Science.gov

Sample records for 19-foot pressure tunnel

  1. Investigation in the Langley 19-foot Pressure Tunnel of Two Wings of NACA 65-210 and 64-210 Airfoil Sections with Various Type Flaps

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Spooner, Stanley H

    1949-01-01

    Report presents the results of an investigation conducted in the Langley 19-foot pressure tunnel to determine the maximum lift and stalling characteristics of two thin wings equipped with several types of flaps. Split, single slotted, and double slotted flaps were tested on one wing which had NACA 65-210 airfoil sections and split and double slotted flaps were tested on the other, which had NACA 64-210 airfoil sections. Both wings were zero sweep, an aspect ratio of 9, and a taper ratio of 0.4.

  2. Effects of Wing Flaps and Wing Duct Inlet on the Lift and Stalling Characteristics of a 1/4-Scale Partial-Span Model of the Republic XF-12 Airplane in the Langley 19-Foot Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Graham, Robert R.; Martina, Albert P.; Salmi, Reino J.

    1946-01-01

    An investigation was conducted in the Langley 19-foot pressure tunnel to determine the lift, drag, pitching-moment and stalling characteristics fo a 1/4 -scale partial-span model of the left wing of the Republic XF-12 airplane. The effects of a duct inlet, located between the nacelles at the leading edge of the wing, on those characteristics were also investigated. The Reynolds numbers for the investigation covered a range from 4,500,000 to 8,600,000. The results of the investigation indicated that maximum lift coefficients of 1.36, 1.71, and 2.11 were measured on the model with flaps neutral and deflected 20 deg and 55 deg, respectively at a Reynolds number of 8,600,000. When the duct inlet was replaced by a basic airfoil nose the flap-neutral maximum-lift coefficient was increased from 1.36 to 1.41. The results also showed that at maximum lift with flaps neutral or deflected 55 deg. most of the area between the nacelles were stalled while only small areas on other portions of the model were stalled; when the duct inlet was replaced by the basic airfoil nose the stall was delayed to a slightly higher angle of attack but the nature of the stall was relatively unaffected.

  3. Pressure-morphology relationship of a released carpal tunnel.

    PubMed

    Kim, Dong Hee; Marquardt, Tamara L; Gabra, Joseph N; Shen, Zhilei Liu; Evans, Peter J; Seitz, William H; Li, Zong-Ming

    2013-04-01

    We investigated morphological changes of a released carpal tunnel in response to variations of carpal tunnel pressure. Pressure within the carpal tunnel is known to be elevated in patients with carpal tunnel syndrome and dependent on wrist posture. Previously, increased carpal tunnel pressure was shown to affect the morphology of the carpal tunnel with an intact transverse carpal ligament (TCL). However, the pressure-morphology relationship of the carpal tunnel after release of the TCL has not been investigated. Carpal tunnel release (CTR) was performed endoscopically on cadaveric hands and the carpal tunnel pressure was dynamically increased from 10 to 120 mmHg. Simultaneously, carpal tunnel cross-sectional images were captured by an ultrasound system, and pressure measurements were recorded by a pressure transducer. Carpal tunnel pressure significantly affected carpal arch area (p < 0.001), with an increase of >62 mm(2) at 120 mmHg. Carpal arch height, length, and width also significantly changed with carpal tunnel pressure (p < 0.05). As carpal tunnel pressure increased, carpal arch height and length increased, but the carpal arch width decreased. Analyses of the pressure-morphology relationship for a released carpal tunnel revealed a nine times greater compliance than that previously reported for a carpal tunnel with an intact TCL. This change of structural properties as a result of transecting the TCL helps explain the reduction of carpal tunnel pressure and relief of symptoms for patients after CTR surgery.

  4. View of Pressure Tunnel Intake at Stehr Lake. Looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Pressure Tunnel Intake at Stehr Lake. Looking southeast - Childs-Irving Hydroelectric Project, Childs System, Pressure Tunnel Intake, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  5. Wind tunnel force and pressure tests

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1981-01-01

    Force and surface pressure distributions were measured for a 13% medium speed (NASA MS(1)-0313) airfoil fitted with 20% aileron, 25% slotted flap and 10% slot lip spoiler. All tests were conducted in the Walter Beech Memorial Wind Tunnel at a Reynolds number of 2.2 million and a Mach number of 0.13. Results include lift, drag, pitching moments, control surface normal force and hinge moments, and surface pressure distributions. The basic airfoil exhibits low speed characteristics similar to the GA(W)-2 airfoil. Incremental aileron and spoiler performance are quite comparable to that obtained on the GA(W)-2 airfoil. Slotted flap performance on this section is reduced compared to the GA(W)-2, resulting in a highest c sub l max of 3.00 compared to 3.35 for the GA(W)-2.

  6. Area and shape changes of the carpal tunnel in response to tunnel pressure.

    PubMed

    Li, Zong-Ming; Masters, Tamara L; Mondello, Tracy A

    2011-12-01

    Carpal tunnel mechanics is relevant to our understanding of median nerve compression in the tunnel. The compliant characteristics of the tunnel strongly influence its mechanical environment. We investigated the distensibility of the carpal tunnel in response to tunnel pressure. A custom balloon device was designed to apply controlled pressure. Tunnel cross sections were obtained using magnetic resonance imaging to derive the relationship between carpal tunnel pressure and morphological parameters at the hook of hamate. The results showed that the cross-sectional area (CSA) at the level of the hook of hamate increased, on average, by 9.2% and 14.8% at 100 and 200 mmHg, respectively. The increased CSA was attained by a shape change of the cross section, displaying increased circularity. The increase in CSA was mainly attributable to the increase of area in the carpal arch region formed by the transverse carpal ligament. The narrowing of the carpal arch width was associated with an increase in the carpal arch. We concluded that the carpal tunnel is compliant to accommodate physiological variations of the carpal tunnel pressure, and that the increase in tunnel CSA is achieved by increasing the circularity of the cross section.

  7. Effects of static fingertip loading on carpal tunnel pressure

    NASA Technical Reports Server (NTRS)

    Rempel, D.; Keir, P. J.; Smutz, W. P.; Hargens, A.

    1997-01-01

    The purpose of this study was to explore the relationship between carpal tunnel pressure and fingertip force during a simple pressing task. Carpal tunnel pressure was measured in 15 healthy volunteers by means of a saline-filled catheter inserted percutaneously into the carpal tunnel of the nondominant hand. The subjects pressed on a load cell with the tip of the index finger and with 0, 6, 9, and 12 N of force. The task was repeated in 10 wrist postures: neutral; 10 and 20 degrees of ulnar deviation; 10 degrees of radial deviation; and 15, 30, and 45 degrees of both flexion and extension. Fingertip loading significantly increased carpal tunnel pressure for all wrist angles (p = 0.0001). Post hoc analyses identified significant increase (p < 0.05) in carpal tunnel pressure between unloaded (0 N) and all loaded conditions, as well as between the 6 and 12 N load conditions. This study demonstrates that the process whereby fingertip loading elevates carpal tunnel pressure is independent of wrist posture and that relatively small fingertip loads have a large effect on carpal tunnel pressure. It also reveals the response characteristics of carpal tunnel pressure to fingertip loading, which is one step in understanding the relationship between sustained grip and pinch activities and the aggravation or development of median neuropathy at the wrist.

  8. Effect of wrist posture on carpal tunnel pressure while typing.

    PubMed

    Rempel, David M; Keir, Peter J; Bach, Joel M

    2008-09-01

    Long weekly hours of keyboard use may lead to or aggravate carpal tunnel syndrome. The effects of typing on fluid pressure in the carpal tunnel, a possible mediator of carpal tunnel syndrome, are unknown. Twenty healthy subjects participated in a laboratory study to investigate the effects of typing at different wrist postures on carpal tunnel pressure of the right hand. Changes in wrist flexion/extension angle (p = 0.01) and radial/ulnar deviation angle (p = 0.03) independently altered carpal tunnel pressure; wrist deviations in extension or radial deviation were associated with an increase in pressure. The activity of typing independently elevated carpal tunnel pressure (p = 0.001) relative to the static hand held in the same posture. This information can guide the design and use of keyboards and workstations in order to minimize carpal tunnel pressure while typing. The findings may also be useful to clinicians and ergonomists in the management of patients with carpal tunnel syndrome who use a keyboard.

  9. Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel

    NASA Astrophysics Data System (ADS)

    Suzuki, Masahiro; Sakuma, Yutaka

    Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.

  10. Wind tunnel pressurization and recovery system

    NASA Technical Reports Server (NTRS)

    Pejack, Edwin R.; Meick, Joseph; Ahmad, Adnan; Lateh, Nordin; Sadeq, Omar

    1988-01-01

    The high density, low toxicity characteristics of refrigerant-12 (dichlorofluoromethane) make it an ideal gas for wind tunnel testing. Present limitations on R-12 emissions, set to slow the rate of ozone deterioration, pose a difficult problem in recovery and handling of large quantities of R-12. This preliminary design is a possible solution to the problem of R-12 handling in wind tunnel testing. The design incorporates cold temperature condensation with secondary purification of the R-12/air mixture by adsorption. Also discussed is the use of Freon-22 as a suitable refrigerant for the 12 foot wind tunnel.

  11. Langley 16- Ft. Transonic Tunnel Pressure Sensitive Paint System

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Leighty, Bradley D.; Carmine, Michael T.; Sealey, Bradley S.; Burkett, Cecil G.

    2001-01-01

    This report describes the NASA Langley 16-Ft. Transonic Tunnel Pressure Sensitive Paint (PSP) System and presents results of a test conducted June 22-23, 2000 in the tunnel to validate the PSP system. The PSP system provides global surface pressure measurements on wind tunnel models. The system was developed and installed by PSP Team personnel of the Instrumentation Systems Development Branch and the Advanced Measurement and Diagnostics Branch. A discussion of the results of the validation test follows a description of the system and a description of the test.

  12. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  13. The NASA Langley 8-foot Transonic Pressure Tunnel calibration

    NASA Technical Reports Server (NTRS)

    Brooks, Cuyler W., Jr.; Harris, Charles D.; Reagon, Patricia G.

    1994-01-01

    The NASA Langley 8-Foot Transonic Pressure Tunnel is a continuous-flow, variable-pressure wind tunnel with control capability to independently vary Mach number, stagnation pressure, stagnation temperature, and humidity. The top and bottom walls of the test section are axially slotted to permit continuous variation of the test section Mach number from 0.2 to 1.2, the slot-width contour provides a gradient-free test section 50 in. long for Mach numbers equal to or greater than 1.0 and 100 in. long for Mach numbers less than 1.0. The stagnation pressure may be varied from 0.25 to 2.0 atm. The tunnel test section has been recalibrated to determine the relationship between the free-stream Mach number and the test chamber reference Mach number. The hardware was the same as that of an earlier calibration in 1972 but the pressure measurement instrumentation available for the recalibration was about an order of magnitude more precise. The principal result of the recalibration was a slightly different schedule of reentry flap settings for Mach numbers from 0.80 to 1.05 than that determined during the 1972 calibration. Detailed tunnel contraction geometry, test section geometry, and limited test section wall boundary layer data are presented.

  14. Tunnel pressure waves - A smartphone inquiry on rail travel

    NASA Astrophysics Data System (ADS)

    Müller, Andreas; Hirth, Michael; Kuhn, Jochen

    2016-02-01

    When traveling by rail, you might have experienced the following phenomenon: The train enters a tunnel, and after some seconds a noticeable pressure change occurs, as perceived by your ears or even by a rapid wobbling of the train windows. The basic physics is that pressure waves created by the train travel down the tunnel, are reflected at its other end, and travel back until they meet the train again. Here we will show (i) how this effect can be well understood as a kind of large-scale outdoor case of a textbook paradigm, and (ii) how, e.g., a prediction of the tunnel length from the inside of a moving train on the basis of this model can be validated by means of a mobile phone measurement.

  15. Method for Standardizing Sonic-Boom Model Pressure Signatures Measured at Several Wind-Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2007-01-01

    Low-boom model pressure signatures are often measured at two or more wind-tunnel facilities. Preliminary measurements are made at small separation distances in a wind tunnel close at hand, and a second set of pressure signatures is measured at larger separation distances in a wind-tunnel facility with a larger test section. In this report, a method for correcting and standardizing the wind-tunnel-measured pressure signatures obtained in different wind tunnel facilities is presented and discussed.

  16. Reflections of pressure waves at tunnel portals

    NASA Astrophysics Data System (ADS)

    Brown, J. M. B.; Vardy, A. E.

    1994-05-01

    Reflections of plane waves from the open ends (portals) of axisymmetric pipes and plane two-dimensional (2-D) channels are investigated analytically, numerically, and experimentally. An analytical approach developed by Rudinger for pressure decay at an axisymmetric, flanged portal is extended to longer times, and equivalent analyses are developed for reflections from unflanged portals - both axisymmetric and plane 2-D. Predictions for the latter case are compared with numerical results from a computer program based on a 2-D method of bicharacteristics. The theoretical results are compared with measurements from a low pressure shock tube, which was used to investigate alternative end configurations including scarfed portals with and without flange plates. These confirm that the rate of pressure decay is much slower in the plane 2-D case and that flange plates further reduce the rate of decay, albeit slightly. Scarfed portals are shown to cause more uniform decay rates than 90 deg portals.

  17. 5. VIEW LOOKING NORTH AT 8FOOT TRANSONIC PRESSURE TUNNEL PLENUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW LOOKING NORTH AT 8-FOOT TRANSONIC PRESSURE TUNNEL PLENUM FLOOR AREA. NOTE SCHLIEREN OPTICAL SYSTEM ON STRUCTURE AT RIGHT CENTER. - NASA Langley Research Center, 8-Foot Transonic Pressure Tunnel, 640 Thornell Avenue, Hampton, Hampton, VA

  18. D Modelling of Tunnel Excavation Using Pressurized Tunnel Boring Machine in Overconsolidated Soils

    NASA Astrophysics Data System (ADS)

    Demagh, Rafik; Emeriault, Fabrice

    2013-06-01

    The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction and are not easy to represent in a complete numerical simulation. Consequently, the tunnelling- induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite differences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of movements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse Subway Line B for which experimental data are available and where the soil is saturated and highly overconsolidated. A comparison made between the numerical simulation results and the insitu measurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding the adopted representation of the different operations performed by the tunnel boring machine (excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting of the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular behaviour origin observed on the ground surface and within the solid soil mass, till now not mentioned in the literature.

  19. X-33 Metal Model Testing In Low Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The countrys next generation of space transportation, a reusable launch vehicle (RLV), continues to undergo wind tunnel testing at NASA Langley Research Center, Hampton, Va. All four photos are a metal model of the X-33 reusable launch vehicle (about 15 inches long by 15 inches wide) being tested for Lockheed Martin Skunk Works in the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley Research Center. Tests are being conducted by members of the Aerothermodynamics Branch. According to Kelly Murphy of Langleys Aerothermodynamics Branch, the aluminum and stainless steel model of the X-33 underwent aerodynamic testing in the tunnel. *The subsonic tests were conducted at the speed of Mach 25,* she said. *Force and moment testing and measurement in this tunnel lasted about one week.* Future testing of the metal model is scheduled for Langleys 16-Foot Transonic Tunnel, from the end of March to mid-April 1997, and the Unitary Wind Tunnel, from mid-April to the beginning of May. Other tunnel testing for X-33 models are scheduled from the present through June in the hypersonic tunnels, and the 14- by 22-Foot Tunnel from about mid-June to mid-July. Since 1991 Marshall Space Flight Center in Huntsville, Ala. has been the lead center for coordinating the Agencys X-33 Reusable Launch Vehicle (RLV) Program, an industry-led effort, which NASA Administrator Daniel S. Goldin has declared the agency's highest priority new program. The RLV Technology Program is a partnership among NASA, the United States Air Force and private industry to develop world leadership in low-cost space transportation. The goal of the program is to develop technologies and new operational concepts that can radically reduce the cost of access to space. The RLV program also hopes to speed the commercialization of space and improve U.S. economic competitiveness by making access to space as routine and reliable as today's airline industry, while reducing costs and enhancing safety and reliability. The RLV

  20. X-33 Metal Model Testing In Low Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The countrys next generation of space transportation, a reusable launch vehicle (RLV), continues to undergo wind tunnel testing at NASA Langley Research Center, Hampton, Va. All four photos are a metal model of the X-33 reusable launch vehicle (about 15 inches long by 15 inches wide) being tested for Lockheed Martin Skunk Works in the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley Research Center. Tests are being conducted by members of the Aerothermodynamics Branch. According to Kelly Murphy of Langleys Aerothermodynamics Branch, the aluminum and stainless steel model of the X-33 underwent aerodynamic testing in the tunnel. *The subsonic tests were conducted at the speed of Mach .25,* she said. *Force and moment testing and measurement in this tunnel lasted about one week.* Future testing of the metal model is scheduled for Langleys 16-Foot Transonic Tunnel, from the end of March to mid-April 1997, and the Unitary Wind Tunnel, from mid-April to the beginning of May. Other tunnel testing for X-33 models are scheduled from the present through June in the hypersonic tunnels, and the 14- by 22-Foot Tunnel from about mid-June to mid-July. Since 1991 Marshall Space Flight Center in Huntsville, Ala. has been the lead center for coordinating the Agencys X-33 Reusable Launch Vehicle (RLV) Program, an industry-led effort, which NASA Administrator Daniel S. Goldin has declared the agency's highest priority new program. The RLV Technology Program is a partnership among NASA, the United States Air Force and private industry to develop world leadership in low-cost space transportation. The goal of the program is to develop technologies and new operational concepts that can radically reduce the cost of access to space. The RLV program also hopes to speed the commercialization of space and improve U.S. economic competitiveness by making access to space as routine and reliable as today's airline industry, while reducing costs and enhancing safety and reliability. The RLV

  1. Limitations on wind-tunnel pressure signature extrapolation

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Darden, Christine M.

    1992-01-01

    Analysis of some recent experimental sonic boom data has revived the hypothesis that there is a closeness limit to the near-field separation distance from which measured wind tunnel pressure signatures can be extrapolated to the ground as though generated by a supersonic-cruise aircraft. Geometric acoustic theory is used to derive an estimate of this distance and the sample data is used to provide a preliminary indication of practical separation distance values.

  2. Description, reliability and validity of a novel method to measure carpal tunnel pressure in patients with carpal tunnel syndrome.

    PubMed

    Coppieters, Michel W; Schmid, Annina B; Kubler, Paul A; Hodges, Paul W

    2012-12-01

    Elevated carpal tunnel pressure is an important pathomechanism in carpal tunnel syndrome (CTS). Several invasive methods have been described for direct measurement of carpal tunnel pressure, but all have two important limitations. The pressure gauge requires sterilisation between uses, which makes time-efficient data collection logistically cumbersome, and more importantly, the reliability of carpal tunnel pressure measurements has not been evaluated for any of the methods in use. This technical note describes a new method to measure carpal tunnel pressure using inexpensive, disposable pressure sensors and reports the within and between session reliability of the pressure recordings in five different wrist positions and during typing and computer mouse operation. Intraclass correlation coefficients (ICC[3,1]) were calculated for recordings within one session for healthy participants (n = 7) and patients with CTS (n = 5), and for recordings between two sessions for patients with CTS (n = 5). Overall, the reliability was high. With the exception of two coefficients, the reliability of the recordings at different wrist angles varied from 0.63 to 0.99. Reliability for typing and mouse operation ranged from 0.86 to 0.99. The new method described in this report is inexpensive and reliable, and data collection can be applied more efficiently as off-site sterilisation of equipment is not required. These advances are likely to promote future research into carpal tunnel pressure, such as investigation of the therapeutic mechanisms of various conservative treatment modalities that are believed to reduce elevated carpal tunnel pressure.

  3. Increase of stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1992-01-01

    High stagnation pressures and enthalpies are required for the testing of aerospace vehicles such as aerospace planes, aeroassist vehicles, and reentry vehicles. Among the most useful ground test facilities for performing such tests are shock tunnels. With a given driver gas condition, the enthalpy and pressure in the driven tube nozzle reservoir condition can be varied by changing the driven tube geometry and initial gas fill pressure. Reducing the driven tube diameter yields only very modest increases in reservoir pressure and enthalpy. Reducing the driven tube initial gas fill pressure can increase the reservoir enthalpy significantly, but at the cost of reduced reservoir pressure and useful test time. A new technique, the insertion of a converging section in the driven tube is found to produce substantial increases in both reservoir pressure and enthalpy. Using a one-dimensional inviscid full kinetics code, a number of different locations and shapes for the converging driven tube section were studied and the best cases found. For these best cases, for driven tube diameter reductions of factors of 2 and 3, the reservoir pressure can be increased by factors of 2.1 and 3.2, respectively and the enthalpy can be increased by factors of 1.5 and 2.1, respectively.

  4. Tests of models equipped with TPS in low speed ONERA F1 pressurized wind tunnel

    NASA Astrophysics Data System (ADS)

    Leynaert, J.

    1992-09-01

    The particular conditions of tests of models equipped with a turbofan powered simulator (TPS) at high Reynolds numbers in a pressurized wind tunnel are presented. The high-pressure air supply system of the wind tunnel, the equipment of the balance with the high-pressure traversing flow and its calibration, and the thrust calibration method of the TPS and its verification in the wind tunnel are described.

  5. Pressure regulation for earth pressure balance control on shield tunneling machine by using adaptive robust control

    NASA Astrophysics Data System (ADS)

    Xie, Haibo; Liu, Zhibin; Yang, Huayong

    2016-05-01

    Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control (ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.

  6. Tunneling spectroscopy of Al/AlO{sub x}/Pb subjected to hydrostatic pressure

    SciTech Connect

    Zhu, Jun; Hou, Xing-Yuan; Guan, Tong; Zhang, Qin-Tong; Li, Yong-Qing; Han, Xiu-Feng; Li, Chun-Hong; Ren, Cong; Yang, Zheng-Xin; Zhang, Jin; Shan, Lei; Chen, Gen-Fu

    2015-05-18

    We develop an experimental tool to investigate high-pressure electronic density of state by combining electron tunneling spectroscopy measurements with high-pressure technique. It is demonstrated that tunneling spectroscopy measurement on Al/AlO{sub x}/Pb junction is systematically subjected to hydrostatic pressure up to 2.2 GPa. Under such high pressure, the normal state junction resistance is sensitive to the applied pressure, reflecting the variation of band structure of the barrier material upon pressures. In superconducting state, the pressure dependence of the energy gap Δ{sub 0}, the gap ratio 2Δ{sub 0}/k{sub B}T{sub c}, and the phonon spectral energy is extracted and compared with those obtained in the limited pressure range. Our experimental results show the accessibility and validity of high pressure tunneling spectroscopy, offering wealthy information about high pressure superconductivity.

  7. Simulation of pressure and temperature responses for the 20 Inch Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    1990-01-01

    A simulation of the pressure and temperature responses of the 20 inch Supersonic Wind Tunnel (SWT) is developed. The simulation models the tunnel system as a set of lumped parameter volumes connected by flow regulating elements such as valves and nozzles. Simulated transient responses of temperature and pressure for the five boundary points of the 20 inch SWT operating map are produced from their respective initial conditions, tunnel operating conditions, heater input power, and valve positions. Upon reaching steady state, a linearized model for each operating point is determined. Both simulated and actual tunnel responses are presented for comparison.

  8. A vertical mouse and ergonomic mouse pads alter wrist position but do not reduce carpal tunnel pressure in patients with carpal tunnel syndrome.

    PubMed

    Schmid, Annina B; Kubler, Paul A; Johnston, Venerina; Coppieters, Michel W

    2015-03-01

    Non-neutral wrist positions and external pressure leading to increased carpal tunnel pressure during computer use have been associated with a heightened risk of carpal tunnel syndrome (CTS). This study investigated whether commonly used ergonomic devices reduce carpal tunnel pressure in patients with CTS. Carpal tunnel pressure was measured in twenty-one patients with CTS before, during and after a computer mouse task using a standard mouse, a vertical mouse, a gel mouse pad and a gliding palm support. Carpal tunnel pressure increased while operating a computer mouse. Although the vertical mouse significantly reduced ulnar deviation and the gel mouse pad and gliding palm support decreased wrist extension, none of the ergonomic devices reduced carpal tunnel pressure. The findings of this study do therefore not endorse a strong recommendation for or against any of the ergonomic devices commonly recommended for patients with CTS. Selection of ergonomic devices remains dependent on personal preference. PMID:25479984

  9. A vertical mouse and ergonomic mouse pads alter wrist position but do not reduce carpal tunnel pressure in patients with carpal tunnel syndrome.

    PubMed

    Schmid, Annina B; Kubler, Paul A; Johnston, Venerina; Coppieters, Michel W

    2015-03-01

    Non-neutral wrist positions and external pressure leading to increased carpal tunnel pressure during computer use have been associated with a heightened risk of carpal tunnel syndrome (CTS). This study investigated whether commonly used ergonomic devices reduce carpal tunnel pressure in patients with CTS. Carpal tunnel pressure was measured in twenty-one patients with CTS before, during and after a computer mouse task using a standard mouse, a vertical mouse, a gel mouse pad and a gliding palm support. Carpal tunnel pressure increased while operating a computer mouse. Although the vertical mouse significantly reduced ulnar deviation and the gel mouse pad and gliding palm support decreased wrist extension, none of the ergonomic devices reduced carpal tunnel pressure. The findings of this study do therefore not endorse a strong recommendation for or against any of the ergonomic devices commonly recommended for patients with CTS. Selection of ergonomic devices remains dependent on personal preference.

  10. The effect of wearing a flexible wrist splint on carpal tunnel pressure during repetitive hand activity.

    PubMed

    Rempel, D; Manojlovic, R; Levinsohn, D G; Bloom, T; Gordon, L

    1994-01-01

    We investigated how repetitive hand activity normally affects carpal tunnel pressure and whether a flexible wrist splint can influence this effect. Nineteen healthy subjects were evaluated under four test conditions: at rest with and without a wrist splint (baseline) and while performing a repetitive task with and without a wrist splint. The task involved loading and unloading 1 lb. cans from a box at a rate of 20 cans per minute for period of 5 minutes. Carpal tunnel pressure and wrist angles were continuously monitored by means of a fluid-filled catheter inserted into the carpal canal and a two-channel electrogoniometer mounted on the dorsum of the hand and forearm. Without the splint, carpal tunnel pressure rose from a median baseline level of 8 +/- 6 mmHg to 18 +/- 13 mmHg during activity. With the splint, carpal tunnel pressure rose from a baseline of 13 +/- 5 mmHg to 21 +/- 12 mmHg during activity. Median carpal tunnel pressure during activity with the splint was no different from that without the splint. Our data indicate that the median nerve is subjected to increased pressure within the carpal tunnel during repetitive hand activity. Wearing a flexible wrist splint during activity limits the range of wrist motion but has no significant effect on carpal tunnel pressure.

  11. Jet-boundary and Plan-form Corrections for Partial-Span Models with Reflection-Plane, End-Plate, or No End-Plate in a Closed Circular Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Deters, Owen J

    1946-01-01

    A method is presented for determining the jet-boundary and plan-form corrections necessary for application to test data for a partial-span model with a reflection plane, an end plate, or no end plate in a closed circular wind tunnel. Examples are worked out for a partial-span model with each of the three end conditions in the Langley 19-foot pressure tunnel and the corrections are applied to measured values of lift, drag, pitching-moment, rolling-moment, and yawing-moment coefficients.

  12. Simultaneous Global Pressure and Temperature Measurement Technique for Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    2000-01-01

    High-temperature luminescent coatings are being developed and applied for simultaneous pressure and temperature mapping in conventional-type hypersonic wind tunnels, providing global pressure as well as Global aeroheating measurements. Together, with advanced model fabrication and analysis methods, these techniques will provide a more rapid and complete experimental aerodynamic and aerothermodynamic database for future aerospace vehicles. The current status in development of simultaneous pressure- and temperature-sensitive coatings and measurement techniques for hypersonic wind tunnels at Langley Research Center is described. and initial results from a feasibility study in the Langley 31-Inch Mach 10 Tunnel are presented.

  13. Ares I Upper Stage Pressure Tests in Wind Tunnel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)

  14. Technique for the integral casting of pressure instrumentation in wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Summerfield, D. G.

    1971-01-01

    Wind tunnel models are cast around core consisting of array of tubing. Principal advantage of technique is that greater number of pressure orifices are easily installed, without compromising aerodynamic shape of model. Technique reduces construction cost by about 50 percent.

  15. Gliding resistance of flexor tendon associated with carpal tunnel pressure: a biomechanical cadaver study.

    PubMed

    Zhao, Chunfeng; Ettema, Anke M; Berglund, Lawrence J; An, Kai-Nan; Amadio, Peter C

    2011-01-01

    The purpose of this study was to investigate the effect of carpal tunnel pressure on the gliding characteristics of flexor tendons within the carpal tunnel. Eight fresh human cadaver wrists and hands were used. A balloon was inserted into the carpal tunnel to elevate the pressure. The mean gliding resistance of the middle finger flexor digitorum superficialis tendon was measured with the following six conditions: (1) as a baseline, before balloon insertion; (2) balloon with 0 mmHg pressure; (3) 30 mmHg; (4) 60 mmHg; (5) 90 mmHg; (6) 120 mmHg. The gliding resistance of flexor tendon gradually increased as the carpal tunnel pressure was elevated. At pressures above 60 mmHg, the increase in gliding resistance became significant compared to the baseline condition. This study helps us to understand the relationship between carpal tunnel pressure, which is elevated in the patient with carpal tunnel syndrome (CTS) and tendon gliding resistance, which is a component of the work of flexion. These findings suggest that patients with CTS may have to expend more energy to accomplish specific motions, which may in turn affect symptoms of hand pain, weakness and fatigue, seen commonly in such patients.

  16. Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn

    DOE PAGES

    Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.; Antonov, Vladimir E.; Kuzovnikov, Michael; Ehlers, Georg; Granroth, Garrett E

    2016-10-03

    Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimatedmore » tunneling splitting of the hydrogen ground state exceeds the barrier height.« less

  17. Pressure effect on hydrogen tunneling and vibrational spectrum in α -Mn

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. I.; Podlesnyak, A.; Sadykov, R. A.; Antonov, V. E.; Kuzovnikov, M. A.; Ehlers, G.; Granroth, G. E.

    2016-10-01

    The pressure effect on the tunneling mode and vibrational spectra of hydrogen in α -MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α -Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α -Mn at 100 kbar, when the estimated tunneling splitting of the hydrogen ground state exceeds the barrier height.

  18. Correlation of segmental carpal tunnel pressures with changes in hand and wrist positions in patients with carpal tunnel syndrome and controls.

    PubMed

    Luchetti, R; Schoenhuber, R; Nathan, P

    1998-10-01

    We investigated pressures at 1 cm intervals along the carpal tunnel in 39 patients with carpal tunnel syndrome (CTS) and 12 controls. Pressures were measured for relaxed and gripping hand positions in combination with neutral, extended, and flexed wrist positions. Patient pressures exceeded control pressures, were below the previously reported 30 mmHg threshold for four of five locations in the relaxed neutral position and were typically greater in extension than in flexion. In the neutral position, both patient and control pressures were slightly above threshold levels just distal to the tunnel. Maximum intratunnel pressures were generally found in the central part of the tunnel and minimum pressures in the distal tunnel. Gripping hand pressures in the tunnel were lowest with the wrist flexed. In both controls and CTS patients, only in the neutral wrist and relaxed hand positions were pressures highest at the point where nerve conduction studies have indicated the nerve is most likely to be compromised (in the midpalm just distal to the distal margin of the carpal tunnel).

  19. A Unique RCM Application at the NASA Ames Research Center (ARC) 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Bonagofski, James M.; Machala, Anthony C.; Smith, Anthony M.; Presley, Leroy L. (Technical Monitor)

    1996-01-01

    NASA Ames Research Center is known internationally as a center of excellence for its capabilities and achievements in the field of developmental aerodynamics. The Center has a variety of aerodynamic test facilities including the largest wind tunnel in the world (with 40 x 80 deg and 80 x 120 deg atmospheric test sections) and the 12-Foot Pressure Wind Tunnel which is the subject of this paper. Additional information is contained in the original extended abstract.

  20. LDA seeding system for the Langley Low Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Scheiman, J.; Kubendran, L. R.

    1985-01-01

    A Laser Velocimetry (LV) seeding system was specifically developed for the Langley Low Turbulence Wind Tunnel (LTPT), and it has been successfully used for LV measurements in two major tests (Juncture Flow Experiment and Gortler Experiment). The LTPT is capable of operating at Mach numbers from 0.05 to 0.50 and unit Reynolds numbers from 100,000 to 15,000,000 per foot. The test section is 3 feet wide and 7.5 feet high. The turbulence level in the test section is relatively low because of the high contraction ratio and because of the nine turbulence reduction screens in the settling chamber. A primary requirement of the seeding system was that the seeding material not contaminate or damage in any way these screens. Both solid and liquid seeding systems were evaluated, and the results are presented. They can provide some guidelines for setting up seeding systems in other similar tunnels.

  1. Low Pressure Seeder Development for PIV in Large Scale Open Loop Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Schmit, Ryan

    2010-11-01

    A low pressure seeding techniques have been developed for Particle Image Velocimetry (PIV) in large scale wind tunnel facilities was performed at the Subsonic Aerodynamic Research Laboratory (SARL) facility at Wright-Patterson Air Force Base. The SARL facility is an open loop tunnel with a 7 by 10 foot octagonal test section that has 56% optical access and the Mach number varies from 0.2 to 0.5. A low pressure seeder sprayer was designed and tested in the inlet of the wind tunnel. The seeder sprayer was designed to produce an even and uniform distribution of seed while reducing the seeders influence in the test section. ViCount Compact 5000 using Smoke Oil 180 was using as the seeding material. The results show that this low pressure seeder does produce streaky seeding but excellent PIV images are produced.

  2. Alleviation of pressure pulse effects for trains entering tunnels. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Dayman, B., Jr.; Hammitt, A. G.; Holway, H. P.; Tucker, C. E., Jr.; Vardy, A. E.

    1979-01-01

    The degree to which it is possible to attenuate the effects of pressure pulses on the passengers in trains entering tunnels by modifying the normally abrupt portal of a constant-diameter single track tunnel was investigated. Although the suggested modifications to the tunnel entrance portal may not appreciably decrease the magnitude of the pressure rise, they are very effective in reducing the discomfort to the human ear by substantially decreasing the rate of pressure rise to that which the normal ear can accommodate. Qualitative comparison was made of this portal modification approach with other approaches: decreasing the train speed or sealing the cars. The optimum approach, which is dependent upon the conditions and requirements of each particular rail system, is likely to be the portal modification one for a rapid rail mass transit system.

  3. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  4. Data Fusion in Wind Tunnel Testing; Combined Pressure Paint and Model Deformation Measurements (Invited)

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Burner, Alpheus W.

    2004-01-01

    As the benefit-to-cost ratio of advanced optical techniques for wind tunnel measurements such as Video Model Deformation (VMD), Pressure-Sensitive Paint (PSP), and others increases, these techniques are being used more and more often in large-scale production type facilities. Further benefits might be achieved if multiple optical techniques could be deployed in a wind tunnel test simultaneously. The present study discusses the problems and benefits of combining VMD and PSP systems. The desirable attributes of useful optical techniques for wind tunnels, including the ability to accommodate the myriad optical techniques available today, are discussed. The VMD and PSP techniques are briefly reviewed. Commonalties and differences between the two techniques are discussed. Recent wind tunnel experiences and problems when combining PSP and VMD are presented, as are suggestions for future developments in combined PSP and deformation measurements.

  5. Increase in stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1993-01-01

    A new technique based on the insertion of a converging section in the driven tube is described which is capable of producing substantial increases in both reservoir pressure and enthalpy. A 1D inviscid full kinetics code is used to study a number of different locations and shapes for the converging driven tube section. For driven tube diameter reductions of factors of 2 and 3, the reservoir pressure is found to increase by factors of 2.1 and 3.2, respectively, and the enthalpy is found to simultaneously increase by factors of 1.5 and 2.1, respectively.

