA (18S rDNA) and the minor rDNA (5S rDNA) were located on the C. semilaevis chromosomes by fluorescence in situ hybridization (FISH). Six 18S rDNA signals were observed on the centromeric regions of 3 pairs of autosomes in both males and females. In females, there was an additional 18S rDNA signal mapping to the telomeric region of the W chromosome long arm. With respect to the 5S rDNA, 12 signals were mapped to the centromeric regions of six pairs of autosomes. Two-color FISH further confirmed that the two pairs of the 5S rDNA signals were correspondingly located at the same positions of the same autosomes as those of the 18S rDNA signals. These results allowed us to speculate about the evolution process of the W chromosome. Chromosome fusions and repetitive sequence accumulations might have occurred in C. semilaevis. The synteny and non-synteny of C. semilaevis 18S rDNA and 5S rDNA might imply the original and evolutionary characteristics of this species. These findings will facilitate studies on karyotype evolution of the order Pleuronectiformes. PMID:25526196

  16. Differentiation of anaerobic polycentric fungi by rDNA PCR-RFLP.

    PubMed

    Fliegerová, K; Mrázek, J; Voigt, K

    2006-01-01

    The suitability of restriction fragment length polymorphism (RFLP) analysis of the ribosomal DNA cluster for discriminating two genera of anaerobic polycentric fungi, Orpinomyces and Anaeromyces, was determined. Three PCR-amplified DNA fragments--nuclear small subunit (SSU; 18S rDNA), the nuclear large subunit (LSU; 28S rDNA) and internal transcribed spacer (ITS)--were restricted with endonucleases AluI, DraI, HinfI and MboI. Although the SSU DNA fragment could be restricted successfully by all four enzymes, no differences were observed between restriction patterns of Orpinomyces and Anaeromyces. The most polymorphic restriction pattern between Orpinomyces and Anaeromyces resulted from cleavage of LSU rDNA fragments cut by AluI and HinfI and ITS fragment cut by DraI and HinfI. Genus-specific RFLP patterns were determined for Orpinomyces and Anaeromyces genera; the results showed that the PCR-RFLP analysis of rDNA offers an easy and rapid tool for differentiation of two polycentric genera of anaerobic fungi, which could be hardly separated on the basis of morphology. PMID:17007423

  17. RAPHIDOPHYCEAE [CHADEFAUD EX SILVA] SYSTEMATICS AND RAPID IDENTIFICATION: SEQUENCE ANALYSES AND REAL-TIME PCR ASSAYS

    PubMed Central

    Bowers, Holly A.; Tomas, Carmelo; Tengs, Torstein; Kempton, Jason W.; Lewitus, Alan J.; Oldach, David W.

    2010-01-01

    Species within the class Raphidophyceae were associated with fish kill events in Japanese, European, Canadian, and U.S. coastal waters. Fish mortality was attributable to gill damage with exposure to reactive oxygen species (peroxide, superoxide, and hydroxide radicals), neurotoxins, physical clogging, and hemolytic substances. Morphological identification of these organisms in environmental water samples is difficult, particularly when fixatives are used. Because of this difficulty and the continued global emergence of these species in coastal estuarine waters, we initiated the development and validation of a suite of real-time polymerase chain reaction (PCR) assays. Sequencing was used to generate complete data sets for nuclear encoded small-subunit ribosomal RNA (SSU rRNA; 18S); internal transcribed spacers 1 and 2, 5.8S; and plastid encoded SSU rRNA (16S) for confirmed raphidophyte cultures from various geographic locations. Sequences for several Chattonella species (C. antiqua, C. marina, C. ovata, C. subsalsa, and C. verruculosa), Heterosigma akashiwo, and Fibrocapsa japonica were generated and used to design rapid and specific PCR assays for several species including C. verruculosa Hara et Chihara, C. subsalsa Biecheler, the complex comprised of C. marina Hara et Chihara, C. antiqua Ono and C. ovata, H. akashiwo Ono, and F. japonica Toriumi et Takano using appropriate loci. With this comprehensive data set, we were also able to perform phylogenetic analyses to determine the relationship between these species. PMID:20411032

  18. Phylogenetic position of the genus Cyrtostrombidium, with a description of Cyrtostrombidium paralongisomum nov. spec. and a redescription of Cyrtostrombidium longisomum Lynn & Gilron, 1993 (Protozoa, Ciliophora) based on live observation, protargol impregnation, and 18S rDNA sequences.

    PubMed

    Tsai, Sheng-Fang; Chen, Wei-Ting; Chiang, Kuo-Ping

    2015-01-01

    We redescribe Cyrtostrombidium longisomum Lynn & Gilron, 1993, the type species of the genus Cyrtostrombidium, and describe the new species Cyrtostrombidium paralongisomum n. sp. using live observation, protargol staining and molecular data. The morphological characters of these two species are clearly distinct, i.e., dikinetid numbers in the girdle and ventral kineties; however, it is difficult to separate them by 18S rDNA sequences because they differ by only 8 bp, indicating that 18S rDNA sequences are insufficient for separating different species in the genus Cyrtostrombidium. We not only observed the position of the oral primordium in the genus Cyrtostrombidium but also observed a possibly homoplasious trait, a dorsal split in the girdle kinety, in (1) Apostrombidium, (2) Varistrombidium, and (3) Cyrtostrombidium/Williophrya. This partially supports the hypothesis of somatic ciliary pattern evolution recently put forth by Agatha and Strüder-Kypke. PMID:25227509

  19. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA

    PubMed Central

    Haag, Sara; Kretschmer, Jens

    2015-01-01

    Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2′-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams–Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3′-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3′ ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3′-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N7-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase. PMID:25525153

  20. TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification.

    PubMed

    Pinto, C Miguel; Kalko, Elisabeth K V; Cottontail, Iain; Wellinghausen, Nele; Cottontail, Veronika M

    2012-08-01

    We report TcBat, a recently described genetic lineage of Trypanosoma cruzi, in fruit-eating bats Artibeus from Panama. Infections were common (11.6% prevalence), but no other T. cruzi cruzi genotypes were detected. Phylogenetic analyses show an unambiguous association with Brazilian TcBat, but raise questions about the phylogenetic placement of this genotype using the 18S rRNA gene alone. However, analyses with three concatenated genes (18S rRNA, cytb, and H2B) moderately support TcBat as sister to the discrete typing unit (DTU) TcI. We demonstrate that short fragments (>500 bp) of the 18S rRNA gene are useful for identification of DTUs of T. cruzi, and provide reliable phylogenetic signal as long as they are analyzed within a matrix with reference taxa containing additional informative genes. TcBat forms a very distinctive monophyletic group that may be recognized as an additional DTU within T. cruzi cruzi. PMID:22543008

  1. Kudoa thunni from blackfin tuna (Thunnus atlanticus) harvested off the island of St. Kitts, West Indies.

    PubMed

    Griffin, Matt; Quiniou, Sylvie; Ware, Cynthia; Bogdanovic, Lewis; Soto, Esteban

    2014-02-01

    Numerous myxozoan cysts (∼ 1 mm) were found in the musculature of blackfin tuna (Thunnus atlanticus) harvested off the Caribbean island of St. Kitts. Myxospores were consistent with quadrate members of the Kudoidae, measuring 8.8 (8.2-9.4) μm wide, 7.3 (6.6-8.3) μm thick, and 6.2 (5.8-6.9) μm long with 4 uniform drop-like polar capsules measuring 2.7 (2.2-3.2) μm long and 2.0 (1.7-2.2) μm wide. The 18S small-subunit (SSU) and 28S large-subunit (LSU) ribosomal DNA sequences did not result in direct matches to any published sequences. However, the SSU sequences (1,786 base pairs [bp]) obtained from 6 individual cysts were identical and demonstrated high homology to Kudoa thunni (99.0%) from albacore (Thunnus alalunga). Alternatively, 33 unique sequences were obtained for the LSU (∼ 800 bp), demonstrating 0.1 to 5.0% variability between them, although a majority of these sequences (60%) demonstrated high homology (>99%) to K. thunni. Morphologically, the case isolate was smaller than published descriptions of K. thunni; however, rDNA sequence homology, and phylogenetic placement based on concatenated SSU and LSU rDNA sequences suggests this case isolate and K. thunni are conspecific. To our knowledge this is the first report of K. thunni infection in blackfin tuna from the Caribbean. PMID:23984875

  2. Secondary structures of rRNAs from all three domains of life.

    PubMed

    Petrov, Anton S; Bernier, Chad R; Gulen, Burak; Waterbury, Chris C; Hershkovits, Eli; Hsiao, Chiaolong; Harvey, Stephen C; Hud, Nicholas V; Fox, George E; Wartell, Roger M; Williams, Loren Dean

    2014-01-01

    Accurate secondary structures are important for understanding ribosomes, which are extremely large and highly complex. Using 3D structures of ribosomes as input, we have revised and corrected traditional secondary (2°) structures of rRNAs. We identify helices by specific geometric and molecular interaction criteria, not by co-variation. The structural approach allows us to incorporate non-canonical base pairs on parity with Watson-Crick base pairs. The resulting rRNA 2° structures are up-to-date and consistent with three-dimensional structures, and are information-rich. These 2° structures are relatively simple to understand and are amenable to reproduction and modification by end-users. The 2° structures made available here broadly sample the phylogenetic tree and are mapped with a variety of data related to molecular interactions and geometry, phylogeny and evolution. We have generated 2° structures for both large subunit (LSU) 23S/28S and small subunit (SSU) 16S/18S rRNAs of Escherichia coli, Thermus thermophilus, Haloarcula marismortui (LSU rRNA only), Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We provide high-resolution editable versions of the 2° structures in several file formats. For the SSU rRNA, the 2° structures use an intuitive representation of the central pseudoknot where base triples are presented as pairs of base pairs. Both LSU and SSU secondary maps are available (http://apollo.chemistry.gatech.edu/RibosomeGallery). Mapping of data onto 2° structures was performed on the RiboVision server (http://apollo.chemistry.gatech.edu/RiboVision). PMID:24505437

  3. Secondary Structures of rRNAs from All Three Domains of Life

    PubMed Central

    Petrov, Anton S.; Bernier, Chad R.; Gulen, Burak; Waterbury, Chris C.; Hershkovits, Eli; Hsiao, Chiaolong; Harvey, Stephen C.; Hud, Nicholas V.; Fox, George E.; Wartell, Roger M.; Williams, Loren Dean

    2014-01-01

    Accurate secondary structures are important for understanding ribosomes, which are extremely large and highly complex. Using 3D structures of ribosomes as input, we have revised and corrected traditional secondary (2°) structures of rRNAs. We identify helices by specific geometric and molecular interaction criteria, not by co-variation. The structural approach allows us to incorporate non-canonical base pairs on parity with Watson-Crick base pairs. The resulting rRNA 2° structures are up-to-date and consistent with three-dimensional structures, and are information-rich. These 2° structures are relatively simple to understand and are amenable to reproduction and modification by end-users. The 2° structures made available here broadly sample the phylogenetic tree and are mapped with a variety of data related to molecular interactions and geometry, phylogeny and evolution. We have generated 2° structures for both large subunit (LSU) 23S/28S and small subunit (SSU) 16S/18S rRNAs of Escherichia coli, Thermus thermophilus, Haloarcula marismortui (LSU rRNA only), Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We provide high-resolution editable versions of the 2° structures in several file formats. For the SSU rRNA, the 2° structures use an intuitive representation of the central pseudoknot where base triples are presented as pairs of base pairs. Both LSU and SSU secondary maps are available (http://apollo.chemistry.gatech.edu/RibosomeGallery). Mapping of data onto 2° structures was performed on the RiboVision server (http://apollo.chemistry.gatech.edu/RiboVision). PMID:24505437

  4. Large-scale synthesis of Cu2SnS3 and Cu1.8S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Yang, Xia; Wong, Tai-Lun; Lee, Chun-Sing

    2012-09-01

    Exploration of new catalytic semiconductors with novel structures as counter electrode materials is a promising approach to improve performances of quantum dot sensitized solar cells (QDSSCs). In this work, nearly mono-disperse tetragonal Cu2SnS3 (CTS) and rhombohedral Cu1.8S hierarchical microspheres with nanometer-to-micrometer dimensions have been synthesized respectively via a simple solvothermal approach. These microspheres are also demonstrated as efficient counter electrode materials in solar cells using ZnO/ZnSe/CdSe nanocables as photoanode and polysulfide (Sn2-/S2-) solution as electrolyte. While copper sulfide is regarded as one of the most effective counter electrode materials in QDSSCs, we demonstrate the CTS microspheres to show higher electrocatalytic activity for the reduction of polysulfide electrolyte than the Cu1.8S microspheres. This contributes to obvious enhancement of photocurrent density (JSC) and fill factor (FF). Power conversion efficiency (PCE) is significantly enhanced from 0.25% for the cell using a pure FTO (SnO2:F) glass as counter electrode, to 3.65 and 4.06% for the cells using counter electrodes of FTO glasses coated respectively with Cu1.8S and CTS microspheres.Exploration of new catalytic semiconductors with novel structures as counter electrode materials is a promising approach to improve performances of quantum dot sensitized solar cells (QDSSCs). In this work, nearly mono-disperse tetragonal Cu2SnS3 (CTS) and rhombohedral Cu1.8S hierarchical microspheres with nanometer-to-micrometer dimensions have been synthesized respectively via a simple solvothermal approach. These microspheres are also demonstrated as efficient counter electrode materials in solar cells using ZnO/ZnSe/CdSe nanocables as photoanode and polysulfide (Sn2-/S2-) solution as electrolyte. While copper sulfide is regarded as one of the most effective counter electrode materials in QDSSCs, we demonstrate the CTS microspheres to show higher electrocatalytic activity for the reduction of polysulfide electrolyte than the Cu1.8S microspheres. This contributes to obvious enhancement of photocurrent density (JSC) and fill factor (FF). Power conversion efficiency (PCE) is significantly enhanced from 0.25% for the cell using a pure FTO (SnO2:F) glass as counter electrode, to 3.65 and 4.06% for the cells using counter electrodes of FTO glasses coated respectively with Cu1.8S and CTS microspheres. Electronic supplementary information (ESI) available: SEM images of ZnO/ZnSe/CdSe nanocables and Nyquist plots of real solar cells containing various counter electrodes and the same photoanode of ZnO/ZnSe/CdSe nanocables. See DOI: 10.1039/c2nr31724a

  5. Assembly Architecture and DNA Binding of the Bacteriophage P22 Terminase Small Subunit

    PubMed Central

    Němeček, Daniel; Lander, Gabriel C.; Johnson, John E.; Casjens, Sherwood R.; Thomas, George J.

    2008-01-01

    Summary Morphogenesis of bacteriophage P22 involves the packaging of double-stranded DNA into a preassembled procapsid. DNA is translocated by a powerful virally-encoded molecular motor called terminase, which comprises large (gp2, 499 residues) and small (gp3, 162 residues) subunits. While gp2 contains the phosphohydrolase and endonuclease activities of terminase, the function of gp3 may be to regulate specific and nonspecific modes of DNA recognition as well as the enzymatic activities of gp2. Electron microscopy shows that wildtype gp3 self-assembles into a stable and monodisperse nonameric ring. A three-dimensional reconstruction at 18 Å resolution provides the first glimpse of P22 terminase architecture and implies two distinct modes of interaction with DNA – involving a central channel of 20 Å diameter and radial spikes separated by 34 Å. Electromobility shift assays indicate that the gp3 ring binds dsDNA nonspecifically in vitro via electrostatic interactions between the positively charged C-terminus of gp3 (residues 143–152) and phosphates of the DNA backbone. Raman spectra show that nonameric rings formed by subunits truncated at residue 142 retain the subunit fold, despite the loss of DNA-binding activity. Difference density maps between gp3 rings containing full-length and C-terminally truncated subunits are consistent with localization of residues 143–152 along the central channel of the nonameric ring. The results suggest a plausible molecular mechanism for gp3 function in DNA recognition and translocation. PMID:18775728

  6. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9.

    PubMed

    Kannan, Krishna; Tsvetanova, Billyana; Chuang, Ray-Yuan; Noskov, Vladimir N; Assad-Garcia, Nacyra; Ma, Li; Hutchison Iii, Clyde A; Smith, Hamilton O; Glass, John I; Merryman, Chuck; Venter, J Craig; Gibson, Daniel G

    2016-01-01

    Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the "simple" M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life. PMID:27489041

  7. Plasmids containing small subunit ribosomal RNA gene fragments from Babesia bovis and Babesia bigemina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BEI Resources was developed by NIAID as a centralized biological resource center for research reagents to the scientific community (http://www.beiresources.org/). They have a considerable amount of reagents and isolates for parasitologists working with Entamoeba histolytica, Giardia, Toxoplasma, and...

  8. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9

    PubMed Central

    Kannan, Krishna; Tsvetanova, Billyana; Chuang, Ray-Yuan; Noskov, Vladimir N.; Assad-Garcia, Nacyra; Ma, Li; Hutchison III, Clyde A.; Smith, Hamilton O.; Glass, John I.; Merryman, Chuck; Venter, J. Craig; Gibson, Daniel G.

    2016-01-01

    Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the “simple” M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life. PMID:27489041

  9. Ribonucleotide reductase small subunit M2B prognoses better survival in colorectal cancer

    PubMed Central

    Liu, Xiyong; Lai, Lily; Wang, Xiaochen; Xue, Lijun; Leora, Sofia; Wu, Jun; Hu, Shuya; Zhang, Keqiang; Kuo, Mei-Ling; Zhou, Lun; Zhang, Hang; Wang, Yafan; Wang, Yan; Zhou, Bingsen; Nelson, Rebecca A; Zheng, Shu; Zhang, Suzhan; Chu, Peiguo; Yen, Yun

    2011-01-01

    Ribonucleotide reductase subunit RRM2B (p53R2) has been reported to suppress invasion and metastasis in colorectal cancer (CRC). Here we report that high levels of RRM2B expression is correlated with markedly better survival in CRC patients. In a fluorescence-labeled orthotopic mouse xenograft model, we confirmed that overexpression of RRM2B in non-metastatic CRC cells prevented lung and/or liver metastasis, relative to control cells that did metastasize. Clinical outcome studies were conducted on a training set with 103 CRCs and a validation set with 220 CRCs. All participants underwent surgery with periodic follow-up to determine survivability. A newly developed specific RRM2B antibody was employed to perform immunohistochemistry (IHC) for determining RRM2B expression levels on tissue arrays. In the training set, the Kaplan-Meier and multivariate COX analysis revealed that RRM2B is associated with better survival of CRCs, especially in stage IV patients (Hazard ratio, HR=0.40; 95% CI 0.18–0.86, p=0.016). In the validation set, RRM2B was negatively related to tumor invasion (odds ratio, OR=0.45, 95% CI 0.19–0.99, p=0.040) and lymph node involvement (OR=0.48, 95% CI 0.25–0.92, p=0.026). Further, elevated expression of RRM2B was associated with better prognosis in this set as determined by multivariate analyses (HR=0.48, 95% CI 0.26–0.91, p=0.030). Further investigations revealed that RRM2B was correlated with better survival of CRCs with advanced stage III–IV tumors rather than earlier stage I–II tumors. Taken together, our findings establish that RRM2B suppresses invasiveness of cancer cells and that its expression is associated with a better survival prognosis for CRC patients. PMID:21415168

  10. Eukaryote-specific extensions in ribosomal proteins of the small subunit: Structure and function.

    PubMed

    Ghosh, Arnab; Komar, Anton A

    2015-01-01

    High-resolution structures of yeast ribosomes have improved our understanding of the architecture and organization of eukaryotic rRNA and proteins, as well as eukaryote-specific extensions present in some conserved ribosomal proteins. Despite this progress, assignment of specific functions to individual proteins and/or eukaryote-specific protein extensions remains challenging. It has been suggested that eukaryote-specific extensions of conserved proteins from the small ribosomal subunit may facilitate eukaryote-specific reactions in the initiation phase of protein synthesis. This review summarizes emerging data describing the structural and functional significance of eukaryote-specific extensions of conserved small ribosomal subunit proteins, particularly their possible roles in recruitment and spatial organization of eukaryote-specific initiation factors. PMID:26779416

  11. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994.

    PubMed Central

    Gutell, R R

    1994-01-01

    A collection of diverse 16S and 16S-like rRNA secondary structure diagrams are available. This set of rRNAs contains representative structures from all of the major phylogenetic groupings--Archaea, (eu)Bacteria, and the nucleus, mitochondrion, and chloroplast of Eucarya. Within this broad phylogenetic sampling are examples of the major forms of structural diversity currently known for this class of rRNAs. These structure diagrams are available online through our computer-network WWW server and anonymous ftp, as well as from the author in hardcopy format. PMID:7524024

  12. PHYLOGENETIC ANALYSIS OF CRYPTOSPORIDIUM PARASITES BASED ON THE SMALL SUBUNIT RIBOSOMAL RNA GENE LOCUS

    EPA Science Inventory

    ABSTRACT
    Biologic data support the presence of multiple species in the genus Cryptosporidium, but
    a recent analysis of the available genetic data has suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxono...

  13. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product. PMID:26789074

  14. Both the Exact Target Site Sequence and a Long Poly(A) Tail Are Required for Precise Insertion of the 18S Ribosomal DNA-Specific Non-Long Terminal Repeat Retrotransposon R7Ag.

    PubMed

    Nichuguti, Narisu; Hayase, Mayumi; Fujiwara, Haruhiko

    2016-05-15

    Ribosomal elements (R elements) are site-specific non-long terminal repeat (LTR) retrotransposons that target ribosomal DNA (rDNA). To elucidate how R elements specifically access their target sites, we isolated and characterized the 18S rDNA-specific R element R7Ag from Anopheles gambiae Using an in vivo and ex vivo recombinant baculovirus retrotransposition system, we found that the exact host 18S rDNA sequence at the target site is essential for the precise insertion of R7Ag. In addition, a long poly(A) tail is necessary for the accurate initiation of R7Ag reverse transcription, a novel mechanism found in non-LTR elements. We further compared the subcellular localizations of proteins in R7Ag as well as R1Bm, another R element that targets 28S rDNA. Although the open reading frame 1 proteins (ORF1ps) of both R7Ag and R1Bm localized predominantly in the cytoplasm, ORF2 proteins (ORF2ps) colocalized in the nucleus with the nucleolar marker fibrillarin. The ORF1ps and ORF2ps of both R elements colocalized largely in the nuclear periphery and to a lesser extent within the nucleus. These results suggest that R7Ag and R1Bm proteins may access nucleolar rDNA targets in an ORF2p-dependent manner. PMID:26976636

  15. Reassignment of the land tortoise haemogregarine Haemogregarina fitzsimonsi Dias 1953 (Adeleorina: Haemogregarinidae) to the genus Hepatozoon Miller 1908 (Adeleorina: Hepatozoidae) based on parasite morphology, life cycle and phylogenetic analysis of 18S rDNA sequence fragments.

