Inference in high-dimensional parameter space.
O'Hare, Anthony
2015-11-01
Model parameter inference has become increasingly popular in recent years in the field of computational epidemiology, especially for models with a large number of parameters. Techniques such as Approximate Bayesian Computation (ABC) or maximum/partial likelihoods are commonly used to infer parameters in phenomenological models that best describe some set of data. These techniques rely on efficient exploration of the underlying parameter space, which is difficult in high dimensions, especially if there are correlations between the parameters in the model that may not be known a priori. The aim of this article is to demonstrate the use of the recently invented Adaptive Metropolis algorithm for exploring parameter space in a practical way through the use of a simple epidemiological model. PMID:26176624
Visualization of Parameter Space for Image Analysis
Pretorius, A. Johannes; Bray, Mark-Anthony P.; Carpenter, Anne E.; Ruddle, Roy A.
2013-01-01
Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter settings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in the first step - initialization of sampling - and the last step - visual analysis of output. This helps users to more thoroughly explore the parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler - a popular biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings, users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach. PMID:22034361
Parton Distributions in the Impact Parameter Space
Matthias Burkardt
2009-08-01
Parton distributions in impact parameter space, which are obtained by Fourier transforming GPDs, exhibit a significant deviation from axial symmetry when the target and/or quark is transversely polarized. In combination with the final state interactions, this transverse deformation provides a natural mechanism for naive-T odd transverse single-spin asymmetries in semi-inclusive DIS. The deformation can also be related to the transverse force acting on the active quark in polarized DIS at higher twist.
A Tool for Parameter-space Explorations
NASA Astrophysics Data System (ADS)
Murase, Yohsuke; Uchitane, Takeshi; Ito, Nobuyasu
A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results. A few examples of the automated parameter selection are also demonstrated.
Quantum parameter space of dissipative directed transport.
Ermann, Leonardo; Carlo, Gabriel G
2015-01-01
Quantum manifestations of isoperiodic stable structures (QISSs) have a crucial role in the current behavior of quantum dissipative ratchets. In this context, the simple shape of the ISSs has been conjectured to be an almost exclusive feature of the classical system. This has drastic consequences for many properties of the directed currents, the most important one being that it imposes a significant reduction in their maximum values, thus affecting the attainable efficiency at the quantum level. In this work we prove this conjecture by means of comprehensive numerical explorations and statistical analysis of the quantum states. We are able to describe the quantum parameter space of a paradigmatic system for different values of ℏ(eff) in great detail. Moreover, thanks to this we provide evidence on a mechanism that we call parametric tunneling by which the sharp classical borders of the regions in parameter space become blurred in the quantum counterpart. We expect this to be a common property of generic dissipative quantum systems.
On the estimability of geodetic parameters with space-ground and space-space SVLBI observations
NASA Astrophysics Data System (ADS)
Wei, Erhu; Liu, Jingnan; Yan, Wei; Shi, Chuang
2008-12-01
Space Very Long Baseline Interferometry (SVLBI) is the unique space technique that can directly interconnect the main three reference systems for geodesy and geodynamics. However, the estimable sequence of geodetic parameters including nutation parameters within SVLBI mathematical model has not been determined yet. In this paper, using the mathematical model of space-ground SVLBI observations including the nutation parameters derived by WEI Erhu et al.(2008), the estimable parameter sequence is determined. And the same study is done with space-space SVLBI Observations. To study the standard deviation of nutation parameters estimated with space-ground SVLBI observations, the model of variance propagation is derived, with which some numerical tests are done. Finally, the results are present.
Parameter space for successful soccer kicks
NASA Astrophysics Data System (ADS)
Cook, Brandon G.; Goff, John Eric
2006-07-01
A computational model of two important types of soccer kicks, the free kick and the corner kick, is developed with the goal of determining the success rate for each type of kick. What is meant by 'success rate' is the probability of getting an unassisted goal via a free kick and the probability of having a corner kick reach an optimum location so that a teammate's chance of scoring a goal is increased. Success rates are determined through the use of four-dimensional parameter space volumes. A one-in-ten success rate is found for the free kick while the corner-kick success rate is found to be one in four.
Physical parameters affecting living cells in space
NASA Astrophysics Data System (ADS)
Langbein, Dieter
The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.
Global Model Analysis by Parameter Space Partitioning
ERIC Educational Resources Information Center
Pitt, Mark A.; Kim, Woojae; Navarro, Daniel J.; Myung, Jay I.
2006-01-01
To model behavior, scientists need to know how models behave. This means learning what other behaviors a model can produce besides the one generated by participants in an experiment. This is a difficult problem because of the complexity of psychological models (e.g., their many parameters) and because the behavioral precision of models (e.g.,…
Supersymmetric parameter space of family symmetries
Velasco-Sevilla, L.
2008-11-23
In this talk I have emphasized the effects of considering departures from the minimal flavour violation conditions, in the context of CMSSM-like theories, introduced by boundary conditions at GUT scale from Family Symmetries. In [1] we have shown the results of running these conditions down to EW, where constraints from fermion masses and CKM matrix elements have been used. Only when the expansion parameter in the sdown-squark sector is relatively large it is possible to relax the lower limit from b{yields}s{gamma} on the universal gaugino mass. The expansion parameter associated with the slepton sector needs to be smaller than the analogous in the sdown-squark sector in order to satisfy the bound imposed by the decay of {tau}{yields}{mu}{mu}.
Atlas performance and imploding liner parameter space
Reinovsky, R.; Lindemuth, I. R.; Atchison, W. L.; Cochrane, J. C. , Jr.; Faehl, R. J.
2002-01-01
Ultra-high magnetic fields have many applications in the confining and controlling plasmas and in exploring electron physics as manifested in the magnetic properties of materials. Another application of high fields is the acceleration of metal conductors to velocities higher than that achievable with conventional high explosive drive or gas guns. The Atlas pulse power system is the world's first pulse power system specifically designed to implode solid and near-solid density metal liners for use in pulse power hydrodynamic experiments. This paper describes the Atlas system during the first year of its operational life at Los Alamos, (comprising 10-15 implosion experiments); describes circuit models that adequately predicted the bulk kinematic behavior of liner implosions; and shows how those (now validated) models can be used to describe the range of parameters accessible through Atlas implosions.
Parameter space for a dissipative Fermi-Ulam model
NASA Astrophysics Data System (ADS)
Oliveira, Diego F. M.; Leonel, Edson D.
2011-12-01
The parameter space for a dissipative bouncing ball model under the effect of inelastic collisions is studied. The system is described using a two-dimensional nonlinear area-contracting map. The introduction of dissipation destroys the mixed structure of phase space of the non-dissipative case, leading to the existence of a chaotic attractor and attracting fixed points, which may coexist for certain ranges of control parameters. We have computed the average velocity for the parameter space and made a connection with the parameter space based on the maximum Lyapunov exponent. For both cases, we found an infinite family of self-similar structures of shrimp shape, which correspond to the periodic attractors embedded in a large region that corresponds to the chaotic motion.
Parameter redundancy in discrete state‐space and integrated models
McCrea, Rachel S.
2016-01-01
Discrete state‐space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state‐space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state‐space models using discrete analogues of methods for continuous state‐space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. PMID:27362826
Parameter redundancy in discrete state-space and integrated models.
Cole, Diana J; McCrea, Rachel S
2016-09-01
Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant.
Mission planning parameters for the Space Shuttle large format camera
NASA Technical Reports Server (NTRS)
Wood, G. A.
1979-01-01
The paper discusses the impact of various Space Shuttle mission parameters on the efficient and meaningful utilization of the large format camera (LFC) as a photographic acquisition system. Some of the LFC's vital statistics and its mounting within the Orbiter payload are described. LFC characteristics and mounting dictate certain mission parameters. The controlling parameters are orbit inclinations, launch time of year, launch time of day, orbital altitude, mission duration, overlap selection, film capacity, and climatological prediction. A mission case is evaluated relative to controlling parameters and geographical area(s) of interest.
Determining frequentist confidence limits using a directed parameter space search
Daniel, Scott F.; Connolly, Andrew J.; Schneider, Jeff
2014-10-10
We consider the problem of inferring constraints on a high-dimensional parameter space with a computationally expensive likelihood function. We propose a machine learning algorithm that maps out the Frequentist confidence limit on parameter space by intelligently targeting likelihood evaluations so as to quickly and accurately characterize the likelihood surface in both low- and high-likelihood regions. We compare our algorithm to Bayesian credible limits derived by the well-tested Markov Chain Monte Carlo (MCMC) algorithm using both multi-modal toy likelihood functions and the seven yr Wilkinson Microwave Anisotropy Probe cosmic microwave background likelihood function. We find that our algorithm correctly identifies the location, general size, and general shape of high-likelihood regions in parameter space while being more robust against multi-modality than MCMC.
Estimability of geodetic parameters from space VLBI observables
NASA Technical Reports Server (NTRS)
Adam, Jozsef
1990-01-01
The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.
Recovering a Probabilistic Knowledge Structure by Constraining Its Parameter Space
ERIC Educational Resources Information Center
Stefanutti, Luca; Robusto, Egidio
2009-01-01
In the Basic Local Independence Model (BLIM) of Doignon and Falmagne ("Knowledge Spaces," Springer, Berlin, 1999), the probabilistic relationship between the latent knowledge states and the observable response patterns is established by the introduction of a pair of parameters for each of the problems: a lucky guess probability and a careless…
Valence space techniques and QRPA vibrational mass parameters
NASA Astrophysics Data System (ADS)
Deloncle, I.; Lechaftois, F.; Péru, S.
2016-06-01
The vibrational mass parameters entering the quadrupolar 5DCH Hamiltonian are commonly obtained neglecting beyond mean-field correlations and the dynamical mean-field rearrangement. The Quasiparticle Random Phase Approximation (QRPA) framework would allow to avoid these disadvantages [1], if the computation time, when using density dependent force, was not prohibitive. Here, a significant time reduction is obtained by applying valence space (VS) techniques (energy cut-off and inert core) in QRPA calculations. The VS techniques allow to probe the physical content of the mass parameter. The QRPA mass parameter exhibit robustness toward VS limitations contrarily to the intrinsic QRPA outputs, that show deceptive appearance when an inert core is used. Excited states energy, and associated transition probabilities, should not be considered for optimizing the valence space limits.
Mutagenesis by outer space parameters other than cosmic rays
NASA Astrophysics Data System (ADS)
Horneck, Gerda; Rabbow, Elke
We have studied the ability of microorganisms to cope with the complex interplay of the parameters of space in experiments in low Earth orbit and using space simulation facilities on ground. Emphasis was laid on space parameters other than cosmic rays. The studies are directed towards understanding prebiotic chemical evolution and biological evolution processes, and interplanetary transfer of life. Effects of space vacuum: Space experiments have shown that up to 70% of bacterial and fungal spores survived short-term exposure to space vacuum. The chances of survival in space were increased when spores were embedded in chemical protectants such as sugars, or salt crystals, or when they were exposed in multilayer. During the six years lasting LDEF mission up to 80% of bacterial spores survived exposure to space vacuum. A 10-fold increased mutation rate over the spontaneous rate has been observed in spores of Bacillus subtilis after exposure to space vacuum, which is probably based on a unique molecular signature of tandem-double base change at restricted sites in the DNA. In addition, DNA strand breaks have been observed to be induced by vacuum treatment. Effects of extraterrestrial solar UV radiation: Solar UV radiation has been found to be the most deleterious factor of space. The reason for this is the highly energetic UV-C and vacuum UV radiation that is directly absorbed by the DNA and which induces specific photoproducts in the DNA that are highly mutagenic and lethal. The damaging effect of extraterrestrial solar UV radiation was even aggravated, when the spores were simultaneously exposed to both, solar UV radiation and space vacuum. In order to investigate the mutagenic potential of solar UV radiation, DNA of the Escherichia coli plasmid pUC19 was exposed to selected wavebands of UV radiation (from vacuum UV to UV-A) by use of a solar simulator and space simulation facilities. Action spectra revealed that for vacuum UV different kinds of photochemical damage
Rat Breeding Parameters According to Floor Space Available in Cage.
Allen, Kenneth P; Dwinell, Melinda R; Zappa, Allison M; Michaels, Andrea M; Murray, Kathleen M; Thulin, Joseph D
2016-01-01
The cage floor space recommended for a female rat with a litter is greater in the 8th edition of the Guide for the Care and Use of Laboratory Animals than in previous editions. As a result, research institutions using commonly available cages to house rats may not offer the recommended amount of space for a breeding pair and litter housed in the same cage. We evaluated breeding parameters in rats housed in cages with 143 in(2) (922.6 cm(2)) compared with 210 in(2) (1355 cm(2)) of floor space. Given the strains of rats typically used at our institution, a monogamous breeding pair and litter requires 164 in(2) (1058.1 cm(2)) of floor space according to the Guide. Pairs of breeding animals were housed in each type of cage; and average time between litters, number of litters born, percentage of litter weaned, numbers of pups born and weaned, and average weaning weights were evaluated. None of the breeding parameters evaluated differed according to the floor space of the cage in which the rats were housed.
Rat Breeding Parameters According to Floor Space Available in Cage
Allen, Kenneth P; Dwinell, Melinda R; Zappa, Allison M; Michaels, Andrea M; Murray, Kathleen M; Thulin, Joseph D
2016-01-01
The cage floor space recommended for a female rat with a litter is greater in the 8th edition of the Guide for the Care and Use of Laboratory Animals than in previous editions. As a result, research institutions using commonly available cages to house rats may not offer the recommended amount of space for a breeding pair and litter housed in the same cage. We evaluated breeding parameters in rats housed in cages with 143 in2 (922.6 cm2) compared with 210 in2 (1355 cm2) of floor space. Given the strains of rats typically used at our institution, a monogamous breeding pair and litter requires 164 in2 (1058.1 cm2) of floor space according to the Guide. Pairs of breeding animals were housed in each type of cage; and average time between litters, number of litters born, percentage of litter weaned, numbers of pups born and weaned, and average weaning weights were evaluated. None of the breeding parameters evaluated differed according to the floor space of the cage in which the rats were housed. PMID:26817975
A new parameter space study of cosmological microlensing
NASA Astrophysics Data System (ADS)
Vernardos, G.; Fluke, C. J.
2013-09-01
Cosmological gravitational microlensing is a useful technique for understanding the structure of the inner parts of a quasar, especially the accretion disc and the central supermassive black hole. So far, most of the cosmological microlensing studies have focused on single objects from ˜90 currently known lensed quasars. However, present and planned all-sky surveys are expected to discover thousands of new lensed systems. Using a graphics processing unit (GPU) accelerated ray-shooting code, we have generated 2550 magnification maps uniformly across the convergence (κ) and shear (γ) parameter space of interest to microlensing. We examine the effect of random realizations of the microlens positions on map properties such as the magnification probability distribution (MPD). It is shown that for most of the parameter space a single map is representative of an average behaviour. All of the simulations have been carried out on the GPU Supercomputer for Theoretical Astrophysics Research.
Pseudohyphal variations of yeasts exposed to specific space flight parameters.
Volz, P A; Hunter, R L
1998-01-01
Phenotypes of Saccharomyces cerevisiae and Rhodotorula rubra exposed to specific parameters of space flight, which were measured both quantitatively and qualitatively, produced variations in pseudohyphal formation. Both the length of the parent and branch psuedohyphal filaments varied according to specific wavelengths and energy levels of UV light exposures when phenotypic isolates were compared with the parent or ground control isolate of each yeast species. PMID:9881461
Describing variations of the Fisher-matrix across parameter space
NASA Astrophysics Data System (ADS)
Schäfer, Björn Malte; Reischke, Robert
2016-08-01
Forecasts in cosmology, both with Monte Carlo Markov-chain methods and with the Fisher-matrix formalism, depend on the choice of the fiducial model because both the signal strength of any observable and the model non-linearities linking observables to cosmological parameters vary in the general case. In this paper we propose a method for extrapolating Fisher-forecasts across the space of cosmological parameters by constructing a suitable basis. We demonstrate the validity of our method with constraints on a standard dark energy model extrapolated from a ΛCDM-model, as can be expected from two-bin weak lensing tomography with an Euclid-like survey, in the parameter pairs (Ωm, σ8), (Ωm, w0) and (w0, wa). Our numerical results include very accurate extrapolations across a wide range of cosmological parameters in terms of shape, size and orientation of the parameter likelihood, and a decomposition of the change of the likelihood contours into modes, which are straightforward to interpret in a geometrical way. We find that in particular the variation of the dark energy figure of merit is well captured by our formalism.
Lattice parameters from direct-space images at two tilts.
Qin, W; Fraundorf, P
2003-04-01
Lattices in three dimensions are oft studied from the "reciprocal space" perspective of diffraction. Today, the full lattice of a crystal can often be inferred from direct-space information about three sets of non-parallel lattice planes. Such data can come from electron-phase (or less easily Z contrast images) taken at two tilts, provided that one image shows two non-parallel lattice periodicities, and the other shows a periodicity not coplanar with the first two. We outline here protocols for measuring the 3D parameters of cubic lattice types in this way. For randomly oriented nano-crystals with cell side greater than twice the continuous transfer limit, orthogonal +/-15 degrees and +/-10 degrees tilt ranges might allow one to measure 3D parameters of all such lattice types in a specimen from only two well-chosen images. The strategy is illustrated by measuring the lattice parameters of a 10nm WC(1-x) crystal in a plasma-enhanced chemical-vapor deposited thin film.
Parameter space region in the collisional magnetized electronegative plasma
Yasserian, Kiomars; Aslaninejad, Morteza
2010-02-15
The influence of the elastic collisions on the structure of a magnetized electronegative discharge is investigated. For a constant magnetic field, the profiles of the velocities of positive ions, the density of species, and electric potential are obtained. Furthermore, the positive ion flux is obtained as a function of magnetic field strength for different values of the collision frequency. The results show that in the absence of collision in a constant magnetic field, the discharge structure is uniform while by taking the collision into account, the structure becomes multilayer stratified. By increasing the collision frequency the discharge leaves the multilayer structure, and related oscillations in the plasma potential and space charge vanish. The parameter space region is obtained for collisionless and collisional cases. In this paper it is shown that a combined effect of collision and magnetic field determines the presheath-sheath structure.
Parameter space of experimental chaotic circuits with high-precision control parameters.
de Sousa, Francisco F G; Rubinger, Rero M; Sartorelli, José C; Albuquerque, Holokx A; Baptista, Murilo S
2016-08-01
We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family. PMID:27586603
Parameter space of experimental chaotic circuits with high-precision control parameters
NASA Astrophysics Data System (ADS)
de Sousa, Francisco F. G.; Rubinger, Rero M.; Sartorelli, José C.; Albuquerque, Holokx A.; Baptista, Murilo S.
2016-08-01
We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (˜21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.
Parameter space of experimental chaotic circuits with high-precision control parameters.
de Sousa, Francisco F G; Rubinger, Rero M; Sartorelli, José C; Albuquerque, Holokx A; Baptista, Murilo S
2016-08-01
We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.
Flavor Data Constraints on the SUSY Parameter Space
Mahmoudi, Farvah
2008-11-23
We present an overview of the indirect constraints from flavor physics on supersymmetric models. During the past few years flavor data, and in particular b{yields}s{gamma} transitions, have been extensively used in order to constrain supersymmetric parameter spaces. We will briefly illustrate here the constraints obtained by a collection of low energy observables including FCNC transitions, rare decays, leptonic and semileptonic decays of B mesons, as well as leptonic decays of K mesons. The theoretical predictions can be obtained using the computer program SuperIso.
Multidimensional optimization of signal space distance parameters in WLAN positioning.
Brković, Milenko; Simić, Mirjana
2014-01-01
Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443
Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning
Brković, Milenko; Simić, Mirjana
2014-01-01
Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443
Multidimensional optimization of signal space distance parameters in WLAN positioning.
Brković, Milenko; Simić, Mirjana
2014-01-01
Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware.
Entropy considerations in constraining the mSUGRA parameter space
Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas; Cabral-Rosetti, Luis G.; Mondragon, Myriam
2006-09-25
We explore the use of two criteria to constraint the allowed parameter space in mSUGRA models. Both criteria are based in the calculation of the present density of neutralinos as dark matter in the Universe. The first one is the usual ''abundance'' criterion which is used to calculate the relic density after the ''freeze-out'' era. To compute the relic density we used the numerical public code micrOMEGAs. The second criterion applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas evaluating then the change in the entropy per particle of this gas between the ''freeze-out'' era and present day virialized structures (i.e systems in virial equilibrium). An ''entropy-consistency'' criterion emerges by comparing theoretical and empirical estimates of this entropy. The main objective of our work is to determine for which regions of the parameter space in the mSUGRA model are both criteria consistent with the 2{sigma} bounds according to WMAP for the relic density: 0.0945 < {omega}CDMh2 < 0.1287. As a first result, we found that for A0 = 0, sgn{mu} +, small values of tan{beta} are not favored; only for tan{beta} {approx_equal} 50 are both criteria significantly consistent.
Emergence and spread of antibiotic resistance: setting a parameter space
Baquero, Fernando
2014-01-01
The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. In addition, we analyse several parameters that modulate the evolution landscape of antibiotic resistance. Learning why some resistance mechanisms emerge but do not evolve after a first burst, whereas others can spread over the entire world very rapidly, mimicking a chain reaction, is important for predicting the evolution, and relevance for human health, of a given mechanism of resistance. Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions. PMID:24678768
Johnson, Kenneth A; Simpson, Zachary B; Blom, Thomas
2009-04-01
Fitting several sets of kinetic data directly to a model based on numerical integration provides the best method to extract kinetic parameters without relying on the simplifying assumptions required to achieve analytical solutions of rate equations. However, modern computer programs make it too easy to enter an overly complex model, and standard error analysis grossly underestimates errors when a system is underconstrained and fails to reveal the full degree to which multiple parameters are linked through the complex relationships common in kinetic data. Here we describe the application of confidence contour analysis obtained by measuring the dependence of the sum square error on each pair of parameters while allowing all remaining parameters to be adjusted in seeking the best fit. The confidence contours reveal complex relationships between parameters and clearly outline the space over which parameters can vary (the "FitSpace"). The utility of the method is illustrated by examples of well-constrained fits to published data on tryptophan synthase and the kinetics of oligonucleotide binding to a ribozyme. In contrast, analysis of alanine racemase clearly refutes claims that global analysis of progress curves can be used to extract the free energy profiles of enzyme-catalyzed reactions.
Parallel axes gear set optimization in two-parameter space
NASA Astrophysics Data System (ADS)
Theberge, Y.; Cardou, A.; Cloutier, L.
1991-05-01
This paper presents a method for optimal spur and helical gear transmission design that may be used in a computer aided design (CAD) approach. The design objective is generally taken as obtaining the most compact set for a given power input and gear ratio. A mixed design procedure is employed which relies both on heuristic considerations and computer capabilities. Strength and kinematic constraints are considered in order to define the domain of feasible designs. Constraints allowed include: pinion tooth bending strength, gear tooth bending strength, surface stress (resistance to pitting), scoring resistance, pinion involute interference, gear involute interference, minimum pinion tooth thickness, minimum gear tooth thickness, and profile or transverse contact ratio. A computer program was developed which allows the user to input the problem parameters, to select the calculation procedure, to see constraint curves in graphic display, to have an objective function level curve drawn through the design space, to point at a feasible design point and to have constraint values calculated at that point. The user can also modify some of the parameters during the design process.
Parameter estimation in space systems using recurrent neural networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.
1991-01-01
The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.
Phase diagram of Model C in the parametric space of order parameter and space dimensions
NASA Astrophysics Data System (ADS)
Dudka, M.; Folk, R.; Holovatch, Yu.
2016-03-01
The scaling behavior of Model C describing the dynamical behavior of the n -component nonconserved order parameter coupled statically to a scalar conserved density is considered in d -dimensional space. Conditions for the realization of different types of scaling regimes in the (n ,d ) plane are studied within the field-theoretical renormalization group approach. Borders separating these regions are calculated on the base of high-order RG functions using ɛ expansions as well as by fixed dimension d approach with resummation.
Derivation of Delaware Bay tidal parameters from space shuttle photography
Zheng, Quanan; Yan, Xiaohai; Klemas, V. )
1993-06-01
The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O[sup 9] m[sup 3]. Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts.
Two space scatterer formalism calculation of bulk parameters of thunderclouds
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1994-01-01
In a previous study, we used a modified two-space scatterer formalism of Twersky to establish for a cloud modeled as a statistically homogeneous distribution of spherical water droplets, the dispersion relations that determine its bulk propagation numbers and bulk indexes of refraction in terms of the vector equivalent scattering amplitude and the dyadic scattering amplitude of the single water droplet in isolation. The results were specialized to the forward direction of scattering while demanding that the scatterers preserve the incident polarization. We apply this approach to obtain specific numerical values for the macroscopic parameters of the cloud. We work with a cloud of density rho = 100 cm(exp -3), a wavelength lambda = 0.7774 microns, and with spherical water droplets of common radius alpha = 10 microns. In addition, the scattering medium is divided into three parts, the medium outside the cloud, moist air (the medium inside the cloud but outside the droplets), and the medium inside the spherical water droplets. The results of this report are applicable to a cloud of any geometry since the boundary does not interfere with the calculations. Also, it is important to notice the plane wave nature of the incidence wave in the moist atmosphere.
Variation in the modal parameters of space structures
NASA Technical Reports Server (NTRS)
Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Bicos, Andrew S.
1992-01-01
An analytic and experimental study of gravity and suspension influences on space structural test articles is presented. A modular test article including deployable, erectable, and rotary modules was assembled in three one- and two-dimensional structures. The two deployable modules utilized cable diagonal bracing rather than rigid cross members; within a bay of one of the deployable modules, the cable preload was adjustable. A friction lock was used on the alpha joint to either allow or prohibit rotary motion. Suspension systems with plunge fundamentals of 1, 2, and 5 Hz were used for ground testing to evaluate the influences of suspension stiffness. Assembly and reassembly testing was performed, as was testing on two separate shipsets at two test sites. Trends and statistical variances in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset and suspension. Linear finite element modeling of each structure provided analytical results for 0-g unsuspended and 1-g suspended models, which are correlated with the analytical model.
Space motion sickness medications - Interference with biomedical parameters
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Winget, C. M.; Leach, C. S.; Rosenblatt, L. S.; Lyman, J.; Beljan, J. R.
1976-01-01
The possibility that drugs administered to Skylab 3 and 4 crewmen for space motion sickness may have interfered with their biomedical evaluation in space is investigated. The mixture of scopolamine and dextroamphetamine produced changes which allow a more valid interpretation of the early biomedical changes ocurring in weightlessness. There is no doubt that the dramatic increase in aldosterone excretion is not attributable to the drug, while the drug could have contributed to the in-flight changes observed in cortisol, epinephrine, heart rate and possibly urine volume.
Probiotics as cheater cells: parameter space clustering for individualized prescription.
Ray, Sanhita; Dasgupta, Anjan Kr
2014-11-21
Clinicians often perform infection management administering probiotics along with antibiotics. Such probiotics added to an infecting population showing antibiotic resistance can be compared to a dynamical system composed of cheaters and workers. The presence of cheater strains is known to modulate the fitness of the infecting population. We propose a model where probiotics as cheater strain re-establishes the susceptibility of a resistant population towards an antibiotic. Control parameters must assume optimal values in order to attain minimum worker number within a finite time-scale feasible in a clinical set-up. The problem is made non-trivial by the complicated interplay between parameters. The model is an extension of a logistic framework, where a pay-off function has been included to account for the effect of instantaneous worker number on death rates of each species. The outcomes for a randomized set of parameter values and initial conditions are utilized in partitioning the set and desired clusters were identified. For a test case, one can take random combinations of controllable parameters and combine them with fixed parameters and find out the closeness of the points to the desired cluster centroids. This process leads to the identification of optimum antibiotic versus probiotic dosage range leading to elimination or limited existence of the genetically resistant population.
GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE
Mikkelsen, K.; Næss, S. K.; Eriksen, H. K.
2013-11-10
We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.
Exploring Neutrino Oscillation Parameter Space with a Monte Carlo Algorithm
NASA Astrophysics Data System (ADS)
Espejel, Hugo; Ernst, David; Cogswell, Bernadette; Latimer, David
2015-04-01
The χ2 (or likelihood) function for a global analysis of neutrino oscillation data is first calculated as a function of the neutrino mixing parameters. A computational challenge is to obtain the minima or the allowed regions for the mixing parameters. The conventional approach is to calculate the χ2 (or likelihood) function on a grid for a large number of points, and then marginalize over the likelihood function. As the number of parameters increases with the number of neutrinos, making the calculation numerically efficient becomes necessary. We implement a new Monte Carlo algorithm (D. Foreman-Mackey, D. W. Hogg, D. Lang and J. Goodman, Publications of the Astronomical Society of the Pacific, 125 306 (2013)) to determine its computational efficiency at finding the minima and allowed regions. We examine a realistic example to compare the historical and the new methods.
A six-parameter space to describe galaxy diversification
NASA Astrophysics Data System (ADS)
Fraix-Burnet, D.; Chattopadhyay, T.; Chattopadhyay, A. K.; Davoust, E.; Thuillard, M.
2012-09-01
Context. The diversification of galaxies is caused by transforming events such as accretion, interaction, or mergers. These explain the formation and evolution of galaxies, which can now be described by many observables. Multivariate analyses are the obvious tools to tackle the available datasets and understand the differences between different kinds of objects. However, depending on the method used, redundancies, incompatibilities, or subjective choices of the parameters can diminish the usefulness of these analyses. The behaviour of the available parameters should be analysed before any objective reduction in the dimensionality and any subsequent clustering analyses can be undertaken, especially in an evolutionary context. Aims: We study a sample of 424 early-type galaxies described by 25 parameters, 10 of which are Lick indices, to identify the most discriminant parameters and construct an evolutionary classification of these objects. Methods: Four independent statistical methods are used to investigate the discriminant properties of the observables and the partitioning of the 424 galaxies: principal component analysis, K-means cluster analysis, minimum contradiction analysis, and Cladistics. Results: The methods agree in terms of six parameters: central velocity dispersion, disc-to-bulge ratio, effective surface brightness, metallicity, and the line indices NaD and OIII. The partitioning found using these six parameters, when projected onto the fundamental plane, looks very similar to the partitioning obtained previously for a totally different sample and based only on the parameters of the fundamental plane. Two additional groups are identified here, and we are able to provide some more constraints on the assembly history of galaxies within each group thanks to the larger number of parameters. We also identify another "fundamental plane" with the absolute K magnitude, the linear diameter, and the Lick index Hβ. We confirm that the Mg b vs. velocity dispersion
Computation of flow regimes in parameter space for the AGCE
NASA Astrophysics Data System (ADS)
Roberts, G. O.
1985-07-01
This report describes the results of a small study program in support of the design studies for NASA's proposed Atmospheric General Circulation Experiment (AGCE). The proposed experiment will model the atmosphere using a hemispherical layer of a dielectric fluid such as silicone oil, heated at the equator, and with a large radial AC electric field producing a temperature-dependent radial body force similar to radial gravity. The effect of terrestrial gravity on the experiment can be eliminated by doing the experiment in space flight. The author developed a series of three computer models to support these design studies. The first two calculate axisymmetric solutions and their stability to small non-axisymmetric perturbations. The third computes three-dimensional solutions. These codes allow the option of solving problems in a cylindrical geometry as well as a rather generally defined spherical layer.
Internal wave parameters retrieval from space-borne SAR image
NASA Astrophysics Data System (ADS)
Fan, Kaiguo; Fu, Bin; Gu, Yanzhen; Yu, Xingxiu; Liu, Tingting; Shi, Aiqin; Xu, Ke; Gan, Xilin
2015-12-01
Based on oceanic internal wave SAR imaging mechanism and the microwave scattering imaging model for oceanic surface features, we developed a new method to extract internal wave parameters from SAR imagery. Firstly, the initial wind fields are derived from NCEP reanalysis data, the sea water density and oceanic internal wave pycnocline depth are estimated from the Levites data, the surface currents induced by the internal wave are calculated according to the KDV equation. The NRCS profile is then simulated by solving the action balance equation and using the sea surface radar backscatter model. Both the winds and internal wave pycnocline depth are adjusted by using the dichotomy method step by step to make the simulated data approach the SAR image. Then, the wind speed, pycnocline depth, the phase speed, the group velocity and the amplitude of internal wave can be retrieved from SAR imagery when a best fit between simulated signals and the SAR image appears. The method is tested on one scene SAR image near Dongsha Island, in the South China Sea, results show that the simulated oceanic internal wave NRCS profile is in good agreement with that on the SAR image with the correlation coefficient as high as 90%, and the amplitude of oceanic internal wave retrieved from the SAR imagery is comparable with the SODA data. Besides, the phase speeds retrieved from other 16 scene SAR images in the South China Sea are in good agreement with the empirical formula which describes the relations between internal wave phase speed and water depths, both the root mean square and relative error are less than 0.11 m•s-1 and 7%, respectively, indicating that SAR images are useful for internal wave parameters retrieval and the method developed in this paper is convergent and applicable.
Space motion sickness medications: interference with biomedical parameters
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Winget, C. M.; Leach, C. S.; Rosenblatt, L. S.; Lyman, J.; Beljan, J. R.
1977-01-01
The possibility that drugs administered to Skylab 3 (SL-3) and 4 (SL-4) crewmen for space motion sickness may have interfered with their biomedical evaluation in space was investigated. Healthy volunteers received combinations of Scopolamine/Dexedrine for four days in regimens similar to those used in these missions. Urine samples, heart rate, body temperature, mood and performance were analyzed for drug-related changes. Twenty-four hour urine samples were analyzed by the same procedures as those used to analyze the flight samples. Hormone concentrations determined included cortisol, epinephrine, norepinephrine, aldosterone and antidiuretic hormone (ADH). In addition, volume, specific gravity, osmolarity, sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chloride (Cl), inorganic phosphate, uric acid and creatinine were measured. Performance was not affected by the Scopolamine/Dexedrine. The drug combination increased daily mean heart rate (HR) significantly in all the subjects and daily mean rectal temperature (RT) in some of the subjects. A 2-4 hr phase shift in the HR circadian rhythm was also observed which indicates that internal circadian synchrony was disturbed by the drugs. Psychological and subjective evaluation indicated that the subjects could usually identify which days they were given the drugs by an increase in tension and anxiety, decreased patience, restlessness, decreased appetite, difficulty in sleeping and feelings of increased heart rate and body temperature. Urinary electrolytes were not changed significantly by the drug, but marked and significant changes occurred in urine volume and hormone excretion patterns. Scopolamine/Dexedrine caused consistent elevations in urinary cortisol and epinephrine and a transient elevation in ADH. Norepinephrine excretion was decreased, but there was no significant change in aldosterone excretion or in 24 hr urine volume. A comparison of these findings with the first four days of inflight data from the
Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107
NASA Technical Reports Server (NTRS)
Overbey, B. G.; Roberts, B. C.
2005-01-01
During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Charge and magnetization densities in transverse coordinate and impact parameter space
NASA Astrophysics Data System (ADS)
Kumar, Narinder; Dahiya, Harleen
2014-11-01
Electromagnetic form factors obtained from the overlap of light front wave functions have been used to study the transverse densities of charge and magnetization. The calculations have been carried out to develop a relation between the charge distribution of the quarks inside the nucleon in the transverse coordinate space as well as in the impact parameter space. When a comparison is carried out, it is found that the transverse distribution in the impact parameter space, where the longitudinal momentum fraction x can be fixed, falls off faster than the spatial distribution in the transverse coordinate space where there is some contribution from the longitudinal momentum as well. The anomalous magnetization density of the nucleon has also been discussed. Further, we have also presented the results of the QCD transverse Anti-de Sitter charge density inspired from the holographic QCD model.
Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space
NASA Astrophysics Data System (ADS)
Koo, Sukmo; Cho, Choonlae; Jeong, Jun-Ho; Park, Namkyoo
2016-09-01
The common behaviour of a wave is determined by wave parameters of its medium, which are generally associated with the characteristic oscillations of its corresponding elementary particles. In the context of metamaterials, the decoupled excitation of these fundamental oscillations would provide an ideal platform for top-down and reconfigurable access to the entire constitutive parameter space; however, this has remained as a conceivable problem that must be accomplished, after being pointed out by Pendry. Here by focusing on acoustic metamaterials, we achieve the decoupling of density ρ, modulus B-1 and bianisotropy ξ, by separating the paths of particle momentum to conform to the characteristic oscillations of each macroscopic wave parameter. Independent access to all octants of wave parameter space (ρ, B-1, ξ)=(+/-,+/-,+/-) is thus realized using a single platform that we call an omni meta-atom; as a building block that achieves top-down access to the target properties of metamaterials.
Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space
Koo, Sukmo; Cho, Choonlae; Jeong, Jun-ho; Park, Namkyoo
2016-01-01
The common behaviour of a wave is determined by wave parameters of its medium, which are generally associated with the characteristic oscillations of its corresponding elementary particles. In the context of metamaterials, the decoupled excitation of these fundamental oscillations would provide an ideal platform for top–down and reconfigurable access to the entire constitutive parameter space; however, this has remained as a conceivable problem that must be accomplished, after being pointed out by Pendry. Here by focusing on acoustic metamaterials, we achieve the decoupling of density ρ, modulus B−1 and bianisotropy ξ, by separating the paths of particle momentum to conform to the characteristic oscillations of each macroscopic wave parameter. Independent access to all octants of wave parameter space (ρ, B−1, ξ)=(+/−,+/−,+/−) is thus realized using a single platform that we call an omni meta-atom; as a building block that achieves top–down access to the target properties of metamaterials. PMID:27687689
Dual-parameter radar rainfall measurement from space - A test result from an aircraft experiment
NASA Technical Reports Server (NTRS)
Kozu, Toshiaki; Nakamura, Kenji; Meneghini, Robert; Boncyk, Wayne C.
1991-01-01
An aircraft experiment has been conducted with a dual-frequency (X/Ka-bands) radar to test various rainfall retrieval methods from space. The authors test a method to derive raindrop size distribution (DSD) parameters from the combination of a radar reflectivity profile and a path-integrated attenuation derived from surface return, which may be available from most spaceborne radars. The estimated DSD parameters are reasonable in that the values generally fall within the range of commonly measured ones and that shifts in DSD parameters appear to be correlated with changes in storm type. The validity of the estimation result is also demonstrated by a consistency check using the Ka-band reflectivity profile which is independent of the DSD estimation process. Although errors may occur in the cases of nonuniform beam filling, these test results indicate the feasibility of the dual-parameter radar measurement from space in achieving a better accuracy in quantitative rainfall remote measurements.
A new parameter of geomagnetic storms for the severity of space weather
NASA Astrophysics Data System (ADS)
Balan, N.; Batista, I. S.; Tulasi Ram, S.; Rajesh, P. K.
2016-12-01
Using the continuous Dst data available since 1957 and H component data for the Carrington space weather event of 1859, the paper shows that the mean value of Dst during the main phase of geomagnetic storms, called mean DstMP, is a unique parameter that can indicate the severity of space weather. All storms having high mean DstMP (≤-250 nT), which corresponds to high amount of energy input in the magnetosphere-ionosphere system in short duration, are found associated with severe space weather events that caused all known electric power outages and telegraph system failures.
New coordinates for the amplitude parameter space of continuous gravitational waves
NASA Astrophysics Data System (ADS)
Whelan, John T.; Prix, Reinhard; Cutler, Curt J.; Willis, Joshua L.