  6. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  7. Application of Pressure-Sensitive Paint to Ice-Accreted Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2000-01-01

    Pressure-sensitive paint (PSP) has been successfully used to measure global surface pressures on an ice-accreted model in an icing wind tunnel at NASA Glenn Research Center. Until now, the PSP technique has been limited to use in normal wind tunnels and clear flight environments. This is the first known application of PSP directly to ice in subfreezing conditions. Several major objectives were achieved in these tests. The procedure for applying the coating in the subfreezing tunnel environment was verified. Inspection of the painted ice surface revealed that the paint did not alter the original ice shape and adhered well over the entire coated area. Several procedures were used to show that the paint responded to changes in air pressure and that a repeatable pressure-dependent calibration could be achieved on the PSP-coated surfaces. Differences in pressure measurements made simultaneously on the ice and the metal test model are not yet fully understood, and techniques to minimize or correct them are being investigated.

  8. Fluctuating pressures on fan blades of a turbofan engine: Static and wind-tunnel investigations

    NASA Astrophysics Data System (ADS)

    Schoenster, J. A.

    1982-03-01

    To investigate the fan noise generated from turbofan engines, miniature pressure transducers were used to measure the fluctuating pressure on the fan blades of a JT15D engine. Tests were conducted with the engine operating on an outdoor test stand and in a wind tunnel. It was found that a potential flow interaction between the fan blades and six, large support struts in the bypass duct is a dominant noise source in the JT15D engine. Effects of varying fan speed and the forward speed on the blade pressure are also presented.

  9. Development and Characterization of a Low-Pressure Calibration System for Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Everhart, Joel L.; Rhode, Matthew N.

    2004-01-01

    Minimization of uncertainty is essential for accurate ESP measurements at very low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources requires a well defined and controlled calibration method. A calibration system has been constructed and environmental control software developed to control experimentation to eliminate human induced error sources. The initial stability study of the calibration system shows a high degree of measurement accuracy and precision in temperature and pressure control. Control manometer drift and reference pressure instabilities induce uncertainty into the repeatability of voltage responses measured from the PSI System 8400 between calibrations. Methods of improving repeatability are possible through software programming and further experimentation.

  10. Overview of advanced wing design. [Ames 12-Foot Pressure Tunnel and 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.

    1981-01-01

    Examples of experiment theory correlation are presented to give an indication of the capabilities and limitations of wing design and analysis for transonic applications by potential flow theory. The examples include correlations of experimental pressure distributions with theoretical results from isolated wing codes and wing-body codes. Both conservative and non conservative differencing as well as body and boundary layer corrections are considered. A full potential isolated wing code correlates well with data from an isolated wing test but may give poor prediction of the aerodynamic characteristics of some wing-body configurations. Potential flow wing body codes were found to improve the correlation for the wing-body configurations considered.

  11. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  12. Pressure Probe Designs for Dynamic Pressure Measurements in a Supersonic Flow Field. [conducted in the Glenn Supersonic Wind Tunnel (SWT)

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2001-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor stall and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  13. The Langley 8-ft transonic pressure tunnel laminar-flow-control experiment

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Harvey, William D.; Harris, Charles D.; Brooks, Cuyler W., Jr.

    1992-01-01

    An account is given of the considerations involved in selecting the NASA-Langley transonic pressure tunnel's design and test parameters, as well as its liner and a swept wing for laminar flow control (LFC) experimentation. Attention is given to the types and locations of the instrumentation employed. Both slotted and perforated upper surfaces were tested with partial- and full-chord suction; representative results are presented for all.

  14. Measurements of temperature and pressure fluctuations in the T prime 2 cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, A.; Dor, J. B.; Breil, J. F.

    1980-01-01

    Cold wire measurement of temperature fluctuations were made in a DERAT T'2 induction powered cryogenic wind tunnel for 2 types of liquid nitrogen injectors. Thermal turbulence measured in the tranquilization chamber depends to a great extent on the injector used; for fine spray of nitrogen drops, this level of turbulence seemed completely acceptable. Fluctuations in static pressure taken from the walls of the vein by Kulite sensors showed that there was no increase in aerodynamic noise during cryogenic gusts.

  15. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  16. Free-stream static pressure measurements in the Longshot hypersonic wind tunnel and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Grossir, Guillaume; Van Hove, Bart; Paris, Sébastien; Rambaud, Patrick; Chazot, Olivier

    2016-05-01

    The performance of fast-response slender static pressure probes is evaluated in the short-duration, cold-gas, VKI Longshot hypersonic wind tunnel. Free-stream Mach numbers range between 9.5 and 12, and unit Reynolds numbers are within 3-10 × 106/m. Absolute pressure sensors are fitted within the probes, and an inexpensive calibration method, suited to low static pressure environments (200-1000 Pa), is described. Transfer functions relating the probe measurements p w to the free-stream static pressure p ∞ are established for the Longshot flow conditions based on numerical simulations. The pressure ratios p w / p ∞ are found to be close to unity for both laminar and turbulent boundary layers. Weak viscous effects characterized by small viscous interaction parameters {bar{χ }}<1.5 are confirmed experimentally for probe aspect ratios of L/ D > 16.5 by installing multiple pressure sensors in a single probe. The effect of pressure orifice geometry is also evaluated experimentally and found to be negligible for either straight or chamfered holes, 0.6-1 mm in diameter. No sensitivity to probe angle of attack could be evidenced for α < 0.33°. Pressure measurements are compared to theoretical predictions assuming an isentropic nozzle flow expansion. Significant deviations from this ideal case and the Mach 14 contoured nozzle design are uncovered. Validation of the static pressure measurements is obtained by comparing shock wave locations on Schlieren photographs to numerical predictions using free-stream properties derived from the static pressure probes. While these results apply to the Longshot wind tunnel, the present methodology and sensitivity analysis can guide similar investigations for other hypersonic test facilities.

  17. An Evaluation of Measured Pressure Signatures From Wind-Tunnel Models of Three Low-Boom Concepts

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2005-01-01

    Revised 1990-1991 sonic-boom design and analysis methodology was assessed by applying it to the design of three low-boom concepts. Models of these concepts were built and used to measure pressure signatures in the wind tunnel. An analysis of wind-tunnel data showed unexpected nacelle-inlet and the nacelle-wing interference-lift shocks in the pressure signatures from the two engine-under-the-wing models, but not in the measured pressure signatures from the wind-tunnel model with the engine nacelles mounted on the aft fuselage. However, additional lift-induced shocks were found in the pressure signature data from all three wind-tunnel models indicating that other flow-field disturbance effects were present.

  18. Application of Pressure-Based Wall Correction Methods to Two NASA Langley Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Everhart, J. L.

    2001-01-01

    This paper is a description and status report on the implementation and application of the WICS wall interference method to the National Transonic Facility (NTF) and the 14 x 22-ft subsonic wind tunnel at the NASA Langley Research Center. The method calculates free-air corrections to the measured parameters and aerodynamic coefficients for full span and semispan models when the tunnels are in the solid-wall configuration. From a data quality point of view, these corrections remove predictable bias errors in the measurement due to the presence of the tunnel walls. At the NTF, the method is operational in the off-line and on-line modes, with three tests already computed for wall corrections. At the 14 x 22-ft tunnel, initial implementation has been done based on a test on a full span wing. This facility is currently scheduled for an upgrade to its wall pressure measurement system. With the addition of new wall orifices and other instrumentation upgrades, a significant improvement in the wall correction accuracy is expected.

  19. Development of Dynamic Flow Field Pressure Probes Suitable for Use in Large Scale Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  20. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    NASA Astrophysics Data System (ADS)

    Sriram, R.; Ram, S. N.; Hegde, G. M.; Nayak, M. M.; Jagadeesh, G.

    2015-09-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg-1) and 8.67 (total enthalpy 1.6 MJ kg-1), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone.

  1. Influence of increased static pressure in MHD-channel of hypervelocity wind tunnel on its characteristics

    SciTech Connect

    Alfyorov, V.I.; Rudakova, A.P.; Rukavets, V.P.; Shcherbakov, G.I.

    1995-12-31

    One of the main weaknesses of available MHD gas acceleration wind tunnels which restricts their application for simulating vehicle re-entry flights and reproducing scramjet combustion chamber conditions is a relatively low static pressure in the channel (P{approximately}0.1 to 0.2 Atm). The possibility of increasing this pressure and the influence of the increased pressure on the MHD-accelerator characteristics are the subject of the present paper. It is shown that the main challenge is the necessity of increasing the total Lorentz force proportionally to the channel gas density at electrode current density not resulting in heat and electrical breakdown and the development of the side walls and interelectrode insulators designed for higher heat fluxes, q {approximately} 5 to 10 kw/cm{sup 2}. Some possible wall design versions are suggested. The influence of increased pressure is investigated using the Faraday - type MED channel at static pressures in the MHD channel from 0.2 to 1.0 Atm and total accelerating current I = 300 to 1,100 Amps when B=2.5T. Forty five electrodes are used in the MHD channel at maximum current density of 50 A/cm{sup 2}. The channel flow is calculated by applying the model of a gas in thermodynamic equilibrium. The influence of the increased pressure on electrodynamic (accelerator electrode voltages and currents, Hall voltage and current) and gasdynamic (distributions of static pressure, temperature, velocity, Mach numbers, etc., along the channel length) characteristics is evaluated. Some recommendations on the development of MHD channels for hypersonic wind tunnels designed for high pressure are suggested.

  2. Transonic Dynamics Tunnel Force and Pressure Data Acquired on the HSR Rigid Semispan Model

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Rausch, Russ D.

    1999-01-01

    This report describes the aerodynamic data acquired on the High Speed Research Rigid Semispan Model (HSR-RSM) during NASA Langley Transonic Dynamics Tunnel (TDT) Test 520 conducted from 18 March to 4 April, 1996. The purpose of this test was to assess the aerodynamic character of a rigid high speed civil transport wing. The wing was fitted with a single trailing edge control surface which was both steadily deflected and oscillated during the test to investigate the response of the aerodynamic data to steady and unsteady control motion. Angle-of-attack and control surface deflection polars at subsonic, transonic and low-supersonic Mach numbers were obtained in the tunnel?s heavy gas configuration. Unsteady pressure and steady loads data were acquired on the wing, while steady pressures were measured on the fuselage. These data were reduced using a variety of methods, programs and computer systems. The reduced data was ultimately compiled onto a CD-ROM volume which was distributed to HSR industry team members in July, 1996. This report documents the methods used to acquire and reduce the data, and provides an assessment of the quality, repeatability, and overall character of the aerodynamic data measured during this test.

  3. A New Scanning Tunneling Microscope Reactor Used for High Pressure and High Temperature Catalysis Studies

    SciTech Connect

    Tao, Feng; Tang, David C.; Salmeron, Miquel; Somorjai, Gabor A.

    2008-05-12

    We present the design and performance of a home-built high-pressure and high-temperature reactor equipped with a high-resolution scanning tunneling microscope (STM) for catalytic studies. In this design, the STM body, sample, and tip are placed in a small high pressure reactor ({approx}19 cm{sup 3}) located within an ultrahigh vacuum (UHV) chamber. A sealable port on the wall of the reactor separates the high pressure environment in the reactor from the vacuum environment of the STM chamber and permits sample transfer and tip change in UHV. A combination of a sample transfer arm, wobble stick, and sample load-lock system allows fast transfer of samples and tips between the preparation chamber, high pressure reactor, and ambient environment. This STM reactor can work as a batch or flowing reactor at a pressure range of 10{sup -13} to several bars and a temperature range of 300-700 K. Experiments performed on two samples both in vacuum and in high pressure conditions demonstrate the capability of in situ investigations of heterogeneous catalysis and surface chemistry at atomic resolution at a wide pressure range from UHV to a pressure higher than 1 atm.

  4. Wind tunnel tests for wind pressure distribution on gable roof buildings.

    PubMed

    Jing, Xiao-kun; Li, Yuan-qi

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.

  5. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    PubMed Central

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  6. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  7. An Overview of Unsteady Pressure Measurements in the Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Edwards, John W.; Bennett, Robert M.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel has served as a unique national facility for aeroelastic testing for over forty years. A significant portion of this testing has been to measure unsteady pressures on models undergoing flutter, forced oscillations, or buffet. These tests have ranged from early launch vehicle buffet to flutter of a generic high-speed transport. This paper will highlight some of the test techniques, model design approaches, and the many unsteady pressure tests conducted in the TDT. The objectives and results of the data acquired during these tests will be summarized for each case and a brief discussion of ongoing research involving unsteady pressure measurements and new TDT capabilities will be presented.

  8. Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada

    SciTech Connect

    Rutqvist, Jonny; Borgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son

    2008-08-01

    This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of the TSX tunnel at the underground research laboratory (URL) in Canada. Four different numerical models were applied, using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel, as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increases alongside the tunnel as a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis coefficient, {alpha} {approx} 0.2, a porosity of n {approx} 0.007, and a relatively low permeability of k {approx} 2 x 10{sup -22} m{sup 2}, which is consistent with the very tight, unfractured granite at the site.

  9. Modifications to the Langley 8-foot transonic pressure tunnel for the laminar flow control experiment

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.

    1988-01-01

    Modifications to the NASA Langley 8 Foot Transonic Pressure Tunnel in support of the Lamina Flow Control (LFC) Experiment included the installation of a honeymoon and five screens in the settling chamber upstream of the test section 41-long test section liner that extended from the upstream end of the test section contraction region, through the best section, and into the diffuser. The honeycomb and screens were installed as permanent additions to the facility, and the liner was a temporary addition to be removed at the conclusion of the LFC Experiment. These modifications are briefly described.

  10. Aeroacoustic Experiments in the NASA Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Lockard, David P.; Macaraeg, Michele G.; Singer, Bart A.; Streett, Craig L.; Neubert, Guy R.; Stoker, Robert W.; Underbrink, James R.; Berkman, Mert E.; Khorrami, Mehdi R.

    2002-01-01

    A phased microphone array was used in the NASA Langley Low-Turbulence Pressure Tunnel to obtain acoustic data radiating from high-lift wing configurations. The data included noise localization plots and acoustic spectra. The tests were performed at Reynolds numbers based on the cruise-wing chord, ranging from 3.6 x 10(exp 6) to 19.2 x 10(exp 6). The effects of Reynolds number were small and monotonic for Reynolds numbers above 7.2 x 10(exp 6).

  11. Pressure distribution on a vectored-thrust V/STOL fighter in the transition-speed range. [wind tunnel tests to measure pressure distribution on body and wing

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.; Margason, R. J.

    1974-01-01

    A wind-tunnel investigation has been conducted in the Langley V/STOL tunnel with a vectored-thrust V/STOL fighter configuration to obtain detailed pressure measurements on the body and on the wing in the transition-speed range. The vectored-thrust jet exhaust induced a region of negative pressure coefficients on the lower surface of the wing and on the bottom of the fuselage. The location of the jet exhaust relative to the wing was a major factor in determining the extent of the region of negative pressure coefficients.

  12. An evaluation of Shuttle Entry Air Data System (SEADS) flight pressures - Comparisons with wind tunnel and theoretical predictions

    NASA Technical Reports Server (NTRS)

    Henry, M. W.; Wolf, H.; Siemers, Paul M., III

    1988-01-01

    The SEADS pressure data obtained from the Shuttle flight 61-C are analyzed in conjunction with the preflight database. Based on wind tunnel data, the sensitivity of the Shuttle Orbiter stagnation region pressure distribution to angle of attack and Mach number is demonstrated. Comparisons are made between flight and wind tunnel SEADS orifice pressure distributions at several points throughout the re-entry. It is concluded that modified Newtonian theory provides a good tool for the design of a flush air data system, furnishing data for determining orifice locations and transducer sizing. Ground-based wind tunnel facilities are capable of providing the correction factors necessary for the derivation of accurate air data parameters from pressure data.

  13. Experiment and analysis on the flow process dynamics of the NASA-Langley eight foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Tcheng, P.

    1977-01-01

    A dynamic response test performed in a eight foot transonic pressure tunnel is described. The dynamics of the flow process of the wind tunnel at transonic conditions were obtained. Descriptions of the test conditions, instrumentation, presentation of raw data, analysis of data, and finally, based on experimental evidences, an attempt to construct an input output relationship of the flow process from the viewpoints of control engineering are included.

  14. Pressure- and Temperature-Sensitive Paint at 0.3-m Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.

    2015-01-01

    Recently both Pressure- and Temperature-Sensitive Paint experiments were conducted at cryogenic conditions in the 0.3-m Transonic Cryogenic Tunnel at NASA Langley Research Center. This represented a re-introduction of the techniques to the facility after more than a decade, and provided a means to upgrade the measurements using newer technology as well as demonstrate that the techniques were still viable in the facility. Temperature-Sensitive Paint was employed on a laminar airfoil for transition detection and Pressure-Sensitive Paint was employed on a supercritical airfoil. This report will detail the techniques and their unique challenges that need to be overcome in cryogenic environments. In addition, several optimization strategies will also be discussed.

  15. NESC Review of the 8-Foot High Temperature Tunnel (HTT) Oxygen Storage Pressure Vessel Inspection Requirements

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael; Raju, Ivatury; Piascik, Robert; Cameron, Kenneth; Kirsch, Michael; Hoffman, Eric; Murthy, Pappu; Hopson, George; Greulich, Owen; Frazier, Wayne

    2009-01-01

    The 8-Foot HTT (refer to Figure 4.0-1) is used to conduct tests of air-breathing hypersonic propulsion systems at Mach numbers 4, 5, and 7. Methane, Air, and LOX are mixed and burned in a combustor to produce test gas stream containing 21 percent by volume oxygen. The NESC was requested by the NASA LaRC Executive Safety Council to review the rationale for a proposed change to the recertification requirements, specifically the internal inspection requirements, of the 8-Foot HTT LOX Run Tank and LOX Storage Tank. The Run Tank is an 8,000 gallon cryogenic tank used to provide LOX to the tunnel during operations, and is pressured during the tunnel run to 2,250 pounds per square inch gage (psig). The Storage Tank is a 25,000 gallon cryogenic tank used to store LOX at slightly above atmospheric pressure as a external shell, with space between the shells maintained under vacuum conditions.

  16. Correlation of Fin Buffet Pressures on an F/A-18 with Scaled Wind-Tunnel Measurements

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1999-01-01

    Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  17. Oxygen Quenching of Luminescence of Pressure Sensitive Paint for Wind Tunnel Research

    NASA Astrophysics Data System (ADS)

    Gouterman, Martin

    1997-06-01

    A technique for measuring the lift on airfoils in wind tunnels has been developed based on oxygen quenching of luminescence. A luminophor that is quenched by oxygen is dissolved in a paint containing polymer that is oxygen permeable and a volatile solvent. The paint is sprayed to form a coating on the airfoil surface. The intensity of photo excited emission depends on the effective oxygen pressure over the surface. During airflow this is reduced and the emission gets brighter. The ratio of a CCD camera image of the emission intensity taken in still air to that taken during airflow provides a map of the pressure on the airfoil surface. This is given by the Stern-Volmer equation: Io(x,y)/I(x,y) = A + B(pxy/po) where Io(x,y) is the intensity measured at point x,y in still air at pressure po, I(x,y) is the intensity at the same point during airflow, pxy is the pressure at that point during airflow, and A and B are calibration constants. The luminophor of choice was a platinum porphyrin that is excited in the near uv and emits a phosphorescence at 650 nm. The most serious problem with the method is that the emission intensity is also temperature dependent.

  18. Porewater pressure control on subglacial soft sediment remobilization and tunnel valley formation: A case study from the Alnif tunnel valley (Morocco)

    NASA Astrophysics Data System (ADS)

    Ravier, Edouard; Buoncristiani, Jean-François; Guiraud, Michel; Menzies, John; Clerc, Sylvain; Goupy, Bastien; Portier, Eric

    2014-05-01

    In the eastern part of the Moroccan Anti-Atlas Mountains, the Alnif area exposes a buried Ordovician glacial tunnel valley (5 km wide, 180 m deep) cut into preglacial marine sediments. The preglacial sedimentary sequence, deposited in a marine environment, is characterized by a typical "layer-cake" configuration of permeable (sand) and impermeable (clays and early-cemented sandstones) layers. At the base of the tunnel valley, a discontinuous and fan-shaped glacial conglomeratic unit 10 to 15 m thick occurs, erosively deposited over preglacial marine sediments. The conglomeratic unit is composed of preglacial intraclasts embedded within a sandy matrix. Both preglacial and glacial sediments display soft-sediment deformation structures related to fluctuating porewater pressure and strain rates, including ball structures, clastic dykes, fluted surfaces, turbate structures, folds and radial extensional normal faults. Kinematics and relative chronology of these deformation structures allow the role of porewater pressure in the process of tunnel valley genesis on soft beds to be understood. The tunnel valley formed through multi-phased episodes of intense hydrofracturing of the preglacial bed due to overpressure development promoted by ice sheet growth over the study area, and configuration of the substratum. Transport of the resulting conglomerate composed of preglacial intraclasts and fluidized sand occurred through subglacial pipes. The brecciated material is deposited in subglacial cavities, forming fans of massive sandy conglomerate infilling the base of the tunnel valley. The conglomeratic unit is partially reworked by meltwater and exhibits intense soft-sediment deformations, due to episodes of ice-bed coupling and decoupling.

  19. First Infilling of the Venda Nova II Unlined High-Pressure Tunnel: Observed Behaviour and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Lamas, Luís N.; Leitão, Noemí S.; Esteves, Carlos; Plasencia, Nadir

    2014-05-01

    The underground structures of the Venda Nova II reversible hydroelectric power scheme present features that make it an interesting case study. Worthy of mention are the inclination and length of the unlined pressure tunnel, the high water head and the great depth of the powerhouse cavern. In projects of this type, the main effect of the internal water pressure in the pressure tunnel is the establishment of seepage from the tunnel into the rock mass, which can reach the adits and the powerhouse cavern. This seepage is influenced by several factors, such as the geometry of the underground openings, the rock mass properties—namely, the joints characteristics—and the stress state resulting from the excavation and from the internal water pressure. This article presents the main features of the underground structures of the Venda Nova II scheme and a detailed description of the observed behaviour during the first infilling of the pressure tunnel. A three-dimensional multi-laminated numerical model of the rock mass hydromechanical behaviour was developed to help understand the observed behaviour. The model assumptions in regard to the geometry of the openings, the jointing pattern, the rock mass hydraulic and mechanical behaviour, as well as the hydromechanical interaction, are described. Results obtained with the numerical model are presented and compared with the observed behaviour. Finally, the validity and importance of the numerical tools for the interpretation of the rock mass hydromechanical behaviour is discussed.

  20. Cryogenic Tunnel Pressure Measurements on a Supercritical Airfoil for Several Shock Buffet Conditions

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Edwards, John W.

    1997-01-01

    Steady and unsteady experimental data are presented for several fixed geometry conditions from a test in the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The purpose of this test was to obtain unsteady data for transonic conditions on a fixed and pitching supercritical airfoil at high Reynolds numbers. Data and brief analyses for several of the fixed geometry test conditions will be presented here. These are at Reynolds numbers from 6 x 10(exp 6) to 35 x 10(exp 6) bases on chord length, and span a limited range of Mach numbers and angles of attack just below and at the onset of shock buffet. Reynolds scaling effects appear in both the steady pressure data and in the onset of shock buffet at Reynolds numbers of 15 x 10(exp 6) and 3O x 10(exp 6) per chord length.

  1. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    SciTech Connect

    Tang, David Chi-Wai

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  2. PROPOSAL OF PREDICTIVE EQUATIONS FOR THE SOUND PRESSURE SPECTRUM LEVEL OF THE BLAST NOISE IN THE TUNNEL

    NASA Astrophysics Data System (ADS)

    Ishida, Shigeki; Kakigi, Hiroya; Shinji, Masato

    The noise reduction effect of a sound insulation door installed in a tunnel under construction can be analyzed practically by the numerical analysis using the SEA method. However there was a problem that the prediction analysis is quite difficult at the planning stage because there was not the predictive technique of the sound pressure spectrum level(SPSL) of blast noise to be necessary as input data. In this Study, We analyzed relationship between gunpowder quantity and frequency domain damping characteristic of the sound pressure level in the tunnel based on field measurement results. And based on this analysis, we propose a predictive equation for the SPSL of the blast noise in the tunnel, and discuss its applicability.

  3. Anomalous Shocks on the Measured Near-Field Pressure Signatures of Low-Boom Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2006-01-01

    Unexpected shocks on wind-tunnel-measured pressure signatures prompted questions about design methods, pressure signature measurement techniques, and the quality of measurements in the flow fields near lifting models. Some of these unexpected shocks were the result of component integration methods. Others were attributed to the three-dimension nature of the flow around a lifting model, to inaccuracies in the prediction of the area-ruled lift, or to wing-tip stall effects. This report discusses the low-boom model wind-tunnel data where these unexpected shocks were initially observed, the physics of the lifting wing/body model's flow field, the wind-tunnel data used to evaluate the applicability of methods for calculating equivalent areas due to lift, the performance of lift prediction codes, and tip stall effects so that the cause of these shocks could be determined.

  4. Transonic Wind-Tunnel Tests of an Error-Compensated Static-Pressure Probe

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.

    1961-01-01

    An investigation of the pressure-sensing characteristics of an error-compensated static-pressure probe mounted on the nose section of a missile body has been conducted in the Langley 16-foot transonic tunnel. The probe was free to rotate about its roll axis and was equipped with a vane so that the crossflow velocity component due to angles of attack or sideslip was always alined with the probe's vertical plane of symmetry. The probe was tested in five axial positions with respect to the missile nose at Mach numbers from 0.30 to 1.08 and at angles of attack from -2.7 to 15.3 deg. The test Reynolds number per foot varied from 1.79 x 10(exp 6) to 4.05 x 10(exp 6). Results showed that at a Mach number of 1.00 the static-pressure error decreased from 3.5 percent to 0.8 percent of the free-stream static pressure, as a result of a change in orifice location from 0.15 maximum missile diameter to 0.20 maximum missile diameter forward of the missile nose. Although compensation for pressure-sensing errors due to angles of attack up to 15.3 was maintained at Mach numbers from M = 0.30 to M = 0.50, there was an increase in error with an increase in angle of attack for Mach numbers between M 0.50 and M = 1.08.

  5. Small model experiment on the gradient of pressure wave formed by train entering into the tunnel at 160km/h

    NASA Astrophysics Data System (ADS)

    Yonemoto, Temma; Endo, Hirokazu; Meguro, Fumiya; Ota, Masanori; Maeno, Kazuo

    2014-06-01

    In recent years, running speed of the trains of conventional lines becomes faster with improving vehicle and rail performance. At the high-speed range compression wave is formed when a high speed train enters a tunnel. This compression wave propagates in the tunnel at the speed of sound. This propagated wave is called "tunnel pressure wave". In some cases, when the station of conventional lines is located in the tunnel, problems such as breaking the window glass have been reported by the tunnel pressure wave at the station. Though the research on pressure wave inside the tunnel of the Shinkansen has been widely studied in connection with "tunnel micro-pressure wave" problems, the number of research reports on the operating speed of conventional lines(130~160km/h) is insufficient. In this study we focused on Hokuhoku line which has maximum operating speed of conventional lines in Japan (160km/h), and we performed the experiment on the gradient of the pressure wave by using diaphragmless driver acceleration system, small train nose model, and tunnel model of the limited express of Hokuhoku line. We have performed the pressure-time variation measurement on the tunnel model, including a station model or signal crossing station [SCS] model. As the thpical train model, we used Streamline-type or Gangway-type for train nose geometry. We have obtained pressure gradient data on several running conditions and observed the temporal .behavior in the tunnel pressure wave. As a result, we clarified large difference in pressure gradient with the train nose geometry and with the cross-sectional area of the tunnel.

  6. Further wind tunnel measurements of pressure signatures for a 0.0041-scale model of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Mendoza, J. P.

    1976-01-01

    Pressure signatures for a 0.0041 scale model of the space shuttle orbiter were measured in the wind tunnel at Mach numbers from 1.3 to 4.0. The angles of attack were 0 deg, 10 deg, 20 deg and 30 deg. At each angle of attack the model was rolled from 0 deg to 120 deg in 30 deg increments.

  7. A Full-Scale Tunnel Sealing Demonstration using Concrete and Clay Bulkheads Exposed to Elevated Temperatures and Pressures

    SciTech Connect

    Martino, J.B.; Dixon, D.A.; Vignal, B.; Fujita, T.

    2006-07-01

    The Tunnel Sealing Experiment (TSX), a major international research and development project, demonstrating technologies for tunnel sealing at full-scale, was conducted at Atomic Energy of Canada Limited's Underground Research Laboratory (URL). The objective of the experiment was to demonstrate technologies for construction of bentonite and concrete bulkheads, to quantify the performance of each bulkhead and to document the factors that affect the performance. It was not the purpose of the experiment to demonstrate an optimized sealing bulkhead. Two bulkheads, one composed of low heat high performance concrete and the other of highly compacted sand-bentonite material, were constructed in a tunnel in unfractured granitic rock at the URL. The chamber between the two bulkheads was pressurized with water to 4 MPa in a series of steps over a two-year period. The ultimate pressure is representative of the ambient pore pressures in the rock at a depth of 420 m. The first phase of the TSX was conducted at ambient temperature (15 deg. C) while a second phase involved heating the pressurized water between the bulkheads to temperatures that ultimately reached 65 deg. C at thermistors near the upstream face of both bulkheads. Instrumentation in the experiment was used to monitor parameters that are important indicators for bulkhead performance. Seepage was measured at both bulkheads and at any leakage points from the tunnel to maintain a water balance. The paper provides an overview of the project and its results. (authors)

  8. Pressure Distribution on a Slotted R.A.F. 31 Airfoil in the Variable Density Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1929-01-01

    Measurements were made in the variable density wind tunnel to determine the pressure distribution over one section of a R.A.F. 31 airfoil with a leading edge slot fully open. To provide data for the study of scale effect on this type of airfoil, the tests were conducted with air densities of approximately one and twenty atmospheres.

  9. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  10. Design criteria applied for the Lower Pressure Tunnel of the North Fork Stanislaus River Hydroelectric Project in California

    NASA Astrophysics Data System (ADS)

    Schleiss, A.

    1988-07-01

    The application of various criteria and certain new approaches to design is illustrated by the example of the Lower Collierville Pressure Tunnel of the North Fork Stanislaus River Hydropower Project in California. With a maximum internal water pressure of 72 bar, Lower Collierville Tunnel will be, when commissioned in 1989, the highest stressed pressure tunnel in the world not situated in granitic rocks. The geological conditions and the results of the geotechnical investigations are described briefly. For the steel-lined portion of the tunnel, the approach for determining the bearing capacity of the rock mass and the load sharing between steel and rock is discussed. The required length of steel liner was determined on the basis of rock mechanical (hydraulic jacking) and rock hydraulic (seepage losses and extension of saturated zone due to seepage) criteria. The use of a new theory allows the effects of mechanical-hydraulic interaction to be taken into account. Finally the methods of estimating the expected water losses and the sealing effect of the consolidation grouting are described.

  11. KC-135 wing and winglet flight pressure distributions, loads, and wing deflection results with some wind tunnel comparisons

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Jacobs, P.; Flechner, S.; Sims, R.

    1982-01-01

    A full-scale winglet flight test on a KC-135 airplane with an upper winglet was conducted. Data were taken at Mach numbers from 0.70 to 0.82 at altitudes from 34,000 feet to 39,000 feet at stabilized flight conditions for wing/winglet configurations of basic wing tip, 15/-4 deg, 15/-2 deg, and 0/-4 deg winglet cant/incidence. An analysis of selected pressure distribution and data showed that with the basic wing tip, the flight and wind tunnel wing pressure distribution data showed good agreement. With winglets installed, the effects on the wing pressure distribution were mainly near the tip. Also, the flight and wind tunnel winglet pressure distributions had some significant differences primarily due to the oilcanning in flight. However, in general, the agreement was good. For the winglet cant and incidence configuration presented, the incidence had the largest effect on the winglet pressure distributions. The incremental flight wing deflection data showed that the semispan wind tunnel model did a reasonable job of simulating the aeroelastic effects at the wing tip. The flight loads data showed good agreement with predictions at the design point and also substantiated the predicted structural penalty (load increase) of the 15 deg cant/-2 deg incidence winglet configuration.

  12. Stresses and Displacements in Steel-Lined Pressure Tunnels and Shafts in Anisotropic Rock Under Quasi-Static Internal Water Pressure

    NASA Astrophysics Data System (ADS)

    Pachoud, Alexandre J.; Schleiss, Anton J.

    2016-04-01

    Steel-lined pressure tunnels and shafts are constructed to convey water from reservoirs to hydroelectric power plants. They are multilayer structures made of a steel liner, a cracked backfill concrete layer, a cracked or loosened near-field rock zone and a sound far-field rock zone. Designers often assume isotropic behavior of the far-field rock, considering the most unfavorable rock mass elastic modulus measured in situ, and a quasi-static internal water pressure. Such a conventional model is thus axisymmetrical and has an analytical solution for stresses and displacements. However, rock masses often have an anisotropic behavior and such isotropic assumption is usually conservative in terms of quasi-static maximum stresses in the steel liner. In this work, the stresses and displacements in steel-lined pressure tunnels and shafts in anisotropic rock mass are studied by means of the finite element method. A quasi-static internal water pressure is considered. The materials are considered linear elastic, and tied contact is assumed between the layers. The constitutive models used for the rock mass and the cracked layers are presented and the practical ranges of variation of the parameters are discussed. An extensive systematic parametric study is performed and stresses and displacements in the steel liner and in the far-field rock mass are presented. Finally, correction factors are derived to be included in the axisymmetrical solution which allow a rapid estimate of the maximum stresses in the steel liners of pressure tunnels and shafts in anisotropic rock.

  13. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect

    Matsui, Makoto; Yamagiwa, Yoshiki; Tanaka, Kensaku; Arakawa, Yoshihiro; Nomura, Satoshi; Komurasaki, Kimiya

    2012-08-01

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  14. Improved pressure measurement system for calibration of the NASA LeRC 10x10 supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Blumenthal, Philip Z.; Helland, Stephen M.

    1994-01-01

    This paper discusses a method used to provide a significant improvement in the accuracy of the Electronically Scanned Pressure (ESP) Measurement System by means of a fully automatic floating pressure generating system for the ESP calibration and reference pressures. This system was used to obtain test section Mach number and flow angularity measurements over the full envelope of test conditions for the 10 x 10 Supersonic Wind Tunnel. The uncertainty analysis and actual test data demonstrated that, for most test conditions, this method could reduce errors to about one-third to one-half that obtained with the standard system.

  15. Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure

    SciTech Connect

    Guo, P.; Yu, G. Q.; Wei, H. X.; Han, X. F. E-mail: xfhan@aphy.iphy.ac.cn; Li, D. L.; Feng, J. F. E-mail: xfhan@aphy.iphy.ac.cn; Kurt, H.; Chen, J. Y.; Coey, J. M. D.

    2014-10-21

    Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E{sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process, opening an additional conductance channel and thus enhancing the total conductance.

  16. A fast-response aspirating probe for measurements of total temperature and pressure in transonic cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ng, W.-F.; Rosson, J. C.

    1986-01-01

    A newly developed, 3-mm-diam, dual hot-wire aspirating probe was used to measure the time-resolved stagnation temperature and pressure in a transonic cryogenic wind tunnel. The probe consists of two coplanar constant temperature hot wires at different overheat ratios operating in a 1.5-mm-diam channel with a choked exit. Thus, the constant Mach number flow by the wires is influenced only by free-stream stagnation temperature and pressure. Diffusion of the free-stream Mach number to a lower value in the channel reduces the dynamic drag on the hot-wire. Frequency response of the present design is dc to 20 kHz. The probe was used to measure the unsteady wake shed from an oscillating airfoil tested in the 0.3-m Transonic Cryogenic Tunnel at NASA-Langley Research Center. The hot-wire lasted for more than ten hours before breaking, proving the ruggedness of the probe and the usefulness of the technique in a high dynamic pressure, transonic cryogenic wind tunnel. Typical data obtained from the experiment are presented after reduction to stagnation pressure and temperature.