    PubMed

    Cook, Courtney A; Lawton, Scott P; Davies, Angela J; Smit, Nico J

    2014-06-13

    SUMMARY Research was undertaken to clarify the true taxonomic position of the terrestrial tortoise apicomplexan, Haemogregarina fitzsimonsi (Dias, 1953). Thin blood films were screened from 275 wild and captive South African tortoises of 6 genera and 10 species between 2009-2011. Apicomplexan parasites within films were identified, with a focus on H. fitzsimonsi. Ticks from wild tortoises, especially Amblyomma sylvaticum and Amblyomma marmoreum were also screened, and sporogonic stages were identified on dissection of adult ticks of both species taken from H. fitzsimonsi infected and apparently non-infected tortoises. Parasite DNA was extracted from fixed, Giemsa-stained tortoise blood films and from both fresh and fixed ticks, and PCR was undertaken with two primer sets, HEMO1/HEMO2, and HepF300/HepR900, to amplify parasite 18S rDNA. Results indicated that apicomplexan DNA extracted from tortoise blood films and both species of tick had been amplified by one or both primer sets. Haemogregarina  fitzsimonsi 18S rDNA sequences from tortoise blood aligned with those of species of Hepatozoon, rather than those of species of Haemogregarina or Hemolivia. It is recommended therefore that this haemogregarine be re-assigned to the genus Hepatozoon, making Hepatozoon fitzsimonsi (Dias, 1953) the only Hepatozoon known currently from any terrestrial chelonian. Ticks are its likely vectors. PMID:24923767

  16. The phylogenetic relationships of Rhodosporidium dacryoidum Fell, Hunter et Tallman based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Sakaguchia gen. nov., a heterobasidiomycetous yeast genus.

    PubMed

    Yamada, Y; Maeda, K; Mikata, K

    1994-01-01

    The partial base sequences of 18S and 26S rRNAs of Rhodosporidium fluviale, R. lusitaniae, and Erythrobasidium hasegawianum were analyzed. In the 26S rRNA partial base sequencings, R. fluviale CBS 6568 and R. lusitaniae IGC 4599 and IGC 4641 had 81-82 and 77 percent similarities compared with R. toruloides (type species of genus Rhodosporidium) IFO 0559 and IFO 0880. Erythrobasidium hasegawianum IFO 1058 showed 69-71, 59, 63, and 61 percent similarities with R. toruloides IFO 0559 and IFO 0880, L. scottii (type species of genus Leucosporidium) IFO 1923, R. dacryoidum IFO 1930 and IFO 1931, and Kondoa malvinella IFO 1936, respectively. In the 18S rRNA partial base sequencings, R. fluviale CBS 6568 and R. lusitaniae IGC 4599 and IGC 4641 had zero and two base differences with R. toruloides. Erythrobasidium hasegawianum IFO 1058 showed ten, sixteen, three, and twenty base differences with R. toruloides IFO 0559 and IFO 0880, L. scottii IFO 1923, R. dacryoidum IFO 1930 and IFO 1931, and K. malvinella IFO 1936, respectively. Based on the sequence data obtained, a new genus, Sakaguchia was proposed for R. dacryoidum with a new combination, Sakaguchia dacryoides. PMID:7765151

  17. Organ-Specific Stability of Two Lemna rbcS mRNAs Is Determined Primarily in the Nuclear Compartment.

    PubMed Central

    Peters, J. L.; Silverthorne, J.

    1995-01-01

    It has previously been shown that the organ-specific expression of two members of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (rbcS) gene family is post-transcriptionally regulated in Lemna gibba. While both small subunit genes encoding SSU1 and SSU5B were transcribed at comparable levels in root and frond nuclei, SSU1 mRNA accumulated to high levels in both roots and fronds in contrast to SSU5B mRNA, which was of very low abundance in the roots compared with the fronds. In this study, we have used two approaches to pinpoint the step(s) at which SSU1 and SSU5B mRNAs are differentially accumulated in these organs. In the first approach, total nuclear steady state mRNA was isolated from roots and fronds, and the amount of each transcript was measured by RNase protection assays and compared with the transcription rates in isolated nuclei. In the second approach, cordycepin was used to inhibit mRNA synthesis in Lemna fronds or roots, and the rate of decay of each mRNA was measured by RNA gel blot analysis or RNase protection assays. Our findings indicate that the differential accumulation of SSU1 and SSU5B mRNAs in the fronds versus the roots is determined primarily in the nuclear compartment. In addition, SSU1 was found to have a longer half-life in total steady state mRNA than SSU5B had in both organs. This feature probably accounts for SSU1 being the predominantly expressed family member. PMID:12242353

  18. Population studies for STR loci (D3S1358, D5S818, D7S820, D18S51 and FGA) in NWFP and Sindhi populations of Pakistan for forensic use.

    PubMed

    Saqib Shahzad, M; Abbas Bokhari, S Yassir; Rao, Abdul Qayyum; Raza, M Hashim; Ullah, Obaid; Zia-Ur-rahman; Shahid, A Ali; Ahmad, Zahoor; Riazuddin, S

    2004-01-01

    CEMB's Forensic DNA typing project is directed towards the introduction of DNA typing technique in Pakistan's criminal justice system so as to exonerate an innocent and wrongly accused person and incriminates the culprit. The present study is a part of the project of CEMB to analyze Sindhi and NWFP (North West Frontier Province) populations for five STR (Short Tandem Repeat) loci out of 13 CODIS (Combined DNA Index System) loci. Allelic frequencies and heterozygosity for STR markers D3S1358, D5S818, D7S820, D18S51 and FGA (FIBRA) were determined. Samples from unrelated individuals were amplified by multiplex PCR using the unlabelled primers for these markers followed by denaturing Polyacrylamide Gel Electrophoresis (PAGE). Statistical analysis was performed to determine the allelic frequencies and was evaluated using the Chi Square Test. PMID:15782779

  19. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA

    PubMed Central

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio Jr., Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Abstract Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group. PMID:24260632

  20. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA.

    PubMed

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio, Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group. PMID:24260632

  1. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    USGS Publications Warehouse

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  2. Draft Genome Sequence of “Rathayibacter tanaceti” Strain VKM Ac-2596 Isolated from Tanacetum vulgare Infested by a Foliar Nematode

    PubMed Central

    Starodumova, Irina P.; Tarlachkov, Sergey V.; Dorofeeva, Lubov V.; Avtukh, Alexander N.; Evtushenko, Lyudmila I.

    2016-01-01

    The draft genome of “Rathayibacter tanaceti” VKM Ac-2596 is 3.17 Mb in size with an average G+C content of 70.7% and comprises at least two nonidentical copies of ribosomal small subunit (SSU-rRNA) genes. The semiconductor sequencing platform Ion Torrent was used. PMID:27313291

  3. Draft Genome Sequence of "Rathayibacter tanaceti" Strain VKM Ac-2596 Isolated from Tanacetum vulgare Infested by a Foliar Nematode.

    PubMed

    Vasilenko, Oleg V; Starodumova, Irina P; Tarlachkov, Sergey V; Dorofeeva, Lubov V; Avtukh, Alexander N; Evtushenko, Lyudmila I

    2016-01-01

    The draft genome of "Rathayibacter tanaceti" VKM Ac-2596 is 3.17 Mb in size with an average G+C content of 70.7% and comprises at least two nonidentical copies of ribosomal small subunit (SSU-rRNA) genes. The semiconductor sequencing platform Ion Torrent was used. PMID:27313291

  4. Analyses of the ribosomal DNA region in Nosema bombycis NIS 001.

    PubMed

    Iiyama, Kazuhiro; Chieda, Yuuka; Yasunaga-Aoki, Chisa; Hayasaka, Shoji; Shimizu, Susumu

    2004-01-01

    Ribosomal DNA (rDNA) containing small subunit (SSU) rDNA and both flanking regions in the entomopathogenic microsporidian Nosema bombycis NIS 001 was amplified from genomic DNA with a primer set based on the sequence of an inverse polymerase chain reaction (PCR)-derived fragment. In this fragment, SSU rDNA was divided by a 618-bp insert at nt 599, and 5S rDNA was located downstream of the SSU rDNA, fragmented by 284-bp intergenic spacer. In addition, the 48-bp 3'-end of large subunit (LSU) rDNA was located 118 bp upstream of the fragmented SSU rDNA. In the amplicon, the region upstream of the LSU rDNA was a homologue of the C-terminal CHARLIE8 transposon-like element of human GTF2IRD2. In this organism, another fragmented SSU rDNA, which was divided by a 231-bp insert at nt 50, was also detected. Both the intact (insertless) and fragmented SSU rDNAs clustered with LSU rDNA and 5S rDNA and the intergenic sequences between SSU rDNA and 5S rDNA were divergent in an organism. Reverse transcription (RT)-PCR assay indicated that not only the intact SSU rDNA but also the fragmened SSU rDNA were transcribed in N. bombycis. PMID:15666716

  5. Phylogenetic analysis of 18S rRNA and the mitochondrial genomes of the wombat, Vombatus ursinus, and the spiny anteater, Tachyglossus aculeatus: increased support for the Marsupionta hypothesis.

    PubMed

    Janke, Axel; Magnell, Ola; Wieczorek, Georg; Westerman, Michael; Arnason, Ulfur

    2002-01-01

    The monotremes, the duck-billed platypus and the echidnas, are characterized by a number of unique morphological characteristics, which have led to the common belief that they represent the living survivors of an ancestral stock of mammals. Analysis of new data from the complete mitochondrial (mt) genomes of a second monotreme, the spiny anteater, and another marsupial, the wombat, yielded clear support for the Marsupionta hypothesis. According to this hypothesis marsupials are more closely related to monotremes than to eutherians, consistent with a basal split between eutherians and marsupials/monotremes among extant mammals. This finding was also supported by analysis of new sequences from a nuclear gene--18S rRNA. The mt genome of the wombat shares some unique features with previously described marsupial mtDNAs (tRNA rearrangement, a missing tRNA(Lys), and evidence for RNA editing of the tRNA(Asp)). Molecular estimates of genetic divergence suggest that the divergence between the platypus and the spiny anteater took place approximately 34 million years before present (MYBP), and that between South American and Australian marsupials approximately 72 MYBP. PMID:11734900

  6. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons.

    PubMed

    Qi, Xiemin; Liu, Biao; Song, Qinxin; Zou, Bingjie; Bu, Ying; Wu, Haiping; Ding, Li; Zhou, Guohua

    2016-01-01

    Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line. PMID:27462344

  7. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons

    PubMed Central

    Qi, Xiemin; Liu, Biao; Song, Qinxin; Zou, Bingjie; Bu, Ying; Wu, Haiping; Ding, Li; Zhou, Guohua

    2016-01-01

    Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line. PMID:27462344

  8. Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp. nov. (genotype T19).

    PubMed

    Corsaro, Daniele; Walochnik, Julia; Köhsler, Martina; Rott, Marilise B

    2015-07-01

    Acanthamoeba species are ubiquitous amoebae able to cause important infections in humans and other vertebrates. The full/near-full sequences (>2000 bp) of the small subunit ribosomal RNA gene (SSU rDNA or 18S rDNA) are used to cluster Acanthamoeba as genotypes, labeled T1 to T20. Genotype T15 remains an exception, being described only partially on a 1500-bp fragment. Strains are thus usually identified based on their 18S identity matches with reference strains, often using shorter (<500 bp) diagnostic fragments of the gene. Nevertheless, short fragments (<1000 bp) have been used to propose genotypes. This has been criticized, and doubts arise therefore on possible confusion leading to classify distinct partial sequences with a same label(s). We demonstrate herein that several partial sequences misassigned either to T16 or to T4, actually belong to at least two separate and distinct genotypes. We obtained the full 18S rDNA of a strain previously typed as T16 on the basis of a small fragment and demonstrated that it actually belongs to the recently described T19. We propose the name Acanthamoeba micheli sp. nov., for this strain. Furthermore, partial molecular phylogenies were performed to show that several other misassigned T16 partial sequences belong to a new genotype. This latter includes also misassigned T4 partial sequences, only recently available as full sequences and labeled as T20. We thus reassign these partial sequences to the genotype T20. Longer sequences, ideally at least 90 % of the total gene length, should be obtained from strains to ensure reliable diagnostic and phylogenetic results. PMID:25869957

  9. A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei.

    PubMed

    Fleming, Ian M C; Paris, Zdeněk; Gaston, Kirk W; Balakrishnan, R; Fredrick, Kurt; Rubio, Mary Anne T; Alfonzo, Juan D

    2016-01-01

    Most eukaryotic ribosomes contain 26/28S, 5S, and 5.8S large subunit ribosomal RNAs (LSU rRNAs) in addition to the 18S rRNA of the small subunit (SSU rRNA). However, in kinetoplastids, a group of organisms that include medically important members of the genus Trypanosoma and Leishmania, the 26/28S large subunit ribosomal RNA is uniquely composed of 6 rRNA fragments. In addition, recent studies have shown the presence of expansion segments in the large ribosomal subunit (60S) of Trypanosoma brucei. Given these differences in structure, processing and assembly, T. brucei ribosomes may require biogenesis factors not found in other organisms. Here, we show that one of two putative 3-methylcytidine methyltransferases, TbMTase37 (a homolog of human methyltransferase-like 6, METTL6), is important for ribosome stability in T. brucei. TbMTase37 localizes to the nucleolus and depletion of the protein results in accumulation of ribosomal particles lacking srRNA 4 and reduced levels of polysome associated ribosomes. We also find that TbMTase37 plays a role in cytokinesis, as loss of the protein leads to multi-flagellated and multi-nucleated cells. PMID:26888608

  10. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data.

    PubMed

    Bengtsson-Palme, Johan; Hartmann, Martin; Eriksson, Karl Martin; Pal, Chandan; Thorell, Kaisa; Larsson, Dan Göran Joakim; Nilsson, Rolf Henrik

    2015-11-01

    The ribosomal rRNA genes are widely used as genetic markers for taxonomic identification of microbes. Particularly the small subunit (SSU; 16S/18S) rRNA gene is frequently used for species- or genus-level identification, but also the large subunit (LSU; 23S/28S) rRNA gene is employed in taxonomic assignment. The METAXA software tool is a popular utility for extracting partial rRNA sequences from large sequencing data sets and assigning them to an archaeal, bacterial, nuclear eukaryote, mitochondrial or chloroplast origin. This study describes a comprehensive update to METAXA - METAXA2 - that extends the capabilities of the tool, introducing support for the LSU rRNA gene, a greatly improved classifier allowing classification down to genus or species level, as well as enhanced support for short-read (100 bp) and paired-end sequences, among other changes. The performance of METAXA2 was compared to other commonly used taxonomic classifiers, showing that METAXA2 often outperforms previous methods in terms of making correct predictions while maintaining a low misclassification rate. METAXA2 is freely available from http://microbiology.se/software/metaxa2/. PMID:25732605

  11. A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei

    PubMed Central

    Fleming, Ian M. C.; Paris, Zdeněk; Gaston, Kirk W.; Balakrishnan, R.; Fredrick, Kurt; Rubio, Mary Anne T.; Alfonzo, Juan D.

    2016-01-01

    Most eukaryotic ribosomes contain 26/28S, 5S, and 5.8S large subunit ribosomal RNAs (LSU rRNAs) in addition to the 18S rRNA of the small subunit (SSU rRNA). However, in kinetoplastids, a group of organisms that include medically important members of the genus Trypanosoma and Leishmania, the 26/28S large subunit ribosomal RNA is uniquely composed of 6 rRNA fragments. In addition, recent studies have shown the presence of expansion segments in the large ribosomal subunit (60S) of Trypanosoma brucei. Given these differences in structure, processing and assembly, T. brucei ribosomes may require biogenesis factors not found in other organisms. Here, we show that one of two putative 3-methylcytidine methyltransferases, TbMTase37 (a homolog of human methyltransferase-like 6, METTL6), is important for ribosome stability in T. brucei. TbMTase37 localizes to the nucleolus and depletion of the protein results in accumulation of ribosomal particles lacking srRNA 4 and reduced levels of polysome associated ribosomes. We also find that TbMTase37 plays a role in cytokinesis, as loss of the protein leads to multi-flagellated and multi-nucleated cells. PMID:26888608

  12. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin

    PubMed Central

    2011-01-01

    Background Scarabaeinae beetles show a high level of macro-chromosomal variability, although the karyotypic organization of heterochromatin and multigene families (rDNAs and histone genes) is poorly understood in this group. To better understand the chromosomal organization and evolution in this group, we analyzed the karyotypes, heterochromatin distribution and chromosomal locations of the rRNAs and histone H3 genes in beetles belonging to eight tribes from the Scarabaeinae subfamily (Coleoptera, Scarabaeidae). Results The number of 18S rRNA gene (a member of the 45S rDNA unit) sites varied from one to 16 and were located on the autosomes, sex chromosomes or both, although two clusters were most common. Comparison of the 45S rDNA cluster number and the diploid numbers revealed a low correlation value. However, a comparison between the number of 45S rDNA sites per genome and the quantity of heterochromatin revealed (i) species presenting heterochromatin restricted to the centromeric/pericentromeric region that contained few rDNA sites and (ii) species with a high quantity of heterochromatin and a higher number of rDNA sites. In contrast to the high variability for heterochromatin and 45S rDNA cluster, the presence of two clusters (one bivalent cluster) co-located on autosomal chromosomes with the 5S rRNA and histone H3 genes was highly conserved. Conclusions Our results indicate that the variability of the 45S rDNA chromosomal clusters is not associated with macro-chromosomal rearrangements but are instead related to the spread of heterochromatin. The data obtained also indicate that both heterochromatin and the 45S rDNA loci could be constrained by similar evolutionary forces regulating spreading in the distinct Scarabaeinae subfamily lineages. For the 5S rRNA and the histone H3 genes, a similar chromosomal organization could be attributed to their association/co-localization in the Scarabaeinae karyotypes. These data provide evidence that different evolutionary

  13. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  14. The C terminus of a chloroplast precursor modulates its interaction with the translocation apparatus and PIRAC.

    PubMed

    Dabney-Smith, C; van Den Wijngaard, P W; Treece, Y; Vredenberg, W J; Bruce, B D

    1999-11-01

    The import of proteins into chloroplasts involves a cleavable, N-terminal targeting sequence known as the transit peptide. Although the transit peptide is both necessary and sufficient to direct precursor import into chloroplasts, the mature domain of some precursors has been shown to modulate targeting and translocation efficiency. To test the influence of the mature domain of the small subunit of Rubisco during import in vitro, the precursor (prSSU), the mature domain (mSSU), the transit peptide (SS-tp), and three C-terminal deletion mutants (Delta52, Delta67, and Delta74) of prSSU were expressed and purified from Escherichia coli. Activity was then evaluated by competitive import of (35)S-prSSU. Both IC(50) and K(i) values consistently suggest that removal of C-terminal prSSU sequences inhibits its interaction with the translocation apparatus. Non-competitive import studies demonstrated that prSSU and Delta52 were properly processed and accumulated within the chloroplast, whereas Delta67 and Delta74 were rapidly degraded via a plastid-localized protease. The ability of prSSU-derived proteins to induce inactivation of the protein-import-related anion channel was also evaluated. Although the C-terminal deletion mutants were less effective at inducing channel closure upon import, they did not effect the mean duration of channel closure. Possible mechanisms by which C-terminal residues of prSSU modulate chloroplast targeting are discussed. PMID:10542276

  15. Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

    PubMed Central

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered. PMID:25289639

  16. Choreography of molecular movements during ribosome progression along mRNA.

    PubMed

    Belardinelli, Riccardo; Sharma, Heena; Caliskan, Neva; Cunha, Carlos E; Peske, Frank; Wintermeyer, Wolfgang; Rodnina, Marina V

    2016-04-01

    During translation elongation, ribosome translocation along an mRNA entails rotations of the ribosomal subunits, swiveling motions of the small subunit (SSU) head and stepwise movements of the tRNAs together with the mRNA. Here, we reconstructed the choreography of the collective motions of the Escherichia coli ribosome during translocation promoted by elongation factor EF-G, by recording the fluorescence signatures of nine different reporters placed on both ribosomal subunits, tRNA and mRNA. We captured an early forward swiveling of the SSU head taking place while the SSU body rotates in the opposite, clockwise direction. Backward swiveling of the SSU head starts upon tRNA translocation and continues until the post-translocation state is reached. This work places structures of translocation intermediates along a time axis and unravels principles of the motions of macromolecular machines. PMID:26999556

  17. Heterogeneous rates of molecular evolution among cryptic species of the ciliate morphospecies Chilodonella uncinata

    PubMed Central

    Katz, Laura A.; DeBerardinis, Jennifer; Hall, Meaghan S.; Kovner, Alexandra M.; Dunthorn, Micah; Muse, Spencer V.

    2012-01-01

    While molecular analyses have provided insight into the phylogeny of ciliates, the few studies assessing intraspecific variation have largely relied on just a single locus (e.g. nuclear small subunit rDNA (nSSU-rDNA) or mitochondrial cytochrome oxidase I). In this study, we characterize the diversity of several nuclear protein-coding genes plus both nSSU-rDNA and mitochondrial small subunit rDNA (mtSSU-rDNA) of five isolates of the ciliate morphospecies Chilodonella uncinata. Although these isolates have nearly identical nSSU-rDNA sequences, they differ by up to 8.0% in mtSSU-rDNA. Comparative analyses of all loci, including β-tubulin paralogs, indicate a lack of recombination between strains, demonstrating that the morphospecies C. uncinata consists of multiple cryptic species. Further, there is considerable variation in substitution rates among loci as some protein-coding domains are nearly identical between isolates while others differ by up to 13.2% at the amino acid level. Combining insights on macronuclear variation among isolates, the focus of this study, with published data from the micronucleus of two of these isolates indicates that C. uncinata lineages are able to maintain both highly divergent and highly conserved genes within a rapidly evolving germline genome. PMID:22258433

  18. Transcription cofactor PC4 plays essential roles in collaboration with the small subunit of general transcription factor TFIIE.

    PubMed

    Akimoto, Yusuke; Yamamoto, Seiji; Iida, Satoshi; Hirose, Yutaka; Tanaka, Aki; Hanaoka, Fumio; Ohkuma, Yoshiaki

    2014-12-01

    In eukaryotes, positive cofactor 4 (PC4) stimulates activator-dependent transcription by facilitating transcription initiation and the transition from initiation to elongation. It also forms homodimers and binds to single-stranded DNA and various transcriptional activators, including the general transcription factor TFIIH. In this study, we further investigated PC4 from Homo sapiens and the nematode Caenorhabditis elegans (hPC4 and cePC4, respectively). hPC4 strongly stimulated transcription on a linearized template, whereas it alleviated transcription on a supercoiled template. Transcriptional stimulation by PC4 was also alleviated by increasing the amount of TFIID. GST pull-down studies with general transcription factors indicated that both hPC4 and cePC4 bind strongly to TFIIB, TFIIEβ, TFIIFα, TFIIFβ and TFIIH XPB subunits and weakly to TBP and TFIIH p62. However, only hPC4 bound to CDK7. The effect of each PC4 on transcription was studied in combination with TFIIEβ. hPC4 stimulated both basal and activated transcription, whereas cePC4 primarily stimulated activated transcription, especially in the presence of TFIIEβ from C. elegans. Finally, hPC4 bound to the C-terminal region of hTFIIEβ adjacent to the basic region. These results indicate that PC4 plays essential roles in the transition step from transcription initiation to elongation by binding to melted DNA in collaboration with TFIIEβ. PMID:25308091

  19. (Nuclear genes from nicotiana encoding the small subunit of ribulose-1,5-bisphosphate carboxylase). Progress report

    SciTech Connect

    Cashmore, A.R.