2014-03-01
The parameter space for continuous gravitational waves (GWs) can be divided into amplitude parameters (signal amplitude, inclination and polarization angles describing the orientation of the source, and an initial phase) and phase-evolution parameters (signal frequency and frequency derivatives, and parameters such as sky position which determine the Doppler modulation of the signal). The division is useful in part because of the existence of a set of functions known as the Jaranowski-Królak-Schutz (JKS) coordinates, which are a set of four coordinates on the amplitude parameter space such that the GW signal can be written as a linear combination of four template waveforms (which depend on the phase-evolution parameters) with the JKS coordinates as coefficients. We define a new set of coordinates on the amplitude parameter space, with the same properties, which can be more closely connected to the physical amplitude parameters. These naturally divide into two pairs of Cartesian-like coordinates on two-dimensional subspaces, one corresponding to left- and the other to right-circular polarization. We thus refer to these as circular polarization factored (CPF) coordinates. The corresponding two sets of polar coordinates (known as CPF-polar) can be related in a simple way to the physical parameters. A further coordinate transformation can be made, within each subspace, between CPF and so-called root-radius coordinates, whose radial coordinate is the fourth root of the radial coordinate in CPF-polar coordinates. We illustrate some simplifying applications for these various coordinate systems, such as a calculation of the Jacobian for the transformation between JKS or CPF coordinates and the physical amplitude parameters (amplitude, inclination, polarization and initial phase); a demonstration that the Jacobian between root-radius coordinates and the physical parameters is a constant; an illustration of the signal coordinate singularities associated with left- and right
NASA Astrophysics Data System (ADS)
Miksovsky, J.; Raidl, A.
Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.
Variation ranges of motion parameters for space debris in the geosynchronous ring
NASA Astrophysics Data System (ADS)
Zhao, Chang-Yin; Zhang, Ming-Jiang; Yu, Sheng-Xian; Xiong, Jian-Ning; Zhang, Wei; Zhu, Ting-Lei
2016-06-01
We propose a method that uses only one set of known orbital elements to directly determine the motion state and variation ranges of motion parameters, including the inclination, right ascension of the ascending node (RAAN), evolution period of the orbital plane, maximum libration amplitude of the semi-major axis, commensurable angle, libration period and drift period, for space debris in the geosynchronous ring. These variation ranges of motion parameters characterize the evolution of debris quantitatively and illustrate the three-dimensional (3D) variations. Employing the proposed method, we study the motion state and variation ranges of motion parameters for catalogued and uncontrolled space debris with existing two-line element (TLE) data in the geosynchronous ring, and present specific results. We also compare our results with actual observational results derived from long-term TLE historical data, and find that, in the vast majority of cases, our proposed method of determining the motion state and variation ranges of motion parameters via only one set of known orbital elements is effective. In addition, before the elaboration of the variation ranges of motion parameters stated above, we obtain the statistical distribution of space debris in the orbital plane and the daily motion from the TLE historical data. We then derive two mathematical formulae that explain the statistical distribution and daily motion on the basis of the essence of dynamics, which contributes to the characterization of the evolution of debris.
Trap configuration and spacing influences parameter estimates in spatial capture-recapture models
Sun, Catherine C.; Fuller, Angela K.; Royle, J. Andrew
2014-01-01
An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.
Parameter-space correlations of the optimal statistic for continuous gravitational-wave detection
Pletsch, Holger J.
2008-11-15
The phase parameters of matched-filtering searches for continuous gravitational-wave signals are sky position, frequency, and frequency time-derivatives. The space of these parameters features strong global correlations in the optimal detection statistic. For observation times smaller than 1 yr, the orbital motion of the Earth leads to a family of global-correlation equations which describes the 'global maximum structure' of the detection statistic. The solution to each of these equations is a different hypersurface in parameter space. The expected detection statistic is maximal at the intersection of these hypersurfaces. The global maximum structure of the detection statistic from stationary instrumental-noise artifacts is also described by the global-correlation equations. This permits the construction of a veto method which excludes false candidate events.
Modified Brans-Dicke theory with space-time anisotropic parameters
Moon, Taeyoon; Oh, Phillial E-mail: ploh@skku.edu
2014-03-01
We consider the ADM formalism of the Brans-Dicke theory and propose a space-time anisotropic extension of the theory by introducing five free parameters. We find that the resulting theory reveals many interesting aspects which are not present in the original BD theory. We first discuss the ghost instability and strong coupling problems which are present in the gravity theory without the full diffeomorphism symmetry and show that they can be avoided in a region of the parameter space. We also perform the post-Newtonian approximation and show that the constraint of the Brans-Dicke parameter ω{sub BD} being large to be consistent with the solar system observations could be evaded in the extended theory. We also discuss that accelerating Universe can be achieved without the need of the potential for the Brans-Dicke scalar.
Lee, B C; Schulz, M; de Supinski, B R
2006-09-28
Increasing system and algorithmic complexity, combined with a growing number of tunable application parameters, pose significant challenges for analytical performance modeling. This report outlines a series of robust techniques that enable efficient parameter space exploration based on empirical statistical modeling. In particular, this report applies statistical techniques such as clustering, association, correlation analyses to understand the parameter space better. Results from these statistical techniques guide the construction of piecewise polynomial regression models. Residual and significance tests ensure the resulting model is unbiased and efficient. We demonstrate these techniques in R, a statistical computing environment, for predicting the performance of semicoarsening multigrid. 50 and 75 percent of predictions achieve error rates of 5.5 and 10.0 percent or less, respectively.
Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space
Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E; Landau, David P
2015-01-01
We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.
SP_Ace: a new code to derive stellar parameters and elemental abundances
NASA Astrophysics Data System (ADS)
Boeche, C.; Grebel, E. K.
2016-03-01
Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters
Moving to continuous facial expression space using the MPEG-4 facial definition parameter (FDP) set
NASA Astrophysics Data System (ADS)
Karpouzis, Kostas; Tsapatsoulis, Nicolas; Kollias, Stefanos D.
2000-06-01
Research in facial expression has concluded that at least six emotions, conveyed by human faces, are universally associated with distinct expressions. Sadness, anger, joy, fear, disgust and surprise are categories of expressions that are recognizable across cultures. In this work we form a relation between the description of the universal expressions and the MPEG-4 Facial Definition Parameter Set (FDP). We also investigate the relation between the movement of basic FDPs and the parameters that describe emotion-related words according to some classical psychological studies. In particular Whissel suggested that emotions are points in a space, which seem to occupy two dimensions: activation and evaluation. We show that some of the MPEG-4 Facial Animation Parameters (FAPs), approximated by the motion of the corresponding FDPs, can be combined by means of a fuzzy rule system to estimate the activation parameter. In this way variations of the six archetypal emotions can be achieved. Moreover, Plutchik concluded that emotion terms are unevenly distributed through the space defined by dimensions like Whissel's; instead they tend to form an approximately circular pattern, called 'emotion wheel,' modeled using an angular measure. The 'emotion wheel' can be defined as a reference for creating intermediate expressions from the universal ones, by interpolating the movement of dominant FDP points between neighboring basic expressions. By exploiting the relation between the movement of the basic FDP point and the activation and angular parameters we can model more emotions than the primary ones and achieve efficient recognition in video sequences.
Efficiently enclosing the compact binary parameter space by singular-value decomposition
Cannon, Kipp; Hanna, Chad; Keppel, Drew
2011-10-15
Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a signal parameter space at high density. Previously it has been shown that singular-value decomposition can reduce the effective number of filters required to search the data. Here we study how the basis provided by the singular-value decomposition changes dimension as a function of template-bank density. We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank. Since this technique is purely numerical, it may have applications to interpolating the space of numerical relativity waveforms.
A Parameter Space as an Improved Tool for Investigating Extraterrestrial Intelligence
NASA Astrophysics Data System (ADS)
Ashworth, S.
2014-06-01
For the past half century the Drake Equation and the Fermi Paradox have provided the intellectual foundation for investigating the possible existence of extraterrestrial intelligence. But both the Equation and the Paradox are flawed and of questionable scientific utility. A replacement needs to be found, based on a different principle, and a parameter space for extraterrestrial intelligence is proposed as an improved tool of thought. This generates six distinct scenarios, whose implications for SETI are discussed.
Keserű, György M; Soós, Tibor; Kappe, C Oliver
2014-08-01
How do skilled synthetic chemists develop good intuitive expertise? Why can we only access such a small amount of the available chemical space-both in terms of the reactions used and the chemical scaffolds we make? We argue here that these seemingly unrelated questions have a common root and are strongly interdependent. We performed a comprehensive analysis of organic reaction parameters dating back to 1771 and discovered that there are several anthropogenic factors that limit reaction parameters and thus the scope of synthetic chemistry. Nevertheless, many of the anthropogenic limitations such as narrow parameter space and the opportunity for rapid and clear feedback on the progress of reactions appear to be crucial for the acquisition of valid and reliable chemical intuition. In parallel, however, all of these same factors represent limitations for the exploration of available chemistry space and we argue that these are thus at least partly responsible for limited access to new chemistries. We advocate, therefore, that the present anthropogenic boundaries can be expanded by a more conscious exploration of "off-road" chemistry that would also extend the intuitive knowledge of trained chemists.
Corticothalamic dynamics: Structure of parameter space, spectra, instabilities, and reduced model
NASA Astrophysics Data System (ADS)
Roberts, J. A.; Robinson, P. A.
2012-01-01
Linear instabilities are analyzed in a physiologically based mean-field corticothalamic model and a reduced-parameter model derived from it. In both models, the stable zone corresponding to normal arousal states is bounded by a series of surfaces demarcating the onsets of instabilities. The stable zone is found to depend on delay and rate parameters, whose values have a simple relationship to the number of instabilities and dominant frequencies on the stable zone's boundary. The dominant frequencies of linear activity inside the stable zone are found to lie in clearly delineated regions, each corresponding to an instability surface on its boundary and having approximately the same dominant frequency. These regions are ordered in parameter space according to their dominant frequencies, and an instability associated with the intrathalamic loop is shown to have the highest frequency that can become unstable. This reveals an important role for the thalamus in controlling the stability and bandwidth of dynamics in the corticothalamic system as a whole. The reduced model is found to agree well with the full model in a wide region of parameter space and, thus, is a useful guide to the full model's dynamics.
NASA Astrophysics Data System (ADS)
Visessri, S.; Mcintyre, N.
2012-04-01
Prediction of streamflow for ungauged basins is associated with large uncertainty arising from input data, model structure, and parameter values. This paper investigates how conditioning the prior parameter space using regionalised indices of streamflow affects the prediction uncertainty for ungauged basins. The main concept used is filtering out the rainfall-runoff model parameter sets that do not give estimates of streamflow indices close to the regionalised values. These values are calculated based on regression equations, and associated Gaussian error distributions, constructed from the relationship between physical catchment properties and streamflow indices at gauged sites. The performance of the model is measured by 1-NSE and 1-log(NSE) for high and low flow fitting accordingly, calculated on daily and on monthly intervals. Ability to capture streamflow and reduction in prediction uncertainty is judged by reliability and sharpness. The case study is the upper Ping River in Thailand and the spatially lumped IHACRES model is used. Using the range defined by the regression at 95% confidence level of rainfall-runoff elasticity and base flow index to condition the prior parameter space is useful for reducing streamflow prediction uncertainty. The reliability obtained from conditioned parameter space is high, 73-99%, but the sharpness is low, 7-31%. It is suggested in this study that concurrently reaching the high sharpness and reliability is difficult, maybe due to poor data quality and high spatial variability of daily rainfall in this tropical region. The model usually overestimates peak flow throughout the period of simulation. The prior range of parameter values also contributes to the performance of the model but in this case rather wide prior parameter ranges are needed to accommodate all possible parameter values for all subcatchments which have various physical characteristics. The use of runoff coefficient to reduce uncertainty in streamflow prediction
Optimization of van der Waals Density Functionals using Data Projection onto Parameter Space (DPPS)
NASA Astrophysics Data System (ADS)
Fritz, Michelle; Fernandez-Serra, Marivi; Gillan, Mike; Soler, Jose M.
2014-03-01
The parameterization and optimization of complex models fitted to reproduce a reference data set is an important part of the development of interatomic potentials. It is an approach that can also be used to design exchange and correlation functionals in density functional theory. Generally, this is a problem that requires choosing functional forms that depend on many parameters. The balance between the number of parameters and the size of the fitted data sets involves difficult and subjective decisions that are nevertheless critical for obtaining good results. We present a general and powerful optimization scheme, data projection onto parameter space (DPPS). The DPPS method tries to find the optimal parameters for a complex model which depends on a scalar function F which is determined by a large number of variables and parameters. The procedure involves the projection a vector of unknown parameters onto the vectors of known data. As an example, we apply DPPS to the optimization of the local exchange in a vdW density functional (vdW-DF). Our goal is to obtain an improved vdW-DF for water. To do so, we use an accurate potential energy surface for the water dimer as our initial data set.
Modal parameters of space structures in 1 G and 0 G
NASA Technical Reports Server (NTRS)
Bicos, Andrew S.; Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett
1993-01-01
Analytic and experimental results are presented from a study of the changes in the modal parameters of space structural test articles from one- to zero-gravity. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, which were made on a spring-wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset, suspension, and ambient gravity level.
The dynamics of blood biochemical parameters in cosmonauts during long-term space flights
NASA Astrophysics Data System (ADS)
Markin, Andrei; Strogonova, Lubov; Balashov, Oleg; Polyakov, Valery; Tigner, Timoty
Most of the previously obtained data on cosmonauts' metabolic state concerned certain stages of the postflight period. In this connection, all conclusions, as to metabolism peculiarities during the space flight, were to a large extent probabilistic. The purpose of this work was study of metabolism characteristics in cosmonauts directly during long-term space flights. In the capillary blood samples taken from a finger, by "Reflotron IV" biochemical analyzer, "Boehringer Mannheim" GmbH, Germany, adapted to weightlessness environments, the activity of GOT, GPT, CK, gamma-GT, total and pancreatic amylase, as well as concentration of hemoglobin, glucose, total bilirubin, uric acid, urea, creatinine, total, HDL- and LDL cholesterol, triglycerides had been determined. HDL/LDL-cholesterol ratio also was computed. The crewmembers of 6 main missions to the "Mir" orbital station, a total of 17 cosmonauts, were examined. Biochemical tests were carryed out 30-60 days before lounch, and in the flights different stages between the 25-th and the 423-rd days of flights. In cosmonauts during space flight had been found tendency to increase, in compare with basal level, GOT, GPT, total amylase activity, glucose and total cholesterol concentration, and tendency to decrease of CK activity, hemoglobin, HDL-cholesterol concentration, and HDL/LDL — cholesterol ratio. Some definite trends in variations of other determined biochemical parameters had not been found. The same trends of mentioned biochemical parameters alterations observed in majority of tested cosmonauts, allows to suppose existence of connection between noted metabolic alterations with influence of space flight conditions upon cosmonaut's body. Variations of other studied blood biochemical parameters depends on, probably, pure individual causes.
Space Shuttle propulsion parameter estimation using optimal estimation techniques, volume 1
NASA Technical Reports Server (NTRS)
1983-01-01
The mathematical developments and their computer program implementation for the Space Shuttle propulsion parameter estimation project are summarized. The estimation approach chosen is the extended Kalman filtering with a modified Bryson-Frazier smoother. Its use here is motivated by the objective of obtaining better estimates than those available from filtering and to eliminate the lag associated with filtering. The estimation technique uses as the dynamical process the six degree equations-of-motion resulting in twelve state vector elements. In addition to these are mass and solid propellant burn depth as the ""system'' state elements. The ""parameter'' state elements can include aerodynamic coefficient, inertia, center-of-gravity, atmospheric wind, etc. deviations from referenced values. Propulsion parameter state elements have been included not as options just discussed but as the main parameter states to be estimated. The mathematical developments were completed for all these parameters. Since the systems dynamics and measurement processes are non-linear functions of the states, the mathematical developments are taken up almost entirely by the linearization of these equations as required by the estimation algorithms.
Nunez, Dario; Zavala, Jesus; Nellen, Lukas; Sussman, Roberto A; Cabral-Rosetti, Luis G; Mondragon, Myriam E-mail: jzavala@nucleares.unam.mx E-mail: lukas@nucleares.unam.mx E-mail: lgcabral@ciidet.edu.mx; Collaboration: For the Instituto Avanzado de Cosmologia, IAC
2008-05-15
We derive an expression for the entropy of a dark matter halo described using a Navarro-Frenk-White model with a core. The comparison of this entropy with that of dark matter in the freeze-out era allows us to constrain the parameter space in mSUGRA models. Moreover, combining these constraints with the ones obtained from the usual abundance criterion and demanding that these criteria be consistent with the 2{sigma} bounds for the abundance of dark matter: 0.112{<=}{Omega}{sub DM}h{sup 2}{<=}0.122, we are able to clearly identify validity regions among the values of tan{beta}, which is one of the parameters of the mSUGRA model. We found that for the regions of the parameter space explored, small values of tan{beta} are not favored; only for tan {beta} Asymptotically-Equal-To 50 are the two criteria significantly consistent. In the region where the two criteria are consistent we also found a lower bound for the neutralino mass, m{sub {chi}}{>=}141 GeV.
Retrieval of cloud optical parameters from space-based backscatter lidar data.
Balin, Y S; Samoilova, S V; Krekova, M M; Winker, D M
1999-10-20
We present an approach to estimating the multiple-scattering (MS) contribution to lidar return signals from clouds recorded from space that enables us to describe in more detail the return formation at the depth where first orders of scattering dominate. Estimates made have enabled us to propose a method for correcting solutions of single-scattering lidar equations for the MS contribution. We also describe an algorithm for reconstructing the profiles of the cloud scattering coefficient and the optical thickness tau under conditions of a priori uncertainties. The approach proposed is illustrated with results for optical parameters of cirrus and stratiform clouds determined from return signals calculated by the Monte Carlo method as well as from return signals acquired with the American spaceborne lidar during the Lidar In-Space Technology Experiment (LITE).
Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.
Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N
2015-06-01
The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067. PMID:26085362
Giorla, Jean; Masson, Annie; Poggi, Francoise; Quach, Robert; Seytor, Patricia; Garnier, Josselin
2009-03-15
Inertial confinement fusion targets must be carefully designed to ignite their central hot spots and burn. Changes in the optimal implosion could reduce the fusion energy or even prevent ignition. Since there are unavoidable uncertainties due to technological defects and not perfect reproducibility from shot to shot, the fusion energy will remain uncertain. The degree with which a target can tolerate larger specifications than specified, and the probability with which a particular yield is exceeded, are possible measures of the robustness of that design. This robustness must be assessed in a very high-dimensional parameter space whose variables include every characteristics of the given target and of the associated laser pulse shape, using high-fidelity simulations. Therefore, these studies would remain computationally very intensive. In this paper we propose an approach which consist first of constructing an accurate metamodel of the yield on the whole parameter space with a reasonable data set of simulations. Then the robustness is very quickly assessed for any set of specifications with this surrogate. The yield is approximated by a neural network, and an iterative method adds new points in the data set by means of D-optimal experimental designs. The robustness study of the baseline Laser Megajoule target against one-dimensional defects illustrates this approach. A set of 2000 simulations is sufficient to metamodel the fusion energy on a large 22-dimensional parameter space around the nominal point. Furthermore, a metamodel of the robustness margin against all specifications has been obtained, providing guidance for target fabrication research and development.
Effects of space environment on composites: An analytical study of critical experimental parameters
NASA Technical Reports Server (NTRS)
Gupta, A.; Carroll, W. F.; Moacanin, J.
1979-01-01
A generalized methodology currently employed at JPL, was used to develop an analytical model for effects of high-energy electrons and interactions between electron and ultraviolet effects. Chemical kinetic concepts were applied in defining quantifiable parameters; the need for determining short-lived transient species and their concentration was demonstrated. The results demonstrates a systematic and cost-effective means of addressing the issues and show qualitative and quantitative, applicable relationships between space radiation and simulation parameters. An equally important result is identification of critical initial experiments necessary to further clarify the relationships. Topics discussed include facility and test design; rastered vs. diffuse continuous e-beam; valid acceleration level; simultaneous vs. sequential exposure to different types of radiation; and interruption of test continuity.
Introduction of a valence space in QRPA: Impact on vibrational mass parameters and spectroscopy
Lechaftois, F. Péru, S.; Deloncle, I.
2015-10-15
For the first time, using a unique finite range interaction (D1M Gogny force), a fully coherent and time-feasible calculation of the Bohr Hamiltonian vibrational mass is envisioned in a Hartree-Fock-Bogoliubov + Quasiparticle Random Phase Approximation (QRPA) framework. In order to reach handable computation time, we evaluate the feasibility of this method by considering the insertion of a valence space for QRPA. We validate our approach in the even-even tin isotopes comparing the convergence scheme of the mass parameter with those of built-in QRPA outputs: excited state energy and reduced transition probability. The seeming convergence of these intrinsic quantities is shown to be misleading and the difference with the theoretical expected value is quantified. This work is a primary step towards the systematic calculation of mass parameters.
NASA Astrophysics Data System (ADS)
Kieran, Kathleen; Hall, Timothy L.; Parsons, Jessica E.; Wolf, J. Stuart; Fowlkes, J. Brian; Cain, Charles A.; Roberts, William W.
2007-05-01
Focused ultrasound energy is capable of noninvasively, nonthermally ablating tissue. However, the relative contributions of thermal and cavitational effects in the therapeutic use of ultrasound are poorly understood. We sought to identify the ultrasound parameter space within which tissue can be ablated by solely mechanical means (cavitation), without a significant thermal component. Methods: Ultrasound energy (750 kHz, 20 microsecond pulses) was applied sequentially in a 3×3 grid configuration to the cortical tissue of ex vivo porcine kidneys submerged in degassed water. While maintaining constant energy density, intensity (0.11-211 kW/cm2) and duty cycle (0.04%-CW) were varied widely. A thermocouple co-localized with the center of each grid provided continuous temperature measurements. Following ablations, the kidneys were examined grossly and histologically. Results: Ablated tissue was classified into one of four discrete morphologic categories: blanched (firm, pale, desiccated tissue), disrupted (cavity containing thin, isochromatic liquid; no blanching), mixed blanched/disrupted (cavity containing pale, thick liquid; minimal blanching), and no grossly visible effect. Morphologically similar lesions clustered together within the ultrasound parameter space. Disrupted lesions had significantly lower maximal temperatures (44.2 °C) than desiccated (67.5 °C; p<0.0001) or mixed (59.4 °C; p<0.0001) lesions. Conclusions: In an ex vivo model, we have defined the ultrasound parameters within which mechanical tissue ablation, with minimal thermal components, is possible. Future research in vivo is directed toward optimizing the parameters for cavitational tissue ablation, and better understanding the impact of tissue perfusion on lesion generation and intralesional temperature rise.
A new parameter space study of the fermionic cold dark matter model
Bagherian, Z.; Ettefaghi, M.M.; Haghgouyan, Z.; Moazzemi, R. E-mail: mettefaghi@qom.ac.ir E-mail: r.moazzemi@qom.ac.ir
2014-10-01
We consider the standard model (SM) extended by a gauge singlet fermion as cold dark matter (SFCDM) and a gauge singlet scalar (singlet Higgs) as a mediator. The parameter space of the SM is enlarged by seven new ones. We obtain the total annihilation cross section of singlet fermions to the SM particles and singlet Higgs at tree level. Regarding the relic abundance constraint obtained by WMAP observations, we study the dependency on each parameter separately, for dark matter masses up to 1 TeV. In particular, the coupling of SFCDM to singlet Higgs g{sub s}, the SFCDM mass m{sub ψ}, the second Higgs mass m{sub h{sub 2}}, and the Higgs bosons mixing angel θ are investigated accurately. Three other parameters play no significant role. For a maximal mixing of Higgs bosons or at resonances, g{sub s} is applicable for the perturbation theory at tree level. We also obtain the scattering cross section of SFCDM off nucleons and compare our results with experiments which have already reported data in this mass range; XENON100, LUX, COUPP and PICASSO collaborations. Our results show that the SFCDM is excluded by these experiments for choosing parameters which are consistent with perturbation theory and relic abundance constraints.
Dimension of Model Parameter Space and Operating Characteristics in Adaptive Dose-Finding Studies
Iasonos, Alexia; Wages, Nolan A.; Conaway, Mark R.; Cheung, Ken; Yuan, Ying; O'Quigley, John
2016-01-01
Adaptive, model-based, dose-finding methods, such as the continual reassessment method, have been shown to have good operating characteristics. One school of thought argues in favour of the use of parsimonious models, not modelling all aspects of the problem, and using a strict minimum number of parameters. In particular, for the standard situation of a single homogeneous group, it is common to appeal to a one-parameter model. Other authors argue for a more classical approach that models all aspects of the problem. Here, we show that increasing the dimension of the parameter space, in the context of adaptive dose-finding studies, is usually counter-productive and, rather than leading to improvements in operating characteristics, the added dimensionality is likely to result in di culties. Among these are inconsistency of parameter estimates, lack of coherence in escalation or de-escalation, erratic behaviour, getting stuck at the wrong level and, in almost all cases, poorer performance in terms of correct identification of the targeted dose. Our conclusions are based on both theoretical results and simulations. PMID:27090197
Application of separable parameter space techniques to multi-tracer PET compartment modeling
NASA Astrophysics Data System (ADS)
Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.
2016-02-01
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Constraining the mSUGRA parameter space through entropy and abundance criteria
Cabral-Rosetti, Luis G.; Mondragon, Myriam; Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas
2007-06-19
We explore the use of two criteria to constrain the allowed parameter space in mSUGRA models; both criteria are based in the calculation of the present density of neutralinos {chi}0 as Dark Matter in the Universe. The first one is the usual ''abundance'' criterion that requieres that present neutralino relic density complies with 0.0945 < {omega}CDMh2 < 0.1287, which are the 2{sigma} bounds according to WMAP. To calculate the relic density we use the public numerical code micrOMEGAS. The second criterion is the original idea presented in [3] that basically applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas, and then evaluate the change in entropy per particle of this gas between the freeze-out era and present day virialized structures. An 'entropy consistency' criterion emerges by comparing theoretical and empirical estimates of this entropy. One of the objetives of the work is to analyze the joint application of both criteria, already done in [3], to see if their results, using approximations for the calculations of the relic density, agree with the results coming from the exact numerical results of micrOMEGAS. The main objetive of the work is to use this method to constrain the parameter space in mSUGRA models that are inputs for the calculations of micrOMEGAS, and thus to get some bounds on the predictions for the SUSY spectra.
Fast estimation of space-robots inertia parameters: A modular mathematical formulation
NASA Astrophysics Data System (ADS)
Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2016-10-01
This work aims to propose a new technique that considerably helps enhance time and precision needed to identify "Inertia Parameters (IPs)" of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), "active space-debris removal" or "automated in-orbit assemblies". In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new "modular formulation" has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a "Modular Set" of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for "simultaneous estimation processes" using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.
Jakobsen, Sofie; Jensen, Frank
2014-12-01
We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.
NASA Astrophysics Data System (ADS)
Sultan, E.; Manseta, K.; Khwaja, A.; Najafizadeh, L.; Gandjbakhche, A.; Pourrezaei, K.; Daryoush, A. S.
2011-02-01
Fiber based functional near infra-red (fNIR) spectroscopy has been considered as a cost effective imaging modality. To achieve a better spatial resolution and greater accuracy in extraction of the optical parameters (i.e., μa and μ's), broadband frequency modulated systems covering multi-octave frequencies of 10-1000MHz is considered. A helmet mounted broadband free space fNIR system is considered as significant improvement over bulky commercial fiber fNIR realizations that are inherently uncomfortable and dispersive for broadband operation. Accurate measurements of amplitude and phase of the frequency modulated NIR signals (670nm, 795nm, and 850nm) is reported here using free space optical transmitters and receivers realized in a small size and low cost modules. The tri-wavelength optical transmitter is based on vertical cavity semiconductor lasers (VCSEL), whereas the sensitive optical receiver is based on either PIN or APD photodiodes combined with transimpedance amplifiers. This paper also has considered brain phantoms to perform optical parameter extraction experiments using broadband modulated light for separations of up to 5cm. Analytical models for predicting forward (transmittance) and backward (reflectance) scattering of modulated photons in diffused media has been modeled using Diffusion Equation (DE). The robustness of the DE modeling and parameter extraction algorithm was studied by experimental verification of multi-layer diffused media phantoms. In particular, comparison between analytical and experimental models for narrow band and broadband has been performed to analyze the advantages of our broadband fNIR system.
The supersymmetric parameter space in light of B-physics observables and electroweak precision data
NASA Astrophysics Data System (ADS)
Ellis, John; Heinemeyer, Sven; Olive, Keith A.; Weber, Arne M.; Weiglein, Georg
2007-08-01
Indirect information about the possible scale of supersymmetry (SUSY) breaking is provided by B-physics observables (BPO) as well as electroweak precision observables (EWPO). We combine the constraints imposed by recent measurements of the BPO BR(b → sγ), BR(Bs → μ+μ-), BR(Bu → τντ) and ΔMBs with those obtained from the experimental measurements of the EWPO MW, sin2 θeff, ΓZ, (g-2)μ and Mh, incorporating the latest theoretical calculations of these observables within the Standard Model and supersymmetric extensions. We perform a χ2 fit to the parameters of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), in which the SUSY-breaking parameters are universal at the GUT scale, and the non-universal Higgs model (NUHM), in which this constraint is relaxed for the soft SUSY-breaking contributions to the Higgs masses. Assuming that the lightest supersymmetric particle (LSP) provides the cold dark matter density preferred by WMAP and other cosmological data, we scan over the remaining parameter space. Within the CMSSM, we confirm the preference found previously for a relatively low SUSY-breaking scale, though there is some slight tension between the EWPO and the BPO. In studies of some specific NUHM scenarios compatible with the cold dark matter constraint we investigate (MA, tan β) planes and find preferred regions that have values of χ2 somewhat lower than in the CMSSM.
Calibration of imaging parameters for space-borne airglow photography using city light positions
NASA Astrophysics Data System (ADS)
Hozumi, Yuta; Saito, Akinori; Ejiri, Mitsumu K.
2016-09-01
A new method for calibrating imaging parameters of photographs taken from the International Space Station (ISS) is presented in this report. Airglow in the mesosphere and the F-region ionosphere was captured on the limb of the Earth with a digital single-lens reflex camera from the ISS by astronauts. To utilize the photographs as scientific data, imaging parameters, such as the angle of view, exact position, and orientation of the camera, should be determined because they are not measured at the time of imaging. A new calibration method using city light positions shown in the photographs was developed to determine these imaging parameters with high accuracy suitable for airglow study. Applying the pinhole camera model, the apparent city light positions on the photograph are matched with the actual city light locations on Earth, which are derived from the global nighttime stable light map data obtained by the Defense Meteorological Satellite Program satellite. The correct imaging parameters are determined in an iterative process by matching the apparent positions on the image with the actual city light locations. We applied this calibration method to photographs taken on August 26, 2014, and confirmed that the result is correct. The precision of the calibration was evaluated by comparing the results from six different photographs with the same imaging parameters. The precisions in determining the camera position and orientation are estimated to be ±2.2 km and ±0.08°, respectively. The 0.08° difference in the orientation yields a 2.9-km difference at a tangential point of 90 km in altitude. The airglow structures in the photographs were mapped to geographical points using the calibrated imaging parameters and compared with a simultaneous observation by the Visible and near-Infrared Spectral Imager of the Ionosphere, Mesosphere, Upper Atmosphere, and Plasmasphere mapping mission installed on the ISS. The comparison shows good agreements and supports the validity
NASA Astrophysics Data System (ADS)
Suriza, A. Z.; Md Rafiqul, Islam; Wajdi, A. K.; Naji, A. W.
2013-03-01
As the demand for higher and unlimited bandwidth for communication channel is increased, Free Space Optics (FSO) is a good alternative solution. As it is protocol transparent, easy to install, cost effective and have capabilities like fiber optics, its demand rises very fast. Weather condition, however is the limiting factor for FSO link. In the temperate region the major blockage for FSO link feasibility is fog. In the tropical region high rainfall rate is expected to be the major drawback of FSO link availability. Rain attenuation is the most significant to influence FSO link availability in tropical region. As for now the available k and α values are developed using data from temperate regions. Therefore, the objective of this paper is to propose new parameters for specific rain attenuation prediction model that represents tropical weather condition. The proposed values are derived from data measured in Malaysia and using methods recommended by ITU-R.
NASA Astrophysics Data System (ADS)
Sturner, A. P.; Ergun, R.; Malaspina, D.
2013-12-01
The study of chorus waves, an important mechanism for the energization and loss of particles in the radiation belts and inner magnetosphere, has been significantly aided by observations of fluctuations in a spacecraft's potential, which have been shown to be correlated with plasma density structures. However, recent analysis of Van Allen Probe data suggests that the oscillatory electromagnetic fields of chorus waves may also induce spacecraft potential fluctuations via enhanced photoelectron escape, calling into question our understanding of chorus waves. We use a fully 3D particle tracing simulation to study the equilibrium potential of a model Van Allen Probe spacecraft under various plasma conditions, varying thermal temperature, electric and magnetic field strength, plasma density, etc., to better understand the parameter space under which enhanced photoelectron escape becomes important.
A variational approach for dissipative quantum transport in a wide parameter space.
Zhang, Yu; Yam, ChiYung; Chen, GuanHua
2015-09-14
Recent development of theoretical method for dissipative quantum transport has achieved notable progresses in the weak or strong electron-phonon coupling regime. However, a generalized theory for dissipative quantum transport in a wide parameter space had not been established. In this work, a variational polaron theory for dissipative quantum transport in a wide range of electron-phonon coupling is developed. The optimal polaron transformation is determined by the optimization of the Feynman-Bogoliubov upper bound of free energy. The free energy minimization ends up with an optimal mean-field Hamiltonian and a minimal interaction Hamiltonian. Hence, second-order perturbation can be applied to the transformed system, resulting in an accurate and efficient method for the treatment of dissipative quantum transport with different electron-phonon coupling strength. Numerical benchmark calculation on a single site model coupled to one phonon mode is presented. PMID:26619516
A variational approach for dissipative quantum transport in a wide parameter space
Zhang, Yu Kwok, YanHo; Chen, GuanHua; Yam, ChiYung
2015-09-14
Recent development of theoretical method for dissipative quantum transport has achieved notable progresses in the weak or strong electron-phonon coupling regime. However, a generalized theory for dissipative quantum transport in a wide parameter space had not been established. In this work, a variational polaron theory for dissipative quantum transport in a wide range of electron-phonon coupling is developed. The optimal polaron transformation is determined by the optimization of the Feynman-Bogoliubov upper bound of free energy. The free energy minimization ends up with an optimal mean-field Hamiltonian and a minimal interaction Hamiltonian. Hence, second-order perturbation can be applied to the transformed system, resulting in an accurate and efficient method for the treatment of dissipative quantum transport with different electron-phonon coupling strength. Numerical benchmark calculation on a single site model coupled to one phonon mode is presented.
Plesko, Catherine S; Clement, R Ryan; Weaver, Robert P; Bradley, Paul A; Huebner, Walter F
2009-01-01
The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.
Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu
2002-01-01
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. PMID:12136032
GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS
Wu, Benjamin; Loo, Sven Van; Tan, Jonathan C.; Bruderer, Simon
2015-09-20
We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for giant molecular cloud (GMC)–GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter and compare isolated versus colliding clouds. We find factors of ∼2–3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on {sup 13}CO(J = 2–1), {sup 13}CO(J = 3–2), and {sup 12}CO(J = 8–7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find that the ratio of J = 8–7 to lower-J emission is a powerful diagnostic probe of GMC collisions.
Reconciling Planck with the local value of H0 in extended parameter space
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph
2016-10-01
The recent determination of the local value of the Hubble constant by Riess et al., 2016 (hereafter R16) is now 3.3 sigma higher than the value derived from the most recent CMB anisotropy data provided by the Planck satellite in a ΛCDM model. Here we perform a combined analysis of the Planck and R16 results in an extended parameter space, varying simultaneously 12 cosmological parameters instead of the usual 6. We find that a phantom-like dark energy component, with effective equation of state w = -1.29-0.12+0.15 at 68% c.l. can solve the current tension between the Planck dataset and the R16 prior in an extended ΛCDM scenario. On the other hand, the neutrino effective number is fully compatible with standard expectations. This result is confirmed when including cosmic shear data from the CFHTLenS survey and CMB lensing constraints from Planck. However, when BAO measurements are included we find that some of the tension with R16 remains, as also is the case when we include the supernova type Ia luminosity distances from the JLA catalog.
NASA Astrophysics Data System (ADS)
Huang, Yiqing; Sun, Changyin; Qian, Chengshan; Wang, Li
2015-12-01
This paper deals with the problem of linear parameter varying (LPV) switching attitude control for a near space hypersonic vehicle (NSHV) with parametric uncertainties. First, due to the enormous complexity of the NSHV nonlinear attitude dynamics, a slow-fast loop polytopic LPV attitude model is developed by using Jacobian linearisation and the tensor product model transformation approach. Second, for the purpose of less conservative attitude controller design, the flight envelope is divided into four subregions. For each parameter subregion, slow-loop and fast-loop LPV controllers are designed. By the defined switching character function, these slow-fast loop LPV controllers are then switched in order to guarantee the closed-loop NSHV system to be asymptotically stable and satisfy a specified tracking performance criterion. The condition of LPV switching attitude controller synthesis is given in terms of linear matrix inequalities, which can be readily solved via standard numerical software, and the robust stability analysis of the closed-loop NSHV system is verified based on multiple Lypapunov functions. Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Eo, Yun Suk; Wolgast, Steven; Kurdak, Cagliyan; Sun, Kai; Kim, Dae-Jeong; Fisk, Zachary; Hatnean, Monica Ciomaga; Balakrishnan, Geetha
There is growing interest in studying the conducting surface of SmB6, which is believed to originate from its nontrivial band topology. Up to date, different measurement techniques, including ARPES, dHvA, and Hall bar transport still disagree on important parameters such as the carrier density. In order to find the carrier density (n) and mobility (μ) for the Dirac pockets participating in transport, we measure magnetotransport on Corbino devices fabricated on (100), (110), and (111) surfaces grown by floating zone and flux methods. Our samples do not exhibit Shubnikov-de Haas oscillations at high field pulsed measurements up to 90 Tesla, which provides an upper bound of μ of each channels. Also, angle-dependent magnetotransport up to 35 T allows us to extract an effective n and μ of the combined channels. Together, a parameter space that confines the possible n and μ of each channel is constructed, and appears to be in agreement with ARPES reports. Additionally, the effective n and μ change up to 20 percent when applying magnetic field up to 35 T. We will discuss how the Landau fan diagram can be nonlinear by this effect. This project was funded by NSF Grant #DMR-1006500. This project was performed at the National High Magnetic Field Laboratory, and in the Lurie Nanofabrication Facility.
A modal test of a space-truss for structural parameter identification
Carne, T.G.; Mayes, R.L.; Levine-West, M.B.
1992-12-01
The Jet Propulsion Laboratory is developing a large space-truss to support a micro-precision interferometer. A finite element model will be used to design and place passive and active elements in the truss to suppress vibration. To improve the model`s predictive capability, it is desirable to identify uncertain structural parameters in the model by utilizing experimental modal data. Testing of both the components and the system was performed to obtain the data necessary to identify the structural parameters. Extracting a modal model, absent of bias errors, from measured data requires great care in test design and implementation. Testing procedures that are discussed include: verification of non-constraining shaker attachment, quantification of the non-linear structural response, and the design and effects of suspension systems used to simulate a free structure. In addition to these procedures, the accuracy of the measured frequency response functions are evaluated by comparing functions measured with random excitation, using various frequency resolutions, and with step sine excitation.
A modal test of a space-truss for structural parameter identification
Carne, T.G.; Mayes, R.L. ); Levine-West, M.B. )
1992-01-01
The Jet Propulsion Laboratory is developing a large space-truss to support a micro-precision interferometer. A finite element model will be used to design and place passive and active elements in the truss to suppress vibration. To improve the model's predictive capability, it is desirable to identify uncertain structural parameters in the model by utilizing experimental modal data. Testing of both the components and the system was performed to obtain the data necessary to identify the structural parameters. Extracting a modal model, absent of bias errors, from measured data requires great care in test design and implementation. Testing procedures that are discussed include: verification of non-constraining shaker attachment, quantification of the non-linear structural response, and the design and effects of suspension systems used to simulate a free structure. In addition to these procedures, the accuracy of the measured frequency response functions are evaluated by comparing functions measured with random excitation, using various frequency resolutions, and with step sine excitation.