  17. Onset of condensation effects as detected by total pressure probes in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1979-01-01

    Total pressure probes mounted in the test section of a 0.3 meter transonic cryogenic tunnel were used to detect the onset of condensation effects for free stream Mach numbers of 0.50, 0.75, 0.85, and 0.95 and for total pressure between one and five atmospheres. The amount of supercooling was found to be about 3 K and suggests that condensation was occurring on pre-existing liquid nitrogen droplets resulting from incomplete evaporation of the liquid nitrogen injected to cool the tunnel. The liquid nitrogen injection process presently being used for the 0.3 m tunnel was found to result in a wide spectrum of droplet sizes being injected into the flow. Since the relatively larger droplets took much more time to evaporate than the more numerous smaller droplets, the larger ones reached the test section first as the tunnel operating temperature was reduced. However, condensation effects in the test section were not immediately measurable because there was not a sufficient number of the larger droplets to have an influence on the thermodynamics of the flow.

  18. Pilot model expansion tunnel test flow properties obtained from velocity, pressure, and probe measurements

    NASA Technical Reports Server (NTRS)

    Friesen, W. J.; Moore, J. A.

    1973-01-01

    Velocity-profile, pitot-pressure, and supplemental probe measurements were made at the nozzle exist of an expansion tunnel (a modification to the Langley pilot model expansion tube) for a nozzle net condition of a nitrogen test sample with a velocity of 4.5 km/sec and a density 0.005 times the density of nitrogen at standard conditions, both with the nozzle initially immersed in a helium atmosphere and with the nozzle initially evacuated. The purpose of the report is to present the results of these measurements and some of the physical properties of the nitrogen test sample which can be inferred from the measured results. The main conclusions reached are that: the velocity profiles differ for two nozzle conditions; regions of the flow field can be found where the velocity is uniform to within 5 percent and constant for several hundred microseconds; the velocity of the nitrogen test sample is reduced due to passage through the nozzle; and the velocity profiles do not significantly reflect the large variations which occur in the inferred density profiles.

  19. Effect of grip type, wrist motion, and resistance level on pressures within the carpal tunnel of normal wrists.

    PubMed

    McGorry, Raymond W; Fallentin, Nils; Andersen, Johan H; Keir, Peter J; Hansen, Torben B; Pransky, Glenn; Lin, Jia-Hua

    2014-04-01

    Elevated carpal tunnel pressure (CTP) has been associated with carpal tunnel syndrome. This study systematically evaluated the effect of wrist motion resistance and grip type on CTP during wrist motion typical of occupational tasks. CTP during four wrist motion patterns, with and without resistance, and with and without gripping, was measured in vivo in 14 healthy individuals. CTP measured during compound motions fell between that measured in the cardinal planes of wrist flexion/extension and radial/ulnar deviation. Generally, with no active gripping there was little pressure change due to wrist angular displacement or resistance level. However, concurrent active pinch or power grip increased CTP particularly in motions including extension. CTP typically did not increase during wrist flexion, and in fact often decreased. Extension motions against resistance when employing a pinch or power grip increase CTP more than motions with flexion. Results could help inform design or modification of wrist motion intensive occupational tasks. © 2014 The Authors.

  20. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    NASA Astrophysics Data System (ADS)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  1. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Faceted Missile Model at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Global PSP calibrations were obtained using an in-situ method featuring the simultaneous electronically-scanned pressures (ESP) measurements. Both techniques revealed the significant influence leading-edge vortices on the surface pressure distributions. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M(sub infinity)=0.70 and 2.6 percent at M(sub infinity)=0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.

  2. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Faceted Missile Model at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Satisfactory global calibrations of the PSP were obtained at =0.70, 0.90, and 1.20, angles of attack from 10 degrees to 20 degrees, and angles of sideslip of 0 and 2.5 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at 57 discrete locations on the model. Both techniques clearly revealed the significant influence on the surface pressure distributions of the vortices shed from the sharp, chine-like leading edges. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M infinity =0.70 and 2.6 percent at M infinity =0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.

  3. A fan pressure ratio correlation in terms of Mach number and Reynolds number for the Langley 0.3 meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Adcock, J. B.; Ladson, C. L.

    1980-01-01

    Calibration data for the two dimensional test section of the Langley 0.3 Meter Transonic Cryogenic Tunnel were used to develop a Mach number-Reynolds number correlation for the fan pressure ratio in terms of test section conditions. Well established engineering relationships combined to form an equation which is functionally analogous to the correlation. A geometric loss coefficient which is independent of Reynolds number or Mach number was determined. Present and anticipated uses of this concept include improvement of tunnel control schemes, comparison of efficiencies for operationally similar wind tunnels, prediction of tunnel test conditions and associated energy usage, and determination of Reynolds number scaling laws for similar fluid flow systems.

  4. Pressure distribution on the roof of a model low-rise building tested in a boundary layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Goliber, Matthew Robert

    With three of the largest metropolitan areas in the United States along the Gulf coast (Houston, Tampa, and New Orleans), residential populations ever increasing due to the subtropical climate, and insured land value along the coast from Texas to the Florida panhandle greater than $500 billion, hurricane related knowledge is as important now as ever before. This thesis focuses on model low-rise building wind tunnel tests done in connection with full-scale low-rise building tests. Mainly, pressure data collection equipment and methods used in the wind tunnel are compared to pressure data collection equipment and methods used in the field. Although the focus of this report is on the testing of models in the wind tunnel, the low-rise building in the field is located in Pensacola, Florida. It has a wall length of 48 feet, a width of 32 feet, a height of 10 feet, and a gable roof with a pitch of 1:3 and 68 pressure ports strategically placed on the surface of the roof. Built by Forest Products Laboratory (FPL) in 2002, the importance of the test structure has been realized as it has been subjected to numerous hurricanes. In fact, the validity of the field data is so important that the following thesis was necessary. The first model tested in the Bill James Wind Tunnel for this research was a rectangular box. It was through the testing of this box that much of the basic wind tunnel and pressure data collection knowledge was gathered. Knowledge gained from Model 1 tests was as basic as how to: mount pressure tubes on a model, use a pressure transducer, operate the wind tunnel, utilize the pitot tube and reference pressure, and measure wind velocity. Model 1 tests also showed the importance of precise construction to produce precise pressure coefficients. Model 2 was tested in the AABL Wind Tunnel at Iowa State University. This second model was a 22 inch cube which contained a total of 11 rows of pressure ports on its front and top faces. The purpose of Model 2 was to

  5. Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley low-turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Mcghee, Robert J.; Walker, Betty S.; Millard, Betty F.

    1988-01-01

    Experimental results were obtained for an Eppler 387 airfoil in the Langley Low Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.03 to 0.13 and a chord Reynolds number range for 60,000 to 460,000. Lift and pitching moment data were obtained from airfoil surface pressure measurements and drag data for wake surveys. Oil flow visualization was used to determine laminar separation and turbulent reattachment locations. Comparisons of these results with data on the Eppler 387 airfoil from two other facilities as well as the Eppler airfoil code are included.

  6. In situ high-pressure synchrotron X-ray powder diffraction study of tunnel manganese oxide minerals: hollandite, romanechite, and todorokite

    NASA Astrophysics Data System (ADS)

    Hwang, Gil Chan; Post, Jeffrey E.; Lee, Yongjae

    2015-05-01

    In situ high-pressure synchrotron X-ray powder diffraction study of three tunnel manganese oxide minerals (hollandite with 2 × 2 MnO6 octahedra tunnels, romanechite with 2 × 3 tunnels, and todorokite with 3 × 3 tunnels) was performed using a diamond anvil cell and nominally penetrating alcohol and water mixture as a pressure-transmitting medium up to ~8 GPa. Bulk moduli ( B 0) calculated using Murnaghan's equation of state are inversely proportional to the size of the tunnel, i.e., 134(4) GPa for hollandite ( I2/m), 108(2) GPa for romanechite ( C2/m), and 67(5) GPa for todorokite ( P2/m). On the other hand, axial compressibilities show different elastic anisotropies depending on the size of the tunnel, i.e., ( a/ a 0) = -0.00066(3) GPa-1, ( b/ b 0) = 0.00179(8) GPa-1, ( c/ c 0) = 0.00637(4) GPa-1 [ c > b > a] for hollandite; ( a/ a 0) = 0.00485(4) GPa-1, ( b/ b 0) = 0.0016(1) GPa-1, ( c/ c 0) = 0.00199(8) GPa-1 [ a > c > b] for romanechite; and ( a/ a 0) = 0.00826(9) GPa-1, ( b/ b 0) = 0.0054(1) GPa-1, ( c/ c 0) = 0.00081(8) GPa-1 [ a > b > c] for todorokite. Overall, the degree of tunnel distortion increases with increasing pressure and correlates with the size of the tunnel, which is evidenced by the gradual increases in the monoclinic β angles up to 3 GPa of 0.62°, 0.8°, and 1.15° in hollandite, romanechite, and todorokite, respectively. The compression of tunnel manganese oxides is related to the tunnel distortion and the size of the tunnel.

  7. Pressure coefficient evaluation on the surface of the SONDA III model tested in the TTP Pilot Transonic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Reis, M. L. C. C.; Falcao Filho, J. B. P.; Basso, E.; Caldas, V. R.

    2015-02-01

    A test campaign of the Brazilian sounding rocket Sonda III was carried out at the Pilot Transonic Wind Tunnel, TTP. The aim of the campaign was to investigate aerodynamic phenomena taking place at the connection region of the first and second stages. Shock and expansion waves are expected at this location causing high gradients in airflow properties around the vehicle. Pressure taps located on the surface of a Sonda III half model measure local static pressures. Other measured parameters were freestream static and total pressures of the airflow. Estimated parameters were pressure coefficients and Mach numbers. Uncertainties associated with the estimated parameters were calculated by employing the Law of Propagation of Uncertainty and the Monte Carlo method. It was found that both uncertainty evaluation methods resulted in similar values. A Computational Fluid Dynamics simulation code was elaborated to help understand the changes in the flow field properties caused by the disturbances.

  8. Subsonic wind-tunnel tests of a trailing-cone device for calibrating aircraft static pressure systems

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Ritchie, V. S.

    1973-01-01

    A trailing-cone device for calibrating aircraft static-pressure systems was tested in a transonic wind tunnel to investigate the pressure-sensing characteristics of the device including effects of several configuration changes. The tests were conducted at Mach numbers from 0.30 to 0.95 with Reynolds numbers from (0.9 x one million to 4.1 x one million per foot). The results of these tests indicated that the pressures sensed by the device changed slightly but consistently as the distance between the device pressure orifices and cone was varied from 4 to 10 cone diameters. Differences between such device-indicated pressures and free-stream static pressure were small, however, and corresponded to Mach number differences of less than 0.001 for device configurations with pressure orifices located 5 or 6 cone diameters ahead of the cone. Differences between device-indicated and free-stream static pressures were not greatly influenced by a protection skid at the downstream end of the pressure tube of the device nor by a 2-to-1 change in test Reynolds number.

  9. Determination of wind tunnel constraint effects by a unified pressure signature method. Part 1: Applications to winged configurations

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.; Sampath, S.; Phillips, C. G.

    1981-01-01

    A new, fast, non-iterative version of the "Wall Pressure Signature Method" is described and used to determine blockage and angle-of-attack wind tunnel corrections for highly-powered jet-flap models. The correction method is complemented by the application of tangential blowing at the tunnel floor to suppress flow breakdown there, using feedback from measured floor pressures. This tangential blowing technique was substantiated by subsequent flow investigations using an LV. The basic tests on an unswept, knee-blown, jet flapped wing were supplemented to include the effects of slat-removal, sweep and the addition of unflapped tips. C sub mu values were varied from 0 to 10 free-air C sub l's in excess of 18 were measured in some cases. Application of the new methods yielded corrected data which agreed with corresponding large tunnel "free air" resuls to within the limits of experimental accuracy in almost all cases. A program listing is provided, with sample cases.

  10. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  11. Determination of wind tunnel constraint effects by a unified pressure signature method. Part 2: Application to jet-in-crossflow

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.; Sampath, S.; Phillips, C. G.

    1981-01-01

    The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant.

  12. Comparison of nozzle and afterbody surface pressures from wind tunnel and flight test of the YF-17 aircraft

    NASA Technical Reports Server (NTRS)

    Lucas, E. J.; Fanning, A. E.; Steers, L. I.

    1978-01-01

    Results are reported from the initial phase of an effort to provide an adequate technical capability to accurately predict the full scale, flight vehicle, nozzle-afterbody performance of future aircraft based on partial scale, wind tunnel testing. The primary emphasis of this initial effort is to assess the current capability and identify the cause of limitations on this capability. A direct comparison of surface pressure data is made between the results from an 0.1-scale model wind tunnel investigation and a full-scale flight test program to evaluate the current subscale testing techniques. These data were acquired at Mach numbers 0.6, 0.8, 0.9, 1.2, and 1.5 on four nozzle configurations at various vehicle pitch attitudes. Support system interference increments were also documented during the wind tunnel investigation. In general, the results presented indicate a good agreement in trend and level of the surface pressures when corrective increments are applied for known effects and surface differences between the two articles under investigation.

  13. Turbulence and pressure loss characteristics of the inlet vanes for the 80- by 120-ft wind tunnel

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    1990-01-01

    A series of wind tunnel investigations were conducted to determine the flow characteristics downstream of a set of wind tunnel inlet flow conditioning vanes. The purpose was to develop an understanding of the flow mechanisms that contributed to the pressure loss and turbulence generated by the vane set. The near-field characteristics and flow field development were investigated with a 1/3 scale two dimensional model of the vane set at near full-scale Reynolds numbers. In a second series of tests, the global flow field characteristics were investigated by means of a 1/15 scale model of the full vane set and the 5:1 contraction leading to the model's test section. Scale effects due to Reynolds number mismatch were identified and their significance noted and accounted for when possible. Scaling parameters were adopted that allowed predictions to be made of the expected turbulence and pressure distributions in the full-scale wind tunnel test section, based on the small-scale test results. The predictions were found to be in good agreement with actual measurements made in the full-scale facility.

  14. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 1: Wind tunnel test pressure data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Devereaux, P. A.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.

  15. Numerical and experimental studies of particle flow in a high-pressure boundary-layer wind tunnel

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1984-01-01

    The approach was to simulate the surface environment of Venus as closely as practicable and to conduct experiments to determine threshold wind speeds, particle flux, particle velocities, and the characteristics of various aeolian bedforms. The Venus Wind Tunnel (VWT) is described and the experimental procedures that were developed to make the high-pressure wind tunnel measurements are presented. In terrestrial simulations of aeolian activity, it is possible to conduct experiments under pressures and temperatures found in natural environments. Because of the high pressures and temperatures, Venusian simulations are difficult to achieve in this regard. Consequently, extrapolation of results to Venue potentially involves unknown factors. The experimental rationale was developed in the following way: The VWT enables the density of the Venusian atmosphere to be reproduced. Density is the principal atmospheric property for governing saltation threshold, particle flux, and the ballistics of airborne particles (equivalent density maintains dynamic similarity of gas flow). When operated at or near Earth's ambient temperature, VWT achieves Venusian atmospheric density at pressures of about 30 bar, or about one third less than those on Venus, although still maintaining dynamic similarity to Venus.

  16. Analysis of Fluctuating Static Pressure Measurements in a Large High Reynolds Number Transonic Cryogenic Wind Tunnel. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Igoe, William B.

    1991-01-01

    Dynamic measurements of fluctuating static pressure levels were made using flush mounted high frequency response pressure transducers at eleven locations in the circuit of the National Transonic Facility (NTF) over the complete operating range of this wind tunnel. Measurements were made at test section Mach numbers from 0.2 to 1.2, at pressure from 1 to 8.6 atmospheres and at temperatures from ambient to -250 F, resulting in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made independently at variable Mach number, variable Reynolds number, and variable drivepower, each time keeping the other two variables constant thus allowing for the first time, a distinct separation of these three important variables. A description of the NTF emphasizing its flow quality features, details on the calibration of the instrumentation, results of measurements with the test section slots covered, downstream choke, effects of liquid nitrogen injection and gaseous nitrogen venting, comparisons between air and nitrogen, isolation of the effects of Mach number, Reynolds number, and fan drive power, and identification of the sources of significant flow disturbances is included. The results indicate that primary sources of flow disturbance in the NTF may be edge-tones generated by test section sidewall re-entry flaps and the venting of nitrogen gas from the return leg of the tunnel circuit between turns 3 and 4 in the cryogenic mode of operation. The tests to isolate the effects of Mach number, Reynolds number, and drive power indicate that Mach number effects predominate. A comparison with other transonic wind tunnels shows that the NTF has low levels of test section fluctuating static pressure especially in the high subsonic Mach number range from 0.7 to 0.9.

  17. A new scanning tunneling microscope reactor used for high-pressure and high-temperature catalysis studies.

    PubMed

    Tao, Feng; Tang, David; Salmeron, Miquel; Somorjai, Gabor A

    2008-08-01

    We present the design and performance of a homebuilt high-pressure and high-temperature reactor equipped with a high-resolution scanning tunneling microscope (STM) for catalytic studies. In this design, the STM body, sample, and tip are placed in a small high pressure reactor ( approximately 19 cm(3)) located within an ultrahigh vacuum (UHV) chamber. A sealable port on the wall of the reactor separates the high pressure environment in the reactor from the vacuum environment of the STM chamber and permits sample transfer and tip change in UHV. A combination of a sample transfer arm, wobble stick, and sample load-lock system allows fast transfer of samples and tips between the preparation chamber, high pressure reactor, and ambient environment. This STM reactor can work as a batch or flowing reactor at a pressure range of 10(-13) to several bars and a temperature range of 300-700 K. Experiments performed on two samples both in vacuum and in high pressure conditions demonstrate the capability of in situ investigations of heterogeneous catalysis and surface chemistry at atomic resolution at a wide pressure range from UHV to a pressure higher than 1 atm.

  18. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    SciTech Connect

    Zhu, Zhongwei

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  19. Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine. 3; Pressure and Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Geisenheyner, Robert M.; Berdysz, Joseph J.

    1947-01-01

    An altitude-wind-tunnel investigation of a TG-100A gas turbine-propeller engine was performed. Pressure and temperature data were obtained at altitudes from 5000 to 35000 feet, compressor inlet ram-pressure ratios from 1.00 to 1.17, and engine speeds from 800 to 13000 rpm. The effect of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on pressure and temperature distribution at each measuring station are presented graphically.

  20. Automatic control of a liquid nitrogen cooled, closed-circuit, cryogenic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Goglia, G. L.

    1980-01-01

    The control system design, performance analysis, microprocesser based controller software development, and specifications for the Transonic Cryogenic Tunnel (TCT) are discussed. The control laws for the single-input single-output controllers were tested on the TCT simulator, and successfully demonstrated on the TCT.

  1. Wind tunnel pressure study and Euler code validation of a missile configuration with 77 deg swept delta wings at supersonic speeds. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Fulton, Patsy S.

    1988-01-01

    A wind-tunnel pressure study was conducted on an axisymmetric missile configuration in the Unitary Plan Wind Tunnel at NASA Langley Research Center. The Mach numbers ranged from 1.70 to 2.86 and the angles of attack ranged from minus 4 degrees to plus 24 degrees. The computational accuracy for limited conditions of a space-marching Euler code was assessed.

  2. Efficient prediction methods for the micro-pressure wave from a high-speed train entering a tunnel using the Kirchhoff formulation.

    PubMed

    Yoon, T; Lee, S

    2001-11-01

    The compression wave generated by a high-speed train emerging from the exit portal of a tunnel gives rise to an impulsive noise called a micro-pressure wave. In this study, new methods for the prediction of sonic-boom noise are proposed. The first method combines acoustic monopole analysis and the method of characteristics with the Kirchhoff method. The compression wave from a train entering a tunnel is calculated by an approximate compact Green's function, and the resultant noise at the tunnel exit is predicted by a linear Kirchhoff formulation. The second method couples the Kirchhoff formulation with the Euler equation, which is solved numerically for the generation and propagation of the compression wave. Numerical prediction of the compression wave, the propagation in the tunnel, and the micro-pressure wave obtained by the present methods are compared with measured data. The numerical results exhibit a reasonable agreement with the experimental data. The proposed methods in this study are shown to be very useful design tools for the nose shape of trains and the geometry of tunnels, and they can be utilized to minimize the pressure fluctuation in the tunnel and the corresponding booming noise. PMID:11757928

  3. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  4. Investigation of the Flying Mock-Up of Consolidated Vultee XP-92 Airplane in the Ames 40- by 80-Foot Wind Tunnel: Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Graham, David

    1948-01-01

    This report contains the results of the wind tunnel investigation of the pressure distribution on the flying mock-up of the Consolidated Vultee XP-92 airplane. Data are presented for the pressure distribution over the wing, vertical tail and the fuselage, and for the pressure loss and rate of flow through the ducted fuselage. Data are also presented for the calibration of two airspeed indicators, and for the calibration of angle-of-attack and sideslip-angle indicator vanes.

  5. Characterization of cavity flow fields using pressure data obtained in the Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Tracy, M. B.; Plentovich, E. B.

    1993-01-01

    Static and fluctuating pressure distributions were obtained along the floor of a rectangular-box cavity in an experiment performed in the LaRC 0.3-Meter Transonic Cryogenic Tunnel. The cavity studied was 11.25 in. long and 2.50 in. wide with a variable height to obtain length-to-height ratios of 4.4, 6.7, 12.67, and 20.0. The data presented herein were obtained for yaw angles of 0 deg and 15 deg over a Mach number range from 0.2 to 0.9 at a Reynolds number of 30 x 10(exp 6) per ft with a boundary-layer thickness of approximately 0.5 in. The results indicated that open and transitional-open cavity flow supports tone generation at subsonic and transonic speeds at Mach numbers of 0.6 and above. Further, pressure fluctuations associated with acoustic tone generation can be sustained when static pressure distributions indicate that transitional-closed and closed flow fields exist in the cavity. Cavities that support tone generation at 0 deg yaw also supported tone generation at 15 deg yaw when the flow became transitional-closed. For the latter cases, a reduction in tone amplitude was observed. Both static and fluctuating pressure data must be considered when defining cavity flow fields, and the flow models need to be refined to accommodate steady and unsteady flows.

  6. An Investigation of the McDonnell XP-85 Airplane in the Ames 40- by 80-Foot Wind Tunnel: Pressure-Distribution Tests

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; James, Harry A.

    1948-01-01

    Pressure measurements were made during wind-tunnel tests of the McDonnell XP-85 parasite fighter. Static-pressure orifices were located over the fuselage nose, over the canopy, along the wing root, and along the upper and lower stabilizer roots. A total-pressure and static-pressure rake was located in the turbojet engine air-intake duct. It was installed at the station where the compressor face would be located. Pressure data were obtained for two airplane conditions, clean and with skyhook extended, through a range of angle of attack and a range of yaw.

  7. Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1986-01-01

    A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.

  8. F-8 supercritical wing flight pressure, Boundary layer, and wake measurements and comparisons with wind tunnel data

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Banner, R. D.

    1977-01-01

    Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.

  9. Ultra-High Pressure Driver and Nozzle Survivability in the RDHWT/MARIAH II Hypersonic Wind Tunnel

    SciTech Connect

    Costantino, M.; Brown, G.; Raman, K.; Miles, R.; Felderman, J.

    2000-06-02

    An ultra-high pressure device provides a high enthalpy (> 2500 kJ/kg), low entropy (< 5 kJ/kg-K) air source for the RDHWT/MARIAH II Program Medium Scale Hypersonic Wind Tunnel. The design uses stagnation conditions of 2300 MPa (330,000 Psi) and 750 K (900 F) in a radial configuration of intensifiers around an axial manifold to deliver pure air at 100 kg/s mass flow rates for run times suitable for aerodynamic, combustion, and test and evaluation applications. Helium injection upstream of the nozzle throat reduces the throat wall recovery temperature to about 1200 K and reduces the oxygen concentration at the nozzle wall.

  10. Wind-tunnel investigation of surface-pressure fluctuations associated with aircraft buffet

    NASA Technical Reports Server (NTRS)

    Riddle, D. W.

    1975-01-01

    Fluctuating pressures and forces that cause aircraft buffeting have been measured on a semispan rigid-wing model of a typical variable-sweep fighter-type aircraft at transonic speeds. The rms spectral and spatial correlation characteristics of wing fluctuating pressures, fluctuating pressure summations, and structural responses are presented and discussed for a Mach number of 0.85, wing sweep angles of 26 and 72 deg, and angles of attack up to 12 deg. The fluctuating pressure characteristics beneath wing shock waves and leading-edge vortices and in regions of attached and separated flows are presented. Results indicate that: (1) the mean and fluctuating static pressure characteristics are related; (2) a circulation oscillation exists for attached flow conditions below buffet onset; and (3) a significant coupling exists between the wing shock-wave oscillation and the wing first torsional mode when shock-induced separation is present.

  11. Pressure distributions obtained on a 0.10-scale model of the space shuttle Orbiter's forebody in the AEDC 16T propulsion wind tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the AEDC 16T Propulsion Wind Tunnel. The 0.10-scale model was tested at angles of attack from -2 deg to 18 deg and angles of side slip from -6 to 6 deg at Mach numbers from 0.25 to 1/5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Orbiter Columbia (OV-102) during the Orbiter Flight Test program. This DFI simulation has provided a means of comparisons between reentry flight pressure data and wind-tunnel and computational data.

  12. A compilation of the pressures measured on a wing and aileron with various amounts of sweep in the Langley 8-foot high-speed tunnel

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T

    1948-01-01

    A compilation is made in tabular form of all the pressures measured on a thin high-aspect-ratio wing and aileron with no sweep and with 30 degree and 45 degree of sweepback and sweepforward at high subsonic Mach numbers in the Langley 8-foot high-speed tunnel.

  13. Global Pressure- and Temperature-Measurements in 1.27-m JAXA Hypersonic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Miyazaki, T.; Nakagawa, M.; Tsuda, S.; Sakaue, H.

    Pressure-sensitive paint (PSP) technique has been widely used in aerodynamic measurements. A PSP is a global optical sensor, which consists of a luminophore and binding material. The luminophore gives a luminescence related to an oxygen concentration known as oxygen quenching. In an aerodynamic measurement, the oxygen concentration is related to a partial pressure of oxygen and a static pressure, thus the luminescent signal can be related to a static pressure [1]. The PSP measurement system consists of a PSP coated model, an image acquisition unit, and an image processing unit (Fig. 1). For the image acquisition, an illumination source and a photo-detector are required. To separate the illumination and PSP emission detected by a photo-detector, appropriate band-pass filters are placed in front of the illumination and photo-detector. The image processing unit includes the calibration and computation. The calibration relates the luminescent signal to pressures and temperatures. Based on these calibrations, luminescent images are converted to a pressure map.

  14. Simultaneous Luminescence Pressure and Temperature Measurement System for Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1995-01-01

    Surface pressures and temperatures are determined from visible emission brightness and green-to-red color ratioing of induced luminescence from a ceramic surface with an organic dye coating. A ceramic-dye matrix of porous silica ceramic with an adsorbed dye is developed for high-temperature pressure sensitivity and stability (up to 150 C). Induced luminescence may be excited using a broad range of incident radiation from visible blue light (488-nm wavelength) to the near ultraviolet (365 nm). Ceramic research models and test samples are fabricated using net-form slip-casting and sintering techniques. Methods of preparation and effects of adsorption film thickness on measurement sensitivity are discussed. With the present 8-bit imaging system a 10% pressure measurement uncertainty from 50 to 760 torr is estimated, with an improvement to 5% from 3 to 1500 torr with a 12-bit imaging system.

  15. G-Tunnel pressurized slot-testing preparations; Yucca Mountain Site Characterization Project

    SciTech Connect

    Zimmerman, R.M.; Sifre-Soto, C.; Mann, K.L.; Bellman, R.A. Jr.; Luker, S.; Dodds, D.J.

    1992-04-01

    Designers and analysts of radioactive waste repositories must be able to predict the mechanical behavior of the host rock. Sandia National laboratories elected to conduct a development program on pressurized slot testing and featured (1) development of an improved method to cut slots using a chain saw with diamond-tipped cutters, (2) measurements useful for determining in situ stresses normal to slots, (3) measurements applicable for determining the in situ modulus of deformation parallel to a drift surface, and (4) evaluations of the potentials of pressurized slot strength testing. This report describes the preparations leading to the measurements and evaluations.

  16. The ReactorSTM: atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions.

    PubMed

    Herbschleb, C T; van der Tuijn, P C; Roobol, S B; Navarro, V; Bakker, J W; Liu, Q; Stoltz, D; Cañas-Ventura, M E; Verdoes, G; van Spronsen, M A; Bergman, M; Crama, L; Taminiau, I; Ofitserov, A; van Baarle, G J C; Frenken, J W M

    2014-08-01

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  17. Experimental Test Results of Energy Efficient Transport (EET) High-Lift Airfoil in Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.

    2002-01-01

    This report describes the results of an experimental study conducted in the Langley Low-Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of the Langley Energy Efficient Transport (EET) High-Lift Airfoil. The high-lift airfoil was a supercritical-type airfoil with a thickness-to- chord ratio of 0.12 and was equipped with a leading-edge slat and a double-slotted trailing-edge flap. The leading-edge slat could be deflected -30 deg, -40 deg, -50 deg, and -60 deg, and the trailing-edge flaps could be deflected to 15 deg, 30 deg, 45 deg, and 60 deg. The gaps and overlaps for the slat and flaps were fixed at each deflection resulting in 16 different configurations. All 16 configurations were tested through a Reynolds number range of 2.5 to 18 million at a Mach number of 0.20. Selected configurations were also tested through a Mach number range of 0.10 to 0.35. The plotted and tabulated force, moment, and pressure data are available on the CD-ROM supplement L-18221.

  18. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    SciTech Connect

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M.; Ofitserov, A.; Baarle, G. J. C. van

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  19. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    NASA Astrophysics Data System (ADS)

    Herbschleb, C. T.; van der Tuijn, P. C.; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; van Spronsen, M. A.; Bergman, M.; Crama, L.; Taminiau, I.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M.

    2014-08-01

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  20. The ReactorSTM: atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions.

    PubMed

    Herbschleb, C T; van der Tuijn, P C; Roobol, S B; Navarro, V; Bakker, J W; Liu, Q; Stoltz, D; Cañas-Ventura, M E; Verdoes, G; van Spronsen, M A; Bergman, M; Crama, L; Taminiau, I; Ofitserov, A; van Baarle, G J C; Frenken, J W M

    2014-08-01

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions. PMID:25173272

  1. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  2. G-tunnel pressurized slot-testing evaluations; Yucca Mountain Site Characterization Project

    SciTech Connect

    Zimmerman, R.M.; Sifre-Soto, C.; Mann, K.L.; Bellman, R.A. Jr.; Luker, S.; Dodds, D.J.

    1992-04-01

    Designers and analysts of radioactive waste repositories must be able to predict the mechanical behavior of the host rock. Sandia National Laboratories elected to conduct a development program to enhance mechanical-type measurements. The program was focused on pressurized slot testing and featured (1) development of an improved method to cut slots using a chain saw with diamond-tipped cutters, (2) measurements useful for determining in situ stresses normal to slots, (3) measurements applicable for determining the in situ modulus of deformation parallel to a drift surface, and (4) evaluations of pressurized slot strength testing results and methods. This report contains data interpretation and evaluations. Included are recommendations for future efforts. This third report contains the interpretations of the testing with emphasis on the measurement results as they apply to describing rock behavior. In particular, emphases are placed on (1) normal stress determinations using the flatjack cancellation (FC) method, (2) modulus of deformation determinations, and (3) high pressure investigations. Most of the material in the first two reports is not repeated here. Appropriate data are repeated in tabular form.

  3. High Pressure Scanning Tunneling Microscopy and High PressureX-ray Photoemission Spectroscopy Studies of Adsorbate Structure,Composition and Mobility during Catalytic Reactions on A Model SingleCrystal

    SciTech Connect

    Montano, Max O.

    2006-01-01

    Our research focuses on taking advantage of the ability of scanning tunneling microscopy (STM) to operate at high-temperatures and high-pressures while still providing real-time atomic resolution images. We also utilize high-pressure x-ray photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus giving us chemical information to compare and contrast with the structural and dynamic data provided by STM.

  4. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  5. F-18 high alpha research vehicle surface pressures: Initial in-flight results and correlation with flow visualization and wind-tunnel data

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Banks, Daniel W.; Richwine, David M.

    1990-01-01

    Pressure distributions measured on the forebody and the leading-edge extensions (LEX's) of the NASA F-18 high alpha research vehicle (HARV) were reported at 10 and 50 degree angles of attack and at Mach 0.20 to 0.60. The results were correlated with HARV flow visualization and 6-percent scale F-18 wind-tunnel-model test results. The general trend in the data from the forebody was for the maximum suction pressure peaks to first appear at an angle of attack (alpha) of approximately 19 degrees and increase in magnitude with angle of attack. The LEX pressure distribution general trend was the inward progression and increase in magnitude of the maximum suction peaks up to vortex core breakdown and then the decrease and general flattening of the pressure distribution beyond that. No significant effect of Mach number was noted for the forebody results. However, a substantial compressibility effect on the LEX's resulted in a significant reduction in vortex-induced suction pressure as Mach number increased. The forebody primary and the LEX secondary vortex separation lines, from surface flow visualization, correlated well with the end of pressure recovery, leeward and windward, respectively, of maximum suction pressure peaks. The flight to wind-tunnel correlations were generally good with some exceptions.

  6. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  7. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies

    NASA Astrophysics Data System (ADS)

    Feng Tao, Franklin; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ˜10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  8. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies

    NASA Astrophysics Data System (ADS)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ~10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  9. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified. PMID:23556828

  10. Low-speed wind tunnel tests of a 50.8-centimeter (20-in.) 1.15-pressure-ratio fan engine model

    NASA Technical Reports Server (NTRS)

    Wesoky, H. L.; Abbott, J. M.; Albers, J. A.; Dietrich, D. A.

    1974-01-01

    At a typical STOL aircraft takeoff and landing velocity, wind tunnel aerodynamic and acoustic measurements demonstrated that an inlet lip-area contraction ratio of 1.35 was superior to a ratio of 1.26 at high incidence angles. A 17 percent reduction in net thrust and an increase of 9 decibels in sound pressure level at the blade passing frequency resulted from inlet flow separation at an incidence angle of 50 deg with the 1.26-contraction-ratio inlet. Reverse-thrust forces obtained with blade rotation through the feathered angle were 1.8 times larger than with blade rotation through the flat angle. Reverse-thrust force was reduced from 30 to 50 percent and sound pressure level increased from 3 to 7 decibels at the blade passing frequency between the wind-tunnel-off condition and a typical STOL aircraft landing velocity.

  11. Pressure distribution from high Reynolds number tests of a NASA SC(3)-0712(B) airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.

    1985-01-01

    A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.50 to 0.80. This investigation was designed to: (1) test a NASA advanced-technology airfoil from low to flight equivalent Reynolds numbers, (2) provide experience in cryogenic wind-tunnel model design and testing techniques, and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the test objectives were met. The pressure data are presented without analysis in tabulated format and as plots of pressure coefficient versus position on the airfoil. This report was prepared for use in conjunction with the aerodynamic coefficient data published in NASA-TM-86371. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design and fabrication.

  12. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Double Delta Wing Model at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2006-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to study the effect of wing fillets on the global vortex induced surface static pressure field about a sharp leading-edge 76 deg./40 deg. double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M(sub infinity) = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an insitu method featuring the simultaneous acquisition of electronically scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M(sub infinity) = 0.50 to 0.85 but increased to several percent at M(sub infinity) =0.95 and 1.20. The PSP pressure distributions and pseudo-colored, planform-view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having parabolic or diamond planforms situated at the strake-wing intersection were respectively designed to manipulate the vortical flows by removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  13. Measurements of V/STOL aircraft noise mechanisms using pressure cross-correlation techniques in a reverberant wind tunnel

    NASA Technical Reports Server (NTRS)

    Meecham, W. C.; Hurdle, P. M.

    1974-01-01

    A 3.8 cm. model jet was operated in a wind tunnel with cross-flow in order to determine the effect on jet noise radiated characteristics. A method was developed for the determination of noise radiating characteristics of sources within reverberant wind tunnels; cross-correlation measurements were used. The averaging time in the cross-correlation is determined by the amount of background noise within the wind tunnel. It was found that cross-flow increases the radiated noise by 10 db. There was some indication of downstream radiation exceeding the sideline radiation.

  14. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  15. Shuttle model tailcone pressure distribution at low subsonic speeds of a 0.03614-scale model in the NASA/LaRC low-turbulence pressure tunnel (LA81), volume 1

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Lindahl, R. H.