    1985-01-01

    Two pea nuclear genes encoding ribulose-1,5-bisphosphate carboxylase (rbcS) were isolated and completely sequenced. These sequence studies include approximately 1 kb of 5' noncoding region and several hundred nucleotides of 3' noncoding sequences. The two genes are tightly linked being separated by 10 kb of DNA and they are oriented with their 3' ends towards one another. The two genes (ss3.6 and ss8.0) correspond to two of five EcoRI fragments of pea DNA that hybridize to a rbcS hybridization probe. The two genes ss3.6 and ss8.0 are quite divergent at their 5' and their 3' ends and in the first of the two intervening sequences. In direct contrast the second of the two intervening sequences is total conserved between the two genes. This conservation of sequence identity could result directly from evolutionary forces selecting against any sequence change. Such selection would presumably reflect a very sequence-dependent function for these introns. A role in splicing is one possibility and a transcriptional regulatory element is another possibility. 9 refs.

  20. Identification of Cryptosporidium isolates from cockatiels by direct sequencing of the PCR-amplified small subunit ribosomal RNA gene.

    PubMed

    Abe, Niichiro; Iseki, Motohiro

    2004-04-01

    Cryptosporidium is a significant pathogen in humans and animals. Cases of infection by C. meleagridis or C. baileyi with zoonotic potential have also been reported in domestic birds; and recent studies indicate the presence of new host-adapted species or genotype in birds. Therefore, accurately identifying isolates is important for understanding the epizootiology of Cryptosporidium infection in birds and for the control of human cryptosporidiosis. Cryptosporidium has been detected in cockatiels, but the species or genotype of isolates remains unclear because identification was performed using conventional microscopy. We report herein the species or genotype of isolates from two cockatiels distinguished by a PCR-based diagnostic method. The isolates were found to be C. meleagridis and C. baileyi, respectively. This study documents the first discovery of C. meleagridis and C. baileyi in cockatiels and suggests that pet birds may play an important role in the epidemiology of cryptosporidiosis. PMID:14999470

  1. Phytoplankton distribution patterns in the northwestern Sargasso Sea revealed by small subunit rRNA genes from plastids.

    PubMed

    Treusch, Alexander H; Demir-Hilton, Elif; Vergin, Kevin L; Worden, Alexandra Z; Carlson, Craig A; Donatz, Michael G; Burton, Robert M; Giovannoni, Stephen J

    2012-03-01

    Phytoplankton species vary in their physiological properties, and are expected to respond differently to seasonal changes in water column conditions. To assess these varying distribution patterns, we used 412 samples collected monthly over 12 years (1991-2004) at the Bermuda Atlantic Time-Series Study site, located in the northwestern Sargasso Sea. We measured plastid 16S ribosomal RNA gene abundances with a terminal restriction fragment length polymorphism approach and identified distribution patterns for members of the Prymnesiophyceae, Pelagophyceae, Chrysophyceae, Cryptophyceae, Bacillariophyceae and Prasinophyceae. The analysis revealed dynamic bloom patterns by these phytoplankton taxa that begin early in the year, when the mixed layer is deep. Previously, unreported open-ocean prasinophyte blooms dominated the plastid gene signal during convective mixing events. Quantitative PCR confirmed the blooms and transitions of Bathycoccus, Micromonas and Ostreococcus populations. In contrast, taxa belonging to the pelagophytes and chrysophytes, as well as cryptophytes, reached annual peaks during mixed layer shoaling, while Bacillariophyceae (diatoms) were observed only episodically in the 12-year record. Prymnesiophytes dominated the integrated plastid gene signal. They were abundant throughout the water column before mixing events, but persisted in the deep chlorophyll maximum during stratified conditions. Various models have been used to describe mechanisms that drive vernal phytoplankton blooms in temperate seas. The range of taxon-specific bloom patterns observed here indicates that different 'spring bloom' models can aptly describe the behavior of different phytoplankton taxa at a single geographical location. These findings provide insight into the subdivision of niche space by phytoplankton and may lead to improved predictions of phytoplankton responses to changes in ocean conditions. PMID:21955994

  2. A new SNP in the 3'UTR region of the bovine calpain small subunit (CAPNS1) gene.

    PubMed

    Juszczuk-Kubiak, E; Flisikowski, K; Wicińska, K

    2010-01-01

    Calpains are a ubiquitous cytoplasmic cysteine protease, the activity of which is absolutely dependent on calcium. This proteolytic system degrades myofibrillar protein under post-mortem conditions and appears to be the primary enzyme in the postmortem tenderization process. In the present study a new single nucleotide polymorphism was found in the bovine CAPNS1 gene exon 11 coding for the 3'UTR. Transition C --> T at position 6536 was detected and identified using PCR-SSCP and DNA sequencing techniques, and then analysed with PCR-RFLP using MboII nuclease. The genotype frequencies and alleles distribution were studied in 190 bulls including, Charolaise, Hereford, Limousine, Simmental, Polish Red and Fresian breeds. PMID:19649723

  3. Intrageneric relationships of Enterococci as determined by reverse transcriptase sequencing of small-subunit rRNA.

    PubMed

    Williams, A M; Rodrigues, U M; Collins, M D

    1991-01-01

    The 16S ribosomal ribonucleic acid (rRNA) sequences of eleven Enterococcus species were determined by reverse transcription in an attempt to clarify their intrageneric relationships. Comparative analysis of the sequence data revealed the presence of several species groups within the genus. The species E. avium, E. malodoratus, E. pseudoavium and E. raffinosus formed a distinct group as did E. durans, E. faecium, E. hirae and E. mundtii and the pair of species E. casseliflavus and E. gallinarum. Of the remaining species, E. cecorum, E. columbae, E. faecalis and E. saccharolyticus formed distinct lines of descent within the genus, whereas E. solitarius displayed a closer affinity with Tetragenococcus halophilus than with other enterococcal species. PMID:1712504

  4. MEK2 regulates ribonucleotide reductase activity through functional interaction with ribonucleotide reductase small subunit p53R2.

    PubMed

    Piao, Chunmei; Youn, Cha-Kyung; Jin, Min; Yoon, Sang Pil; Chang, In-Youb; Lee, Jung Hee; You, Ho Jin

    2012-09-01

    The p53R2 protein, a newly identified member of the ribonucleotide reductase family that provides nucleotides for DNA damage repair, is directly regulated by p53. We show that p53R2 is also regulated by a MEK2 (ERK kinase 2/MAP kinase kinase 2)-dependent pathway. Increased MEK1/2 phosphorylation by serum stimulation coincided with an increase in the RNR activity in U2OS and H1299 cells. The inhibition of MEK2 activity, either by treatment with a MEK inhibitor or by transfection with MEK2 siRNA, dramatically decreased the serum-stimulated RNR activity. Moreover, p53R2 siRNA, but not R2 siRNA, significantly inhibits serum-stimulated RNR activity, indicating that p53R2 is specifically regulated by a MEK2-dependent pathway. Co-immunoprecipitation analyses revealed that the MEK2 segment comprising amino acids 65-171 is critical for p53R2-MEK2 interaction, and the binding domain of MEK2 is required for MEK2-mediated increased RNR activity. Phosphorylation of MEK1/2 was greatly augmented by ionizing radiation, and RNR activity was concurrently increased. Ionizing radiation-induced RNR activity was markedly attenuated by transfection of MEK2 or p53R2 siRNA, but not R2 siRNA. These data show that MEK2 is an endogenous regulator of p53R2 and suggest that MEK2 may associate with p53R2 and upregulate its activity. PMID:22895183

  5. IDENTIFICATION OF CRYPTOSPORIDIUM SPECIES AND SOURCES IN RAW WASTEWATER USING A SMALL SUBUNIT RRNA-BASED PCR-RFLP TOOL

    EPA Science Inventory

    The species composition and source of Cryptosporidium oocysts in wastewater have never been determined, even though it is widely assumed that these oocysts are from human sewage. Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate hum...

  6. Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three stunt nematode species, Tylenchorhynchus leviterminalis, T. claytoni and Bitylenchus dubius were characterized with segments of small subunit 18S and large subunit 28S rDNA sequences and placed in molecular phylogenetic context with other taxa of Telotylechidae in GenBank. In 18S trees, the sp...

  7. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation.

    PubMed

    Chang, Tao-Hsin; Hsieh, Fu-Lien; Ko, Tzu-Ping; Teng, Kuo-Hsun; Liang, Po-Huang; Wang, Andrew H-J

    2010-02-01

    Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes. PMID:20139160

  8. Phylogenetic analysis of Nosema antheraeae (Microsporidia) isolated from Chinese oak silkworm, Antheraea pernyi.

    PubMed

    Wang, Lin-Ling; Chen, Ke-Ping; Zhang, Ze; Yao, Qin; Gao, Gui-Tian; Zhao, Yuan

    2006-01-01

    The microsporidian Nosema antheraeae is a pathogen that infects the Chinese oak silkworm, Antheraea pernyi. We sequenced the complete small subunit (SSU) rRNA gene and the internal transcribed spacer (ITS) of N. antheraeae, and compared the SSU rRNA sequences in other microsporidia. The results indicated that Nosema species, including N. antheraeae, formed two distinct clades, consistent with previous observations. Furthermore, N. antheraeae is clustered with N. bombycis with high bootstrap support. The organization of the rRNA gene of N. antheraeae is LSU-ITS1-SSU-ITS2-5S, also following a pattern similar to the Nosema type species, N. bombycis. Thus, N. antheraeae is a Nosema species and has a close relationship to N. bombycis. PMID:16872300

  9. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity.

    PubMed

    Eloe-Fadrosh, Emiley A; Ivanova, Natalia N; Woyke, Tanja; Kyrpides, Nikos C

    2016-01-01

    Our view of microbial diversity has expanded greatly over the past 40 years, primarily through the wide application of PCR-based surveys of the small-subunit ribosomal RNA (SSU rRNA) gene. Yet significant gaps in knowledge remain due to well-recognized limitations of this method. Here, we systematically survey primer fidelity in SSU rRNA gene sequences recovered from over 6,000 assembled metagenomes sampled globally. Our findings show that approximately 10% of environmental microbial sequences might be missed from classical PCR-based SSU rRNA gene surveys, mostly members of the Candidate Phyla Radiation (CPR) and as yet uncharacterized Archaea. These results underscore the extent of uncharacterized microbial diversity and provide fruitful avenues for describing additional phylogenetic lineages. PMID:27572438

  10. Proteomics and Electron Microscopic Characterization of the Unusual Mitochondrial Ribosome-Related 45S Complex in Leishmania Tarentolae

    PubMed Central

    Maslov, Dmitri A.; Spremulli, Linda L.; Sharma, Manjuli R.; Bhargava, Kalpana; Grasso, Domenick; Falick, Arnold M.; Agrawal, Rajendra K.; Parker, Carol E.; Simpson, Larry

    2007-01-01

    A novel type of ribonucleoprotein (RNP) complex has been described from the kinetoplast-mitochondria of Leishmania tarentolae. The complex, termed the 45S SSU*, contains the 9S small subunit rRNA but does not contain the 12S large subunit rRNA. This complex is the most stable and abundant mitochondrial RNP complex present in Leishmania. As shown by tandem mass spectrometry, the complex contains at least 39 polypeptides with a combined molecular mass of almost 2.1 MDa. These components include several homologs of small subunit ribosomal proteins (S5, S6, S8 S9, S11, S15, S16, S17, S18, MRPS29); however, most of the polypeptides present are unique. Only a few of them show recognizable motifs, such as protein-protein (coiled-coil, Rhodanese) or protein-RNA (pentatricopeptide repeat) interaction domains. A cryo-electron microscopy examination of the 45S SSU* fraction reveals that 27% of particles represent SSU homodimers arranged in a head-to-tail orientation, while the majority of particles are clearly different and show an asymmetric bilobed morphology. Multiple classes of two-dimensional averages were derived for the asymmetrical particles, probably reflecting random orientations of the particles and difficulties in correlating these views with the known projections of ribosomal complexes. One class of the two-dimensional averages shows an SSU moiety attached to a protein mass or masses in a monosome-like appearance. The combined mass spectrometry and electron microscopy data thus indicate that the majority 45S SSU* particles represents a heterodimeric complex in which the SSU of the Leishmania mitochondrial ribosome is associated with an additional protein mass. The biological role of these particles is not known. PMID:17292489

  11. Hexaplex PCR detection system for identification of five human Plasmodium species with an internal control.

    PubMed

    Chew, Ching Hoong; Lim, Yvonne Ai Lian; Lee, Ping Chin; Mahmud, Rohela; Chua, Kek Heng

    2012-12-01

    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies. PMID:23035191

  12. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats

    NASA Technical Reports Server (NTRS)

    Ruff-Roberts, A. L.; Kuenen, J. G.; Ward, D. M.

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.

  13. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats.

    PubMed Central

    Ruff-Roberts, A L; Kuenen, J G; Ward, D M

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments. Images PMID:11536630

  14. Are microbes fundamentally different than macroorganisms? Convergence and a possible case for neutral phenotypic evolution in testate amoeba (Amoebozoa: Arcellinida)

    PubMed Central

    Oliverio, Angela M.; Grant, Jessica; Katz, Laura A.

    2015-01-01

    This study reveals extensive phenotypic convergence based on the non-monophyly of genera and morphospecies of testate (shelled) amoebae. Using two independent markers, small subunit ribosomal DNA (ssu-rDNA) and mitochondrial cytochrome oxidase I (COI), we demonstrate discordance between morphology and molecules for ‘core Nebela’ species (Arcellinida; Amoebozoa). Prior work using just a single locus, ssu-rDNA, also supported the non-monophyly of the genera Hyalosphenia and Nebela as well as for several morphospecies within these genera. Here, we obtained COI gene sequences of 59 specimens from seven morphospecies and ssu-rDNA gene sequences of 50 specimens from six morphospecies of hyalosphenids. Our analyses corroborate the prior ssu-rDNA findings of morphological convergence in test (shell) morphologies, as COI and ssu-rDNA phylogenies are concordant. Further, the monophyly of morphospecies is rejected using approximately unbiased tests. Given that testate amoebae are used as bioindicators in both palaeoecological and contemporary studies of threatened ecosystems such as bogs and fens, understanding the discordance between morphology and genetics in the hyalosphenids is essential for interpretation of indicator species. Further, while convergence is normally considered the result of natural selection, it is possible that neutrality underlies phenotypic evolution in these microorganisms. PMID:27019725

  15. Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308).

    PubMed

    Nunoura, Takuro; Soffientino, Bruno; Blazejak, Anna; Kakuta, Jungo; Oida, Hanako; Schippers, Axel; Takai, Ken

    2009-09-01

    The subseafloor microbial communities in the turbidite depositional basins Brazos-Trinity Basin IV (BT Basin) and the Mars-Ursa Basin (Ursa Basin) on the Gulf of Mexico continental slope (IODP holes U1319A, U1320A, U1322B and U1324B) were investigated by PCR-dependent molecular analyses targeted to the small subunit (SSU) rRNA genes, dsrA and mcrA, and hydrogenase activity measurements. Biomass at both basins was very low, with the maximum cell or the SSU rRNA gene copy number <1 x 10(7) cells mL(-1) or copies g(-1) sediments, respectively. Hydrogenase activity correlated with biomass estimated by SSU rRNA gene copy number when all data sets were combined. We detected differences in the SSU rRNA gene community structures and SSU rRNA gene copy numbers between the basin-fill and basement sediments in the BT Basin. Examination of microbial communities and hydrogenase activity in the context of geochemical and geophysical parameters and sediment depositional environments revealed that differences in microbial community composition between the basin-fill and basement sediments in the BT Basin were associated with sedimentation regimes tied to the sea-level change. This may also explain the distributions of relatively similar archaeal communities in the Ursa Basin sediments and basement sediments in the BT Basin. PMID:19583789

  16. Ribosomal RNA sequence suggest microsporidia are extremely ancient eukaryotes

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Maddox, J. V.; Friedman, S.; Debrunner-Vossbrinck, B. A.; Woese, C. R.

    1987-01-01

    A comparative sequence analysis of the 18S small subunit ribosomal RNA (rRNA) of the microsporidium Vairimorpha necatrix is presented. The results show that this rRNA sequence is more unlike those of other eukaryotes than any known eukaryote rRNA sequence. It is concluded that the lineage leading to microsporidia branched very early from that leading to other eukaryotes.

  17. Multigene-based analyses on evolutionary phylogeny of two controversial ciliate orders: Pleuronematida and Loxocephalida (Protista, Ciliophora, Oligohymenophorea).

    PubMed

    Gao, Feng; Katz, Laura A; Song, Weibo

    2013-07-01

    Relationships among members of the ciliate subclass Scuticociliatia (Ciliophora, Oligohymenophorea) are largely unresolved. Phylogenetic studies of its orders Pleuronematida and Loxocephalida were initially based on small subunit ribosomal RNA gene (SSU-rDNA) analyses of a limited number of taxa. Here we characterized 37 sequences (SSU-rDNA, ITS-5.8S and LSU-rDNA) from 21 taxonomically controversial members of these orders. Phylogenetic trees constructed to assess the inter- and intra-generic relationships of pleuronematids and loxocephalids reveal the following: (1) the order Loxocephalida and its two families Loxocephalidae and Cinetochilidae are not monophyletic when more taxa are added; (2) the core pleuronematids are divided into two fully supported clades, however, the order Pleuronematida is not monophyletic because Cyclidium glaucoma is closer to Thigmotrichida; (3) the family Pleuronematidae and the genus Schizocalyptra are monophyletic, though rDNA sequences of Pleuronema species are highly variable; (4) Pseudoplatynematum and Sathrophilus are closely related to the subclass Astomatia, while Cinetochilum forms a monophyletic group with the subclass Apostomatia; and (5) Hippocomos falls in the order Pleuronematida and is closely related to Eurystomatellidae and Cyclidium plouneouri. Further, in an effort to provide a better resolution of evolutionary relationships, the secondary structures of ITS2 transcripts and the variable region 4 (V4) of the small subunit ribosomal RNA (SSU-rRNA) are predicted, revealing that ITS2 structures are conserved at the order level while V4 region structures are more variable than ITS2 structures. PMID:23541839

  18. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    PubMed

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis. PMID:23543438

  19. IDENTIFICATION OF SPECIES AND SOURCES OF CRYPTOSPORIDIUM OOCYSTS IN STORM WATERS BY A SMALL SUBUNIT RRNA-BASED DIAGNOSTIC AND GENOTYPING TOOL

    EPA Science Inventory

    The identification of Cryptosporidium oocysts in environmental samples is largely made by the use of immunofluorescent assay (IFA). because IFA detects oocysts from all Cryptosporidium parasites, the species distribution and source of Cryptosporidium parasites in environmental sa...

  20. Comparison of bacterial communities in the Solimões and Negro River tributaries of the Amazon River based on small subunit rRNA gene sequences.

    PubMed

    Peixoto, J C C; Leomil, L; Souza, J V; Peixoto, F B S; Astolfi-Filho, S

    2011-01-01

    The microbiota of the Amazon River basin has been little studied. We compared the structure of bacterial communities of the Solimões and Negro Rivers, the main Amazon River tributaries, based on analysis of 16S rRNA gene sequences. Water was sampled with a 3-L Van Dorn collection bottle; samples were collected at nine different points/depths totaling 27 L of water from each river. Total DNA was extracted from biomass retained by a 0.22-μm filter after sequential filtration of the water through 0.8- and 0.22-μm filters. The 16S rRNA gene was amplified by PCR, cloned and sequenced, and the sequences were analyzed with the PHYLIP and DOTUR programs to obtain the operational taxonomic units (OTUs) and to calculate the diversity and richness indices using the SPADE program. Taxonomic affiliation was determined using the naive Bayesian rRNA Classifier of the RDP II (Ribosomal Database Project). We recovered 158 sequences from the Solimões River grouped into 103 OTUs, and 197 sequences from the Negro River library grouped into 90 OTUs by the DOTUR program. The Solimões River was found to have a greater diversity of bacterial genera, and greater estimated richness of 446 OTUs, compared with 242 OTUs from the Negro River, as calculated by ACE estimator. The Negro River has less bacterial diversity, but more 16S rRNA gene sequences belonging to the bacterial genus Polynucleobacter were detected; 56 sequences from this genus were found (about 30% of the total sequences). We suggest that a more in-depth investigation be made to elucidate the role played by these bacteria in the river environment. These differences in bacterial diversity between Solimões and Negro Rivers could be explained by differences in organic matter content and pH of the rivers. PMID:22183948

  1. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover at the University of Georgia Complex Carbohydrate Research Foundation (UGRF)

    SciTech Connect

    Meagher, R.B.

    1990-07-01

    The experimental approaches which were used to examine RNA turnover outlined in our 1988 proposal are given. The first approach evaluates RNA structure in vivo by chemical modification. The second approach investigates molecular physiology by studying light regulated changes in rbcS RNA turnover rates. The third approach examines the determinants of RNA turnover in transgenic plants by searching for a transgenic system to examine light regulated RNA turnover. The structure of soybean rbcS RNA degradation products was studies in transgenic petunia. The fourth approach investigates the molecular evolution of RbcS sequences. 8 figs. (FL)

  2. Human general transcription factor TFIIA: characterization of a cDNA encoding the small subunit and requirement for basal and activated transcription.

    PubMed Central

    DeJong, J; Bernstein, R; Roeder, R G

    1995-01-01

    The human general transcription factor TFIIA is one of several factors involved in specific transcription by RNA polymerase II, possibly by regulating the activity of the TATA-binding subunit (TBP) of TFIID. TFIIA purified from HeLa extracts consists of 35-, 19-, and 12-kDa subunits. Here we describe the isolation of a cDNA clone (hTFIIA gamma) encoding the 12-kDa subunit. Using expression constructs derived from hTFIIA gamma and TFIIA alpha/beta (which encodes a 55-kDa precursor to the alpha and beta subunits of natural TFIIA), we have constructed a synthetic TFIIA with a polypeptide composition similar to that of natural TFIIA. The recombinant complex supports the formation of a DNA-TBP-TFIIA complex and mediates both basal and Gal4-VP16-activated transcription by RNA polymerase II in TFIIA-depleted nuclear extracts. In contrast, TFIIA has no effect on tRNA and 5S RNA transcription by RNA polymerase III in this system. We also present evidence that both the p55 and p12 recombinant subunits interact with TBP and that the basic region of TBP is critical for the TFIIA-dependent function of TBP in nuclear extracts. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7724559

  3. IDENTIFICATION OF CRYPTOSPORIDIUM SPECIES AND THE SOURCES IN RAW WASTEWATER USING A SMALL SUBUNIT RRNA-BASED PCR-RFLP TOOL

    EPA Science Inventory

    The species composition and source of Cryptosporidium oocysts in wastewater have never been determined, even though it is widely assumed that these oocysts are from human sewage. Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate hum...