NASA Astrophysics Data System (ADS)
Williamson, Daniel; Goldstein, Michael; Allison, Lesley; Blaker, Adam; Challenor, Peter; Jackson, Laura; Yamazaki, Kuniko
2013-10-01
We apply an established statistical methodology called history matching to constrain the parameter space of a coupled non-flux-adjusted climate model (the third Hadley Centre Climate Model; HadCM3) by using a 10,000-member perturbed physics ensemble and observational metrics. History matching uses emulators (fast statistical representations of climate models that include a measure of uncertainty in the prediction of climate model output) to rule out regions of the parameter space of the climate model that are inconsistent with physical observations given the relevant uncertainties. Our methods rule out about half of the parameter space of the climate model even though we only use a small number of historical observations. We explore 2 dimensional projections of the remaining space and observe a region whose shape mainly depends on parameters controlling cloud processes and one ocean mixing parameter. We find that global mean surface air temperature (SAT) is the dominant constraint of those used, and that the others provide little further constraint after matching to SAT. The Atlantic meridional overturning circulation (AMOC) has a non linear relationship with SAT and is not a good proxy for the meridional heat transport in the unconstrained parameter space, but these relationships are linear in our reduced space. We find that the transient response of the AMOC to idealised CO2 forcing at 1 and 2 % per year shows a greater average reduction in strength in the constrained parameter space than in the unconstrained space. We test extended ranges of a number of parameters of HadCM3 and discover that no part of the extended ranges can by ruled out using any of our constraints. Constraining parameter space using easy to emulate observational metrics prior to analysis of more complex processes is an important and powerful tool. It can remove complex and irrelevant behaviour in unrealistic parts of parameter space, allowing the processes in question to be more easily
NASA Astrophysics Data System (ADS)
Wallner, H.; Schmeling, H.
2009-04-01
The extreme elevation of Rwenzori Mountains, a horst situated inside a rift zone, motivates our search for their geodynamic driving mechanism. Testing several hypotheses favours RID due to some first successful numerical models. RID is the hypothesis of rift induced delamination of mantle lithosphere and uplift of crust. It is based on the propagation of the rift tips feeded by upwelling asthenosphere, surrounding stiff old lithosphere, thereby triggering the delamination of cold and dense mantle lithosphere root by reducing viscosity and strength of the undermost lower crust. This unloading induces pop-up of the less dense crustal block along steep inclining faults. Viscous flow of 2D models is approximated by Finite Difference Method in an Eulerian formulation. Equations of conservation of mass, momentum and energy are solved for a multi component and two phase system. Based on laboratory data of appropriate samples a temperature, pressure and stress dependent rheology is assumed. We try to establish RID and learn about the process by exploring the parameter space with model families. Aim is to identify relvant factors controlling the delamination. Investigation candidates are parameters describing the initial pertubation such as excess temperature and geometry and its distance between bounding rifts. Further candidates include rheological properties such as the power laws of mantle, upper and lower crust and the limiting yield stress and its depth dependence. The range of variation and sensitivity of the individual quantities are presented. Because some values are highly sensitive physical and numerical system answers must be distinguished carefully. The actually used model is 2D and simple as possible to test under which conditions the hypothesis is basically working. Earth naturally is more complex as new observations around Rwenzoris suggest. A first step would be an asymmetric model leading to 3D. If RID is true for the very special situation of the
NASA Astrophysics Data System (ADS)
Briseño, Jessica; Herrera, Graciela S.
2010-05-01
Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one
NASA Technical Reports Server (NTRS)
Riddick, Stephen E.; Hinton, David A.
2000-01-01
A study has been performed on a computer code modeling an aircraft wake vortex spacing system during final approach. This code represents an initial engineering model of a system to calculate reduced approach separation criteria needed to increase airport productivity. This report evaluates model sensitivity toward various weather conditions (crosswind, crosswind variance, turbulent kinetic energy, and thermal gradient), code configurations (approach corridor option, and wake demise definition), and post-processing techniques (rounding of provided spacing values, and controller time variance).
NASA Technical Reports Server (NTRS)
Funk, Joan G.; Sykes, George F., Jr.
1989-01-01
The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.
NASA Astrophysics Data System (ADS)
Hillman, Y.; Prialnik, D.; Kovetz, A.; Shara, M. M.
2016-03-01
Can a white dwarf (WD), accreting hydrogen-rich matter from a non-degenerate companion star, ever exceed the Chandrasekhar mass and explode as a SN Ia? We explore the range of accretion rates that allow a WD to secularly grow in mass, and derive limits on the accretion rate and on the initial mass that will allow it to reach 1.4M⊙—the Chandrasekhar mass. We follow the evolution through a long series of hydrogen flashes, during which a thick helium shell accumulates. This determines the effective helium mass accretion rate for long-term, self-consistent evolutionary runs with helium flashes. We find that net mass accumulation always occurs despite helium flashes. Although the amount of mass lost during the first few helium shell flashes is a significant fraction of that accumulated prior to the flash, that fraction decreases with repeated helium shell flashes. Eventually no mass is ejected at all during subsequent flashes. This unexpected result occurs because of continual heating of the WD interior by the helium shell flashes near its surface. The effect of heating is to lower the electron degeneracy throughout the WD, especially in the outer layers. This key result yields helium burning that is quasi-steady state, instead of explosive. We thus find a remarkably large parameter space within which long-term, self-consistent simulations show that a WD can grow in mass and reach the Chandrasekhar limit, despite its helium flashes.
The derivation of constraints on the msugra parameter space from the entropy of dark matter halos
Cabral-Rosetti, L. G.; Mondragon, M.; Nellen, L.; Nunez, D.; Sussmann, R.; Zavala, J.
2009-04-20
We derive an expression for the entropy of a present dark matter halo described by a Navarro-Frenk-White modified model with a central core. We obtain an expression for the relic abundance of neutralinos by comparing this entropy of the halo with the value it had during the freeze-out era. Using WMAP observations, we constrain the parameter space for mSUGRA models. Combining our results with the usual abundance criteria, we are able to discriminate clearly among different validity regions for tan {beta} values. For this, we require both criteria to be consistent within a 2{sigma} bound of the WMAP observations for the relic density: 0.112<{omega}h{sup 2}<0.122. We find that for sgn {mu} = +1, small values of tan {beta} are not favored; only for tan {beta}{approx}50 are both criteria significantly consistent. Both criteria allow us to put a lower bound on the neutralino mass, m{sub {chi}}{>=}141 GeV.
Mantle Debris in Giant Impacts: Parameter-Space Study and Scaling Laws
NASA Astrophysics Data System (ADS)
Gabriel, Travis; Reufer, Andreas; Jackson, Alan P.; Asphaug, Erik
2016-10-01
Collisions between similar-sized planetesimals are prevalent throughout the early stages of the formation of the Solar System. N-body dynamics simulations commonly employed to understand planetary evolution depend on parameterized disruption/accretion criteria in order to consider the diversity of outcomes of these collisions. Additionally, understanding the debris from collisions is essential in tracing the source regions of volatiles, placing constraints on collisional grinding, and explaining the formation of small solar system bodies. We describe the transport of mantle material through debris production in giant impacts using a large database of SPH hydrocode simulations. We then develop new scaling laws that accurately capture the production of diverse debris products found in giant impacts with a range of relative velocities up to a few times the mutual escape velocity and a complete range of impact geometries. At typical impact angles it is found that giant impacts are significantly less erosive than suggested by existing scaling laws. This discrepancy grows with impact velocity and the impactor-to-target mass ratio, and thus it grows with the kinetic energy of the system. Our database spans a wide parameter space of pre-impact initial conditions, and includes chondritic and icy, chondritic material representative of the bulk abundances in the inner and outer solar system respectively. Implications for this new understanding in debris production through giant impacts are discussed.
Displacement in the parameter space versus spurious solution of discretization with large time step
NASA Astrophysics Data System (ADS)
Mendes, Eduardo; Letellier, Christophe
2004-01-01
In order to investigate a possible correspondence between differential and difference equations, it is important to possess discretization of ordinary differential equations. It is well known that when differential equations are discretized, the solution thus obtained depends on the time step used. In the majority of cases, such a solution is considered spurious when it does not resemble the expected solution of the differential equation. This often happens when the time step taken into consideration is too large. In this work, we show that, even for quite large time steps, some solutions which do not correspond to the expected ones are still topologically equivalent to solutions of the original continuous system if a displacement in the parameter space is considered. To reduce such a displacement, a judicious choice of the discretization scheme should be made. To this end, a recent discretization scheme, based on the Lie expansion of the original differential equations, proposed by Monaco and Normand-Cyrot will be analysed. Such a scheme will be shown to be sufficient for providing an adequate discretization for quite large time steps compared to the pseudo-period of the underlying dynamics.
Duality in parameter space and approximation of measures for mixing repellers
NASA Astrophysics Data System (ADS)
Abenda, S.; Turchetti, G.
1990-10-01
For one-dimensional expanding maps T with an invariant measure μ we consider, in a parameter space, the envelope ℰ n of the real lines associated to any couple of points of the orbit, connected by n iterations of T. If the map has s inverses and is piecewise linear, then the sets ℰ n are just the union of s n points and converge to the invariant Cantor set of T. A correspondence between all the sets and their measures is established and allows one to associate the atomic measure on ℰ1 to the completly continuous measure on the Cantor set. If the map is nonlinear, hyperbolic, and has s inverses, the sets ℰ n are homeomorphic to the Cantor set; they converge to the Cantor set of T and their measures converge to the measure of the Cantor set when n→∞. The correspondence between the sets ℰ n allows one to define converging approximation schemes for the map an its measure: one replaces each of the s n disjoint sets with a point in a convenient neighborhood and a probability equal to its measure and transforms it back to the original set ℰ1. All the approximations with linear Cantor systems previously proposed are recovered, the converging proprties being straightforward in the present scheme. Moreover, extensions to higher dimensionality and to nondisconnected repellers arte possible and are briefly examined.
NASA Technical Reports Server (NTRS)
Long, S. A. T.
1975-01-01
The effects of various experimental parameters on the displacement errors in the triangulation solution of an elongated object in space due to pointing uncertainties in the lines of sight have been determined. These parameters were the number and location of observation stations, the object's location in latitude and longitude, and the spacing of the input data points on the azimuth-elevation image traces. The displacement errors due to uncertainties in the coordinates of a moving station have been determined as functions of the number and location of the stations. The effects of incorporating the input data from additional cameras at one of the stations were also investigated.
NASA Astrophysics Data System (ADS)
Jones-Selden, Felicia L.
Costs of aerospace missions have increased over the last twenty years, placing the future of the space program in jeopardy. A potential source for such growth can be attributed to the complex multidisciplinary and challenging nature of earth and space science instrument development. Design margins are additional resources carried in technical performance parameters to mitigate uncertainties throughout the product lifecycle. Margins are traditionally derived and allocated based upon historical experience intrinsic to organizations, as opposed to quantitative methods, jeopardizing the development of low-cost space-based instruments. This dissertation utilizes a methodology to evaluate the interrelationships between pre-launch and actual launch margins for the key technical performance parameters of mass, power, and data-rate to identify the extent to which excessive or insufficient margins are used in the design of space-based instruments in an effort to control instrument cost growth. The research examined 62 space-based instruments from the National Aeronautics and Space Administration, Federally Funded Research and Development Centers, and universities. Statistical analysis consisting of paired t-tests and multiple linear regression were utilized to determine the degree to which space-based instruments are over or under designed by the use of excessive or insufficient design margins and to determine the effect of design margins for the technical performance parameters of mass, power, and data-rate on the percentage instrument cost growth from the preliminary design phase to launch. Findings confirm, that in the implementation of space-based instruments, design margins are allocated to technical performance parameters above suggested government/industry standards, impacting the development of low-cost space-based instruments. The findings provide senior leadership, systems engineers, project managers, and resource managers with the ability to determine where
NASA Astrophysics Data System (ADS)
da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.
2016-04-01
We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.
Sloan Digital Sky Survey QSO's in the context of the 4D Eigenvector 1 Parameter Space
NASA Astrophysics Data System (ADS)
Zamfir, Nicolae Sebastian
We explore spectroscopic properties of N ~ 470 quasars with redshift z within 0.7. It is a large and homogeneous sample of Sloan Digital Sky Survey (SDSS) "QSO" sources brighter than either 17.5 psf g- or i-band magnitude. The research is developed in the framework of the 4D Eigenvector 1 (4DE1) Parameter Space. We exploit and also test the concept of two quasar populations (labeled A and B) nominally separated at FWHM(Hb) = 4000 km s -1 . The project comprises three chapters: (1) a search for a dichotomy/bimodality between radio-loud (RL) and radio-quiet (RQ) quasars, (2) an analysis of the Hb profile diversity and (3) an investigation of the luminosity effects on the 4DE1 measures. The second part is a dual approach: constructing composite/median spectra and (complementary) defining a set of diagnostic measures (asymmetry, kurtosis, centroid shift) in individual sources profiles. The third section incorporates a sample of N = 53 quasars at z [approximate] 0.9-3.0 with VLT/ISAAC spectra of the Hb region. This addition allows us to cover six decades of luminosity. We find that the RL quasars occupy a much more restricted domain in the optical plane of the 4DE1 compared to the RQ sources, which supports the notion of bimodality. FRII and CD RL sources show significant 4DE1 domain differences that likely reflect differences in line of sight orientation (inclined versus face-on, respectively) for these two classes. Quasars do not distribute randomly about an average optical spectrum. Our results support the conceptof two populations A and B. Population A composite Hb profiles are best described by a Lorentzian, but Population B spectra require a double Gaussian. High and low accretion sources (another version of the Population A/B concept) show significant differences in terms of Black Hole (BH) mass and Eddington ratio L bol /L Edd . Moreover, they show distinct properties in terms of line asymmetry, shift and shapes. The minimum detectable FWHM (Hb) increases with
Parameter Trade Studies For Coherent Lidar Wind Measurements of Wind from Space
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Frehlich, Rod G.
2007-01-01
The design of an orbiting wind profiling lidar requires selection of dozens of lidar, measurement scenario, and mission geometry parameters; in addition to prediction of atmospheric parameters. Typical mission designs do not include a thorough trade optimization of all of these parameters. We report here the integration of a recently published parameterization of coherent lidar wind velocity measurement performance with an orbiting coherent wind lidar computer simulation; and the use of these combined tools to perform some preliminary parameter trades. We use the 2006 NASA Global Wind Observing Sounder mission design as the starting point for the trades.
NASA Astrophysics Data System (ADS)
Nair, Remya; Jhingan, Sanjay; Tanaka, Takahiro
2016-05-01
We study the advantages of the coexistence of future ground- and space-based gravitational-wave detectors in estimating the parameters of a binary coalescence. Space measurements will act as a precursor to ground measurements. Also, since space measurements will provide much better localization information on the source, they will aid electromagnetic follow-up of the source and hence increase the probability of finding an electromagnetic counterpart of the gravitational-wave event. Using the post-Newtonian waveform for the inspiral of nonspinning neutron star-black hole binaries in circular orbits, we analyze how estimates for the chirp mass, the symmetric mass ratio, and the time and phase at coalescence are improved by combining the data from different space-ground detector pairs. Since the gravitational waves produced by binary coalescence also provide a suitable domain where we can investigate strong field gravity, we also study the deviations from general relativity using the parameterized post-Einsteinian framework. As an example, focusing on the Einstein telescope and DECIGO pair, we demonstrate that there exists a sweet-spot range of sensitivity in the pre-DECIGO period where the best enhancement due to the synergy effect can be obtained for estimates of the post-Newtonian waveform parameters. Similar results are obtained for the parameter that characterizes deviation from general relativity.
Robust H(infinity) control design for the Space Station with structured parameter uncertainty
NASA Technical Reports Server (NTRS)
Byun, Kuk-Whan; Wie, Bong; Geller, David; Sunkel, John
1990-01-01
A robust H(infinity) control design methodology and its application to a Space Station attitude and momentum control problem are presented. This new approach incorporates nonlinear multiparameter variations in the state-space formulation of H(infinity) control theory. An application of this robust control synthesis technique tothe Space Station control problem yields a remarkable result in stability robustness with respect to the moments-of-inertia variation of about 73 percent in one of the structured uncertainty directions. The performance and stability of this new robust H(infinity) controller for the Space Station are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique.
Mastroleo, Felice; Van Houdt, Rob; Leroy, Baptiste; Benotmane, M Abderrafi; Janssen, Ann; Mergeay, Max; Vanhavere, Filip; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie
2009-12-01
In view of long-haul space exploration missions, the European Space Agency initiated the Micro-Ecological Life Support System Alternative (MELiSSA) project targeting the total recycling of organic waste produced by the astronauts into oxygen, water and food using a loop of bacterial and higher plant bioreactors. In that purpose, the alpha-proteobacterium, Rhodospirillum rubrum S1H, was sent twice to the International Space Station and was analyzed post-flight using a newly developed R. rubrum whole genome oligonucleotide microarray and high throughput gel-free proteomics with Isotope-Coded Protein Label technology. Moreover, in an effort to identify a specific response of R. rubrum S1H to space flight, simulation of microgravity and space-ionizing radiation were performed on Earth under identical culture set-up and growth conditions as encountered during the actual space journeys. Transcriptomic and proteomic data were integrated and permitted to put forward the importance of medium composition and culture set-up on the response of the bacterium to space flight-related environmental conditions. In addition, we showed for the first time that a low dose of ionizing radiation (2 mGy) can induce a significant response at the transcriptomic level, although no change in cell viability and only a few significant differentially expressed proteins were observed. From the MELiSSA perspective, we could argue the effect of microgravity to be minimized, whereas R. rubrum S1H could be more sensitive to ionizing radiation during long-term space exploration mission.
Mastroleo, Felice; Van Houdt, Rob; Leroy, Baptiste; Benotmane, M Abderrafi; Janssen, Ann; Mergeay, Max; Vanhavere, Filip; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie
2009-12-01
In view of long-haul space exploration missions, the European Space Agency initiated the Micro-Ecological Life Support System Alternative (MELiSSA) project targeting the total recycling of organic waste produced by the astronauts into oxygen, water and food using a loop of bacterial and higher plant bioreactors. In that purpose, the alpha-proteobacterium, Rhodospirillum rubrum S1H, was sent twice to the International Space Station and was analyzed post-flight using a newly developed R. rubrum whole genome oligonucleotide microarray and high throughput gel-free proteomics with Isotope-Coded Protein Label technology. Moreover, in an effort to identify a specific response of R. rubrum S1H to space flight, simulation of microgravity and space-ionizing radiation were performed on Earth under identical culture set-up and growth conditions as encountered during the actual space journeys. Transcriptomic and proteomic data were integrated and permitted to put forward the importance of medium composition and culture set-up on the response of the bacterium to space flight-related environmental conditions. In addition, we showed for the first time that a low dose of ionizing radiation (2 mGy) can induce a significant response at the transcriptomic level, although no change in cell viability and only a few significant differentially expressed proteins were observed. From the MELiSSA perspective, we could argue the effect of microgravity to be minimized, whereas R. rubrum S1H could be more sensitive to ionizing radiation during long-term space exploration mission. PMID:19571896
Linscheid, A; Sanna, A; Floris, A; Gross, E K U
2015-08-28
We show that the superconducting order parameter and condensation energy density of phonon-mediated superconductors can be calculated in real space from first principles density functional theory for superconductors. This method highlights the connection between the chemical bonding structure and the superconducting condensation and reveals new and interesting properties of superconducting materials. Understanding this connection is essential to describe nanostructured superconducting systems where the usual reciprocal space analysis hides the basic physical mechanism. In a first application we present results for MgB2, CaC6 and hole-doped graphane.
Linscheid, A; Sanna, A; Floris, A; Gross, E K U
2015-08-28
We show that the superconducting order parameter and condensation energy density of phonon-mediated superconductors can be calculated in real space from first principles density functional theory for superconductors. This method highlights the connection between the chemical bonding structure and the superconducting condensation and reveals new and interesting properties of superconducting materials. Understanding this connection is essential to describe nanostructured superconducting systems where the usual reciprocal space analysis hides the basic physical mechanism. In a first application we present results for MgB2, CaC6 and hole-doped graphane. PMID:26371675
Lika, Konstadia; Augustine, Starrlight; Pecquerie, Laure; Kooijman, Sebastiaan A L M
2014-08-01
The standard Dynamic Energy Budget (DEB) model assumes that food is converted to reserve and a fraction κ of mobilised reserve of an individual is allocated to somatic maintenance plus growth, while the rest is allocated to maturity maintenance plus maturation (in embryos and juveniles) or reproduction (in adults). The add_my_pet collection of over 300 animal species from most larger phyla, and all chordate classes, shows that this model fits energy data very well. Nine parameters determine nine data points at abundant food: dry/wet weight ratio, age at birth, puberty, death, weight at birth, metamorphosis, puberty, ultimate weight and ultimate reproduction rate. We demonstrate that, given a few other parameters, these nine data points also determine the nine parameters uniquely that are independent of food availability: maturity at birth, metamorphosis and puberty, specific assimilation, somatic maintenance and costs for structure, allocation fraction of mobilised reserve to soma, energy conductance, and ageing acceleration. We provide an efficient algorithm for mapping between data and parameter space in both directions and found expressions for the boundaries of the parameter and data spaces. One of them quantifies the position of species in the supply-demand spectrum, which reflects the internalisation of energetic control. We link eco-physiological properties of species to their position in this spectrum and discuss it in the context of homeostasis. Invertebrates and ray-finned fish turn out to be close to the supply end of the spectrum, while other vertebrates, including cartilaginous fish, have stronger demand tendencies. We explain why birds and mammals up-regulate metabolism during reproduction. We study some properties of the bijection using elasticity coefficients. The properties have applications in parameter estimation and in the analysis of evolutionary constraints on parameter values; the relationship between DEB parameters and data has similarities
Angular distribution of cosmological parameters as a probe of space-time inhomogeneities
NASA Astrophysics Data System (ADS)
Carvalho, C. Sofia; Marques, Katrine
2016-08-01
We develop a method based on the angular distribution on the sky of cosmological parameters to probe the inhomogeneity of large-scale structure and cosmic acceleration. We demonstrate this method on the largest type Ia supernova (SN) data set available to date, as compiled by the Joint Light-curve Analysis (JLA) collaboration and, hence, consider the cosmological parameters that affect the luminosity distance. We divide the SN sample into equal surface area pixels and estimate the cosmological parameters that minimize the chi-square of the fit to the distance modulus in each pixel, hence producing maps of the cosmological parameters {ΩM,ΩΛ,H0} . In poorly sampled pixels, the measured fluctuations are mostly due to an inhomogeneous coverage of the sky by the SN surveys; in contrast, in well-sampled pixels, the measurements are robust enough to suggest a real fluctuation. We also measure the anisotropy of the parameters by computing the power spectrum of the corresponding maps of the parameters up to ℓ = 3. For an analytical toy model of an inhomogeneous ensemble of homogeneous pixels, we derive the backreaction term in the deceleration parameter due to the fluctuations of H0 across the sky and measure it to be of order 10-3 times the corresponding average over the pixels in the absence of backreaction. We conclude that, for the toy model considered, backreaction is not a viable dynamical mechanism to emulate cosmic acceleration.
Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Davis, S.; Taylor, G. R.; Mandel, A. D.; Konstantinova, I. V.; Lesnyak, A.; Fuchs, B. B.; Peres, C.; Tkackzuk, J.; Schmitt, D. A.
1996-01-01
During a recent flight of a Russian satellite (Cosmos #2229), initial experiments examining the effects of space flight on immunologic responses of rhesus monkeys were performed to gain insight into the effect of space flight on resistance to infection. Experiments were performed on tissue samples taken from the monkeys before and immediately after flight. Additional samples were obtained approximately 1 month after flight for a postflight restraint study. Two types of experiments were carried out throughout this study. The first experiment determined the ability of leukocytes to produce interleukin-1 and to express interleukin-2 receptors. The second experiment examined the responsiveness of rhesus bone marrow cells to recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF). Human reagents that cross-reacted with monkey tissue were utilized for the bulk of the studies. Results from both studies indicated that there were changes in immunologic function attributable to space flight. Interleukin-1 production and the expression of interleukin-2 receptors was decreased after space flight. Bone marrow cells from flight monkeys showed a significant decrease in their response to GM-CSF compared with the response of bone marrow cells from nonflight control monkeys. These results suggest that the rhesus monkey may be a useful surrogate for humans in future studies that examine the effect of space flight on immune response, particularly when conditions do not readily permit human study.
Paliwal, Himanshu; Shirts, Michael R
2013-11-12
Multistate reweighting methods such as the multistate Bennett acceptance ratio (MBAR) can predict free energies and expectation values of thermodynamic observables at poorly sampled or unsampled thermodynamic states using simulations performed at only a few sampled states combined with single point energy reevaluations of these samples at the unsampled states. In this study, we demonstrate the power of this general reweighting formalism by exploring the effect of simulation parameters controlling Coulomb and Lennard-Jones cutoffs on free energy calculations and other observables. Using multistate reweighting, we can quickly identify, with very high sensitivity, the computationally least expensive nonbonded parameters required to obtain a specified accuracy in observables compared to the answer obtained using an expensive "gold standard" set of parameters. We specifically examine free energy estimates of three molecular transformations in a benchmark molecular set as well as the enthalpy of vaporization of TIP3P. The results demonstrates the power of this multistate reweighting approach for measuring changes in free energy differences or other estimators with respect to simulation or model parameters with very high precision and/or very low computational effort. The results also help to identify which simulation parameters affect free energy calculations and provide guidance to determine which simulation parameters are both appropriate and computationally efficient in general.
NASA Technical Reports Server (NTRS)
Barnes, G. D.
1982-01-01
The feasibility of a polygeneration plant at Kennedy Space Center was studied. Liquid hydrogen and gaseous nitrogen are the two principal products in consideration. Environmental parameters (air quality, water quality, biological diversity and hazardous waste disposal) necessary for the feasibility study were investigated. A National Environmental Policy Act (NEPA) project flow sheet was to be formulated for the environmental impact statement. Water quality criteria for Florida waters were to be established.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Lawrence, D.
1981-01-01
The basic assumption that a large space structure can be decoupled preceding the application of reduced order active control was considered and alternative solutions to the control of such structures (in contrast to the strict modal control) were investigated. The transfer function matrix from the actuators to the sensors was deemed to be a reasonable candidate. More refined models from multivariable systems theory were studied and recent results in the multivariable control field were compared with respect to theoretical deficiencies and likely problems in application to large space structures.
Ivan, J Solomon; Goswami, Kaumudibikash
2015-06-01
Two natural requirements on a measurable quantity possessed by a paraxially propagating light-field to be suitable for free space optical communication are invariance under free space propagation and invariance under transverse plane rotation. While the former invariance ensures that the measurable quantity is robust while signalling through free space, the latter invariance ensures that a detector measuring the quantity can be oriented at any angle in the transverse plane, and a measurement by the detector yields the same value for the quantity irrespective of the transverse angle, thus avoiding alignment issues. The variance matrix of a paraxially propagating light-field is analyzed from the perspective of the aforementioned invariances. That the "charge" of a paraxial light-field, which is contained in the variance matrix, and which has been previously well studied for its suitability toward free space optical communication, possesses these two invariance properties, emerges naturally in the analysis. Seven functionally independent quantities other than charge, which are derived from the variance matrix, and which share these invariances, are presented and studied for their suitability toward signalling through turbulent atmosphere using the low-order Hermite-Gaussian modes. It is found that the spot size of a Gaussian light-field can be effectively used as a switch, to communicate through short distances in a turbulent atmosphere.
NASA Technical Reports Server (NTRS)
Sulyma, P. R.; Penny, M. M.
1978-01-01
A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.
Least-squares sequential parameter and state estimation for large space structures
NASA Technical Reports Server (NTRS)
Thau, F. E.; Eliazov, T.; Montgomery, R. C.
1982-01-01
This paper presents the formulation of simultaneous state and parameter estimation problems for flexible structures in terms of least-squares minimization problems. The approach combines an on-line order determination algorithm, with least-squares algorithms for finding estimates of modal approximation functions, modal amplitudes, and modal parameters. The approach combines previous results on separable nonlinear least squares estimation with a regression analysis formulation of the state estimation problem. The technique makes use of sequential Householder transformations. This allows for sequential accumulation of matrices required during the identification process. The technique is used to identify the modal prameters of a flexible beam.
Reducing the parameter space for unparticle-inspired models using white dwarf masses
NASA Astrophysics Data System (ADS)
de Souza, Rodrigo Alvares; Horvath, J. E.
2012-07-01
Based on astrophysical constraints derived from Chandrasekhar’s mass limit for white dwarfs, we study the effects of the model on the parameters of unparticle-inspired gravity, on scales ΛU>1TeV and dU≈1.
NASA Astrophysics Data System (ADS)
Kuznetsova, T. V.; Laptukhov, A. I.
As we become a space culture, we are more and more in need of a predictive understanding of the key processes that constitute the interaction of the solar wind plasma and the IMF with the terrestrial magnetic field. The paper presents results of our analysis of geoeffective parameters of the solar wind calculated from measurements of the solar wind and interplanetary magnetic field (IMF) for the period from 1964-1999 of space measurements at 1 a.u. at ecliptic plane and Kp, Dst indexes (planetary geomagnetic activity). We attract for calculation of geoeffective parameters a reconnection model that describes a reconnection between terrestrial magnetic field and an IMF of arbitrary orientation taking into account annual and daily rotations of the Earth's dipole (Kuznetsova and Laptukhov, 2001). As result we introduce two new geoeffective invariant parameters (independent from a choice of a coordinate system) that have clear physical sense of components of electric field of the solar wind along special directions of the geomagnetic moment (M): vector of electric field of the solar wind E are presented by its projections along and across the M vector (Em and Emv). For calculations of the electric field we used measured components of the IMF and solar wind velocity V. To project vector E along the directions we calculated orientation of geomagnetic moment at each moment of the Universal Time during its orbital motion (in GSE coordinate system). In terms of our approach mutual orientation of vectors of E and M is important. We obtained two functional dependencies: Kp=F1(Emv), Kp=F2(Em) on the basis of measurements for 35 years. Remarkable feature of derived functions Kp=F1(Emv), Kp=F2(Em) is that standard error is nearly the same both for high and low values of Kp (including extreme values). Results demonstrate that Emv electric field is one the main contributor to the Kp variations. Results of our detailed analysis showed that Emv can explain 94.5 % variations in Kp, Em
Measurement of the PPN parameter γ by testing the geometry of near-Earth space
NASA Astrophysics Data System (ADS)
Luo, Jie; Tian, Yuan; Wang, Dian-Hong; Qin, Cheng-Gang; Shao, Cheng-Gang
2016-06-01
The Beyond Einstein Advanced Coherent Optical Network (BEACON) mission was designed to achieve an accuracy of 10^{-9} in measuring the Eddington parameter γ , which is perhaps the most fundamental Parameterized Post-Newtonian parameter. However, this ideal accuracy was just estimated as a ratio of the measurement accuracy of the inter-spacecraft distances to the magnitude of the departure from Euclidean geometry. Based on the BEACON concept, we construct a measurement model to estimate the parameter γ with the least squares method. Influences of the measurement noise and the out-of-plane error on the estimation accuracy are evaluated based on the white noise model. Though the BEACON mission does not require expensive drag-free systems and avoids physical dynamical models of spacecraft, the relatively low accuracy of initial inter-spacecraft distances poses a great challenge, which reduces the estimation accuracy in about two orders of magnitude. Thus the noise requirements may need to be more stringent in the design in order to achieve the target accuracy, which is demonstrated in the work. Considering that, we have given the limits on the power spectral density of both noise sources for the accuracy of 10^{-9}.
NASA Technical Reports Server (NTRS)
Brewer, Dana A.; Hall, John B., Jr.
1986-01-01
An evaluation is made of the NASA Space Station Reference Configuration trace contaminant production and depletion level effects of CO2, O2, humidity, temperature, and pressure variations, on the basis of a computer model of the Reference Configuration's chemical reactions and physical processes as functions of time. The effects of changes in the initial concentrations of such contaminants as nonmethane hydrocarbons and nitrogen oxides are also examined, and these are found to result in more significant changes in the concentration levels of trace contaminants than pressure and humidity variations. O2 and CO2 changes are found to have negligible effects on trace contaminant concentrations.
Generalized parity relations for large space structures with uncertain parameters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dutilloy, J. R.
1986-01-01
The generalized parity relations method is a technique that can be used to detect sensor and actuator failures on a large space structure. A model of a grid structure was used to evaluate the performance of these relations. It shows their relative sensitivity to modeling errors. A method using sensor outputs and actuator inputs is required for the design of the generalized parity relations. Three different estimators are studied. The last estimator can generate relations optimized for the detection of a particular failure which are interesting when the level of sensor noise is high.
The Deuterium Fractionation Timescale in Dense Cloud Cores: A Parameter Space Exploration
NASA Astrophysics Data System (ADS)
Kong, Shuo; Caselli, Paola; Tan, Jonathan C.; Wakelam, Valentine; Sipilä, Olli
2015-05-01
The deuterium fraction, [N2D+]/[N2H+], may provide information about the ages of dense, cold gas structures, which are important for comparing dynamical models of cloud core formation and evolution. Here we introduce a complete chemical network with species containing up to three atoms, with the exception of the oxygen chemistry, where reactions involving H3O+ and its deuterated forms have been added, significantly improving the consistency with comprehensive chemical networks. Deuterium chemistry and spin states of H2 and H3+ isotopologues are included in this primarily gas-phase chemical model. We investigate the dependence of deuterium chemistry on these model parameters: density ({{n}H}), temperature, cosmic ray ionization rate, and gas-phase depletion factor of heavy elements ({{f}D}). We also explore the effects of time-dependent freeze-out of gas-phase species and the dynamical evolution of density at various rates relative to free-fall collapse. For a broad range of model parameters, the timescales to reach large values of Dfrac{{N2}{{H}+}}≳ 0.1, observed in some low- and high-mass starless cores, are relatively long compared to the local free-fall timescale. These conclusions are unaffected by introducing time-dependent freeze-out and considering models with evolving density, unless the initial {{f}D} ≳ 10. For fiducial model parameters, achieving Dfrac{{N2}{{H}+}}≳ 0.1 requires collapse to be proceeding at rates at least several times slower than that of free-fall collapse, perhaps indicating a dynamically important role for magnetic fields in supporting starless cores and thus the regulation of star formation.
NASA Astrophysics Data System (ADS)
Dittmore, Andrew; Trail, Collin; Olsen, Thomas; Wiener, Richard J.
2003-11-01
We have previously demonstrated the experimental control of chaos in a Modified Taylor-Couette system with hourglass geometry( Richard J. Wiener et al), Phys. Rev. Lett. 83, 2340 (1999).. Identifying fixed points susceptible to algorithms for the control of chaos is key. We seek to learn about this process in the accessible numerical model of the damped, driven pendulum. Following Baker(Gregory L. Baker, Am. J. Phys. 63), 832 (1995)., we seek points susceptible to the OGY(E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64), 1196 (1990). algorithm. We automate the search for fixed points that are candidates for control. We present comparisons of the space of candidate fixed points with the bifurcation diagrams and Poincare sections of the system. We demonstrate control at fixed points which do not appear on the attractor. We also show that the control algorithm may be employed to shift the system between non-communicating branches of the attractor.
NASA Astrophysics Data System (ADS)
Lechaftois, F.; Deloncle, I.; Péru, S.
2015-09-01
For the first time, using a unique finite-range interaction (D1M Gogny force), a fully coherent and time-feasible calculation of the Bohr Hamiltonian vibrational mass is envisioned in a Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation (QRPA) framework. In order to reach a reasonable computation time, we evaluate the feasibility of this method by considering two restrictions for the QRPA: the Tamm-Dancoff approximation and the insertion of a valence space. We validate our approach in the even-even tin isotopes by comparing the convergence scheme of the mass parameter with those of built-in QRPA outputs: excited-state energy and reduced transition probability. The seeming convergence of these intrinsic quantities is shown to be misleading and the difference with the theoretical expected value is quantified. This work is a primary step towards the systematic calculation of mass parameters.
Mapping magnetized geologic structures from space: The effect of orbital and body parameters
NASA Technical Reports Server (NTRS)
Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.
1984-01-01
When comparing previous satellite magnetometer missions (such as MAGSAT) with proposed new programs (for example, Geopotential Research Mission, GRM) it is important to quantify the difference in scientific information obtained. The ability to resolve separate magnetic blocks (simulating geological units) is used as a parameter for evaluating the expected geologic information from each mission. The effect of satellite orbital altitude on the ability to resolve two magnetic blocks with varying separations is evaluated and quantified. A systematic, nonlinear, relationship exists between resolution and distance between magnetic blocks as a function of orbital altitude. The proposed GRM would provide an order-of-magnitude greater anomaly resolution than the earlier MAGSAT mission for widely separated bodies. The resolution achieved at any particular altitude varies depending on the location of the bodies and orientation.
Optimization of space borne imaging ladar sensor for asteroid studies using parameter design
NASA Astrophysics Data System (ADS)
Wheel, Peter J.; Dobbs, Michael E.; Sharp, William E.
2002-10-01
Imaging LADAR is a hybrid technology that offers the ability to measure basic physical and morphological characteristics (topography, rotational state, and density) of a small body from a single fast flyby, without requiring months in orbit. In addition, the imaging LADAR provides key flight navigation information including range, altitude, hazard/target avoidance, and closed-loop landing/fly-by navigation information. The Near Laser Ranger demonstrated many of these capabilities as part of the NEAR mission. The imaging LADAR scales the concept of a laser ranger into a full 3D imager. Imaging LADAR systems combine laser illumination of the target (which means that imaging is independent of solar illumination and the image SNR is controlled by the observer), with laser ranging and imaging (producing high resolution 3D images in a fraction of the time necessary for a passive imager). The technical concept described below alters the traditional design space (dominated by pulsed LADAR systems) with the introduction of a pseudo-noise (PN) coded continuous wave (CW) laser system which allows for variable range resolution mapping and leverages enormous commercial investments in high power, long-life lasers for telecommunications.
NASA Astrophysics Data System (ADS)
Ala-Luhtala, Juha; Whiteley, Nick; Heine, Kari; Piche, Robert
2016-09-01
Twisted particle filters are a class of sequential Monte Carlo methods recently introduced by Whiteley and Lee to improve the efficiency of marginal likelihood estimation in state-space models. The purpose of this article is to extend the twisted particle filtering methodology, establish accessible theoretical results which convey its rationale, and provide a demonstration of its practical performance within particle Markov chain Monte Carlo for estimating static model parameters. We derive twisted particle filters that incorporate systematic or multinomial resampling and information from historical particle states, and a transparent proof which identifies the optimal algorithm for marginal likelihood estimation. We demonstrate how to approximate the optimal algorithm for nonlinear state-space models with Gaussian noise and we apply such approximations to two examples: a range and bearing tracking problem and an indoor positioning problem with Bluetooth signal strength measurements. We demonstrate improvements over standard algorithms in terms of variance of marginal likelihood estimates and Markov chain autocorrelation for given CPU time, and improved tracking performance using estimated parameters.
Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space
NASA Astrophysics Data System (ADS)
Volkoff, T. J.; Whaley, K. B.
2014-12-01
We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.
Computer code for space-time diagnostics of nuclear safety parameters
Solovyev, D. A.; Semenov, A. A.; Gruzdov, F. V.; Druzhaev, A. A.; Shchukin, N. V.; Dolgenko, S. G.; Solovyeva, I. V.; Ovchinnikova, E. A.
2012-07-01
The computer code ECRAN 3D (Experimental and Calculation Reactor Analysis) is designed for continuous monitoring and diagnostics of reactor cores and databases for RBMK-1000 on the basis of analytical methods for the interrelation parameters of nuclear safety. The code algorithms are based on the analysis of deviations between the physically obtained figures and the results of neutron-physical and thermal-hydraulic calculations. Discrepancies between the measured and calculated signals are equivalent to obtaining inadequacy between performance of the physical device and its simulator. The diagnostics system can solve the following problems: identification of facts and time for inconsistent results, localization of failures, identification and quantification of the causes for inconsistencies. These problems can be effectively solved only when the computer code is working in a real-time mode. This leads to increasing requirements for a higher code performance. As false operations can lead to significant economic losses, the diagnostics system must be based on the certified software tools. POLARIS, version 4.2.1 is used for the neutron-physical calculation in the computer code ECRAN 3D. (authors)
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.