    1976-01-01

    An investigation was conducted in the NASA/LaRC Low-Turbulence Pressure Tunnel on a 0.03614-scale orbiter model of a 089B configuration with a 139B configuration nose forward of F.S. 500. The tailcone was the TC sub 4 design and was instrumented with eighty-nine pressure orifices. Control surfaces were deflected and three wind tunnel mounting techniques were investigated over an angle-of-attack range from -2 deg to a maximum of 18 deg. In order to determine the sensitivity of the tailcone to changes in Reynolds number, most of the test was made at a Mach number of 0.20 over a Reynolds number range of 2.0 to 10 million per foot. A few runs were made at a Mach number of 0.30 at Reynolds numbers of 4.0, 6.0, and 8 million per foot.

  16. Pressure distributions obtained on a 0.10-scale model of the Space Shuttle Orbiter's forebody in the Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.

  17. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  18. Comparison of wind tunnel and flight test afterbody and nozzle pressures for a twin-jet fighter aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Nugent, Jack; Pendergraft, Odis C., Jr.

    1987-01-01

    Afterbody and nozzle pressures measured on a 1/12-scale model and in flight on a twin-jet fighter aircraft were compared as Mach number varied from 0.6 to 1.2, Reynolds number from 17.5 million to 302.5 million, and angle of attack from 1 to 7 deg. At Mach 0.6 and 0.8, nozzle pressure coefficient distributions and nozzle axial force coefficients agreed and showed good recompression. At Mach 0.9 and 1.2, flow complexity caused a loss in recompression for both flight and wind tunnel nozzle data. The flight data exhibited less negative values of pressure coefficient and lower axial force coefficients than did the wind tunnel data. Reynolds number effects were noted only at these Mach numbers. Jet temperature and mass flux ratio did not affect the comparisons of nozzle axial flow coefficient. At subsonic speeds, the levels of pressure coefficient distributions on the upper fuselage and lower nacelle surfaces for flight were less negative than those for the model. The model boundary layer thickness at the aft rake station exceeded that for the forward rake station and increased with increasing angle of attack. The flight boundary layer thickness at the aft rake station was less than that for the forward rake station and decreased with increasing angle of attack.

  19. Experimental Test Results of the Energy Efficient Transport (EET) Flap-Edge Vortex Model in the Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.

    2002-01-01

    This report presents the results of a test conducted in the Langley Low-Turbulence Pressure Tunnel to measure the flow field properties of a flap-edge vortex. The model was the EET (Energy Efficient Transport) Flap-Edge Vortex Model, which consists of a main element and a part-span, single-slotted trailing-edge flap. The model surface was instrumented with several chordwise and spanwise rows of pressure taps on each element. The off-body flow field velocities were to be measured in several planes perpendicular to the flap edge with a laser velocimetry system capable of measuring all three components in coincidence. However, due to seeding difficulties, the preliminary laser data did not have sufficient accuracy to be suitable for presentation; therefore, this report presents only the tabulated and plotted surface pressure data. In addition, the report contains a detail description of the model which can be used to generate accurate CFD grid structures.

  20. Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, Charles L.; Hill, Acquilla S.; Johnson, William G., Jr.

    1987-01-01

    Tests were conducted in the 2-D test section of the Langley 0.3-meter Transonic Cryogenic Tunnel on a NACA 0012 airfoil to obtain aerodynamic data as a part of the Advanced Technology Airfoil Test (ATAT) program. The test program covered a Mach number range of 0.30 to 0.82 and a Reynolds number range of 3.0 to 45.0 x 10 to the 6th power. The stagnation pressure was varied between 1.2 and 6.0 atmospheres and the stagnation temperature was varied between 300 K and 90 K to obtain these test conditions. Tabulated pressure distributions and integrated force and moment coefficients are presented as well as plots of the surface pressure distributions. The data are presented uncorrected for wall interference effects and without analysis.

  1. Pressure distributions from high Reynolds number tests of a Boeing BAC 1 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.

    1985-01-01

    A wind-tunnel investigation designed to test a Boeing advanced-technology airfoil from low to flight-equivalent Reynolds numbers has been completed in the Langley 0.3-Meter Transonic Cryogenic Tunnel. This investigation represents the first in a series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from 4.4 X 10 to the 6th power to 50.0 X 10 to the 6th power. All the test objectives were met. The pressure data are presented without analysis in plotted and tabulated formats for use in conjunction with the aerodynamic coefficient data published as NASA TM-81922. At the time of the test, these pressure data were considered proprietary and have only recently been made available by Boeing for general release. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  2. Nineteen-Foot Diameter Explosively Driven Blast Simulator

    SciTech Connect

    VIGIL,MANUEL G.

    2001-07-01

    This report describes the 19-foot diameter blast tunnel at Sandia National Laboratories. The blast tunnel configuration consists of a 6 foot diameter by 200 foot long shock tube, a 6 foot diameter to 19 foot diameter conical expansion section that is 40 feet long, and a 19 foot diameter test section that is 65 feet long. Therefore, the total blast tunnel length is 305 feet. The development of this 19-foot diameter blast tunnel is presented. The small scale research test results using 4 inch by 8 inch diameter and 2 foot by 6 foot diameter shock tube facilities are included. Analytically predicted parameters are compared to experimentally measured blast tunnel parameters in this report. The blast tunnel parameters include distance, time, static, overpressure, stagnation pressure, dynamic pressure, reflected pressure, shock Mach number, flow Mach number, shock velocity, flow velocity, impulse, flow duration, etc. Shadowgraphs of the shock wave are included for the three different size blast tunnels.

  3. Aerodynamic performance and pressure distributions for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, Renaldo V.; Hill, Acquilla S.; Ray, Edward J.

    1988-01-01

    This report presents in graphic and tabular forms the aerodynamic coefficient and surface pressure distribution data for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The test was another in a series of tests involved in the joint NASA/U.S. Industry Advanced Technology Airfoil Tests program. This 14% thick supercritical airfoil was tested at Mach numbers from 0.6 to 0.76 and angles of attack from -2.0 to 6.0 degrees. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, 40 million, and 45 million.

  4. NASA LaRC FIB Multi-Channel Anemometry Recording System-User's Manual. [conducted at the Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Sherylene (Compiler); Bertelrud, Arild (Compiler); Anders, J. B. (Technical Monitor)

    2002-01-01

    This report is part of a series of reports describing a flow physics high-lift experiment conducted in NASA Langley Research Center's Low-Turbulence Pressure Tunnel (LTPT) in 1996. The anemometry system used in the experiment was originally designed for and used in flight tests with NASA's Boeing 737 airplane. Information that may be useful in the evaluation or use of the experimental data has been compiled. The report also contains details regarding record structure, how to read the embedded time code, as well as the output file formats used in the code reading the binary data.

  5. Results for the hybrid laminar flow control experiment conducted in the NASA Langley 8-foot transonic pressure tunnel on a 7-foot chord model

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Ferris, James C.; Harvey, William D.; Goradia, Suresh H.

    1992-01-01

    A description is given of the development of, and results from, the hybrid laminar flow control (HLFC) experiment conducted in the NASA LaRC 8 ft Transonic Pressure Tunnel on a 7 ft chord, 23 deg swept model. The methods/codes used to obtain the contours of the HLFC model surface and to define the suction requirements are outlined followed by a discussion of the model construction, suction system, instrumentation, and some example results from the wind tunnel tests. Included in the latter are the effects of Mach number, suction level, and the extent of suction. An assessment is also given of the effect of the wind tunnel environment on the suction requirements. The data show that, at or near the design Mach number, large extents of laminar flow can be achieved with suction mass flows over the first 25 percent, or less, of the chord. Top surface drag coefficients with suction extending from the near leading edge to 20 percent of the chord were approximately 40 percent lower than those obtained with no suction. The results indicate that HLFC can be designed for transonic speeds with lift and drag coefficients approaching those of LFC designs but with much smaller extents and levels of suction.

  6. Results of pressure distribution tests of a 0.010-scale space shuttle orbiter model (61-0) in the NASA/ARC 3.5-foot hypersonic wind tunnel (test OH38), volume 1

    NASA Technical Reports Server (NTRS)

    Dye, W. H.; Polek, T.

    1975-01-01

    Test results are presented of hypersonic pressure distributions at simulated atmospheric entry conditions. Pressure data were obtained at Mach numbers of 7.4 and 10.4 and Reynolds numbers of 3.0 and 6.5 million per foot. Data are presented in both plotted and tabulated data form. Photographs of wind tunnel apparatus and test configurations are provided.

  7. Landing pressure loads of the 140A/B space shuttle orbiter (model 43-0) determined in the Rockwell International low speed wind tunnel (OA69), volume 1. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Soard, T. L.

    1975-01-01

    Wind tunnel tests of a 0.0405 scale model of the -1404A/B configuration of the Space Shuttle Vehicle Orbiter are presented. Pressure loads data were obtained from the orbiter in the landing configuration in the presence of the ground for structural strength analysis. This was accomplished by locating as many as 30 static pressure bugs at various locations on external model surfaces as each configuration was tested. A complete pressure loads survey was generated for each configuration by combining data from all bug locations, and these loads are described for the fuselage, wing, vertical tail, and landing gear doors. Aerodynamic force data was measured by a six component internal strain gage balance. This data was recorded to correct model angles of attack and sideslip for sting and balance deflections and to determine the aerodynamic effects of landing gear extension. All testing was conducted at a Mach number of 0.165 and a Reynolds number of 1.2 million per foot. Photographs of test configurations are shown.

  8. Pressure distribution data from tests of 2.29-meter (7.5-ft.) span EET high-lift research model in Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1982-01-01

    A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  9. Transition Documentation on a Three-Element High-Lift Configuration at High Reynolds Numbers--Database. [conducted in the Langley Low Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Bertelrud, Arild; Johnson, Sherylene; Anders, J. B. (Technical Monitor)

    2002-01-01

    A 2-D (two dimensional) high-lift system experiment was conducted in August of 1996 in the Low Turbulence Pressure Tunnel at NASA Langley Research Center, Hampton, VA. The purpose of the experiment was to obtain transition measurements on a three element high-lift system for CFD (computational fluid dynamics) code validation studies. A transition database has been created using the data from this experiment. The present report details how the hot-film data and the related pressure data are organized in the database. Data processing codes to access the data in an efficient and reliable manner are described and limited examples are given on how to access the database and store acquired information.

  10. Comparison of concurrent strain gage- and pressure transducer-measured flight loads on a lifting reentry vehicle and correlation with wind tunnel predictions

    NASA Technical Reports Server (NTRS)

    Tang, M. H.; Sefic, W. J.; Sheldon, R. G.

    1978-01-01

    Concurrent strain gage and pressure transducer measured flight loads on a lifting reentry vehicle are compared and correlated with wind tunnel-predicted loads. Subsonic, transonic, and supersonic aerodynamic loads are presented for the left fin and control surfaces of the X-24B lifting reentry vehicle. Typical left fin pressure distributions are shown. The effects of variations in angle of attack, angle of sideslip, and Mach number on the left fin loads and rudder hinge moments are presented in coefficient form. Also presented are the effects of variations in angle of attack and Mach number on the upper flap, lower flap, and aileron hinge-moment coefficients. The effects of variations in lower flap hinge moments due to changes in lower flap deflection and Mach number are presented in terms of coefficient slopes.

  11. Pressure distribution data from tests of 2.29 M (7.5 feet) span EET high-lift transport aircraft model in the Ames 12-foot pressure tunnel

    NASA Technical Reports Server (NTRS)

    Kjelgaard, S. O.; Morgan, H. L., Jr.

    1983-01-01

    A high-lift transport aircraft model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Ames 12-ft pressure tunnel to determine the low-speed performance characteristics of a representative high-aspect-ratio supercritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  12. A study of the O/Ag(111) system with scanning tunneling microscopy and x-ray photoelectron spectroscopy at ambient pressures

    NASA Astrophysics Data System (ADS)

    Heine, Christian; Eren, Baran; Lechner, Barbara A. J.; Salmeron, Miquel

    2016-10-01

    The interaction of O2 with the Ag(111) surface was studied with scanning tunneling microscopy (STM) in the pressure range from 10- 9 Torr to 1 atm at room temperature and with X-ray photoelectron spectroscopy (XPS) up to 0.3 Torr O2 in the temperature range from RT to 413 K. STM images show that the Ag(111) surface topography is little affected in regions with large flat terraces, except for the appearance of mobile features due to oxygen atoms at pressures above 0.01 Torr. In regions where the step density is high, the surface became rough under 0.01 Torr of O2, due to the local oxidation of Ag. Various chemical states of oxygen due to chemisorbed, oxide and subsurface species were identified by XPS as a function of pressure and temperature. The findings from the STM images and XPS measurements indicate that formation of an oxide phase, the thermodynamically stable form at room temperature under ambient O2 pressure, is kinetically hindered in the flat terrace areas but proceeds readily in regions with high-step density.

  13. Results of a wind tunnel/flight test program to compare afterbody/nozzle pressures on a 1/12 scale model and an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Pendergraft, O. C., Jr.; Nugent, J.

    1984-01-01

    In 1975 NASA Dryden Flight Research Facility received the No. 2 prototype F-15 aircraft from the USAF to conduct the F-15 Propulsion/Airframe Interactions Program. About the same time, NASA Langley Research Center acquired a 1/12 scale F-15 propulsion model, whose size made it suitable for detailed afterbody/nozzle static pressure distribution studies. Close coordination between Langley and Dryden assured identical orifice locations and nozzle geometries on the model and aircraft. This paper discusses the sequence of the test programs and how retesting the model after completion of the flight tests greatly increased the ability to match hardware and test conditions. The experience gained over the past decade from involvement in the program should prove valuable to any future programs attempting to match wind tunnel and flight test conditions and hardware.

  14. Preliminary Results of Altitude-Wind-Tunnel Investigation of X24C-4B Turbojet Engine. I - Pressure and Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Prince, William R.; Hawkins, W. Kent

    1947-01-01

    Pressures and temperatures throughout the X24C-4B turbojet engine are presented in both tabular and graphical forms to show the effect of altitude, flight Mach number, and engine speed on the internal operation of the engine. These data were obtained in the NACA Cleveland altitude wind tunnel at simulated altitudes from 5000 to 45,000 feet, simulated flight Mach numbers from 0.25 to 1.08, and engine speeds from 4000 to 12,500 rpm. Location and detail drawings of the instrumentation installed at seven survey stations in the engine are shown. Application of generalization factors to pressures and temperatures at each measuring station for the range of altitudes investigated showed that the data did not generalize above an altitude of 25,000 feet. Total-pressure distribution at the compressor outlet varied only with change in engine speed. At altitudes above 35,000 feet and engine speeds above 11,000 rpm, the peak temperature at the turbine-outlet annulus moved inward toward the root of the blade, which is undesirable from blade-stress considerations. The temperature levels at the turbine outlet and the exhaust-nozzle outlet were lowered as the Mach number was increased. The static-pressure measurements obtained at each stator stage of the compressor showed a pressure drop through the inlet guide vanes and the first-stage rotor at high engine speeds. The average values measured by the manufacturer's instrumentation werein close agreement with the average values obtained with NACA instrumentation.

  15. Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight: Preliminary PSP Results from Test 581 in the 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.

    2011-01-01

    This report will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. This report will also detail possible improvements to the system.

  16. Results of tests using a 0.030-scale model (45-0) of space shuttle vehicle orbiter in the NASA/ARC 12-foot pressure wind tunnel (OA159)

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1975-01-01

    An experimental investigation (test OA159) was conducted in the NASA/ARC 12-foot Pressure Wind Tunnel from June 23 through July 8, 1975. The objective was to obtain detailed strut tare and interference effects of the support system used in the NASA/ARC 40 x 80-foot wind tunnel during 0.36-scale orbiter testing (OA100). Six-component force and moment data were obtained through an angle-of-attack range from -9 through +18 degrees with 0 deg angle of sideslip and a sideslip angle range from -9 through +18 degrees at 9 deg angle of attack results are presented.

  17. Investigation of space shuttle vehicle 140C configuration orbiter (model 16-0) wheel well pressure loads in the Rockwell International 7.75 x 11 foot wind tunnel (OA143)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.

  18. Variable-Density Tunnel - Wind Tunnel #2

    NASA Technical Reports Server (NTRS)

    1922-01-01

    Equipment used for pressurizing the Variable-Density Tunnel (VDT): The VDT tunnel is on the right; the compressors are on the left. Figure 4 in the NACA Technical Report 227 (Part 2) identifies each piece of equipment visible in this diagram. Immediately visible in the lower left corner is the Booster Compressor. In the right rear (behind the tunnel) is Primary Compressor No. 1. (Primary Compressor No. 2 is not visible.) From NACA TR 227 (Part 2):'The air is compressed in two or three stages, according to the terminal pressure in the tank. A two-stage primary compressor is used up to a terminal pressure of about seven atmospheres. For pressures above this a booster compressor is used in conjunction with the primary compressor. The booster compressor may be used also as an exhauster when it is desired to operate the tunnel at pressures below that of the atmosphere. The primary compressors are driven by 250-horsepower synchronous motors and the booster compressor by a 150-horsepower squirrel-cage induction motor.' Jerome Hunsaker wrote in 'Forty Years of Aeronautical Research': 'In June 1921, the executive committee [of the NACA] decided to build a new kind of wind tunnel. Utilizing compressed air, it would allow for *scale effects in aerodynamic model experiments. This tunnel represented the first bold step by the NACA to provide its research personnel with the novel, often complicated, and usually expensive equipment necessary to press forward the frontiers of aeronautical science. It was designed by Dr. Max Munk, formerly of G*ttingen.' Eastman Jacobs wrote in an article in a 1927 article for Aviation that: 'The tunnel is inclosed (sic) within a steel shell, so that the density of the air inside may be increased by pumping air into the shell to a pressure of 300 lb. per sq. in. A 250 hp. motor, driving a propeller, circulates the air, drawing it through the five-foot test section at a velocity of about fifty miles per hour. The model is mounted in the throat of

  19. Performance and noise of a low pressure ratio variable pitch fan designed for general aviation applications. [Langley 30 x 60 Tunnel

    NASA Technical Reports Server (NTRS)

    Metzger, F. B.; Menthe, R. W.; Mccolgan, C. J.

    1980-01-01

    A limited study has been conducted to establish the performance and noise characteristics of a low design tip speed (168 m/s, 550 ft/sec) low pressure ratio (1.04) variable pitch fan which was tested in the Langley 30 X 60 tunnel. This fan was designed for minimum noise when installed in the tail mount location of a twin engine aircraft which normally has both nose and tail mounted propulsors. Measurements showed the fan noise to be very close to predictions made during the design of the fan and extremely low in level (65 dBA at 1000 ft) with no acoustic treatment. This is about 8 dB lower than the unshrouded 2 blade propeller normally used in this installation. On the basis of tests conducted during this program, it appears that this level could be further reduced by 2 dBA if optimized acoustic treatments were installed in the fan duct. Even the best of the shrouded propellers tested previously were 7 dB higher in level than the Q-Fan without acoustic treatment. It was found that the cruise performance of this fan was within 5% of the predicted efficiency of 72%. Evaluation of the performance data indicated that disturbances in the inflow to the fan were the probable cause of the reduced performance.

  20. Aeroheating (pressure) characteristics on a 0.10-scale version of the vehicle 3 space shuttle configuration (26-OTS) in the Langley Research Center 4-foot wind tunnel (IH4)

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.

    1976-01-01

    Results of wind tunnel tests, conducted at the Langley Research Center Unitary Plan Wind Tunnel, are presented. The model tested was an 0.010-scale version of the Vehicle 3 Space Shuttle Configuration. Pressure measurements were made on the launch configuration, Orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 to 20 deg for a sideslip angle range from -5 to +5 deg, and at sideslip angles from -5 to 48 deg for 0 deg angle of attack. Tabulated data are given and photographs of the test configuration are shown.

  1. The EET Horizontal Tails Investigation and the EET Lateral Controls Investigation. [Langley 8-Foot Transonic Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.; Bartlett, D. W.

    1981-01-01

    In the energy efficient transport (EET) Horizontal Tails Investigation, aerodynamic data were measured for five different horizontal tails on a full span model with a wide body fuselage. Three of the horizontal tails were low tail configurations and two were T tail configurations. All tails were tested in conjunction with two wings, a current wide body wing and a high aspect ratio supercritical wing. Local downwash angles and dynamic pressures in the vicinity of the tails were measured using a yaw head rake. The results provide a comparison of the aerodynamic characteristics of the two wing configurations at trimmed conditions for Mach numbers between 0.60 and 0.90. In the EET Lateral Controls Investigation, the control effectiveness of a conventional set of lateral controls was measured over a Mach number range from 0.60 to 0.90 on a high aspect ratio supercritical wing semispan model. The conventional controls included a high speed aileron, a low speed aileron, and six spoiler segments. The wing was designed so that the last 25% of the chord is removable to facilitate testing of various control systems. The current status and an indication of the data obtained in these investigations are presented.

  2. Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 7: Effects of configuration modifications on the subsonic aerodynamic characteristics of the 1140 A/B orbbiter at high Reynolds numbers. [Langley low turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.

    1981-01-01

    Subsonic longitudinal andd laternal directional characteristics were obtained for several modified configurations of the 140 A/B orbiter (0.010 scale). These modifications, designed to extend longitudinal trim capability forward of the 65 percent fuselage length station, consisted of modified wing planform fillet and a canard. Tests were performed in the Langley Low Turbulence Pressure Tunnel at Reynolds numbers from about 4.2 million to 14.3 million based on the fuselage reference length.

  3. Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation.

    PubMed

    Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G

    2016-06-22

    Understanding the falloff in rate constants of gas-phase unimolecular reaction rate constants as the pressure is lowered is a fundamental problem in chemical kinetics, with practical importance for combustion, atmospheric chemistry, and essentially all gas-phase reaction mechanisms. In the present work, we use our recently developed system-specific quantum RRK theory, calibrated by canonical variational transition state theory with small-curvature tunneling, combined with the Lindemann-Hinshelwood mechanism, to model the dissociation reaction of fluoroform (CHF3), which provides a definitive test for falloff modeling. Our predicted pressure-dependent thermal rate constants are in excellent agreement with experimental values over a wide range of pressures and temperatures. The present validation of our methodology, which is able to include variational transition state effects, multidimensional tunneling based on the directly calculated potential energy surface along the tunneling path, and torsional and other vibrational anharmonicity, together with state-of-the-art reaction-path-based direct dynamics calculations, is important because the method is less empirical than models routinely used for generating full mechanisms, while also being simpler in key respects than full master equation treatments and the full reduced falloff curve and modified strong collision methods of Troe. PMID:27273734

  4. Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation.

    PubMed

    Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G

    2016-06-22

    Understanding the falloff in rate constants of gas-phase unimolecular reaction rate constants as the pressure is lowered is a fundamental problem in chemical kinetics, with practical importance for combustion, atmospheric chemistry, and essentially all gas-phase reaction mechanisms. In the present work, we use our recently developed system-specific quantum RRK theory, calibrated by canonical variational transition state theory with small-curvature tunneling, combined with the Lindemann-Hinshelwood mechanism, to model the dissociation reaction of fluoroform (CHF3), which provides a definitive test for falloff modeling. Our predicted pressure-dependent thermal rate constants are in excellent agreement with experimental values over a wide range of pressures and temperatures. The present validation of our methodology, which is able to include variational transition state effects, multidimensional tunneling based on the directly calculated potential energy surface along the tunneling path, and torsional and other vibrational anharmonicity, together with state-of-the-art reaction-path-based direct dynamics calculations, is important because the method is less empirical than models routinely used for generating full mechanisms, while also being simpler in key respects than full master equation treatments and the full reduced falloff curve and modified strong collision methods of Troe.

  5. Results of a pressure loads investigation on a 0.030-scale model (47-OTS) of the integrated space shuttle vehicle configuration 5 in the NASA Ames Research Center 9 by 7 foot leg of the unitary plan wind tunnel (IA81B), volume 1

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1975-01-01

    The investigations of pressure distributions are presented for aeroloads analysis at Mach numbers from 1.55 through 2.5. Angles of attack and sideslip varied from -6 to +6 degrees. Photographs of wind tunnel models are shown.

  6. Recognition Tunneling

    PubMed Central

    Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo

    2010-01-01

    Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode (“tethered molecule-pair” configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the “free analyte” configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules. PMID:20522930

  7. Spinoff from Wind Tunnel Technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Douglas Juanarena, a former NASA Langley instrument design engineer, found a solution to the problem of long, repetitive tunnel runs needed to measure airflow pressures. Electronically scanned pressure (ESP) replaced mechanical systems with electronic sensors. Juanarena licensed the NASA-patented technology and now manufactures ESP modules for research centers, aerospace companies, etc.

  8. Low speed aerodynamic characteristics of NACA 6716 and NACA 4416 airfoils with 35 percent-chord single-slotted flaps. [low turbulence pressure tunnel tests to determine two dimensional lift and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1974-01-01

    An investigation was conducted in a low-turbulence pressure tunnel to determine the two-dimensional lift and pitching-moment characteristics of an NACA 6716 and an NACA 4416 airfoil with 35-percent-chord single-slotted flaps. Both models were tested with flaps deflected from 0 deg to 45 deg, at angles of attack from minus 6 deg to several degrees past stall, at Reynolds numbers from 3.0 million to 13.8 million, and primarily at a Mach number of 0.23. Tests were also made to determine the effect of several slot entry shapes on performance.

  9. Pressure distributions on three different cruciform aft-tail control surfaces of a wingless missile at mach 1.60, 2.36, and 3.70 Volume 1: Trapezoidal tail. [conducted in Langley Unitary Plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Lamb, M.; Sawyer, W. C.; Wassum, D. L.; Babb, C. D.

    1979-01-01

    The results of pressure distribution tests conducted in the Langley Unitary Plan wind tunnel are presented. The data were obtained for three sets of cruciform aft-tail control surfaces on a wingless missile model at Mach numbers of 1.60, 2.36, and 3.70 for angles of attack from -4 degrees to 20 degrees, model roll angles from 0 degrees to 90 degrees, and tail deflections of 0 degrees and 15 degrees. The test Reynolds number used was 6.6 million per meter.

  10. Low-speed tests of a high-aspect-ratio, supercritical-wing transport model equipped with a high-lift flap system in the Langley 4- by 7-meter and Ames 12-foot pressure tunnels

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Kjelgaard, S. O.

    1983-01-01

    The Ames 12-Foot Pressure Tunnel was used to determine the effects of Reynolds number on the static longitudinal aerodynamic characteristics of an advanced, high-aspect-ratio, supercritical wing transport model equipped with a full span, leading edge slat and part span, double slotted, trailing edge flaps. The model had a wing span of 7.5 ft and was tested through a free stream Reynolds number range from 1.3 to 6.0 x 10 to 6th power per foot at a Mach number of 0.20. Prior to the Ames tests, an investigation was also conducted in the Langley 4 by 7 Meter Tunnel at a Reynolds number of 1.3 x 10 to 6th power per foot with the model mounted on an Ames strut support system and on the Langley sting support system to determine strut interference corrections. The data obtained from the Langley tests were also used to compare the aerodynamic charactertistics of the rather stiff, 7.5-ft-span steel wing model tested during this investigation and the larger, and rather flexible, 12-ft-span aluminum-wing model tested during a previous investigation. During the tests in both the Langley and Ames tunnels, the model was tested with six basic wing configurations: (1) cruise; (2) climb (slats only extended); (3) 15 deg take-off flaps; (4) 30 deg take-off flaps; (5) 45 deg landing flaps; and (6) 60 deg landing flaps.

  11. Experimental evaluation of blockage ratio and plenum evacuation system flow effects on pressure distribution for bodies of revolution in 0.1 scale model test section of NASA Lewis Research Center's proposed altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Burley, Richard R.; Harrington, Douglas E.

    1987-01-01

    An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.

  12. The cryogenic wind tunnel for high Reynolds number testing

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Dress, D. A.

    1982-01-01

    The development of cryogenic wind tunnels is reviewed with reference to the theory and advantages of cryogenic tunnels, problems common to wind tunnels and their solution, and application of cryogenic wind tunnels to high Reynolds number testing. It is shown that cryogenic wind tunnels can achieve full-scale Reynolds number with reasonable tunnel size, dynamic pressure, and drive power; the use of such tunnels also makes it possible to separate the effects of Reynolds number, Mach number, and aeroelasticity. Application of the cryogenic tunnel concept is illustrated by three examples, namely an atmospheric low-speed cryogenic tunnel, a 0.3-meter transonic cryogenic tunnel, and the National Transonic Facility now nearing completion.

  13. Wind tunnel tests of an 0.019-scale space shuttle integrated vehicle -2A configuration (model 14-OTS) in the NASA Ames 8 X 7 foot unitary wind tunnel, volume 3. [cold jet gas plumes and pressure distribution

    NASA Technical Reports Server (NTRS)

    Hardin, R. B.; Burrows, R. R.

    1975-01-01

    Tests were conducted to determine the effects of cold jet gas plumes on (1) the integrated vehicle longitudinal and lateral-directional force data, (2) exposed wing hinge moment, (3) wing pressure distributions, (4) orbiter MPS external pressure distributions, and (5) model base pressures. An investigation was undertaken to determine the similarity between solid and gaseous plumes; fluorescent oil flow visualization studies were also conducted. Tabulated data listings are included.

  14. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Jefferies, Sharon; Howe, A. Scott; Howard, Robert; Mary, Natalie; Watson, Judith; Lewis, Ruthan

    2016-01-01

    When the first human visitors on Mars prepare to return to Earth, they will have to comply with stringent planetary protection requirements. Apollo Program experience warns that opening an EVA hatch directly to the surface will bring dust into the ascent vehicle. To prevent inadvertent return of potential Martian contaminants to Earth, careful consideration must be given to the way in which crew ingress their Mars Ascent Vehicle (MAV). For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel that eliminates extravehicular activity (EVA) ingress is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications, such as rover to habitat transfer, once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The study team began by identifying the minimum set of functional requirements needed for the tunnel to perform its primary mission, as this would presumably be the simplest design, with the lowest mass and volume. This Minimum Functional Tunnel then becomes a baseline against which various tunnel design concepts and potential alternatives can be traded, and aids in assessing the mass penalty of increased functionality. Preliminary analysis indicates that the mass of a single-mission tunnel is about 237 kg, not including mass growth allowance.

  15. Possibility of hyperbolic tunneling

    SciTech Connect

    Lobo, Francisco S. N.; Mimoso, Jose P.

    2010-08-15

    Traversable wormholes are primarily useful as 'gedanken experiments' and as a theoretician's probe of the foundations of general relativity. In this work, we analyze the possibility of having tunnels in a hyperbolic spacetime. We obtain exact solutions of static and pseudo-spherically symmetric spacetime tunnels by adding exotic matter to a vacuum solution referred to as a degenerate solution of class A. The physical properties and characteristics of these intriguing solutions are explored, and through the mathematics of embedding it is shown that particular constraints are placed on the shape function, that differ significantly from the Morris-Thorne wormhole. In particular, it is shown that the energy density is always negative, and the radial pressure is positive, at the throat, contrary to the Morris-Thorne counterpart. Specific solutions are also presented by considering several equations of state, and by imposing restricted choices for the shape function or the redshift function.

  16. Aeroheating (pressure) characteristics on a 0.010-scale version of the vehicle 3 space shuttle configuration (26-OTS) in the Langley Research Center 4-foot wind tunnel (IH4), volume 1

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.

    1976-01-01

    The results of wind tunnel tests conducted on a 0.010-scale version of the Vehicle 3 Space Shuttle Configuration were presented. Pressure measurements were made on the launch configuration, orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 deg to 20 deg for a sideslip angle range from -5 deg to +5 deg and at sideslip angles from -5 deg to 48 deg for 0 deg angle of attack.

  17. Variable-Density Tunnel

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The outside pressure shell for the Variable-Density Tunnel (VDT). The shell, or 'tank' as it was called, was built in the Newport News Shipyard and traveled by barge to Langley. The tank could withstand a working pressure of 21 atmospheres. Elton Miller described it in NACA TR No. 227 (pp. 411-412): 'It is built of steel plates lapped and riveted according to the usual practice in steam boiler construction, although, because of the size of the tank and the high working pressure, the construction is unusually heavy. There is a cylindrical body portion of 2-1/8 inch (53.98 millimeters) steel plate with hemispherical ends 1-1/4 inches (31.75 millimeters) in thickness.'

  18. Compartment Venting Analyses of Ares I First Stage Systems Tunnel

    NASA Technical Reports Server (NTRS)

    Wang, Qunzhen; Arner, Stephen

    2009-01-01

    Compartment venting analyses have been performed for the Ares I first stage systems tunnel using both the lumped parameter method and the three-dimensional (31)) transient computational fluid dynamics (CFD) approach. The main objective of venting analyses is to predict the magnitudes of differential pressures across the skin so the integrity of solid walls can be evaluated and properly designed. The lumped parameter method assumes the gas pressure and temperature inside the systems tunnel are spatially uniform, which is questionable since the tunnel is about 1,700 in. long and 4 in. wide. Therefore, 31) transient CFD simulations using the commercial CFD code FLUENT are performed in order to examine the gas pressure and temperature variations inside the tunnel. It was found that the uniform pressure and temperature assumptions inside the systems tunnel are valid during ascent. During reentry, the uniform pressure assumption is also reasonable but the uniform temperature assumption is not valid. Predicted pressure and temperature inside the systems tunnel using CFD are also compared with those from the lumped parameter method using the NASA code CHCHVENT. In general, the average pressure and temperature inside the systems tunnel from CFD are between the burst and crush results from CHCHVENT during both ascent and reentry. The skin differential pressure and pressure inside the systems tunnel relative to freestream pressure from CHCHVENT as well as velocity vectors and streamlines are also discussed in detail.

  19. High-Reynolds-Number Test of a 5-Percent-Thick Low-Aspect-Ratio Semispan Wing in the Langley 0.3-Meter Transonic Cryogenic Tunnel: Wing Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Lawing, Pierce L.

    1990-01-01

    A high Reynolds number test of a 5 percent thick low aspect ratio semispan wing was conducted in the adaptive wall test section of the Langley 0.3 m Transonic Cryogenic Tunnel. The model tested had a planform and a NACA 64A-105 airfoil section that is similar to that of the pressure instrumented canard on the X-29 experimental aircraft. Chordwise pressure data for Mach numbers of 0.3, 0.7, and 0.9 were measured for an angle-of-attack range of -4 to 15 deg. The associated Reynolds numbers, based on the geometric mean chord, encompass most of the flight regime of the canard. This test was a free transition investigation. A summary of the wing pressures are presented without analysis as well as adapted test section top and bottom wall pressure signatures. However, the presented graphical data indicate Reynolds number dependent complex leading edge separation phenomena. This data set supplements the existing high Reynolds number database and are useful for computational codes comparison.

  20. Looking into Tunnel Books.

    ERIC Educational Resources Information Center

    Hinshaw, Craig

    1999-01-01

    Describes how to make tunnel books, which are viewed by looking into a "tunnel" created by accordion-folded expanding sides. Suggests possible themes. Describes how to create a walk-through tunnel book for first grade students. (CMK)

  1. Carpal Tunnel Syndrome

    MedlinePlus

    ... arm. Just a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ligament and ... difficult. Often, the cause is having a smaller carpal tunnel than other people do. Other causes include ...

  2. Results of investigations conducted in the LaRC 8-foot transonic pressure tunnel using the 0.010-scale 72-OTS model of the space shuttle integrated vehicle (IA93)

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Test procedures, history, and data from the wind tunnel test are presented. Aero-loads were investigated on the updated configuration-5 space shuttle launch vehicle at Mach numbers from 0.600 to 1.205. Six-component vehicle forces and moments, base and sting-cavity pressures, elevon hinge moments, wing-root bending and torsion moments, and normal shear force data were obtained. Full simulation of updated vehicle protuberances and attach hardware was employed. Various elevon deflection angles were tested with two different forward orbiter-to-external-tank attach-strut configurations. The entire model was supported by means of a balance mounted in the orbiter through its base and suspended from a sting.

  3. Models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

  4. Effects of spanwise blowing on the pressure field and vortex-lift characteristics of a 44 deg swept trapezoidal wing. [wind tunnel stability tests - aircraft models

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.