  4. Variability of the mitochondrial SSU rDNA of entomopathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hypocrealean arthropod pathogenic fungi have profound impact on the regulation of agricultural and medical pests. However, until now the genetic and phylogenetic relationships among species have not been clarified, such studies could clarify host specificity relationships and define species boundari...

  5. "The Source of Learning Is Thought" Reading the "Chin-ssu lu" (???) with a "Western Eye"

    ERIC Educational Resources Information Center

    Reichenbach, Roland

    2016-01-01

    The contribution focuses on Neo-Confucian texts as collected by Zhu Xi (?? 1130-1200) and Lü Zuqian (1137-1181) and is a look from the "outside", from the perspective of German theories of Bildung ("self-cultivation"). It aims at demonstrating that among other insights that today's readers may gather from Neo-Confucian…

  6. NASA High Energy Space Science E/PO at SSU: Program Overview and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Plait, P.; Cominsky, L.

    2003-12-01

    The NASA Education and Public Outreach (E/PO) Group at Sonoma State University is the lead institution for the E/PO of three high-energy space science missions: Swift, GLAST, and XMM-Newton. We have developed award-winning standards-based formal and informal educational activities (classroom exercises, inquiry-driven games, posters, etc.) for these missions, with many more coming soon. Our primary goal is to teach students about the high-energy end of the electromagnetic spectrum, and the astrophysical objects which emit in that energy range. We will present an overview of our group and our work. This includes our collaborations with other groups, getting mission scientists' input on the projects, and the lessons learned in making effective E/PO products that actually get used by teachers. We will also include a brief overview of the NASA Educator Ambassador program, a new highly-effective effort we have initiated to train top-notch educators from across the country to help us develop, test, and disseminate our products.

  7. Finding of pentastomes of genus Reighardia (Pentastomida) in the Belcher's gull (Larus belcheri).

    PubMed

    Naupay, Asucena I; Cribillero, Nelly G; Lopez-Urbina, Maria T; Gonzalez, Armando E; Gomez-Puerta, Luis A

    2016-06-01

    This report describes the finding of Reighardia sp. (Pentastomida) infecting the air sac of two Belcher's gulls (Larus belcheri) found dead on the beaches of Pucusana, a district in southern Lima, Peru. Three pentastomes were collected from two Belcher's gulls. Then, they were morphologically and molecular analyzed. Molecular characterization of the parasite was achieved by amplifying a fragment of the small subunit ribosomal RNA gene (SSU rRNA). Based on both morphological and molecular data the pentastomes were identified as pentastomes of the genus Reighardia. This is the first report showing that the Belcher's gull is a new natural definitive host for this pentastome. PMID:26892103

  8. A Novel Lineage of 'Naked Filose Amoebae'; Kraken carinae gen. nov. sp. nov. (Cercozoa) with a Remarkable Locomotion by Disassembly of its Cell Body.

    PubMed

    Dumack, Kenneth; Schuster, Julia; Bass, David; Bonkowski, Michael

    2016-06-01

    The term 'filose amoebae' describes a highly polyphyletic assemblage of protists whose phylogenetic placement can be unpredictable based on gross morphology alone. We isolated six filose amoebae from soils of two European countries and describe a new genus and species of naked filose amoebae, Kraken carinae gen. nov. sp. nov. We provide a morphological description based on light microscopy and small subunit rRNA gene sequences (SSU rDNA). In culture, Kraken carinae strains were very slow-moving and preyed on bacteria using a network of filopodia. Phylogenetic analyses of SSU sequences reveal that Kraken are core (filosan) Cercozoa, branching weakly at the base of the cercomonad radiation, most closely related to Paracercomonas, Metabolomonas, and Brevimastigomonas. Some Kraken sequences are >99% similar to an environmental sequence obtained from a freshwater lake in Antarctica, indicating that Kraken is not exclusively soil dwelling, but also inhabits freshwater habitats. PMID:27236418

  9. Molecular phylogenetic relatedness of Frenkelia spp. (Protozoa, Apicomplexa) to Sarcocystis falcatula Stiles 1893: is the genus Sarcocystis paraphyletic?

    PubMed

    Votýpka, J; Hypsa, V; Jirků, M; Flegr, J; Vávra, J; Lukes, J

    1998-01-01

    The coccidians Frenkelia microti and F. glareoli (Apicomplexa: Sarcocystidae) form tissue cysts in the brain of small rodents (intermediate hosts) while oocysts are formed in the intestine of final hosts, buzzards of the genus Buteo. The inclusion of the small subunit ribosomal RNA gene sequences (SSU rRNA) of both Frenkelia species into the SSU rRNA trees of other, tissue cyst-forming coccidia strongly supports paraphyly of the genus Sarcocystis. Frenkelia spp. exhibit close relatedness to Sarcocystis falcatula Stiles 1893, a bird-opossum parasite, recognized under its junior synonym S. neurona Dubey et al. 1991, as the causative agent of equine protozoan myeloencephalitis on the American continent. As the definition of the genus Frenkelia is based on a plesiomorphic character (affinity to the neural tissue) of supposedly low phylogenetic value, the synonymization of the genus Frenkelia with Sarcocystis is proposed. This renders the genus Sarcocystis monophyletic. PMID:9495042

  10. Inferring the Ancient History of the Translation Machinery and Genetic Code via Recapitulation of Ribosomal Subunit Assembly Orders

    PubMed Central

    Fournier, Gregory P.; Neumann, Justin E.; Gogarten, J. Peter

    2010-01-01

    Universally conserved positions in ribosomal proteins have significant biases in amino acid usage, likely indicating the expansion of the genetic code at the time leading up to the most recent common ancestor(s) (MRCA). Here, we apply this principle to the evolutionary history of the ribosome before the MRCA. It has been proposed that the experimentally determined order of assembly for ribosomal subunits recapitulates their evolutionary chronology. Given this model, we produce a probabilistic evolutionary ordering of the universally conserved small subunit (SSU) and large subunit (LSU) ribosomal proteins. Optimizing the relative ordering of SSU and LSU evolutionary chronologies with respect to minimizing differences in amino acid usage bias, we find strong compositional evidence for a more ancient origin for early LSU proteins. Furthermore, we find that this ordering produces several trends in specific amino acid usages compatible with models of genetic code evolution. PMID:20208990

  11. Morphology and molecular phylogeny of two colepid species from China, Coleps amphacanthus Ehrenberg, 1833 and Levicoleps biwae jejuensis Chen et al., 2016 (Ciliophora, Prostomatida)

    PubMed Central

    LU, Bo-Rong; MA, Ming-Zhen; GAO, Feng; SHI, Yu-Hong; CHEN, Xiang-Rui

    2016-01-01

    Two colepid ciliates, Coleps amphacanthus Ehrenberg, 1833 and Levicoleps biwae jejuensis Chen et al., 2016, were first recorded in China. Their living morphology, infraciliature and small subunit (SSU) rRNA gene sequences were determined using standard methods. The improved diagnosis of Coleps amphacanthus is as follows:cell size about 100×50 μm in vivo, barrel-shaped; 22-28 ciliary rows each composed of about 14-21 monokinetids and two perioral dikinetids; 5-10 caudal cilia; and one terminal contractile vacuole. Levicoleps biwae jejuensis was also investigated, with an improved diagnosis given based on previous and present work. The phylogenetic analyses based on SSU rRNA gene sequences revealed that all Coleps species were grouped together, except for Coleps amphacanthus, which was grouped into a clade of the genus Levicoleps. PMID:27265656

  12. Genetic identification of Entamoeba polecki subtype 3 from pigs in Japan and characterisation of its pathogenic role in ulcerative colitis.

    PubMed

    Matsubayashi, Makoto; Murakoshi, Naoko; Komatsu, Tetsuya; Tokoro, Masaharu; Haritani, Makoto; Shibahara, Tomoyuki

    2015-12-01

    To date, three Entamoeba spp. (E. suis, zoonotic E. polecki and E. histolytica) have been identified in pigs, but their pathogenicity and molecular classification have not been fully determined. Examination and pathological analysis of pigs (n=3) with diarrhoea was conducted and revealed the presence of Entamoeba organisms. We performed a genetic analysis of the isolate using the small-subunit ribosomal RNA (SSU rRNA) gene region to identify the species. A severe ulcerative colitis was observed histopathologically with inflammatory cells, including macrophages and neutrophils, infiltrating the mucous membranes of the cecum and colon. Many Entamoeba trophozoites were found at the erosion site or at ulcerative lesions. Pathogenic viruses or bacteria were not detected. The SSU rRNA sequence of the Entamoeba isolate was found to be completely homologous to that of E. polecki subtype 3. PMID:26318541

  13. Scanning electron microscopy and molecular characterization of a new Haplosporidium species (Haplosporidia), a parasite of the marine gastropod Siphonaria pectinata (Mollusca: Gastropoda: Siphonariidae) in the Gulf of Mexico.

    PubMed

    Vea, Isabelle M; Siddall, Mark E

    2011-12-01

    Based on scanning electron microscopy and the small subunit ribosomal RNA (SSU rRNA), Haplosporidium tuxtlensis n. sp. (Haplosporidia), a parasite found in the visceral tissues of the false limpet Siphonaria pectinata (Linnaeus, 1758), is described. The spores are ellipsoidal (3.61 ± 0.15 µm × 2.69 ± 0.19 µm), with a circular lid (2.94 ± 0.5 µm) representing the operculum. The spore wall bears filaments occurring singly, or in clusters, of 2 to 8, fusing distally. Phylogenetic relationships of H. tuxtlensis n. sp. were assessed with other described species using the SSU rRNA sequence. Haplosporidium tuxtlensis n. sp. is sister taxon to Haplosporidium pickfordi Barrow, 1961. The morphological characteristics (spore wall structure, shape, size, and filament structure) and the unique host identity corroborate it as a new species. Additionally, this is the first record of Haplosporidia infecting striped false limpets in the Gulf of Mexico. PMID:21787213

  14. Molecular data and phylogeny of Nosema infecting lepidopteran forest defoliators in the genera Choristoneura and Malacosoma.

    PubMed

    Kyei-Poku, George; Gauthier, Debbie; van Frankenhuyzen, Kees

    2008-01-01

    Nosema isolates from five lepidopteran forest defoliators, Nosema fumiferanae from spruce budworm, Choristoneura fumiferana; a Nosema sp. from jack pine budworm, Choristoneura pinus pinus and western spruce budworm, Choristoneura occidentalis (Nosema sp. CPP and Nosema sp. CO, respectively); Nosema thomsoni from large aspen tortrix, Choristoneura conflictana; and Nosema disstriae, from the forest tent caterpillar, Malacosoma disstria were compared based on their small subunit (SSU) ribosomal RNA (rRNA) gene sequences. Four of the species sequenced, N. fumiferanae, Nosema sp. CPP, Nosema sp. CO, and N. disstriae have a high SSU rDNA sequence identity (0.6%-1.5%) and are members of the "true Nosema" clade. They all showed the reverse arrangement of the (large subunit [LSU]-internal transcribed spacer [ITS]-SSU) of the rRNA gene. The fifth species, N. thomsoni has the usual (SSU-ITS-LSU) arrangement and is not a member of this clade showing only an 82% sequence similarity. We speculate, therefore, that a genetic reversal may have occurred in the common ancestor to the "true Nosema" clade. Although, the mechanism for rearrangement of the rRNA gene subunits is not known we provide a possible explanation for the localization. N. fumiferanae, Nosema sp. CPP, and Nosema sp. CO clustered together on the inferred phylogenetic tree. The high sequence similarities, the reverse arrangement in the rRNA gene subunits, and the phylogenetic clustering suggest that these three species are closely related but separate species. PMID:18251803

  15. Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study.

    PubMed

    Steven, Blaire; Gallegos-Graves, La Verne; Starkenburg, Shawn R; Chain, Patrick S; Kuske, Cheryl R

    2012-04-01

    The extent to which different sequence-based approaches describe environmental microbial communities in comparative studies is an important consideration when deriving inferences from ecological studies. The ability of a targeted metagenomic approach [small subunit (SSU) rRNA pyrosequencing] and shotgun metagenome approaches were compared to identify distinguishing features in dryland soil microbial communities from two different habitats: biological soil crusts (biocrusts) and creosote bush root zones. A parallel comparison was conducted to determine the ability of each approach to detect community differences potentially arising from a more subtle experimental treatment, long-term elevated atmospheric carbon dioxide. As expected, the biocrust datasets were clearly differentiated from root zone datasets using either of the sequencing approaches. However, the composition described by each approach was significantly different. The magnitude of comparative differences due to habitat or elevated CO2 treatment was larger with pyrosequenced SSU datasets or SSU reads recruited from shotgun metagenomes, than from SEED-classified shotgun metagenome reads. Finally, based on prior knowledge of the biocrust communities, the SSU-based datasets more accurately identified the dominant biocrust cyanobacteria sequences compared to the shotgun metagenome datasets. PMID:23757280

  16. Pathway of assembly of ribulosebisphosphate carboxylase/oxygenase from Anabaena 7210 expressed in Escherichia coli

    SciTech Connect

    Gurevitz, M.; Somerville, C.R.; McIntosh, L.

    1985-10-01

    The authors have placed the genes encoding ribulosebisphosphate carboxylase/oxygenase from the Anabaena 7120 operon under transcriptional control of the lac promoter carried on the Escherichia coli plasmid pUC19. The genes encoding both the large and small subunit polypeptides (rbcL and rbcS) are transcribed and translated so that approx. = 0.6% of the soluble protein in E. coli extracts is a fully functional holoenzyme with a sedimentation coefficient of approximately 18S, which contains stoichiometric amounts of the two subunits. However, expression of the large subunit polypeptide vastly exceeds that of the small subunit because the majority of transcripts terminate in the intergenic region between the rbcL and rbcS genes. As a result, excess large subunit is synthesized and accumulates in E. coli as an insoluble and catalytically inactive form. Because small subunit is found only in the high molecular weight soluble form of ribulosebisphosphate carboxylase/oxygenase, the authors propose that the small subunit promotes assembly of the hexadecameric form of the enzyme via heterodimers of large and small subunits.

  17. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera

    PubMed Central

    Aveskamp, M.M.; de Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Crous, P.W.

    2010-01-01

    Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region. A total of 324 strains were included in the analyses of which most belonged to Phoma taxa, whilst 54 to related pleosporalean fungi. In total, 206 taxa were investigated, of which 159 are known to have affinities to Phoma. The phylogenetic analysis revealed that the current Boeremaean subdivision is incorrect from an evolutionary point of view, revealing the genus to be highly polyphyletic. Phoma species are retrieved in six distinct clades within the Pleosporales, and appear to reside in different families. The majority of the species, however, including the generic type, clustered in a recently established family, Didymellaceae. In the second part of this study, the phylogenetic variation of the species and varieties in this clade was further assessed. Next to the genus Didymella, which is considered to be the sole teleomorph of Phoma s. str., we also retrieved taxa belonging to the teleomorph genera

  18. Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments

    PubMed Central

    Allen, Doug K; Laclair, Russell W; Ohlrogge, John B; Shachar-Hill, Yair

    2012-01-01

    The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynthesis. To explore the extent to which amino acids are made in single compartments and to gain insight into the metabolic precursors from which they derive, we used steady state 13C labelling and analysed labelling in protein amino acids from plastid and cytosol. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major component of green tissues and its large and small subunits are synthesized from different pools of amino acids in the plastid and cytosol, respectively. Developing Brassica napus embryos were cultured in the presence of [U-13C]-sucrose, [U-13C]-glucose, [U-13C]-glutamine or [U-13C]-alanine to generate proteins. The large subunits (LSU) and small subunits (SSU) of Rubisco were isolated and the labelling in their constituent amino acids was analysed by gas chromatography-mass spectrometry. Amino acids including alanine, glycine and serine exhibited different 13C enrichment in the LSU and SSU, demonstrating that these pools have different metabolic origins and are not isotopically equilibrated between the plastid and cytosol on the time scale of cellular growth. Potential extensions of this novel approach to other macromolecules, organelles and cell types of eukaryotes are discussed. PMID:22292468

  19. Taxonomy and Phylogeny of Polyporus Group Melanopus (Polyporales, Basidiomycota) from China.

    PubMed

    Zhou, Jun-Liang; Zhu, Lin; Chen, Hong; Cui, Bao-Kai

    2016-01-01

    Melanopus is a morphological group of Polyporus which contains species with a black cuticle on the stipe. In this article, taxonomic and phylogenetic studies on Melanopus group were carried out on the basis of morphological characters and phylogenetic evidence of DNA sequences of multiple loci including the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), the small subunit nuclear ribosomal RNA gene (nSSU), the small subunit mitochondrial rRNA gene sequences (mtSSU), the translation elongation factor 1-α gene (EF1-α), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and β-tubulin gene sequences (β-tubulin). The phylogenetic result confirmed that the previously so-called Melanopus group is not a monophyletic assemblage, and species in this group distribute into two distinct clades: the Picipes clade and the Squamosus clade. Four new species of Picipes are described, and nine new combinations are proposed. A key to species of Picipes is provided. PMID:27486931

  20. Taxonomy and Phylogeny of Polyporus Group Melanopus (Polyporales, Basidiomycota) from China

    PubMed Central

    Zhou, Jun-Liang; Zhu, Lin; Chen, Hong; Cui, Bao-Kai

    2016-01-01

    Melanopus is a morphological group of Polyporus which contains species with a black cuticle on the stipe. In this article, taxonomic and phylogenetic studies on Melanopus group were carried out on the basis of morphological characters and phylogenetic evidence of DNA sequences of multiple loci including the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), the small subunit nuclear ribosomal RNA gene (nSSU), the small subunit mitochondrial rRNA gene sequences (mtSSU), the translation elongation factor 1-α gene (EF1-α), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and β-tubulin gene sequences (β-tubulin). The phylogenetic result confirmed that the previously so-called Melanopus group is not a monophyletic assemblage, and species in this group distribute into two distinct clades: the Picipes clade and the Squamosus clade. Four new species of Picipes are described, and nine new combinations are proposed. A key to species of Picipes is provided. PMID:27486931

  1. Detection of a new microsporidium Perezia sp. in shrimps Penaeus monodon and P. indicus by histopathology, in situ hybridization and PCR.

    PubMed

    Han, Jee Eun; Tang, Kathy F J; Pantoja, Carlos R; Lightner, Donald V; Redman, Rita M; Le Groumellec, Marc

    2016-07-01

    Samples of microsporidia-infected shrimps exhibiting clinical signs of cotton shrimp disease were collected from Madagascar, Mozambique, and the Kingdom of Saudi Arabia from 2005 to 2014. The tails of the infected shrimps appeared opaque and whitish; subsequent histological examination revealed the presence of cytoplasmic inclusions and mature spores in tissues of the muscle, hepatopancreas, gills, heart, and lymphoid organ. PCR analysis targeting the small subunit rDNA (SSU rDNA) from infected samples resulted in the amplification of a 1.2 kbp SSU rDNA sequence fragment 94% identical to the corresponding region in the genome of the microsporidian Perezia nelsoni, which infects populations of Penaeus setiferus in the USA. Its SSU rDNA sequence was 100% identical among isolates from Madagascar and Saudi Arabia, indicating that shrimps from the Red Sea and Indian Ocean were infected with the same microsporidium, the novel Perezia sp. A 443 bp fragment of the SSU rDNA sequence was cloned, labeled with digoxigenin and subjected to an in situ hybridization assay with tissue sections of Perezia sp.-infected Penaeus monodon from Madagascar and Mozambique, and P. indicus from Saudi Arabia. The probe hybridized to the mature spores in the hepatopancreas and muscle from which the spores had been obtained for DNA isolation. This assay was specific, showing no reaction to another microsporidium, Enterocytozoon hepatopenaei (EHP), infecting the hepatopancreas of shrimp P. stylirostris cultured in SE Asian countries. We also developed an SSU rDNA-based PCR assay, specific for the novel Perezia sp. This PCR did not react to EHP, nor to genomic DNA of shrimp and other invertebrates. PMID:27409240

  2. Diversity of host species and strains of Pneumocystis carinii is based on rRNA sequences.

    PubMed Central

    Shah, J S; Pieciak, W; Liu, J; Buharin, A; Lane, D J

    1996-01-01

    We have amplified by PCR Pneumocystis carinii cytoplasmic small-subunit rRNA (variously referred to as 16S-like or 18S-like rRNA) genes from DNA extracted from bronchoalveolar lavage and induced sputum specimens from patients positive for P. carinii and from infected ferret lung tissue. The amplification products were cloned into pUC18, and individual clones were sequenced. Comparison of the determined sequences with each other and with published rat and partial human P.carinii small-subunit rRNA gene sequences reveals that, although all P. carinii small-subunit rRNAs are closely related (approximately 96% identity), small-subunit rRNA genes isolated from different host species (human, rat, and ferret) exhibit distinctive patterns of sequence variation. Two types of sequences were isolated from the infected ferret lung tissue, one as a predominant species and the other as a minor species. There was 96% identity between the two types. In situ hybridization of the infected ferret lung tissue with oligonucleotide probes specific for each type revealed that there were two distinct strains of P. carinii present in the ferret lung tissue. Unlike the ferret P. carinii isolates, the small-subunit rRNA gene sequences from different human P. carinii isolates have greater than 99% identity and are distinct from all rat and ferret sequences so far inspected or reported in the literature. Southern blot hybridization analysis of PCR amplification products from several additional bronchoalveolar lavage or induced sputum specimens from P. carinii-infected patients, using a 32P-labeled oligonucleotide probe specific for human P. carinii, also suggests that all of the human P. carinii isolates are identical. These findings indicate that human P. carinii isolates may represent a distinct species of P. carinii distinguishable from rat and ferret P. carinii on the basis of characterization of small-subunit rRNA gene sequences. PMID:8770515

  3. Ancient Mitochondrial DNA Analyses of Ascaris Eggs Discovered in Coprolites from Joseon Tomb

    PubMed Central

    Oh, Chang Seok; Seo, Min; Hong, Jong Ha; Chai, Jong-Yil; Oh, Seung Whan; Park, Jun Bum; Shin, Dong Hoon

    2015-01-01

    Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples. PMID:25925186

  4. Ancient mitochondrial DNA analyses of ascaris eggs discovered in coprolites from joseon tomb.

    PubMed

    Oh, Chang Seok; Seo, Min; Hong, Jong Ha; Chai, Jong-Yil; Oh, Seung Whan; Park, Jun Bum; Shin, Dong Hoon

    2015-04-01

    Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples. PMID:25925186

  5. Thelohania parastaci sp. nov. (Microspora: Thelohaniidae), a parasite of the Australian freshwater crayfish, Cherax destructor (Decapoda: Parastacidae).