2003-01-01
To characterize the stress corrosion parameters and predict the life of a sapphire window being considered for use in the International Space Station's Fluids and Combustion Facility, researchers at the NASA Glenn Research Center conducted stress corrosion tests, fracture toughness tests, and reliability analyses, as shown in the figures. Standardized test methods, developed and updated by the author under the auspices of American Society for Testing and Materials, were employed. One interesting finding is that sapphire exhibits a susceptibility to stress corrosion in water similar to that of glass. In addition to generating the stress corrosion parameters and fracture toughness data, closed-form expressions for the variances of the crack growth parameters were derived. The expressions allow confidence bands to be easily placed on life predictions of ceramic components. Brittle materials such as sapphire and quartz are required for windows in a variety of applications such as the Fluids and Combustion Facility. To minimize the launch weight of such facilities, researchers must design the windows to be as lightweight as possible. The safe use of lightweight, brittle windows in structural applications is limited by two factors: low fracture toughness and slow crack growth, or stress corrosion. Stress corrosion of these and other optical materials can occur in relatively common environments, such as humid air. Access to the data has been requested by designers for use in the life prediction of a Northrop Grumman F16 instrument window and a Jet Propulsion Laboratory instrument window. One Space Act Agreement has been formed. Future work includes the measurement of the life of subscale windows.
NASA Astrophysics Data System (ADS)
Liu, Qifang; Yuan, Yifan; Jin, Xing
2006-06-01
It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.
Grigorév, A I; Larina, I M; Noskov, V B; Menshtkin, V V; Natochkin, I V
1996-01-01
The purpose of the present investigation was to look for original approaches to the analysis of physical-chemical (osmolality, sodium, potassium, and calcium concentrations) and hormonal (cortisol, aldosterone, vasopressin, parathormone, calcitonin) parameters of cosmonauts' serum. To this event, we investigated 35 cosmonauts who had made either short- (up to 8 days) or long-term (up to 366 days) space flights. The dispersion factor of these parameters was found to be a criterion for assessment of the reaction of human regulatory systems to extreme impacts. No evident correlative link between the preflight and postflight concentrations of inorganic serum components was established; however, there was a high correlation of parathormone and cortisol concentrations inferring the participation of these hormones in readaptation. Integral analysis of all the mineral and hormonal parameters of blood serum shapes them into something unique apt to change after flight. Our data alludes to the fact that the approaches used for evaluation of the data resulting from conventional techniques open up new possibilities for prediction of changes in and identification of the character of individual reaction of humans to the spaceflight factors. PMID:8963264
NASA Technical Reports Server (NTRS)
Spinhirne, James D.; Duda, David; Eloranta, Edward
2000-01-01
The distribution, radiative and microphysical parameters of cirrus clouds are an important factor for cloud effects on the global radiation balance and climate. Multispectral thermal infrared observation are the most significant method used to remote sense cirrus parameter from current and planned passive satellite observations. Passive sensing alone has the limitation that both the cloud radiative temperature, or height, and the spectral emissivity must be derived in the analysis. Factors such as multiple cloud laying, which is very common, are known to introduce ambiguities in results. The addition of lidar cloud height structure measurements significantly improves retrievals. Such active/passive observations have been applied from the NASA ER-2 high altitude remote sensing aircraft since 1983. Applications include the study of the effective effective particle size of cirrus and application toward remote sensing of the ice/water content of cirrus clouds in addition to radiative parameters. Limitations, accuracy and examples of retrievals are presented. In 1997 a space shuttle hitch hiker experiment was flown which included a new technology Infrared Spectral Imaging Radiometer and a laser altimeter for direct cloud height measurements. A 30 orbit data set to test global application of combined spectral infrared and laser height measurements were obtained. Initial results for cirrus analysis from the shuttle experiment will also be presented.
Constraining parameter space of the little Higgs model using data from tera-Z factory and ILC
NASA Astrophysics Data System (ADS)
Guo, Xing-Dao; Feng, Tai-Fu; Zhao, Shu-Min; Ke, Hong-Wei; Li, Xue-Qian
2015-02-01
The Standard Model (SM) prediction on the forward-backward asymmetry for bb¯ production (AbFB)is well consistent with the data of LEP I at the Z-pole, but deviates from the data at √s = 89.55 and 92.95 GeV which are slightly away from the pole. This deviation implies that there is still room for new physics. We calculate the AbFB at the vicinity of the Z-pole in the little Higgs model as well as other measurable parameters such as Rb and Rc, by which we may constrain the parameter space of the little Higgs model. This can be further tested in the newly proposed tera-Z factory. With the fitted parameters we further make predictions on AbFB and AtFB for tt¯ production at the International Linear Collider (ILC). Supported by National Natural Science Foundation of China (11275036, 11047002, 11375128), Fund of Natural Science Foundation of Hebei Province(A2011201118) and Natural Science Fund of Hebei University (2011JQ05, 2007113)
NASA Astrophysics Data System (ADS)
Roberts, Arthur; Lhuillier, Andrew; Liu, Yi; Ruggiu, Alessandra; Shi, Yufang
Elucidation of the effects of space flight on the immune system of astronauts and other animal species is important for the survival and success of manned space flight, especially long-term missions. Space flight exposes astronauts to microgravity, galactic cosmic radiation (GCR), and various psycho-social stressors. Blood samples from astronauts returning from space flight have shown changes in the numbers and types of circulating leukocytes. Similarly, normal lym-phocyte homeostasis has been shown to be severely affected in mice using ground-based models of microgravity and GCR exposure, as demonstrated by profound effects on several immuno-logical parameters examined by other investigators and ourselves. In particular, lymphocyte numbers are significantly reduced and subpopulation distribution is altered in the spleen, thy-mus, and peripheral blood following hindlimb unloading (HU) in mice. Lymphocyte depletion was found to be mediated through corticosteroid-induced apoptosis, although the molecular mechanism of apoptosis induction is still under investigation. The proliferative capacity of TCR-stimulated lymphocytes was also inhibited after HU. We have similarly shown that mice exposed to high-energy 56Fe ion radiation have decreased lymphocyte numbers and perturba-tions in proportions of various subpopulations, including CD4+ and CD8+ T cells, and B cells in the spleen, and maturation stages of immature T cells in the thymus. To compare these ground-based results to the effects of actual space-flight, fresh spleen and thymus samples were recently obtained from normal and transgenic mice immediately after 90 d. space-flight in the MDS, and identically-housed ground control mice. Total leukocyte numbers in each organ were enumerated, and subpopulation distribution was examined by flow cytometric analysis of CD3, CD4, CD8, CD19, CD25, DX-5, and CD11b. Splenic T cells were stimulated with anti-CD3 and assessed for proliferation after 2-4 d., and production of
Volz, P A; Long, J D; Veselenak, J M
1995-01-01
Keratinophilic Trichophyton terrestre conidia were exposed to selected parameters of space flight including 254, 280 and 300 nm UV light, full light and total darkness of space. Phenotypic isolates were grown on human hair collected from one source at years 1 and 23 after splashdown. The patterns of fungal growth on the hair, and the hair deterioration rates, were noted according to the space exposure. Growth and deterioration were consistent but slightly reduced at year 23.
Volz, P A; Long, J D; Veselenak, J M
1995-01-01
Keratinophilic Trichophyton terrestre conidia were exposed to selected parameters of space flight including 254, 280 and 300 nm UV light, full light and total darkness of space. Phenotypic isolates were grown on human hair collected from one source at years 1 and 23 after splashdown. The patterns of fungal growth on the hair, and the hair deterioration rates, were noted according to the space exposure. Growth and deterioration were consistent but slightly reduced at year 23. PMID:7476563
Effect of quantum parameter – H on space-charge wave spectra in n-type semiconductor plasmas
Ghosh, S. Muley, Apurva
2015-07-31
The present paper deals with the propagation characteristics of very fundamental wave i.e. space – charge wave while propagating through quantum semiconductor plasma. We have used quantum hydrodynamic model to derive the most general dispersion relation in terms of quantum parameter – H. We have found that in presence of an external electrostatic field, the wave spectra (dispersion as well as gain characteristics) not only modified due to presence of quantum effect but also two novel modes of propagation are introduced due to this effect. Hence it may be concluded that to miniaturize the opto-electronic devices, one should use highly doped semiconductor medium at comparatively lower temperature so that the quantum effects predominate.
NASA Astrophysics Data System (ADS)
Li, Yun-He; Zhang, Jing-Fei; Zhang, Xin
2014-12-01
Dark energy can modify the dynamics of dark matter if there exists a direct interaction between them. Thus, a measurement of the structure growth, e.g., redshift-space distortions (RSDs), can provide a powerful tool to constrain the interacting dark energy (IDE) models. For the widely studied Q =3 β H ρde model, previous works showed that only a very small coupling [β ˜O (10-3) ] can survive in current RSD data. However, all of these analyses had to assume w >-1 and β >0 due to the existence of the large-scale instability in the IDE scenario. In our recent work [Phys. Rev. D 90, 063005 (2014)], we successfully solved this large-scale instability problem by establishing a parametrized post-Friedmann framework for the IDE scenario. So we, for the first time, have the ability to explore the full parameter space of the IDE models. In this work, we re-examine the observational constraints on the Q =3 β H ρde model within the parametrized post-Friedmann framework. By using the Planck data, the baryon acoustic oscillation data, the JLA sample of supernovae, and the Hubble constant measurement, we get β =-0.01 0-0.033+0.037 (1 σ ). The fit result becomes β =-0.014 8-0.0089+0.0100 (1 σ ) once we further incorporate the RSD data in the analysis. The error of β is substantially reduced with the help of the RSD data. Compared with the previous results, our results show that a negative β is favored by current observations, and a relatively larger interaction rate is permitted by current RSD data.
Chang, Spencer; Lang, Rafael F; Weiner, Neal
2011-01-01
The inelastic dark matter scenario was proposed to reconcile the DAMA annual modulation with null results from other experiments. In this scenario, weakly interacting massive particles (WIMPs) scatter into an excited state, split from the ground state by an energy δ comparable to the available kinetic energy of a galactic WIMP. We note that for large splittings δ the dominant scattering at DAMA can occur off of thallium nuclei, with A∼205, which are present as a dopant at the 10(-3) level in NaI(Tl) crystals. For a WIMP mass mχ≈100 GeV/c2 and δ≈200 keV, we find a region in δ-mχ-parameter space which is consistent with all experiments. These parameters, in particular, can be probed in experiments with thallium in their targets, such as KIMS, but are inaccessible to lighter target experiments. Depending on the tail of the WIMP velocity distribution, a highly modulated signal may or may not appear at CRESST-II.
NASA Astrophysics Data System (ADS)
Xu, Shiqing; Ben-Zion, Yehuda; Ampuero, Jean-Paul
2012-12-01
We perform a detailed parameter-space study on properties of yielding zones generated by 2-D in-plane dynamic ruptures on a planar fault with different friction laws and parameters, different initial stress conditions, different rock cohesion values, and different contrasts of elasticity and mass density across the fault. The focus is on cases corresponding to large strike-slip faults having high angle (?) to the maximum compressive background stress. The simulations and analytical scaling results show that for crack-like ruptures (1) the maximum yielding zone thickness Tmax linearly increases with rupture distance L and the ratio Tmax/L is inversely proportional to (1 +S)2 with S being the relative strength parameter; (2) the potency density ? decays logarithmically with fault normal distance at a rate depending on the stress state and S; (3) increasing rock cohesion reduces Tmax/L, resulting in faster rupture speed and higher inclination angle ? of expected microfractures on the extensional side of the fault. For slip pulses in quasi-steady state, T is approximately constant along strike with local values correlating with the maximum slip velocity (or final slip) at a location. For a bimaterial interface with ?, the energy dissipation to yielding contributes to developing macroscopically asymmetric rupture (at the scale of rupture length) with the same preferred propagation direction predicted for purely elastic cases with Coulomb friction. When ?, representative for thrust faulting, the energy dissipation to yielding leads to opposite preferred rupture propagation. In all cases, ? is higher on average on the compliant side. For both crack and pulse ruptures with ?, T decreases and ? increases for conditions representing greater depth. Significant damage asymmetry of the type observed across several large strike-slip faults likely implies persistent macroscopic rupture asymmetry (unilateral cracks, unilateral pulses or asymmetric bilateral pulses). The results on
NASA Astrophysics Data System (ADS)
Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Pogosyan, Sergey; Ptushenko, Vasiliy; Erokhin, Alexei; Zhigalova, Tatiana
2014-06-01
Currently light emitting diodes (LEDs) are considered to be most preferable source for space plant growth facilities. We performed a complex study of growth and photosynthesis in Chinese cabbage plants (Brassica chinensis L.) grown with continuous LED lighting based on red (650 nm) and blue (470 nm) LEDs with a red to blue photon ratio of 7:1. Plants grown with high-pressure sodium (HPS) lamps were used as a control. PPF levels used were about 100 μmol/(m2 s) (PPF 100) and nearly 400 μmol/(m2 s) (PPF 400). One group of plants was grown with PPF 100 and transferred to PPF 400 at the age of 12 days. Plants were studied at the age of 15 and 28 days (harvest age); some plants were left to naturally end their life cycle. We studied a number of parameters reflecting different stages of photosynthesis: photosynthetic pigment content; chlorophyll fluorescence parameters (photosystem II quantum yield, photochemical and non-photochemical chlorophyll fluorescence quenching); electron transport rate, proton gradient on thylakoid membranes (ΔpH), and photophosphorylation rate in isolated chloroplasts. We also tested parameters reflecting plant growth and productivity: shoot and root fresh and dry weight, sugar content and ascorbic acid content in shoots. Our results had shown that at PPF 100, plants grown with LEDs did not differ from control plants in shoot fresh weight, but showed substantial differences in photophosphorylation rate and sugar content. Differences observed in plants grown with PPF 100 become more pronounced in plants grown with PPF 400. Most parameters characterizing the plant photosynthetic performance, such as photosynthetic pigment content, electron transport rate, and ΔpH did not react strongly to light spectrum. Photophosphorylation rate differed strongly in plants grown with different spectrum and PPF level, but did not always reflect final plant yield. Results of the present work suggest that narrow-band LED lighting caused changes in Chinese
Vitale, Salvatore
2016-07-29
With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.
NASA Astrophysics Data System (ADS)
Vitale, Salvatore
2016-07-01
With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.
Regulation of NF-κB oscillation by spatial parameters in true intracellular space (TiCS)
NASA Astrophysics Data System (ADS)
Ohshima, Daisuke; Sagara, Hiroshi; Ichikawa, Kazuhisa
2013-10-01
Transcription factor NF-κB is activated by cytokine stimulation, viral infection, or hypoxic environment leading to its translocation to the nucleus. The nuclear NF-κB is exported from the nucleus to the cytoplasm again, and by repetitive import and export, NF-κB shows damped oscillation with the period of 1.5-2.0 h. Oscillation pattern of NF-κB is thought to determine the gene expression profile. We published a report on a computational simulation for the oscillation of nuclear NF-κB in a 3D spherical cell, and showed the importance of spatial parameters such as diffusion coefficient and locus of translation for determining the oscillation pattern. Although the value of diffusion coefficient is inherent to protein species, its effective value can be modified by organelle crowding in intracellular space. Here we tested this possibility by computer simulation. The results indicate that the effective value of diffusion coefficient is significantly changed by the organelle crowding, and this alters the oscillation pattern of nuclear NF-κB.
Pooley, C. M.; Bishop, S. C.; Marion, G.
2015-01-01
Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob–Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed ‘model-based proposal’ (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2–8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large. PMID:25994297
Pooley, C M; Bishop, S C; Marion, G
2015-06-01
Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob-Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed 'model-based proposal' (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2-8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large. PMID:25994297
NASA Astrophysics Data System (ADS)
Bezrukova, Alexandra G.
2006-04-01
The simultaneous analysis of 3D disperse systems (DS) with micro- and nano- particles by refractometry, absorbency, fluorescence and by different types of light scattering, can help to elaborate the sensing elements for specffic impurity control. Our research has investigated by complex of optical methods different 3D DS such as: proteins, nucleoproteids, lipoproteids, liposomes, viruses, virosomes, lipid emulsions, blood substitutes, latexes, liquid crystals, biological cells with various form and size (including bacterial cells), metallic powders, clays, kimberlites, zeolites, oils, crude oils, samples of natural and water-supply waters, etc. This experience suggests that each 3D DS can be charactensed by N-dimensional vector in N-dimensional space of optical parameters. Due to the fusion of various optical data it is possible to solve the inverse physical problem on the presence of impurity in mixtures of 3D DS by information statistical theory methods. It is important that in this case polymodality of particle size distribution is not an obstacle.
Vitale, Salvatore
2016-07-29
With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity. PMID:27517762
NASA Astrophysics Data System (ADS)
Savcheva, Antonia; Tassev, Svetlin; DeLuca, Edward E.; Gibson, Sarah; Fan, Yuhong
2016-05-01
Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital to the understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from aFan & Gibson emerging flux rope simulation. The goal is to study the effect of of different input flux rope parameters on the geometry of currents, field line connectivity, and topology, in a controled setting. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. We create synthetic images of these flux ropes in AIA passbands with the FORWARD forward-fitting code. The present parametric study will later be used to get a better handle on the initial condition for magnetofrictional and MHD simulations of observed regions containing flux ropes, such as sigmoids and polar-crown filaments.
Pooley, C M; Bishop, S C; Marion, G
2015-06-01
Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob-Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed 'model-based proposal' (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2-8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large.
NASA Astrophysics Data System (ADS)
Churyumov, Klim; Kleshchonok, Valery; Mozgova, Alyona
Rosetta, a European space vehicle was head to the icy nucleus of the short period comet 67P/Churyumov-Gerasimenko on 2 March, 2004 from cosmodrome Kouru. On 20 Jan. 2014, Rosetta after 10 years of flight and 31-month sleep has been woke up succesfully and now will approche to the icy nucleus of comet Churyumov-Gerasimenko and pass away into orbit around the cometary nucleus. In November 2014 the Philae probe will be sent from Rosetta on the nucleus of comet 67P to study the relict matter of the Solar system. Comet 67P was discovered by the Kyiv astronomers Klim Churyumov and Svitlana Gerasimenko on 22 October 1969 on the five photographic plates exponed with the help of 50-cm Maksutov’s reflector of the Alma-Ata Astrophysical Institute on 9, 11 and 21 Sept. 1969. First 5 exact positions of comet were sent to Dr Brian Marsden. Dr B.Marsden showed it was new comet. The comet had an apparent magnitude of 13 and a faint tail about 1 arcmin in length at position angle 280 degrees. The astronomer Nikolay Belyaev from Saint-Petersbourg calculated that the comet followed an elliptical orbit. In 1982 it had the close encounter with the Earth at 0.3910 A.U. On the basis of the observations of comet 67P obtained in Nizhny Arkhyz with the help of the 6- BTA reflector of SAO of RAS some physical parameters of its comet plasma tail (coefficients of diffusion Dp(parallel) , Ds(perpendicular) and induction of magnetic field B) were determined. Other results of exploration of comet 67P (its polarisation, spectral observations, the light curve and morphology) in different apparitions are discussed.
SU-D-19A-04: Parameter Characterization of Electron Beam Monte Carlo Phase Space of TrueBeam Linacs
Rodrigues, A; Yin, F; Wu, Q; Sawkey, D
2014-06-01
Purpose: For TrueBeam Monte Carlo simulations, Varian does not distribute linac head geometry and material compositions, instead providing a phase space file (PSF) for the users. The PSF has a finite number of particle histories and can have very large file size, yet still contains inherent statistical noises. The purpose of this study is to characterize the electron beam PSF with parameters. Methods: The PSF is a snapshot of all particles' information at a given plane above jaws including type, energy, position, and directions. This study utilized a preliminary TrueBeam PSF, of which validation against measurement is presented in another study. To characterize the PSF, distributions of energy, position, and direction of all particles are analyzed as piece-wise parameterized functions of radius and polar angle. Subsequently, a pseudo PSF was generated based on this characterization. Validation was assessed by directly comparing the true and pseudo PSFs, and by using both PSFs in the down-stream MC simulations (BEAMnrc/DOSXYZnrc) and comparing dose distributions for 3 applicators at 15 MeV. Statistical uncertainty of 4% was limited by the number of histories in the original PSF. Percent depth dose (PDD) and orthogonal (PRF) profiles at various depths were evaluated. Results: Preliminary results showed that this PSF parameterization was accurate, with no visible differences between original and pseudo PSFs except at the edge (6 cm off axis), which did not impact dose distributions in phantom. PDD differences were within 1 mm for R{sub 7} {sub 0}, R{sub 5} {sub 0}, R{sub 3} {sub 0}, and R{sub 1} {sub 0}, and PRF field size and penumbras were within 2 mm. Conclusion: A PSF can be successfully characterized by distributions for energy, position, and direction as parameterized functions of radius and polar angles; this facilitates generating sufficient particles at any statistical precision. Analyses for all other electron energies are under way and results will be
NASA Technical Reports Server (NTRS)
Sepehry-Fard, F.; Coulthard, Maurice H.
1995-01-01
The objective of this publication is to introduce the enhancement methods for the overall reliability and maintainability methods of assessment on the International Space Station. It is essential that the process to predict the values of the maintenance time dependent variable parameters such as mean time between failure (MTBF) over time do not in themselves generate uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. Furthermore, the very acute problems of micrometeorite, Cosmic rays, flares, atomic oxygen, ionization effects, orbital plumes and all the other factors that differentiate maintainable space operations from non-maintainable space operations and/or ground operations must be accounted for. Therefore, these parameters need be subjected to a special and complex process. Since reliability and maintainability strongly depend on the operating conditions that are encountered during the entire life of the International Space Station, it is important that such conditions are accurately identified at the beginning of the logistics support requirements process. Environmental conditions which exert a strong influence on International Space Station will be discussed in this report. Concurrent (combined) space environments may be more detrimental to the reliability and maintainability of the International Space Station than the effects of a single environment. In characterizing the logistics support requirements process, the developed design/test criteria must consider both the single and/or combined environments in anticipation of providing hardware capability to withstand the hazards of the International Space Station profile. The effects of the combined environments (typical) in a matrix relationship on the International Space Station will be shown. The combinations of the environments where the total effect is more damaging than the cumulative effects of the environments acting singly, may include a
NASA Astrophysics Data System (ADS)
Reynerson, Charles Martin
This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Frehlich, Rod G.
2007-01-01
The global measurement of vertical profiles of horizontal vector winds has been highly desired for many years by NASA, NOAA and the Integrated Program Office (IPO) implementing the National Polar-orbiting Operational Environmental Satellite Systems (NPOESS). Recently the global wind mission was one of 15 missions recommended to NASA by the first ever NRC Earth Sciences Decadal Survey. Since before 1978, the most promising method to make this space-based measurement has been pulsed Doppler lidar. The favored technology and technique has evolved over the years from obtaining line-of-sight (LOS) wind profiles from a single laser shot using pulsed CO2 gas laser technology to the current plans to use both a coherent-detection and direct-detection pulsed Doppler wind lidar systems with each lidar employing multiple shot accumulation to produce an LOS wind profile. The idea of using two lidars (hybrid concept) entails coherent detection using the NASA LaRC-developed pulsed 2-micron solid state laser technology, and direct detection using pulsed Nd:YAG laser technology tripled in frequency to 355 nm wavelength.
NASA Astrophysics Data System (ADS)
Sato, T.; Mizoguchi, A.; Kasai, Y.; Kanamori, H.
2009-12-01
A new generation of sub-millimeter-wave receivers employing sensitive SIS (Superconductor Insulator Superconductor) detector technology will provide new opportunities for precise remote sensing measurements of minor constituents in the earth and planetary atmosphere.Superconducting Sub-Millimeter-Wave Limb-Emission Sounder (SMILES) was designed to be onboard the Japanese Experiment Module (JEM) on the International Space Station (ISS) as a collaboration project of National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA).SMILES in Transfer Vehicle (HTV) plan to launch in September 11 2009 by Japanese H-IIB rocket. JEM/SMILES will allow to observe the atmospheric species such as O3, H35Cl, H37Cl, ClO, BrO, HOCl, HO2, H2O2, HNO3 and CH3CN, Ozone isotope species, and water vapor with the precisions in a few to several tens percents [1] in the altitude region upper troposphere (about 8km in mid-latitude) and the mesosphere (about 90km in mid-latitude). In this paper, laboratory measurement of the pressure broadening parameter (γ) of Hydrogen peroxide (H2O2) at JKa,Kc = 201,19 - 192,17 rotational transition (625.044 GHz) will be presented. This is one of the target transitions of JEM/SMILES observation. γ of H2O2 in sub-millimeter-wave region was measured for the first time. The measurement was carried out using a sub-millimeter-wave absorption spectrometric system in Tokyo Institute of Technology.The radiation source from a backward wave oscillator (BWO) was phase-locked to the harmonics of a synthesized sweeper with two-step phase lock loop. The BWO source frequency was modulated with the modulation frequency of 51 kHz. H2O2 sample was prerpared by distillation of commercial available 30% solution. The pressures of sample and buffer gas (N2 and O2) were controlled by a mass flow meter and monitored by two Baratron monitors in the cell. From the observed profiles of the spectrum, the pressure broadening line
NASA Technical Reports Server (NTRS)
Haines, R. F.
1985-01-01
The question of the merits of placing windows on proposed future space stations is addressed. The use of windows for human visual capabilities is compared to using closed circuit television. Placement and field of view, as well as the number of windows is discussed.
NASA Astrophysics Data System (ADS)
Fan, Ya-Ming; Zhang, Xing-Wang; You, Jing-Bi; Ying, Jie; Tan, Hai-Ren; Chen, Nuo-Fu
2009-05-01
Cubic boron nitride (c-BN) films were deposited on Si(001) substrates in an ion beam assisted deposition (IBAD) system under various conditions, and the growth parameter spaces and optical properties of c-BN films have been investigated systematically. The results indicate that suitable ion bombardment is necessary for the growth of c-BN films, and a well defined parameter space can be established by using the P/a-parameter. The refractive index of BN films keeps a constant of 1.8 for the c-BN content lower than 50%, while for c-BN films with higher cubic phase the refractive index increases with the c-BN content from 1.8 at χc = 50% to 2.1 at χc = 90%. Furthermore, the relationship between n and ρ for BN films can be described by the Anderson-Schreiber equation, and the overlap field parameter γ is determined to be 2.05.
Wu, Yao; Dai, Xiaodong; Huang, Niu; Zhao, Lifeng
2013-06-01
In force field parameter development using ab initio potential energy surfaces (PES) as target data, an important but often neglected matter is the lack of a weighting scheme with optimal discrimination power to fit the target data. Here, we developed a novel partition function-based weighting scheme, which not only fits the target potential energies exponentially like the general Boltzmann weighting method, but also reduces the effect of fitting errors leading to overfitting. The van der Waals (vdW) parameters of benzene and propane were reparameterized by using the new weighting scheme to fit the high-level ab initio PESs probed by a water molecule in global configurational space. The molecular simulation results indicate that the newly derived parameters are capable of reproducing experimental properties in a broader range of temperatures, which supports the partition function-based weighting scheme. Our simulation results also suggest that structural properties are more sensitive to vdW parameters than partial atomic charge parameters in these systems although the electrostatic interactions are still important in energetic properties. As no prerequisite conditions are required, the partition function-based weighting method may be applied in developing any types of force field parameters.
NASA Technical Reports Server (NTRS)
Sepehry-Fard, F.; Coulthard, Maurice H.
1995-01-01
The process of predicting the values of maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability and maintenance support costs. There are two types of parameters in the logistics and maintenance world: a. Fixed; b. Variable Fixed parameters, such as cost per man hour, are relatively easy to predict and forecast. These parameters normally follow a linear path and they do not change randomly. However, the variable parameters subject to the study in this report such as MTBF do not follow a linear path and they normally fall within the distribution curves which are discussed in this publication. The very challenging task then becomes the utilization of statistical techniques to accurately forecast the future non-linear time dependent variable arisings and events with a high confidence level. This, in turn, shall translate in tremendous cost savings and improved availability all around.
NASA Technical Reports Server (NTRS)
Hagan, Ronald Donald; Norcross, Jason; DeWitt, John; Lee, Stuart M.; McCleary, Frank; Edwards, W. Brent
2006-01-01
Both motorized (T-M) and non-motorized (T-NM) treadmill locomotion are used on the International Space Station (ISS) as countermeasures to the deleterious effects of prolonged weightlessness. However, the ground reaction forces (GRF) and gait parameters of these exercise modes have not been examined. The purpose of this study was to determine if differences in GRF and gait parameters exist while walking (1.34 m/s) and running (3.13 m/s) on T-M and T-NM. Dissimilar GRF and gait parameters suggest that T-M and T-NM locomotion may elicit different physiologic effects. T-NM may result in a reduced stimulus to bone formation due to a lower LR, but an increased energy cost as a result of shorter, more frequent strides. Therefore, the usage of each mode should depend upon the desired training stimulus.
NASA Astrophysics Data System (ADS)
Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang
2016-06-01
In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.
NASA Astrophysics Data System (ADS)
Molev, Fedor; Konyakhin, Igor; Ezhova, Kseniia
2014-05-01
The main advantages and disadvantages of using autoreflection and autocollimation schemes for constructing the measuring channel, which is designed to control the relative position of the elements of the optical system Space Telescope are described in this paper. Results of modeling in the Zemax software complex are given. Methods of determining the autocollimation images coordinates for calculate the error relative position of the optical system are described.
NASA Technical Reports Server (NTRS)
Papadopoulos, Michael; Tolson, Robert H.
1993-01-01
The Modal Identification Experiment (MIE) is a proposed experiment to define the dynamic characteristics of Space Station Freedom. Previous studies emphasized free-decay modal identification. The feasibility of using a forced response method (Observer/Kalman Filter Identification (OKID)) is addressed. The interest in using OKID is to determine the input mode shape matrix which can be used for controller design or control-structure interaction analysis, and investigate if forced response methods may aid in separating closely spaced modes. A model of the SC-7 configuration of Space Station Freedom was excited using simulated control system thrusters to obtain acceleration output. It is shown that an 'optimum' number of outputs exists for OKID. To recover global mode shapes, a modified method called Global-Local OKID was developed. This study shows that using data from a long forced response followed by free-decay leads to the 'best' modal identification. Twelve out of the thirteen target modes were identified for such an output.
De Michele, C; Accatino, F; Vezzoli, R; Scholes, R J
2011-11-21
The tree-grass co-existence in savannas involves multiple and sometimes connected biogeophysical conditions. The savanna domain, its boundaries, and transitions (gradual or abrupt) to other vegetation types (i.e., grassland or forest) are fundamental for the management of ecosystems and for preserving the biodiversity in present conditions and in future changing scenarios. Here we investigate the savanna domain within grazers-fire and browsers-fire parameter planes through a simple ecohydrological model of tree-grass-soil water dynamics. Stability maps allow to identify savanna domains and to show the behavior of vegetation under increasing pressure of grazing and browsing. Stability maps shed light on the causes behind possible vegetation abrupt transitions (e.g., forest collapse and bush encroachment). An application to 15 African savannas sites is presented and discussed with the support of a local sensitivity analysis of the model's parameters. PMID:21875600
NASA Astrophysics Data System (ADS)
Swain, Debadatta; Kishore Kumar, K.; John, Sherine Rachel; Ramkumar, Geetha
The middle atmospheric dynamics is modulated strongly by long period waves and oscilla-tions apart from short period gravity waves, tides and planetary scale waves. Owing to the importance of these phenomena in the middle atmosphere, several studies have been carried out globally using in situ measurements and models to identify and investigate the waves and oscillations as well as their forcing mechanisms. In the present work we attempt to investigate the long period oscillations in winds, temperature and ozone simultaneously over a low lati-tude station, Trivandrum (8.5o N, 77o E) using a combination of ground and satellite based observations. The long term measurements of various atmospheric parameters like winds from radiosonde/rocket flights, atmospheric radars (under ISRO's MIDAS campaign) along with temperature and ozone from SABER on TIMED satellite has for the first time enabled the simultaneous investigation of the chemistry, dynamics and thermal structure of the middle at-mosphere over this location. The study revealed several interesting features of stratospheric and mesospheric long period oscillations bringing out the salient features of QBO and SAO in particular. It was observed that stratospheric and mesospheric QBO and SAO in temperature and winds are exactly in opposite phases. The peaking altitudes of stratospheric and meso-spheric SAO in case of the three parameters are also different. The comprehensive analysis of the long period oscillations in winds, temperature and ozone simultaneously is one of the first of its kind over this location involving the three parameters contributing to middle atmospheric dynamics.
NASA Technical Reports Server (NTRS)
Sullins, W. R., Jr.; Rogers, J. G.
1974-01-01
The kinds of activities that are attractive to man in long duration isolation are delineated considering meaningful work as major activity and a choice of leisure/living provisions. The dependent variables are the relative distribution between various work, leisure, and living activities where external constraints on the subject's freedom of choice are minimized. Results indicate that an average of at least five hours per day of significant meaningful work is required for satisfactory enjoyment of the situation; most other parameters of the situation have less effects on overall performance and satisfaction
NASA Technical Reports Server (NTRS)
Judy, M. M.
1981-01-01
Values of mean trabecular spacing computed from optical diffraction patterns of 1:1 X-ray micrographs of tibial metaphysis and those obtained by standard image digitization techniques show excellent agreement. Upper limits on values of mean trabecular orientation deduced from diffraction patterns and the images are also in excellent agreement. Values of the ratio of mean trabecular spatial density in a region of 300 micrometers distal to the downwardly directed convexity in the cartilage growth plate to the value adjacent to the plate determined for flight animals sacrificed at recovery were significantly smaller than values for vivarium control animals. No significant differences were found in proximal regions. No significant differences in mean trabecular orientation were detected. Decreased values of trabecular spatial density and of both obsteoblastic activity and trabecular cross-sectional area noted in collateral researches suggest decreased modeling activity under weightlessness.
NASA Astrophysics Data System (ADS)
Bezruchko, K. V.; Davidov, A. O.; Katorgina, J. G.; Logvin, V. M.; Kharchenko, A. A.
2013-11-01
The review and analysis of several mathematical methods for prediction of electrochemical accumulator parameters are provided in the article: according to the mathematical expectation, the latest entry, a statistical prediction, Box-Jenkins model, decomposition Volta, ARMA, ARIMA and Kalman filter. The results of these methods for prediction of the electrochemical battery 22НКГ-4CK characteristics which is a part of spacecraft power plant of the “Mikrosputnik” type are given. Possible usage of these methods for long prediction of electrochemical accumulator characteristics on space-rocket objects power plants is showed.
Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC
2010-08-26
We present a summary of recent results obtained from a scan of the 19-dimensional parameter space of the pMSSM and its implications for dark matter searches. We have generated a large set of points in parameter space (which we call 'models') for the 19-parameter CP-conserving pMSSM, where MFV has been assumed. We subjected these models to numerous experimental and theoretical constraints to obtain a set of {approx}68 K models which are consistent with existing data. We attempted to be somewhat conservative in our implementation of these constraints; in particular we only demanded that the relic density of the LSP not be greater than the measured value of {Omega}H{sup 2} for non-baryonic dark matter, rather than assuming that the LSP must account for the entire observed relic density. Examining the properties of the neutralinos in these models, we find that many are relatively pure gauge eigenstates with Higgsinos being the most common, followed by Winos. The relative prevalence of Higgsino and Wino LSPs leads many of our models to have a chargino as nLSP, often with a relatively small mass splitting between this nLSP and the LSP; this has important consequences in both collider and astroparticle phenomenology. We find that, in general, the LSP in our models provides a relatively small ({approx} 4%) contribution to the dark matter, however there is a long tail to this distribution and a substantial number of models for which the LSP makes up all or most of the dark matter. Typically these neutralinos are mostly Binos. Examining the signatures of our models in direct and indirect dark matter detection experiments, we find a wide range of signatures for both cases. In particular, we find a much larger range of WIMP-nucleon cross sections than is found in any particular model of SUSY-breaking. As these cross sections also enter the regions of parameter space suggested by non-SUSY models, it appears that the discovery of WIMPs in direct detection experiments might not
Jacobson, Liam C; Kirby, Robert M; Molinero, Valeria
2014-07-17
Coarse-grained models are becoming increasingly popular due to their ability to access time and length scales that are prohibitively expensive with atomistic models. However, as a result of decreasing the degrees of freedom, coarse-grained models often have diminished accuracy, representability, and transferability compared with their finer grained counterparts. Uncertainty quantification (UQ) can help alleviate this challenge by providing an efficient and accurate method to evaluate the effect of model parameters on the properties of the system. This method is useful in finding parameter sets that fit the model to several experimental properties simultaneously. In this work we use UQ as a tool for the evaluation and optimization of a coarse-grained model. We efficiently sample the five-dimensional parameter space of the coarse-grained monatomic water (mW) model to determine what parameter sets best reproduce experimental thermodynamic, structural and dynamical properties of water. Generalized polynomial chaos (gPC) was used to reconstruct the analytical surfaces of density, enthalpy of vaporization, radial and angular distribution functions, and diffusivity of liquid water as a function of the input parameters. With these surfaces, we evaluated the sensitivity of these properties to perturbations of the model input parameters and the accuracy and representability of the coarse-grained models. In particular, we investigated what is the optimum length scale of the water-water interactions needed to reproduce the properties of liquid water with a monatomic model with two- and three-body interactions. We found that there is an optimum cutoff length of 4.3 Å, barely longer than the size of the first neighbor shell in water. As cutoffs deviate from this optimum value, the ability of the model to simultaneously reproduce the structure and thermodynamics is severely diminished.
NASA Astrophysics Data System (ADS)
Namysłowska-Wilczyńska, Barbara
2016-04-01
. These data were subjected to spatial analyses using statistical and geostatistical methods. The evaluation of basic statistics of the investigated quality parameters, including their histograms of distributions, scatter diagrams between these parameters and also correlation coefficients r were presented in this article. The directional semivariogram function and the ordinary (block) kriging procedure were used to build the 3D geostatistical model. The geostatistical parameters of the theoretical models of directional semivariograms of the studied water quality parameters, calculated along the time interval and along the wells depth (taking into account the terrain elevation), were used in the ordinary (block) kriging estimation. The obtained results of estimation, i.e. block diagrams allowed to determine the levels of increased values Z* of studied underground water quality parameters. Analysis of the variability in the selected quality parameters of underground water for an analyzed area in Klodzko water intake was enriched by referring to the results of geostatistical studies carried out for underground water quality parameters and also for a treated water and in Klodzko water supply system (iron Fe, manganese Mn, ammonium ion NH4+ contents), discussed in earlier works. Spatial and time variation in the latter-mentioned parameters was analysed on the basis of the data (2007÷2011, 2008÷2011). Generally, the behaviour of the underground water quality parameters has been found to vary in space and time. Thanks to the spatial analyses of the variation in the quality parameters in the Kłodzko underground water intake area some regularities (trends) in the variation in water quality have been identified.
Newton, W. G.; Gearheart, M.; Li Baoan
2013-01-15
We present a systematic survey of the range of predictions of the neutron star inner crust composition, crust-core transition densities and pressures, and density range of the nuclear 'pasta' phases at the bottom of the crust provided by the compressible liquid drop model in light of the current experimental and theoretical constraints on model parameters. Using a Skyrme-like model for nuclear matter, we construct baseline sequences of crust models by consistently varying the density dependence of the bulk symmetry energy at nuclear saturation density, L, under two conditions: (1) that the magnitude of the symmetry energy at saturation density J is held constant, and (2) J correlates with L under the constraint that the pure neutron matter (PNM) equation of state (EoS) satisfies the results of ab initio calculations at low densities. Such baseline crust models facilitate consistent exploration of the L dependence of crustal properties. The remaining surface energy and symmetric nuclear matter parameters are systematically varied around the baseline, and different functional forms of the PNM EoS at sub-saturation densities implemented, to estimate theoretical 'error bars' for the baseline predictions. Inner crust composition and transition densities are shown to be most sensitive to the surface energy at very low proton fractions and to the behavior of the sub-saturation PNM EoS. Recent calculations of the energies of neutron drops suggest that the low-proton-fraction surface energy might be higher than predicted in Skyrme-like models, which our study suggests may result in a greatly reduced volume of pasta in the crust than conventionally predicted.