  5. Reynolds number effects on the aerodynamic characteristics of irregular planform wings at Mach number 0.3. [in the Ames 12 ft pressure wind tunnel

    NASA Technical Reports Server (NTRS)

    Kruse, R. L.; Lovette, G. H.; Spencer, B., Jr.

    1977-01-01

    The subsonic aerodynamic characteristics of a series of irregular planform wings were studied in wind tunnel tests conducted at M = 0.3 over a range of Reynolds numbers from 1.6 million to 26 million/m. The five basic wing planforms varied from a trapezoidal to a delta shape. Leading edge extensions, added to the basic shape, varied in approximately 5 deg increments from the wing leading edge sweep-back angle to a maximum 80 deg. Most of the tests were conducted using an NACA 0008 airfoil section with grit boundary layer trips. Tests were also conducted using an NACA 0012 airfoil section and an 8% thick wedge. In addition, the effect of free transition (no grit) was investigated. A body was used on all models.

  6. Tunneling nanotubes

    PubMed Central

    Austefjord, Magnus Wiger; Gerdes, Hans-Hermann; Wang, Xiang

    2014-01-01

    Tunneling nanotubes (TNTs) are recently discovered thin membranous tubes that interconnect cells. During the last decade, research has shown TNTs to be diverse in morphology and composition, varying between and within cell systems. In addition, the discovery of TNT-like extracellular protrusions, as well as observations of TNTs in vivo, has further enriched our knowledge on the diversity of TNT-like structures. Considering the complex molecular mechanisms underlying the formation of TNTs, as well as their different functions in intercellular communication, it is important to decipher how heterogeneity of TNTs is established, and to address what roles the compositional elements have in the execution of various functions. Here, we review the current knowledge on the morphological and structural diversity of TNTs, and address the relation between the formation, the structure, and the function of TNTs. PMID:24778759

  7. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  8. Detection of the transitional layer between laminar and turbulent flow areas on a wing surface. [using an accelerometer to measure pressure levels during wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Hood, W. R.

    1980-01-01

    A system is disclosed for detecting the laminar to turbulent boundary layer transition on a surface while simultaneously taking pressure measurements. The system uses an accelerometer for producing electrical signals proportional to the noise levels along the surface and a transducer for producing electrical signals proportional to pressure along the surface. The signals generated by the accelerometer and transducer are sent to a data reduction system for interpretation and storage.

  9. Results of tests CS4 and CS5 to investigate dynamic loads and pressures on 0.03-scale models (Ax1319-3/4 and 45-0) of mated 747 cam and space shuttle orbiter in the Boeing transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 0.03-scale model of the 747 CAM/Orbiter was tested in an 8 x 12 foot transonic wind tunnel. Dynamic loads, pressure, and empennage flow field data were obtained using pressure transducers, strain gages, and a split film anemometer. The test variables included Mach number, angle of attack, sideslip angle, orbiter tailcone on and off, orbiter partial tailcone, orbiter nozzle air scoops, orbiter body flap angle, and orbiter elevon angle.

  10. High Surface Area Tunnels in Hexagonal WO₃.

    PubMed

    Sun, Wanmei; Yeung, Michael T; Lech, Andrew T; Lin, Cheng-Wei; Lee, Chain; Li, Tianqi; Duan, Xiangfeng; Zhou, Jun; Kaner, Richard B

    2015-07-01

    High surface area in h-WO3 has been verified from the intracrystalline tunnels. This bottom-up approach differs from conventional templating-type methods. The 3.67 Å diameter tunnels are characterized by low-pressure CO2 adsorption isotherms with nonlocal density functional theory fitting, transmission electron microscopy, and thermal gravimetric analysis. These open and rigid tunnels absorb H(+) and Li(+), but not Na(+) in aqueous electrolytes without inducing a phase transformation, accessing both internal and external active sites. Moreover, these tunnel structures demonstrate high specific pseudocapacitance and good stability in an H2SO4 aqueous electrolyte. Thus, the high surface area created from 3.67 Å diameter tunnels in h-WO3 shows potential applications in electrochemical energy storage, selective ion transfer, and selective gas adsorption.

  11. Aorta-right atrial tunnel.

    PubMed

    Sai Krishna, Cheemalapati; Baruah, Dibya Kumar; Reddy, Gangireddy Venkateswara; Panigrahi, Nanda Kishore; Suman, Kalagara; Kumar, Palli Venkata Naresh

    2010-01-01

    Aorta-right atrial tunnel is a vascular channel that originates from one of the sinuses of Valsalva and terminates in either the superior vena cava or the right atrium. The tunnel is classified as anterior or posterior, depending upon its course in relation to the ascending aorta. An origin above the sinotubular ridge differentiates the tunnel from an aneurysm of the sinus of Valsalva, and the absence of myocardial branches differentiates it from a coronary-cameral fistula. Clinical presentation ranges from an asymptomatic precordial murmur to congestive heart failure. The embryologic background and pathogenesis of this lesion are attributable either to an aneurysmal dilation of the sinus nodal artery or to a congenital weakness of the aortic media. In either circumstance, progressive enlargement of the tunnel and ultimate rupture into the low-pressure right atrium could occur under the influence of the systemic pressure.The lesion is diagnosed by use of 2-dimensional echocardiography and cardiac catheterization. Computed tomographic angiography is an additional noninvasive diagnostic tool. The possibility of complications necessitates early therapy, even in asymptomatic patients or those with a hemodynamically insignificant shunt. Available treatments are catheter-based intervention, external ligation under controlled hypotension, or surgical closure with the patient under cardiopulmonary bypass.Herein, we discuss the cases of 2 patients who had this unusual anomaly. We highlight the outcome on follow-up imaging (patient 1) and the identification and safe reimplantation of the coronary artery (patient 2).

  12. Measurements and computations of second-mode instability waves in three hypersonic wind tunnels.

    SciTech Connect

    Lewis, Daniel R.; Alba, Christopher R.; Rufer, Shann J.; Beresh, Steven Jay; Casper, Katya M.; Berridge, Dennis C.; Schneider, Steven P.

    2010-06-01

    High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7{sup o}-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 {micro}s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N {approx} 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes.

  13. Acoustic measurement study 40 by 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An acoustical study conducted during the period from September 1, 1973 to April 30, 1974 measured sound pressure levels and vibration amplitudes inside and outside of the subsonic tunnel and on the tunnel structure. A discussion of the technical aspects of the study, the field measurement and data reduction procedures, and results are presentd, and conclusions resulting from the study which bear upon near field and far field tunnel noise, upon the tunnel as an acoustical enclosure, and upon the sources of noise within the tunnel drive system are given.

  14. Wind tunnel investigation of nacelle-airframe interference at Mach numbers of 0.9 to 1.4 - pressure data, volume 1

    NASA Technical Reports Server (NTRS)

    Bencze, D. P.

    1976-01-01

    Detailed interference force and pressure data were obtained on a representative wing-body nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The model was mounted on a six component force balance, and the left hand wing was pressure instrumented. Each of the two right hand nacelles was mounted on a six component force balance housed in the thickness of the nacelle, while each of the left hand nacelles was pressure instrumented. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass flow ratio. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components.

  15. Wind tunnel force and pressure tests of a 21% thick general aviation airfoil with 20% aileron, 25% slotted flap and 10% slot-lip spoiler

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Fiscko, K. A.

    1979-01-01

    Force and surface pressure distributions were measured for the 21% LS(1)-0421 modified airfoil fitted with 20% aileron, 25% slotted flap and 10% slot lip spoiler. All tests were conducted at a Reynolds number of 2.2 x 10 to the 6th power and a Mach number of 0.13. The lift, drag, pitching moments, control surface normal force and hinge moments, and surface pressure distributions are included in the results. Incremental performance of flap and aileron are discussed and compared to the GA(W)-2 airfoil. Spoiler control which shows a slight reversal tendency at high alpha, is examined.

  16. A method for predicting full scale buffet response with rigid wind tunnel model fluctuating pressure data. Volume 1: Prediction method development and assessment

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.; Benepe, D. B.; Watts, D.; Waner, P. G.

    1978-01-01

    The method requires unsteady aerodynamic forces, natural airplane modes, and the measured pressure data as input. A gust response computer program is used to calculate buffet response due to the forcing function posed by the measured pressure data. By calculating both symmetric and antisymmetric solutions, upper and lower bounds on full-scale buffet response are formed. Comparisons of predictions with flight test results are made and the effects of horizontal tail loads and static aeroelasticity are shown. Discussions are also presented on the effects of primary wing torsion modes, chordwise and spanwise phase angles, and altitude.

  17. A construction technique for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Sandefur, P. G., Jr.; Wood, W. H.

    1981-01-01

    High strength, good surface finish, and corrosion resistance are imparted to miniature wind tunnel models by machining pressure channels as integral part of model. Pattern for pressure channels is scribed, machined, or photoetched before channels are drilled. Mating surfaces for channels are flashed and then diffusion brazed together.

  18. Static and unsteady pressure measurements on a 50 degree clipped delta wing at M = 0.9. [conducted in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Hess, R. W.; Wynne, E. C.; Cazier, F. W.

    1982-01-01

    Pressures were measured with Freon as the test medium. Data taken at M = 0.9 is presented for static and oscillatory deflections of the trailing edge control surface and for the wing in pitch. Comparisons of the static measured data are made with results computed using the Bailey-Ballhaus small disturbance code.

  19. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 3; Pressure and Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Geisenheyner, Robert M.; Berdysz, Joseph J.

    1948-01-01

    Performance properties and operational characteristics of an axial-flow gas turbine-propeller engine were determined. Data are presented for a range of simulated altitudes from 5,000 to 35,0000 feet, compressor inlet- ram pressure ratios from 1.00 to 1.17, and engine speeds from 8000 to 13,000 rpm.

  20. Prediction of swelling rocks strain in tunneling

    NASA Astrophysics Data System (ADS)

    Parsapour, D.; Fahimifar, A.

    2016-05-01

    Swelling deformations leading to convergence of tunnels may result in significant difficulties during the construction, in particular for long term use of tunnels. By extracting an experimental based explicit analytical solution for formulating swelling strains as a function of time and stress, swelling strains are predicted from the beginning of excavation and during the service life of tunnel. Results obtained from the analytical model show a proper agreement with experimental results. This closed-form solution has been implemented within a numerical program using the finite element method for predicting time-dependent swelling strain around tunnels. Evaluating effects of swelling parameters on time-dependent strains and tunnel shape on swelling behavior around the tunnel according to this analytical solution is considered. The ground-support interaction and consequent swelling effect on the induced forces in tunnel lining is considered too. Effect of delay in lining installation on swelling pressure which acting on the lining and its structural integrity, is also evaluated. A MATLAB code of " SRAP" is prepared and applied to calculate all swelling analysis around tunnels based on analytical solution.

  1. Gottingen Wind Tunnel for Testing Aircraft Models

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1920-01-01

    Given here is a brief description of the Gottingen Wind Tunnel for the testing of aircraft models, preceded by a history of its development. Included are a number of diagrams illustrating, among other things, a sectional elevation of the wind tunnel, the pressure regulator, the entrance cone and method of supporting a model for simple drag tests, a three-component balance, and a propeller testing device, all of which are discussed in the text.

  2. Investigation of turbine exhaust gas recirculation, base heating, and base pressure in the T-109 TsAGI wind tunnel for the IIAS ATLAS carrier model

    NASA Astrophysics Data System (ADS)

    Neiland, V.; Yereza, A.; Yermak, Y.; Zhirnikov, B.; Kudin, O.; Leites, Y.; Nesterov, Y.; Plyashechnik, V.

    Some quantitative data on gas recirculation in the carrier base region are presented which are obtained by measuring concentrations of chemical compounds and solving a set of equations for balance of chemical elements. The engine jets are simulated by solid fuel combustion products. The information concerning base region heating, base pressure and carrier surface pressure is also presented. The main objective of the investigation carried out is to identify the contribution of different sources to filling the IIAS ATLAS carrier model base region with gases. Four possible sources are considered; the central unit comprising one sustainer and two side liquid boosters, solid-rocket boosters, the turbopump assemblies and the free-stream flow.

  3. Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy

    SciTech Connect

    McIntyre, B.J.

    1994-05-01

    Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H2, O2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8, results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.

  4. 4. 'Ring Stones & Tunnel Sections, Tunnel #33,' Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. 'Ring Stones & Tunnel Sections, Tunnel #33,' Southern Pacific Standard Double-Track Tunnel, ca. 1913. Compare to photos in documentation sets for Tunnel 18 (HAER No. CA-197), Tunnel 34 (HAER No. CA-206), and Tunnel 1 (HAER No. CA-207). - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  5. Brain Pressure Monitoring

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transducer originally used to measure air pressure in aircraft wind tunnel tests is the basis for a development important in diagnosis and treatment of certain types of brain damage. A totally implantable device, tbe intracranial pressure monitor measures and reports brain pressure by telemetry.

  6. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Mary, Natalie; Howe, A. Scott; Jeffries, Sharon

    2016-01-01

    How Mars surface crews get into their ascent vehicle has profound implications for Mars surface architecture. To meet planetary protection protocols, the architecture has get Intravehicular Activity (IVA)-suited crew into a Mars Ascent Vehicle (MAV) without having to step outside into the Mars environment. Pushing EVA suit don/doff and EVA operations to an element that remains on the surface also helps to minimize MAV cabin volume, which in turn can reduce MAV cabin mass. Because the MAV will require at least seven kilograms of propellant to ascend each kilogram of cabin mass, minimal MAV mass is desired. For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The "Minimum Functional Tunnel" is a conceptual design that performs a single function. Having established this baseline configuration, the next step is to trade design options, evaluate other applications, and explore alternative solutions.

  7. Variable-Density Tunnel

    NASA Technical Reports Server (NTRS)

    1921-01-01

    Wind Tunnel #2, building interior. Reinforced concrete foundation for Variable-Density Tunnel (VDT) under construction. The tank and contents weighed about 100 tons. Negative on roll #1 of copy negatives returned by National Archives on 70mm film rolls.

  8. Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2

    NASA Technical Reports Server (NTRS)

    Bencze, D. P.

    1976-01-01

    Detailed interference force and pressure data were obtained on a representative wing-body nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The primary variables examined included Mach number, angle of attack, nacelle position, and nacelle mass flow ratio. Four different configurations were tested to identify various interference forces and pressures on each component; these included tests of the isolated nacelle, the isolated wing-body combination, the four nacelles as a unit, and the total wing-body-nacelle combination. Nacelle axial location, relative to both the wing-body combination and to each other, was the most important variable in determining the net interference among the components. The overall interference effects were found to be essentially constant over the operating angle-of-attack range of the configuration, and nearly independent of nacelle mass flow ratio.

  9. Variable-Density Tunnel - Wind Tunnel #2

    NASA Technical Reports Server (NTRS)

    1923-01-01

    Underside of the Variable-Density Tunnel (VDT). The compressors are to the left. Balance detail - entrance view of wind tunnel #2. The photographer was probably shooting film for Dr. Joseph Ames' Wilbur Wright Memorial Lecture given to the Royal Aeronautical Society on May 31, 1923.

  10. The Tunnels of Samos

    NASA Technical Reports Server (NTRS)

    Apostol, Tom M. (Editor)

    1995-01-01

    This 'Project Mathematics' series video from CalTech presents the tunnel of Samos, a famous underground aquaduct tunnel located near the capital of Pithagorion (named after the famed Greek mathematician, Pythagoras, who lived there), on one of the Greek islands. This tunnel was constructed around 600 BC by King Samos and was built under a nearby mountain. Through film footage and computer animation, the mathematical principles and concepts of why and how this aquaduct tunnel was built are explained.

  11. Variable Density Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Variable Density Tunnel in operation. Man at far right is probably Harold J. 'Cannonball' Tuner, longtime safety officer, who started with Curtiss in the teens. This view of the Variable Density Tunnel clearly shows the layout of the Tunnel's surroundings, as well as the plumbing and power needs of the this innovative research tool.

  12. Subsonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 of the space shuttle orbiter tested in the NASA/ARC 12-foot pressure tunnel (LA66)

    NASA Technical Reports Server (NTRS)

    Underwood, J. M.; Parrell, H.

    1976-01-01

    The investigation was conducted in the NASA/Ames Research Center 12-foot Pressure Tunnel. The model was a Langley-built 0.015-scale SSV orbiter model with remote independently operated left and right elevon surfaces. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -4 deg to 24 deg at angles of sideslip of 0 deg and + or - 4 deg. Additional tests were made over an angle of sideslip range from -6 deg to 6 deg at selected angles of attack. The test Mach numbers were 0.22 and 0.29 and the Reynolds number was varied from 2.0 to 8.5 million per foot.

  13. Experimental study of surface pressures induced on a flat plate and a body of revolution by various dual jet configurations. [wind tunnel tudies of a jet in a cross flow for V/STOL applications

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Jakubowski, A. K.

    1982-01-01

    The effect of the angle of a jet to a crossflow, the performance of dual jet configurations, and a jet injected from a body of revolution as opposed to a flat plate were investigated during experiments conducted in the 7x10 tunnel at NASA Ames at Velocities from 14.5 m/sec to 35.8 m/sec (47.6 to 117.4 ft/sec.). Pressure distributions are presented for single and dual jets over a range of velocity ratios from 2 to 10, spacings from 2 to 6 diameters and injection angles of 90, 75, 60, and 105 degrees. For the body of revolution tests, the ratio of the jet to body diameters was set as large (1/2) in order to be more representative of V/STOL aircraft applications. Flat plate tests involved dual jets both aligned and in side by side configurations. The effects of the various parameters and the differences between the axisymmetric and planar body geometrics on the nature, size, shape, and strength of the interaction regions on the body surfaces are shown. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.

  14. On a new type of wind tunnel

    NASA Technical Reports Server (NTRS)

    Munk, Max

    1921-01-01

    Discussed here is a new type of wind tunnel, its advantages, the difficulties attendant upon its use, and the special methods required for its operation. The main difference between the new type of wind tunnel and the ones now in operation is the use of a different fluid. The idea is to diminish the effect of viscosity If air is compressed, it becomes a fluid with new properties - a fluid that is best suited for reliable and exact tests on models. When air is compressed, its density increases, but its viscosity does not. It is argued that the increase of pressure greatly increases the range and value of wind tunnel tests. Reynolds number, deductions from the Reynolds law, the causes of errors that result in differences between tests on models and actual flights, and the dimensions of a compressed air wind tunnel are covered.

  15. Expansion tunnel performance with and without an electromagnetically opened tertiary diaphragm

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1977-01-01

    A study was conducted to examine the effect of synchronization of an electromagnetically opened tertiary diaphragm with flow arrival at the diaphragm on the pitot pressure measured at the test section of an expansion tunnel. The effect of tertiary diaphragm pressure ratio (ratio of initial nozzle pressure to quiescent acceleration section pressure) on the pitot pressure time history is also determined. The inadequacy of a pressure transducer protection arrangement used in previous expansion tube and expansion tunnel tests was revealed.

  16. Variable density turbulence tunnel facility.

    PubMed

    Bodenschatz, E; Bewley, G P; Nobach, H; Sinhuber, M; Xu, H

    2014-09-01

    The Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, Germany, produces very high turbulence levels at moderate flow velocities, low power consumption, and adjustable kinematic viscosity between 10(-4) m(2)/s and 10(-7) m(2)/s. The Reynolds number can be varied by changing the pressure or flow rate of the gas or by using different non-flammable gases including air. The highest kinematic viscosities, and hence lowest Reynolds numbers, are reached with air or nitrogen at 0.1 bar. To reach the highest Reynolds numbers the tunnel is pressurized to 15 bars with the dense gas sulfur hexafluoride (SF6). Turbulence is generated at the upstream ends of two measurement sections with grids, and the evolution of this turbulence is observed as it moves down the length of the sections. We describe the instrumentation presently in operation, which consists of the tunnel itself, classical grid turbulence generators, and state-of-the-art nano-fabricated hot-wire anemometers provided by Princeton University [M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, Exp. Fluids 51, 1521 (2011)]. We report measurements of the characteristic scales of the flow and of turbulent spectra up to Taylor Reynolds number R(λ) ≈ 1600, higher than any other grid-turbulence experiment. We also describe instrumentation under development, which includes an active grid and a Lagrangian particle tracking system that moves down the length of the tunnel with the mean flow. In this configuration, the properties of the turbulence are adjustable and its structure is resolvable up to R(λ) ≈ 8000.

  17. Hypersonic Wind Tunnels: Latest Citations from the Aerospace Database

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, performance, and use of hypersonic wind tunnels. References cover the design of flow nozzles, diffusers, test sections, and ejectors for tunnels driven by compressed air, high-pressure gases, or cryogenic liquids. Methods for flow calibration, boundary layer control, local and freestream turbulence reduction, and force measurement are discussed. Intrusive and non-intrusive instrumentation, sources of measurement error, and measurement corrections are also covered. The citations also include the testing of inlets, nozzles, airfoils, and other components of hypersonic aerospace vehicles. Comprehensive coverage of supersonic and blowdown wind tunnels, and force balance systems for wind tunnels are covered in separate bibliographies.

  18. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1937-01-01

    Construction of the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a

  19. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Construction of the wood frame for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the

  20. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Manometer for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a space

  1. Boiling heat transfer enhancement in subsurface horizontal and vertical tunnels

    SciTech Connect

    Pastuszko, Robert

    2008-09-15

    Complex experimental investigations of boiling heat transfer on structured surfaces covered with perforated foil were taken up. Experimental data were discussed for two kinds of enhanced surfaces formed by joined horizontal and vertical tunnels: tunnel structures (TS) and narrow tunnel structures (NTS). The experiments were carried out with water, ethanol and R-123 at atmospheric pressure. The TS and NTS surfaces were manufactured out of perforated copper foil of 0.05 mm thickness (hole diameters: 0.3, 0.4, 0.5 mm) sintered with the mini-fins, formed on the vertical side of the 5 mm high rectangular fins and horizontal inter-fin surface. The effects of hole (pore) diameters, tunnel pitch for TS and tunnel width for NTS on nucleate pool boiling were examined. Substantial enhancement of heat transfer coefficient was observed. The investigated surfaces showed boiling heat transfer coefficients similar to those of existing structures with subsurface tunnels, but at higher heat fluxes range. (author)

  2. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal.

    PubMed

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-08-21

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. PMID:22782245

  3. Charge Islands Through Tunneling

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  4. Inelastic tunnel diodes

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Power is extracted from plasmons, photons, or other guided electromagnetic waves at infrared to midultraviolet frequencies by inelastic tunneling in metal-insulator-semiconductor-metal diodes. Inelastic tunneling produces power by absorbing plasmons to pump electrons to higher potential. Specifically, an electron from a semiconductor layer absorbs a plasmon and simultaneously tunnels across an insulator into metal layer which is at higher potential. The diode voltage determines the fraction of energy extracted from the plasmons; any excess is lost to heat.

  5. Resonance enhanced tunneling

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Yoshimura, M.

    2000-12-01

    Time evolution of tunneling in thermal medium is examined using the real-time semiclassical formalism previously developed. Effect of anharmonic terms in the potential well is shown to give a new mechanism of resonance enhanced tunneling. If the friction from environment is small enough, this mechanism may give a very large enhancement for the tunneling rate. The case of the asymmetric wine bottle potential is worked out in detail.

  6. Calibration of transonic and supersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Pope, T. C.; Cooksey, J. M.

    1977-01-01

    State-of-the art instrumentation and procedures for calibrating transonic (0.6 less than M less than 1.4) and supersonic (M less than or equal to 3.5) wind tunnels were reviewed and evaluated. Major emphasis was given to transonic tunnels. Continuous, blowdown and intermittent tunnels were considered. The required measurements of pressure, temperature, flow angularity, noise and humidity were discussed, and the effects of measurement uncertainties were summarized. A comprehensive review of instrumentation currently used to calibrate empty tunnel flow conditions was included. The recent results of relevant research are noted and recommendations for achieving improved data accuracy are made where appropriate. It is concluded, for general testing purposes, that satisfactory calibration measurements can be achieved in both transonic and supersonic tunnels. The goal of calibrating transonic tunnels to within 0.001 in centerline Mach number appears to be feasible with existing instrumentation, provided correct calibration procedures are carefully followed. A comparable accuracy can be achieved off-centerline with carefully designed, conventional probes, except near Mach 1. In the range 0.95 less than M less than 1.05, the laser Doppler velocimeter appears to offer the most promise for improved calibration accuracy off-centerline.

  7. 8-Foot High Speed Tunnel (HST)

    NASA Technical Reports Server (NTRS)

    1953-01-01

    Semi-automatic readout equipment installed in the 1950s used for data recording and reduction in the 8-Foot High Speed Tunnel (HST). A 1957 NACA report on wind tunnel facilities at Langley included these comments on the data recording and reduction equipment for the 8-foot HST: 'The data recording and reduction equipment used for handling steady force and pressure information at the Langley 8-foot transonic tunnel is similar to that described for the Langley 16-foot transonic tunnel. Very little dynamic data recording equipment, however, is available.' The description of the 16-foot transonic tunnel equipment is as follows: 'A semiautomatic force data readout system provides tabulated raw data and punch card storage of raw data concurrent with the operation of the wind tunnel. Provision is made for 12 automatic channels of strain gage-data output, and eight channels of four-digit manually operated inputs are available for tabulating and punching constants, configuration codes, and other information necessary for data reduction and identification. The data are then processed on electronic computing machines to obtain the desired coefficients. These coefficients and their proper identification are then machine tabulated to provide a printed record of the results. The punched cards may also be fed into an automatic plotting device for the preparation of plots necessary for data analysis.'

  8. Condensation in hypersonic nitrogen wind tunnels

    NASA Technical Reports Server (NTRS)

    Lederer, Melissa A.; Yanta, William J.; Ragsdale, William C.; Hudson, Susan T.; Griffith, Wayland C.

    1990-01-01

    Experimental observations and a theoretical model for the onset and disappearance of condensation are given for hypersonic flows of pure nitrogen at M = 10, 14 and 18. Measurements include Pitot pressures, static pressures and laser light scattering experiments. These measurements coupled with a theoretical model indicate a substantial non-equilibrium supercooling of the vapor phase beyond the saturation line. Typical results are presented with implications for the design of hypersonic wind tunnel nozzles.

  9. Tunnel closure calculations

    SciTech Connect

    Moran, B.; Attia, A.

    1995-07-01

    When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

  10. Atom Tunneling in Chemistry.

    PubMed

    Meisner, Jan; Kästner, Johannes

    2016-04-25

    Quantum mechanical tunneling of atoms is increasingly found to play an important role in many chemical transformations. Experimentally, atom tunneling can be indirectly detected by temperature-independent rate constants at low temperature or by enhanced kinetic isotope effects. In contrast, the influence of tunneling on the reaction rates can be monitored directly through computational investigations. The tunnel effect, for example, changes reaction paths and branching ratios, enables chemical reactions in an astrochemical environment that would be impossible by thermal transition, and influences biochemical processes. PMID:26990917

  11. Wind tunnel testing of low-drag airfoils

    NASA Technical Reports Server (NTRS)

    Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.

    1986-01-01

    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.

  12. 1. VIEW LOOKING SOUTHEAST AT EXTERIOR OF 8FOOT TRANSONIC PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHEAST AT EXTERIOR OF 8-FOOT TRANSONIC PRESSURE TUNNEL. NOTE EXPANSION RINGS. - NASA Langley Research Center, 8-Foot Transonic Pressure Tunnel, 640 Thornell Avenue, Hampton, Hampton, VA

  13. 2. VIEW LOOKING EASTNORTHEAST AT EXTERIOR OF 8FOOT TRANSONIC PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW LOOKING EAST-NORTHEAST AT EXTERIOR OF 8-FOOT TRANSONIC PRESSURE TUNNEL (BUILDING 640). NOTE NACA LOGO OVER DOORWAY. - NASA Langley Research Center, 8-Foot Transonic Pressure Tunnel, 640 Thornell Avenue, Hampton, Hampton, VA

  14. Preliminary results of buffet tests in a cryogenic wind tunnel. [conducted in Langley 0.3 m transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Boyden, R. P.; Johnson, W. G., Jr.

    1981-01-01

    Buffet tests of two wings with different leading-edge sweep show that it is feasible to use the standards wing root bending moment technique in a cryogenic wing tunnel. The results for the 65 deg sweep delta wing indicate the importance of matching the reduced frequency parameter in model tests for planforms which are sensitive to reduced frequency parameter if quantitative buffet measurements are required. The unique ability of a pressurized cryogenic wind tunnel to separate the effects of Reynolds number and of aeroelastic distortion by variations in the tunnel stagnation temperature and pressure was demonstrated.

  15. Prevalence of carpal tunnel syndrome in motorcyclists.

    PubMed

    Manes, Harvey R

    2012-05-01

    Carpal tunnel syndrome is prevalent in patients who have a repetitive motion, vibration, or pressure exerted on the wrist joint for an extended period of time. The prevalence of this condition in the general population is approximately 5%. Motorcyclists subject themselves to high levels of vibration from the road and use their wrists to control the motorcycle's brakes, gas intake, and gears via the handlebars. Under these conditions, the author hypothesized that an increased prevalence of carpal tunnel syndrome would be observed in this population.

  16. Shotcrete in tunnel design

    SciTech Connect

    Golser, J.; Galler, R.; Schubert, P.; Rabensteiner, K.

    1995-12-31

    Shotcrete is an important structural element for tunnel support. Green shotcrete is exposed to compression strain rates and tunnel design requires a realistic material law for shotcrete. A modified rate of flow method simulates shotcrete behavior very well and can be incorporated in Finite Element calculations.

  17. Micromachined Tunneling Accelerometer

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W.; Waltman, Stephen B.; Kaiser, William J.; Reynolds, Joseph K.

    1993-01-01

    Separation of tunneling electrodes adjusted by varying electrostatic force. Major components of tunneling transducer formed on two silicon chips by microfabrication techniques. Use of electrostatic deflection reduces sensitivity of transducer to thermal drift and simplifies design. Sensitivity suitable for applications in which larger acceleration-sensing instruments required.

  18. The carpal tunnel.

    PubMed

    Ellis, Harold

    2009-12-01

    The carpal bones are deeply convex anteriorly. This bony gutter is converted by the flexor retinaculum into a tube - the carpal tunnel, which conveys the median nerve, together with the long flexor tendons of the fingers and thumb, into the hand. It is of special interest to the surgeon because it is the site of a common nerve entrapment, the carpal tunnel syndrome.

  19. Laser velocimetry measurement in a transonic tunnel

    NASA Astrophysics Data System (ADS)

    Ng, T. T.; Mueller, T. J.

    1985-10-01

    Some preliminary velocity measurements were carried out inside the transonic tunnel using the laser velocimeter (LV) system in association with the smoke generator. Pressure measurements were also performed using a pressure tap located on the side wall of the test section slightly upstream of the windows. Though the pressure measurements and the LV measurements were not taken at exactly the same location, extrapolation of the pressure data into the location of the LV measurements indicated a very close agreement between the velocity values obtained using the two different methods. Thus it is believed that the smoke particle is following the air flow with little or no velocity slip. Velocity measurements with airfoil at various angles of attack are now being carried out in conjuction with schlieren flow visualization. In the near future pressure distribution around and on the airfoil will be obtained by putting pressure taps on the side windows and using a pressure tap model (currently under construction) of the airfoil.

  20. Laser velocimetry measurement in a transonic tunnel

    NASA Technical Reports Server (NTRS)

    Ng, T. T.; Mueller, T. J.

    1985-01-01

    Some preliminary velocity measurements were carried out inside the transonic tunnel using the laser velocimeter (LV) system in association with the smoke generator. Pressure measurements were also performed using a pressure tap located on the side wall of the test section slightly upstream of the windows. Though the pressure measurements and the LV measurements were not taken at exactly the same location, extrapolation of the pressure data into the location of the LV measurements indicated a very close agreement between the velocity values obtained using the two different methods. Thus it is believed that the smoke particle is following the air flow with little or no velocity slip. Velocity measurements with airfoil at various angles of attack are now being carried out in conjuction with schlieren flow visualization. In the near future pressure distribution around and on the airfoil will be obtained by putting pressure taps on the side windows and using a pressure tap model (currently under construction) of the airfoil.

  1. Langley Field wind tunnel apparatus

    NASA Technical Reports Server (NTRS)

    Bacon, D L

    1921-01-01

    The difficulties experienced in properly holding thin tipped or tapered airfoils while testing on an N.P.L. type aerodynamic balance even at low air speeds, and the impossibility of holding even solid metal models at the high speeds attainable at the National Advisory Committee's wind tunnel, necessitated the design of a balance which would hold model airfoils of any thickness and at speeds up to 150 m.p.h. In addition to mechanical strength and rigidity, it was highly desirable that the balance readings should require a minimum amount of correction and mathematical manipulation in order to obtain the lift and drag coefficients and the center of pressure. The balance described herein is similar to one in use at the University of Gottingen, the main difference lying in the addition of a device for reading the center of pressure directly, without the necessity of any correction whatsoever. Details of the design and operation of the device are given.

  2. Medical history of carpal tunnel syndrome.

    PubMed

    Michelsen, Heidi; Posner, Martin A

    2002-05-01

    The anatomical configuration of the carpal tunnel is that of an inelastic channel. Consequently, any increase in its volume or alteration in shape will usually result in a significant increase in interstitial pressure. At a pressure threshold of 20 mm Hg to 30 mm Hg, epineurial blood flow is compromised. When that pressure is sustained, the symptoms and physical findings associated with CTS appear. Typically, patients present with intermittent pain and paresthesias in all or part of the median nerve distribution of their hand(s). As weeks and months pass, symptoms progressively increase in frequency and severity. Eventually, thenar muscle weakness develops that initially manifests itself as "fatigue," or "tiredness." The progressive increase in symptoms and physical findings, usually accompanied by a progressive deterioration in electrodiagnostic studies, facilitates the classification of the condition into early, intermediate, and advanced stages. The increase in interstitial pressure in the carpal tunnel is in the vast majority of cases idiopathic (spontaneous). It can also be caused by a myriad of other conditions that can be classified into three other categories: intrinsic factors that increase the volume of the tunnel (outside and inside the nerve), extrinsic factors that alter the contour of the tunnel, and repetitive/overuse conditions. In addition, there is another category of neuropathic factors that affect the nerve without increasing interstitial pressure. In rare situations CTS can present as an acute problem. Far less common than the chronic form of the condition, it can follow acute wrist trauma, rheumatologic disorders, hemorrhagic problems, vascular disorders affecting a patent median artery, and high pressure injection injuries. Prompt recognition is important, followed in most cases by urgent surgical decompression of the median nerve.

  3. Scramjet Testing in a Gun Tunnel

    NASA Astrophysics Data System (ADS)

    Walton, C.; Cain, T. M.

    2005-02-01

    A gun tunnel has been converted to run as a direct-connect facility for supersonic combustion experiments. To achieve the required stagnation temperature of 1800K, a flammable mixture was added to the barrel that ignited during the shock compression process. The advantage of this method is that the test gas has a much smaller fraction of water vapour than conventional vitiated facilities, since shock compression alone can raise the stagnation temperature to 900K. The test time of 20ms is an order of magnitude longer than a conventional shock tunnel due to the fact that the pressure waves that terminate the test, travel in the cold driver gas behind the piston. The tunnel is run at high pressure to provide sufficient air mass for the duration of the test. A throttle placed between the end of the barrel and the entrance to the supersonic nozzle reduces stagnation pressure to the appropriate level for the combustor. A hydrogen fueled combustor tested in this facility demonstrated an oscillatory supersonic combustion. Wall static pressure measurements showed the development of a strong pressure rise at the rear of the combustor that was observed to move upstream into the isolator. Once this occurred, pressure at the front of the combustor dropped and that at the rear began to rise again until once again the wave moved upstream and into the isolator. Three cycles of this oscillatory combustion process were observed before the end of the test. The combination of cold walls allowing high frequency measurement and a relatively long test time provided a clear advantage over shock-tunnels or vitiated facilities when observing this unsteady combustion process.

  4. Measurements and Computations of Second-Mode Instability Waves in Three Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Berridge, Dennis C.; Casper, Katya M.; Rufer, Shann J.; Alba, Christopher R.; Lewis, Daniel R.; Beresh, Steven J.; Schneider, Steven P.