    PubMed

    Moodie, Elizabeth G; Le Jambre, Leo F; Katz, Margaret E

    2003-09-01

    Thelohania parastaci sp. nov. infects the Australian freshwater crayfish, Cherax destructor. Data on morphology, developmental patterns and sequences from the small subunit (SSU) and internal transcribed spacer (ITS) regions of the ribosomal DNA (rDNA) of T. parastaci sp. nov. are described. The ultrastructural features of different life cycle stages are very similar to those of the European crayfish parasite Thelohania contejeani. T. parastaci sp. nov. exhibits simultaneous dimorphic sporogony in muscle tissue. Meronts, sporonts and spores are found in muscle tissue, within haemocytes in the hepatopancreas, and in the intestinal wall of infected crayfish. T. parastaci sp. nov. shows 92% sequence identity with T. contejeani and only 67% sequence identity with the fire ant pathogen T. solenopsae, when SSU rDNA sequences are compared. Analysis of SSU rDNA and ITS sequences of T. parastaci sp. nov. from crayfish from Victoria, Western Australia, and New South Wales indicate that the parasite has a wide geographical distribution in Australia. PMID:12923627

  6. Encephalomyelitis associated with microsporidian infection in farmed greater amberjack, Seriola dumerili (Risso).

    PubMed

    Miwa, S; Kamaishi, T; Hirae, T; Murase, T; Nishioka, T

    2011-12-01

    An outbreak of a disease characterized by a peculiar spiral movement in farmed greater amberjack, Seriola dumerili (Risso), occurred in Kagoshima Prefecture, Japan, in May 2008, immediately after importing the fish from China. Although neither bacteria nor viruses were detected in routine diagnostic tests, histopathological observations of the affected fish revealed severe inflammation in the tegmentum of the brain including the medulla oblongata and the anterior part of the spinal cord. In addition, a microsporidian parasite was observed in the nerve cell bodies or axons in the inflamed tissues. We identified a microsporidian small subunit rRNA gene (SSU rDNA) from the lesion, and the sequence showed 96.1% identity with that of Spraguea lophii. Subsequent in situ hybridization using probes presumably specific to the SSU rRNA confirmed that the parasite observed in histopathology harboured the identified SSU rRNA. Apparently degenerated microsporidian cells or spores were also frequently observed in tissue sections. Thus, the disease was most probably caused by the infection of a hitherto unknown microsporidian parasite that has a genetic affinity to the genus Spraguea, in the central nervous system of the amberjack. PMID:22074018

  7. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities.

    PubMed

    Jensen, Sigmund; Lynch, Michael D J; Ray, Jessica L; Neufeld, Josh D; Hovland, Martin

    2015-10-01

    Deep-sea coral reefs do not receive sunlight and depend on plankton. Little is known about the plankton composition at such reefs, even though they constitute habitats for many invertebrates and fish. We investigated plankton communities from three reefs at 260-350 m depth at hydrocarbon fields off the mid-Norwegian coast using a combination of cultivation and small subunit (SSU) rRNA gene and transcript sequencing. Eight months incubations of a reef water sample with minimal medium, supplemented with carbon dioxide and gaseous alkanes at in situ-like conditions, enabled isolation of mostly Alphaproteobacteria (Sulfitobacter, Loktanella), Gammaproteobacteria (Colwellia) and Flavobacteria (Polaribacter). The relative abundance of isolates in the original sample ranged from ∼ 0.01% to 0.80%. Comparisons of bacterial SSU sequences from filtered plankton of reef and non-reef control samples indicated high abundance and metabolic activity of primarily Alphaproteobacteria (SAR11 Ia), Gammaproteobacteria (ARCTIC96BD-19), but also of Deltaproteobacteria (Nitrospina, SAR324). Eukaryote SSU sequences indicated metabolically active microalgae and animals, including codfish, at the reef sites. The plankton community composition varied between reefs and differed between DNA and RNA assessments. Over 5000 operational taxonomic units were detected, some indicators of reef sites (e.g. Flavobacteria, Cercozoa, Demospongiae) and some more active at reef sites (e.g. Gammaproteobacteria, Ciliophora, Copepoda). PMID:24911121

  8. Redefinition of Nosema pyrausta (Perezia pyraustae Paillot 1927) basing upon ultrastructural and molecular phylogenetic studies.

    PubMed

    Tokarev, Yuri S; Malysh, Julia M; Kononchuk, Anastasia G; Seliverstova, Elena V; Frolov, Andrei N; Issi, Irma V

    2015-02-01

    Populations of European corn borer (Ostrinia nubilalis Hübner) from Krasnodar Territory (Southwestern Russia) become regularly infected with Nosema-like microsporidia. To identify the parasite, it was subjected to electron microscopy and small subunit ribosomal RNA (SSU rRNA) gene sequencing. The spore ultrastructure of the parasite was highly similar to Nosema bombycis from China and Nosema pyrausta from the USA. The nucleotide sequence of SSU rRNA gene was identical to a microsporidium isolated from O. nubilalis in southern France (GenBank accession no. HM566196) and closely related to Nosema bombycis (no. AY209011, 99.7 % sequence similarity) from Bombyx mori of Chinese origin and N. pyrausta (no. AY958071) from O. nubilalis of North American origin. As the molecular haplotype of SSU rRNA is fixed for the parasite infecting O. nubilalis across Europe and N. pyrausta was initially described in France as Perezia pyraustae (Paillot CR Acad Sci Paris 185: 673-675, 1927), we conclude that the parasite examined under the present study correspond to the type isolate of N. pyrausta. The microsporidium from O. nubilalis in North America (no. AY958071) corresponds therefore to a closely related, yet distinct haplotype. PMID:25563606

  9. Phylogenetic relationships of three new microsporidian isolates from the silkworm, Bombyx mori.

    PubMed

    Nageswara Rao, S; Muthulakshmi, M; Kanginakudru, S; Nagaraju, J

    2004-07-01

    The pathogenicity, mode of transmission, tissue specificity of infection and the small subunit rRNA (SSU-rRNA) gene sequences of the three new microsporidian isolates from the silkworm Bombyx mori were studied. Out of the three, NIK-2r revealed life cycle features and SSU-rRNA gene sequence similar to Nosema bombycis, suggesting that it is N. bombycis. The other two, NIK-4m and NIK-3h, differed from each other as well as from N. bombycis. NIK-4m was highly pathogenic and did not show any vertical transmission, in accordance with the apparent lack of gonadal infection, whereas NIK-3h was less pathogenic and vertical transmission was not detected but could not be excluded. Phylogenetic analysis based on SSU-rRNA gene sequence placed NIK-3h and NIK-4m in a distinct clade that included almost all the Vairimorpha species and Nosema species that infect lepidopteran and non-lepidopteran hosts, while NIK-2r was included in a clade containing almost all the Nosema isolates that infect only lepidopteran hosts. Thus, we have presented molecular evidence that one of the three isolates is in fact the type species N. bombycis, while the other two isolates are Vairimorpha spp. There was distinct separation of microsporidian isolates infecting only lepidopteran hosts and those infecting lepidopteran and non-lepidopteran hosts, reflecting possible co-evolution of hosts and microsporidian isolates. PMID:15261772

  10. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems.

    PubMed

    Lawson, Christopher E; Strachan, Blake J; Hanson, Niels W; Hahn, Aria S; Hall, Eric R; Rabinowitz, Barry; Mavinic, Donald S; Ramey, William D; Hallam, Steven J

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems. PMID:25857222

  11. Monophyly or polyphyly? Possible conflict between morphological and molecular interpretations of the well-known genus Zoothamnium (Ciliophora, Peritrichia)

    NASA Astrophysics Data System (ADS)

    Li, Lifang; Ma, Honggang; Al-Rasheid, Khaled A. S.

    2015-03-01

    In this paper, we explore possible conflict between morphological and molecular interpretations of phylogenetic relationships within the well-known peritrichous genus Zoothamnium. On the basis of morphological evidence, for a long time this genus has been believed to be a well-defined monophyletic taxon. Nonetheless, Zoothamnium exhibits higher genetic diversity than the gross morphology of its species. Here, we used all available genetic information for the small subunit of ribosomal RNA (SSU rRNA) and internal transcribed spacer region (ITS1-5.8S-ITS2) for this genus to reconstruct phylogenies for four datasets (SSU rRNA, ITS1, ITS2, and ITS1-5.8S-ITS2) and a combined dataset (SSU rRNA+ITS1-5.8SITS2) using different phylogenetic methods and with consideration of the secondary structure of the genes. Confidence in phylogenetic tree selection was assessed with the approximately unbiased test. The molecular results showed both that Zoothamnium is more likely to be polyphyletic, and morphologically similar genera Zoothamnopsis and Myoschiston were always nested among Zoothamnium species. Accordingly, as with some other groups of ciliates, to understand more fully the correct phylogeny of Zoothamnium there remains a need for additional data from both morphological and molecular studies, covering additional Zoothamnium spp. and members of closely related genera (e.g. Zoothamnopsis, Myoschiston, and Epistylis).

  12. Nitrospira-dominated biofilm within a thermal artesian spring: a case for nitrification-driven primary production in a geothermal setting.

    PubMed

    Marks, C R; Stevenson, B S; Rudd, S; Lawson, P A

    2012-09-01

    Water chemistry, energetic modeling, and molecular analyses were combined to investigate the microbial ecology of a biofilm growing in a thermal artesian spring within Hot Springs National Park, AR. This unique fresh water spring has a low dissolved chemical load and is isolated from both light and direct terrestrial carbon input - resulting in an oligotrophic ecosystem limited for fixed carbon and electron donors. Evaluation of energy yields of lithotrophic reactions putatively linked to autotrophy identified the aerobic oxidation of methane, hydrogen, sulfide, ammonia, and nitrite as the most exergonic. Small subunit (SSU) rRNA gene libraries from biofilm revealed a low-diversity microbial assemblage populated by bacteria and archaea at a gene copy ratio of 45:1. Members of the bacterial family 'Nitrospiraceae', known for their autotrophic nitrite oxidation, dominated the bacterial SSU rRNA gene library (approximately 45%). Members of the Thaumarchaeota ThAOA/HWCGIII (>96%) and Thaumarchaeota Group I.1b (2.5%), which both contain confirmed autotrophic ammonia oxidizers, dominated the archaeal SSU rRNA library. Archaea appear to dominate among the ammonia oxidizers, as only ammonia monooxygenase subunit A (amoA) genes belonging to members of the Thaumarchaeota were detected. The geochemical, phylogenetic, and genetic data support a model that describes a novel thermophilic biofilm built largely by an autotrophic nitrifying microbial assemblage. This is also the first observation of 'Nitrospiraceae' as the dominant organisms within a geothermal environment. PMID:22726612

  13. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-01-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  14. Two-Gene Phylogeny of Bright-Spored Myxomycetes (Slime Moulds, Superorder Lucisporidia)

    PubMed Central

    Fiore-Donno, Anna Maria; Clissmann, Fionn; Meyer, Marianne; Schnittler, Martin; Cavalier-Smith, Thomas

    2013-01-01

    Myxomycetes, or plasmodial slime-moulds, are one of the largest groups in phylum Amoebozoa. Nonetheless, only ∼10% are in the database for the small subunit (SSU) ribosomal RNA gene, the most widely used gene for phylogenetics and barcoding. Most sequences belong to dark-spored Myxomycetes (order Fuscisporida); the 318 species of superorder Lucisporidia (bright-spored) are represented by only eleven genuine sequences. To compensate for this, we provide 66 new sequences, 37 SSU rRNA and 29 elongation factor 1-alpha (EF-1α), for 82% of the genera of Lucisporidia. Phylogenetic analyses of single- and two-gene alignments produce congruent topologies and reveal both morphological characters that have been overemphasised and those that have been overlooked in past classifications. Both classical orders, Liceida and Trichiida, and several families and genera are para/polyphyletic; some previously unrecognised clades emerge. We discuss possible evolutionary pathways. Our study fills a gap in the phylogeny of Amoebozoa and provides an extensive SSU rRNA sequence reference database for environmental sampling and barcoding. We report a new group I intron insertion site for Myxomycetes in one Licea. PMID:23667494

  15. Molecular identification of the Cryptosporidium deer genotype in the Hokkaido sika deer (Cervus nippon yesoensis) in Hokkaido, Japan.

    PubMed

    Kato, Satomi; Yanagawa, Yojiro; Matsuyama, Ryota; Suzuki, Masatsugu; Sugimoto, Chihiro

    2016-04-01

    The protozoan Cryptosporidium occurs in a wide range of animal species including many Cervidae species. Fecal samples collected from the Hokkaido sika deer (Cervus nippon yesoensis), a native deer of Hokkaido, in the central, western, and eastern areas of Hokkaido were examined by polymerase chain reaction (PCR) to detect infections with Cryptosporidium and for sequence analyses to reveal the molecular characteristics of the amplified DNA. DNA was extracted from 319 fecal samples and examined with PCR using primers for small-subunit ribosomal RNA (SSU-rRNA), actin, and 70-kDa heat shock protein (HSP70) gene loci. PCR-amplified fragments were sequenced and phylogenetic trees were created. In 319 fecal samples, 25 samples (7.8 %) were positive with SSU-rRNA PCR that were identified as the Cryptosporidium deer genotype. Among Cryptosporidium-positive samples, fawns showed higher prevalence (16.1 %) than yearlings (6.4 %) and adults (4.7 %). The result of Fisher's exact test showed a statistical significance in the prevalence of the Cryptosporidium deer genotype between fawn and other age groups. Sequence analyses with actin and HSP70 gene fragments confirmed the SSU-rRNA result, and there were no sequence diversities observed. The Cryptosporidium deer genotype appears to be the prevalent Cryptosporidium species in the wild sika deer in Hokkaido, Japan. PMID:26687968

  16. Genetic characterization of Moniezia species in Senegal and Ethiopia.

    PubMed

    Diop, Gora; Yanagida, Tetsuya; Hailemariam, Zerihun; Menkir, Sissay; Nakao, Minoru; Sako, Yasuhito; Ba, Cheikh Tidiane; Ito, Akira

    2015-10-01

    Genetic diversity of Moniezia spp. from domestic ruminants in Senegal and Ethiopia was investigated based on the nucleotide sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear small subunit ribosomal RNA gene (SSU rDNA). A total of 64 adult tapeworms were collected from sheep, goat and cattle, and the tapeworms from cattle were all morphologically identified as Moniezia benedeni. On the other hand, the tapeworms obtained from sheep and goat were identified as Moniezia expansa or could not be identified because of the lack of diagnostic morphologic character, i.e. interproglottidal glands (IPGs). Phylogenetic analysis based on cox1 gene sequences revealed that the worms from sheep/goat and cattle formed distinct clades, and three mitochondrial lineages were confirmed within the sheep/goat tapeworms. The maximum pairwise divergences among the three mitochondrial linages were about 3% in cox1 and 0.1% in SSU rDNA, while that between the worms from sheep/goat and cattle reached 13% in cox1 and 2.7% in SSU rDNA. All of the three mitochondrial lineages contained tapeworms morphologically identified as M. expansa, and the tapeworms without IPGs were confirmed in one of the three lineages, indicating the tapeworms without IPGs were also M. expansa. PMID:25752566

  17. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-09-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  18. Technical considerations in the use of 18s rRNA in gene expression studies

    EPA Science Inventory

    Gene expression analysis is now commonly used in ecotoxicological studies to indicate exposure of an organism to xenobiotics. For example, the vitellogenin gene is used to diagnose exposure of fish to environmental estrogens. Reverse transcription polymerase chain reaction (RT-PC...

  19. Differential Effects of Munc18s on Multiple Degranulation-Relevant Trans-SNARE Complexes

    PubMed Central

    Xu, Hao; Arnold, Matthew Grant; Kumar, Sushmitha Vijay

    2015-01-01

    Mast cell exocytosis, which includes compound degranulation and vesicle-associated piecemeal degranulation, requires multiple Q- and R- SNAREs. It is not clear how these SNAREs pair to form functional trans-SNARE complexes and how these trans-SNARE complexes are selectively regulated for fusion. Here we undertake a comprehensive examination of the capacity of two Q-SNARE subcomplexes (syntaxin3/SNAP-23 and syntaxin4/SNAP-23) to form fusogenic trans-SNARE complexes with each of the four granule-borne R-SNAREs (VAMP2, 3, 7, 8). We report the identification of at least six distinct trans-SNARE complexes under enhanced tethering conditions: i) VAMP2/syntaxin3/SNAP-23, ii) VAMP2/syntaxin4/SNAP-23, iii) VAMP3/syntaxin3/SNAP-23, iv) VAMP3/syntaxin4/SNAP-23, v) VAMP8/syntaxin3/SNAP-23, and vi) VAMP8/syntaxin4/SNAP-23. We show for the first time that Munc18a operates synergistically with SNAP-23-based non-neuronal SNARE complexes (i to iv) in lipid mixing, in contrast to Munc18b and c, which exhibit no positive effect on any SNARE combination tested. Pre-incubation with Munc18a renders the SNARE-dependent fusion reactions insensitive to the otherwise inhibitory R-SNARE cytoplasmic domains, suggesting a protective role of Munc18a for its cognate SNAREs. Our findings substantiate the recently discovered but unexpected requirement for Munc18a in mast cell exocytosis, and implicate post-translational modifications in Munc18b/c activation. PMID:26384026

  20. Dynamics of ribosome scanning and recycling revealed by translation complex profiling.

    PubMed

    Archer, Stuart K; Shirokikh, Nikolay E; Beilharz, Traude H; Preiss, Thomas

    2016-07-28

    Regulation of messenger RNA translation is central to eukaryotic gene expression control. Regulatory inputs are specified by them RNA untranslated regions (UTRs) and often target translation initiation. Initiation involves binding of the 40S ribosomal small subunit (SSU) and associated eukaryotic initiation factors (eIFs)near the mRNA 5′ cap; the SSU then scans in the 3′ direction until it detects the start codon and is joined by the 60S ribosomal large subunit (LSU) to form the 80S ribosome. Scanning and other dynamic aspects of the initiation model have remained as conjectures because methods to trap early intermediates were lacking. Here we uncover the dynamics of the complete translation cycle in live yeast cells using translation complex profile sequencing (TCP-seq), a method developed from the ribosome profiling approach. We document scanning by observing SSU footprints along 5′ UTRs. Scanning SSU have 5′-extended footprints (up to~75 nucleotides), indicative of additional interactions with mRNA emerging from the exit channel, promoting forward movement. We visualized changes in initiation complex conformation as SSU footprints coalesced into three major sizes at start codons (19, 29 and 37 nucleotides). These share the same 5′ start site but differ at the 3′ end, reflecting successive changes at the entry channel from an open to a closed state following start codon recognition. We also observe SSU 'lingering' at stop codons after LSU departure. Our results underpin mechanistic models of translation initiation and termination, built on decades of biochemical and structural investigation, with direct genome-wide in vivo evidence. Our approach captures ribosomal complexes at all phases of translation and will aid in studying translation dynamics in diverse cellular contexts. Dysregulation of translation is common in disease and, for example, SSU scanning is a target of anti-cancer drug development. TCP-seq will prove useful in discerning differences

  1. Characterization of Giardia lamblia genotypes in dogs from Tucson, Arizona using SSU-rRNA and β-giardin sequences.

    PubMed

    Johansen, K M; Castro, N S; Lancaster, K E; Madrid, E; Havas, A; Simms, J; Sterling, C R

    2014-01-01

    The objective of this study was to determine if human genotypes of Giardia lamblia could be found in canine companion animals from urban and peri-urban environments in Tucson, Arizona. Canine fecal samples collected from the Humane Society of Southern Arizona between July 2006 and April 2009 were screened for G. lamblia infection using immunofluorescent microscopy and confirmed by polymerase chain reaction (PCR). Of the 672 samples screened, 196 were found positive by IFA and 185 of those positive were successfully amplified through PCR. Sequencing analysis showed samples were primarily of the C or D genotypes (n =154), or showing a mix of the C and D genotypes (n =10). One sample showed a mixed infection of a human genotype (A) and a dog-specific genotype (C). These data are consistent with previous studies showing dog specific genotypes to be dominant in environments where dog-to-dog transmission is likely to occur, and provides further evidence that multiple genes should be targeted for more accurate genotype characterization. PMID:24233408

  2. Morphological Description and Molecular Phylogeny of Two Species of Levicoleps (Ciliophora, Prostomatida), L. taehwae nov. spec. and L. biwae jejuensis nov. subspec., collected in Korea.

    PubMed

    Chen, Xiangrui; Shazib, Shahed Uddin Ahmed; Kim, Ji Hye; Jang, Seok Won; Shin, Mann Kyoon

    2016-07-01

    Two colepid ciliates, Levicoleps taehwae nov. spec. and L. biwae jejuensis nov. subspec., were collected from the brackish water of the Taehwa River and a small freshwater pond in Jeju Island, South Korea, respectively. Their living morphology, infraciliature, and small subunit (SSU) rRNA gene sequences were determined using standard methods. Barrel-shaped L. taehwae nov. spec. is a small ciliate with an average size of 45 × 25 μm in vivo, about 15 ciliary rows each composed of 12 monokinetids and two perioral dikinetids, and two 20 μm-long caudal cilia. The sequence length and GC content of the SSU rRNA gene are 1,669 bp, 44.5%. This novel species is similar in body size to Coleps hirtus, and has six armor tiers and hirtus-type tier plates, and the same number of ciliary rows as C. hirtus; however, it can be distinguished from the latter by the absence of armor spines and its sequence similarity of SSU rRNA gene is about 92.8% which indicates that it is a distinct form. Levicoleps biwae jejuensis nov. subspec., is a medium colepid ciliate which has a barrel-shaped body, about 22 somatic kineties and 16 transverse ciliary rows, three mini adoral organelles, and four 15 μm-long caudal cilia. The sequence length and GC content of the SSU rRNA gene are 1,666 bp and 44.4%. PMID:26679511

  3. Microbial Composition of Near-Boiling Silica-Depositing Thermal Springs throughout Yellowstone National Park

    PubMed Central

    Blank, Carrine E.; Cady, Sherry L.; Pace, Norman R.

    2002-01-01

    The extent of hyperthermophilic microbial diversity associated with siliceous sinter (geyserite) was characterized in seven near-boiling silica-depositing springs throughout Yellowstone National Park using environmental PCR amplification of small-subunit rRNA genes (SSU rDNA), large-subunit rDNA, and the internal transcribed spacer (ITS). We found that Thermocrinis ruber, a member of the order Aquificales, is ubiquitous, an indication that primary production in these springs is driven by hydrogen oxidation. Several other lineages with no known close relatives were identified that branch among the hyperthermophilic bacteria. Although they all branch deep in the bacterial tree, the precise phylogenetic placement of many of these lineages is unresolved at this time. While some springs contained a fair amount of phylogenetic diversity, others did not. Within the same spring, communities in the subaqueous environment were not appreciably different than those in the splash zone at the edge of the pool, although a greater number of phylotypes was found along the pool's edge. Also, microbial community composition appeared to have little correlation with the type of sinter morphology. The number of cell morphotypes identified by fluorescence in situ hybridization and scanning electron microscopy was greater than the number of phylotypes in SSU clone libraries. Despite little variation in Thermocrinis ruber SSU sequences, abundant variation was found in the hypervariable ITS region. The distribution of ITS sequence types appeared to be correlated with distinct morphotypes of Thermocrinis ruber in different pools. Therefore, species- or subspecies-level divergences are present but not detectable in highly conserved SSU sequences. PMID:12324363

  4. The Phylogenetic Diversity of Metagenomes

    PubMed Central

    Kembel, Steven W.; Eisen, Jonathan A.; Pollard, Katherine S.; Green, Jessica L.