Zhou, Xiangrong; Hirano, Yasushi; Tachibana, Rie; Hara, Takeshi; Kido, Shoji; Fujita, Hiroshi
2013-01-01
Minimum description length (MDL) based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs). However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right) lungs and 50 cases of livers, (left and right) kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests. PMID:23861721
Tian, Yuan; Higgs, Jessica; Li, Ailin; Barney, Brandon; Austin, Daniel E
2014-03-01
A broad effort is underway to make radiofrequency (RF) ion trap mass spectrometers small enough for portable chemical analysis. A variety of trap geometries and fabrication approaches are under development from several research groups. A common issue is the reduced trapping capacity in smaller traps, with the associated reduction in sensitivity. This article explores the key variables that scale with trap size including RF voltage, frequency, electrical capacitance, power and pseudopotential well depth. High-field electric breakdown constrains the maximum RF voltages used in smaller ion traps. Simulations show the effects of space charge and the limits of trapping capacity as a function of trap dimensions for cylindrical ion traps down to the micrometer level. RF amplitudes that scale as the 1/3, 1/2 and 2/3 power of trap radius, r0, were studied. At a fixed level of performance, the number of analyzable ions scales as r0(n), with n ranging from 1.55 to 1.75 depending on the choice of voltage scaling. The implications for miniaturized ion trap mass spectrometry are discussed. PMID:24619549
NASA Astrophysics Data System (ADS)
Leaci, Paola; Prix, Reinhard
2015-05-01
We derive simple analytic expressions for the (coherent and semicoherent) phase metrics of continuous-wave sources in low-eccentricity binary systems for the two regimes of long and short segments compared to the orbital period. The resulting expressions correct and extend previous results found in the literature. We present results of extensive Monte Carlo studies comparing metric mismatch predictions against the measured loss of detection statistics for binary parameter offsets. The agreement is generally found to be within ˜10 %- 30 % . For an application of the metric template expressions, we estimate the optimal achievable sensitivity of an Einstein@Home directed search for Scorpius X-1, under the assumption of sufficiently small spin wandering. We find that such a search, using data from the upcoming advanced detectors, would be able to beat the torque-balance level [R. V. Wagoner, Astrophys. J. 278, 345 (1984); L. Bildsten, Astrophys. J. 501, L89 (1998).] up to a frequency of ˜500 - 600 Hz , if orbital eccentricity is well constrained, and up to a frequency of ˜160 - 200 Hz for more conservative assumptions about the uncertainty on orbital eccentricity.
NASA Astrophysics Data System (ADS)
Andrade, Henrique; Alcoforado, Maria-João; Oliveira, Sandra
2011-09-01
We aim to understand the relationship between people's declared bioclimatic comfort, their personal characteristics (age, origin, clothing, activity and motivation, etc.) and the atmospheric conditions. To attain this goal, questionnaire surveys were made concurrently with weather measurements (air temperature, relative humidity, solar and long-wave radiation and wind speed) in two open leisure areas of Lisbon (Portugal), during the years 2006 and 2007. We analysed the desire expressed by the interviewees to decrease, maintain or increase the values of air temperature and wind speed, in order to improve their level of comfort. Multiple logistic regression was used to analyse the quantitative relation between preference votes and environmental and personal parameters. The preference for a different temperature depends on the season and is strongly associated with wind speed. Furthermore, a general decrease of discomfort with increasing age was also found. Most people declared a preference for lower wind speed in all seasons; the perception of wind shows significant differences depending on gender, with women declaring a lower level of comfort with higher wind speed. It was also found that the tolerance of warmer conditions is higher than of cooler conditions, and that adaptive strategies are undertaken by people to improve their level of comfort outdoors.
Andrade, Henrique; Alcoforado, Maria-João; Oliveira, Sandra
2011-09-01
We aim to understand the relationship between people's declared bioclimatic comfort, their personal characteristics (age, origin, clothing, activity and motivation, etc.) and the atmospheric conditions. To attain this goal, questionnaire surveys were made concurrently with weather measurements (air temperature, relative humidity, solar and long-wave radiation and wind speed) in two open leisure areas of Lisbon (Portugal), during the years 2006 and 2007. We analysed the desire expressed by the interviewees to decrease, maintain or increase the values of air temperature and wind speed, in order to improve their level of comfort. Multiple logistic regression was used to analyse the quantitative relation between preference votes and environmental and personal parameters. The preference for a different temperature depends on the season and is strongly associated with wind speed. Furthermore, a general decrease of discomfort with increasing age was also found. Most people declared a preference for lower wind speed in all seasons; the perception of wind shows significant differences depending on gender, with women declaring a lower level of comfort with higher wind speed. It was also found that the tolerance of warmer conditions is higher than of cooler conditions, and that adaptive strategies are undertaken by people to improve their level of comfort outdoors.
NASA Technical Reports Server (NTRS)
Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)
2002-01-01
Protein crystals are grown in microgravity experiments inside the Space Shuttle during orbit. Such crystals are basically grown in a five-component system containing a salt, buffer, polymer, organic and water. During these experiments, a number of different polymeric containment materials must be compatible with up to hundreds of different PCG solutions in various concentrations for durations up to 180 days. When such compatibility experiments are performed at NASA/MSFC (Marshall Space Flight Center) simultaneously on containment material samples immersed in various solutions in vials, the samples are rather small out of necessity. DMA4 modulus was often used as the primary screening parameter for such small samples as a pass/fail criterion for incompatibility issues. In particular, the TA Instruments DMA 2980 film tension clamp was used to test rubber O-rings as small in I.D. as 0.091 in. by cutting through the cross-section at one place, then clamping the stretched linear cord stock at each end. The film tension clamp was also used to successfully test short length samples of medical/surgical grade tubing with an O.D. of 0.125 in.
NASA Technical Reports Server (NTRS)
Alexander, M. B.
1978-01-01
Continuous horizontal wind speed measurements were processed and classified as a function of tower level (10, 18, 60, and 150 meters) and period of reference day, month, season: winter (October through March) and summer (April through September), and annual. Tabulations were made of the daily maximum horizontal wind speed, time of ocurrence, and five associated parameters: mean horizontal wind speed, maximum vertical gusts (i.e., updraft and downdraft), and mean and instantaneous directions. Analyses using these data included means, extremes, standard deviations, and frequency distributions. Comparisons of intensity of maximum horizontal wind speeds determined in this year of data are made with maximum values recorded at Kennedy Space Center during another non-hurricane-occurrence year (1967) and with values during 1966 through 1972 when six hurricanes affected the area after the Ground Winds Tower facility became operational. Wind flow in the lowest 150 meters of the atmosphere was measured for the identification of hazards involved in wind shear encounter relative to ascent and descent of the space shuttle and conventional aircraft.
NASA Technical Reports Server (NTRS)
Rhee, Ihnseok; Speyer, Jason L.
1990-01-01
A game theoretic controller is developed for a linear time-invariant system with parameter uncertainties in system and input matrices. The input-output decomposition modeling for the plant uncertainty is adopted. The uncertain dynamic system is represented as an internal feedback loop in which the system is assumed forced by fictitious disturbance caused by the parameter uncertainty. By considering the input and the fictitious disturbance as two noncooperative players, a differential game problem is constructed. It is shown that the resulting time invariant controller stabilizes the uncertain system for a prescribed uncertainty bound. This game theoretic controller is applied to the momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Inclusion of the external disturbance torque to the design procedure results in a dynamical feedback controller which consists of conventional PID control and cyclic disturbance rejection filter. It is shown that the game theoretic design, comparing to the LQR design or pole placement design, improves the stability robustness with respect to inertia variations.
NASA Astrophysics Data System (ADS)
Makarova, L.; Shirochkov, A.
So far the solar wind energy contribution to energetic balance of the middle atmosphere was ignored in any climatic research. However the solar wind is a permanent source of electromagnetic energy constantly supplied to the near-Earth space and its role is evaluated properly in magnetospheric and ionospheric (to lesser extent) studies. We made extensive studies of the direct solar wind influence on the thermodynamic features of the middle atmosphere by analyzing data of the rocket and balloon sounding. Data of many stations covering latitudinal belt 80o N-55o N and 90o S-65o S- were used. It was found that the stratospheric temperature closely correlated with the solar wind energy expressed as the subsolar distance between the Earth and magnetopause. The best coupling between these two parameters (r>0,8) was obtained for altitudes 22-26 km with decreasing (but meaningful) coupling up and dawn from these heights. Similar dependence between this space parameter and ozone density in its stratospheric maximum was obtained also. As a very important factor a strong (r=0,78) coupling between magnetopause position and magnitude of atmospheric electric field measured by high-altitude balloons above South P leo Station must be mentioned. All these findings allowed us to propose concept of the global electric circuit as a physical mechanism for explanation of a direct coupling between the solar wind and the middle atmosphere. We suggest a new, modified version of the circuit where an external Electro-motive Force generator driven by the solar wind energy is located at dayside magnetopause. The passive elements of this circuit are the ionospheric Elayer (external element of previous version of the- circuit), stratospheric conducting layer of heavy ions (h=20-25 km) and conducting layer of the Earth surface. In this configuration a previous scheme of the global electric circuit is a part of the proposed version of it. The changes of stratospheric temperature could be explained
NASA Technical Reports Server (NTRS)
Deal, Don E.
1991-01-01
The chief goals of the summer project have been twofold - first, for my host group and myself to learn as much of the working details of Taguchi analysis as possible in the time allotted, and, secondly, to apply the methodology to a design problem with the intention of establishing a preliminary set of near-optimal (in the sense of producing a desired response) design parameter values from among a large number of candidate factor combinations. The selected problem is concerned with determining design factor settings for an automated approach program which is to have the capability of guiding the Shuttle into the docking port of the Space Station under controlled conditions so as to meet and/or optimize certain target criteria. The candidate design parameters under study were glide path (i.e., approach) angle, path intercept and approach gains, and minimum impulse bit mode (a parameter which defines how Shuttle jets shall be fired). Several performance criteria were of concern: terminal relative velocity at the instant the two spacecraft are mated; docking offset; number of Shuttle jet firings in certain specified directions (of interest due to possible plume impingement on the Station's solar arrays), and total RCS (a measure of the energy expended in performing the approach/docking maneuver). In the material discussed here, we have focused on single performance criteria - total RCS. An analysis of the possibility of employing a multiobjective function composed of a weighted sum of the various individual criteria has been undertaken, but is, at this writing, incomplete. Results from the Taguchi statistical analysis indicate that only three of the original four posited factors are significant in affecting RCS response. A comparison of model simulation output (via Monte Carlo) with predictions based on estimated factor effects inferred through the Taguchi experiment array data suggested acceptable or close agreement between the two except at the predicted optimum
Pini, Núbia Inocencya Pavesi; Marchi, Luciana Manzotti De; Pascotto, Renata Corrêa
2015-01-01
Maxillary lateral incisor agenesis (MLIA) is a condition that affects both dental esthetics and function in young patients, and represents an important challenge for clinicians. Although several treatment options are available, the mesial repositioning of the canines followed by teeth recontouring into lateral incisors; or space opening/maintenance followed by implant placement have recently emerged as two important treatment approaches. In this article, the current and latest literature has been reviewed in order to summarize the functional and esthetic outcomes obtained with these two forms of treatment of MLIA patients in recent years. Indications, clinical limitations and the most important parameters to achieve the best possible results with each treatment modality are also discussed. Within the limitations of this review, it is not possible to assert at this point in time that one treatment approach is more advantageous than the other. Long-term followup studies comparing the existing treatment options are still lacking in the literature, and they are necessary to shed some light on the issue. It is possible, however, to state that adequate multidisciplinary diagnosis and planning are imperative to define the treatment option that will provide the best individual results for patients with MLIA. PMID:25646137
NASA Technical Reports Server (NTRS)
Pliutau, Denis; Prasad, Narasimha S.
2012-01-01
Simulation studies to optimize sensing of CO2 and O2 from space are described. Uncertainties in line-by-line calculations unaccounted for in previous studies identified. Multivariate methods are employed for measurement wavelengths selection. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) recommended by NRC Decadal Survey has a stringent accuracy requirements of 0.5% or better in XCO2 retrievals. NASA LaRC and its partners are investigating the use of the 1.57 m band of CO2 and the 1.26-1.27 m band of oxygen for XCO2 measurements. As part of these efforts, we are carrying out simulation studies using a lidar modeling framework being developed at NASA LaRC to predict the performance of our proposed ASCENDS mission implementation [1]. Our study is aimed at predicting the sources and magnitudes of errors anticipated in XCO2 retrievals for further error minimization through the selection of optimum excitation parameters and development of better retrieval methods.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1976-01-01
In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.
NASA Technical Reports Server (NTRS)
Roth, E. A.
1971-01-01
Motion in the general gravity field is described mathematically. A covariance analysis, based on two simple models, is presented. Two drag-free space probes were considered, for which the orbital elements are given.
NASA Technical Reports Server (NTRS)
Glasser, M. E.; Rundel, R. D.
1978-01-01
A method for formulating these changes into the model input parameters using a preprocessor program run on a programed data processor was implemented. The results indicate that any changes in the input parameters are small enough to be negligible in comparison to meteorological inputs and the limitations of the model and that such changes will not substantially increase the number of meteorological cases for which the model will predict surface hydrogen chloride concentrations exceeding public safety levels.
NASA Astrophysics Data System (ADS)
Baevsky, Roman M.; Chernikova, Anna G.; Funtova, Irina I.; Tank, Jens
2011-12-01
Optimization of the cardiovascular system under conditions of long term space flight is provided by individual changes of autonomic cardiovascular control. Heart rate variability (HRV) analysis is an easy to use method under these extreme conditions. We tested the hypothesis that individual HRV analysis provides important information for crew health monitoring. HRV data from 14 Russian cosmonauts measured during long term space flights are presented (two times before and after flight, monthly in flight). HRV characteristics in the time and in the frequency domain were calculated. Predefined discriminant function equations obtained in reference groups (L1=-0.112*HR-1.006*SI-0.047*pNN50-0.086*HF; L2=0.140*HR-0.165*SI-1.293*pNN50+0.623*HF) were used to define four functional states. (1) Physiological normal, (2) prenosological, (3) premorbid and (4) pathological. Geometric mean values for the ISS cosmonauts based on L1 and L2 remained within normal ranges. A shift from the physiological normal state to the prenosological functional state during space flight was detected. The functional state assessed by HRV improved during space flight if compared to pre-flight and early post-flight functional states. Analysis of individual cosmonauts showed distinct patterns depending on the pre-flight functional state. Using the developed classification a transition process from the state of physiological normal into a prenosological state or premorbid state during different stages of space flight can be detected for individual Russian cosmonauts. Our approach to an estimation of HR regulatory pattern can be useful for prognostic purposes.
NASA Technical Reports Server (NTRS)
Sulyma, P. R.
1980-01-01
Fundamental equations and similarity definition and application are described as well as the computational steps of a computer program developed to design model nozzles for wind tunnel tests conducted to define power-on aerodynamic characteristics of the space shuttle over a range of ascent trajectory conditions. The computer code capabilities, a user's guide for the model nozzle design program, and the output format are examined. A program listing is included.
NASA Astrophysics Data System (ADS)
Yeh, C.; Chan, Y.; Lin, M.
2010-12-01
Generally, the changes of landscapes are caused by interactions among many surface processes in a long time. According to previous studies in decades, some of the surface processes such as sediment transport and fluvial erosion effects dominate landform shapes. Those two effects of dominant surface processes can be represented by diffusion and incision models, which have been expressed by mathematical forms. In this study, we're going to combine these two models of which interactions are considered simultaneously to simulate the valley evolution on the tableland. The LiDAR DTM, possessing advantages of higher resolution and getting real terrain, help us observe fine surface features and infer spatial geometric variations, lateral slope and channel width changes, without collecting multi-period aerial photographs. In addition, we chose the Linkou Tableland in Taiwan as our study area because it has some characteristics such as flat terrain, horizontal and simple strata, and homogeneous composition of gravel to simplify assumptions in our model. The most important task in this study, however, is how to calibrate the parameters being included the model . These parameters, including diffusion coefficient (κ), erosion coefficient (λ), and two fitted parameters (m and n, related with drainage area and local slope respectively), usually imply essential information about landform evolution. Just like decoding the secrets of evolving processes, we'll probably deduce the generation time of valleys or estimate the surface erosion rate. Finally, we will discuss three conclusions in the end of this study: 1) The influence of interactions involving diffusion and incision effects. We also discuss the sensitivity of each numerical parameter. 2) Assessing the evolution time of valleys, even at the whole tableland, from mathematical modeling. 3) Estimating the erosion rate applied to engineering in gravel stratum.
NASA Astrophysics Data System (ADS)
Tan, Ivy; Storelvmo, Trude
2015-04-01
Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters, which are also notoriously fraught with uncertainties. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has neglected to focus on improving the ability of GCMs to accurately simulate the present-day global distribution of thermodynamic phase partitioning in mixed-phase clouds. Liquid droplets and ice crystals not only influence the Earth's radiative budget and hence climate sensitivity via their contrasting optical properties, but also through the effects of their lifetimes in the atmosphere. The current study employs NCAR's CAM5.1, and uses observations of cloud phase obtained by NASA's CALIOP lidar over a 79-month period (November 2007 to June 2014) guide the accurate simulation of the global distribution of mixed-phase clouds in 20∘ latitudinal bands at the -10∘ C, -20∘C and -30∘C isotherms, by adjusting six relevant cloud microphysical tuning parameters in the CAM5.1 via Quasi-Monte Carlo sampling. Among the parameters include those that control the Wegener-Bergeron-Findeisen (WBF) timescale for the conversion of supercooled liquid droplets to ice and snow in mixed-phase clouds, the fraction of ice nuclei that nucleate ice in the atmosphere, ice crystal sedimentation speed, and wet scavenging in stratiform and convective clouds. Using a Generalized Linear Model as a variance-based sensitivity analysis, the relative contributions of each of the six parameters are quantified to gain a better understanding of the importance of their individual and two-way interaction effects on the liquid to ice proportion in mixed-phase clouds. Thus, the methodology implemented in the current study aims to search for the combination of cloud microphysical parameters in a GCM that
NASA Astrophysics Data System (ADS)
Semiletov, I. P.; Shakhova, N. E.; Pipko, I. I.; Pugach, S. P.; Charkin, A. N.; Dudarev, O. V.; Kosmach, D. A.; Nishino, S.
2013-02-01
This study aims to improve understanding of carbon cycling in the Buor-Khaya Bay (BKB) by studying the inter-annual, seasonal, and meso-scale variability of carbon stocks and related hydrological and biogeochemical parameters in the water, as well as factors controlling carbon dioxide (CO2) emission. Here we present data sets obtained on summer cruises and winter expeditions during 12 yr of investigation. Based on data analysis, we suggest that in the heterotrophic BKB area, coastal erosion and river discharge serve as predominant drivers of the organic carbon (OC) cycle, determining OC input and transformation, dynamics of nutrients, carbon stocks in the water column, and atmospheric emissions of CO2.
NASA Astrophysics Data System (ADS)
Wang, Wenyu; Xiong, Zhao-Hua; Zhao, Xin-Yan
2016-09-01
In models with vector-like quark doublets, the mass matrices of up and down type quarks are related. Precise diagonalization of the mass matrices has become an obstacle in numerical studies. In this work we first propose a diagonalization method. As its application, in the Standard Model with one vector-like quark doublet we present the quark mass spectrum and Feynman rules for the calculation of B → Xsγ. We find that i) under the constraints of the CKM matrix measurements, the mass parameters in the bilinear term are constrained to a small value by the small deviation from unitarity; ii) compared with the fourth generation extension of the Standard Model, there is an enhancement to the B → Xsγ process in the contribution of vector-like quarks, resulting in a non-decoupling effect in such models. Supported by Natural Science Foundation of China (11375001) and Talents Foundation of Education Department of Beijing
Aschwanden, Markus J.; Zhang, Jie; Liu, Kai E-mail: jzhang7@gmu.edu
2013-09-20
We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D{sub 2}), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v{sub max}) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)∝L {sup –3}, N(A)∝A {sup –2}, N(V)∝V {sup –5/3}, N(T)∝T {sup –2}, and D{sub 2} = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κ∝L {sup 0.94±0.01} and the three-parameter scaling law L∝κ T {sup 0.1}, which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs)
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Zhang, Jie; Liu, Kai
2013-09-01
We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D 2), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v max) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)vpropL -3, N(A)vpropA -2, N(V)vpropV -5/3, N(T)vpropT -2, and D 2 = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κvpropL 0.94 ± 0.01 and the three-parameter scaling law Lvpropκ T 0.1, which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs).
NASA Astrophysics Data System (ADS)
Kuznetsova, Tamara
Here we discuss parameters of the solar wind streams as consequences of activity of solar cycles 20-24. We use in the report results of our study of connection between solar wind parameters (IMF B, solar wind velocity V, concentration N, electric field Е = [V,B]) and IMF longitude angle U during period of SC20-24. We have used for the study data base of B, V, N, measured at 1 a.u. near ecliptic plane for period of 1963 - 2013.The azimuth component of IMF spiral corresponds to east-west component By (GSE) which plays important role in reconnection on magnetopause and in progress of geomagnetic activity. Resulting from the conducted study, main regularities determining relationship between solar wind parameters in each from SC20-24 have been derived. In particular, it was shown that E for By>0 has its maxima in each solar cycle at average U=80 deg, herewith the maxima for odd cycles (21, 23) are considerably larger than ones for even cycles (20, 22). Besides, the value of E for 23 cycle has the absolute maximum for By>0 among SC20-24! So, relative low value of maximum of sunspot number Wm=121 of SC23 is a parameter, which does not determine strength of solar wind electric field E and consequently geomagnetic activity. Geomagnetic index Dst(U) shows also absolute maximum of depression for cycle 23 at near the same U=80 deg. (By>0). B(U) is larger, Wm is larger for all U except interval for By>0, where B for odd cycles 21, 23 is higher than B for even ones 20,22. It should be noted that V (U) for SC with minimal Wm (20,23) has the highest maximum for By>0; maximum of V for By<0 are larger for even SC than for odd ones. V(U) for cycle 24 is less than V for the other SC for now, but V is increasing rapidly (HSS) for By<0 (as in SC22). Based on the results of the study and on spectral analysis of V and B for the interval studied (which allowed us to describe long-term parts of B,V by sinusoids), we conclude: the Sun may is going for a global minimum (near 2020) similar
NASA Technical Reports Server (NTRS)
Hsia, Wei Shen
1989-01-01
A validated technology data base is being developed in the areas of control/structures interaction, deployment dynamics, and system performance for Large Space Structures (LSS). A Ground Facility (GF), in which the dynamics and control systems being considered for LSS applications can be verified, was designed and built. One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model. The reduction of the order of a higher order control plant was addressed. The computer program was improved for the maximum entropy principle adopted in Hyland's MEOP method. The program was tested against the testing problem. It resulted in a very close match. Two methods of model reduction were examined: Wilson's model reduction method and Hyland's optimal projection (OP) method. Design of a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, the program was successful up to the finding of the Linear Quadratic Gaussian solution but not beyond. Numerical results along with computer programs which employed ORACLS are presented.
Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.
2010-01-01
Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502
Horneck, Gerda; Klaus, David M; Mancinelli, Rocco L
2010-03-01
The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis.
Achieving agility through parameter space qualification
Diegert, K.V.; Easterling, R.G.; Ashby, M.R.; Benavides, G.L.; Forsythe, C.; Jones, R.E.; Longcope, D.B.; Parratt, S.W.
1995-02-01
The A-primed (Agile Product Realization of Innovative electro-Mechanical Devices) project is defining and proving processes for agile product realization for the Department of Energy complex. Like other agile production efforts reported in the literature, A-primed uses concurrent engineering and information automation technologies to enhance information transfer. A unique aspect of our approach to agility is the qualification during development of a family of related product designs and their production processes, rather than a single design and its attendant processes. Applying engineering principles and statistical design of experiments, economies of test and analytic effort are realized for the qualification of the device family as a whole. Thus the need is minimized for test and analysis to qualify future devices from this family, thereby further reducing the design-to-production cycle time. As a measure of the success of the A-primed approach, the first design took 24 days to produce, and operated correctly on the first attempt. A flow diagram for the qualification process is presented. Guidelines are given for implementation, based on the authors experiences as members of the A-primed qualification team.
Parameter Estimation with Ignorance
NASA Astrophysics Data System (ADS)
Du, H.; Smith, L. A.
2012-04-01
Parameter estimation in nonlinear models is a common task, and one for which there is no general solution at present. In the case of linear models, the distribution of forecast errors provides a reliable guide to parameter estimation, but in nonlinear models the facts that (1) predictability may vary with location in state space, and that (2) the distribution of forecast errors is expected not to be Normal, suggests that parameter estimates based on least squares methods may be systematically biased. Parameter estimation for nonlinear systems based on variations in the accuracy of probability forecasts is considered. Empirical results for several chaotic systems (the Logistic Map, the Henon Map and the 12-D Lorenz96 flow) are presented at various noise levels and sampling rates. Selecting parameter values by minimizing Ignorance, a proper local skill score for continuous probability forecasts as a function of the parameter values is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors, the ability of the model to shadow the observations or model synchronization. As expected, it is more effective when the forecast error distributions are non-Gaussian. The goal of parameter estimation is not defined uniquely when the model class is imperfect. In short, the desired parameter values can be expected to be a function of the application for which they are determined. Parameter estimation in this imperfect model scenario is also discussed. Initial experiments suggest that our approach is also useful for identifying "best" parameter in an imperfect model as long as the notion of "best" is well defined. The information deficit, defined as the difference between the Empirical Ignorance and Implied Ignorance can be used to identify remaining forecast system inadequacy, in both perfect and imperfect model scenario.
Luigi, R
1989-06-01
Food prepared for astronauts meets various physical and biological requirements determined by living conditions in a space environment. Onboard systems, work programs, launch costs impose weight and volume limitations. For all investigated food items, the manufacturing technique must take into account all flight specific mechanical parameters. From a nutrition and sanitation standpoint, food packs must be designed to comply with certain specific effects of long term flights ans selected food items must be thoroughly safe, which requires very strict laboratory testing. The diet must also be varied, if possible it should match astronauts' personal preferences. Food preparations must be easy to use. Space food items are original applications of existing technologies: they are of very high quality.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.
1987-01-01
The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.
NASA Astrophysics Data System (ADS)
Udayashankar, Paniveni
2016-07-01
I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.
On Markov parameters in system identification
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
NASA Technical Reports Server (NTRS)
Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi
1989-01-01
The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.
NASA Technical Reports Server (NTRS)
Mohler, S. R.
1982-01-01
The matter of aging and its relation to space vehicle crewmembers undertaking prolonged space missions is addressed. The capabilities of the older space traveler to recover from bone demineralization and muscle atrophy are discussed. Certain advantages of the older person are noted, for example, a greater tolerance of monotony and repetitious activities. Additional parameters are delineated including the cardiovascular system, the reproductive system, ionizing radiation, performance, and group dynamics.
NASA Technical Reports Server (NTRS)
Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.
1998-01-01
The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.
ERIC Educational Resources Information Center
Blackman, Joan
1998-01-01
Describes one teacher's experience taking Space Discovery courses that were sponsored by the United States Space Foundation (USSF). These courses examine the history of space science, theory of orbits and rocketry, the effects of living in outer space on humans, and space weather. (DDR)
Space Service Market (Theoretical Aspect)
NASA Astrophysics Data System (ADS)
Prisniakov, V. F.; Prisniakova, L. M.
The authors propose a mathematical model of the demand and supply in the market economics and in the market of space services, in particular. A theoretical demand formula and a real curve demand are compared. The market equilibrium price is defined. The space market dynamics is studied. The calculations are carried out for the parameters which are close to the market of space services.
NASA Technical Reports Server (NTRS)
1976-01-01
The space shuttle flight system and mission profile are briefly described. Emphasis is placed on the economic and social benefits of the space transportation system. The space shuttle vehicle is described in detail.
NASA Technical Reports Server (NTRS)
Anderton, D. A.
1985-01-01
The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.
Banerjee, Robyn; Chakraborty, Santam; Nygren, Ian; Sinha, Richie
2013-04-01
Purpose: To determine whether volumes based on contours of the peritoneal space can be used instead of individual small bowel loops to predict for grade ≥3 acute small bowel toxicity in patients with rectal cancer treated with neoadjuvant chemoradiation therapy. Methods and Materials: A standardized contouring method was developed for the peritoneal space and retrospectively applied to the radiation treatment plans of 67 patients treated with neoadjuvant chemoradiation therapy for rectal cancer. Dose-volume histogram (DVH) data were extracted and analyzed against patient toxicity. Receiver operating characteristic analysis and logistic regression were carried out for both contouring methods. Results: Grade ≥3 small bowel toxicity occurred in 16% (11/67) of patients in the study. A highly significant dose-volume relationship between small bowel irradiation and acute small bowel toxicity was supported by the use of both small bowel loop and peritoneal space contouring techniques. Receiver operating characteristic analysis demonstrated that, for both contouring methods, the greatest sensitivity for predicting toxicity was associated with the volume receiving between 15 and 25 Gy. Conclusion: DVH analysis of peritoneal space volumes accurately predicts grade ≥3 small bowel toxicity in patients with rectal cancer receiving neoadjuvant chemoradiation therapy, suggesting that the contours of the peritoneal space provide a reasonable surrogate for the contours of individual small bowel loops. The study finds that a small bowel V15 less than 275 cc and a peritoneal space V15 less than 830 cc are associated with a less than 10% risk of grade ≥3 acute toxicity.
Reducing the Knowledge Tracing Space
ERIC Educational Resources Information Center
Ritter, Steven; Harris, Thomas K.; Nixon, Tristan; Dickison, Daniel; Murray, R. Charles; Towle, Brendon
2009-01-01
In Cognitive Tutors, student skill is represented by estimates of student knowledge on various knowledge components. The estimate for each knowledge component is based on a four-parameter model developed by Corbett and Anderson [Nb]. In this paper, we investigate the nature of the parameter space defined by these four parameters by modeling data…
NASA Technical Reports Server (NTRS)
1984-01-01
Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.
2002-12-01
NASA interest in colonization encompasses space tourism; space exploration; space bases in orbit, at L1, on the Moon, or on Mars; in-situ resource utilization; and planetary terraforming. Activities progressed during 2002 in areas such as Mars colonies, hoppers, and biomass; space elevators and construction; and in-situ consumables.
2002-12-01
NASA interest in colonization encompasses space tourism; space exploration; space bases in orbit, at L1, on the Moon, or on Mars; in-situ resource utilization; and planetary terraforming. Activities progressed during 2002 in areas such as Mars colonies, hoppers, and biomass; space elevators and construction; and in-situ consumables. PMID:12506926
SpaceTech—Postgraduate space education
NASA Astrophysics Data System (ADS)
de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.
2008-07-01
, Interpersonal Skills, Telecommunications, Earth Observation and Navigation. A group CCP, a major asset of this unique program, is a focused project, aimed at the formation of a credible virtual commercial space-related business. Participants exercise space systems engineering fundamentals as well as marketing and business engineering tools, with the goal of creating a financially viable business opportunity. They then present the result, in the form of an unsolicited proposal to potential investors, as well as a varied group of engineers, managers and executives from the space community. During the CCP, participants learn the ties between mission and system design and the potential return to investors. They develop an instinct for the technical concepts and which of the parameters to adjust to make their newly conceived business more effective and profitable.
Earth Rotation Parameters from DSN VLBI: 1994
NASA Technical Reports Server (NTRS)
Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.
1994-01-01
In this report, Earth Rotation Parameter (ERP) estimates ahve been obtained from an analysis of Deep Space Network (DSN) VLBI data that directly aligns its celestial and terrestrial reference frames with those of the International Earth Rotation Service (IERS).
Earth rotation parameters from DSN VLBI.
NASA Astrophysics Data System (ADS)
Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.
1989-06-01
Earth rotation parameter (ERP) estimates that directly account for tectonic plate motions and for corrections to precession and nutation have been obtained from analysis of Deep Space Network (DSN) VLBI data.
Space prospects. [european space programs
NASA Technical Reports Server (NTRS)
1980-01-01
A strategy for keeping the Common Market's space effort independent of and competitive with NASA and the space shuttle is discussed. Limited financing is the chief obstacle to this. Proposals include an outer space materials processing project and further development of the Ariane rocket. A manned space program is excluded for the foreseeable future.
NASA Technical Reports Server (NTRS)
Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.
1986-01-01
A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.
Renormalizable two-parameter piecewise isometries
NASA Astrophysics Data System (ADS)
Lowenstein, J. H.; Vivaldi, F.
2016-06-01
We exhibit two distinct renormalization scenarios for two-parameter piecewise isometries, based on 2 π / 5 rotations of a rhombus and parameter-dependent translations. Both scenarios rely on the recently established renormalizability of a one-parameter triangle map, which takes place if and only if the parameter belongs to the algebraic number field K = Q ( √{ 5 }) associated with the rotation matrix. With two parameters, features emerge which have no counterpart in the single-parameter model. In the first scenario, we show that renormalizability is no longer rigid: whereas one of the two parameters is restricted to K , the second parameter can vary continuously over a real interval without destroying self-similarity. The mechanism involves neighbouring atoms which recombine after traversing distinct return paths. We show that this phenomenon also occurs in the simpler context of Rauzy-Veech renormalization of interval exchange transformations, here regarded as parametric piecewise isometries on a real interval. We explore this analogy in some detail. In the second scenario, which involves two-parameter deformations of a three-parameter rhombus map, we exhibit a weak form of rigidity. The phase space splits into several (non-convex) invariant components, on each of which the renormalization still has a free parameter. However, the foliations of the different components are transversal in parameter space; as a result, simultaneous self-similarity of the component maps requires that both of the original parameters belong to the field K .
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The plans for utilizing reusable space shuttles which could replace almost all present expendable launch vehicles are briefly described. Many illustrations are included showing the artists' concepts of various configurations proposed for space shuttles. (PR)
NASA Astrophysics Data System (ADS)
Herbert, Dexter
1991-01-01
In this education video series, 'Liftoff to Learning', astronauts (Bruce Melnick, Thomas Akers, William Shepherd, Robert Cabana, and Richard Richards) describe the historical beginnings of space exploration from the time of Robert H. Goddard (considered the Father of Rocketry), who, in 1929, invented the first propellant rocket, the prototype of modern liquid propellant rockets, up to the modern Space Shuttles. The questions - where is space, what is space, and how do astronauts get to, stay in, and come back from space are answered through historical footage, computer graphics, and animation. The space environment effects, temperature effects, and gravitational effects on the launching, orbiting, and descent of the Shuttles are discussed. Included is historical still photos and film footage of past space programs and space vehicles.
NASA Technical Reports Server (NTRS)
Johnson, P. C., Jr.
1984-01-01
The medical aspects of space flight are briefly discussed. The problems of space adaptation syndrome, commonly known as space sickness, are described, and its cause is shown. The adaptation of the cardiovascular system to weightlessness, the problems of radiation in space, atrophy of bones and muscles, and loss of blood volume are addressed. The difficulties associated with the reexperience of gravity on return to earth are briefly considered.
ERIC Educational Resources Information Center
Butin, Dan
This paper examines the emerging trend of multipurpose class spaces, including educational trends influencing multipurpose classroom use, and key issues when using these spaces. Issues discussed include room location, technology integration, food services, acoustics, lighting, outdoor space, capacity, and storage. Design principles emphasized…
NASA Astrophysics Data System (ADS)
Hermida, Julian
2006-01-01
This chapter examines the salient characteristics of Space Law. It analyzes the origins and evolution of Space Law, its main international principles, and some current topics of interest to the scientific community: the delimitation of airspace and outer space, intellectual property, and criminal responsibility.
ERIC Educational Resources Information Center
Gordon, Douglas
2010-01-01
The concept of multipurpose spaces in schools is certainly not new. Especially in elementary schools, the combination of cafeteria and auditorium (and sometimes indoor physical activity space as well) is a well-established approach to maximizing the use of school space and a school district's budget. Nonetheless, there continue to be refinements…
Cognitive neuroscience in space.
De la Torre, Gabriel G
2014-01-01
Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond. PMID:25370373
Cognitive neuroscience in space.
De la Torre, Gabriel G
2014-07-03
Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.
Cognitive Neuroscience in Space
De la Torre, Gabriel G.
2014-01-01
Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond. PMID:25370373
NASA Technical Reports Server (NTRS)
Campbell, J. W.
1973-01-01
A stochasitc model of the atmosphere between 30 and 90 km was developed for use in Monte Carlo space shuttle entry studies. The model is actually a family of models, one for each latitude-season category as defined in the 1966 U.S. Standard Atmosphere Supplements. Each latitude-season model generates a pseudo-random temperature profile whose mean is the appropriate temperature profile from the Standard Atmosphere Supplements. The standard deviation of temperature at each altitude for a given latitude-season model was estimated from sounding-rocket data. Departures from the mean temperature at each altitude were produced by assuming a linear regression of temperature on the solar heating rate of ozone. A profile of random ozone concentrations was first generated using an auxiliary stochastic ozone model, also developed as part of this study, and then solar heating rates were computed for the random ozone concentrations.
NASA Technical Reports Server (NTRS)
Martin, Gary L.
2011-01-01
A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests
NASA Technical Reports Server (NTRS)
Goldman, Nathan C.
1992-01-01
Space industrialization is confronting space law with problems that are changing old and shaping new legal principles. The return to the Moon, the next logical step beyond the space station, will establish a permanent human presence there. Science and engineering, manufacturing and mining will involve the astronauts in the settlement of the solar system. These pioneers, from many nations, will need a legal, political, and social framework to structure their lives and interactions. International and even domestic space law are only the beginning of this framework. Dispute resolution and simple experience will be needed in order to develop, over time, a new social system for the new regime of space.
Space America's commercial space program
NASA Technical Reports Server (NTRS)
Macleod, N. H.
1984-01-01
Space America prepared a private sector land observing space system which includes a sensor system with eight spectral channels configured for stereoscopic data acquisition of four stereo pairs, a spacecraft bus with active three-axis stabilization, a ground station for data acquisition, preprocessing and retransmission. The land observing system is a component of Space America's end-to-end system for Earth resources management, monitoring and exploration. In the context of the Federal Government's program of commercialization of the US land remote sensing program, Space America's space system is characteristic of US industry's use of advanced technology and of commercial, entrepreneurial management. Well before the issuance of the Request for Proposals for Transfer of the United States Land Remote Sensing Program to the Private Sector by the US Department of Commerce, Space Services, Inc., the managing venturer of Space America, used private funds to develop and manage its sub-orbital launch of its Conestoga launch vehicle.
NASA Technical Reports Server (NTRS)
Clampin, Mark; Flanagan, Kathryn A.
2012-01-01
Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.
NASA Technical Reports Server (NTRS)
McGrath, Melissa A.
2007-01-01
Space exploration is an endeavor that has universal appeal, is far reaching in its consequences, crossing borders and spanning intellectual disciplines from art to literature to mathematics, with a purpose and reach that can potentially unite. To enhance awareness and strengthen cooperation within the space community, and provide inspiration for new activities, Dr. McGrath will provide a brief glimpse into a few of the exciting space exploration activities currently being undertaken by NASA.
NASA Technical Reports Server (NTRS)
Pool, Sam L.