    2010-01-01

    High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7deg-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 micro-s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N approx. equals 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes. In Tunnel 9, the measured transition locations were found to be at N = 4.5 using thermocouples, and N = 5.3 using 50-kHz-response pressure sensors. What appears to be a very long transitional region was observed at a unit Reynolds number of 13.5 million per meter in Tunnel 9. These results were consistent with the high-frequency pressure fluctuation measurements. High-frequency pressure fluctuation measurements indicated that transition did occur in the Langley Mach-6 tunnel, but the location of transition was not precisely determined. Unit Reynolds numbers in the Langley Mach-10 tunnel were too low to observe transition. More analysis of this data set is expected in the future.

  5. Variable-Density Tunnel - Wind Tunnel #2

    NASA Technical Reports Server (NTRS)

    1923-01-01

    Underside of the Variable-Density Tunnel (VDT). The compressors are to the left. Circular screened cone is shown. The photographer was probably shooting film for Dr. Joseph Ames' Wilbur Wright Memorial Lecture given to the Royal Aeronautical Society on May 31, 1923.

  6. Ultrafast scanning tunneling microscopy

    SciTech Connect

    Botkin, D.A. |

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  7. Loads on Sprayed Waterproof Tunnel Linings in Jointed Hard Rock: A Study Based on Norwegian Cases

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar

    2014-05-01

    A composite tunnel lining system based on a sprayed waterproofing membrane combined with sprayed concrete is currently being considered for future Norwegian rail and road tunnels. Possible loading of the tunnel linings caused by water pressure is being investigated. This tunnel lining system consists of a waterproof membrane which, during application on the sprayed concrete lining, bonds mechanically to the sprayed concrete on either side. Hence, a continuous, sealing, and non-draining structure from the rock mass to the interior tunnel surface is formed in the walls and crown. Experiences from some successful recent projects with this lining system in Europe are reviewed. However, these experiences are not directly comparable to the Scandinavian hard rock tunnel lining approach, which utilizes a relatively thin sprayed and irregular concrete layer for permanent lining. When considering the sprayed membrane and sprayed concrete composite lining concept, introducing a partially sealing and undrained element in the lining, the experiences with the traditionally used lining systems in Norway need to be reconsidered and fully understood. A review of several hard rock tunnels with adverse conditions, in which the tunnel lining has been subject to load monitoring, shows that only very small loads in the tunnel linings occur. Recent investigations with in situ water pressure testing, including two sites with the composite sprayed membrane in a partially drained waterproof tunnel lining, are discussed. In a case with a cavern located in a hydraulically saturated rock mass subjected to approximately 8 bar hydrostatic pressure, a negative pressure gradient towards the tunnel lining has been measured. The investigation results from the Norwegian test sites indicate that no significant loading of the tunnel lining takes place in a hydraulically saturated rock when applying this composite waterproof tunnel lining in parts of the tunnel perimeter.

  8. Carpal Tunnel Syndrome

    MedlinePlus

    ... through NIH's National Center for Complementary and Alternative Medicine are investigating the effects of acupuncture on pain, loss of median nerve function, and changes in the brain associated with carpal tunnel syndrome. In addition, a ...

  9. TOPICAL REVIEW: Recognition tunneling

    NASA Astrophysics Data System (ADS)

    Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo

    2010-07-01

    Single molecules in a tunnel junction can now be interrogated reliably using chemically functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode ('tethered molecule-pair' configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the 'free-analyte' configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules.

  10. Anatomic variations of the median nerve in the carpal tunnel: a brief review of the literature.

    PubMed

    Demircay, Emre; Civelek, Erdinc; Cansever, Tufan; Kabatas, Serdar; Yilmaz, Cem

    2011-01-01

    Carpal tunnel syndrome (CTS) is a common focal peripheral neuropathy. Increased pressure in the carpal tunnel results in median nerve compression and impaired nerve perfusion, leading to discomfort and paresthesia in the affected hand. Surgical division of the transverse carpal ligament is preferred in severe cases of CTS and should be considered when conservative measures fail. A through knowledge of the normal and variant anatomy of the median nerve in the wrist is fundamental in avoiding complications during carpal tunnel release. This paper aims to briefly review the anatomic variations of the median nerve in the carpal tunnel and its implications in carpal tunnel surgery.

  11. Channel-tunnels.

    PubMed

    Koronakis, V; Andersen, C; Hughes, C

    2001-08-01

    TolC and its many homologues comprise an alpha-helical transperiplasmic tunnel embedded in the bacterial outer membrane by a contiguous beta-barrel channel, providing a large exit duct for diverse substrates. The 'channel-tunnel' is closed at its periplasmic entrance, but can be opened by an 'iris-like' mechanism when recruited by substrate-engaged proteins in the cytosolic membrane.

  12. Synthesis of a control model for a liquid nitrogen cooled, closed circuit, cryogenic nitrogen wind tunnel and its validation

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Goglia, G. L.

    1979-01-01

    The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated.

  13. Drag Corrections in High-Speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ludwieg, H.

    1947-01-01

    In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.

  14. Supersonic flow development in slotted wind tunnels

    NASA Technical Reports Server (NTRS)

    Ramaswamy, M. A.; Cornette, E. S.

    1980-01-01

    The development of test section slot shapes for achieving smooth supersonic Mach number distribution without overexpansion or waviness has, in the past, been largely an experimentally iterative or 'cutand try' procedure for each wind tunnel. To overcome the obvious disadvantages of time and expense involved in such an experimental approach, a simple analytical method has been developed to predict the supersonic flow development in a two-dimensional slotted tunnel given only the variation of open area ratio with downstream distance and the Mach number corresponding to the plenum static pressure. The well known method of characteristics is used with the constraint that it be compatible with the quadratic cross-flow pressure drop boundary condition at the slotted wall. The predicted results from this method agree remarkably well with the experimental calibration data available for some of the existing facilities. The flow mechanism responsible for causing overexpansion in the centerline Mach number distribution with some slot shapes has been brought to light.

  15. Scanning tunneling microscope assembly, reactor, and system

    SciTech Connect

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  16. Photogrammetry Applied to Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.

    2000-01-01

    In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.

  17. TBM tunnel friction values for the Grizzly Powerhouse Project

    SciTech Connect

    Stutsman, R.D.; Rothfuss, B.D.

    1995-12-31

    Tunnel boring machine (TBM) driven water conveyance tunnels are becoming increasingly more common. Despite advances in tunnel engineering and construction technology, hydraulic performance data for TBM driven tunnels remains relatively unavailable. At the Grizzly Powerhouse Project, the TBM driven water conveyance tunnel was designed using friction coefficients developed from a previous PG&E project. A range of coefficients were selected to bound the possible hydraulic performance variations of the water conveyance system. These friction coefficients, along with the water conveyance systems characteristics, and expected turbine characteristics, were used in a hydraulic transient analysis to determine the expected system pressure fluctuations, and surge chamber performance. During startup test data, these performance characteristics were measured to allow comparison to the original design assumptions. During construction of the tunnel, plaster casts were made of the actual excavated tunnel unlined and fiber reinforced shotcrete lined surfaces. These castings were used to measure absolute roughness of the surfaces so that a friction coefficient could be developed using the Moody diagram and compare them against the design values. This paper compares the assumed frictional coefficient with computed coefficients from headlosses measured during startup testing, and plaster cast measurement calculations. In addition, a comparison of coefficients will be presented for an other TBM driven water conveyance tunnel constructed in the 1980`s.

  18. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  19. An investigation to determine the pressure distribution on the 0.0137 scale solid rocket booster forebody (MSFC model 467) at angles of attack at or near 90 deg and high Reynolds numbers in the MSFC High Reynolds Number Wind Tunnel (SA29F)

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1976-01-01

    An aerodynamic investigation was conducted in the MSFC High Reynolds Number Wind Tunnel to determine the pressure distribution over the foresection of the current 146 inch diameter shuttle SRB. The test model consisted of a 0.0137 scale version of the SRB nose cone and a forward portion of the cylindrical body which was approximately 2.7 calibers in length. The pressure distributions are plotted as a function of longitudinal station ratioed to body diameter and circumferential location for each angle of attack and Mach number. A Reynolds number variation study was made for Mach numbers of 0.4 and 0.6 at an angle of attack of 270 deg and roll angle of 180 deg.

  20. SSX MHD plasma wind tunnel

    NASA Astrophysics Data System (ADS)

    Brown, Michael R.; Schaffner, David A.

    2015-06-01

    A new turbulent plasma source at the Swarthmore Spheromak Experiment (SSX) facility is described. The MHD wind tunnel configuration employs a magnetized plasma gun to inject high-beta plasma into a large, well-instrumented, vacuum drift region. This provides unique laboratory conditions approaching that in the solar wind: there is no applied background magnetic field in the drift region and has no net axial magnetic flux; the plasma flow speed is on the order of the local sound speed (M ~ 1), so flow energy density is comparable to thermal energy density; and the ratio of thermal to magnetic pressure is of order unity (plasma β ~ 1) so thermal energy density is also comparable to magnetic energy density. Results presented here and referenced within demonstrate the new capabilities and show how the new platform is proving useful for fundamental plasma turbulence studies.

  1. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  2. Pilot cryo tunnel: Attachments, seals, and insulation

    NASA Technical Reports Server (NTRS)

    Wilson, J. F.; Ware, G. D.; Ramsey, J. W., Jr.

    1974-01-01

    Several different tests are described which simulated the actual configuration of a cryogenic wind tunnel operating at pressures up to 5 atmospheres (507 kPa) and temperatures from -320 F (78K) to 120 F (322K) in order to determine compatible bolting, adequate sealing, and effective insulating materials. The evaluation of flange attachments (continuous threaded studs) considered bolting based on compatible flanges, attachment materials, and prescribed bolt elongations. Various types of seals and seal configurations were studied to determine suitability and reusability under the imposed pressure and temperature loadings. The temperature profile was established for several materials used for structural supports.

  3. The cryogenic wind tunnel for high Reynolds number testing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1974-01-01

    Experiments performed at the NASA Langley Research Center in a cryogenic low-speed continuous-flow tunnel and in a cryogenic transonic continuous-flow pressure tunnel have demonstrated the predicted changes in Reynolds number, drive power, and fan speed with temperature, while operating with nitrogen as the test gas. The experiments have also demonstrated that cooling to cryogenic temperatures by spraying liquid nitrogen directly into the tunnel circuit is practical and that tunnel temperature can be controlled within very close limits. Whereas most types of wind tunnel could operate with advantage at cryogenic temperatures, the continuous-flow fan-driven tunnel is particularly well suited to take full advantage of operating at these temperatures. A continuous-flow fan-driven cryogenic tunnel to satisfy current requirements for test Reynolds number can be constructed and operated using existing techniques. Both capital and operating costs appear acceptable.

  4. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  5. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  6. 203. Lickstone Ridge Tunnel. All but three of the tunnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    203. Lickstone Ridge Tunnel. All but three of the tunnel have minimum height of 13, which accommodates most large recreational vehicles. This tunnel has the lowest clearance at 11-3. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  7. View down tank tunnel (tunnel no. 2) showing pipes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View down tank tunnel (tunnel no. 2) showing pipes and walkway of metal grating, side tunnel to tank 3 is on the left - U.S. Naval Base, Pearl Harbor, Diesel Purification Plant, North Road near Pierce Street, Pearl City, Honolulu County, HI

  8. Surface Wave Imaging to Detect Tunnels

    NASA Astrophysics Data System (ADS)

    Miller, R. D.; Ballard, R. F.; Park, C. B.; Xia, J.

    2002-05-01

    Unauthorized infiltration into the U.S. is possible through the air, from the sea, across the land, and under the ground. Several near-surface geophysical techniques have been evaluated and in certain situations show promise in detecting underground activity related to tunneling. Recently developed acquisition and analysis techniques for multi-channel surface wave imaging has opened the door to a vast number of near-surface applications including anomaly detection and delineation, specifically tunnels. Routine scanning of the subsurface for anomalies unique to tunneling activities using surface waves can be done at relatively high production rates with confident interpretations made by minimally trained technical staff. Acquisition tests have proven that appropriate coupling for accurate recording of surface waves can be established with only pressure contact to the earth's surface, unlike body wave surveying in which coupling is optimized by invasive "planting." Marine streamer technology adapted to land provides near-continuous acquisition of 2-D profiles using pressure-coupled sources and receivers. Once parameters in a particular area have been selected, processing routines can be automated with pattern recognition and differencing routines used to identify potential targets. These nearly fully automated interpretive techniques could be almost real-time with preliminary results available within minutes of data acquisition. This tool is well suited for either initial reconnaissance surveys or differencing of periodic "patrol" surveys. A system using surface wave imaging technology could routinely monitor the shallow subsurface along the U.S. borders to recognize changes in physical earth properties likely related to tunneling. To evaluate the potential of this imaging technology a feasibility study was conducted in an area along the California/Mexico border with two sites in reasonably close proximity: one with a known tunnel and the other with a suspected

  9. Aorto-ventricular tunnel.

    PubMed

    McKay, Roxane

    2007-10-08

    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta.

  10. Tunnelling Problems in Older Sand Formations

    NASA Astrophysics Data System (ADS)

    Nieuwenhuis, Jan Dirk; Verruijt, Arnold

    In its deepest stretch, 60 m below o.d. and water level, the Westerschelde tunnel trace below the estuary in the Southwestern part of the Netherlands, crosses the lower Oligocene Rupel clay (Boom clay) and the Sands of Berg. Expected problems such as small penetration rates and difficult steerability of the TBM did not occur but surprisingly high radial pressures deformed the shields tail section to such an extent that concrete rings of the permanent tunnel could not be emplaced. In retrospect after finishing the tunnel and cumbersome remedial measures the sands of Berg, known to be dense and strong, appear to exhibit very strong dilatancy when axially sheared by the TBM. Some buckling computations and an estimate of dilatant effects are presented together with educated (and now confirmed) guess work on diagenetic effects such as recrystallization and cementation. It seems wise to warn designers of shallow tunnels crossing tertiary sand formations for unexpected forces on shield and cutting wheel due to diagenetic structuring of these old sands.

  11. Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Reiss, Günter; Schmalhorst, Jan; Thomas, Andre; Hütten, Andreas; Yuasa, Shinji

    In magnetoelectronic devices large opportunities are opened by the spin dependent tunneling resistance, where a strong dependence of the tunneling current on the relative orientation of the magnetization of the electrodes is found. Within a short time, the amplitude of the resistance change of the junctions increased dramatically. We will cover Al-O and MgO based junctions and present highly spin-polarized electrode materials such as Heusler alloys. Furthermore, we will give a short overview on applications such as read heads in hard disk drives, storage cells in MRAMs, field programmable logic circuits and biochips. Finally, we will discuss the currently growing field of current induced magnetization switching.

  12. Tunneling in axion monodromy

    NASA Astrophysics Data System (ADS)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-10-01

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman's original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  13. Eliminating Wind Tunnel Flow Breakdown

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.

    1983-01-01

    Undesirable vortexes near floor in small wind tunnels suppressed by simple device that alters flow pattern there. Air is injected along floor and interacts with backflow from wind-tunnel model. Results in smoother, more correct air-flow and to more-reliable wind-tunnel data.

  14. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  15. Fixture For Calibrating Pressure Probe

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Vasquez, Peter; Horsley, Lewis A.; Bowman, John T.; Zumbrun, Henry N.; Eves, John W.

    1994-01-01

    Fixture in form of specially designed clamshell housing enables in situ calibration of pressure transducer mounted in body of pressure probe in wind tunnel. Includes two metal half shells machined with necks and matching cavities, when put together, define larger neck and cavity accommodating probe. Probe secured to bottom half shell by use of clamp before installing top half shell: necessary to follow sequence to protect probe during assembly. Clamshell calibration fixture attached to pressure probe in few minutes, making it possible to calibrate pressure transducer at convenient times. Calibrations performed before and after wind-tunnel runs each day, between runs in event of delays or suspected malfunctions, and essentially any other time, without having to remove probe from wind tunnel.

  16. Wind tunnel and flight calibration of the Shuttle Orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.; Tymms, D. E.

    1978-01-01

    The Space Shuttle Orbiter air data system has been subjected to wind tunnel testing including three subsonic tests and one reference probe calibration test in order to obtain preflight calibration. Calibration curves for angle of attack, static pressure, and total pressure are given in the 0.35-0.55 Mach number range which represents flight conditions. The major difficulties encountered concerned the reference pressure of the facility, model-probe scale discrepancies, tunnel changes and blockage effects. Actual flight data calibrations from the approach and landing test program were used to modify the wind tunnel calibrations.

  17. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John; Saunders, John

    2014-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  18. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  19. Quiet wind tunnel

    NASA Technical Reports Server (NTRS)

    Howard, P. W.; Schutzenhofer, L. A.

    1978-01-01

    Simple and inexpensive technique suppresses background noise generated by pores in wind tunnel wall lining and makes aerodynamic data more accurate and reliable. Porous walls are covered with wire-mesh screen. Screen offers smoother surface to airflow and damps vortexes and resonance caused by wall perforations; yet it provides enough open area for perforations to cancel shock waves generated by model.

  20. Propeller Research Tunnel

    NASA Technical Reports Server (NTRS)

    1926-01-01

    This picture shows a general view of the Propeller Research Tunnel engine room under construction. Workmen were installing the two submarine diesel engines that would power the PRT. The room was constructed of concrete with corrugated metal siding and roofing with the intention of making the engine room as fireproof as possible.

  1. Prions tunnel between cells.

    PubMed

    Gerdes, Hans-Hermann

    2009-03-01

    Prions are abnormal isoforms of host proteins that are the infectious agents in certain mammalian neurodegenerative diseases. How prions travel from their peripheral entry sites to the brain where they cause disease is poorly understood. A new study finds that tunnelling nanotubes are important for the intercellular transfer of prions during neuroinvasion.

  2. Tunnelling with wormhole creation

    SciTech Connect

    Ansoldi, S.; Tanaka, T.

    2015-03-15

    The description of quantum tunnelling in the presence of gravity shows subtleties in some cases. We discuss wormhole production in the context of the spherically symmetric thin-shell approximation. By presenting a fully consistent treatment based on canonical quantization, we solve a controversy present in the literature.

  3. Carpal Tunnel Syndrome

    PubMed Central

    Mahoney, James Leo; Dagum, Alexander B.

    1992-01-01

    Carpal tunnel syndrome is a very common hand problem usually presenting with nighttime pain, numbness, and loss of dexterity. Controversy arises over the diagnosis, treatment, and evaluation of results. Nighttime splinting will improve the symptoms in some patients. If this fails, excellent results can be achieved with surgical decompression of the median nerve in the carpal canal. PMID:21221355

  4. Full Scale Tunnel model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Interior view of Full-Scale Tunnel (FST) model. (Small human figures have been added for scale.) On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow.

  5. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  6. The Channel Tunnel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Channel Tunnel is a 50.5 km-long rail tunnel beneath the English Channel at the Straits of Dover. It connects Dover, Kent in England with Calais, northern France. The undersea section of the tunnel is unsurpassed in length in the world. A proposal for a Channel tunnel was first put forward by a French engineer in 1802. In 1881, a first attempt was made at boring a tunnel from the English side; the work was halted after 800 m. Again in 1922, English workers started boring a tunnel, and advanced 120 m before it too was halted for political reasons. The most recent attempt was begun in 1987, and the tunnel was officially opened in 1994. At completion it was estimated that the project cost around $18 billion. It has been operating at a significant loss since its opening, despite trips by over 7 million passengers per year on the Eurostar train, and over 3 million vehicles per year.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring

  7. Airfoil model in Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1939-01-01

    Airfoil model with pressure taps inside the test section of the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot

  8. Theoretical and Numerical Investigations on Shallow Tunnelling in Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Soranzo, Enrico; Wu, Wei

    2013-04-01

    Excavation of shallow tunnels with the New Austrian Tunnelling Method (NATM) requires proper assessing of the tunnel face stability, to enable an open-face excavation, and the estimation of the correspondent surface settlements. Soils in a partially saturated condition exhibit a higher cohesion than in a fully saturated state, which can be taken into account when assessing the stability of the tunnel face. For the assessment of the face support pressure, different methods are used in engineering practice, varying from simple empirical and analytical formulations to advanced finite element analysis. Such procedures can be modified to account for the unsaturated state of soils. In this study a method is presented to incorporate the effect of partial saturation in the numerical analysis. The results are then compared with a simple analytical formulation derived from parametric studies. As to the numerical analysis, the variation of cohesion and of Young's modulus with saturation can be considered when the water table lies below the tunnel in a soil exhibiting a certain capillary rise, so that the tunnel is driven in a partially saturated layer. The linear elastic model with Mohr-Coulomb failure criterion can be extended to partially saturated states and calibrated with triaxial tests on unsaturated. In order to model both positive and negative pore water pressure (suction), Bishop's effective stress is incorporated into Mohr-Coulomb's failure criterion. The effective stress parameter in Bishop's formulation is related to the degree of saturation as suggested by Fredlund. If a linear suction distribution is assumed, the degree of saturation can be calculated from the Soil Water Characteristic Curve (SWCC). Expressions exist that relate the Young's modulus of unsaturated soils to the net mean stress and the matric suction. The results of the numerical computation can be compared to Vermeer & Ruse's closed-form formula that expresses the limit support pressure of the

  9. Investigations of detail design issues for the high speed acoustic wind tunnel using a 60th scale model tunnel. Part 1: Tests with open circuits

    NASA Technical Reports Server (NTRS)

    Barna, P. Stephen

    1991-01-01

    This report summarizes the tests on the 1:60 scale model of the High Speed Acoustic Wind Tunnel (HSAWT) performed during the period of November 1989 to December 1990. Throughout the testing the tunnel was operated in the 'open circuit mode', that is when the airflow was induced by a powerful exhaust fan located outside the tunnel circuit. The tests were first performed with the closed test section and were subsequently repeated with the open test section. While operating with the open test section, a novel device, called the 'nozzle-diffuser,' was also tested in order to establish its usefulness of increasing pressure recovery in the first diffuser. The tests established the viability of the tunnel design. The flow distribution in each tunnel component was found acceptable and pressure recovery in the diffusers were found satisfactory. The diffusers appeared to operate without flow separation. All tests were performed at NASA LaRC.

  10. Visualization of pool boiling from complex surfaces with internal tunnels

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert

    2012-04-01

    The paper presents experimental investigations of boiling heat transfer for a system of connected narrow horizontal and vertical tunnels. These extended surfaces, named narrow tunnel structure (NTS), can be applied to electronic element cooling. The experiments were carried out with ethanol at atmospheric pressure. The tunnel external covers were manufactured out of 0.1 mm thick perforated copper foil (hole diameters 0.5 mm), sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. Visualization studies were conducted with a transparent structured model of joined narrow tunnels limited with the perforated foil. The visualization investigations aimed to formulate assumptions for the boiling model through distinguishing boiling types and defining all phases of bubble growth.

  11. Data Reduction Functions for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Boney, Andy D.

    2014-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel's data reduction software utilizes six major functions to compute the acquired data. These functions calculate engineering units, tunnel parameters, flowmeters, jet exhaust measurements, balance loads/model attitudes, and model /wall pressures. The input (required) variables, the output (computed) variables, and the equations and/or subfunction(s) associated with each major function are discussed.

  12. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  13. CFD applications in tunnel ventilation analysis

    SciTech Connect

    Ray, R.E. Jr.; Zigh, A.

    1999-07-01

    Longitudinal ventilation systems in transit and rail tunnels are typically analyzed by one dimensional ventilation network simulation models, such as the Subway Environment Simulation (SES) program. However, in recent years computational fluid dynamics (CFD) modeling has been utilized in conjunction with one-dimensional ventilation network programs to study ventilation systems for large volume spaces such as transit stations and rail overbuilds, as well as for vehicular tunnels. CFD uses numerical methods to simulate complex fluid flow phenomena in three dimensions to predict the distribution of velocity, pressure, temperature, concentration, and other relevant variables throughout the volume. This paper presents an overview of CFD study results from emergency ventilation analysis for a transit station and both emergency ventilation and diesel emissions analysis for a rail overbuild.

  14. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    NASA Technical Reports Server (NTRS)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  15. Moisture Transport Through Sprayed Concrete Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar; Geving, Stig

    2016-01-01

    Waterproofing of permanent sprayed concrete tunnel linings with sprayed membranes in a continuous sandwich structure has been attempted since 2000 and has seen increased use in some countries. The main function of a sprayed membrane from a waterproofing perspective is to provide crack bridging and hence prevent flow of liquid water into the tunnel through cracks and imperfections in the concrete material. However, moisture can migrate through the concrete and EVA-based membrane materials by capillary and vapor diffusion mechanisms. These moisture transport mechanisms can have an influence on the degree of saturation, and may influence the pore pressures in the concrete material as well as risk of freeze-thaw damage of the concrete and membrane. The paper describes a detailed study of moisture transport material parameters, moisture condition in tunnel linings and climatic conditions tunnels in hard rock in Norway. These data have been included in a hygrothermal simulation model in the software WUFI for moisture transport to substantiate moisture transport and long-term effects on saturation of the concrete and membrane material. The findings suggest that EVA-based membranes exhibit significant water absorption and vapor transport properties although they are impermeable to liquid water flow. State-of-the-art sprayed concrete material applied with the wet mix method exhibits very low hydraulic conductivities, lower than 10-14 m/s, thus saturated conductive water flow is a very unlikely dominant transport mechanism. Moisture transport through the lining structure by capillary flow and vapor diffusion are calculated to approximately 3 cm3/m2 per day for lining thicknesses in the range of 25-35 cm and seasonal Nordic climate variations. The calculated moisture contents in the tunnel linings from the hygrothermal simulations are largely in agreement with the measured moisture contents in the tunnel linings. The findings also indicate that the concrete material exhibits

  16. Voltage-To-Frequency Converter For Pressure Calibration

    NASA Technical Reports Server (NTRS)

    Sealey, Bradley S.; Mitchell, Michael

    1993-01-01

    Measurements of pressures on walls of wind tunnels and on surfaces of models in wind tunnels made with help of electronically scanned pressure-measurement (ESP) system. Voltage-to-frequency converter circuit, designed to convert 0- to 5-Vdc analog output voltage from high-line-pressure, low-differential-pressure standard to required frequency range. Enables selection of wider variety of high-accuracy pressure standards to enhance accuracy of measurement of ESP instrumentation while requiring little modification of manufacturer's system and no modification of operating software of system. Useful primarily in wind-tunnel instrumentation and readily adaptable to commercial instruments currently in use.

  17. Techniques For Mass Production Of Tunneling Electrodes

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W.; Podosek, Judith A.; Reynolds, Joseph K.; Rockstad, Howard K.; Vote, Erika C.; Kaiser, William J.

    1993-01-01

    Techniques for mass production of tunneling electrodes developed from silicon-micromachining, lithographic patterning, and related microfabrication processes. Tunneling electrodes named because electrons travel between them by quantum-mechanical tunneling; tunneling electrodes integral parts of tunneling transducer/sensors, which act in conjunction with feedback circuitry to stabilize tunneling currents by maintaining electrode separations of order of 10 Angstrom. Essential parts of scanning tunneling microscopes and related instruments, and used as force and position transducers in novel microscopic accelerometers and infrared detectors.

  18. Pressure vessel flex joint

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1992-01-01

    An airtight, flexible joint is disclosed for the interfacing of two pressure vessels such as between the Space Station docking tunnel and the Space Shuttle Orbiter bulkhead adapter. The joint provides for flexibility while still retaining a structural link between the two vessels required due to the loading created by the internal/external pressure differential. The joint design provides for limiting the axial load carried across the joint to a specific value, a function returned in the Orbiter/Station tunnel interface. The flex joint comprises a floating structural segment which is permanently attached to one of the pressure vessels through the use of an inflatable seal. The geometric configuration of the joint causes the tension between the vessels created by the internal gas pressure to compress the inflatable seal. The inflation pressure of the seal is kept at a value above the internal/external pressure differential of the vessels in order to maintain a controlled distance between the floating segment and pressure vessel. The inflatable seal consists of either a hollow torus-shaped flexible bladder or two rolling convoluted diaphragm seals which may be reinforced by a system of straps or fabric anchored to the hard structures. The joint acts as a flexible link to allow both angular motion and lateral displacement while it still contains the internal pressure and holds the axial tension between the vessels.

  19. A remote millivolt multiplexer and amplifier module for wind tunnel data acquisition

    NASA Technical Reports Server (NTRS)

    Juanarena, D. B.; Blumenthal, P. Z.

    1982-01-01

    A 30-channel remotely located multiplexer and amplifier module is developed for the measurement of wind tunnel models, which substantially reduces the amount of wiring necessary and thus provides higher accuracy. The module provides for a wide variety of transducer voltage outputs to be multiplexed and amplified within the model, and all signals are able to exit the module on two wires. The module is self-calibrating, and when coupled with the electronically scanned pressure instrumentation widely used in wind tunnels, it allows the modular wind tunnel models to be fabricated and checked before installation into the wind tunnel.

  20. Tests of a protective shell passive release mechanism for hypersonic wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Dunn, J. E.

    1979-01-01

    A protective shell mechanism for wind tunnel models was developed and tested. The mechanism is passive in operation, reliable, and imposes no new structural design changes for wind tunnel models. Methods of predicting the release time and the measured loads associated with the release of the shell are given. The mechanism was tested in a series of wind tunnel tests to validate the removal process and measure the pressure loads on the model. The protective shell can be used for wind tunnel models that require a step input of heating and loading such as a thin skin heat transfer model. The mechanism may have other potential applications.

  1. Comments on settling chamber design for quiet, blowdown wind tunnels

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.

    1981-01-01

    Transfer of an existing continous circuit supersonic wind tunnel to Langley and its operation there as a blowdown tunnel is planned. Flow disturbance requirements in the supply section and methods for reducing the high level broad band acoustic disturbances present in typical blowdown tunnels are reviewed. Based on recent data and the analysis of two blowdown facilities at Langley, methods for reducing the total turbulence levels in the settling chamber, including both acoustic and vorticity modes, to less than one percent are recommended. The pertinent design details of the damping screens and honeycomb and the recommended minimum pressure drop across the porous components providing the required two orders of magnitude attenuation of acoustic noise levels are given. A suggestion for the support structure of these high pressure drop porous components is offered.

  2. Results of buffet tests in a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Boyden, R. P.; Johnson, W. G., Jr.

    1982-01-01

    Buffet tests on two semispan wing models with different leading edge sweep show that it is feasibile to use the standard dynamic wing root bending moment technique in a cryogenic wind tunnel. One model was a slender 65 deg swept delta wing with sharp leading edges. The other model was an unswept wing of aspect ratio 1.5 with a British NPL 9510 airfoil section. The results for the 65 deg swept delta wing indicate the importance of matching the reduced frequency parameter in model tests for planforms which are sensitive to reduced frequency parameter if quantitative buffet measurements are required. The unique ability of a pressurized cryogenic wind tunnel to separate the effects of Reynolds number and of static aeroelastic distortion by variations in the tunnel stagnation temperature and pressure were demonstrated.

  3. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  4. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Rockstad, Howard K. (Inventor); Reynolds, Joseph K. (Inventor)

    1994-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane which would otherwise change deflection depending upon incident infrared radiation. The resulting infrared sensor will meet or exceed the performance of all other broadband, uncooled, infrared sensors and can be miniaturized to pixel dimensions smaller than 100 .mu.m. The technology is readily implemented as a small-format linear array suitable for commercial and spacecraft applications.

  5. Tunnel magnetoresistance of diamondoids

    NASA Astrophysics Data System (ADS)

    Matsuura, Yukihito

    2016-10-01

    Tunnel magnetoresistance (TMR) of diamondoids has been predicted by first principles density functional theory. Diamantane was used as a basic molecular proxy for diamondoids because hydrogen atoms in the apical position are easily substituted for a thiol group. The pristine diamantane exhibited a low TMR ratio of 7%, and boron-substitution considerably decreased the TMR ratio. Conversely, nitrogen-substitution enhanced the TMR ratio by up to 20%. Heteroatom-substitution changes the tunneling probabilities by varying the molecular bond lengths. Furthermore, when the spins of the electrodes are parallel, the heteroatoms resulted in transmittance probabilities at an energy range near the Fermi level. Consequently, heteroatom-substitution can control the TMR ratios of diamondoids very well.

  6. On tunneling across horizons

    NASA Astrophysics Data System (ADS)

    Vanzo, L.

    2011-07-01

    The tunneling method for stationary black holes in the Hamilton-Jacobi variant is reconsidered in the light of some critiques that have been moved against. It is shown that once the tunneling trajectories have been correctly identified the method is free from internal inconsistencies, it is manifestly covariant, it allows for the extension to spinning particles and it can even be used without solving the Hamilton-Jacobi equation. These conclusions borrow support on a simple analytic continuation of the classical action of a pointlike particle, made possible by the unique assumption that it should be analytic in the complexified Schwarzschild or Kerr-Newman space-time. A more general version of the Parikh-Wilczek method will also be proposed along these lines.

  7. Unitary Plan Supersonic Tunnel

    NASA Technical Reports Server (NTRS)

    1953-01-01

    Unitary Plan Supersonic Tunnel: In this aerial photograph of construction in the early 1950s, the return air passages are shown in the rear, center. This area was later covered with walls and a roof so that upon completion of the facility, it was not visible from the exterior. Three air storage spheres and the cooling tower are at the extreme right of the building. The spheres store dry air at 150 pounds per square inch. The cooling tower dissipates heat from coolers that control the test air temperature. One of many research facilities at NASA Langley Research Center in Hampton, Virginia, the Unitary Plan Wind Tunnel is used for experimental investigations at supersonic speeds.

  8. Light tunneling in clouds.

    PubMed

    Nussenzveig, H Moyses

    2003-03-20

    Solar radiation, traveling outside cloud water droplets, excites sharp resonances and surface waves by tunneling into the droplets. This effect contributes substantially to the total absorption (typically, of the order of 20%) and yields the major contribution to backscattering, producing the meteorological glory. Usual computational practices in atmospheric science misrepresent resonance contributions and cannot be relied on in the assessment of possible anomalies in cloud absorption.

  9. Anterior cruciate ligament tunnel placement.

    PubMed

    Wolf, Brian R; Ramme, Austin J; Britton, Carla L; Amendola, Annunziato

    2014-08-01

    The purpose of this cadaveric study was to analyze variation in anterior cruciate ligament (ACL) tunnel placement between surgeons and the influence of preferred surgical technique and surgeon experience level using three-dimensional (3D) computed tomography (CT). In this study, 12 surgeons drilled ACL tunnels on six cadaveric knees each. Surgeons were divided by experience level and preferred surgical technique (two-incision [TI], medial portal [MP], and transtibial [TT]). ACL tunnel aperture locations were analyzed using 3D CT scans and compared with radiographic ACL footprint criteria. The femoral tunnel location from front to back within the notch demonstrated a range of means of 16% with the TI tunnels the furthest back. A range of means of only 5% was found for femoral tunnel low to high positions by technique. The anterior to posterior tibial tunnel measure demonstrated wider variation than the medial to lateral position. The mean tibial tunnel location drilled by TT surgeons was more posterior than surgeons using the other techniques. Overall, 82% of femoral tunnels and 78% of tibial tunnels met all radiographic measurement criteria. Slight (1-7%) differences in mean tunnel placement on the femur and tibia were found between experienced and new surgeons. The location of the femoral tunnel aperture in the front to back plane relative to the notch roof and the anterior to posterior position on the tibia were the most variable measures. Surgeon experience level did not appear to significantly affect tunnel location. This study provides background information that may be beneficial when evaluating multisurgeon and multicenter collaborative ACL studies.

  10. Evaluating tunnel kiln performance

    SciTech Connect

    O`Connor, K.R.; Carty, W.M.; Ninos, N.J.

    1997-08-01

    Process improvements in the production of whitewares provide the potential for substantial savings for manufacturers. A typical whiteware manufacturer incurs an annual defective product loss of {approximately}$20 million when accounting for raw materials, energy, labor and waste disposal. Reduction in defective product loss of 1% could result in a savings in excess of $1 million annually. This study was designed to establish benchmarks for two conventional tunnel kilns used to bisque-fire dinnerware at Buffalo China Inc. (Buffalo, NY). The benchmark was established by assessing the current conditions and variability of the two tunnel kilns as a function of the fracture strength of sample bars that were made from production body. Sample bars were fired in multiple locations in both kilns to assess the conditions and variability of firing within each kiln. Comparison of strength results between the two kilns also was assessed. These comparisons were accomplished through applied statistical analysis, wherein significant statistical variations were identified and isolated for both tunnel kilns. The statistical methods and tools used in this analysis are readily accessible to manufacturers, thus allowing implementation of similar analysis, or benchmarking, in-house.