    2011-01-01

    Phylogenetic diversity—patterns of phylogenetic relatedness among organisms in ecological communities—provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context. PMID:21912589

  5. The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease

    PubMed Central

    Elson, Joanna L.; Smith, Paul M.; Greaves, Laura C.; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M.A.; Taylor, Robert W.; Vila-Sanjurjo, Antón

    2015-01-01

    Mitochondrial DNA mutations are well recognized as an important cause of disease, with over two hundred variants in the protein encoding and mt-tRNA genes associated with human disorders. In contrast, the two genes encoding the mitochondrial rRNAs (mt-rRNAs) have been studied in far less detail. This is because establishing the pathogenicity of mt-rRNA mutations is a major diagnostic challenge. Only two disease causing mutations have been identified at these loci, both mapping to the small subunit (SSU). On the large subunit (LSU), however, the evidence for the presence of pathogenic LSU mt-rRNA changes is particularly sparse. We have previously expanded the list of deleterious SSU mt-rRNA mutations by identifying highly disruptive base changes capable of blocking the activity of the mitoribosomal SSU. To do this, we used a new methodology named heterologous inferential analysis (HIA). The recent arrival of near-atomic-resolution structures of the human mitoribosomal LSU, has enhanced the power of our approach by permitting the analysis of the corresponding sites of mutation within their natural structural context. Here, we have used these tools to determine whether LSU mt-rRNA mutations found in the context of human disease and/or ageing could disrupt the function of the mitoribosomal LSU. Our results clearly show that, much like the for SSU mt-rRNA, LSU mt-rRNAs mutations capable of compromising the function of the mitoribosomal LSU are indeed present in clinical samples. Thus, our work constitutes an important contribution to an emerging view of the mitoribosome as an important element in human health. PMID:26349026

  6. Myxobolus cerebralis internal transcribed spacer 1 (ITS-1) sequences support recent spread of the parasite to North America and within Europe

    USGS Publications Warehouse

    Whipps, C.M.; El-Matbouli, M.; Hedrick, R.P.; Blazer, V.; Kent, M.L.

    2004-01-01

    Molecular approaches for resolving relationships among the Myxozoa have relied mainly on small subunit (SSU) ribosomal DNA (rDNA) sequence analysis. This region of the gene is generally used for higher phylogenetic studies, and the conservative nature of this gene may make it inadequate for intraspecific comparisons. Previous intraspecific studies of Myxobolus cerebralis based on molecular analyses reported that the sequence of SSU rDNA and the internal transcribed spacer (ITS) were highly conserved in representatives of the parasite from North America and Europe. Considering that the ITS is usually a more variable region than the SSU, we reanalyzed available sequences on GenBank and obtained sequences from other M. cerebralis representatives from the states of California and West Virginia in the USA and from Germany and Russia. With the exception of 7 base pairs, most of the sequence designated as ITS-1 in GenBank was a highly conserved portion of the rDNA near the 3-prime end of the SSU region. Nonetheless, the additional ITS-1 sequences obtained from the available geographic representatives were well conserved. It is unlikely that we would have observed virtually identical ITS-1 sequences between European and American M. cerebralis samples had it spread naturally over time, particularly when compared to the variation seen between isolates of another myxozoan (Kudoa thyrsites) that has most likely spread naturally. These data further support the hypothesis that the current distribution of M. cerebralis in North America is a result of recent introductions followed by dispersal via anthropogenic means, largely through the stocking of infected trout for sport fishing.

  7. Myxobolus cerebralis internal transcribed spacer 1 (ITS-1) sequences support recent spread of the parasite to North America and within Europe.

    PubMed

    Whipps, Christopher M; El-Matbouli, Mansour; Hedrick, Ronald P; Blazer, Vicki; Kent, Michael L

    2004-08-01

    Molecular approaches for resolving relationships among the Myxozoa have relied mainly on small subunit (SSU) ribosomal DNA (rDNA) sequence analysis. This region of the gene is generally used for higher phylogenetic studies, and the conservative nature of this gene may make it inadequate for intraspecific comparisons. Previous intraspecific studies of Myxobolus cerebralis based on molecular analyses reported that the sequence of SSU rDNA and the internal transcribed spacer (ITS) were highly conserved in representatives of the parasite from North America and Europe. Considering that the ITS is usually a more variable region than the SSU, we reanalyzed available sequences on GenBank and obtained sequences from other M. cerebralis representatives from the states of California and West Virginia in the USA and from Germany and Russia. With the exception of 7 base pairs, most of the sequence designated as ITS-1 in GenBank was a highly conserved portion of the rDNA near the 3-prime end of the SSU region. Nonetheless, the additional ITS-1 sequences obtained from the available geographic representatives were well conserved. It is unlikely that we would have observed virtually identical ITS-1 sequences between European and American M. cerebralis samples had it spread naturally over time, particularly when compared to the variation seen between isolates of another myxozoan (Kudoa thyrsites) that has most likely spread naturally. These data further support the hypothesis that the current distribution of M. cerebralis in North America is a result of recent introductions followed by dispersal via anthropogenic means, largely through the stocking of infected trout for sport fishing. PMID:15460854

  8. The complete mitochondrial genome sequence of Eimeria innocua (Eimeriidae, Coccidia, Apicomplexa).

    PubMed

    Hafeez, Mian Abdul; Vrba, Vladimir; Barta, John Robert

    2016-07-01

    The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp. infecting galliform birds. The circular-mapping mt genome of E. innocua is 6247 bp in length with three protein-coding genes (cox1, cox3, and cytb), 19 gene fragments encoding large subunit (LSU) rRNA and 14 gene fragments encoding small subunit (SSU) rRNA. Like other Apicomplexa, no tRNA was encoded. The mitochondrial genome of E. innocua confirms its close phylogenetic affinities to Eimeria dispersa. PMID:26099978

  9. Isolation and Characterization of a Novel Facultative Anaerobic Filamentous Fungus from Japanese Rice Field Soil

    PubMed Central

    Tonouchi, Akio

    2009-01-01

    A novel filamentous fungus strain designated RB-1 was isolated into pure culture from Japanese rice field soil through an anaerobic role tube technique. The strain is a mitosporic fungus that grows in both aerobic and strict anaerobic conditions using various mono-, di-, tri-, and polysaccharides with acetate and ethanol productions. The amount of acetate produced was higher than that of ethanol in both aerobic and anaerobic cultures. The characteristic verrucose or punctuate conidia of RB-1 closely resembled those of some strains of the genus Thermomyces, a thermophilic or mesophilic anamorphic ascomycete. However, based on phylogenetic analysis with the small subunit (SSU) and large subunit (LSU) rDNA sequences, RB-1 was characterized as a member of the class Lecanoromycetes of the phylum Ascomycota. Currently, RB-1 is designated as an anamorphic ascomycete and is phylogenetically considered an incertae sedis within the class Lecanoromycetes. PMID:20148171

  10. Entamoeba moshkovskii and Entamoeba dispar-associated infections in pondicherry, India.

    PubMed

    Parija, Subhash Chandra; Khairnar, Krishna

    2005-09-01

    The prevalence of Laredo strain--Entamoeba moshkovskii--and non-pathogenic E. dispar in patients attending the Jawaharlal Institute of Postgraduate Medical Education and Research hospital, Pondicherry, India, is reported here. E. moshkovskii is reported for the first time in India. The species are morphologically indistinguishable from pathogenic E. histolytica. Of 746 stool samples screened, 68 showing cyst or trophozoite stage of E. histolytica, E. dispar, or E. moshkovskii were subjected to small subunit (SSU) rRNA gene-based polymerase chain reaction, which revealed a higher prevalence of E. dispar (8.8%) and E. moshkovskii (2.2%) compared to E. histolytica (1.7%) in patients. Only 19% of the 68 stool samples, resembling E. histolytica by microscopy, were actually E. histolytica, implying that 81% of suspected infections were misdiagnosed and would have been treated unnecessarily with anti-amoebic drugs. PMID:16262027

  11. Genome-wide RNAi Screening Identifies Protein Modules Required for 40S Subunit Synthesis in Human Cells.

    PubMed

    Badertscher, Lukas; Wild, Thomas; Montellese, Christian; Alexander, Leila T; Bammert, Lukas; Sarazova, Marie; Stebler, Michael; Csucs, Gabor; Mayer, Thomas U; Zamboni, Nicola; Zemp, Ivo; Horvath, Peter; Kutay, Ulrike

    2015-12-29

    Ribosome biogenesis is a highly complex process requiring many assisting factors. Studies in yeast have yielded comprehensive knowledge of the cellular machinery involved in this process. However, many aspects of ribosome synthesis are different in higher eukaryotes, and the global set of mammalian ribosome biogenesis factors remains unexplored. We used an imaging-based, genome-wide RNAi screen to find human proteins involved in 40S ribosomal subunit biogenesis. Our analysis identified ∼ 300 factors, many part of essential protein modules such as the small subunit (SSU) processome, the eIF3 and chaperonin complexes, and the ubiquitin-proteasome system. We demonstrate a role for the vertebrate-specific factor RBIS in ribosome synthesis, uncover a requirement for the CRL4 E3 ubiquitin ligase in nucleolar ribosome biogenesis, and reveal that intracellular glutamine synthesis supports 40S subunit production. PMID:26711351

  12. Molecular identification of Giardia and Cryptosporidium from dogs and cats.

    PubMed

    Sotiriadou, Isaia; Pantchev, Nikola; Gassmann, Doreen; Karanis, Panagiotis

    2013-01-01

    The aim of the present study was to diagnose the presence of Giardia cysts and Cryptosporidium oocysts in household animals using nested polymerase chain reaction (PCR) and sequence analysis. One hundred faecal samples obtained from 81 dogs and 19 cats were investigated. The Cryptosporidium genotypes were determined by sequencing a fragment of the small subunit (SSU) rRNA gene, while the Giardia Assemblages were determined through analysis of the glutamate dehydrogenase (GDH) locus. Isolates from five dogs and two cats were positive by PCR for the presence of Giardia, and their sequences matched the zoonotic Assemblage A of Giardia. Cryptosporidium spp. isolated from one dog and one cat were both found to be C. parvum. One dog isolate harboured a mixed infection of C. parvum and Giardia Assemblage A. These findings support the growing evidence that household animals are potential reservoirs of the zoonotic pathogens Giardia spp. and Cryptosporidium spp. for infections in humans. PMID:23477297

  13. Molecular Phylogenetic Analysis of Ballistoconidium-Forming Yeasts in Trichosporonales (Tremellomycetes): A Proposal for Takashimella gen. nov. and Cryptotrichosporon tibetense sp. nov.

    PubMed Central

    Wang, Long; Wang, Qi-Ming

    2015-01-01

    Bullera species in the Trichosporonales (Tremellomycetes, Agaricomycotina) are phylogenetically distinct from Bullera alba (teleomorph: Bulleromyces albus), the type species of Bullera that belongs to Tremellales. In the present study, the three Bullera species, namely Bullera formosensis, Bullera koratensis and Bullera lagerstroemiae, and Cryptococcus tepidarius belonging to the Trichosporonales are transferred into a new genus Takashimella gen. nov. (MycoBank No. MB 810672) based on sequence analysis of the small subunit (SSU) rRNA gene, the D1/D2 domains of large subunit (LSU) rRNA gene and the ITS+5.8S rRNA gene sequences. In addition, the genus Cryptotrichosporon is emended to accommodate a novel ballistoconidium-forming species of the Trichosporonales, which is named as Cryptotrichosporon tibetense (type strain CGMCC 2.02614T = CBS 10455T). The MycoBank number of this new species is MB 810688. PMID:26200459

  14. Elucidating Biogeochemical Reduction of Chromate via Carbon Amendments and Soil Sterilization

    SciTech Connect

    Bank, Tracy L; Vishnivetskaya, Tatiana A; Ginder-Vogel, Matthew A.; Fendorf, Scott; Baldwin, Mark E; Jardine, Philip M

    2007-02-01

    Sterilized and non-sterilized soil columns were amended with three different carbon sources to elucidate the potential for geochemical and biological Cr{sup 6+} reduction. Cr{sup 6+} was reduced to Cr{sup 3+} in the non-sterilized lactate, ethanol, and acetate-amended soils; however, soils amended with lactate reduced significantly more chromium. Soils sterilized by {gamma}-irradiation reduced almost no Cr{sup 6+}, indicating that Cr{sup 6+} reduction was at least indirectly biological in nature. Analyses of small subunit (ssu) rRNA genes amplified from the column sediments showed significantly different bacterial populations within the amended soils that may be due to carbon source or to aerobic micropockets within the sediment columns.

  15. Common occurrence of zoonotic pathogen Cryptosporidium meleagridis in broiler chickens and turkeys in Algeria.

    PubMed

    Baroudi, Djamel; Khelef, Djamel; Goucem, Rachid; Adjou, Karim T; Adamu, Haileeyesus; Zhang, Hongwei; Xiao, Lihua

    2013-09-23

    Only a small number of birds have been identified by molecular techniques as having Cryptosporidium meleagridis, the third most important species for human cryptosporidiosis. In this study, using PCR-RFLP analysis of the small subunit (SSU) rRNA gene, we examined the ileum of 90 dead chickens from 23 farms and 57 dead turkeys from 16 farms in Algeria for Cryptosporidium spp. C. meleagridis-positive specimens were subtyped by sequence analysis of the 60 kDa glycoprotein gene. Cryptosporidium infection rates were 34% and 44% in chickens and turkeys, respectively, with all positive turkeys (25) and most positive chickens (26/31) having C. meleagridis. All C. meleagridis specimens belonged to a new subtype family. The frequent occurrence of C. meleagridis in chickens and turkeys illustrates the potential for zoonotic transmission of cryptosporidiosis in Algeria. PMID:23498647

  16. AXIOME: automated exploration of microbial diversity

    PubMed Central

    2013-01-01

    Background Although high-throughput sequencing of small subunit rRNA genes has revolutionized our understanding of microbial ecosystems, these technologies generate data at depths that benefit from automated analysis. Here we present AXIOME (Automation, eXtension, and Integration Of Microbial Ecology), a highly flexible and extensible management tool for popular microbial ecology analysis packages that promotes reproducibility and customization in microbial research. Findings AXIOME streamlines and manages analysis of small subunit (SSU) rRNA marker data in QIIME and mothur. AXIOME also implements features including the PAired-eND Assembler for Illumina sequences (PANDAseq), non-negative matrix factorization (NMF), multi-response permutation procedures (MRPP), exploring and recovering phylogenetic novelty (SSUnique) and indicator species analysis. AXIOME has a companion graphical user interface (GUI) and is designed to be easily extended to facilitate customized research workflows. Conclusions AXIOME is an actively developed, open source project written in Vala and available from GitHub (http://neufeld.github.com/axiome) and as a Debian package. Axiometic, a GUI companion tool is also freely available (http://neufeld.github.com/axiometic). Given that data analysis has become an important bottleneck for microbial ecology studies, the development of user-friendly computational tools remains a high priority. AXIOME represents an important step in this direction by automating multi-step bioinformatic analyses and enabling the customization of procedures to suit the diverse research needs of the microbial ecology community. PMID:23587322

  17. Identifying the lethal fish egg parasite Ichthyodinium chabelardi as a member of Marine Alveolate Group I.

    PubMed

    Skovgaard, Alf; Meneses, Isabel; Angélico, Maria Manuel

    2009-08-01

    Cells of the parasitic, unicellular eukaryote Ichthyodinium chabelardi were isolated from eggs of sardine (Sardina pilchardus) and from a previously unrecognized host, bogue (Boops boops), off the Atlantic coast of Portugal. Immediately after release from the infected fish egg or newly hatched larva, I. chabelardi cells were spherical and non-motile. After few minutes, spherical cells became flagellated and motile. Following 2-3 days of incubation and several divisions, spherical flagellated cells developed a twisted elongate shape and moved vigorously. Sequences of the small-subunit ribosomal RNA gene (SSU rDNA) were identical for I. chabelardi of both hosts and so were sequences of ITS1, ITS2 and the 5.8S rRNA gene. This genetic similarity suggests that eggs of sardine and bogue were infected by one single population of I. chabelardi. The SSU rRNA gene sequence of I. chabelardi was, in turn, 97% similar to those of two identical Asian isolates of Ichthyodinium sp. Phylogenetic analyses showed high support for the inclusion of Ichthyodinium in the so-called Marine Alveolate Group I (MAGI). Two morphologically well-described genera, namely Ichthyodinium and Dubosquella, have now been shown to belong to this group of seemingly exclusively parasitic alveolates. PMID:19453613

  18. Spathaspora allomyrinae sp. nov., a d-xylose-fermenting yeast species isolated from a scarabeid beetle Allomyrina dichotoma.

    PubMed

    Wang, Yun; Ren, Yong-Cheng; Zhang, Zheng-Tian; Ke, Tao; Hui, Feng-Li

    2016-05-01

    During an investigation of yeasts associated with insects, three strains of a d-xylose-fermenting yeast species were isolated from the gut of the host beetles Allomyrina dichotoma (Coleoptera: Scarabeidae) collected on the Baotianman National Nature Reserve, Nanyan, Henan Province, China. These strains formed two elongated ascospores, which were tapered and curved at the ends in persistent asci. Sequence analyses of the D1/D2 domains of the large subunit (LSU) and small subunit (SSU) rRNA genes showed that these new strains represent a phylogenetically distinct species in the Spathaspora clade. This novel species differed from the closest species, Candida lyxosophila NRRL Y-17539T, by a 6.7 % sequence divergence (31 substitutions and 7 gaps) in the D1/D2 LSU rRNA gene and a 1.2 % divergence (17 substitutions, 4 gaps) in the SSU rRNA gene. The novel species can also be distinguished from C. lyxosophila NRRL Y-17539T in terms of the ability to assimilate myo-inositol and to grow in the presence of 0.1 % cycloheximide, as well as the inability to assimilate citrate. The name Spathaspora allomyrinae sp. nov. is proposed for this species. The type strain is NYNU 1495T ( = CICC 33057T = CBS 13924T). The MycoBank number is MB 815071. PMID:26895992

  19. Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application

    PubMed Central

    Howell, Christopher C.; Hilton, Sally; Semple, Kirk T.; Bending, Gary D.

    2014-01-01

    The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. PMID:25048906

  20. Phylogeography of the freshwater raphidophyte Gonyostomum semen confirms a recent expansion in northern Europe by a single haplotype.

    PubMed

    Lebret, Karen; Tesson, Sylvie V M; Kritzberg, Emma S; Tomas, Carmelo; Rengefors, Karin

    2015-08-01

    Gonyostmum semen is a freshwater raphidophyte that has increased in occurrence and abundance in several countries in northern Europe since the 1980s. More recently, the species has expanded rapidly also in north-eastern Europe, and it is frequently referred to as invasive. To better understand the species history, we have explored the phylogeography of G. semen using strains from northern Europe, United States, and Japan. Three regions of the ribosomal RNA gene (small subunit [SSU], internal transcribed spacer [ITS] and large subunit [LSU]) and one mitochondrial DNA marker (cox1) were analyzed. The SSU and partial LSU sequences were identical in all strains, confirming that they belong to the same species. The ITS region differentiated the American from the other strains, but showed high intra-strain variability. In contrast, the mitochondrial marker cox1 showed distinct differences between the European, American, and Japanese strains. Interestingly, only one cox1 haplotype was detected in European strains. The overall low diversity and weak geographic structure within northern European strains supported the hypothesis of a recent invasion of new lakes by G. semen. Our data also show that the invasive northern European lineage is genetically distinct from the lineages from the other continents. Finally, we concluded that the mitochondrial cox1 was the most useful marker in determining large-scale biogeographic patterns in this species. PMID:26986795

  1. Ceratomyxa tunisiensis n. sp. (Myxosporea: Bivalvulida) from the Gallbladders of Two Carangid Fish Caught Off the Coast of Tunisia.

    PubMed

    Thabet, Aouatef; Mansour, Lamjed; Al Omar, Suliman Y; Tlig-Zouari, Sabiha

    2016-01-01

    A new coelozoic Myxozoan species, Ceratomyxa tunisiensis n. sp., was found infecting the gallbladders of two carangid fish, Caranx rhonchus and Trachurus trachurus (Perciforme, Carangidae), from the Gulf of Gabès, on the southern coast of Tunisia. The parasite develops in spherical mono-, diplo-, or polysporic tropozoites in the gallbladder of the hosts. Mature spores are typical of the genus Ceratomyxa. They are transversely elongated and narrowly crescent-shaped with a slightly convex anterior and concave posterior, and measure 23 ± 0. 27 (20-25) μm width × 6 ± 0.26 (5-8) μm in length. Spore shell valves are symmetrical with rounded ends. Two spherical polar capsules situated on either side of the sutural line measure 2.2 μm (2.0-3.0) in diam. Periodical sampling of C. rhonchus and T. trachurus from Marsh 2012 to February 2013 showed that infection due to C. tunisiensis occurs in 59% and 69% of the examined fish, respectively. Molecular analysis based on the small subunit (SSU) rRNA sequence shows high genetic divergence with all other ceratomyxid species. A Maximum Likelihood phylogenetic tree shows association with the species C. leatharjecketi Fiala, kova, Kodadkova, Freeman, Bartošova-Sojkova, and Atkinson, 2015 reported from the gallbladder of Aluterusmonoceros (L.) caught in the Andaman Sea, off Malaysia. Nonetheless, the SSU rRNA sequences of C. tunisiensis and C. leatharjecketi have only a 90% similarity. PMID:26194329

  2. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis.

    PubMed

    Huang, Wei-Fone; Tsai, Shu-Jen; Lo, Chu-Fang; Soichi, Yamane; Wang, Chung-Hsiung

    2004-05-01

    We present here for the first time the complete DNA sequence data (4301bp) of the ribosomal RNA (rRNA) gene of the microsporidian type species, Nosema bombycis. Sequences for the large subunit gene (LSUrRNA: 2497bp, GenBank Accession No. ), the internal transcribed spacer (ITS: 179bp, GenBank Accession No. ), the small subunit gene (SSUrRNA: 1232bp), intergenic spacer (IGS: 279bp), and 5S region (114bp) are also given, and the secondary structure of the large subunit is discussed. The organization of the N. bombycis rRNA gene is LSUrRNA-ITS-SSUrRNA-IGS-5S. This novel arrangement, in which the LSU is 5' of the SSU, is the reverse of the organizational sequence (i.e., SSU-ITS-LSU) found in all previously reported microsporidian rRNAs, including Nosema apis. This unique character in the type species may have taxonomic implications for the members of the genus Nosema. PMID:15050536

  3. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M.; Belnap, Jayne; Evans, R. David; Kuske, Cheryl R.

    2012-01-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.