2000-01-01
The National Academy of Sciences Committee on Space Biology and Medicine points out that space medicine is unique among space sciences, because in addition to addressing questions of fundamental scientific interest, it must address clinical or human health and safety issues as well. Efforts to identify how microgravity affects human physiology began in earnest by the United States in 1960 with the establishment of the National Aeronautics and Space Administration (NASA's) Life Sciences program. Before the first human space missions, prediction about the physiological effects of microgravity in space ranged from extremely severe to none at all. The understanding that has developed from our experiences in space to date allows us to be guardedly optimistic about the ultimate accommodations of humans to space flight. Only by our travels into the microgravity environment of space have we begun to unravel the mysteries associated with gravity's role in shaping human physiology. Space medicine is still at its very earliest stages. Development of this field has been slow for several reasons, including the limited number of space flights, the small number of research subjects, and the competition within the life sciences community and other disciplines for flight opportunities. The physiological changes incurred during space flight may have a dramatic effect on the course of an injury or illness. These physiological changes present an exciting challenge for the field of space medicine: how to best preserve human health and safety while simultaneously deciphering the effects of microgravity on human performance. As the United States considers the future of humans in long-term space travel, it is essential that the many mysteries as to how microgravity affects human systems be addressed with vigor. Based on the current state of our knowledge, the justification is excellent indeed compelling- for NASA to develop a sophisticated capability in space medicine. Teams of physicians
NASA Technical Reports Server (NTRS)
Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)
1973-01-01
A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.
Reservoir parameter inversion based on weighted statistics
NASA Astrophysics Data System (ADS)
Gui, Jin-Yong; Gao, Jian-Hu; Yong, Xue-Shan; Li, Sheng-Jun; Liu, Bin-Yang; Zhao, Wan-Jin
2015-12-01
Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
NASA Technical Reports Server (NTRS)
Ninomiya, T.; Kuriki, K.
1991-01-01
The DSN (Deep Space Network) mission support requirements for the Space Flyer Unit (SFU) are summarized. The SFU is an unmanned, reusable, and retrievable free-flying platform for multipurpose use. The SFU spacecraft will carry seven individual experiments to be completed during its mission period. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.
ERIC Educational Resources Information Center
Lippman, Peter C.
2013-01-01
When architects discuss the educational facilities of the next century and beyond, the conversation turns to collaborative spaces. They envision flexible and fluid spaces that will encourage creative and critical thinking, and free students to communicate clearly about the task at hand. While these are admirable ideals, there are some fundamental…
NASA Technical Reports Server (NTRS)
Parin, V. V.; Gorbov, F. D.; Kosmolinskiy, F. P.
1974-01-01
Psychological selection of astronauts considers mental responses and adaptation to the following space flight stress factors: (1) confinement in a small space; (2) changes in three dimensional orientation; (3) effects of altered gravity and weightlessness; (4) decrease in afferent nerve pulses; (5) a sensation of novelty and danger; and (6) a sense of separation from earth.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)
NASA Technical Reports Server (NTRS)
Alexander, Harold L.
1991-01-01
Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.
Radiation protection during space flight.
Kovalev, E E
1983-12-01
The problem of ensuring space flight safety arises from conditions inherent to space flights and outer space and from the existing weight limitations of spacecraft. In estimating radiation hazard during space flights, three natural sources are considered: the Earth's radiation belt, solar radiation, and galactic radiation. This survey first describes the major sources of radiation hazard in outer space with emphasis on those source parameters directly related to shielding manned spacecraft. Then, the current status of the safety criteria used in the shielding calculations is discussed. The rest of the survey is devoted to the rationale for spacecraft radiation shielding calculations. The recently completed long-term space flights indicate the reliability of the radiation safety measures used for the near-Earth space exploration. While planning long-term interplanetary flights, it is necessary to solve a number of complicated technological problems related to the radiation protection of the crew.
Precision cosmological parameter estimation
NASA Astrophysics Data System (ADS)
Fendt, William Ashton, Jr.
2009-09-01
methods. These techniques will help in the understanding of new physics contained in current and future data sets as well as benefit the research efforts of the cosmology community. Our idea is to shift the computationally intensive pieces of the parameter estimation framework to a parallel training step. We then provide a machine learning code that uses this training set to learn the relationship between the underlying cosmological parameters and the function we wish to compute. This code is very accurate and simple to evaluate. It can provide incredible speed- ups of parameter estimation codes. For some applications this provides the convenience of obtaining results faster, while in other cases this allows the use of codes that would be impossible to apply in the brute force setting. In this thesis we provide several examples where our method allows more accurate computation of functions important for data analysis than is currently possible. As the techniques developed in this work are very general, there are no doubt a wide array of applications both inside and outside of cosmology. We have already seen this interest as other scientists have presented ideas for using our algorithm to improve their computational work, indicating its importance as modern experiments push forward. In fact, our algorithm will play an important role in the parameter analysis of Planck, the next generation CMB space mission.
Redefining solubility parameters: the partial solvation parameters.
Panayiotou, Costas
2012-03-21
The present work reconsiders a classical and universally accepted concept of physical chemistry, the solubility parameter. Based on the insight derived from modern quantum chemical calculations, a new definition of solubility parameter is proposed, which overcomes some of the inherent restrictions of the original definition and expands its range of applications. The original single solubility parameter is replaced by four partial solvation parameters reflecting the dispersion, the polar, the acidic and the basic character of the chemical compounds as expressed either in their pure state or in mixtures. Simple rules are adopted for the definition and calculation of these four parameters and their values are tabulated for a variety of common substances. In contrast, however, to the well known Hansen solubility parameters, their design and evaluation does not rely exclusively on the basic rule of "similarity matching" for solubility but it makes also use of the other basic rule of compatibility, namely, the rule of "complementarity matching". This complementarity matching becomes particularly operational with the sound definition of the acidic and basic components of the solvation parameter based on the third σ-moments of the screening charge distributions of the quantum mechanics-based COSMO-RS theory. The new definitions are made in a simple and straightforward manner, thus, preserving the strength and appeal of solubility parameter stemming from its simplicity. The new predictive method has been applied to a variety of solubility data for systems of pharmaceuticals and polymers. The results from quantum mechanics calculations are critically compared with the results from Abraham's acid/base descriptors. PMID:22327537
Redefining solubility parameters: the partial solvation parameters.
Panayiotou, Costas
2012-03-21
The present work reconsiders a classical and universally accepted concept of physical chemistry, the solubility parameter. Based on the insight derived from modern quantum chemical calculations, a new definition of solubility parameter is proposed, which overcomes some of the inherent restrictions of the original definition and expands its range of applications. The original single solubility parameter is replaced by four partial solvation parameters reflecting the dispersion, the polar, the acidic and the basic character of the chemical compounds as expressed either in their pure state or in mixtures. Simple rules are adopted for the definition and calculation of these four parameters and their values are tabulated for a variety of common substances. In contrast, however, to the well known Hansen solubility parameters, their design and evaluation does not rely exclusively on the basic rule of "similarity matching" for solubility but it makes also use of the other basic rule of compatibility, namely, the rule of "complementarity matching". This complementarity matching becomes particularly operational with the sound definition of the acidic and basic components of the solvation parameter based on the third σ-moments of the screening charge distributions of the quantum mechanics-based COSMO-RS theory. The new definitions are made in a simple and straightforward manner, thus, preserving the strength and appeal of solubility parameter stemming from its simplicity. The new predictive method has been applied to a variety of solubility data for systems of pharmaceuticals and polymers. The results from quantum mechanics calculations are critically compared with the results from Abraham's acid/base descriptors.
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
With discoveries from Mars, the Hubble Deep Field, and Ganymede reawakening Washington's interest in space, the U.S. federal government has started fine-tuning its stance on space flight and exploration. The attention comes as prelude to a proposed November meeting to discuss astronomical and planetary discoveries, and to a rumored space summit in December between Vice President Al Gore and congressional leaders.On September 17, the House of Representatives passed by voice vote H.R. 3936, the Space Commercialization Promotion Act. A measure with strong bipartisan support, the bill officially encourages private companies to participate in the space industry and requires NASA to find more ways to work with the private sector. Updating and amending several existing U.S. policies about commerce in space, H.R. 3936 gives the Department of Transportation the authority to provide and administer licenses for commercial spacecraft to reenter American airspace from orbit and outer space. It also prods NASA to purchase scientific data about the Earth and the solar system from the private sector, whenever possible.
NASA Astrophysics Data System (ADS)
Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.
2008-05-01
Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.
Space disposal of nuclear wastes
NASA Technical Reports Server (NTRS)
Priest, C. C.; Nixon, R. F.; Rice, E. E.
1980-01-01
The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.
NASA Technical Reports Server (NTRS)
McKay, Mary Fae (Editor); McKay, David S. (Editor); Duke, Michael S. (Editor)
1992-01-01
Space resources must be used to support life on the Moon and exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. The pioneers refilled their water barrels at each river they forded; moonbase inhabitants may use chemical reactors to combine hydrogen brought from Earth with oxygen found in lunar soil to make their water. The pioneers sought temporary shelter under trees or in the lee of a cliff and built sod houses as their first homes on the new land; settlers of the Moon may seek out lava tubes for their shelter or cover space station modules with lunar regolith for radiation protection. The pioneers moved further west from their first settlements, using wagons they had built from local wood and pack animals they had raised; space explorers may use propellant made at a lunar base to take them on to Mars. The concept for this report was developed at a NASA-sponsored summer study in 1984. The program was held on the Scripps campus of the University of California at San Diego (UCSD), under the auspices of the American Society for Engineering Education (ASEE). It was jointly managed under the California Space Inst. and the NASA Johnson Space Center, under the direction of the Office of Aeronautics and Space Technology (OAST) at NASA Headquarters. The study participants (listed in the addendum) included a group of 18 university teachers and researchers (faculty fellows) who were present for the entire 10-week period and a larger group of attendees from universities, Government, and industry who came for a series of four 1-week workshops. The organization of this report follows that of the summer study. Space Resources consists of a brief overview and four detailed technical volumes: (1) Scenarios; (2) Energy, Power, and Transport; (3) Materials; (4
NASA Technical Reports Server (NTRS)
1975-01-01
A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.
NASA Technical Reports Server (NTRS)
Pool, Sam L.
1988-01-01
This paper attempts to underscore the importance of continued studies on the effects of space on human physiology. With particular reference to the Space Station, it is pointed out that there are two aspects which are challenging to life scientists: first is the development of a research capability for the life sciences which will be used to conduct investigations necessary to extend the time humans can remain in space; second is the challenge to develop a medical capability to provide prevention, diagnosis, and therapy. A discussion of physiological changes that have been observed in spacecrews follows along the lines of the two aspects mentioned.
NASA Technical Reports Server (NTRS)
Varsi, Giulio
1989-01-01
The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.
ERIC Educational Resources Information Center
Bierly, Ken; Dalheim, Mary
1981-01-01
Presents an elementary teaching unit on NASA's space program, including teacher background information, suggested student activities, and a list of resources. Appended is a transcript of an interview conducted by elementary children with astronaut candidate Sherwood (Woody) Spring. (SJL)
NASA Technical Reports Server (NTRS)
1983-01-01
Nikon's F3 35mm camera was specially modified for use by Space Shuttle astronauts. The modification work produced a spinoff lubricant. Because lubricants in space have a tendency to migrate within the camera, Nikon conducted extensive development to produce nonmigratory lubricants; variations of these lubricants are used in the commercial F3, giving it better performance than conventional lubricants. Another spinoff is the coreless motor which allows the F3 to shoot 140 rolls of film on one set of batteries.
NASA Technical Reports Server (NTRS)
1975-01-01
A fact sheet on the NASA space science program is presented. Some of the subjects considered include the following: (1) the Orbiting Astronomical Observatory, (2) the Orbiting Solar Observatory, (3) the Small Astronomy Satellite, (4) lunar programs, (5) planetary programs using the Mariner, Pioneer 10, and Viking space probes, and (6) the Scout, Thor-Delta, and Atlas-Centaur launch vehicles. For each program there is a description of the effort, the schedule, management, program officials, and funding aspects in outline form.
NASA Astrophysics Data System (ADS)
Barbosa, L. C.
2015-09-01
Considering an idea of F. Arago in 1853 regarding light dispersion through the light ether in the interstellar space, this paper presents a new idea on an alternative interpretation of the cosmological red shift of the galaxies in the universe. The model is based on an analogy with the temporal material dispersion that occurs with light in the optical fiber core. Since intergalactic space is transparent, according to the model, this phenomenon is related to the gravitational potential existing in the whole space. Thus, it is possible to find a new interpretation to Hubble's constant. In space, light undergoes a dispersion process in its path, which is interpreted by a red shift equation of the type Δz = HL, since H = (d2n/dλ2 Δv Δλ), where H means the Hubble constant, n is the refractive index of the intergalactic space, Δλ is the spectral width of the extragalactic source, and Δv is the variation of the speed of light caused by the gravitational potential. We observe that this "constant" is governed by three new parameters. Light traveling the intergalactic space undergoes red shift due to this mechanism, while light amplitude decreases with time, and the wavelength always increases, thus producing the same type of behavior given by Hubble's Law. It can be demonstrated that the dark matter phenomenon is produced by the apparent speed of light of the stars on the periphery of the galaxies, without the existence of dark energy. Based on this new idea, the model of the universe is static, lacking expansion. Other phenomena may be interpreted based on this new model of the universe. We have what we call temporal gravitational dispersion of light in space produced by the variations of the speed of light, due to the presence of the gravitational potential in the whole space.
NASA Astrophysics Data System (ADS)
Abiodun, Adigun Ade
An essential pre-requisite to a successful space technology applications programme is the building of various indigenous capacities, particularly human resources. Efforts to accomplish such a capacity-building must be devoted, at the local level, to the development of necessary high-level knowledge and expertise in space science and technology fields. Such a programme must also focus on long-term in-depth education and research opportunities in the developing countries, where the beneficiaries would gain an in-depth understanding and appreciation of not only the application potentials of a given technology but also an insight into why and how the technology works the way it does. In recognition of such a pre-requisite, it is universally acknowledged that if effective assimilation of space science and appropriate application of space technology are to succeed in the developing countries, and particularly if such a discipline as satellite remote sensing is to transcend its current image of being a technology-driven tool into a user-driven one, efforts must be devoted, at the local level, to the development of necessary high-level knowledge and expertise in requisite space science and technology fields. The justification for such an in-depth education is not far-fetched particularly as one reflects on the myriad of space science and technology activities that are both in progress and are planned. Aspects of these are reflected in this paper.
Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.
2005-01-01
This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.
NASA Technical Reports Server (NTRS)
Muratore, John F.
2007-01-01
Space Rescue has been a topic of speculation for a wide community of people for decades. Astronauts, aerospace engineers, diplomats, medical and rescue professionals, inventors and science fiction writers have all speculated on this problem. Martin Caidin's 1964 novel Marooned dealt with the problems of rescuing a crew stranded in low earth orbit. Legend at the Johnson Space Center says that Caidin's portrayal of a Russian attempt to save the American crew played a pivotal role in convincing the Russians to join the real joint Apollo-Soyuz mission. Space Rescue has been a staple in science fiction television and movies portrayed in programs such as Star Trek, Stargate-SG1 and Space 1999 and movies such as Mission To Mars and Red Planet. As dramatic and as difficult as rescue appears in fictional accounts, in the real world it has even greater drama and greater difficulty. Space rescue is still in its infancy as a discipline and the purpose of this chapter is to describe the issues associated with space rescue and the work done so far in this field. For the purposes of this chapter, the term space rescue will refer to any system which allows for rescue or escape of personnel from situations which endanger human life in a spaceflight operation. This will span the period from crew ingress prior to flight through crew egress postlanding. For the purposes of this chapter, the term primary system will refer to the spacecraft system that a crew is either attempting to escape from or from which an attempt is being made to rescue the crew.
Space Resources and Space Settlements
NASA Technical Reports Server (NTRS)
Billingham, J. (Editor); Gilbreath, W. P. (Editor); Oleary, B. (Editor); Gosset, B. (Editor)
1979-01-01
The technical papers from the five tasks groups that took part in the 1977 Ames Summer Study on Space Settlements and Industrialization Using Nonterrestrial Materials are presented. The papers are presented under the following general topics: (1) research needs for regenerative life-support systems; (2) habitat design; (3) dynamics and design of electromagnetic mass drivers; (4) asteroids as resources for space manufacturing; and (5) processing of nonterrestrial materials.
NASA Technical Reports Server (NTRS)
Rigby, Jane R.
2011-01-01
The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2006-01-01
This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2003-04-01
A new theory of space is suggested. It represents the new point of view which has arisen from the critical analysis of the foundations of physics (in particular the theory of relativity and quantum mechanics), mathematics, cosmology and philosophy. The main idea following from the analysis is that the concept of movement represents a key to understanding of the essence of space. The starting-point of the theory is represented by the following philosophical (dialectical materialistic) principles. (a) The principle of the materiality (of the objective reality) of the Nature: the Nature (the Universe) is a system (a set) of material objects (particles, bodies, fields); each object has properties, features, and the properties, the features are inseparable characteristics of material object and belong only to material object. (b) The principle of the existence of material object: an object exists as the objective reality, and movement is a form of existence of object. (c) The principle (definition) of movement of object: the movement is change (i.e. transition of some states into others) in general; the movement determines a direction, and direction characterizes the movement. (d) The principle of existence of time: the time exists as the parameter of the system of reference. These principles lead to the following statements expressing the essence of space. (1) There is no space in general, and there exist space only as a form of existence of the properties and features of the object. It means that the space is a set of the measures of the object (the measure is the philosophical category meaning unity of the qualitative and quantitative determinacy of the object). In other words, the space of the object is a set of the states of the object. (2) The states of the object are manifested only in a system of reference. The main informational property of the unitary system researched physical object + system of reference is that the system of reference determines (measures
NASA Astrophysics Data System (ADS)
Zubrin, Robert
The authors is giving a classification of civilisations depending on the degree of colonisation of the Earth, Solar System and Our Galaxy. The problems of: History of geographic discoveries (The great geographical discoveries during the Middle Age, the concurence of Chinnese and Europeans in this Area); The Astrophysics, such as: Asteroids, Water and Atmosphere on outer planets, Planet Mars Planet, Agriculture on outer planets, Minerals on outer planets; Cosmic flights: Fuels, Robotics, Moon (as an intermediary basis for interplanetary flights), Mars colonisation; Interstellar flights, Space research costs, strategy and tactics of the space colonisation; Policy: War and Peace, International Collaboration are discussed.
NASA Astrophysics Data System (ADS)
Bertachinidealmeidaprado, Antonio Fernando
The objective of this study is to present a description of the models and methods used to calculate the optimum space trajectories, from the point of view of the smallest fuel consumption that could be used to transfer a space vehicle between two given orbits. Several options for the shaping of the dynamics, the actuators' action and optimal methods are described. Classic methods (Hohmann's transfer, bi-elliptical, etc.) and modern methods (involving gravitational capture and gravity assisted maneuvers) are stated briefly, and several references are mentioned to supply more detail.
Removing gaps in the exclusion of top squark parameter space.
Czakon, Michal; Mitov, Alexander; Papucci, Michele; Ruderman, Joshua T; Weiler, Andreas
2014-11-14
Light stops are a hallmark of the most natural realizations of weak-scale supersymmetry. While stops have been extensively searched for, there remain open gaps around and below the top mass, due to similarities of stop and top signals with current statistics. We propose a new fast-track avenue to improve light stop searches for R-parity-conserving supersymmetry by comparing top cross section measurements to the theoretical prediction. Stop masses below ∼180 GeV can now be ruled out for a light neutralino. The possibility of a stop signal contaminating the top mass measurement is also briefly addressed.
Exploring the parameter space of warm-inflation models
NASA Astrophysics Data System (ADS)
Bastero-Gil, Mar; Berera, Arjun; Kronberg, Nico
2015-12-01
Warm inflation includes inflaton interactions with other fields throughout the inflationary epoch instead of confining such interactions to a distinct reheating era. Previous investigations have shown that, when certain constraints on the dynamics of these interactions and the resultant radiation bath are satisfied, a low-momentum-dominated dissipation coefficient propto T3/mχ2 can sustain an era of inflation compatible with CMB observations. In this work, we extend these analyses by including the pole-dominated dissipation term propto √mχ T exp(-mχ/T). We find that, with this enhanced dissipation, certain models, notably the quadratic hilltop potential, perform significantly better. Specifically, we can achieve 50 e-folds of inflation and a spectral index compatible with Planck data while requiring fewer mediator field (Script O(104) for the quadratic hilltop potential) and smaller coupling constants, opening up interesting model-building possibilities. We also highlight the significance of the specific parametric dependence of the dissipative coefficient which could prove useful in even greater reduction in field content.
Exploring the parameter space of warm-inflation models
Bastero-Gil, Mar; Berera, Arjun; Kronberg, Nico
2015-12-22
Warm inflation includes inflaton interactions with other fields throughout the inflationary epoch instead of confining such interactions to a distinct reheating era. Previous investigations have shown that, when certain constraints on the dynamics of these interactions and the resultant radiation bath are satisfied, a low-momentum-dominated dissipation coefficient ∝T{sup 3}/m{sub χ}{sup 2} can sustain an era of inflation compatible with CMB observations. In this work, we extend these analyses by including the pole-dominated dissipation term ∝√(m{sub χ}T)exp (−m{sub χ}/T). We find that, with this enhanced dissipation, certain models, notably the quadratic hilltop potential, perform significantly better. Specifically, we can achieve 50 e-folds of inflation and a spectral index compatible with Planck data while requiring fewer mediator field (O(10{sup 4}) for the quadratic hilltop potential) and smaller coupling constants, opening up interesting model-building possibilities. We also highlight the significance of the specific parametric dependence of the dissipative coefficient which could prove useful in even greater reduction in field content.
14 CFR 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Launch and orbit parameters for a standard launch. 1214.117 Section 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.117 Launch...
14 CFR 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Launch and orbit parameters for a standard launch. 1214.117 Section 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.117 Launch...
14 CFR § 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Launch and orbit parameters for a standard launch. Â§ 1214.117 Section Â§ 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for...
14 CFR 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Launch and orbit parameters for a standard launch. 1214.117 Section 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S....
14 CFR 1214.117 - Launch and orbit parameters for a standard launch.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Launch and orbit parameters for a standard launch. 1214.117 Section 1214.117 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S....
Metabolic and Regulatory Systems in Space Flight
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JP2, the discussion focuses on the following topics: The Dynamics of Blood Biochemical Parameters in Cosmonauts During Long-Term Space Flights; Efficiency of Functional Loading Test for Investigations of Metabolic Responses to Weightlessness; Human Cellular Immunity and Space Flight; Cytokine Production and Head-Down Tilt Bed Rest; Plasma and Urine Amino Acids During Human Space Flight; and DNA Fingerprinting, Applications to Space Microbiology.
Experimental verification scaling parameters for thermal stratification
NASA Astrophysics Data System (ADS)
Schwartz, S. H.; Hochstein, J. I.; Ji, H.-C.
1990-01-01
Many future space missions will rely on long-term storage of cryogenic propellants and will require appropriate storage and fuel transfer systems. Here, a study to determine important dimensionless parameters associated with thermal stratification of a heated container of liquid, and the pressure history of its vapor, is reported. Analysis of the governing equations identifies the modified Grashoff number, modified Fourier number, and the Interface number as the dominant dimensionless parameters associated with this process. Test results indicate that the bulk liquid temperature, the surface temperature of the liquid, and the tank pressure can be scaled with the three dimensionless parameters.
ERIC Educational Resources Information Center
Haug, Ted; Ogurek, Douglas J.
2006-01-01
When education providers confront obstacles such as shrinking budgets and swelling enrollments, a multi-million-dollar new facility or major additions probably are not feasible. Converting vacant and underused buildings into school facilities enables administrators to acquire additional space quickly and cheaply. In this article, the authors…
ERIC Educational Resources Information Center
D'Elia, William
1996-01-01
The creation of usable space for gatherings and socializing is an important consideration in any campus planning program. The University of California-San Diego has a large outdoor assembly area. An addition at Cal Poly-San Luis Obispo encompasses an existing pedestrian path. A new building at the University of Alaska, Fairbanks, is designed as a…
ERIC Educational Resources Information Center
Cort, Cliff
2006-01-01
Education administrators face the dual dilemma of crowded, aging facilities and tightening capital budgets. The challenge is to build the necessary classroom, laboratory and activity space while minimizing the length and expense of the construction process. One solution that offers an affordable alternative is modular construction, a method that…
NASA Technical Reports Server (NTRS)
Miquel, J. (Editor); Economos, A. C. (Editor)
1982-01-01
Presentations are given which address the effects of space flght on the older person, the parallels between the physiological responses to weightlessness and the aging process, and experimental possibilities afforded by the weightless environment to fundamental research in gerontology and geriatrics.
ERIC Educational Resources Information Center
Weinstein, Margery
2010-01-01
Creating a balanced learning space for employees is about more than trying different types of seating. It is a challenge that an affect how well employees absorb the lessons and whether they will be able to product better results for the company. The possible solutions are as diverse as the learners. This article describes how three companies…
NASA Astrophysics Data System (ADS)
Beutler, G.; Murdin, P.
2000-11-01
Geodesy is the science studying the size and the figure of the Earth including the determination of the Earth's gravitational field. Geodetic astronomy is that part of astronomy dealing with the definition and realization of a terrestrial and a celestial reference frame (see TERRESTRIAL COORDINATE SYSTEMS AND FRAMES). By space geodesy we mean, then, those aspects of geodesy and geodetic astronomy...
NASA Technical Reports Server (NTRS)
Hays, Dan
1987-01-01
Applications of linguistic principles to potential problems of human and machine communication in space settings are discussed. Variations in language among speakers of different backgrounds and change in language forms resulting from new experiences or reduced contact with other groups need to be considered in the design of intelligent machine systems.
NASA Technical Reports Server (NTRS)
Giarratano, Joseph C.; Jenks, K. C.
1997-01-01
The objective of the proposed research was to begin development of a unique educational tool targeted at educating and inspiring young people 12-16 years old about NASA and the Space Program. Since these young people are the future engineers, scientists and space pioneers, the nurturing of their enthusiasm and interest is of critical importance to the Nation. This summer the basic infrastructure of the tool was developed in the context of an educational game paradigm. The game paradigm has achieved remarkable success in maintaining the interest of young people in a self-paced, student-directed learning environment. This type of environment encourages student exploration and curiosity which are exactly the traits that future space pioneers need to develop to prepare for the unexpected. The Inherit Space Educational Tool is an open-ended learning environment consisting of a finite-state machine classic adventure game paradigm. As the young person explores this world, different obstacles must be overcome. Rewards will be offered such as using the flight simulator to fly around and explore Titan. This simulator was modeled on conventional Earth flight simulators but has been considerably enhanced to add texture mapping of Titan's atmosphere utilizing the latest information from the NASA Galileo Space Probe. Additional scenery was added to provide color VGA graphics of a futuristic research station on Titan as well as an interesting story to keep the youngster's attention. This summer the game infrastructure has been developed as well as the Titan Flight Simulator. A number of other enhancements are planned.
Second Symposium on Space Industrialization. [space commercialization
NASA Technical Reports Server (NTRS)
Jernigan, C. M. (Editor)
1984-01-01
The policy, legal, and economic aspects of space industrialization are considered along with satellite communications, material processing, remote sensing, and the role of space carriers and a space station in space industrialization.
MSSM Dark Matter Without Prejudice
Gainer, James S.; /SLAC
2009-12-11
Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.
MSSM Dark Matter Without Prejudice
NASA Astrophysics Data System (ADS)
Gainer, James S.
2010-02-01
Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.
Dimensional regularization in configuration space
Bollini, C.G. |; Giambiagi, J.J.
1996-05-01
Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}
Maia, M.D.
1981-03-01
The concept of contact between manifolds is applied to space--times of general relativity. For a given background space--time a contact approximation of second order is defined and interpreted both from the point of view of a metric pertubation and of a higher order tangent manifold. In the first case, an application to the high frequency gravitational wave hypothesis is suggested. In the second case, a constant curvature tangent bundle is constructed and suggested as a means to define a ten parameter local space--time symmetry.
Traveling waves and impact-parameter correlations
Munier, S.; Salam, G. P.; Soyez, G.
2008-09-01
It is usually assumed that the high-energy evolution of partons in QCD remains local in coordinate space. In particular, fixed impact-parameter scattering is thought to be in the universality class of one-dimensional reaction-diffusion processes as if the evolutions at different points in the transverse plane became uncorrelated through rapidity evolution. We check this assumption by numerically comparing a toy model with QCD-like impact-parameter dependence to its exact counterpart with uniform evolution in impact-parameter space. We find quantitative differences, but which seem to amount to a mere rescaling of the strong coupling constant. Since the rescaling factor does not show any strong {alpha}{sub s} dependence, we conclude that locality is well verified, up to subleading terms at small {alpha}{sub s}.
Traveling waves and impact-parameter correlations
NASA Astrophysics Data System (ADS)
Munier, S.; Salam, G. P.; Soyez, G.
2008-09-01
It is usually assumed that the high-energy evolution of partons in QCD remains local in coordinate space. In particular, fixed impact-parameter scattering is thought to be in the universality class of one-dimensional reaction-diffusion processes as if the evolutions at different points in the transverse plane became uncorrelated through rapidity evolution. We check this assumption by numerically comparing a toy model with QCD-like impact-parameter dependence to its exact counterpart with uniform evolution in impact-parameter space. We find quantitative differences, but which seem to amount to a mere rescaling of the strong coupling constant. Since the rescaling factor does not show any strong αs dependence, we conclude that locality is well verified, up to subleading terms at small αs.
Parameters of Technological Growth
ERIC Educational Resources Information Center
Starr, Chauncey; Rudman, Richard
1973-01-01
Examines the factors involved in technological growth and identifies the key parameters as societal resources and societal expectations. Concludes that quality of life can only be maintained by reducing population growth, since this parameter is the product of material levels, overcrowding, food, and pollution. (JR)
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.
Coiera, Enrico
2014-01-01
Background and objective Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. Methods A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Results Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Discussion Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, ‘programming through annotation’. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Conclusions Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment. PMID:24005797
NASA Technical Reports Server (NTRS)
1986-01-01
Fisher's Space Pen was developed for use in gravity free environments. The cartridge, pressurized with nitrogen, seals out air preventing evaporation and oxidation of the ink. Internal pressures force ink outward toward the ball point. A thixotropic ink is used. The pen will operate from minus 50 to plus 45 degrees Fahrenheit, and will withstand atmospheric extremes. It was used both on the Apollo missions and by Soviet Cosmonauts.
Parrish, Clyde F
2003-12-01
A series of workshops were sponsored by the Physical Science Division of NASA's Office of Biological and Physical Research to address operational gravity-compliant in-situ resource utilization and life support techologies. Workshop participants explored a Mars simulation study on Devon Island, Canada; the processing of carbon dioxide in regenerative life support systems; space tourism; rocket technology; plant growth research for closed ecological systems; and propellant extraction of planetary regoliths.
Parrish, Clyde F
2003-12-01
A series of workshops were sponsored by the Physical Science Division of NASA's Office of Biological and Physical Research to address operational gravity-compliant in-situ resource utilization and life support techologies. Workshop participants explored a Mars simulation study on Devon Island, Canada; the processing of carbon dioxide in regenerative life support systems; space tourism; rocket technology; plant growth research for closed ecological systems; and propellant extraction of planetary regoliths. PMID:14696587
Lorenz, J.C. ); Hill, R.E. )
1991-01-01
This study was undertaken in order to document and analyze the unique set of data on subsurface fracture characteristics, especially spacing, provided by the US Department of Energy's Slant Hole Completion Test well (SHCT-1) in the Piceance Basin, Colorado. Two hundred thirty-six (236) ft (71.9 m) of slant core and 115 ft (35.1 m) of horizontal core show irregular, but remarkably close, spacings for 72 natural fractures cored in sandstone reservoirs of the Mesaverde Group. Over 4200 ft (1280 m) of vertical core (containing 275 fractures) from the vertical Multiwell Experiment wells at the same location provide valuable information on fracture orientation, termination, and height, but only data from the SHCT-1 core allow calculations of relative fracture spacing. Within the 162-ft (49-m) thick zone of overlapping core from the vertical and deviated wellbores, only one fracture is present in vertical core whereas 52 fractures occur in the equivalent SHCT-1 core. The irregular distribution of regional-type fractures in these heterogeneous reservoirs suggests that measurements of average fracture spacing'' are of questionable value as direct input parameters into reservoir engineering models. Rather, deviated core provides data on the relative degree of fracturing, and confirms that cross fractures can be rare in the subsurface. 13 refs., 11 figs.
NASA Technical Reports Server (NTRS)
Kazaroff, John M.
1993-01-01
Lewis Research Center is developing broad-based new technologies for space chemical engines to satisfy long-term needs of ETO launch vehicles and other vehicles operating in and beyond Earth orbit. Specific objectives are focused on high performance LO2/LH2 engines providing moderate thrusts of 7,5-200 klb. This effort encompasses research related to design analysis and manufacturing processes needed to apply advanced materials to subcomponents, components, and subsystems of space-based systems and related ground-support equipment. High-performance space-based chemical engines face a number of technical challenges. Liquid hydrogen turbopump impellers are often so large that they cannot be machined from a single piece, yet high stress at the vane/shroud interface makes bonding extremely difficult. Tolerances on fillets are critical on large impellers. Advanced materials and fabricating techniques are needed to address these and other issues of interest. Turbopump bearings are needed which can provide reliable, long life operation at high speed and high load with low friction losses. Hydrostatic bearings provide good performance, but transients during pump starts and stops may be an issue because no pressurized fluid is available unless a separate bearing pressurization system is included. Durable materials and/or coatings are needed that can demonstrate low wear in the harsh LO2/LH2 environment. Advanced materials are also needed to improve the lifetime, reliability and performance of other propulsion system elements such as seals and chambers.
NASA Astrophysics Data System (ADS)
Kazaroff, John M.
1993-02-01
Lewis Research Center is developing broad-based new technologies for space chemical engines to satisfy long-term needs of ETO launch vehicles and other vehicles operating in and beyond Earth orbit. Specific objectives are focused on high performance LO2/LH2 engines providing moderate thrusts of 7,5-200 klb. This effort encompasses research related to design analysis and manufacturing processes needed to apply advanced materials to subcomponents, components, and subsystems of space-based systems and related ground-support equipment. High-performance space-based chemical engines face a number of technical challenges. Liquid hydrogen turbopump impellers are often so large that they cannot be machined from a single piece, yet high stress at the vane/shroud interface makes bonding extremely difficult. Tolerances on fillets are critical on large impellers. Advanced materials and fabricating techniques are needed to address these and other issues of interest. Turbopump bearings are needed which can provide reliable, long life operation at high speed and high load with low friction losses. Hydrostatic bearings provide good performance, but transients during pump starts and stops may be an issue because no pressurized fluid is available unless a separate bearing pressurization system is included. Durable materials and/or coatings are needed that can demonstrate low wear in the harsh LO2/LH2 environment. Advanced materials are also needed to improve the lifetime, reliability and performance of other propulsion system elements such as seals and chambers.
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2009-01-01
Optimal nutrition will be critical for crew members who embark on space exploration missions. Nutritional assessment provides an opportunity to ensure that crewmembers begin their missions in optimal nutritional status, to document changes during a mission and, if necessary, to provide intervention to maintain that status throughout the mission, and to assesses changes after landing in order to facilitate the return to their normal status as soon as possible after landing. We report here the findings from our nutritional assessment of astronauts who participated in the International Space Station (ISS) missions, along with flight and ground-based research findings. We also present ongoing and planned nutrition research activities. These studies provide evidence that bone loss, compromised vitamin status, and oxidative damage are the critical nutritional concerns for space travelers. Other nutrient issues exist, including concerns about the stability of nutrients in the food system, which are exposed to longterm storage and radiation during flight. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health.
Space Debris Orbit Determination Method with the Use of Onboard Optical Sensors of Space Vehicles
NASA Astrophysics Data System (ADS)
Sokolov, N.; Ivanov, V.; Nosova, K.; Selezneva, I.
2013-08-01
The analytical method is proposed for determining the parameters of space debris orbits avoiding the iterative calculation process. The initial information is the measurements of absolute magnitude and orientation of the vector connecting the center of mass of operated space vehicle and the position of space debris fragment. The calculation errors are estimated depending on the initial data.
Planning Robot-Control Parameters With Qualitative Reasoning
NASA Technical Reports Server (NTRS)
Peters, Stephen F.
1993-01-01
Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.
Not Available
1986-01-01
Contents include: pursuing a balanced space program; the space defense initiative; warfare in space; the lunar laboratory; the role of space in preserving the peace; living off the land - the use of resources in space for future civilian space operations; the military uses of space; C3I(command control communications and intelligence); aspects of space technology; arms control in space: preserving critical strategic space systems without weapons in space; space and arms control: a skeptical view; options for space arms control; space arms control.
RESRAD parameter sensitivity analysis
Cheng, J.J.; Yu, C.; Zielen, A.J.
1991-08-01
Three methods were used to perform a sensitivity analysis of RESRAD code input parameters -- enhancement of RESRAD by the Gradient Enhanced Software System (GRESS) package, direct parameter perturbation, and graphic comparison. Evaluation of these methods indicated that (1) the enhancement of RESRAD by GRESS has limitations and should be used cautiously, (2) direct parameter perturbation is tedious to implement, and (3) the graphics capability of RESRAD 4.0 is the most direct and convenient method for performing sensitivity analyses. This report describes procedures for implementing these methods and presents a comparison of results. 3 refs., 9 figs., 8 tabs.
Humans in Space &Space Biology
NASA Astrophysics Data System (ADS)
Legner, Klaus
Inevitably, members of the human species will again walk on the face of the moon and ultimately establish a permanently occupied lunar base. Also, inevitably, humans will venture to the planets within the solar system, most likely beginning with Mars or the Martian satellite, Phobos. These missions will take place because the species that contemplates them is driven by an insatiable desire for knowledge and understanding and because the technical means to accomplish these objectives are possible. There is no question that humans will establish outposts on Earth's moon and make interplanetary journeys. The only uncertainties concern when and how these expeditions are to be made. Just as a 90- or 120-day tour onboard an international space station is fundamentally different from a brief space shuttle mission; a one-year lunar base tour or a two- or three-year mission to Mars will be unique. Despite superficial similarities to other space missions and analogues, the extended durations and astronomical distances involved in lunar and Martian missions will make these activities far more difficult and dangerous. Crowded conditions, language and cultural differences, logistics problems, radiation concerns, communications lag times, workloads, and a variety of additional issues will conspire to impair the performance and affect the behaviour of long duration crew personnel. Above all stressors, however, the durations of the missions will impose the greatest burdens and extract the most severe tolls on the humans involved. On long-duration space missions, time will be the factor that can compound all issues, however trivial, into serious problems.
NASA Astrophysics Data System (ADS)
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Sun, Yu; Tesfa, Teklu; Ruby Leung, L.
2016-05-01
The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrological parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified according to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using Principal component analysis (PCA) and expectation-maximization (EM) - based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each parameter sensitivity-based classification system (S-Class) with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the
Theory of Space Charge Limited Current in Fractional Dimensional Space
NASA Astrophysics Data System (ADS)
Zubair, Muhammad; Ang, L. K.
The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 < D <= 1 where parameter D defines the degree of roughness of the electrode surface. Such a fractional dimensional space generalization of SCL current theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.
ERIC Educational Resources Information Center
Carlson, Laura A.; Van Deman, Shannon R.
2004-01-01
Projective spatial terms such as ''below'' specify the location of one object by indicating its spatial relation with respect to a reference object. These relations are defined via a reference frame that consists of a number of parameters (orientation, direction, origin, and distance) whose settings configure the space surrounding the reference…
Usability in space science instrumentation
NASA Astrophysics Data System (ADS)
Bastien, J.; Scapin, D.
2009-12-01
The scientists who will eventually use data from a space instrument may not be the most important people to consider during the development programme, argues Alec McCalden. Better results could come from treating instrument usability as a design parameter from the start.
Hubble Space Telescope prescription retrieval.
Redding, D; Dumont, P; Yu, J
1993-04-01
Prescription retrieval is a technique for directly estimating optical prescription parameters from images. We apply it to estimate the value of the Hubble Space Telescope primary mirror conic constant. Our results agree with other studies that examined primary-mirror test fixtures and results. In addition they show that small aberrations exist on the planetary-camera repeater optics.