  11. Ferroelectric tunnel memristor.

    PubMed

    Kim, D J; Lu, H; Ryu, S; Bark, C-W; Eom, C-B; Tsymbal, E Y; Gruverman, A

    2012-11-14

    Strong interest in resistive switching phenomena is driven by a possibility to develop electronic devices with novel functional properties not available in conventional systems. Bistable resistive devices are characterized by two resistance states that can be switched by an external voltage. Recently, memristors-electric circuit elements with continuously tunable resistive behavior-have emerged as a new paradigm for nonvolatile memories and adaptive electronic circuit elements. Employment of memristors can radically enhance the computational power and energy efficiency of electronic systems. Most of the existing memristor prototypes involve transition metal oxide resistive layers where conductive filaments formation and/or the interface contact resistance control the memristive behavior. In this paper, we demonstrate a new type of memristor that is based on a ferroelectric tunnel junction, where the tunneling conductance can be tuned in an analogous manner by several orders of magnitude by both the amplitude and the duration of the applied voltage. The ferroelectric tunnel memristors exhibit a reversible hysteretic nonvolatile resistive switching with a resistance ratio of up to 10(5) % at room temperature. The observed memristive behavior is attributed to the field-induced charge redistribution at the ferroelectric/electrode interface, resulting in the modulation of the interface barrier height. PMID:23039785

  12. Ferroelectric tunnel memristor.

    PubMed

    Kim, D J; Lu, H; Ryu, S; Bark, C-W; Eom, C-B; Tsymbal, E Y; Gruverman, A

    2012-11-14

    Strong interest in resistive switching phenomena is driven by a possibility to develop electronic devices with novel functional properties not available in conventional systems. Bistable resistive devices are characterized by two resistance states that can be switched by an external voltage. Recently, memristors-electric circuit elements with continuously tunable resistive behavior-have emerged as a new paradigm for nonvolatile memories and adaptive electronic circuit elements. Employment of memristors can radically enhance the computational power and energy efficiency of electronic systems. Most of the existing memristor prototypes involve transition metal oxide resistive layers where conductive filaments formation and/or the interface contact resistance control the memristive behavior. In this paper, we demonstrate a new type of memristor that is based on a ferroelectric tunnel junction, where the tunneling conductance can be tuned in an analogous manner by several orders of magnitude by both the amplitude and the duration of the applied voltage. The ferroelectric tunnel memristors exhibit a reversible hysteretic nonvolatile resistive switching with a resistance ratio of up to 10(5) % at room temperature. The observed memristive behavior is attributed to the field-induced charge redistribution at the ferroelectric/electrode interface, resulting in the modulation of the interface barrier height.

  13. Analysis of shield tunnel

    NASA Astrophysics Data System (ADS)

    Ding, W. Q.; Yue, Z. Q.; Tham, L. G.; Zhu, H. H.; Lee, C. F.; Hashimoto, T.

    2004-01-01

    This paper proposes a two-dimensional finite element model for the analysis of shield tunnels by taking into account the construction process which is divided into four stages. The soil is assumed to behave as an elasto-plastic medium whereas the shield is simulated by beam-joint discontinuous model in which curved beam elements and joint elements are used to model the segments and joints, respectively. As grout is usually injected to fill the gap between the lining and the soil, the property parameters of the grout are chosen in such a way that they can reflect the state of the grout at each stage. Furthermore, the contact condition between the soil and lining will change with the construction stage, and therefore, different stress-releasing coefficients are used to account for the changes. To assess the accuracy that can be attained by the method in solving practical problems, the shield tunnelling in the No. 7 Subway Line Project in Osaka, Japan, is used as a case history for our study. The numerical results are compared with those measured in the field. The results presented in the paper show that the proposed numerical procedure can be used to effectively estimate the deformation, stresses and moments experienced by the surrounding soils and the concrete lining segments. The analysis and method presented in this paper can be considered to be useful for other subway construction projects involving shield tunnelling in soft soils. Copyright

  14. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  15. Tunnelling from black holes and tunnelling into white holes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Bhramar; Ghosh, A.; Mitra, P.

    2008-03-01

    Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton-Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.

  16. A lumped parameter mathematical model for simulation of subsonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Krosel, S. M.; Cole, G. L.; Bruton, W. M.; Szuch, J. R.

    1986-01-01

    Equations for a lumped parameter mathematical model of a subsonic wind tunnel circuit are presented. The equation state variables are internal energy, density, and mass flow rate. The circuit model is structured to allow for integration and analysis of tunnel subsystem models which provide functions such as control of altitude pressure and temperature. Thus the model provides a useful tool for investigating the transient behavior of the tunnel and control requirements. The model was applied to the proposed NASA Lewis Altitude Wind Tunnel (AWT) circuit and included transfer function representations of the tunnel supply/exhaust air and refrigeration subsystems. Both steady state and frequency response data are presented for the circuit model indicating the type of results and accuracy that can be expected from the model. Transient data for closed loop control of the tunnel and its subsystems are also presented, demonstrating the model's use as a control analysis tool.

  17. Submucosal tunneling techniques: current perspectives

    PubMed Central

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments. PMID:24741323

  18. Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Bennett, Robert M.

    2007-01-01

    Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.

  19. Description and evaluation of an interference assessment for a slotted-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1991-01-01

    A wind-tunnel interference assessment method applicable to test sections with discrete finite-length wall slots is described. The method is based on high order panel method technology and uses mixed boundary conditions to satisfy both the tunnel geometry and wall pressure distributions measured in the slotted-wall region. Both the test model and its sting support system are represented by distributed singularities. The method yields interference corrections to the model test data as well as surveys through the interference field at arbitrary locations. These results include the equivalent of tunnel Mach calibration, longitudinal pressure gradient, tunnel flow angularity, wall interference, and an inviscid form of sting interference. Alternative results which omit the direct contribution of the sting are also produced. The method was applied to the National Transonic Facility at NASA Langley Research Center for both tunnel calibration tests and tests of two models of subsonic transport configurations.

  20. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  1. A European Mars Simulation Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Merrison, J. P.; Gunnlaugsson, H. P.; Knak-Jensen, S.; Per, N.

    2010-12-01

    We present details of a recently completed European simulation wind tunnel facility which is capable of re-creating the environmental conditions at the surface of Mars, this new addition complements several other large scale simulation facilities at Aarhus University in Denmark. It will be used for the multi-disciplinary scientific study of aerosol formation and transport (on Mars and earth), granular electrification, magnetic properties, erosion, cohesion/adhesion, water transport, UV induced mineralogy, bacterial survival and many others. It will be accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European space agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kahn Rasmussen fund. The facility consists of a 50m3 environmental chamber capable of low pressure operation (0.02-1000mbar) and cryogenic temperatures (-130°C up to +60°C). This chamber houses a re-circulating wind tunnel able to generate wind speeds up to 25m/s and an automated dust injection system has been developed to produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor dust suspension and deposition. This involves a commercial Laser Doppler Anemometer and specially developed instrument prototypes constructed at Aarhus University. Photograph of the new (European) Environmental Wind Tunnel Facility.

  2. Orbiter Model in Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Marshall Space Flight Center (MSFC) engineer holding a replica of the proposed Liquid Booster Module, observes the testing of a small Space Shuttle orbiter model at 14 Wind Tunnel at MSFC. 14 Wind Tunnel is a trisonic wind tunnel, which is capable of running subsonic, transonic, and supersonic. It is used to test the integrity of rockets and launch vehicles in launch and reentry environments. The Wind Tunnel was used to test rockets and launch vehicles from the Jupiter C through the Saturn family up to the current Space Shuttle and will be used to test future advanced launch vehicles.

  3. Mitigation of shock waves in a cylindrical tunnel by foam

    NASA Astrophysics Data System (ADS)

    Fondaw, Grant W.

    1993-03-01

    The effectiveness of foam linings in mitigating shock waves in tunnels is investigated. A polyurethane foam liner of varying density, crush strength, and thickness was modeled inside a 1 meter radius tunnel and an explosion of 1.25 kg of plastic explosive was simulated. Using CTH, an Eulerian-Lagrangian hydrodynamics code from Sandia National Laboratories, the overpressures were computed and compared graphically to determine the effect of varying each foam parameter. The walls of the tunnel consisted of a perfectly reflecting boundary, and in some cases, a foam liner. Low density foam provided the most shock attenuation, with a 20 cm thick layer of 90% void 0.1265 g/cm(sup 3) foam reducing the shock overpressure by 70% at 50 meters. The effects of foam thickness on the shock pressure varied with the distance from the explosion. The thicker foams raised the initial pressure near the explosion due to constriction of the tunnel area. However, the thicker layers reduced the shock faster. Varying the crush strength of the foam from 1 atm to 3 atm overpressure did not affect its ability to mitigate shock propagation in the tunnel. The results strongly suggest that foam can mitigate shock waves significantly.

  4. Analysis of validation tests of the Langley pilot transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ray, E. J.; Kilgore, R. A.; Adcock, J. B.; Davenport, E. E.

    1975-01-01

    A pilot transonic cryogenic pressure tunnel has recently been developed and proof tested at the NASA Langley Research Center. In addition to providing an attractive method for obtaining high Reynolds number results at moderate aerodynamic loadings and tunnel power, this unique tunnel allows the independent determination of the effects of Reynolds number, Mach number, and dynamic pressure (aeroelasticity) on the aerodynamic characteristics of the model under test. The proof of concept experimental and theoretical studies are briefly reviewed. Experimental results obtained on both two- and three-dimensional models have substantiated that cryogenic test conditions can be set accurately and that cryogenic gaseous nitrogen is a valid test medium.

  5. Design of Rail Instrumentation for Wind Tunnel Sonic Boom Measurements and Computational-Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.

    2012-01-01

    An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.

  6. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  7. View of Water Storage Tank off entrance tunnel. Tunnel at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Water Storage Tank off entrance tunnel. Tunnel at left of image to Launch Silos - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  8. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293)

  9. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of Full-Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; and fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293).

  10. Retrofitting tunnel kilns

    SciTech Connect

    Lukacs, J.J.

    1997-02-01

    Significant benefits can be achieved by retrofitting tunnel kilns. The decision-making process to do so starts with evaluating short- and long-term goals. Plant goals can influence tradeoffs in burner sizing, burner choice and control scheme. The evaluation includes consideration of increased production, reduced breakage during heating and cooling, improved quality, ability to quickly change products, reduced fuel use, reduced energy consumption and/or improved control. The efforts in one area affect performance in other areas. For example, reduced fuel use implies reduced energy consumption. Regardless of the priority of the goals, the first step is an evaluation of the existing burners.

  11. Virtual-detector approach to tunnel ionization and tunneling times

    NASA Astrophysics Data System (ADS)

    Teeny, Nicolas; Keitel, Christoph H.; Bauke, Heiko

    2016-08-01

    Tunneling times in atomic ionization are studied theoretically by a virtual detector approach. A virtual detector is a hypothetical device that allows one to monitor the wave function's density with spatial and temporal resolution during the ionization process. With this theoretical approach, it becomes possible to define unique moments when the electron enters and leaves with highest probability the classically forbidden region from first principles and a tunneling time can be specified unambiguously. It is shown that neither the moment when the electron enters the tunneling barrier nor when it leaves the tunneling barrier coincides with the moment when the external electric field reaches its maximum. Under the tunneling barrier as well as at the exit the electron has a nonzero velocity in the electric field direction. This nonzero exit velocity has to be incorporated when the free motion of the electron is modeled by classical equations of motion.

  12. Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel. [Langley 8-foot high temperature structures tunnel

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.

    1981-01-01

    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.

  13. An investigation in the NASA MSFC 14-inch trisonic wind tunnel to determine the pressure distribution over the components of a 0.004 scale version of the Rockwell MCR 0074 baseline shuttle ascent configuration (IA32F), volume 1. [space shuttles - wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1975-01-01

    Data were obtained for Mach numbers from 0.6 to 3.48, angles of attack from -10 to 10 degrees, and angles of sideslip from -10 to 10 degrees at zero angle of attack. Also, -4 and 4 degrees sideslip were run for an angle of attack of -5 and 5 degrees. Aerodynamic configurations of the solid rocket motors, external tank, and orbiter are shown. Graphs of plotted pressure data (pressure coefficients) for the external tank and solid rocket motors are given. A description of the test facility is included.

  14. Hysteresis of boiling for different tunnel-pore surfaces

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2015-05-01

    Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS), narrow tunnel structures (NTS) and mini-fins covered with the copper wire net (NTS-L). The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  15. Tunneling properties of nonplanar molecules in a gas medium

    SciTech Connect

    Bahrami, Mohammad; Bassi, Angelo

    2011-12-15

    We propose a simple, general, and accurate formula for analyzing the tunneling between classical configurations of a nonplanar molecule in a gas medium, as a function of the thermodynamic parameters of the gas. We apply it to two interesting cases: (i) the shift to zero frequency of the inversion line of ammonia, upon an increase in the pressure of the gas; and (ii) the destruction of the coherent tunneling of D{sub 2}S{sub 2} molecules in a He gas. In both cases, we compare our analysis with previous theoretical and experimental results.

  16. Integration of computational methods into automotive wind tunnel testing

    SciTech Connect

    Katz, J.

    1989-01-01

    This paper discusses the aerodynamics of a generic, enclosed-wheel racing-car shape without wheels investigated numerically and compared with one-quarter scale wind-tunnel data. Because both methods lack perfection in simulating actual road conditions, a complementary application of these methods was studied. The computations served for correcting the high-blockage wind-tunnel results and provided detailed pressure data which improved the physical understanding of the flow field. The experimental data was used here mainly to provide information on the location of flow-separation lines and on the aerodynamic loads; these in turn were used to validate and to calibrate the computations.

  17. Early Childhood: Funnels and Tunnels.

    ERIC Educational Resources Information Center

    Fowlkes, Mary Anne

    1985-01-01

    Suggests using funnels and tunnels in combination with water, blocks, transportation toys, and other materials to help teach preschoolers to make predictions. Many examples are included for using funnels to understand properties of liquids and for using tunnels to predict order. (DH)

  18. NASA Lewis 8- by 6-foot supersonic wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    The 8- by 6-Foot Supersonic Wind Tunnel (SWT) at Lewis Research Center is available for use by qualified researchers. This manual contains tunnel performance maps which show the range of total temperature, total pressure, static pressure, dynamic pressure, altitude, Reynolds number, and mass flow as a function of test section Mach number. These maps are applicable for both the aerodynamic and propulsion cycle. The 8- by 6-Foot Supersonic Wind Tunnel is an atmospheric facility with a test section Mach number range from 0.36 to 2.0. General support systems (air systems, hydraulic system, hydrogen system, infrared system, laser system, laser sheet system, and schlieren system are also described as are instrumentation and data processing and acquisition systems. Pretest meeting formats are outlined. Tunnel user responsibility and personal safety requirements are also stated.

  19. Computer simulation of a wind tunnel test section with discrete finite-length wall slots

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1986-01-01

    A computer simulation of a slotted wind tunnel test section which includes a discrete, finite-length wall slot representation with plenum chamber constraints and accounts for the nonlinear effects of the dynamic pressure of the slot outflow jet and of the low energy of slot inflow air was developed. The simulation features were selected to be those appropriate for the intended subsequent use of the simulation in a wall interference assessment procedure using sparsely located wall pressure measurements. It is demonstrated that accounting for slot discreteness is important in interpreting wall pressure measured between slots, and that accounting for nonlinear slot flow effects produces significant changes in tunnel-induced velocity distributions and, in particular, produces a longitudinal component of tunnel-induced velocity due to model lift. A characteristic mode of tunnel flow interaction with constraints imposed by the plenum chamber and diffuser entrance is apparent in simulation results and is derived analytically through a simplified analysis.

  20. Tunneling in Superconductors

    NASA Astrophysics Data System (ADS)

    Giaever, Ivar

    2002-03-01

    It has been said that Thomas Edison's greatest invention was that of the "Research Laboratory" as a social institution. My greatest discovery was when I learned at 29 years of age that it was possible to work in such an institution and get paid for doing research. I had become interested in physics, gotten a job at General Electric Research Laboratory and found a great mentor in John C. Fischer, who besides instructing me in physics told me that sooner or later we all would become historians of science. I guess for me that time is now, because I have been asked to tell you about my second greatest discovery: Tunneling in superconductors. My great fortune was to be at the right place at the right time, where I had access to outstanding and helpful (not necessary an oxymoron) physicists. Hopefully I will be able to convey to you some of the fun and excitement of that area in this recollection. If you become real interested you may find a written version in my Nobel Prize talk: "Electron Tunneling and Superconductivity" Les Prix Nobel en 1973 or Science 183, 1253-1258 1974 or Reviews of Modern Physics 46 (2), 245-250 1974

  1. Tunneling magnetic force microscopy

    NASA Technical Reports Server (NTRS)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  2. Two tunnels to inflation

    SciTech Connect

    Aguirre, Anthony; Johnson, Matthew C.

    2006-06-15

    We investigate the formation via tunneling of inflating (false-vacuum) bubbles in a true-vacuum background, and the reverse process. Using effective potentials from the junction condition formalism, all true- and false-vacuum bubble solutions with positive interior and exterior cosmological constant, and arbitrary mass are catalogued. We find that tunneling through the same effective potential appears to describe two distinct processes: one in which the initial and final states are separated by a wormhole (the Farhi-Guth-Guven mechanism), and one in which they are either in the same hubble volume or separated by a cosmological horizon. In the zero-mass limit, the first process corresponds to the creation of an inhomogenous universe from nothing, while the second mechanism is equivalent to the nucleation of true- or false-vacuum Coleman-De Luccia bubbles. We compute the probabilities of both mechanisms in the WKB approximation using semiclassical Hamiltonian methods, and find that--assuming both process are allowed--neither mechanism dominates in all regimes.

  3. Carpal tunnel syndrome.

    PubMed

    Chammas, M

    2014-04-01

    Carpal tunnel syndrome is the commonest entrapment neuropathy and is due to combined compression and traction on the median nerve at the wrist. It is often idiopathic. Although spontaneous resolution is possible, the usual natural evolution is slow progression. Diagnosis is mainly clinical depending on symptoms and provocative tests. An electromyogram is recommended preoperatively and in cases of work-related disease. Medical treatment is indicated early on or in cases with no deficit and consists of steroid injection in the canal or a night splint in neutral wrist position. Surgical treatment is by section of the flexor retinaculum and is indicated in resistance to medical treatment, in deficit or acute cases. Mini-invasive techniques such as endoscopic and mini-open approaches to carpal tunnel release with higher learning curves are justified by the shorter functional recovery time compared to classical surgery, but with identical long-term results. The choice depends on the surgeon's preference, patient information, stage of severity, etiology and availability of material. Results are satisfactory in 90% of cases. Nerve recovery depends on the stage of severity as well as general patient factors. Recovery of force takes about 2-3 months after the disappearance of 'pillar pain'. This operation has a benign reputation with a 0.2-0.5% reported neurovascular complication rate.

  4. Tunnel electroresistance through organic ferroelectrics

    PubMed Central

    Tian, B. B.; Wang, J. L.; Fusil, S.; Liu, Y.; Zhao, X. L.; Sun, S.; Shen, H.; Lin, T.; Sun, J. L.; Duan, C. G.; Bibes, M.; Barthélémy, A.; Dkhil, B.; Garcia, V.; Meng, X. J.; Chu, J. H.

    2016-01-01

    Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates. PMID:27143121

  5. Tunneling in thin MOS structures

    NASA Technical Reports Server (NTRS)

    Maserjian, J.

    1974-01-01

    Recent results on tunneling in thin MOS structures are described. Thermally grown SiO2 films in the thickness range of 22-40 A have been shown to be effectively uniform on an atomic scale and exhibit an extremely abrupt oxide-silicon interface. Resonant reflections are observed at this interface for Fowler-Nordheim tunneling and are shown to agree with the exact theory for a trapezoidal barrier. Tunneling at lower fields is consistent with elastic tunneling into the silicon direct conduction band and, at still lower fields, inelastic tunneling into the indirect conduction band. Approximate dispersion relations are obtained over portions of the silicon-dioxide energy gap and conduction band.

  6. Carpal tunnel syndrome and acromegaly.

    PubMed

    Baum, H; Lüdecke, D K; Herrmann, H D

    1986-01-01

    50 patients with acromegaly and carpal tunnel syndrome have been examined electrophysiologically before and after transnasal operation of the pituitary adenoma. 32 of the 50 patients (64%) had symptoms of carpal tunnel syndrome. 13 of them had neurological deficits. 28 of the examined patients had pathological neurographical findings only. About 1 week post-operatively DL was decreased in 43%; in 10 out of 13 patients with neurological deficits DL decreased. GH was normalized in 80% and reduced to 5-10 micrograms/l in a further 10%. The investigation did not show whether the carpal tunnel syndrome only depended on a GH increase or on other factors also such as e.g., on the duration of symptoms or tissue changes. None of the patients had the transversal carpal ligament operated on. The coincidence between acromegaly and carpal tunnel syndrome was 64%. In 3 cases the carpal tunnel syndrome was the leading sign to the diagnosis of acromegaly.

  7. Tunnel electroresistance through organic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tian, B. B.; Wang, J. L.; Fusil, S.; Liu, Y.; Zhao, X. L.; Sun, S.; Shen, H.; Lin, T.; Sun, J. L.; Duan, C. G.; Bibes, M.; Barthélémy, A.; Dkhil, B.; Garcia, V.; Meng, X. J.; Chu, J. H.

    2016-05-01

    Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates.

  8. Tunnel electroresistance through organic ferroelectrics.

    PubMed

    Tian, B B; Wang, J L; Fusil, S; Liu, Y; Zhao, X L; Sun, S; Shen, H; Lin, T; Sun, J L; Duan, C G; Bibes, M; Barthélémy, A; Dkhil, B; Garcia, V; Meng, X J; Chu, J H

    2016-01-01

    Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates. PMID:27143121

  9. Nano-ADEPT Aeroloads Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; Venkatapathy, Ethiraj; Swanson, Gregory; Gold, Nili

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  10. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  11. Results of investigations conducted in the LaRC 8-foot transonic pressure tunnel using the 0.010-scale 72-OTS model of the space shuttle integrated vehicle (IA93), volume 2

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Test procedures, history, and plotted coefficient data are presented for an aero-loads investigation on the updated configuration-5 space shuttle launch vehicle at Mach numbers from 0.600 to 1.205. Six-component vehicle forces and moments, base and sting-cavity pressures, elevon hinge moments, wing-root bending and torsion moments, and normal shear force data were obtained. Full simulation of updated vehicle protuberances and attach hardware was employed.

  12. Electromagnetics for Detecting Shallow Tunnels

    NASA Astrophysics Data System (ADS)

    Won, I.

    2006-05-01

    Detecting tunnels by geophysical means, even very shallow ones, has been difficult, to say the least. Despite heavy R&D funding from the military since the early 70s, geophysicists have not produced tools that are simple and practical enough to meet the military needs. The initial interest and R&D funding on the subject perhaps started with the Vietcong tunnels in the 60s. Tunnels in the Korean DMZ, first found in the mid 70s, sharply escalated the R&D spending. During the 90s, covert tunnels along the US-Mexico border have kept the topic alive but at a minimal funding level. Most recent interest appears to be in the terrorism-related shallow tunnels, more or less anywhere in the regions of conflict. Despite the longstanding effort in the geophysical community under heavy public funding, there is a dearth of success stories where geophysicists can actually claim to have found hitherto unknown tunnels. For instance, geophysics has not discovered a single tunnel in Vietnam or in Korea! All tunnels across the Korean DMZ were found from human intelligence. The same is true to all illicit tunnels found along the southwestern border. The tunnels under discussion are clandestine, which implies that the people who built them do not wish others to succeed in finding them. The place around the tunnel, therefore, may not be the friendliest venue for surveyors to linger around. The situation requires tools that are fast, little noticeable, and hardly intrusive. Many geophysical sensors that require ground contacts, such as geophones and electrodes that are connected by a myriad of cables, may not be ideal in this situation. On the other hand, a sensor that can be carried by vehicle without stopping, and is nothing obviously noticeable to bystanders, could be much more acceptable. Working at unfriendly environment also requires forgoing our usual practices where we collect data leisurely and make pretty maps later. To be useful, geophysical tools must be able to process

  13. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale.

    PubMed

    Gruverman, A; Wu, D; Lu, H; Wang, Y; Jang, H W; Folkman, C M; Zhuravlev, M Ye; Felker, D; Rzchowski, M; Eom, C-B; Tsymbal, E Y

    2009-10-01

    Using a set of scanning probe microscopy techniques, we demonstrate the reproducible tunneling electroresistance effect on nanometer-thick epitaxial BaTiO(3) single-crystalline thin films on SrRuO(3) bottom electrodes. Correlation between ferroelectric and electronic transport properties is established by direct nanoscale visualization and control of polarization and tunneling current. The obtained results show a change in resistance by about 2 orders of magnitude upon polarization reversal on a lateral scale of 20 nm at room temperature. These results are promising for employing ferroelectric tunnel junctions in nonvolatile memory and logic devices. PMID:19697939

  14. Standardization Tests of NACA No. 1 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1925-01-01

    The tests described in this report were made in the 5-foot atmospheric wind tunnel of the National Advisory Committee for Aeronautics, at Langley Field. The primary objective of collecting data on the characteristics of this tunnel for comparison with those of others throughout the world, in order that, in the future, the results of tests made in all the principle laboratories may be interpreted, compared, and coordinated on a basis of scientifically established relationships, a process hitherto impossible due to the lack of comparable data. The work includes tests of a disk, spheres, cylinders, and airfoils, explorations of the test section for static pressure and velocity distribution, and determination of the variations of air flow direction throughout the operating range of the tunnel. (author)

  15. Investigations of Slow Motions of the SLAC Linac Tunnel

    SciTech Connect

    Seryi, Andrei

    2000-08-31

    Investigations of slow transverse motion of the linac tunnel of the Stanford Linear Collider have been performed over period of about one month in December 1999--January 2000. The linac laser alignment system, equipped with a quadrant photodetector, allowed submicron resolution measurement of the motion of the middle of the linac tunnel with respect to its ends. Measurements revealed two major sources responsible for the observed relative motion. Variation of the external atmospheric pressure was found to be the most significant cause of short wavelength transverse motion of the tunnel. The long wavelength component of the motion has been also observed to have a large contribution from tidal effects. The measured data are essential for determination of parameters for the Next Linear Collider.

  16. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al2O3/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  17. Design and calibration of the mixing layer and wind tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1989-01-01

    A detailed account of the design, assembly and calibration of a wind tunnel specifically designed for free-shear layer research is contained. The construction of this new facility was motivated by a strong interest in the study of plane mixing layers with varying initial and operating conditions. The Mixing Layer Wind tunnel is located in the Fluid Mechanics Laboratory at NASA Ames Research Center. The tunnel consists of two separate legs which are driven independently by centrifugal blowers connected to variable speed motors. The blower/motor combinations are sized such that one is smaller than the other, giving maximum flow speeds of about 20 and 40 m/s, respectively. The blower speeds can either be set manually or via the Microvax II computer. The two streams are allowed to merge in the test section at the sharp trailing edge of a slowly tapering splitter plate. The test section is 36 cm in the cross-stream direction, 91 cm in the spanwise direction and 366 cm in length. One test section side-wall is slotted for probe access and adjustable so that the streamwise pressure gradient may be controlled. The wind tunnel is also equipped with a computer controlled, three-dimensional traversing system which is used to investigate the flow fields with pressure and hot-wire instrumentation. The wind tunnel calibration results show that the mean flow in the test section is uniform to within plus or minus 0.25 pct and the flow angularity is less than 0.25 deg. The total streamwise free-stream turbulence intensity level is approximately 0.15 pct. Currently the wind tunnel is being used in experiments designed to study the three-dimensional structure of plane mixing layers and wakes.

  18. Threshold windspeeds for sand on Mars - Wind tunnel simulations

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Leach, R.; White, B.; Iversen, J.; Pollack, J. B.

    1980-02-01

    Wind friction threshold speeds for particle movement were determined in a wind tunnel operating at martian surface pressure with a 95 percent CO2 and 5 percent air atmosphere. The relationship between friction speed and free-stream velocity is extended to the critical case for Mars of momentum thickness Reynolds numbers between 425 and 2000. It is determined that the dynamic pressure required to initiate saltation is nearly constant for pressures between 1 bar and 4 mb for atmospheres of both air and CO2.

  19. Spin tunneling in conducting oxides

    SciTech Connect

    Bratkovsky, A.

    1998-12-31

    Different tunneling mechanisms in conventional and half-metallic ferromagnetic tunnel junctions are analyzed within the same general method. Direct tunneling is compared with impurity-assisted, surface state assisted, and inelastic contributions to a tunneling magnetoresistance (TMR). Theoretically calculated direct tunneling in iron group systems leads to about a 30% change in resistance, which is close to experimentally observed values. It is shown that the larger observed values of the TMR might be a result of tunneling involving surface polarized states. The authors find that tunneling via resonant defect states in the barrier radically decreases the TMR (down to 4% with Fe-based electrodes), and a resonant tunnel diode structure would give a TMR of about 8%. With regards to inelastic tunneling, magnons and phonons exhibit opposite effects: one-magnon emission generally results in spin mixing and, consequently, reduces the TMR, whereas phonons are shown to enhance the TMR. The inclusion of both magnons and phonons reasonably explains an unusually bias dependence of the TMR. The model presented here is applied qualitatively to half-metallics with 100% spin polarization, where one-magnon processes are suppressed and the change in resistance in the absence of spin-mixing on impurities may be arbitrarily large. Even in the case of imperfect magnetic configurations, the resistance change can be a few 1,000%. Examples of half-metallic systems are CrO{sub 2}/TiO{sub 2} and CrO{sub 2}/RuO{sub 2}, and an account of their peculiar band structures is presented. The implications and relation of these systems to CMR materials, which are nearly half-metallic, are discussed.

  20. H-CANYON AIR EXHAUST TUNNEL INSPECTION VEHICLE DEVELOPMENT

    SciTech Connect

    Minichan, R.; Fogle, R.; Marzolf, A.

    2011-05-24

    The H-Canyon at Savannah River Site is a large concrete structure designed for chemical separation processes of radioactive material. The facility requires a large ventilation system to maintain negative pressure in process areas for radioactive contamination control and personnel protection. The ventilation exhaust is directed through a concrete tunnel under the facility which is approximately five feet wide and 8 feet tall that leads to a sand filter and stack. Acidic vapors in the exhaust have had a degrading effect on the surface of the concrete tunnels. Some areas have been inspected; however, the condition of other areas is unknown. Experience from historical inspections with remote controlled vehicles will be discussed along with the current challenge of inspecting levels below available access points. The area of interest in the exhaust tunnel must be accessed through a 14 X 14 inch concrete plug in the floor of the hot gang valve corridor. The purpose for the inspection is to determine the condition of the inside of the air tunnel and establish if there are any structural concerns. Various landmarks, pipe hangers and exposed rebar are used as reference points for the structural engineers when evaluating the current integrity of the air tunnel.

  1. Carpal tunnel syndrome in children.

    PubMed

    Van Meir, Nathalie; De Smet, Luc

    2003-10-01

    Carpal tunnel syndrome (CTS) is rarely seen in children. A literature search in 1989 revealed 52 published cases. The authors review 163 additional cases that were published since that date. The majority of these cases were related with a genetic condition. The most common aetiology was lysosomal storage disease: mucopolysaccharidoses (MPS) in 95 and mucolipidoses (ML) in 22. In CTS secondary to MPS, clinical signs typical of adult CTS are rarely seen, and difficulty with fine motor tasks is the most frequent finding. CTS in MPS does not seem to be prevented by bone marrow transplantation, the usual treatment for the condition. CTS is probably due to a combination of excessive lysosomal storage in the connective tissue of the flexor retinaculum and a distorted anatomy because of underlying bone dysplasia. Mucolipidoses come next in the aetiology, with essentially similar symptoms. The authors found in the literature 11 cases of primary familial CTS, a condition which presents as an inheritable disorder of connective tissue mediated by an autosomal dominant gene; the symptoms may be more typical in some cases, but are more similar to MPS in others. A case with self-mutilation has been reported. Hereditary neuropathy with liability to pressure palsies (HNPP) is a rare autosomal dominant condition characterised by episodes of decreased sensation or palsies after slight traction or pressure on peripheral nerves; it may also give symptoms of CTS. Schwartz-Jampel syndrome (SJS), another genetic disorder with autosomal recessive skeletal dysplasia, is characterised by varying degrees of myotonia and chondrodysplasia; it has also been noted associated with CTS in a child. Melorrheostosis and Leri's syndrome have also been noted in children with CTS, as well as Déjerine-Sottas syndrome and Weill-Marchesani syndrome. Among non-genetic causes of CTS in children, idiopathic cases with children onset have been reported, usually but not always related with thickening of the

  2. Dual-Element Tunneling Accelerometer

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Rockstad, Howard K.; Reynolds, Joseph K.

    1994-01-01

    Improved micromachined tunneling accelerometer contains two deflecting transducer elements: One an elastically supported proof mass having relatively low resonant frequency; other cantilever tunneling transducer that tracks displacement of proof mass and has relatively high resonant frequency ({sup a} 10 kHz). Deflection voltage generated by circuit like described in "Wideband Feedback Circuit for Tunneling Sensor" (NPO-18866). Accelerometers of this type suited for underwater acoustic measurements, detecting vibrations associated with malfunctions in vehicles, detecting seismic signals, monitoring and controlling vibrations in structures, and other applications.

  3. Effects of flow separation and cove leakage on pressure and heat-transfer distributions along a wing-cove-elevon configuration at Mach 6.9. [Langley 8-ft high temperature tunnel test

    NASA Technical Reports Server (NTRS)

    Deveikis, W. D.

    1983-01-01

    External and internal pressure and cold-wall heating-rate distributions were obtained in hypersonic flow on a full-scale heat-sink representation of the space shuttle orbiter wing-elevon-cove configuration in an effort to define effects of flow separation on cove aerothermal environment as a function of cove seal leak area, ramp angle, and free-stream unit Reynolds number. Average free-stream Mach number from all tests was 6.9; average total temperature from all tests was 3360 R; free-stream dynamic pressure ranged from about 2 to 9 psi; and wing angle of attack was 5 deg (flow compression). For transitional and turbulent flow separation, increasing cove leakage progressively increased heating rates in the cove. When ingested mass flow was sufficient to force large reductions in extent of separation, increasing cove leakage reduced heating rates in the cove to those for laminar attached flow. Cove heating-rate distributions calculated with a method that assumed laminar developing channel flow agreed with experimentally obtained distributions within root-mean-square differences that varied between 11 and 36 percent where cove walls were parallel for leak areas of 50 and 100 percent.

  4. Langley Spin Tunnel - Free Flight Tunnel - and models

    NASA Technical Reports Server (NTRS)

    1939-01-01

    Model shop for NACA Spin Tunnel and Free Flight Tunnel. Dynamically and geometrically accurate models with movable control surfaces are made here by men whose training as toy model makers is producing valuable results. The models are used for study of the stability and control of aircraft which is an essential basis for safety. Photograph published in Winds of Change, a 75th Anniversary NASA publication (page 10), by James Schultz.

  5. Tunneling progress on the Yucca Mountain Project

    SciTech Connect

    Hansmire, W.H.; Munzer, R.J.

    1996-06-01

    The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation.

  6. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  7. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  8. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-01

    This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.

  9. TWINTAN: A program for transonic wall interference assessment in two-dimensional wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1980-01-01

    A method for assessing the wall interference in transonic two dimensional wind tunnel test was developed and implemented in a computer program. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the perturbation attriburable to the model, and the equivalent free air flow around the model. Input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall induced perturbation fields is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.

  10. [From 1878 to 2006 - working in hyperbaric conditions during tunnelling].