  4. Phylogenetic position of Multicilia marina and the evolution of Amoebozoa.

    PubMed

    Nikolaev, Sergey I; Berney, Cédric; Petrov, Nikolai B; Mylnikov, Alexandre P; Fahrni, José F; Pawlowski, Jan

    2006-06-01

    Recent molecular phylogenetic studies have led to the erection of the phylum Amoebozoa, uniting naked and testate lobose amoebae, the mycetozoan slime moulds and amitochondriate amoeboid protists (Archamoebae). Molecular data together with ultrastructural evidence have suggested a close relationship between Mycetozoa and Archamoebae, classified together in the Conosea, which was named after the cone of microtubules that, when present, is characteristic of their kinetids. However, the relationships of conoseans to other amoebozoans remain unclear. Here, we obtained the complete small-subunit (SSU) rRNA gene sequence (2746 bp) of the enigmatic, multiflagellated protist Multicilia marina, which has formerly been classified either in a distinct phylum, Multiflagellata, or among lobose amoebae. Our study clearly shows that Multicilia marina belongs to the Amoebozoa. Phylogenetic analyses including 60 amoebozoan SSU rRNA gene sequences revealed that Multicilia marina branches at the base of the Conosea, together with another flagellated amoebozoan, Phalansterium solitarium, as well as with Gephyramoeba sp., Filamoeba nolandi and two unidentified amoebae. This is the first report showing strong support for a clade containing all flagellated amoebozoans and we discuss the position of the root of the phylum Amoebozoa in the light of this result. PMID:16738126

  5. Telonemia, a new protist phylum with affinity to chromist lineages.

    PubMed

    Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H A; Jakobsen, K S

    2006-07-22

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup. PMID:16790418

  6. A microsporidian parasite of the genus Spraguea in the nervous tissues of the Japanese anglerfish Lophius litulon.

    PubMed

    Freeman, Mark A; Yokoyama, Hiroshi; Ogawa, Kazuo

    2004-06-01

    In the present study, a high percentage of Japanese anglerfish, Lophius litulon (Jordan, 1902), contained a microsporidian infection of the nervous tissues. Xenomas were removed and prepared for standard wax histology and transmission electron microscopy (TEM). DNA extractions were performed on parasite spores and used in PCR and sequencing reactions. Fresh spores measured 3.4 x 1.8 microm and were uniform in size with no dimorphism observed. TEM confirmed that only a single developmental cycle and a single spore form were present. Small subunit (SSU) rDNA sequences were >99.5% similar to those of Spraguea lophii (Doflein, 1898) and Glugea americanus (Takvorian et Cali, 1986) from the European and American Lophius spp. respectively. The microsporidian from the nervous tissue of L. litulon undoubtedly belongs in the genus Spraguea Sprague et Vivra, 1976 and the authors suggest a revision to the generic description of Spraguea to include monomorphic forms and the transfer of Glugea americanus to Spraguea americana comb. n. Since no major differences in ultrastructure or SSU rDNA sequence data exist between Spraguea americana and the microsporidian from the Japanese anglerfish, they evidently belong to the same species. This report of Spraguea americana is the first report of a Spraguea species from L. litulon and indeed from the Pacific water mass. PMID:15357394

  7. Molecular characterization of Cryptosporidium in bats from Yunnan province, southwestern China.

    PubMed

    Wang, Wei; Cao, Lili; He, Biao; Li, Jiping; Hu, Tingsong; Zhang, Fuqiang; Fan, Quanshui; Tu, Changchun; Liu, Quan

    2013-12-01

    The present study was conducted to investigate the prevalence and genotypes of Cryptosporidium in bats. A total of 247 bats, belonging to Rhinolophus sinicus , Rousettus leschenaultia, Aselliscus stoliczkanus , and Hipposideros fulvus , were collected in Yunnan Province, Southwestern China, and the intestinal tissues were examined for Cryptosporidium infection by PCR amplification of the small subunit ribosomal RNA (SSU rRNA). The overall infection rate was 7.7% (95% CI, 4.5 to 11.0%), with R. sinicus having the highest level at 9.5% (95% CI, 2.8 to 16.1%) followed by A. stoliczkanus at 7.8% (95% CI, 2.2 to 18.9%), H. fulvus at 7.2% (95% CI, 1.1 to 13.4%), and R. leschenaultia at 5.7% (95% CI, 1.2 to 15.7%). DNA sequence and phylogenetic analyses based on SSU rRNA revealed the presence of 2 novel genotypes, designated as Cryptosporidium bat genotype I in A. stoliczkanus and R. sinicus and Cryptosporidium bat genotype II in R. leschenaultia, R. sinicus , and H. fulvus . This is the first report of Cryptosporidium genotypes in bats. Further biological and genetic characterization is needed to determine the relationship of the 2 novel genotypes to established Cryptosporidium species-genotypes. PMID:23886252

  8. Subsurface ecosystem resilience: long-term attenuation of subsurface contaminants supports a dynamic microbial community.

    PubMed

    Yagi, Jane M; Neuhauser, Edward F; Ripp, John A; Mauro, David M; Madsen, Eugene L

    2010-01-01

    The propensity for groundwater ecosystems to recover from contamination by organic chemicals (in this case, coal-tar waste) is of vital concern for scientists and engineers who manage polluted sites. The microbially mediated cleanup processes are also of interest to ecologists because they are an important mechanism for the resilience of ecosystems. In this study we establish the long-term dynamic nature of a coal-tar waste-contaminated site and its microbial community. We present 16 years of chemical monitoring data, tracking responses of a groundwater ecosystem to organic contamination (naphthalene, xylenes, toluene, 2-methyl naphthalene and acenaphthylene) associated with coal-tar waste. In addition, we analyzed small-subunit (SSU) ribosomal RNA (rRNA) genes from two contaminated wells at multiple time points over a 2-year period. Principle component analysis of community rRNA fingerprints (terminal-restriction fragment length polymorphism (T-RFLP)) showed that the composition of native microbial communities varied temporally, yet remained distinctive from well to well. After screening and analysis of 1178 cloned SSU rRNA genes from Bacteria, Archaea and Eukarya, we discovered that the site supports a robust variety of eukaryotes (for example, alveolates (especially anaerobic and predatory ciliates), stramenopiles, fungi, even the small metazoan flatworm, Suomina) that are absent from an uncontaminated control well. This study links the dynamic microbial composition of a contaminated site with the long-term attenuation of its subsurface contaminants. PMID:19776766

  9. Natural infection of Cryptosporidium muris in ostriches (Struthio camelus).

    PubMed

    Qi, Meng; Huang, Lei; Wang, Rongjun; Xiao, Lihua; Xu, Lina; Li, Junqiang; Zhang, Longxian

    2014-10-15

    A total of 303 fecal samples were collected from ostriches (Struthio camelus) and 31 samples (10.2%) were Cryptosporidium-positive upon microscopic analysis. The infection rate was 27.6% in ostriches aged 16-60 days, 1.2% in those aged 61-180 days, and 20.4% in those aged >10 years. The Cryptosporidium-positive isolates were genotyped with a restriction fragment length polymorphism analysis and DNA sequence analysis of the small subunit (SSU) rRNA gene. The 22 isolates from ostriches aged >10 years were identified as Cryptosporidium muris, whereas the nine isolates from ostriches <180 days were Cryptosporidium baileyi. Ten of the 22 C. muris isolates were analyzed based on the actin and HSP70 genes, and the results were identical to those observed for the SSU rRNA gene. Cross-transmission studies demonstrated that the C. muris isolate infected BALB/c mice and Mongolian gerbils, but did not infect chickens. C. muris isolated in this study appears to be host-adapted, consistent with a previous multilocus sequence typing analysis. Further studies are required to understand the prevalence and transmission of Cryptosporidium spp. in ostriches in different geographic areas. PMID:25178556

  10. A novel alveolate in bivalves with chemosynthetic bacteria inhabiting deep-sea methane seeps.

    PubMed

    Noguchi, Fumiya; Kawato, Masaru; Yoshida, Takao; Fujiwara, Yoshihiro; Fujikura, Katsunori; Takishita, Kiyotaka

    2013-01-01

    It has recently been unveiled that a wide variety of microbial eukaryotes (protists) occur in chemosynthetic ecosystems, such as hydrothermal vents and methane seeps. However, there is little knowledge regarding protists associated with endemic animals inhabiting these environments. In the present study, utilizing PCR techniques, we detected fragments of the small subunit ribosomal RNA gene (SSU rRNA gene) from a particular protist from gill tissues of a significant fraction of the vesicomyid clams Calyptogena soyoae and C. okutanii complex and of the mussel Bathymodiolus platifrons and B. japonicus, all of which harbor chemosynthetic endosymbiont bacteria and dominate methane seeps in Sagami Bay, Japan. Based on the phylogeny of SSU rRNA gene, the organism in question was shown to belong to Alveolata. It is noteworthy that this protist did not affiliate with any known alveolate group, although being deeply branched within the lineage of Syndiniales, for which the monophyly was constantly recovered, but not robustly supported. In addition, the protist detected using PCR followed by sequencing was localized within gill epithelial cells of B. platifrons with whole-mount fluorescence in situ hybridization. This protist may be an endoparasite or an endocommensal of Calyptogena spp. and Bathymodiolus spp., and possibly have physiological and ecological impacts on these bivalves. PMID:23316697

  11. Two distinct lineages in the radiolarian Order Spumellaria having different ecological preferences

    NASA Astrophysics Data System (ADS)

    Ishitani, Yoshiyuki; Ujiié, Yurika; de Vargas, Colomban; Not, Fabrice; Takahashi, Kozo

    2012-02-01

    The radiolarian group Spumellaria compose a diverse assemblage of marine microzooplankton with widespread geographic and vertical distributions. Spumellarians are useful paleoceanographic indicators, because their siliceous shells are preserved in the sediment at water depths deeper than the carbonate compensation depth. However, lack of detailed biologic knowledge has slowed the establishment of definitive taxonomic criteria, particularly for higher-level taxa. Recent studies on molecular phylogeny based on small subunit ribosomal DNA (SSU rDNA) confirmed spumellarian taxonomic position within radiolarians. However, these sequences were obtained from spumellarian specimens taken from subtropical to tropical surface waters. In order to clarify the taxonomy of widely distributed spumellarians, we obtained seven novel SSU rDNA sequences of specimens collected from the subarctic region. Our phylogenetic analyses revealed two distinct spumellarian groups (Spumellaria I and II) and six subgroups, which mostly correspond with family level taxonomy inferred from the inner shell structures. The Family Spongodiscidae is however separated into two lineages associated with Pyloniidae (Spumellaria I) and Coccodiscidae (Spumellaria II) in our phylogeny. Notably, two groups (Spumellaria I and II) are composed of ecologically different species: Spumellaria I consists of temperate to cold water species and one group of Spumellaria II consists of warm water species. These two distinct groups have probably evolved in cold and warm environments, respectively.

  12. A New Integrated Approach to Taxonomy: The Fusion of Molecular and Morphological Systematics with Type Material in Benthic Foraminifera.

    PubMed

    Roberts, Angela; Austin, William; Evans, Katharine; Bird, Clare; Schweizer, Magali; Darling, Kate

    2016-01-01

    A robust and consistent taxonomy underpins the use of fossil material in palaeoenvironmental research and long-term assessment of biodiversity. This study presents a new integrated taxonomic protocol for benthic foraminifera by unequivocally reconciling the traditional taxonomic name to a specific genetic type. To implement this protocol, a fragment of the small subunit ribosomal RNA (SSU rRNA) gene is used in combination with 16 quantitative morphometric variables to fully characterise the benthic foraminiferal species concept of Elphidium williamsoni Haynes, 1973. A combination of live contemporary topotypic specimens, original type specimens and specimens of genetic outliers were utilised in this study. Through a series of multivariate statistical tests we illustrate that genetically characterised topotype specimens are morphologically congruent with both the holotype and paratype specimens of E. williamsoni Haynes, 1973. We present the first clear link between morphologically characterised type material and the unique SSU rRNA genetic type of E. williamsoni. This example provides a standard framework for the benthic foraminifera which bridges the current discontinuity between molecular and morphological lines of evidence, allowing integration with the traditional Linnaean roots of nomenclature to offer a new prospect for taxonomic stability. PMID:27388271

  13. Distribution and Niche Separation of Planktonic Microbial Communities in the Water Columns from the Surface to the Hadal Waters of the Japan Trench under the Eutrophic Ocean

    PubMed Central

    Nunoura, Takuro; Hirai, Miho; Yoshida-Takashima, Yukari; Nishizawa, Manabu; Kawagucci, Shinsuke; Yokokawa, Taichi; Miyazaki, Junichi; Koide, Osamu; Makita, Hiroko; Takaki, Yoshihiro; Sunamura, Michinari; Takai, Ken

    2016-01-01

    The Japan Trench is located under the eutrophic Northwestern Pacific while the Mariana Trench that harbors the unique hadal planktonic biosphere is located under the oligotrophic Pacific. Water samples from the sea surface to just above the seafloor at a total of 11 stations including a trench axis station, were investigated several months after the Tohoku Earthquake in March 2011. High turbidity zones in deep waters were observed at most of the sampling stations. The small subunit (SSU) rRNA gene community structures in the hadal waters (water depths below 6000 m) at the trench axis station were distinct from those in the overlying meso-, bathy and abyssopelagic waters (water depths between 200 and 1000 m, 1000 and 4000 m, and 4000 and 6000 m, respectively), although the SSU rRNA gene sequences suggested that potential heterotrophic bacteria dominated in all of the waters. Potential niche separation of nitrifiers, including ammonia-oxidizing archaea (AOA), was revealed by quantitative PCR analyses. It seems likely that Nitrosopumilus-like AOAs respond to a high flux of electron donors and dominate in several zones of water columns including shallow and very deep waters. This study highlights the effects of suspended organic matter, as induced by seafloor deformation, on microbial communities in deep waters and confirm the occurrence of the distinctive hadal biosphere in global trench environments hypothesized in the previous study. PMID:27559333

  14. Morphological and phylogenetic studies on three members of the genus Pseudochilodonopsis (Ciliophora, Cyrtophoria) isolated from brackish waters in China, including a novel species, Pseudochilodonopsis quadrivacuolata sp. nov.

    PubMed

    Qu, Zhishuai; Pan, Hongbo; Al-Rasheid, Khaled A S; Hu, Xiaozhong; Gao, Shan

    2015-12-01

    Three cyrtophorian ciliates isolated from brackish biotopes in China, Pseudochilodonopsis quadrivacuolata sp. nov., Pseudochilodonopsis fluviatilisFoissner, 1988 and Pseudochilodonopsis mutabilisFoissner, 1981, were investigated using living observation and protargol-staining methods. P. quadrivacuolata sp. nov. can be characterized as follows: cell size 50-70 × 30-40 μm in vivo; body oval with posterior end rounded; four tetragonally positioned contractile vacuoles; 12-15 nematodesmal rods; five right and six left somatic kineties; terminal fragment positioned apically on dorsal side, consisting of 11-14 basal bodies; four or five fragments in preoral kinety. P. fluviatilis and P. mutabilis were generally consistent with previous descriptions. In addition, a brief revision and a key to Pseudochilodonopsis are presented. The small-subunit (SSU) rRNA gene was also sequenced to support the identification of these species. Phylogenetic analyses based on molecular data indicate that the genera Pseudochilodonopsis and Chilodonella are closely related and both are well outlined; that is, all known congeners for which SSU rRNA gene sequence data are available group together, forming the core part of the family Chilodonellidae. PMID:26341631

  15. Morphological reports on two species of Dexiotricha (Ciliophora, Scuticociliatia), with a note on the phylogenetic position of the genus.

    PubMed

    Fan, Xinpeng; Al-Farraj, Saleh A; Gao, Feng; Gu, Fukang

    2014-02-01

    Two Dexiotricha species (Dexiotricha elliptica nov. comb. and Dexiotricha cf. granulosa), respectively isolated from soil north-west of Riyadh, Saudi Arabia, and freshwater in Shanghai, eastern China, were investigated using standard methods. The species Loxocephalus ellipticus Kahl, 1931 is reclassified here in the genus Dexiotricha and was characterized mainly by constantly showing 16 somatic kineties, three post-oral kineties with the middle one shortened, a contractile vacuole located subcaudally with an excretory pore near the posterior end of somatic kinety 2 and single caudal cilia. A Dexiotricha granulosa-like organism having a subcaudally located contractile vacuole and fewer somatic kineties was designated D. cf. granulosa. The small-subunit rRNA gene (SSU rDNA) sequences of these two species were characterized and their phylogenetic positions based on SSU rDNA sequences were revealed by means of Bayesian inference and maximum-likelihood analysis. Phylogenetic analyses confirmed Dexiotricha as a monophyletic genus and supported its assignment to the order Loxocephalida. However, its family assignment remains unsupported. PMID:24363298

  16. Morphology and phylogeny of two new pleurostomatid ciliates, Epiphyllum shenzhenense n. sp. and Loxophyllum spirellum n. sp. (Protozoa, Ciliophora) from a mangrove wetland, South China.

    PubMed

    Pan, Hongbo; Gao, Feng; Li, Jiqiu; Lin, Xiaofeng; Al-Farraj, Saleh A; Al-Rasheid, Khaled A S

    2010-01-01

    The morphology, infraciliature, and small subunit (SSU) rRNA gene sequences of two new pleurostomatid ciliates, Epiphyllum shenzhenense n. sp. and Loxophyllum spirellum n. sp., isolated from a mangrove wetland near Shenzhen, South China, were investigated. Epiphyllum shenzhenense n. sp. is morphologically characterized by leaf-shaped cell about 150 x 35 microm in vivo, usually with four contractile vacuoles, 20-29 right kineties and 10-26 left kineties, ca. four macronuclear nodules, and two types of extrusomes (i.e. short spindle-shaped and long bar-shaped). As a new species, L. spirellum n. sp. is distinguished from its congeners by its posterior dorsal margin twisted onto the left side, the distribution of extrusomes (evenly arranged along the oral slit, the posterior end, and clustered to 7-13 warts on dorsal margin), the subterminally positioned contractile vacuole, the number of kineties (8-10 on right side, 4-5 on left side), and its genetic distance from congeners. Phylogenetic trees based on the SSU rRNA gene sequence for both organisms were constructed, which indicate that Epiphyllum is a distinct genus and occupies a basal position in the Pleurostomatida clade; L. spirellum n. sp. falls well into the Loxophyllum clade, which has a close relationship with Litonotus and Spiroloxophyllum. PMID:20735517

  17. Three new Loxophyllum species (Ciliophora: Pleurostomatida) from China with a brief review of the marine and brackish Loxophyllum species.

    PubMed

    Pan, Hongbo; Gao, Feng; Lin, Xiaofeng; Warren, Alan; Song, Weibo

    2013-01-01

    Recent studies indicate that there is a high diversity of pleurostomatid ciliates in the coastal waters of China. Here, three new congeners of Loxophyllum, L. caudatum sp. n., L. rugosum sp. n., and L. chinense sp. n., are described following observations of live cells and protargol-impregnated specimens. All three species usually have two macronuclear nodules and prominent warts along the dorsal margin formed by clustered extrusomes. In addition, L. caudatum sp. n. is characterized by its long conspicuous tail, dot-like cortical granules, 4 or 5 left and 9 or 10 right kineties, and a single subterminal contractile vacuole. Loxophyllum rugosum sp. n. is distinguished by possessing three prominent ridges on the left side, 7-11 right and 5-7 left kineties. Loxophyllum chinense sp. n. is characterized by having several contractile vacuoles distributed along the ventral margin, 13-18 right and 6-8 left kineties. The small subunit ribosomal DNA (SSU rDNA) sequence similarities among six congeners range from 96.46% to 99.94%. Phylogenetic trees based on the SSU rDNA sequences indicate that all Loxophyllum spp. form a well-supported monophyletic group. A brief review of the marine and brackish Loxophyllum species is supplied and one new combination, Litonotus multiplicatus (Kahl 1931) comb. n. (basionym Loxophyllum multiplicatum Kahl 1931), and one new name, Litonotus dragescoi nom. n. (basionym L. fasciolatus Dragesco 1966), are suggested. PMID:23194299

  18. Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng

    PubMed Central

    Song, Jeong Young; Seo, Mun Won; Kim, Sun Ick; Nam, Myeong Hyeon; Lim, Hyoun Sub

    2014-01-01

    We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants. PMID:25071387

  19. Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng.

    PubMed

    Song, Jeong Young; Seo, Mun Won; Kim, Sun Ick; Nam, Myeong Hyeon; Lim, Hyoun Sub; Kim, Hong Gi

    2014-06-01

    We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants. PMID:25071387

  20. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota).

    PubMed

    Opik, M; Vanatoa, A; Vanatoa, E; Moora, M; Davison, J; Kalwij, J M; Reier, U; Zobel, M

    2010-10-01

    • Here, we describe a new database, MaarjAM, that summarizes publicly available Glomeromycota DNA sequence data and associated metadata. The goal of the database is to facilitate the description of distribution and richness patterns in this group of fungi. • Small subunit (SSU) rRNA gene sequences and available metadata were collated from all suitable taxonomic and ecological publications. These data have been made accessible in an open-access database (http://maarjam.botany.ut.ee). • Two hundred and eighty-two SSU rRNA gene virtual taxa (VT) were described based on a comprehensive phylogenetic analysis of all collated Glomeromycota sequences. Two-thirds of VT showed limited distribution ranges, occurring in single current or historic continents or climatic zones. Those VT that associated with a taxonomically wide range of host plants also tended to have a wide geographical distribution, and vice versa. No relationships were detected between VT richness and latitude, elevation or vascular plant richness. • The collated Glomeromycota molecular diversity data suggest limited distribution ranges in most Glomeromycota taxa and a positive relationship between the width of a taxon's geographical range and its host taxonomic range. Inconsistencies between molecular and traditional taxonomy of Glomeromycota, and shortage of data from major continents and ecosystems, are highlighted. PMID:20561207

  1. A New Integrated Approach to Taxonomy: The Fusion of Molecular and Morphological Systematics with Type Material in Benthic Foraminifera

    PubMed Central

    Roberts, Angela; Austin, William; Evans, Katharine; Bird, Clare; Schweizer, Magali; Darling, Kate

    2016-01-01

    A robust and consistent taxonomy underpins the use of fossil material in palaeoenvironmental research and long-term assessment of biodiversity. This study presents a new integrated taxonomic protocol for benthic foraminifera by unequivocally reconciling the traditional taxonomic name to a specific genetic type. To implement this protocol, a fragment of the small subunit ribosomal RNA (SSU rRNA) gene is used in combination with 16 quantitative morphometric variables to fully characterise the benthic foraminiferal species concept of Elphidium williamsoni Haynes, 1973. A combination of live contemporary topotypic specimens, original type specimens and specimens of genetic outliers were utilised in this study. Through a series of multivariate statistical tests we illustrate that genetically characterised topotype specimens are morphologically congruent with both the holotype and paratype specimens of E. williamsoni Haynes, 1973. We present the first clear link between morphologically characterised type material and the unique SSU rRNA genetic type of E. williamsoni. This example provides a standard framework for the benthic foraminifera which bridges the current discontinuity between molecular and morphological lines of evidence, allowing integration with the traditional Linnaean roots of nomenclature to offer a new prospect for taxonomic stability. PMID:27388271

  2. Morphological and molecular characterization and phylogenetic relationships of a new species of trypanosome in Tapirus terrestris (lowland tapir), Trypanosoma terrestris sp. nov., from Atlantic Rainforest of southeastern Brazi

    PubMed Central

    2013-01-01

    Background The Lowland tapir (Tapirus terrestris) is the largest Brazilian mammal and despite being distributed in various Brazilian biomes, it is seriously endangered in the Atlantic Rainforest. These hosts were never evaluated for the presence of Trypanosoma parasites. Methods The Lowland tapirs were captured in the Brazilian southeastern Atlantic Rainforest, Espírito Santo state. Trypanosomes were isolated by hemoculture, and the molecular phylogeny based on small subunit rDNA (SSU rDNA) and glycosomal-3-phosphate dehydrogenase (gGAPDH) gene sequences and the ultrastructural features seen via light microscopy and scanning and transmission electron microscopy are described. Results Phylogenetic trees using combined SSU rDNA and gGAPDH data sets clustered the trypanosomes of Lowland tapirs, which were highly divergent from other trypanosome species. The phylogenetic position and morphological discontinuities, mainly in epimastigote culture forms, made it possible to classify the trypanosomes from Lowland tapirs as a separate species. Conclusions The isolated trypanosomes from Tapirus terrestris are a new species, Trypanosoma terrestris sp. n., and were positioned in a new Trypanosoma clade, named T. terrestris clade. PMID:24330660

  3. In vitro cultivation of a zoonotic Babesia sp. isolated from eastern cottontail rabbits (Sylvilagus floridanus) on Nantucket Island, Massachusetts.