Sighting the International Space Station
ERIC Educational Resources Information Center
Teets, Donald
2008-01-01
This article shows how to use six parameters describing the International Space Station's orbit to predict when and in what part of the sky observers can look for the station as it passes over their location. The method requires only a good background in trigonometry and some familiarity with elementary vector and matrix operations. An included…
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Steklov, A. F.; Primak, N. V.
2000-01-01
Two main tendencies of making the Solar System habitable are regarding nowadays: (1) making objects of the Solar System habitable; and (2) making the space of the Solar System habitable. We think that it's better to combine them. We should dezine and build settlements ('technospheres') on such objects as asteroids and comets, using their resources. That is, it is necessary to create 'space technospheres' - a long-termed human settlements in the space. To save energy resources it is necessary to use Near-Earth asteroids enriched with water ice (i. e. extinguished comets) with Near-Earth orbits. To realize listed conceptions it is necessary to decrease (up to 100 times) the cost price of the long-termed settlements. That's why even average UN country will be able to create it's own space house - artificial planet ('technosphere') and maintain life activities there. About 50-100 such artificial planets will represent the future civilization of our Solar System. At the same time Earth will stay basic, maternal planet. There is an interesting problem of correcting orbits of that objects. Orbits can be changed into circular or elongated to make them comfortable for living activities of 5000-10000 settlers, and to maintain connection with maternal planet. Technospheres with the elongated orbits are more advantageous to assimilate the Solar System. While technospheres with circular orbits suit to the industrial cycle with certain specialization. The specialization of the technosphere will depend on mine-workings and/or chosen high-technology industrial process. Because it is profitable to convert raw materials at the technosphere and then to transport finished products to the maternal planet. It worth to be mentioned that because of the low gravitation and changed life cycle technosphere settlers, new 'Columb' of the Solar System will transform into new mankind. It will happen though it is difficult to imaging this. Because long ago, when fish left the ocean, they didn
NASA Technical Reports Server (NTRS)
1990-01-01
Xontech, Inc.'s software package, XonVu, simulates the missions of Voyager 1 at Jupiter and Saturn, Voyager 2 at Jupiter, Saturn, Uranus and Neptune, and Giotto in close encounter with Comet Halley. With the program, the user can generate scenes of the planets, moons, stars or Halley's nucleus and tail as seen by Giotto, all graphically reproduced with high accuracy in wireframe representation. Program can be used on a wide range of computers, including PCs. User friendly and interactive, with many options, XonVu can be used by a space novice or a professional astronomer. With a companion user's manual, it sells for $79.
NASA Technical Reports Server (NTRS)
Wu, Honglu
2006-01-01
Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.
NASA Technical Reports Server (NTRS)
1994-01-01
In planning for the long duration Apollo missions, NASA conducted extensive research into space food. One of the techniques developed was freeze drying. Action Products commercialized this technique, concentrating on snack food including the first freeze-dried ice cream. The foods are cooked, quickly frozen and then slowly heated in a vacuum chamber to remove the ice crystals formed by the freezing process. The final product retains 98 percent of its nutrition and weighs only 20 percent of its original weight. Action snacks are sold at museums, NASA facilities and are exported to a number of foreign countries. Sales run to several million dollars annually.
Reassessment of safeguards parameters
Hakkila, E.A.; Richter, J.L.; Mullen, M.F.
1994-07-01
The International Atomic Energy Agency is reassessing the timeliness and goal quantity parameters that are used in defining safeguards approaches. This study reviews technology developments since the parameters were established in the 1970s and concludes that there is no reason to relax goal quantity or conversion time for reactor-grade plutonium relative to weapons-grade plutonium. For low-enriched uranium, especially in countries with advanced enrichment capability there may be an incentive to shorten the detection time.
Concept for an International Standard related to Space Weather Effects on Space Systems
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent; Tomky, Alyssa
There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances
Longitudinal phase space tomography with space charge
NASA Astrophysics Data System (ADS)
Hancock, S.; Lindroos, M.; Koscielniak, S.
2000-12-01
Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the nonlinearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of the vacuum chamber parametrized by a single value of distributed reactive impedance and by a geometrical coupling coefficient. This is sufficient to model the dominant collective effects in machines of low to moderate energy. In contrast to simulation codes, binning is not an issue since the profiles to be differentiated are measured ones. The program is written in Fortran 90 with high-performance Fortran extensions for parallel processing. A major effort has been made to identify and remove execution bottlenecks, for example, by reducing floating-point calculations and recoding slow intrinsic functions. A pointerlike mechanism which avoids the problems associated with pointers and parallel processing has been implemented. This is required to handle the large, sparse matrices that the algorithm employs. Results obtained with and without the inclusion of space charge are presented and compared for proton beams in the CERN protron synchrotron booster. Comparisons
14 CFR § 1214.813 - Computation of sharing and pricing parameters.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Computation of sharing and pricing parameters. Â§ 1214.813 Section Â§ 1214.813 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Spacelab Services § 1214.813 Computation of sharing and...
14 CFR 1214.813 - Computation of sharing and pricing parameters.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Computation of sharing and pricing parameters. 1214.813 Section 1214.813 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Spacelab Services § 1214.813 Computation of sharing and...
14 CFR 1214.813 - Computation of sharing and pricing parameters.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Computation of sharing and pricing parameters. 1214.813 Section 1214.813 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Spacelab Services § 1214.813 Computation of sharing and...
14 CFR 1214.813 - Computation of sharing and pricing parameters.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Computation of sharing and pricing parameters. 1214.813 Section 1214.813 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Spacelab Services § 1214.813 Computation of sharing and...
Phenological Parameters Estimation Tool
NASA Technical Reports Server (NTRS)
McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.
2010-01-01
The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE
Zhao, Bo; Lam, Fan; Liang, Zhi-Pei
2014-01-01
MR parameter mapping (e.g., T1 mapping, T2 mapping, T2∗ mapping) is a valuable tool for tissue characterization. However, its practical utility has been limited due to long data acquisition times. This paper addresses this problem with a new model-based parameter mapping method. The proposed method utilizes a formulation that integrates the explicit signal model with sparsity constraints on the model parameters, enabling direct estimation of the parameters of interest from highly undersampled, noisy k-space data. An efficient greedy-pursuit algorithm is described to solve the resulting constrained parameter estimation problem. Estimation-theoretic bounds are also derived to analyze the benefits of incorporating sparsity constraints and benchmark the performance of the proposed method. The theoretical properties and empirical performance of the proposed method are illustrated in a T2 mapping application example using computer simulations. PMID:24833520
NASA Technical Reports Server (NTRS)
Kozu, Toshiaki; Nakamura, Kenji; Meneghini, Robert
1991-01-01
A method to estimate raindrop size distribution (DSD) parameters from a combined Zm profile and path-integrated attenuation is shown, and a test result of the method using the data from an aircraft experiment is presented. The 'semi' dual-parameter (SDP) measurement is employed to estimate DSD parameters using the data obtained from an aircraft experiment conducted by Communications Research Laboratory, Tokyo, in conjunction with NASA. The validity of estimated DSD parameters is examined using measured Ka-band radar reflectivities. The estimated path-averaged N(0) is consistent with the Ka/X Ze ratio, and the use of estimated DSD shows excellent agreement between the rain rates estimated from the X-band and K-band Zes. The feasibility of estimating DSD parameters from space is confirmed.
NASA Technical Reports Server (NTRS)
Eanes, Richard J.
1994-01-01
Since the beginning of regular space geodetic measurements, Satellite Laser Ranging (SLR) has routinely provided polar motion and length of day solutions. At the present time, Global Positioning Systems (GPS) regularly produces daily polar motion solutions with 0.4 mas accuracy, equivalent to the routine 1-day VLBI experiments and SLR solutions using 3 days of Lageos-1 data. This rapid progress of the GPS technique forces a review of any resource allocations for VLBI and SLR measurements of Earth orientation.
High frequency excitation of Earth rotation parameters (ERP) from atmosphere.
NASA Astrophysics Data System (ADS)
Xie, Boquan; Zheng, Dawei
1996-06-01
The data sets of Earth rotation parameters measured by space geodetic techniques and atmospheric angular momentum reduced by the global meteorological data from 1983 through 1992 are used to analyze and study the high frequency excitations of Earth rotation parameters for the length of day and polar motion up to the monthly time scale from the atmosphere. The main results are given.
Immune responses in space flight
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.
1998-01-01
Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological
Designing for Human Space Exploration
NASA Astrophysics Data System (ADS)
Reynerson, Charles M.
2004-02-01
This presentation addresses a concept-level model that produces technical design parameters and economic feasibility information addressing future human spaceflight exploration platforms. This paper uses a design methodology and analytical tools to create feasible concept design information for these space platforms. The design tool has been validated against a number of actual facility designs, and appropriate modal variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is then employed in the examination of the impact of various payloads on the power, size (volume), and mass of the platform proposed. The development of the analytical tool employed an approach that accommodated possible payloads characterized as simplified parameters such as power, weight, volume, crew size, and endurance. In creating the approach, basic principles are employed and combined with parametric estimates as necessary. Key system parameters are identified in conjunction with overall system design. Typical ranges for these key parameters are provided based on empirical data extracted from actual human spaceflight systems. In order to provide a credible basis for a valid engineering model, an extensive survey of existing manned space platforms was conducted. This survey yielded key engineering specifications that were incorporated in the engineering model. Data from this survey is also used to create parametric equations and graphical representations in order to establish a realistic range of engineering quantities used in the design of manned space platforms.
Space Science in Action: Space Exploration [Videotape].
ERIC Educational Resources Information Center
1999
In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…
Large size space construction for space exploitation
NASA Astrophysics Data System (ADS)
Kondyurin, Alexey
2016-07-01
Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).
Hyperbolic tori in Hamiltonian systems with slowly varying parameter
Medvedev, Anton G
2013-05-31
This paper looks at a Hamiltonian system which depends periodically on a parameter. For each value of the parameter the system is assumed to have a hyperbolic periodic solution. Using the methods in KAM-theory it is proved that if the Hamiltonian is perturbed so that the value of the parameter varies with constant small frequency, then the nonautonomous system will have hyperbolic 2-tori in the extended phase space. Bibliography: 12 titles.
Preparing future space leaders - International Space University
NASA Technical Reports Server (NTRS)
Stone, Barbara A.; Van Reeth, George P.
1992-01-01
The International Space University (ISU) concept of developing a cadre of space professionals that will lead the universities and industries into space is discussed. ISU is an innovative, permanent worldwide organization for training and academic instruction in all aspects of space studies. ISU's major goal is to provide the young professional academic instruction in technical and nontechnical areas of modern space exploration and research, and a forum to exchange ideas and develop both personal and professional ties at an international level.
Space habitats. [prognosis for space colonization
NASA Technical Reports Server (NTRS)
Johnson, R. D.
1978-01-01
Differences between space industrialization and space colonization are outlined along with the physiological, psychological, and esthetic needs of the inhabitants of a space habitat. The detrimental effects of zero gravity on human physiology are reviewed, and the necessity of providing artificial gravity, an acceptable atmosphere, and comfortable relative humidity and temperature in a space habitat is discussed. Consideration is also given to social organization and governance, supply of food and water, and design criteria for space colonies.
Space Station personal hygiene study
NASA Technical Reports Server (NTRS)
Prejean, Stephen E.; Booher, Cletis R.
1986-01-01
A personal hygiene system is currently under development for Space Station application that will provide capabilities equivalent to those found on earth. This paper addresses the study approach for specifying both primary and contingency personal hygiene systems and provisions for specified growth. Topics covered are system definition and subsystem descriptions. Subsystem interfaces are explored to determine which concurrent NASA study efforts must be monitored during future design phases to stay up-to-date on critical Space Station parameters. A design concept for a three (3) compartment personal hygiene facility is included as a baseline for planned test and verification activities.
Military display performance parameters
NASA Astrophysics Data System (ADS)
Desjardins, Daniel D.; Meyer, Frederick
2012-06-01
The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.
Parameterizing the Deceleration Parameter
NASA Astrophysics Data System (ADS)
Pavón, D.; Duran, I.; Del Campo, S.; Herrera, R.
2015-01-01
We propose and constrain with the latest observational data three parameterizations of the deceleration parameter, valid from the matter era to the far future. They are well behaved and do not diverge at any redshift. On the other hand, they are model independent in the sense that in constructing them the only assumption made was that the Universe is homogeneous and isotropic at large scales.
Prediction of psychoacoustic parameters
NASA Astrophysics Data System (ADS)
Genuit, Klaus; Fiebig, Andre
2005-09-01
Noise is defined as an audible sound which either disturbs the silence, or an intentional sound that listening to leads to annoyance. Thus, it is clearly defined that the assignment of noise cannot be reduced to simple determining objective parameters like the A-weighted SPL. The question whether a sound is judged as noise can only be answered after the transformation from the sound event into an hearing event has been accomplished. The evaluation of noise depends on the physical characteristics of the sound event, on the psychoacoustical features of the human ear as well as on the psychological aspects of men. The subjectively felt noise quality depends not only on the A-weighted sound-pressure level, but also on other psychoacoustical parameters such as loudness, roughness, sharpness, etc. The known methods for the prediction of the spatial A-weighted SPL distribution in dependence on the propagation are not suitable to predict psychoacoustic parameters in an adequate way. Especially, the roughness provoked by modulation or the sharpness generated by an accumulation of high, frequent sound energy cannot offhandedly be predicted as distance dependent.
"Space, the Final Frontier"; Books on Space and Space Exploration.
ERIC Educational Resources Information Center
Jordan, Anne Devereaux
1997-01-01
Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)
Space Biosciences, Space-X, and the International Space Station
NASA Technical Reports Server (NTRS)
Wigley, Cecilia
2014-01-01
Space Biosciences Research on the International Space Station uses living organisms to study a variety of research questions. To enhance our understanding of fundamental biological processes. To develop the fundations for a safe, productive human exploration of space. To improve the quality of life on earth.
Asymmetry parameter of peaked Fano line shapes
NASA Astrophysics Data System (ADS)
Meierott, S.; Hotz, T.; Néel, N.; Kröger, J.
2016-10-01
The spectroscopic line shape of electronic and vibrational excitations is ubiquitously described by a Fano profile. In the case of nearly symmetric and peaked Fano line shapes, the fit of the conventional Fano function to experimental data leads to difficulties in unambiguously extracting the asymmetry parameter, which may vary over orders of magnitude without degrading the quality of the fit. Moreover, the extracted asymmetry parameter depends on initially guessed values. Using the spectroscopic signature of the single-Co Kondo effect on Au(110) the ambiguity of the extracted asymmetry parameter is traced to the highly symmetric resonance profile combined with the inevitable scattering of experimental data. An improved parameterization of the conventional Fano function is suggested that enables the nonlinear optimization in a reduced parameter space. In addition, the presence of a global minimum in the sum of squared residuals and thus the independence of start parameters may conveniently be identified in a two-dimensional plot. An angular representation of the asymmetry parameter is suggested in order to reliably determine uncertainty margins via linear error propagation.
Comparing anisotropic displacement parameters in protein structures.
Merritt, E A
1999-12-01
The increasingly widespread use of synchrotron-radiation sources and cryo-preparation of samples in macromolecular crystallography has led to a dramatic increase in the number of macromolecular structures determined at atomic or near-atomic resolution. This permits expansion of the structural model to include anisotropic displacement parameters U(ij) for individual atoms. In order to explore the physical significance of these parameters in protein structures, it is useful to be able to compare quantitatively the electron-density distribution described by the refined U(ij) values associated with corresponding crystallographically independent atoms. This paper presents the derivation of an easily calculated correlation coefficient in real space between two atoms modeled with anisotropic displacement parameters. This measure is used to investigate the degree of similarity between chemically equivalent but crystallographically independent atoms in the set of protein structural models currently available from the Protein Data Bank.
Parameter adaptive estimation of random processes
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Vanlandingham, H. F.
1975-01-01
This paper is concerned with the parameter adaptive least squares estimation of random processes. The main result is a general representation theorem for the conditional expectation of a random variable on a product probability space. Using this theorem along with the general likelihood ratio expression, the least squares estimate of the process is found in terms of the parameter conditioned estimates. The stochastic differential for the a posteriori probability and the stochastic differential equation for the a posteriori density are found by using simple stochastic calculus on the representations obtained. The results are specialized to the case when the parameter has a discrete distribution. The results can be used to construct an implementable recursive estimator for certain types of nonlinear filtering problems. This is illustrated by some simple examples.
Poiseuille flow in curved spaces.
Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J
2016-04-01
We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.
Ovchinnikov, V I
2014-01-31
In the paper, a new description of the generalized Lions-Peetre method of means is found, which enables one to evaluate the interpolation orbits of spaces constructed by this method. The list of these spaces includes all Lorentz spaces with functional parameters, Orlicz spaces, and spaces close to them. This leads in turn to new optimal embedding theorems for Sobolev spaces produced using the Lions-Peetre construction in rearrangement invariant spaces. It turns out that the optimal space of the embedding is also a generalized Lions-Peetre space whose parameters are explicitly evaluated. Bibliography: 18 titles.
Parameters of technological growth.
Starr, C; Rudman, R
1973-10-26
The key parameters to technological growth have been identified as societal resources and societal expectations. Both of these are evident functions of technology, and their combined effects can be expected to continue technology's historical exponential growth. This growth pattern would be substantially altered only if we assume that knowledge is bounded or if society makes a conscious decision to stop the flow of resources into the production of new technological options. Although such conscious selection among individual technical fields is to be expected, it is very unlikely to apply to the totality of technology since, as society grows more complex it continuously creates new needs (priority factor), which in turn provide new opportunities for the application of technological options (payoff factor). The analysis also clearly emphasizes the important role which awareness of new technologies plays in forming societal expectations. These considerations indicate that the technological component of the world simulation model proposed by Meadows et al. (1) and Forrester (2) is best represented by an exponential growth function. The importance of this has been shown by Boyd (3) (Fig. 1), whose "technological optimist" curve has slightly less than exponential growth. Private comnmunication with Boyd indicates that an exponential assumption would reduce the time for equilibrium by several decades. Boyd also indicated that in his modification of the world dynamics model, an exponential technological growth would eventually dominate all other parameters in determining the long-term approach to a steady state. It is evident that the behavior of any world system model is very sensitive to the growth and interaction assumptions for its principal parameters. Thus, model studies should not be easily presumed to represent reality. The one conclusion that appears to be valid regardless of approach is the evident merit of reducing population growth. The parameter for quality of
NASA Technical Reports Server (NTRS)
Drysdale, Alan; Sager, John; Wheeler, Ray; Fortson, Russ; Chetirkin, Peter
1993-01-01
The most important Controlled Ecological Life Support System (CELSS) engineering parameters are, in order of decreasing importance, manpower, mass, and energy. The plant component is a significant contributor to the total system equivalent mass. In this report, a generic plant component is described and the relative equivalent mass and productivity are derived for a number of instances taken from the KSC CELSS Breadboard Project data and literature. Typical specific productivities (edible biomass produced over 10 years divided by system equivalent mass) for closed systems are of the order of 0.2.
NASA Astrophysics Data System (ADS)
Greenberg, J. Mayo; van de Bult, C. E. P. M.; Allamandola, Louis J.
The chemical and physical properties of ice grains in interstellar space have been studied in the laboratory and theoretically modeled to compare with astronomical spectra between 2700 and 3700/cm. The observed polarization of starlight in this region clearly indicates that elongated particles are involved. Absorption characteristics for various shaped grains whose radii vary from approximately 0.1 to 1.0 micrometer, containing either pure amorphous H20 or amorphous mixtures of H20 with NH3, have been calculated with the aim of narrowing the range of acceptable grain parameters. By comparing the band shapes for spherical, spheroidal, and cylindrical grains with astronomical spectra we show that elongated particles whose radii are approximately equal to 0.15 micrometer produce an acceptable match and that both spherical and elongated particles whose radii are greater than or equal to 0.5 micrometer are definitely not consistent with observations. Details of the band shape are shown to depend on particle size, shape, and composition. Similar profiles can be produced by using different combinations of particle shape and composition. For example, the NH3 signature at 2.97 micrometer, which is prominent in a spherical grain, is greatly suppressed when in an elongated grain. This is exactly equivalent to reducing the concentration of NH3 in a spherical grain. A morphological grain model is used to explain the large variations in the observed strength of the 3.07 micrometer ice band from one region of space to another.
Ultrasonics and space instrumentation
NASA Technical Reports Server (NTRS)
1987-01-01
The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.
The MEPHISTO scientific space instrument
NASA Astrophysics Data System (ADS)
Cambon, G.; Cadet, G.; Favier, J. J.
1987-02-01
A furnace to study solidification on Earth and in orbit was developed. Design and performances in Bridgman-Stockbarger directional solidification are given in terms of thermal gradient achievables, thermal gradient stability, back-melting mastering, and quenching capabilities. In-situ measurements in real time of fundamental parameters for the solidification process control, associated with a possible interactivity between the principal investigator on ground and the instrument in orbit, are among the main features of the space instrument.
Fundamental space radiobiology.
Nelson, Gregory A
2003-06-01
The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) emitted by the Sun and galactic sources, or trapped in the Van Allen radiation belts. These charged particles present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. There are three principal properties of charged particles that distinguish them from conventional radiation, i.e. gamma rays and x-rays. First, they have a defined range in matter rather than an exponential absorption profile. Second, they undergo nuclear reactions to produce secondary particles. Third, and most important, they deposit their energy along well-defined linear paths or tracks rather than diffuse fields. The structured energy deposition pattern interacts on multiple scales with the biological structures of DNA, cells and tissues to produce correlated patterns of damage that evade repair systems. Traditional concepts of dose and its associated normalization parameter, RBE (relative biological effectiveness), break down under experimental scrutiny, and probabilistic models of risk based on the number of particle traversals per cell may be more appropriate. Unique patterns of DNA damage, gene expression, mobilization of repair proteins, activation of cytokines and remodeling of cellular microenvironment are observed following exposure to high LET radiation. At low levels of exposure the communication of bioactive substances from irradiated to unirradiated "bystander" cells can amplify the damage and cause a significant deviation from linearity in dose vs. response relations. Under some circumstances, there is even a multigenerational delay in the expression of radiation-induced genetic damage (genomic instability) which is not strictly dose dependent. These issues and the experimental evidence derived from ground based experiments at particle
Fundamental space radiobiology
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.
2003-01-01
The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) emitted by the Sun and galactic sources, or trapped in the Van Allen radiation belts. These charged particles present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. There are three principal properties of charged particles that distinguish them from conventional radiation, i.e. gamma rays and x-rays. First, they have a defined range in matter rather than an exponential absorption profile. Second, they undergo nuclear reactions to produce secondary particles. Third, and most important, they deposit their energy along well-defined linear paths or tracks rather than diffuse fields. The structured energy deposition pattern interacts on multiple scales with the biological structures of DNA, cells and tissues to produce correlated patterns of damage that evade repair systems. Traditional concepts of dose and its associated normalization parameter, RBE (relative biological effectiveness), break down under experimental scrutiny, and probabilistic models of risk based on the number of particle traversals per cell may be more appropriate. Unique patterns of DNA damage, gene expression, mobilization of repair proteins, activation of cytokines and remodeling of cellular microenvironment are observed following exposure to high LET radiation. At low levels of exposure the communication of bioactive substances from irradiated to unirradiated "bystander" cells can amplify the damage and cause a significant deviation from linearity in dose vs. response relations. Under some circumstances, there is even a multigenerational delay in the expression of radiation-induced genetic damage (genomic instability) which is not strictly dose dependent. These issues and the experimental evidence derived from ground based experiments at particle
Parameters for burst detection
Bakkum, Douglas J.; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas; Takahashi, Hirokazu
2014-01-01
Bursts of action potentials within neurons and throughout networks are believed to serve roles in how neurons handle and store information, both in vivo and in vitro. Accurate detection of burst occurrences and durations are therefore crucial for many studies. A number of algorithms have been proposed to do so, but a standard method has not been adopted. This is due, in part, to many algorithms requiring the adjustment of multiple ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results. Here, we broadly catalog existing approaches and present a new approach requiring the selection of only a single parameter: the number of spikes N comprising the smallest burst to consider. A burst was identified if N spikes occurred in less than T ms, where the threshold T was automatically determined from observing a probability distribution of inter-spike-intervals. Performance was compared vs. different classes of detectors on data gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach offered a number of useful features including: a simple implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing approaches, detection was not biased toward larger bursts, allowing identification and analysis of a greater range of neuronal and network dynamics. PMID:24567714
Space station power semiconductor package
NASA Technical Reports Server (NTRS)
Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee
1987-01-01
A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.
Viscosity parameter values in accretion flows around black holes.
NASA Astrophysics Data System (ADS)
Nagarkoti, Shreeram; Chakrabarti, Sandip Kumar
2016-07-01
Viscosity is responsible for the transport of angular momentum in accretion processes. Assuming mixed stress prescription suitable for flow discontinuities, we draw parameter space of specific angular momentum and specific energy of flow at the inner sonic point for all possible values of viscosity parameter. Then, we identify the region which is capable of producing standard Rankine-Hugoniot shocks. From this analysis, it is found that a large range of values of viscosity parameter (0.0-0.3) is capable of producing shocks. At values larger than this, the parameter space allowing shock formation is negligible. The shock formation causes piling up of matter in the post-shock region which Comptonizes soft X-ray photons coming from the Keplerian accretion disk, creating the hard X-Ray radiation. Since numerical simulations generally produce alpha parameters very smaller as compared to this upper limit, we conclude that the shocks remain essential component to model black hole spectral and timing properties.
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Galasso, S. F.
1975-01-01
The investigations of directional solidification have indicated the necessity of establishing a secure foundation in earth-based laboratory processing in order to properly assess low-gravity processing. Emphasis was placed on evaluating the regularity of microstructure of the rod-like eutectic Al-Al3Ni obtained under different conditions of growth involving the parameters of thermal gradient, solidification rate, and interfacial curvature. In the case of Al-Al3Ni, where the Al3Ni phase appears as facets rods, solidification rate was determined to be a controlling parameter. Zone melting of thin eutectic films showed that for films of the order of 10 to 20 micrometers thick, the extra surface energy appears to act to stabilize a regular microstructure. The results suggest that the role of low-gravity as provided in space-laboratory processing of materials is to be sought in the possibility of generating a higher thermal gradient in the solidifying ingot for a given power input-output arrangement than can be obtained under normal one-g processes.
Space Science and Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Spann, James
2005-01-01
Space Science a t Marshall Space Flight Center is diverse and very interesting. It ranges from high energy astrophysics to astrobiology, from solar physics to space weather to dusty plasmas. I will present some of the more interesting investigations regarding auroral physics, what it takes to build a space camera, and laboratory investigations of dust. There will be time for questions and answers at the conclusion.
Space Flight. Teacher Resources.
ERIC Educational Resources Information Center
2001
This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4) "Information" (Space Transportation System;…
ERIC Educational Resources Information Center
Leder, Sandra J.
1992-01-01
Describes ideas for applying research from space programs to life science instruction including plants in space, exercise and diet on space flights, environmental advantages from space exploration, and the effects of microgravity on health. Discusses space spinoffs used in medicine including digital imaging processing and the Ingestible Thermal…
Space Weathering of Small Bodies
NASA Astrophysics Data System (ADS)
McFadden, L. A.
2002-12-01
Space weathering is defined as any process that wears away and alters surfaces, here confined to small bodies in the Solar System. Mechanisms which possibly alter asteroid and comet surfaces include solar wind bombardment, UV radiation, cosmic ray bombardment, micrometeorite bombardment. These processes are likely to contribute to surface processes differently. For example, solar wind bombardment would be more important on a body closer to the Sun compared to a comet where cosmic ray bombardment might be a more significant weathering mechanism. How can we measure the effects of space weathering? A big problem is that we don't know the nature of the surface before it was weathered. We are in a new era in the study of surface processes on small bodies brought about by the availability of spatially resolved, color and spectral measurements of asteroids from Galileo and NEAR. What processes are active on which bodies? What physics controls surface processes in different regions of the solar system? How do processes differ on different bodies of different physical and chemical properties? What combinations of observable parameters best address the nature of surface processes? Are there alternative explanations for the observed parameters that have been attributed to space weathering? Should we retain the term, space weathering? How can our understanding of space weathering on the Moon help us understand it on asteroids and comets? Finally, we have to leave behind some presuppositions, one being that there is evidence of space weathering based on the fact that the optical properties of S-type asteroids differs from those of ordinary chondrites.
Space history, space policy, and executive leadership
NASA Technical Reports Server (NTRS)
Kraemer, Sylvia K.
1993-01-01
A lecture that attempts to establish the role of space historians in formulating space policy is presented. The discussion focusses on two adages and their relevance to space policy. The adages are as follows: 'write about what you know;' and 'good managers do things right; good executives do the right things.'
Cook, J.M.
1995-07-01
Sands and Rees propose an electronic bench measurement of the impulse energy loss of a stored particle bunch to vacuum-chamber components. The components act as the outer conductor of a coaxial line with a thin wire as center conductor. Short pulses are then transmitted through this coaxial system to simulate relativistic particle bunches. Their proposal has since been implemented by several investigators and has become a well-known technique. They derive a first-order approximation to the loss parameter {kappa} for use in these measurements. The purpose of this note is to point out that exact expression for {kappa} is as simple as its first-order approximation and to recommend its use even when {kappa} is small.
Coordinated Parameter Identification Technique for the Inertial Parameters of Non-Cooperative Target
Ning, Xin; Zhang, Teng; Wu, Yaofa; Zhang, Pihui; Zhang, Jiawei; Li, Shuai; Yue, Xiaokui; Yuan, Jianping
2016-01-01
Space operations will be the main space missions in the future. This paper focuses on the precise operations for non-cooperative target, and researches of coordinated parameter identification (CPI) which allows the motion of multi-joints. The contents of this paper are organized: (1) Summarize the inertial parameters identification techniques which have been conducted now, and the technique based on momentum conservation is selected for reliability and realizability; (2) Elaborate the basic principles and primary algorithm of coordinated parameter identification, and analyze some special problems in calculation (3) Numerical simulation of coordinated identification technique by an case study on non-cooperative target of spacecraft mounting dual-arm with six joints is done. The results show that the coordinated parameter identification technique could get all the inertial parameters of the target in 3D by one-time identification, and does not need special configuration or driven joints, moreover the results are highly precise and save much more time than traditional ones. PMID:27116187
Visual exploration of parameter influence on phylogenetic trees.
Hess, Martin; Bremm, Sebastian; Weissgraeber, Stephanie; Hamacher, Kay; Goesele, Michael; Wiemeyer, Josef; von Landesberger, Tatiana
2014-01-01
Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.
How human sleep in space — investigations during space flights
NASA Astrophysics Data System (ADS)
Stoilova, I. M.; Zdravev, T. K.; Yanev, T. K.
Sleep problems have been observed during many of the space flights. The existence of poor quality of sleep, fatigue, insomnia or different alterations in sleep structure, organization and sleep cyclicity have been established. Nevertheless results obtained from investigations of human sleep on board manned space vehicles show that it is possible to keep sleep patterns related to the restorative and adaptive processes. For the first time in the frame of the "Intercosmos" program a multi-channel system for recording and analysis of sleep in space was constructed by scientists of the Bulgarian Academy of Sciences and was installed on board the manned Mir orbiting station. In 1988 during the joint Bulgarian-Russian space flight continues recording of electro-physiological parameters necessary to estimate the sleep stages and sleep organization was made. These investigations were continued in next space flights of different prolongation. The results were compared with the findings obtained under the conditions during the pre- and post-flight periods.
Software Computes Tape-Casting Parameters
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2003-01-01
Tcast2 is a FORTRAN computer program that accelerates the setup of a process in which a slurry containing metal particles and a polymeric binder is cast, to a thickness regulated by a doctor blade, onto fibers wound on a rotating drum to make a green precursor of a metal-matrix/fiber composite tape. Before Tcast2, setup parameters were determined by trial and error in time-consuming multiple iterations of the process. In Tcast2, the fiber architecture in the final composite is expressed in terms of the lateral distance between fibers and the thickness-wise distance between fibers in adjacent plies. The lateral distance is controlled via the manner of winding. The interply spacing is controlled via the characteristics of the slurry and the doctor-blade height. When a new combination of fibers and slurry is first cast and dried to a green tape, the shrinkage from the wet to the green condition and a few other key parameters of the green tape are measured. These parameters are provided as input to Tcast2, which uses them to compute the doctor-blade height and fiber spacings needed to obtain the desired fiber architecture and fiber volume fraction in the final composite.
Regularized estimation of Euler pole parameters
NASA Astrophysics Data System (ADS)
Aktuğ, Bahadir; Yildirim, Ömer
2013-07-01
Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.
Propellant Sloshing Parameter Extraction from CFD Analysis
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2010-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicle. The sloshing dynamics is typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the sloshing, sloshing mass, sloshing mass center coordinates, and critical damping coefficient. During the 1960 s US space program, these parameters were either computed from analytical solution for simple geometry or by experimental testing for the sub-scaled configurations. The purpose of this work is to demonstrate the soundness of a CFD approach in modeling the detailed fluid dynamics of tank sloshing and the excellent accuracy in extracting mechanical properties for different tank configurations and at different fill levels. The validation studies included straight cylinder against analytical solution, and sub-scaled Centaur LOX and LH2 tanks with and without baffles against experimental results. This effort shows that CFD technology can provide accurate mechanical parameters for any tank configuration, and is especially valuable to the future design of propellant tanks, as there is no previous experimental data available for the same size and configuration.
International Space Apps Challenge
During the 2013 Space Apps Challenge, space enthusiasts with diverse backgrounds gathered April 20-21 for a collaborative, global problem-solving effort. Held at Kennedy Space Center Visitor Comple...
NASA Astrophysics Data System (ADS)
Fawkes, S.
This paper compares and contrasts the characteristics of the first space race, which ran from the late 1950s to the late 1990s, and the second space race that began with the successful space flight of SpaceShipOne in 2004. The first space race was between superpowers seeking to establish geo-political dominance in the Cold War. The second space race will be between competing companies seeking to establish low cost access to space for ordinary people. The first space race achieved its geo- political objectives but did not open up low cost access to space but rather restricted access to a select few, highly trained astronauts and cosmonauts. The second space race, driven by the size and growth of the travel and tourism industry, promises to open up access to space to millions of space tourists.
Aboard the International Space Station, Flight Engineer Don Pettit of NASA created a video using Angry Birds Space to explain how physics works in space, including demonstrating trajectories in mic...
NASA Technical Reports Server (NTRS)
Smith, S. M.; Davis-Street, J.; Rice, B. L.; Lane, H. W.
1997-01-01
The authors review studies conducted to define nutritional requirements for astronauts during space flight and to assess nutrition before, during, and after space flight. Topics include space food systems, research and limitations on spacecraft, physiological adaptation to weightlessness, energy requirements, dietary intake during space flight, bone demineralization, gastrointestinal function, blood volume, and nutrition requirements for space flight. Benefits of space-related nutrition research are highlighted.
NASA Technical Reports Server (NTRS)
1970-01-01
Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.
The International Space University
NASA Astrophysics Data System (ADS)
Elaerts, Roger; Peeters, Walter
2006-05-01
The International Space University (ISU) offers, with the support of the world space community and within an international and intercultural environment, interdisciplinary post-graduate programmes in space studies. These graduate programmes prepare professionals from all sectors to meet the challenges of international space cooperation and the restructuring of the space sector. Although it was created as recently as 1987, the ISU is remarkably successful: by 2005 it had around 2400 alumni, forming a strong network in the space community.
The International Space Station in Space Exploration
NASA Technical Reports Server (NTRS)
Gerstenmaier, William H.; McKay, Meredith M.
2006-01-01
The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.
Takahashi, A; Ohnishi, T
2001-03-01
Astronauts were constantly exposed to space radiation containing various kinds of energy with a low-dose rate during long-term stays in space. Therefore, it is important to judge correctly the biological effect of space radiation for human health. In addition, research for space radiation might give us useful information concerning birth and evolution of lives on the earth. Here, we described a view of the future about space experiments at an International Space Station. Therefore, we desire to educate the space researcher of the next generation for importance of research for space radiation. PMID:12101375
Varied line spacing plane holographic grating recorded by using uniform line spacing plane gratings.
Qing, Ling; Gang, Wu; Bin, Liu; Qiuping, Wang
2006-07-20
Uniform line spacing plane gratings are introduced into a recording system to generate aspherical wavefronts for recording varied line spacing plane holographic gratings. Analytical expressions of groove parameters are derived to the fourth order. A ray-tracing validation algorithm is provided based on Fermat's principle and a local search method. The recording parameters are optimized to record a varied line spacing plane holographic grating with the aid of derived analytical expressions. A design example demonstrates the exactness of the analytical expressions and the superiority of recording optics with auxiliary gratings. PMID:16826244
Health Issues and Space Weather
NASA Astrophysics Data System (ADS)
Crosby, N.
2009-04-01
The possibility that solar activity and variations in the Earth's magnetic field may affect human health has been debated for many decades but is still a "scientific topic" in its infancy. By learning whether and, if so, how much the Earth's space weather can influence the daily health of people will be of practical importance. Knowing whether human genetics, include regulating factors that take into account fluctuations of the Earth's magnetic field and solar disturbances, indeed exist will also benefit future interplanetary space travelers. Because the atmospheres on other planets are different from ours, as well as their interaction with the space environment, one may ask whether we are equipped with the genetics necessary to take this variability into account. The goal of this presentation is to define what is meant by space weather as a health risk and identify the long-term socio-economic effects on society that such health risks would have. Identifying the physical links between space weather sources and different effects on human health, as well as the parameters (direct and indirect) to be monitored, the potential for such a cross-disciplinary study will be invaluable, for scientists and medical doctors, as well as for engineers.
Stochastic control system parameter identifiability
NASA Technical Reports Server (NTRS)
Lee, C. H.; Herget, C. J.
1975-01-01
The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.
A generalized analysis of solar space heating
NASA Astrophysics Data System (ADS)
Clark, J. A.
A life-cycle model is developed for solar space heating within the United States. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a solar space heating system. An important optimum condition presented is the break-even metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center.
Parameters of spinning AM reticles.
Driggers, R G; Halford, C E; Boreman, G D
1991-07-01
A new method of obtaining amplitude modulation (AM) for determining target location with spinning reticles is presented. The method is based on the use of graded transmission capabilities. The AM spinning reticles previously presented were functions of three parameters: amplitude vs angle, amplitude vs radius, and phase. This paper presents these parameters along with their capabilities and limitations and shows that multiple parameters can be integrated into a single reticle. It is also shown that AM parameters can be combined with FM parameters in a single reticle. Also, a general equation is developed that relates the AM parameters to a reticle transmission equation. PMID:20700262
A study of parameter identification
NASA Technical Reports Server (NTRS)
Herget, C. J.; Patterson, R. E., III
1978-01-01
A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.
Space station configuration and flight dynamics identification
NASA Technical Reports Server (NTRS)
Metter, E.; Milman, M. H.
1985-01-01
The Space Station will be assembled in low earth orbit by a combination of deployable and space erectable modules that are progressively integrated during successive flights of the Shuttle. The crew assisted space construction will result in a configuration which is a large scale composite of structural elements having connectivity with a wide range of possible end conditions and imprecisely known dynamic characteristics. The generic applications of Flight Dynamics Identification to the candidate Space Station configurations currently under consideration are described. Identification functions are categorized, and the various methods for extracting parameter estimates are correlated with the sensing of parameter estimates are correlated with the sensing of specific characteristics of interest to both engineering subsystems and users of the Station's commercial and scientific facilities. Onboard implementation architecture and constraints are discussed from the viewpoint of maximizing integration of the Identification process with the flight subsystem's data and signal flow.
Testing Saliency Parameters for Automatic Target Recognition
NASA Technical Reports Server (NTRS)
Pandya, Sagar
2012-01-01
A bottom-up visual attention model (the saliency model) is tested to enhance the performance of Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-learning techniques. In this project, saliency is used as a pre-processing step to reduce the space for performing OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known target features. Preliminary results are promising and future work entails a rigrous and parameter-based search to gain maximum insight about this method.