    PubMed

    Holman, Patricia J; Spencer, Angela M; Droleskey, Robert E; Goethert, Heidi K; Telford, Samuel R

    2005-08-01

    A Babesia sp. found in eastern cottontail rabbits (Sylvilagus floridanus) on Nantucket Island, Massachusetts, is the same organism that caused human babesiosis in Missouri and Kentucky, on the basis of morphology and identical small-subunit rRNA (SSU rRNA) gene sequences. Continuous cultures of the rabbit parasite were established from infected blood samples collected from two cottontail rabbits livetrapped on Nantucket Island. HL-1 medium or minimal essential medium alpha medium supplemented with 20% human serum best supported in vitro propagation of the parasite in human or cottontail erythrocytes, respectively. Parasite growth was not sustained in domestic-rabbit erythrocytes or in medium supplemented with domestic-rabbit serum. The cultured parasites were morphologically indistinguishable from the Kentucky human isolate. Transmission electron microscopy revealed similar fine structures of the parasite regardless of the host erythrocyte utilized in the cultures. Two continuous lines of the zoonotic Babesia sp. were established and confirmed to share identical SSU rRNA gene sequences with each other and with the Missouri and Kentucky human Babesia isolates. PMID:16081941

  4. A comparative molecular analysis of water-filled limestone sinkholes in north-eastern Mexico.

    PubMed

    Sahl, Jason W; Gary, Marcus O; Harris, J Kirk; Spear, John R

    2011-01-01

    Sistema Zacatón in north-eastern Mexico is host to several deep, water-filled, anoxic, karstic sinkholes (cenotes). These cenotes were explored, mapped, and geochemically and microbiologically sampled by the autonomous underwater vehicle deep phreatic thermal explorer (DEPTHX). The community structure of the filterable fraction of the water column and extensive microbial mats that coat the cenote walls was investigated by comparative analysis of small-subunit (SSU) 16S rRNA gene sequences. Full-length Sanger gene sequence analysis revealed novel microbial diversity that included three putative bacterial candidate phyla and three additional groups that showed high intra-clade distance with poorly characterized bacterial candidate phyla. Limited functional gene sequence analysis in these anoxic environments identified genes associated with methanogenesis, sulfate reduction and anaerobic ammonium oxidation. A directed, barcoded amplicon, multiplex pyrosequencing approach was employed to compare ∼100,000 bacterial SSU gene sequences from water column and wall microbial mat samples from five cenotes in Sistema Zacatón. A new, high-resolution sequence distribution profile (SDP) method identified changes in specific phylogenetic types (phylotypes) in microbial mats at varied depths; Mantel tests showed a correlation of the genetic distances between mat communities in two cenotes and the geographic location of each cenote. Community structure profiles from the water column of three neighbouring cenotes showed distinct variation; statistically significant differences in the concentration of geochemical constituents suggest that the variation observed in microbial communities between neighbouring cenotes are due to geochemical variation. PMID:20738374

  5. Phylogenetic analysis of the Trypanosoma genus based on the heat-shock protein 70 gene.

    PubMed

    Fraga, Jorge; Fernández-Calienes, Aymé; Montalvo, Ana Margarita; Maes, Ilse; Deborggraeve, Stijn; Büscher, Philippe; Dujardin, Jean-Claude; Van der Auwera, Gert

    2016-09-01

    Trypanosome evolution was so far essentially studied on the basis of phylogenetic analyses of small subunit ribosomal RNA (SSU-rRNA) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes. We used for the first time the 70kDa heat-shock protein gene (hsp70) to investigate the phylogenetic relationships among 11 Trypanosoma species on the basis of 1380 nucleotides from 76 sequences corresponding to 65 strains. We also constructed a phylogeny based on combined datasets of SSU-rDNA, gGAPDH and hsp70 sequences. The obtained clusters can be correlated with the sections and subgenus classifications of mammal-infecting trypanosomes except for Trypanosoma theileri and Trypanosoma rangeli. Our analysis supports the classification of Trypanosoma species into clades rather than in sections and subgenera, some of which being polyphyletic. Nine clades were recognized: Trypanosoma carassi, Trypanosoma congolense, Trypanosoma cruzi, Trypanosoma grayi, Trypanosoma lewisi, T. rangeli, T. theileri, Trypanosoma vivax and Trypanozoon. These results are consistent with existing knowledge of the genus' phylogeny. Within the T. cruzi clade, three groups of T. cruzi discrete typing units could be clearly distinguished, corresponding to TcI, TcIII, and TcII+V+VI, while support for TcIV was lacking. Phylogenetic analyses based on hsp70 demonstrated that this molecular marker can be applied for discriminating most of the Trypanosoma species and clades. PMID:27180897

  6. Trypanosoma cruzi and Leishmania infantum chagasi Infection in Wild Mammals from Maranhão State, Brazil.

    PubMed

    da Costa, Andréa Pereira; Costa, Francisco Borges; Soares, Herbert Sousa; Ramirez, Diego Garcia; Mesquita, Eric Takashi Kamakura de Carvalho; Gennari, Solange Maria; Marcili, Arlei

    2015-11-01

    Trypanosoma and Leishmania are obligate parasites that cause important diseases in human and domestic animals. Wild mammals are the natural reservoirs of these parasites, which are transmitted by hematophagous arthropods. The present study aimed to detect the natural occurrence of trypanosomatids through serological diagnosis, PCR of whole blood and blood culture (hemoculture), and phylogenetic relationships using small subunit ribosomal DNA (SSU rDNA), cytochrome b, and glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) genes. Samples from 131 wild animals, including rodents, marsupials, and bats, were sampled in six areas in the state of Maranhão, in a transition zone of semiarid climates northeast of the equatorial humid Amazon. Serological analysis for Leishmania (Leishmania) infantum chagasi was performed in opossums by indirect fluorescent antibody test (IFAT), and all animals were serologically negative. Nine positive hemocultures (6.77%) were isolated and cryopreserved and from mammals of the Didelphimorphia and Chiroptera orders and positioned in phylogenies on the basis of sequences from different genes with reference strains of Trypanosoma cruzi marinkellei and T. cruzi. From primary samples (blood and tissues) only one bat, Pteronotus parnellii, was positive to SSU rDNA and gGAPDH genes and grouped with the L. infantum chagasi branch. The studies conducted in Maranhão State provide knowledge of parasite diversity. It is important to determine the presence of trypanosomatids in wild mammals with synanthropic habits. PMID:26501369

  7. Molecular phylogeny of the Haplosporidia based on two independent gene sequences.

    PubMed

    Reece, Kimberly S; Siddall, Mark E; Stokes, Nancy A; Burreson, Eugene M

    2004-10-01

    The phylogenetic position of the Haplosporidia has confounded taxonomists for more than a century because of the unique morphology of these parasites. We collected DNA sequence data for small subunit (SSU) ribosomal RNA and actin genes from haplosporidians and other protists for conducting molecular phylogenetic analyses to help elucidate relationships of taxa within the group, as well as placement of this group among Eukaryota. Analyses were conducted using DNA sequence data from more than 100 eukaryotic taxa with various combinations of data sets including nucleotide sequence data for each gene separately and combined, as well as SSU ribosomal DNA data combined with translated actin amino acids. In almost all analyses, the Haplosporidia was sister to the Cercozoa with moderate bootstrap and jackknife support. Analysis with actin amino acid sequences alone grouped haplosporidians with the foraminiferans and cercozoans. The haplosporidians Minchinia and Urosporidium were found to be monophyletic, whereas Haplosporidium was paraphyletic. "Microcell" parasites, Bonamia spp. and Mikrocytos roughleyi, were sister to Minchinia, the most derived genus, with Haplosporidium falling between the "microcells" and the more basal Urosporidium. Two recently discovered parasites, one from abalone in New Zealand and another from spot prawns in British Columbia, fell at the base of the Haplosporidia with very strong support, indicating a taxonomic affinity to this group. PMID:15562612

  8. Zoonotic Cryptosporidium spp. and Enterocytozoon bieneusi in pet chinchillas (Chinchilla lanigera) in China.

    PubMed

    Qi, Meng; Luo, Nannan; Wang, Haiyan; Yu, Fuchang; Wang, Rongjun; Huang, Jianying; Zhang, Longxian

    2015-10-01

    Cryptosporidium and Enterocytozoon bieneusi are the most prevalent protist pathogens responsible for inducing human and animal diseases worldwide. The aim of the present work was to determine the occurrence of Cryptosporidium spp. and E. bieneusi in pet chinchillas in China. One hundred forty fecal samples were collected from four cities: Beijing, Zhengzhou, Anyang and Guiyang. They were then examined with PCR amplification of the small subunit ribosomal RNA (SSU rRNA) of Cryptosporidium spp. and the internal transcribed spacer (ITS) of the ribosomal RNA of E. bieneusi. The infection rates for Cryptosporidium spp. and E. bieneusi were 10.0% and 3.6%, respectively. Sequence analysis of SSU rRNA gene products identified two Cryptosporidium spp., Cryptosporidium ubiquitum (n=13) and Cryptosporidium parvum (n=1). Subtyping with the 60-kDa glycoprotein (gp60) gene showed that all C. ubiquitum isolates belonged to zoonotic subtype family XIId, while the subtype of the C. parvum isolate could not be identified. Two E. bieneusi genotypes were identified in five samples, zoonotic genotypes BEB6 (n=3) and D (n=2). This is the first report of C. ubiquitum and C. parvum, and E. bieneusi in chinchillas. This result indicates that pet chinchillas may be a potential source of human infection with Cryptosporidium spp. and E. bieneusi. PMID:25988830

  9. Morphology and phylogenies of two hypotrichous brackish-water ciliates from China, Neourostylopsis orientalis n. sp. and Protogastrostyla sterkii (Wallengren, 1900) n. comb., with establishment of a new genus Neourostylopsis n. gen. (Protista, Ciliophora, Hypotrichia).

    PubMed

    Chen, Xiangrui; Shao, Chen; Liu, Xihan; Huang, Jie; Al-Rasheid, Khaled A S

    2013-03-01

    This paper investigates the morphology, infraciliature and small-subunit (SSU) rRNA gene sequences of two hypotrichous ciliates, Neourostylopsis orientalis n. sp., and Protogastrostyla sterkii (Wallengren, 1900) n. comb. (basionym Gastrostyla sterkii), collected from coastal waters in southern China. Neourostylopsis orientalis n. sp. is diagnosed mainly by the arrangement of brownish cortical granules, the numbers of adoral membranelles and frontal and transverse cirri and the characteristics of its midventral cirral pairs. The SSU rRNA gene phylogeny strongly supports the establishment of the new genus Neourostylopsis n. gen., which is characterized mainly by the following features: frontal and transverse cirri clearly differentiated, buccal cirri present, two frontoterminal cirri, midventral complex composed of midventral pairs only and not exceeding the halfway point of the cell, more than one row of marginal cirri on each side which derive from individual anlagen within each parental row, caudal cirri lacking. Thus, two new combinations are required: Neourostylopsis songi (Lei et al., 2005) n. comb., and Neourostylopsis flavicana (Wang et al., 2011) n. comb. Additionally, improved diagnoses for both Metaurostylopsis and Apourostylopsis are supplied in this study. Protogastrostyla sterkii (Wallengren, 1900) n. comb. differs from the similar congener Protogastrostyla pulchra mainly in body shape, ratio of buccal field to body length in vivo and molecular data. Based on the present studies, we conclude that the estuarine population of P. pulchra collected by J. Gong and others [Gong et al., J Eukaryot Microbiol (2007) 54, 468-478] is a population of P. sterkii. PMID:23355699

  10. Codon usage, genetic code and phylogeny of Dictyostelium discoideum mitochondrial DNA as deduced from a 7.3-kb region.

    PubMed

    Angata, K; Kuroe, K; Yanagisawa, K; Tanaka, Y

    1995-02-01

    We have sequenced a region (7,376-bp) of the mitochondrial (mt) DNA (54 kb) of the cellular slime mold, Dictyostelium discoideum. From the DNA and amino-acid sequence comparisons with known sequences, genes for ATPase subunit 9 (ATP9), cytochrome b (CYTB), NADH dehydrogenase subunits 1, 3 and 6 (ND1, ND3 and ND6), small subunit rRNA (SSU rRNA) and seven tRNAs (Arg, Asn, Cys, Lys, f-Met, Met and Pro) have been identified. The sequenced region of the mtDNA has a high average A + T-content (70.8%). The A + T-content of protein-genes (73.6%) is considerably higher than that of RNA genes (61.3%). Even with the strong AT-bias, the genetic code employed is most probably the universal one. All seven tRNAs are able to form typical clover leaf structures. The molecular phylogenetic trees of CYTB and SSU rRNA suggest that D. discoideum is closer to green plants than to animals and fungi. PMID:7736610

  11. Distribution and Niche Separation of Planktonic Microbial Communities in the Water Columns from the Surface to the Hadal Waters of the Japan Trench under the Eutrophic Ocean.

    PubMed

    Nunoura, Takuro; Hirai, Miho; Yoshida-Takashima, Yukari; Nishizawa, Manabu; Kawagucci, Shinsuke; Yokokawa, Taichi; Miyazaki, Junichi; Koide, Osamu; Makita, Hiroko; Takaki, Yoshihiro; Sunamura, Michinari; Takai, Ken

    2016-01-01

    The Japan Trench is located under the eutrophic Northwestern Pacific while the Mariana Trench that harbors the unique hadal planktonic biosphere is located under the oligotrophic Pacific. Water samples from the sea surface to just above the seafloor at a total of 11 stations including a trench axis station, were investigated several months after the Tohoku Earthquake in March 2011. High turbidity zones in deep waters were observed at most of the sampling stations. The small subunit (SSU) rRNA gene community structures in the hadal waters (water depths below 6000 m) at the trench axis station were distinct from those in the overlying meso-, bathy and abyssopelagic waters (water depths between 200 and 1000 m, 1000 and 4000 m, and 4000 and 6000 m, respectively), although the SSU rRNA gene sequences suggested that potential heterotrophic bacteria dominated in all of the waters. Potential niche separation of nitrifiers, including ammonia-oxidizing archaea (AOA), was revealed by quantitative PCR analyses. It seems likely that Nitrosopumilus-like AOAs respond to a high flux of electron donors and dominate in several zones of water columns including shallow and very deep waters. This study highlights the effects of suspended organic matter, as induced by seafloor deformation, on microbial communities in deep waters and confirm the occurrence of the distinctive hadal biosphere in global trench environments hypothesized in the previous study. PMID:27559333

  12. Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application.

    PubMed

    Howell, Christopher C; Hilton, Sally; Semple, Kirk T; Bending, Gary D

    2014-10-01

    The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. PMID:25048906

  13. Candida funiuensi sp. nov., a cellobiose-fermenting yeast species isolated from rotten wood.

    PubMed

    Wang, Yun; Ren, Yong-Cheng; Zhang, Zheng-Tian; Wu, Fu-Hua; Ke, Tao; Hui, Feng-Li

    2015-06-01

    Two strains of an asexual cellobiose-fermenting yeast species were isolated from rotten wood samples collected in Funiu Mountain Nature Reserve in Henan Province, central China. Molecular phylogenetic analysis that included the nearly complete small subunit (SSU), the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) rDNA showed that these strains belonged to the Candida kruisii clade, with Candida kruisii and Candida cretensis as their closest phylogenetic neighbours. The nucleotide differences between the novel strains and the type strains of C. kruisii and C. cretensis were 30 and 36 substitutions, respectively, in the D1/D2 LSU rDNA, 40 and 44 substitutions, respectively, in the ITS region and 19 and 23 substitutions, respectively, in the SSU rDNA. The novel strains can also be distinguished from their closest described species, C. kruisii and C. cretensis, by a number of physiological characteristics, and represent a novel species of the genus Candida, for which the name Candida funiuensis sp. nov. is proposed. The type strain is NYNU 14625T ( = CICC 33050T = CBS 13911T). The Mycobank number is MB 811503. PMID:25740930

  14. Intercontinental distribution of a new trypanosome species from Australian endemic Regent Honeyeater (Anthochaera phrygia).

    PubMed

    Šlapeta, Jan; Morin-Adeline, Victoria; Thompson, Paul; McDonell, Denise; Shiels, Michael; Gilchrist, Katrina; Votýpka, Jan; Vogelnest, Larry

    2016-07-01

    Establishing a health screening protocol is fundamental for successful captive breeding and release of wildlife. The aim of this study was to undertake a parasitological survey focusing on the presence of trypanosomes in a cohort of Regent Honeyeaters, Anthochaera phrygia, syn. Xanthomyza phrygia (Aves: Passeriformes) that are part of the breeding and reintroduction programme carried out in Australia. We describe a new blood parasite, Trypanosoma thomasbancrofti sp. n. (Kinetoplastida: Trypanosomatidae) with prevalence of 24·4% (20/81) in a captive population in 2015. The sequence of the small subunit rRNA gene (SSU rDNA) and kinetoplast ultrastructure of T. thomasbancrofti sp. n. are the key differentiating characteristics from other Trypanosoma spp. T. thomasbancrofti sp. n. is distinct from Trypanosoma cf. avium found in sympatric Noisy Miners (Manorina melanocephala). The SSU rDNA comparison suggests an intercontinental distribution of T. thomasbancrofti sp. n. and Culex mosquitoes as a suspected vector. Currently, no information exists on the effect of T. thomasbancrofti sp. n. on its hosts; however, all trypanosome-positive birds remain clinically healthy. This information is useful in establishing baseline health data and screening protocols, particularly prior to release to the wild. PMID:27001623

  15. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology

    PubMed Central

    Stoeck, Thorsten; Breiner, Hans-Werner; Filker, Sabine; Ostermaier, Veronika; Kammerlander, Barbara; Sonntag, Bettina

    2014-01-01

    Analyses of high-throughput environmental sequencing data have become the ‘gold-standard’ to address fundamental questions of microbial diversity, ecology and biogeography. Findings that emerged from sequencing are, e.g. the discovery of the extensive ‘rare microbial biosphere’ and its potential function as a seed-bank. Even though applied since several years, results from high-throughput environmental sequencing have hardly been validated. We assessed how well pyrosequenced amplicons [the hypervariable eukaryotic V4 region of the small subunit ribosomal RNA (SSU rRNA) gene] reflected morphotype ciliate plankton. Moreover, we assessed if amplicon sequencing had the potential to detect the annual ciliate plankton stock. In both cases, we identified significant quantitative and qualitative differences. Our study makes evident that taxon abundance distributions inferred from amplicon data are highly biased and do not mirror actual morphotype abundances at all. Potential reasons included cell losses after fixation, cryptic morphotypes, resting stages, insufficient sequence data availability of morphologically described species and the unsatisfying resolution of the V4 SSU rRNA fragment for accurate taxonomic assignments. The latter two underline the necessity of barcoding initiatives for eukaryotic microbes to better and fully exploit environmental amplicon data sets, which then will also allow studying the potential of seed-bank taxa as a buffer for environmental changes. PMID:23848238

  16. Evaluation of the zoonotic potential of Giardia duodenalis in fecal samples from dogs and cats in Ontario.

    PubMed

    McDowall, Rebeccah M; Peregrine, Andrew S; Leonard, Erin K; Lacombe, Christopher; Lake, Mary; Rebelo, Ana R; Cai, Hugh Y

    2011-12-01

    This study determined the distribution and zoonotic potential of Giardia duodenalis assemblage types among canine and feline fecal samples from Ontario. The effectiveness of Giardia assemblage typing methods by sequencing the genes of small subunit ribosomal RNA (ssu-rRNA), β-giardin (bg), glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) was evaluated simultaneously. From 2008 to 2010, 118 canine and 15 feline Giardia positive fecal samples were tested. The ssu-rRNA sequencing method typed 64% (75/118) and 87% (13/15) of the Giardia-positive canine and feline samples, respectively. Among the typeable samples, 68% (51/75) of canine samples contained G. duodenalis assemblage D and 31% (23/75) contained G. duodenalis assemblage C (both non-zoonotic assemblage types). Only 1% (1/75) of the typeable canine samples contained a potentially zoonotic assemblage B. In contrast, 100% (13/13) of the typeable feline samples contained potentially zoonotic assemblages A (n = 12) or B (n = 1). PMID:22654138

  17. Phylogenetic and morphological characterisation of the green algae infesting blue mussel Mytilus edulis in the North and South Atlantic oceans.

    PubMed

    Rodríguez, Francisco; Feist, Stephen W; Guillou, Laure; Harkestad, Lisbeth S; Bateman, Kelly; Renault, Tristan; Mortensen, Stein

    2008-09-24

    Blue mussels Mytilus edulis with shell deformations and green pustules containing parasitic algae were collected at 3 coastal sites (Burøy, Norway; Bockholm, Denmark; Goose Green, Falkland Islands). A comparative study, including mussel histopathology, algal morphology, ultrastructure and phylogenetic position was performed. Green pustules were mainly located in the posterior portion of the mantle and gonad tissues and the posterior adductor muscle. Electron microscopy confirmed the presence of algal cells with similar morphology to Coccomyxa parasitica. Algae were oval shaped with a single nucleus and chloroplast, 1 or 2 mitochondria and a dense granular cytoplasm with a lipid inclusion body, Golgi apparatus and small vesicles. Partial small subunit (SSU) rRNA phylogeny confirmed the inclusion of parasitic algae into the Coccomyxa clade. However, the sequence identity between almost full SSU rRNA sequences of parasitic algae and others in this clade yielded an unexpected result. Green algae from mussels were distant from C. parasitica Culture Collection of Algae and Protozoa (CCAP) strain 216/18 (94% identity), but very similar (99% identity) to C. glaronensis (a lichen endosymbiont) and green endophytes from the tree Ginkgo biloba. The CCAP strain 216/18 was a sister sequence to Nannochloris algae, far from the Coccomyxa clade. These results suggest a misidentification or outgrowth of the original CCAP strain 216/18 by a different 'Nannochloris-like' trebouxiophycean organism. In contrast, our sequences directly obtained from infested mussels could represent the