Habitable zone dependence on stellar parameter uncertainties
Kane, Stephen R.
2014-02-20
An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.
Discovering independent parameters in complex dynamical systems
Lainscsek, Claudia; Weyhenmeyer, Jonathan; Sejnowski, Terrence J.; Letellier, Christophe
2015-01-01
The transformation of a nonlinear dynamical system into a standard form by using one of its variables and its successive derivatives can be used to identify the relationships that may exist between the parameters of the original system such as the subset of the parameter space over which the dynamics is left invariant. We show how the size of the attractor or the time scale (the pseudo-period) can be varied without affecting the underlying dynamics. This is demonstrated for the Rössler and the Lorenz systems. We also consider the case when two Rössler systems are unidirectionally coupled and when a Lorenz system is driven by a Rössler system. In both cases, the dynamics of the coupled system is affected. PMID:25983399
Search for the Data of Space Debris Initial Distribution
NASA Astrophysics Data System (ADS)
Ping-Ping, Zhang; Bao-Jun, Pang
Space debris environment model is one of the kernels of the research on space debris Space debris environment model is based on the data of space debris that is if we have the data of space debris orbit parameter we can determine the state of space debris distribution and then the spacecraft risk assessment can be executed Because numbers of small size space debris cannot be detected or observed we have not small size space debris data The short of small size space debris data leads to the engineering model inaccurate model needs to be updated while in the status of seriously short of data the model can not be updated in time In allusion to the problem of scarcity of data on the basis of modern computer arithmetic this paper is trying to search new data with old data and the results of the model is close to other engineering models Key words space debris data
Space Communications Emulation Facility
NASA Technical Reports Server (NTRS)
Hill, Chante A.
2004-01-01
Establishing space communication between ground facilities and other satellites is a painstaking task that requires many precise calculations dealing with relay time, atmospheric conditions, and satellite positions, to name a few. The Space Communications Emulation Facility (SCEF) team here at NASA is developing a facility that will approximately emulate the conditions in space that impact space communication. The emulation facility is comprised of a 32 node distributed cluster of computers; each node representing a satellite or ground station. The objective of the satellites is to observe the topography of the Earth (water, vegetation, land, and ice) and relay this information back to the ground stations. Software originally designed by the University of Kansas, labeled the Emulation Manager, controls the interaction of the satellites and ground stations, as well as handling the recording of data. The Emulation Manager is installed on a Linux Operating System, employing both Java and C++ programming codes. The emulation scenarios are written in extensible Markup Language, XML. XML documents are designed to store, carry, and exchange data. With XML documents data can be exchanged between incompatible systems, which makes it ideal for this project because Linux, MAC and Windows Operating Systems are all used. Unfortunately, XML documents cannot display data like HTML documents. Therefore, the SCEF team uses XML Schema Definition (XSD) or just schema to describe the structure of an XML document. Schemas are very important because they have the capability to validate the correctness of data, define restrictions on data, define data formats, and convert data between different data types, among other things. At this time, in order for the Emulation Manager to open and run an XML emulation scenario file, the user must first establish a link between the schema file and the directory under which the XML scenario files are saved. This procedure takes place on the command
Space weather: European Space Agency perspectives
NASA Astrophysics Data System (ADS)
Daly, E. J.; Hilgers, A.
Spacecraft and payloads have become steadily more sophisticated and therefore more susceptible to space weather effects. ESA has long been active in applying models and tools to the problems associated with such effects on its spacecraft. In parallel, ESA and European agencies have built a highly successful solar-terrestrial physics capability. ESA is now investigating the marriage of these technological and scientific capabilities to address perceived user needs for space weather products and services. Two major ESA-sponsored studies are laying the groundwork for a possible operational European space weather service. The wide-ranging activities of ESA in the Space Weather/Space Environment domain are summarized and recent important examples of space weather concerns given.
Space vehicle propulsion systems: Environmental space hazards
NASA Technical Reports Server (NTRS)
Disimile, P. J.; Bahr, G. K.
1990-01-01
The hazards that exist in geolunar space which may degrade, disrupt, or terminate the performance of space-based LOX/LH2 rocket engines are evaluated. Accordingly, a summary of the open literature pertaining to the geolunar space hazards is provided. Approximately 350 citations and about 200 documents and abstracts were reviewed; the documents selected give current and quantitative detail. The methodology was to categorize the various space hazards in relation to their importance in specified regions of geolunar space. Additionally, the effect of the various space hazards in relation to spacecraft and their systems were investigated. It was found that further investigation of the literature would be required to assess the effects of these hazards on propulsion systems per se; in particular, possible degrading effects on exterior nozzle structure, directional gimbals, and internal combustion chamber integrity and geometry.
Space Toxicology: Human Health during Space Operations
NASA Technical Reports Server (NTRS)
Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing
2010-01-01
Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.
Parameter estimation for boundary value problems by integral equations of the second kind
NASA Technical Reports Server (NTRS)
Kojima, Fumio
1988-01-01
This paper is concerned with the parameter estimation for boundary integral equations of the second kind. The parameter estimation technique through use of the spline collocation method is proposed. Based on the compactness assumption imposed on the parameter space, the convergence analysis for the numerical method of parameter estimation is discussed. The results obtained here are applied to a boundary parameter estimation for 2-D elliptic systems.
CONTOURING RANDOMLY SPACED DATA
NASA Technical Reports Server (NTRS)
Hamm, R. W.
1994-01-01
This program prepares contour plots of three-dimensional randomly spaced data. The contouring techniques use a triangulation procedure developed by Dr. C. L. Lawson of the Jet Propulsion Laboratory which allows the contouring of randomly spaced input data without first fitting the data into a rectangular grid. The program also allows contour points to be fitted with a smooth curve using an interpolating spline under tension. The input data points to be contoured are read from a magnetic tape or disk file with one record for each data point. Each record contains the X and Y coordinates, value to be contoured, and an alternate contour value (if applicable). The contour data is then partitioned by the program to reduce core storage requirements. Output consists of the contour plots and user messages. Several output options are available to the user such as: controlling which value in the data record is to be contoured, whether contours are drawn by polygonal lines or by a spline under tension (smooth curves), and controlling the contour level labels which may be suppressed if desired. The program can handle up to 56,000 data points and provide for up to 20 contour intervals for a multiple number of parameters. This program was written in FORTRAN IV for implementation on a CDC 6600 computer using CALCOMP plotting capabilities. The field length required is dependent upon the number of data points to be contoured. The program requires 42K octal storage locations plus the larger of: 24 times the maximum number of points in each data partition (defaults to maximum of 1000 data points in each partition with 20 percent overlap) or 2K plus four times the total number of points to be plotted. This program was developed in 1975.
Estimating Lives Of Space Shuttle Parts
NASA Technical Reports Server (NTRS)
Watkins, Tommie, Jr.; Annis, Chuck G.
1994-01-01
SSPOC (Space Shuttle Probabilistic Optimization Code) computer program, implements probabilistic mathematical model, accepts defined distributions of parameters controlling life of Space Shuttle main engine. Used to perform tradeoff studies to optimize between service life and acceptable level of risk, with greater accuracy. Also includes probability of removal and failure of parts, along with number of surviving parts for each interval of inspections. Written in FORTRAN 77, and user interface written in PASCAL(R).
Space Transportation System (STS): Emergency support
NASA Technical Reports Server (NTRS)
Janoski, T.; Nicholson, L.
1991-01-01
The DSN (Deep Space Network) mission support requirements for emergency support of the Space Transportation System (STS) are summarized. Coverage would be provided by the DSN during emergencies that would prevent communications between the shuttle and the White Sands TDRSS receiving station. The DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The Johnson Space Center (JSC) in Houston is NASA's lead center for the space shuttle and the International Space Station programs and for biomedical research. Areas of study include Earth sciences and solar system exploration, astromaterials and space medicine. About 14 000 people, including 3000 civil servants, work at JSC....
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This document is designed primarily to describe the U.S. Space Program, its history, its current state of development, and its goals for the future. Chapter headings include: Space and You; The Early History of Space Flight; The Solar System; Space Probes and Satellites; Scientific Satellites and Sounding Rockets; Application Satellites, Unmanned…
NASA Technical Reports Server (NTRS)
Johnson, R. D.
1977-01-01
Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.
Space Guidelines for Libraries.
ERIC Educational Resources Information Center
Wisconsin Coordinating Committee for Higher Education, Madison.
The following guidelines are recommended: stack space--for each 10 volumes, one square foot of space; reading room--25 square feet per station x 20% of the total undergraduate population; carrel space--25% of the graduate enrollment x 45 square feet; office and auxilliary space--135 square feet x full time equivalent staff. (NI)
ERIC Educational Resources Information Center
Harris, Watson
2011-01-01
There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.; Mckay, David S.
1991-01-01
The topics covered include the following: reducing the cost of space exploration; the high cost of shipping; lunar raw materials; some useful space products; energy from the moon; ceramic, glass, and concrete construction materials; mars atmosphere resources; relationship to the Space Exploration Initiative (SEI); an evolutionary approach to using space resources; technology development; and oxygen and metal coproduction.
NASA Astrophysics Data System (ADS)
Leroy, Benoit; Helfers, Tim; Poupat, Jean-Luc
2015-09-01
The TCLS ARM FOR SPACE proposal was an answer to the H2020 topic “COMPET-6-2014: Bottom-up Space Technologies at low TRL”. This paper presents this H2020 TCLS ARM FOR SPACE initiative led by Airbus DS and which aims at fostering the use of European technology such as ARM processing for Space.
NASA Technical Reports Server (NTRS)
Talapatra, Dipak C.
1993-01-01
The Indian Space program aimed at providing operation space services in communications and remote sensing and using state-of-the-art space technologies is reviewed. Emphasis is placed on the development and operation of satellites and launch vehicles for providing these space services.
Order Parameters for Two-Dimensional Networks
NASA Astrophysics Data System (ADS)
Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi
2007-10-01
We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.
Spin Hall effect on a noncommutative space
Ma Kai; Dulat, Sayipjamal
2011-07-15
We study the spin-orbital interaction and the spin Hall effect of an electron moving on a noncommutative space under the influence of a vector potential A(vector sign). On a noncommutative space, we find that the commutator between the vector potential A(vector sign) and the electric potential V{sub 1}(r(vector sign)) of the lattice induces a new term, which can be treated as an effective electric field, and the spin Hall conductivity obtains some correction. On a noncommutative space, the spin current and spin Hall conductivity have distinct values in different directions, and depend explicitly on the noncommutative parameter. Once this spin Hall conductivity in different directions can be measured experimentally with a high level of accuracy, the data can then be used to impose bounds on the value of the space noncommutativity parameter. We have also defined a new parameter, {sigma}={rho}{theta} ({rho} is the electron concentration, {theta} is the noncommutativity parameter), which can be measured experimentally. Our approach is based on the Foldy-Wouthuysen transformation, which gives a general Hamiltonian of a nonrelativistic electron moving on a noncommutative space.
The mirror effect and the spacing effect.
Murdock, Bennet
2003-09-01
In the mirror effect, there are fewer false negatives (misses) and false positives (false alarms) for rare (low-frequency) words than for common (high-frequency) words. In the spacing effect, recognition accuracy is positively related to the interval (spacing or lag) between two presentations of an item. These effects are related in that they are both manifestations of a leapfrog effect (a weaker item jumps over a stronger item). They seem to be puzzles for traditional strength theory and at least some current global-matching models. A computational strength-based model (EICL) is proposed that incorporates excitation, inhibition, and a closed-loop learning algorithm. The model consists of three nonlinear coupled stochastic difference equations, one each for excitation (x), inhibition (y), and context (z). Strength is the algebraic sum (i.e., s = x - y + z). These equations are used to form a toy lexicon that serves as a basis for the experimental manipulations. The model can simulate the mirror effect forced-choice inequalities and the spacing effect for single-item recognition, all parameters are random variables, and the same parameter values are used for both the mirror and the spacing effects. No parameter values varied with the independent variables (word frequency for the mirror effect, lag for the spacing effect), so the model, not the parameters, is doing the work. PMID:14620350
Space Physiology and Operational Space Medicine
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.
2009-01-01
The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.
Subsurface Geotechnical Parameters Report
D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson
2003-12-17
The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce
NASA Technical Reports Server (NTRS)
Woodfill, Jerry
1992-01-01
The Space Educators' Handbook is a collection of space exploration information available on Hypercard as a space education reference book. Ranging from early dreams of space ships to current manned missions, the more than four thousand cards include entries of statistics, historical facts and anecdotes, technical articles, accounts of NASA missions from Mercury through the space shuttle, biographical information on women and men who have contributed to space exploration, scientific facts, and various other space-related data. The means of presenting the data range from cartoons and drawings to lists and narratives, some briefly quoted and some reproduced in full.
NASA Technical Reports Server (NTRS)
Moffitt, William L.
2003-01-01
As missions have become increasingly more challenging over the years, the most adaptable and capable element of space shuttle operations has proven time and again to be human beings. Human space flight provides unique aspects of observation. interaction and intervention that can reduce risk and improve mission success. No other launch vehicle - in development or in operation today - can match the space shuttle's human space flight capabilities. Preserving U.S. leadership in human space flight requires a strategy to meet those challenges. The ongoing development of next generation vehicles, along with upgrades to the space shuttle, is the most effective means for assuring our access to space.
NASA Technical Reports Server (NTRS)
Morrison, D. R. (Compiler)
1977-01-01
Proceedings are presented of the 1976 NASA Colloquium on bioprocessing in space. The program included general sessions and formal presentations on the following topics: NASA's Space Shuttle, Spacelab, and space-processing programs; the known unusual behavior of materials in space; space-processing experiment results; cell biology, gravity sensors in cells, space electrophoresis of living cells, new approaches to biosynthesis of biologicals from cell culture in space, and zero-g fermentation concepts; and upcoming flight opportunities and industrial application planning studies already underway.
Design challenges for space bioreactors
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Petersen, G. R.
1989-01-01
The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.
NASA Technical Reports Server (NTRS)
1990-01-01
Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.
Parameter identification in periodic delay differential equations with distributed delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.; Khasawneh, Firas A.
2013-04-01
In this study, a parameter identification approach for identifying the parameters of a periodic delayed system with distributed delay is introduced based on time series analysis and spectral element analysis. Using this approach the parameters of the distributed delayed system can be identified from the time series of the response of the system. The experimental or numerical data of the response is examined with Floquet theory and time series analysis techniques to estimate a reduced order dynamics, or truncated state space to identify the Floquet multipliers. Parameter identification is then completed using a dynamic map developed for the assumed model of the system which can relate the Floquet multipliers to the unknown parameters in the model. The parameter identification technique is validated numerically for first and second order delay differential equations with distributed delay.
Bibliography for aircraft parameter estimation
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Maine, Richard E.
1986-01-01
An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.
Parameter Sensitivity in Multivariate Methods
ERIC Educational Resources Information Center
Green, Bert F., Jr.
1977-01-01
Interpretation of multivariate models requires knowing how much the fit of the model is impaired by changes in the parameters. The relation of parameter change to loss of goodness of fit can be called parameter sensitivity. Formulas are presented for assessing the sensitivity of multiple regression and principal component weights. (Author/JKS)
Rajora, Manik; Zou, Pan; Yang, Yao Guang; Fan, Zhi Wen; Chen, Hung Yi; Wu, Wen Chieh; Li, Beizhi; Liang, Steven Y
2016-01-01
It can be observed from the experimental data of different processes that different process parameter combinations can lead to the same performance indicators, but during the optimization of process parameters, using current techniques, only one of these combinations can be found when a given objective function is specified. The combination of process parameters obtained after optimization may not always be applicable in actual production or may lead to undesired experimental conditions. In this paper, a split-optimization approach is proposed for obtaining multiple solutions in a single-objective process parameter optimization problem. This is accomplished by splitting the original search space into smaller sub-search spaces and using GA in each sub-search space to optimize the process parameters. Two different methods, i.e., cluster centers and hill and valley splitting strategy, were used to split the original search space, and their efficiency was measured against a method in which the original search space is split into equal smaller sub-search spaces. The proposed approach was used to obtain multiple optimal process parameter combinations for electrochemical micro-machining. The result obtained from the case study showed that the cluster centers and hill and valley splitting strategies were more efficient in splitting the original search space than the method in which the original search space is divided into smaller equal sub-search spaces.
Rajora, Manik; Zou, Pan; Yang, Yao Guang; Fan, Zhi Wen; Chen, Hung Yi; Wu, Wen Chieh; Li, Beizhi; Liang, Steven Y
2016-01-01
It can be observed from the experimental data of different processes that different process parameter combinations can lead to the same performance indicators, but during the optimization of process parameters, using current techniques, only one of these combinations can be found when a given objective function is specified. The combination of process parameters obtained after optimization may not always be applicable in actual production or may lead to undesired experimental conditions. In this paper, a split-optimization approach is proposed for obtaining multiple solutions in a single-objective process parameter optimization problem. This is accomplished by splitting the original search space into smaller sub-search spaces and using GA in each sub-search space to optimize the process parameters. Two different methods, i.e., cluster centers and hill and valley splitting strategy, were used to split the original search space, and their efficiency was measured against a method in which the original search space is split into equal smaller sub-search spaces. The proposed approach was used to obtain multiple optimal process parameter combinations for electrochemical micro-machining. The result obtained from the case study showed that the cluster centers and hill and valley splitting strategies were more efficient in splitting the original search space than the method in which the original search space is divided into smaller equal sub-search spaces. PMID:27625978
NASA Technical Reports Server (NTRS)
Mellett, Kevin
2006-01-01
This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.
Drawing Dynamical and Parameters Planes of Iterative Families and Methods
Chicharro, Francisco I.
2013-01-01
The complex dynamical analysis of the parametric fourth-order Kim's iterative family is made on quadratic polynomials, showing the MATLAB codes generated to draw the fractal images necessary to complete the study. The parameter spaces associated with the free critical points have been analyzed, showing the stable (and unstable) regions where the selection of the parameter will provide us the excellent schemes (or dreadful ones). PMID:24376386
Drawing dynamical and parameters planes of iterative families and methods.
Chicharro, Francisco I; Cordero, Alicia; Torregrosa, Juan R
2013-01-01
The complex dynamical analysis of the parametric fourth-order Kim's iterative family is made on quadratic polynomials, showing the MATLAB codes generated to draw the fractal images necessary to complete the study. The parameter spaces associated with the free critical points have been analyzed, showing the stable (and unstable) regions where the selection of the parameter will provide us the excellent schemes (or dreadful ones).
Space time neural networks for tether operations in space
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles
1993-01-01
A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating tethered payloads in earth orbit. due to the interaction between the Earth's magnetic field and current pulsing through the tether, the tethered system may exhibit a circular transverse oscillation referred to as the 'skiprope' phenomenon. Effective damping of skiprope motion depends on rapid and accurate detection of skiprope magnitude and phase. Because of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations during the skiprope motion. Since the satellite attitude motion has many other perturbations, the relationship between the skiprope parameters and attitude time history is very involved and non-linear. We propose a Space-Time Neural Network implementation for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and phase. Training and testing of the skiprope detection system will be performed using a validated Orbital Operations Simulator and Space-Time Neural Network software developed in the Software Technology Branch at NASA's Lyndon B. Johnson Space Center.
A Feasibility Study of Space VLBI for Geodesy and Geodynamics
NASA Astrophysics Data System (ADS)
Kulkarni, Madhav Narayan
1992-01-01
Space Very Long Baseline Interferometry (VLBI) is an extension of the ground based VLBI to the space. With the launching of two or more Space VLBI satellites in the future, Space VLBI observations will be available for astrometric, geodetic and geodynamic applications. This new technique holds potential for various important applications including monitoring Earth rotation and interconnection of the reference frames used in geodesy and geodynamics. The aim of this feasibility study has been to investigate the possibility of precise estimation of geodetic parameters, with emphasis on the Earth rotation parameters (ERP's), from Space VLBI observations. A brief description of the Space VLBI technique, it's possible applications, and the Space VLBI missions being planned has been given. Estimability analysis to investigate the estimability of geodetic parameters from Space VLBI observations has been carried out and a simplified mathematical model is derived in terms of estimable parameters. Results of sensitivity analysis carried out to study the sensitivity of the Space VLBI observables to the geodetic parameters of interest, including the number of these parameters and random errors in their a priori values, have been presented. Some of the dominant systematic effects including atmospheric refraction, solar radiation pressure and relativistic effects have also been investigated. Simulation studies have been carried out to study the influence of these systematic effects and a priori information on the estimation of the Earth rotation parameters. The results from the simulation studies indicate that it may be possible to use the Space VLBI technique for monitoring Earth rotation and polar motion, only if the orbital systematic effects can be modeled to a high degree of accuracy (or the satellites can be tracked, with high accuracy, independently), and precise a priori information on station coordinates from other sources is used. A brief description of the Space VLBI
Man in Space, Space in the Seventies.
ERIC Educational Resources Information Center
Froehlich, Walter
Included is a summary of the Apollo lunar program to date. Projected future NASA programs planned for the 1970's are discussed under the headings Skylab, Space Shuttle, and Space Station. Possibilities for the 1980's are outlined in the final section. (Author/AL)
NASA Technical Reports Server (NTRS)
Balas, Mark
1991-01-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate
Effects of Space Flight on Rodent Tissues
NASA Technical Reports Server (NTRS)
Worgul, Basil V.
1997-01-01
As the inevitable expression of mankind's search for knowledge continues into space, the potential acute and long-term effects of space flight on human health must be fully appreciated. Despite its critical role relatively little is known regarding the effects of the space environment on the ocular system. Our proposed studies were aimed at determining whether or not space flight causes discernible disruption of the genomic integrity, cell kinetics, cytoarchitecture and other cytological parameters in the eye. Because of its defined and singular biology our main focus was on the lens and possible changes associated with its primary pathology, cataract. We also hoped to explore the possible effect of space flight on the preferred orientation of dividing cells in the perilimbal region of conjunctiva and cornea.
Actuators for a space manipulator
NASA Technical Reports Server (NTRS)
Chun, W.; Brunson, P.
1987-01-01
The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.
A Note on Noncentrality Parameters for Contrast Tests in a One-Way Analysis of Variance
ERIC Educational Resources Information Center
Liu, Xiaofeng Steven
2010-01-01
The noncentrality parameter for a contrast test in a one-way analysis of variance is based on the dot product of 2 vectors whose geometric meaning in a Euclidian space offers mnemonic hints about its constituents. Additionally, the noncentrality parameters for a set of orthogonal contrasts sum up to the noncentrality parameter for the omnibus "F"…
Gravitational wave science from space
NASA Astrophysics Data System (ADS)
Gair, Jonathan R.
2016-05-01
The rich millihertz gravitational wave band can only be accessed with a space- based detector. The technology for such a detector will be demonstrated by the LISA Pathfinder satellite that is due to launch this year and ESA has selected gravitational wave detection from space as the science theme to be addressed by the L3 large mission to be launched around 2034. In this article we will discuss the sources that such an instrument will observe, and how the numbers of events and precision of parameter determination are affected by modifications to the, as yet not finalised, mission design. We will also describe some of the exciting scientific applications of these observations, to astrophysics, fundamental physics and cosmology.
Function Spaces for Liquid Crystals
NASA Astrophysics Data System (ADS)
Bedford, Stephen
2016-02-01
We consider the relationship between three continuum liquid crystal theories: Oseen-Frank, Ericksen and Landau-de Gennes. It is known that the function space is an important part of the mathematical model and by considering various function space choices for the order parameters s, n, and Q, we establish connections between the variational formulations of these theories. We use these results to justify a version of the Oseen-Frank theory using special functions of bounded variation. This proposed model can describe both orientable and non-orientable defects. Finally we study a number of frustrated nematic and cholesteric liquid crystal systems and show that the model predicts the existence of point and surface discontinuities in the director.
Neuroplasticity changes during space flight
NASA Astrophysics Data System (ADS)
Slenzka, K.
Neuroplasticity refers to the ability of neurons to alter some functional property in response to alterations in input. Most of the inputs received by the brain and thus the neurons are coming from the overall sensory system. The lack of gravity during space flight or even the reduction of gravity during the planned Mars missions are and will change these inputs. The often observed "loop swimming" of some aquatic species is under discussion to be based on sensory input changes as well as the observed motion sickness of astronauts and cosmonauts. Several reports are published regarding these changes being based on alterations of general neurophysiological parameters. In this paper a summing-up of recent results obtained in the last years during space flight missions will be presented. Beside data obtained from astronauts and cosmonauts, main focus of this paper will be on animal model system data.
Biomedical engineering strategies in system design space.
Savageau, Michael A
2011-04-01
Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development
Development and testing of a mouse simulated space flight model
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1987-01-01
The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.
Double Negativity in 3D Space Coiling Metamaterials.
Maurya, Santosh K; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit
2016-09-21
Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.
Double Negativity in 3D Space Coiling Metamaterials
NASA Astrophysics Data System (ADS)
Maurya, Santosh K.; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit
2016-09-01
Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.
Double Negativity in 3D Space Coiling Metamaterials
Maurya, Santosh K.; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit
2016-01-01
Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion. PMID:27649966
Double Negativity in 3D Space Coiling Metamaterials.
Maurya, Santosh K; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit
2016-01-01
Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion. PMID:27649966
Method of measuring the dc electric field and other tokamak parameters
Fisch, Nathaniel J.; Kirtz, Arnold H.
1992-01-01
A method including externally imposing an impulsive momentum-space flux to perturb hot tokamak electrons thereby producing a transient synchrotron radiation signal, in frequency-time space, and the inference, using very fast algorithms, of plasma parameters including the effective ion charge state Z.sub.eff, the direction of the magnetic field, and the position and width in velocity space of the impulsive momentum-space flux, and, in particular, the dc toroidal electric field.
System definition study of deployable, non-metallic space structures
NASA Astrophysics Data System (ADS)
Stimler, F. J.
1984-06-01
The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hanger; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.
System definition study of deployable, non-metallic space structures
NASA Technical Reports Server (NTRS)
Stimler, F. J.
1984-01-01
The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.
NASA Technical Reports Server (NTRS)
Manshadi, Farzin
2012-01-01
ITU defines deep space as the volume of Space at distances from the Earth equal to, or greater than, 2 106 km. Deep Space Spacecraft have to travel tens of millions of km from Earth to reach the nearest object in deep space. Spacecraft mass and power are precious. Large ground-based antennas and very high power transmitters are needed to overcome large space loss and spacecraft's small antennas and low power transmitters. Navigation is complex and highly dependent on measurements from the Earth. Every deep space mission is unique and therefore very costly to develop.
NASA Technical Reports Server (NTRS)
Lane, J. H.; Schulman, J. R.; Neupert, W. M.
1985-01-01
The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated.
NASA Technical Reports Server (NTRS)
Martin, James A.
1993-01-01
The National Aeronautics and Space Administration is currently considering possible directions in Earth-to-orbit vehicle development under a study called 'Access to Space.' This agency-wide study is considering commercial launch vehicles, human transportation, space station logistics, and other space transportation requirements over the next 40 years. Three options are being considered for human transportation: continued use of the Space Shuttle; development of a small personnel carrier (personnel logistics system (PLS)); or development of an advanced vehicle such as a single-stage-to-orbit (SSTO). Several studies related to the overall Access to Space study are reported in this document.
Confined Space Imager (CSI) Software
Karelilz, David
2013-07-03
The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to an external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.
Quantum phase transition in space
Damski, Bogdan; Zurek, Wojciech H
2008-01-01
A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.
Genetic algorithm parameter optimization: applied to sensor coverage
NASA Astrophysics Data System (ADS)
Sahin, Ferat; Abbate, Giuseppe
2004-08-01
Genetic Algorithms are powerful tools, which when set upon a solution space will search for the optimal answer. These algorithms though have some associated problems, which are inherent to the method such as pre-mature convergence and lack of population diversity. These problems can be controlled with changes to certain parameters such as crossover, selection, and mutation. This paper attempts to tackle these problems in GA by having another GA controlling these parameters. The values for crossover parameter are: one point, two point, and uniform. The values for selection parameters are: best, worst, roulette wheel, inside 50%, outside 50%. The values for the mutation parameter are: random and swap. The system will include a control GA whose population will consist of different parameters settings. While this GA is attempting to find the best parameters it will be advancing into the search space of the problem and refining the population. As the population changes due to the search so will the optimal parameters. For every control GA generation each of the individuals in the population will be tested for fitness by being run through the problem GA with the assigned parameters. During these runs the population used in the next control generation is compiled. Thus, both the issue of finding the best parameters and the solution to the problem are attacked at the same time. The goal is to optimize the sensor coverage in a square field. The test case used was a 30 by 30 unit field with 100 sensor nodes. Each sensor node had a coverage area of 3 by 3 units. The algorithm attempts to optimize the sensor coverage in the field by moving the nodes. The results show that the control GA will provide better results when compared to a system with no parameter changes.
Parameter estimation on gravitational waves from multiple coalescing binaries
Mandel, Ilya
2010-04-15
Future ground-based and space-borne interferometric gravitational-wave detectors may capture between tens and thousands of binary coalescence events per year. There is a significant and growing body of work on the estimation of astrophysically relevant parameters, such as masses and spins, from the gravitational-wave signature of a single event. This paper introduces a robust Bayesian framework for combining the parameter estimates for multiple events into a parameter distribution of the underlying event population. The framework can be readily deployed as a rapid post-processing tool.
Application of physical parameter identification to finite-element models
NASA Technical Reports Server (NTRS)
Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.
1987-01-01
The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.
[Reflections on physical spaces and mental spaces].
Chen, Hung-Yi
2013-08-01
This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context. PMID:23922087
[Reflections on physical spaces and mental spaces].
Chen, Hung-Yi
2013-08-01
This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.
Space transfer vehicles and space basing
NASA Technical Reports Server (NTRS)
Kelley, Joe
1991-01-01
The topics covered include the following: (1) space basing agenda; (2) mission scenario 4E-5B, crew and Lunar Excursion Vehicle (LEV) delivery; (3) final concept candidate, crew concept 4E-2B; (4) space transfer vehicle (STV) concept 4E-5B; (5) configuration summary for crew concept 4E-5B; (6) configuration definition for crew concept 4E-5B; (7) low earth orbit node assembly and checkout operations; (8) criteria for operation objectives; (9) LTV and STV main engines; (10) Space Station Freedom impacts; (11) aerobrakes; and (12) on orbit operations. This document is presented in viewgraph form.
Parameters of spinning FM reticles.
Driggers, R G; Halford, C E; Boreman, G D; Lattman, D; Williams, K F
1991-03-01
The literature describes tracking devices that allow a single detector coupled to a spinning FM reticle to determine target location. The spinning FM reticles presented were limited to single parameter reticles of frequency vs angle, frequency vs radius, or phase. This study presents these parameters with their capabilities and limitations and shows that multiple parameters can be integrated into a single reticle. Also, a general equation is developed that describes any FM reticle of the spinning type. PMID:20582075
MODFLOW-style parameters in underdetermined parameter estimation
D'Oria, M.; Fienen, M.N.
2012-01-01
In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW-2005 and MODFLOW-2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes. ?? 2011, National Ground Water Association.
MODFLOW-style parameters in underdetermined parameter estimation
D'Oria, Marco D.; Fienen, Michael N.
2012-01-01
In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW_2005 and MODFLOW_2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes.
MODFLOW-Style parameters in underdetermined parameter estimation.
D'Oria, Marco; Fienen, Michael N
2012-01-01
In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW_2005 and MODFLOW_2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes. PMID:21352210
Parameter estimation in food science.
Dolan, Kirk D; Mishra, Dharmendra K
2013-01-01
Modeling includes two distinct parts, the forward problem and the inverse problem. The forward problem-computing y(t) given known parameters-has received much attention, especially with the explosion of commercial simulation software. What is rarely made clear is that the forward results can be no better than the accuracy of the parameters. Therefore, the inverse problem-estimation of parameters given measured y(t)-is at least as important as the forward problem. However, in the food science literature there has been little attention paid to the accuracy of parameters. The purpose of this article is to summarize the state of the art of parameter estimation in food science, to review some of the common food science models used for parameter estimation (for microbial inactivation and growth, thermal properties, and kinetics), and to suggest a generic method to standardize parameter estimation, thereby making research results more useful. Scaled sensitivity coefficients are introduced and shown to be important in parameter identifiability. Sequential estimation and optimal experimental design are also reviewed as powerful parameter estimation methods that are beginning to be used in the food science literature.
As early as the nineteenth century, writers and artists and scientists around the world began to publish their visions of a crewed outpost in space. Learn about the history of space stations, from ...
NASA Technical Reports Server (NTRS)
Tarver, William J.
2012-01-01
Learning Objectives are: (1) Understand the unique work environment of astronauts. (2) Understand the effect microgravity has on human physiology (3) Understand how NASA Space Medicine Division is mitigating the health risks of space missions.
ERIC Educational Resources Information Center
Instructor, 1981
1981-01-01
Describes the winners of the Space Traveler Project, a contest jointly sponsored by Rockwell International, NASA, and this magazine to identify worthwhile elementary science programs relating to the Space Shuttle. (SJL)
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Baraona, C. R.
1984-01-01
It is pointed out that space station planning at NASA began when NASA was created in 1958. However, the initiation of the program for a lunar landing delayed the implementation of plans for a space station. The utility of a space station was finally demonstrated with Skylab, which was launched in 1972. In May 1982, the Space Station Task Force was established to provide focus and direction for space station planning activities. The present paper provides a description of the planning activities, giving particular attention to the power system. The initial space station will be required to supply 75 kW of continuous electrical power, 60 kW for the customer and 15 kW for space station needs. Possible alternative energy sources for the space station include solar planar or concentrator arrays of either silicon or gallium arsenide.
NASA Technical Reports Server (NTRS)
1995-01-01
This 1994 report of the Space Studies Board of the National Research Council summarizes the charter and organization of the board, activities and membership, major and short reports, and congressional testimony. A cumulative bibliography of the Space Studies (formerly Space Science) Board and its committees is provided. An appendix contains reports of the panel to review Earth Observing System Data and Information System (EOSDIS) plans. Major reports cover scientific opportunities in the human exploration of space, the dichotomy between funding and effectiveness in space physics, an integrated strategy for the planetary sciences for the years 1995-2010, and Office of Naval Research (ONR) research opportunities in upper atmospheric sciences. Short reports cover utilization of the space station, life and microgravity sciences and the space station program, Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy, and the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe.
This student plant growth investigation on the International Space Station compares plant growth on the ground with plant growth in space. Brassica rapa seeds, commonly known as a turnip mustard, w...
At NASA's Kennedy Space Center Visitor Complex in Florida, a grand opening celebration was held for the new Angry Birds Space Encounter, March 22. Finland-based Rovio Entertainment, the creator of ...
NASA Technical Reports Server (NTRS)
Anderson, John L.
1988-01-01
Viewgraphs are presented on the Pathfinder program. Information is given on human exploration of the solar system, technical requirements interfaces, program objectives, space suits, human performance, man-machine systems, space habitats, life support systems, and artificial gravity
NASA Technical Reports Server (NTRS)
Blanc, R.
1982-01-01
The four main points of research and development of space programs by France are explained. The National Center of Space Studies is discussed, listing the missions of the Center and describing the activities of the staff.
Reutilizing Existing Library Space.
ERIC Educational Resources Information Center
Davis, Marlys Cresap
1987-01-01
This discussion of the reutilization of existing library space reviews the decision process and considerations for implementation. Two case studies of small public libraries which reassigned space to better use are provided, including floor plans. (1 reference) (MES)
Space processing: A projection
NASA Technical Reports Server (NTRS)
Mccreight, L. R.; Griffin, R. N.
1972-01-01
Estimates concerning space manufacturing, which might well become the largest and most specific application of space technology by the end of the century are given. Two classes of materials are considered - electronic crystals and biologicals.
NASA Technical Reports Server (NTRS)
Macconochie, Ian O. (Inventor); Mikulas, Martin M., Jr. (Inventor); Pennington, Jack E. (Inventor); Kinkead, Rebecca L. (Inventor); Bryan, Charles F., Jr. (Inventor)
1988-01-01
A space spider crane for the movement, placement, and or assembly of various components on or in the vicinity of a space structure is described. As permanent space structures are utilized by the space program, a means will be required to transport cargo and perform various repair tasks. A space spider crane comprising a small central body with attached manipulators and legs fulfills this requirement. The manipulators may be equipped with constant pressure gripping end effectors or tools to accomplish various repair tasks. The legs are also equipped with constant pressure gripping end effectors to grip the space structure. Control of the space spider crane may be achieved either by computer software or a remotely situated human operator, who maintains visual contact via television cameras mounted on the space spider crane. One possible walking program consists of a parallel motion walking program whereby the small central body alternatively leans forward and backward relative to end effectors.
In an effort to inspire and motivate the next generation of space explorers, NASAâs Ames Research Center teamed up with the Traveling Space Museum to teach students the way astronauts are taughtâ...
The crew of STS-135, NASA's final space shuttle mission, and Sesame Street's Elmo welcomed visitors to "What's Your Favorite Space?" in New York City. The free, public event was presented by NASA a...
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.
Parameter estimation of qubit states with unknown phase parameter
NASA Astrophysics Data System (ADS)
Suzuki, Jun
2015-02-01
We discuss a problem of parameter estimation for quantum two-level system, qubit system, in presence of unknown phase parameter. We analyze trade-off relations for mean square errors (MSEs) when estimating relevant parameters with separable measurements based on known precision bounds; the symmetric logarithmic derivative (SLD) Cramér-Rao (CR) bound and Hayashi-Gill-Massar (HGM) bound. We investigate the optimal measurement which attains the HGM bound and discuss its properties. We show that the HGM bound for relevant parameters can be attained asymptotically by using some fraction of given n quantum states to estimate the phase parameter. We also discuss the Holevo bound which can be attained asymptotically by a collective measurement.
On selecting satellite conjunction filter parameters
NASA Astrophysics Data System (ADS)
Alfano, Salvatore; Finkleman, David
2014-06-01
This paper extends concepts of signal detection theory to predict the performance of conjunction screening techniques and guiding the selection of keepout and screening thresholds. The most efficient way to identify satellites likely to collide is to employ filters to identify orbiting pairs that should not come close enough over a prescribed time period to be considered hazardous. Such pairings can then be eliminated from further computation to accelerate overall processing time. Approximations inherent in filtering techniques include screening using only unperturbed Newtonian two body astrodynamics and uncertainties in orbit elements. Therefore, every filtering process is vulnerable to including objects that are not threats and excluding some that are threats, Type I and Type II errors. The approach in this paper guides selection of the best operating point for the filters suited to a user's tolerance for false alarms and unwarned threats. We demonstrate the approach using three archetypal filters with an initial three-day span, select filter parameters based on performance, and then test those parameters using eight historical snapshots of the space catalog. This work provides a mechanism for selecting filter parameters but the choices depend on the circumstances.
Automated equipment for anaerobic sludge parameters determination.
Fdz-Polanco, F; Nieto, P; Pérez Elvira, S; van der Zee, F P; Fdz-Polanc, M; García, P A
2005-01-01
Methanogenic activity, anaerobic biodegradability and toxicity are key parameters in the design and operation of anaerobic bioreactors. A large variety of methods exist for the determination of these parameters but a normalized method has not been established so far. This paper presents the development of an automated manometric system for the determination of these anaerobic sludge parameters. The system is based on monitoring the production of methane by using a pressure transducer that measures the pressure in a gas-collecting chamber of known adjustable volume, which is independent of the space where biogas production takes place. The evolution of pressure generated by the accumulation of methane relates to the conversion of COD. In this way, the methanogenic activity of the sludge can be determined, as well as the biodegradability of solids and liquid, as well as the methanogenic toxicity of compounds. The equipment permits gas sampling, as well as extraction and introduction of liquid, without losing the anaerobic conditions. Various assays have been conducted to test the reliability and reproducibility of the obtained results, showing a high level of both. The methanogenic activities obtained in the assays ranged between 0.1 and 1.8 g COD g(-1) VSS d(-1), and the biodegradability of the organic compounds tested ranged between 20 and 90%.