    PubMed

    Le Péchon, Jean-Claude

    2006-01-01

    To review the impact of Paul Bert's researches on hyperbaric work in tunnelling, the status of the industry in 1878 is described. Mostly based on the application of Triger's machine it was used to mine coal below the water table or to dig foundations for bridges in rivers or close to rivers. The results and conclusions obtained by Paul Bert which are applicable in that particular field are listed. The major steps of research or remarkable achievements in construction between 1878 and 2006 are presented as well as the evolution of decompression tables. Improvement in safety and conditions of caisson workers has been continuous until the technical revolution resulting from the introduction and the development of tunnelling boring machines (TBM) in the late 80's. TBM technology has resulted in major changes in tunnel construction. Hyperbaric interventions have also changed completely since human operators no longer work in pressurized conditions. Only occasional inspections and repairs are carried out under pressure. Present performance in hyperbaric conditions are reported, and high pressures reached in the 2000's using saturation technology are described. The future of hyperbaric works is also discussed whether for very high pressure, or complete replacement of caisson workers in TBMs. These descriptions show that Paul Bert provides us with very clear directions to improve safety in hyperbaric conditions and that none of his recommendations were mistaken, most being still relevant. PMID:17417142

  11. [From 1878 to 2006 - working in hyperbaric conditions during tunnelling].

    PubMed

    Le Péchon, Jean-Claude

    2006-01-01

    To review the impact of Paul Bert's researches on hyperbaric work in tunnelling, the status of the industry in 1878 is described. Mostly based on the application of Triger's machine it was used to mine coal below the water table or to dig foundations for bridges in rivers or close to rivers. The results and conclusions obtained by Paul Bert which are applicable in that particular field are listed. The major steps of research or remarkable achievements in construction between 1878 and 2006 are presented as well as the evolution of decompression tables. Improvement in safety and conditions of caisson workers has been continuous until the technical revolution resulting from the introduction and the development of tunnelling boring machines (TBM) in the late 80's. TBM technology has resulted in major changes in tunnel construction. Hyperbaric interventions have also changed completely since human operators no longer work in pressurized conditions. Only occasional inspections and repairs are carried out under pressure. Present performance in hyperbaric conditions are reported, and high pressures reached in the 2000's using saturation technology are described. The future of hyperbaric works is also discussed whether for very high pressure, or complete replacement of caisson workers in TBMs. These descriptions show that Paul Bert provides us with very clear directions to improve safety in hyperbaric conditions and that none of his recommendations were mistaken, most being still relevant.

  12. Water-Based Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.

    2006-01-01

    Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).

  13. Experimental investigation of the subsonic high-altitude operation of the NASA Lewis 10- by 10-foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.

    1988-01-01

    An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.

  14. Pressures, forces, moments and shock shapes for a geometrically matched sphere-cone and hyperboloid at Mach 20.3 in helium. [22-inch aerodynamics leg of the Langley hypersonic helium tunnel facility

    NASA Technical Reports Server (NTRS)

    Calloway, R. L.

    1983-01-01

    An investigation was conducted to compare measured and predicted pressure distributions, forces and moments, and shock shapes on a geometrically matched sphere-cone and hyperboloid. A hyperboloid with a nose radius of 0.5276 in. and an asymptotic angle of 39.9871 deg was matched to a sphere-cone with a nose radius of 0.750 in. and a cone half-angle of 45 deg. Experimental results in helium at a free-stream Mach number of 20.3 and a free-stream unit Reynolds number of 6.83 x 10 to the 6th power per foot were combined with predicted results from a theoretical method to compare the two shapes. Comparisons of experimental results showed small differences in the two shapes, but the prediction method provided better results for the hyperboloid than for the sphere-cone.

  15. Flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  16. Tunnel construction for a desertron

    SciTech Connect

    Hinterberger, H.; Huson, F.R.

    1983-03-27

    The tunnel in this model of construction is 3-1/2 feet wide by 5 feet high. It is assumed that the tunnel contains a rail system and guidance system for: (1) An enclosed car used for transport of 2 people and some tools. (2) A magnet mover. This robot could pick up a magnet and transport it at about 10 miles per hour. (3) An alignment robot. The alignment robot would intercept E.M. waves (microwaves, lasers) to determine its position in the tunnel. Then workers could come along inside the tunnel hoop and nail it together and to the floor. The trench would then be back-filled with a 1 foot berm on top. A rail system would be installed and a support stand for the magnet.

  17. Icing Research Tunnel Test Section

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Icing Research Tunnel Test Section NASA technician measuring ice deposits on an airfoil after completing a test at the Lewis Research Center. NASA Lewis is now known as John H. Glean Research Center at Lewis Field.

  18. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  19. Hailstone Studies in AN Icing Tunnel.

    NASA Astrophysics Data System (ADS)

    Lesins, Glen Bruce

    Hailstone growth was studied in a series of experiments in a new pressure controlled wind tunnel. The model hailstone used was an oblate spheriod, 2 cm in diameter and with an aspect ratio of 0.67, which was restricted to executing symmetric gyrational motion with frequencies up to 35 Hz. The air velocity (20 - 32 m s('-1)) was equal to the model's free-fall terminal velocity. In the experiments a tunnel air temperature ( -2 to -25(DEGREES)C), pressure (laboratory pressure to 38 kPa) and liquid water content (0.5 to 20 g m('-3)) was selected and the net collection efficiency, ice fraction of the deposit and final shape of the hailstone were measured. Six distinct growth regimes were identified as a function of liquid water content and air temperature: (1) dry, (2) moist, (3) spongy, (4) spongy-shedding, (5) soaked, and (6) dry-shedding. The consequences of rotation rate on the growth of wet hailstones was shown to be classified into three regions, each with distinct surface characteristics and behavior of the unfrozen accreted water. This behaviour included the onset of centrifugal shedding of accreted water when the centrifugal acceleration reached 2.7 (+OR -) 0.5 g's. The minimum value of ice fraction was 0.5 and was found to be independent of the thermodynamic and rotational conditions but was dependent on air velocity. Movement of water skin on the hailstone's surface was documented and shown to influence the shape of the hailstone. Larger than anticipated values for Nusselt number were measured (up to a factor of 4 greater than existing theory) for wet hailstones; the surface roughness may be partially responsible for this enhancement. The findings of this thesis have clarified various aspects of hailstone growth. The implications for natural hailstone growth are discussed.

  20. The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel T-P/Re-M controller manual

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1989-01-01

    A new microcomputer based controller for the 0.3-m Transonic Cryogenic Tunnel (TCT) has been commissioned in 1988 and has reliably operated for more than a year. The tunnel stagnation pressure, gas stagnation temperature, tunnel wall structural temperature and flow Mach number are precisely controlled by the new controller in a stable manner. The tunnel control hardware, software, and the flow chart to assist in calibration of the sensors, actuators, and the controller real time functions are described. The software installation details are also presented. The report serves as the maintenance and trouble shooting manual for the 0.3-m TCT controller.

  1. Carpal Tunnel Cross-Sectional Area Affected by Soft Tissues Abutting the Carpal Bones.

    PubMed

    Gabra, Joseph N; Li, Zong-Ming

    2013-02-01

    The carpal tunnel accommodates free movement of its contents, and the tunnel's cross-sectional area is a useful morphological parameter for the evaluation of the space available for the carpal tunnel contents and of potential nerve compression in the tunnel. The osseous boundary of the carpal bones as the dorsal border of the carpal tunnel is commonly used to determine the tunnel area, but this boundary contains soft tissues such as numerous intercarpal ligaments and the flexor carpi radialis tendon. The aims of this study were to quantify the thickness of the soft tissues abutting the carpal bones and to investigate how this soft tissue influences the calculation of the carpal tunnel area. Magnetic resonance images were analyzed for eight cadaveric specimens. A medical balloon with a physiological pressure was inserted into an evacuated tunnel to identify the carpal tunnel boundary. The balloon-based (i.e. true carpal tunnel) and osseous-based carpal tunnel boundaries were extracted and divided into regions corresponding to the hamate, capitate, trapezoid, trapezium, and transverse carpal ligament (TCL). From the two boundaries, the overall and regional soft tissue thicknesses and areas were calculated. The soft tissue thickness was significantly greater for the trapezoid (3.1±1.2mm) and trapezium (3.4±1.0mm) regions than for the hamate (0.7±0.3mm) and capitate (1.2±0.5mm) regions. The carpal tunnel area using the osseous boundary (243.0±40.4mm(2)) was significantly larger than the balloon-based area (183.9±29.7mm(2)) with a ratio of 1.32. In other words, the carpal tunnel area can be estimated as 76% (= 1/1.32) of the osseous-based area. The abundance of soft tissue in the trapezoid and trapezium regions can be attributed mainly to the capitate-trapezium ligament and the flexor carpi radialis tendon. Inclusion of such soft tissue leads to overestimations of the carpal tunnel area. Correct quantification of the carpal tunnel area aids in examining carpal

  2. Guidelines for tunneling in enzymes

    PubMed Central

    Moser, Christopher C.; Ross Anderson, J. L.; Dutton, P. Leslie

    2010-01-01

    Summary Here we extend the engineering descriptions of simple, single-electron-tunneling chains common in oxidoreductases to quantify sequential oxidation-reduction rates of two-or-more electron cofactors and substrates. We identify when nicotinamides may be vulnerable to radical mediated oxidation-reduction and merge electron-tunneling expressions with the chemical rate expressions of Eyring. The work provides guidelines for the construction of new artificial oxidoreductases inspired by Nature but adopting independent design and redox engineering. PMID:20460101

  3. Quantum tunneling in flux compactifications

    NASA Astrophysics Data System (ADS)

    Blanco-Pillado, Jose J.; Schwartz-Perlov, Delia; Vilenkin, Alexander

    2009-12-01

    We identify instantons representing vacuum decay in a 6-dimensional toy model for string theory flux compactifications, with the two extra dimensions compactified on a sphere. We evaluate the instanton action for tunneling between different flux vacua, as well as for the decompactification decay channel. The bubbles resulting from flux tunneling have an unusual structure. They are bounded by two-dimensional branes, which are localized in the extra dimensions. This has important implications for bubble collisions.

  4. In-situ stress from hydraulic fracture measurements in G Tunnel, Nevada Test Site

    SciTech Connect

    Smith, C.; Vollendorf, W. C.; Warren, W. E.

    1981-04-01

    Hydraulic fracture work in G Tunnel, Nevada Test Site, performed to obtain the in-situ stress state is discussed. Field equipment and procedures are described; analysis is developed to relate the hydraulic fracture pressures to the in-situ stress state. Pressure data are analyzed to provide estimates of the stress state at a number of locations in the tunnel complex. A unique feature of the work is the mineback - a mining process in which the rock is cut away to reveal the actual plane of the fracture. Advantages, limitations, and problem areas associated with extracting in-situ stress fields from hydraulic fracture pressure records are discussed in detail.

  5. Analyses of coupled hydrological-mechanical effects during drilling of the FEBEX tunnel at Grimsel

    SciTech Connect

    Rutqvist, J.; Rejeb, A.; Tijani, M.; Tsang, C.-F.

    2003-09-02

    This paper presents analyses of coupled hydrological-mechanical (HM) processes during drilling of the FEBEX tunnel, located in fractured granite at Grimsel, Switzerland. Two and three-dimensional transient finite-element simulations were performed to investigate HM-induced fluid-pressure pulses, observed in the vicinity of the FEBEX tunnel during its excavation in 1995. The results show that fluid-pressure responses observed in the rock mass during TBM drilling of the FEBEX tunnel could not be captured using current estimates of regional stress. It was also shown that the measured pressure responses can be captured in both two and three-dimensional simulations if the stress field is rotated such that contraction (compressive strain rate) and corresponding increases in mean stress occur on the side of the drift, where increased fluid pressure spikes were observed.

  6. Effects of Small Angles of Sweep and Moderate Amounts of Dihedral on Stalling and Lateral Characteristics of a Wing-Fuselage Combination Equipped with Partial- and Full-Span Double Slotted Flaps

    NASA Technical Reports Server (NTRS)

    Teplitz, Jerome

    1944-01-01

    Tests of a wing-fuselage combinations incorporating NACA 65-series airfoil sections were conducted in the NACA 19-foot pressure tunnel. The investigation included the tests with flaps neutral and with partial- and full-span double slotted flaps deflected to determine the effects of (1) variations of wing sweep between -4 degrees and 8 degrees on stalling and lateral stability and control characteristics and (2) variations of dihedral between 0 degree and 6.75 degrees on lateral stability characteristics.

  7. CARPAL TUNNEL SYNDROME AND WORK

    PubMed Central

    Newington, Lisa; Harris, E Clare; Walker-Bone, Karen

    2016-01-01

    INTRODUCTION AND SCOPE Carpal tunnel syndrome (CTS) is the most common peripheral nerve entrapment syndrome and frequently presents in working-aged adults. Its mild form causes ‘nuisance’ symptoms including dysaesthesia and nocturnal waking. At its most severe however it can significantly impair motor function and weaken pinch grip. This review will discuss the anatomy of the carpal tunnel and the clinical presentation of the syndrome as well as the classification and diagnosis of the condition. Carpal tunnel syndrome has a profile of well-established risk factors including individual factors and predisposing co-morbidities, which will be briefly discussed. However, there is a growing body of evidence for an association between carpal tunnel syndrome and various occupational factors, which will also be discussed. Management of carpal tunnel syndrome, conservative and surgical will be described. Finally, we will discuss the issue of safe return to work post carpal tunnel release surgery and the lack of evidence-based guidelines. PMID:26612240

  8. User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1995-01-01

    This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.

  9. Investigation of Condensation/Clustering Effects on Rayleigh Scattering Measurements in a Hypersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Tyler, Charles

    1996-01-01

    Rayleigh scattering, a nonintrusive measurement technique for the measurement of density in a hypersonic wind tunnel, is under investigation at Wright Laboratory's Mach 6 wind tunnel. Several adverse effects, i.e., extraneous scatter off walls and windows, hinder Rayleigh scattering measurements. Condensation and clustering of flow constituents also present formidable obstacles. Overcoming some of these difficulties, measurements have been achieved while the Mach 6 test section was pumped down to a vacuum, as well as for actual tunnel operation for various stagnation pressures at fixed stagnation temperatures. Stagnation pressures ranged from 0.69 MPa to 6.9 MPa at fixed stagnation temperatures of 511, 556, and 611 K. Rayleigh scatter results show signal levels much higher than expected for molecular scattering in the wind tunnel. Even with higher than expected signals, scattering measurements have been made in the flowfield of an 8-degree half-angle blunt nose cone with a nose radius of 1.5 cm.

  10. Unsteady two dimensional airloads acting on oscillating thin airfoils in subsonic ventilated wind tunnels

    NASA Technical Reports Server (NTRS)

    Fromme, J.; Golberg, M.

    1978-01-01

    The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump.

  11. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  12. Finite-rate water condensation in combustion-heated wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Wayne D.; Mall, Gerald H.; Prabhu, Ramadas K.

    1988-01-01

    A quasi-one-dimensional method for computing finite rate nucleation and droplet growth of water in a supersonic expansion of combustion products is presented. Sample computations are included for the Langley 8 foot High Temperature Tunnel, but the method can also be applied to other combustion heated wind tunnels. The sample results indicate that the free stream static pressure can be in the range of 25 to 60 percent greater than that computed for isentropic nozzle flow without water condensation. The method provides a tool for examining the effects of water condensation on static state properties and velocity of the supersonic stream in combustion heated wind tunnels.

  13. Sidewall Mach Number Distributions for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Florance, James R.; Rivera, Jose A., Jr.

    2001-01-01

    The Transonic Dynamics Tunnel(TDT) was recalibrated due to the conversion of the heavy gas test medium from R-12 to R-134a. The objectives of the tests were to determine the relationship between the free-stream Mach number and the measured test section Mach number, and to quantify any necessary corrections. Other tests included the measurement of pressure distributions along the test-section walls, test-section centerline, at certain tunnel stations via a rake apparatus, and in the tunnel settling chamber. Wall boundary layer, turbulence, and flow angularity measurements were also performed. This paper discusses the determination of sidewall Mach number distributions.

  14. Computations for the 16-foot transonic tunnel, NASA, Langley Research Center, revision 1

    NASA Technical Reports Server (NTRS)

    Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.; Sherman, C. D.

    1987-01-01

    The equations used by the 16 foot transonic tunnel in the data reduction programs are presented in eight modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: tunnel parameters; jet exhaust measurements; skin friction drag; balance loads and model attitudes calculations; internal drag (or exit-flow distributions); pressure coefficients and integrated forces; thrust removal options; and turboprop options. This document is a companion document to NASA TM-83186, A User's Guide to the Langley 16 Foot Transonic Tunnel, August 1981.

  15. Laser velocimetry technique applied to the Langley 0.3 meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Gooderum, P. B.; Hunter, W. W., Jr.; Meyers, J. F.

    1981-01-01

    A low power laser velocimeter operating in the forward scatter mode was used to measure free stream mean velocities in the Langley 0.3 Meter Transonic Cryogenic Tunnel. Velocity ranging from 51 to 235 m/s was measured. Measurements were obtained for a variety of nominal tunnel conditions: Mach numbers from 0.20 to 0.77, total temperatures from 100 to 250 K, and pressures from 101 to 152 kPa. Particles were not injected to augment the existing Mie scattering materials. Liquid nitrogen droplets were the existing liqht scattering material. Tunnel vibrations and thermal effects had no detrimental effects on the optical system.

  16. Application of Wireless Intelligent Control System for HPS Lamps and LEDs Combined Illumination in Road Tunnel

    PubMed Central

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266

  17. TWINTN4: A program for transonic four-wall interference assessment in two-dimensional wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1984-01-01

    A method for assessing the wall interference in transonic two-dimensional wind tunnel tests including the effects of the tunnel sidewall boundary layer was developed and implemented in a computer program named TWINTN4. The method involves three successive solutions of the transonic small disturbance potential equation to define the wind tunnel flow, the equivalent free air flow around the model, and the perturbation attributable to the model. Required input includes pressure distributions on the model and along the top and bottom tunnel walls which are used as boundary conditions for the wind tunnel flow. The wall-induced perturbation field is determined as the difference between the perturbation in the tunnel flow solution and the perturbation attributable to the model. The methodology used in the program is described and detailed descriptions of the computer program input and output are presented. Input and output for a sample case are given.

  18. Data reduction formulas for the 16-foot transonic tunnel: NASA Langley Research Center, revision 2

    NASA Technical Reports Server (NTRS)

    Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.

    1992-01-01

    The equations used by the 16-Foot Transonic Wind Tunnel in the data reduction programs are presented in nine modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: (1) tunnel parameters; (2) jet exhaust measurements; (3) skin friction drag; (4) balance loads and model attitudes calculations; (5) internal drag (or exit-flow distribution); (6) pressure coefficients and integrated forces; (7) thrust removal options; (8) turboprop options; and (9) inlet distortion.

  19. The design of models for cryogenic wind tunnels. [mechanical properties and loads

    NASA Technical Reports Server (NTRS)

    Gillespie, V. P.

    1977-01-01

    Factors to be considered in the design and fabrication of models for cryogenic wind tunnels include high model loads imposed by the high operating pressures, the mechanical and thermodynamic properties of materials in low temperature environments, and the combination of aerodynamic loads with the thermal environment. Candidate materials are being investigated to establish criteria for cryogenic wind tunnel models and their installation. Data acquired from these tests will be provided to users of the National Transonic Facility.

  20. Tunneling in strongly correlated materials

    NASA Astrophysics Data System (ADS)

    Maltseva, Marianna

    Tunneling studies of strongly correlated materials provide information about the nature of electronic correlations, which is vital for investigation of emergent materials at the microscopic level. In particular, scanning tunneling spectroscopy/microscopy (STS/STM) studies have made major contributions to understanding cuprate superconductors (66), yet there is a sense that huge STM data arrays contain much more precious information to be extracted and analyzed. One of the most pressing questions in the field is how to improve the data analysis, so as to extract more information from STM data. A dominant trend in STM data analysis has been to interpret the data within a particular microscopic model, while using only basic data analysis tools. To decrease the reliance of the STM data interpretation on particular microscopic models, further advances in data analysis methods are necessary. In Chapter 2 of this Thesis, we discuss how one can extract information about the phase of the order parameter from STM data. We show that symmetrized and anti-symmetrized correlators of local density of states give rise to observable coherence factor effects. In Chapter 3, we apply this framework to analyze the recent scanning tunneling experiments on an underdoped cuprate superconductor Ca2-xNaxCuO2Cl2 by T. Hanaguri et al. (60). In Chapter 4, we propose a model for nodal quasiparticle scattering in a disordered vortex lattice. Recently, scanning tunneling studies of a Kondo lattice material URu2Si2 became possible (117). If it proves possible to apply scanning tunneling spectroscopy to Kondo lattice materials, then remarkable new opportunities in the ongoing investigation may emerge. In Chapter 5, we examine the effect of co-tunneling to develop a theory of tunneling into a Kondo lattice. We find that the interference between the direct tunneling and the co-tunneling channels leads to a novel asymmetric lineshape, which has two peaks and a gap. The presence of the peaks suggests

  1. Cold prebiotic evolution, tunneling, chirality and exobiology

    NASA Astrophysics Data System (ADS)

    Goldanskii, Vitalii I.

    1996-07-01

    The extra-terrestrial scenario of the origin of life suggested by Svante Arrhenius (1) as the `panspermia' hypothesis was revived by the discovery of a low-temperature quantum limit of a chemical reaction rate caused by the molecular tunneling (2). Entropy factors play no role near absolute zero, and slow molecular tunneling can lead to the exothermic formation of quite complex molecules. Interstellar grains or particles of cometary tails could serve as possible cold seeds of life, with acetic acid, urea and products of their polycondensation as quasi-equilibrium intermediates. Very cold solid environment hinders racemization and stabilizes optical activity under conditions typical for outer space. Neither `advantage' factors can secure the evolutionary formation of chiral purity of initial prebiotic monomeric medium-even being temporary achieved it cannot be maintained at subsequent stages of prebiotic evolution because of counteraction of `enantioselective pressure'. Only bifurcational mechanism of the formation of prebiotic homochiral-monomeric and afterwards polymeric-medium and its subsequent transformation in `homochiral chemical automata' (`biological big bang'-passage from `stochastic' to `algorithmic' chemistry) is possible and can be realized. Extra-terrestrial (cold, solid phase) scenarios of the origin of life seem to be more promising from that point of view than terrestrial (warm) scenarios. Within a scheme of five main stages of prebiological evolution some problems important for further investigation are briefly discussed.

  2. Survey of Primary Flow Measurement Parameters at the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Piatak, David J.

    2003-01-01

    An assessment of the methods and locations used to measure the primary flow conditions in the NASA Langley Transonic Dynamics Tunnel was conducted during calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. A survey of stagnation pressure, plenum static pressure, and stagnation temperature was undertaken at many pertinent locations in the settling chamber, plenum, and contraction section of the wind tunnel and these measurements were compared to those of the existing primary flow measurement systems. Local flow velocities were measured in the settling chamber using a pitot probe. Results illustrate that small discrepancies exist between measured primary tunnel flow conditions and the survey measurements. These discrepancies in tunnel stagnation pressure, plenum pressure, and stagnation temperature were found to be approximately +/- 1-3 psf and 2-3 degrees Fahrenheit. The propagation of known instrument errors in measured primary flow conditions and its impact on tunnel Mach number, dynamic pressure, flow velocity, and Reynolds number have been investigated analytically and shown to require careful attention when considering the uncertainty in measured test section conditions.

  3. Ultrasound instrumentation for the 7 inch Mach seven tunnel

    NASA Technical Reports Server (NTRS)

    Mazel, D. S.; Mielke, R. R.

    1985-01-01

    The use of an Apple II+ microcomputer to collect data during the operation of the 7 inch Mach Seven Tunnel is discussed. A method by which the contamination of liquid oxygen is monitored with sound speed techniques is investigated. The electrical equivalent of a transducer bonded to a high pressure fill plug is studied. The three areas are briefly explained and data gathered for each area are presented.

  4. Aerodynamic performance of a core-engine turbine stator vane tested in a two-dimensional cascade of 10 vanes and in a single vane tunnel

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.; Kline, J. F.

    1973-01-01

    A turbine stator vane was tested in a two-dimensional cascade of 10 vanes and in a single-vane tunnel. The single-vane tunnel was a cold air version of a tunnel which will be used for high temperature heat transfer testing of cooled turbine vanes. The purpose of the investigation was to determine if the flow conditions in the single-vane tunnel were sufficiently similar to those of a 10-vane cascade to permit meaningful heat transfer testing. The vane was tested over a range of ideal exit critical velocity ratios. The principal measurements were vane surface static pressure and cross-channel surveys of exit static pressure, total pressure, and flow angle. A brief description of the test vane and tunnels is included. The results of the exit surveys, the vane surface pressure distributions, and overall performance in terms of flow and loss for the two test configurations are compared.

  5. Improved multidimensional semiclassical tunneling theory.

    PubMed

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula. PMID:24224758

  6. Modernization and Activation of the NASA Ames 11- by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.

    2000-01-01

    The Unitary Plan Wind Tunnel (UPWT) was modernized to improve performance, capability, productivity, and reliability. Automation systems were installed in all three UPWT tunnel legs and the Auxiliaries facility. Major improvements were made to the four control rooms, model support systems, main drive motors, and main drive speed control. Pressure vessel repairs and refurbishment to the electrical distribution system were also completed. Significant changes were made to improve test section flow quality in the 11-by 11-Foot Transonic leg. After the completion of the construction phase of the project, acceptance and checkout testing was performed to demonstrate the capabilities of the modernized facility. A pneumatic test of the tunnel circuit was performed to verify the structural integrity of the pressure vessel before wind-on operations. Test section turbulence, flow angularity, and acoustic parameters were measured throughout the tunnel envelope to determine the effects of the tunnel flow quality improvements. The new control system processes were thoroughly checked during wind-off and wind-on operations. Manual subsystem modes and automated supervisory modes of tunnel operation were validated. The aerodynamic and structural performance of both the new composite compressor rotor blades and the old aluminum rotor blades was measured. The entire subsonic and supersonic envelope of the 11-by 11-Foot Transonic leg was defined up to the maximum total pressure.

  7. Microcomputer based controller for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1989-01-01

    Flow control of the Langley 0.3-meter Transonic Cryogenic Tunnel (TCT) is a multivariable nonlinear control problem. Globally stable control laws were generated to hold tunnel conditions in the presence of geometrical disturbances in the test section and precisely control the tunnel states for small and large set point changes. The control laws are mechanized as four inner control loops for tunnel pressure, temperature, fan speed, and liquid nitrogen supply pressure, and two outer loops for Mach number and Reynolds number. These integrated control laws have been mechanized on a 16-bit microcomputer working on DOS. This document details the model of the 0.3-m TCT, control laws, microcomputer realization, and its performance. The tunnel closed loop responses to small and large set point changes were presented. The controller incorporates safe thermal management of the tunnel cooldown based on thermal restrictions. The controller was shown to provide control of temperature to + or - 0.2K, pressure to + or - 0.07 psia, and Mach number to + or - 0.002 of a given set point during aerodynamic data acquisition in the presence of intrusive geometrical changes like flexwall movement, angle-of-attack changes, and drag rake traverse. The controller also provides a new feature of Reynolds number control. The controller provides a safe, reliable, and economical control of the 0.3-m TCT.

  8. Estimating large-scale fractured rock properties from radon data collected in a ventilated tunnel

    SciTech Connect

    Unger, Andre; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2003-05-12

    To address regulatory issues regarding worker safety, radon gas concentrations have been monitored as part of the operation of a deep tunnel excavated from a highly fractured tuff formation. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured rock. An iTOUGH2 model was developed to predict radon concentrations for prescribed ventilation rates. The numerical model was used (1) to estimate the permeability and porosity of the fractured formation at the length scale of the tunnel and extending tens of meters into the surrounding rock, and (2) to understand the mechanism leading to radon concentrations that potentially exceed the regulatory limit. The mechanism controlling radon concentrations in the tunnel is a function of atmospheric barometric fluctuations propagated down the tunnel. In addition, a slight suction is induced by the ventilation system. The pressure fluctuations are dampened in the fractured formation according to its permeability and porosity. Consequently, as the barometric pressure in the tunnel drops, formation gases from the rock are pulled into the opening, resulting in high radon concentrations. Model calibration to both radon concentration data measured in the tunnel and gas phase pressure fluctuations observed in the formation yielded independent estimates of effective, large-scale fracture permeability and porosity. The calibrated model was then used as a design tool to predict the effect of adjusting the ventilation-system operation strategy for reducing the probability that radon gas concentrations will exceed the regulatory limit.

  9. Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Prasse, Ernst I

    1953-01-01

    An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.

  10. [Intraocular pressure in phacoemulsification].

    PubMed

    Synek, S; Synková, M; Skorkovská, S

    2002-01-01

    The authors investigated changes of the intraocular pressure after non-complicated phacoemulsification with implantation of an intraocular lens of different types (OMMA, silicone, Acrysof) in 40 patients. From the results it is obvious that in some patients already 4 hours after surgery the intraocular pressure rises to an average of 31 +/- 17 mm Hg. The magnitude of the intraocular pressure was not influenced by the size of the surgical wound nor the type of intraocular lens. In values below 30 mm Hg the authors recommend merely follow up of the patients as they assume that these values have a positive impact on closure of the tunnel incision. In the differential diagnosis it is important to consider the post-operative inflammatory reaction, the absorption reaction of residual viscoelastic material, pupillary block while the lenticular capsule is intact and undiagnosed glaucoma. In values above 30 mm Hg the authors recommend administration of beta-blockers, Diluran and antiphlogistics.

  11. Conversion of Non-Tunneled to Tunneled Hemodialysis Catheters

    SciTech Connect

    Ha, Thuong G. Van Fimmen, Derek; Han, Laura; Funaki, Brian S.; Santeler, Scott; Lorenz, Jonathan

    2007-04-15

    Purpose. To determine the safety and efficacy of conversion of non-tunneled (temporary) catheters to tunneled catheters in hemodialysis patients. Methods. A retrospective review of 112 consecutive conversions in 111 patients was performed over a period of 4 years. Fourteen patients were lost to follow-up. The remaining 97 patients had clinical follow-up. Temporary catheters were converted to tunneled catheters utilizing the same internal jugular venotomy sites and a modified over-the-wire technique with use of a peel-away sheath . Follow-up clinical data were reviewed. Results. Technical success was achieved in all 112 procedures. None of the 97 patients with follow-up suffered early infection within 30 days. The total number of follow-up catheter days was 13,659 (range 2-790). Cases of confirmed and suspected bacteremia requiring catheter removal occurred at a frequency of 0.10 per 100 catheter days. Suspected catheter infection treated with antibiotics but not requiring catheter intervention occurred at a frequency of 0.04 per 100 catheter days. Frequency of all suspected or confirmed infections was 0.14 per 100 catheter days. Catheter interventions as a result of poor blood flow, inadvertent removal, catheter fracture, or kinking occurred at a rate of 0.18 per 100 catheter days. Life table analysis revealed primary patency rates of 86%, 64%, and 39% at 30 days, 90 days, and 180 days, respectively. Conclusion. Conversion of temporary catheters to tunneled catheters using the pre-existing venotomy sites is safe and has low rates of infection and malfunction. These rates are comparable to previously published rates for tunneled catheters placed de novo and tunneled catheter exchanges.

  12. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  13. NASA Glenn Icing Research Tunnel: Upgrade and Cloud Calibration

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura E.

    2012-01-01

    In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.

  14. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  15. Other Cryogenic Wind Tunnel Projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1997-01-01

    The first cryogenic tunnel was built at the NASA Langley Research Center in 1972. Since then, many cryogenic wind-tunnels have been built at aeronautical research centers around the world. In this lecture some of the more interesting and significant of these projects that have not been covered by other lecturers at this Special Course are described. In this lecture authors describe cryogenic wind-tunnel projects at research centers in four countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Defence Research Agency - Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); and United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign, and NASA Langley).

  16. Carpal tunnel syndrome and work.

    PubMed

    Newington, Lisa; Harris, E Clare; Walker-Bone, Karen

    2015-06-01

    Carpal tunnel syndrome (CTS) is the most common peripheral nerve entrapment syndrome, and it frequently presents in working-aged adults. Its mild form causes 'nuisance' symptoms including dysaesthesia and nocturnal waking. At its most severe, CTS can significantly impair motor function and weaken pinch grip. This review discusses the anatomy of the carpal tunnel and the clinical presentation of the syndrome as well as the classification and diagnosis of the condition. CTS has a profile of well-established risk factors including individual factors and predisposing co-morbidities, which are briefly discussed. There is a growing body of evidence for an association between CTS and various occupational factors, which is also explored. Management of CTS, conservative and surgical, is described. Finally, the issue of safe return to work post carpal tunnel release surgery and the lack of evidence-based guidelines are discussed.

  17. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  18. Control of large thermal distortions in a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Gustafson, J. C.

    1983-01-01

    The National Transonic Facility (NTF) is a research wind tunnel capable of operation at temperatures down to 89K (160 R) and pressures up to 900,000 Pa (9 atmospheres) to achieve Reynolds numbers approaching 120,000,000. Wide temperature excursions combined with the precise alignment requirements of the tunnel aerodynamic surfaces imposed constraints on the mechanisms supporting the internal structures of the tunnel. The material selections suitable for this application were also limited. A general design philosophy of utilizing a single fixed point for each linear degree of freedom and guiding the expansion as required was adopted. These support systems allow thermal expansion to take place in a manner that minimizes the development of thermally induced stresses while maintaining structural alignment and resisting high aerodynamic loads. Typical of the support mechanisms are the preload brackets used in the fan shroud system and the Watts linkage used to support the upstream nacelle. The design of these mechanisms along with the basic design requirements and the constraints imposed by the tunnel system are discussed.

  19. A New Method of Testing in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Margoulis, W

    1921-01-01

    Now, in existing wind tunnels, using a horsepower of 100 to 300, the models are generally made to a 1/10 scale and the speed is appreciably lower than the speeds currently attained by airplanes. The Reynolds number realized is thus 15 to 25 times smaller than that reached by airplanes in free flight, while the ratio of speed to the velocity of sound is between a third and three quarters of the true ratio. The necessary increases in either the diameter of the wind tunnel or the velocity of the airstream are too costly. However, the author shows that it is possible to have wind tunnels in which the Reynolds number will be greater than that now obtained by airplanes, and in which the ratio of the velocity to the velocity of sound will also be greater than that realized in practice, by employing a gas other than air, at a pressure and temperature different from those of the surrounding atmosphere. The gas is carbonic acid, a gas having a low coefficient of viscosity, high density, and a low ratio of specific heat. The positive results of using carbonic acid in wind tunnel tests are given.

  20. Shock tunnel studies of scramjet phenomena, supplement 5

    NASA Technical Reports Server (NTRS)

    Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.

    1990-01-01

    A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.

  1. Tunnelling in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mishchenko, Artem; Novoselov, Kostya; Geim, Andre; Eaves, Laurence; Falko, Vladimir

    When graphene and other conductive two-dimensional (2D) materials are separated by an atomically thin insulating 2D crystal, quantum mechanical tunnelling leads to appreciable current between two 2D conductors due to the overlap of their wavefunctions. These tunnel devices demonstrate interesting physics and potential for applications: such effects as resonant tunnelling, negative differential conductance, light emission and detection have already been demonstrated. In this presentation we will outline the current status and perspectives of tunnelling transistors based on 2D materials assembled into van der Waals heterostructures. Particularly, we will present results on mono- and bilayer graphene tunnelling, tunnelling in 2D crystal-based quantum wells, and tunnelling in superconducting 2D materials. Such effects as momentum and chirality conservation, phonon- and impurity-assisted tunnelling will also be discussed. Finally, we will ponder the implications of discovered effects for practical applications.

  2. Computational multiqubit tunnelling in programmable quantum annealers.

    PubMed

    Boixo, Sergio; Smelyanskiy, Vadim N; Shabani, Alireza; Isakov, Sergei V; Dykman, Mark; Denchev, Vasil S; Amin, Mohammad H; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-07

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive.

  3. Computational multiqubit tunnelling in programmable quantum annealers

    PubMed Central

    Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797

  4. Computational multiqubit tunnelling in programmable quantum annealers

    NASA Astrophysics Data System (ADS)

    Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive.

  5. Wind tunnel test IA300 analysis and results, volume 1

    NASA Technical Reports Server (NTRS)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  6. Molecular series-tunneling junctions.

    PubMed

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β. PMID:25871745

  7. Simulation of flight test conditions in the Langley pilot transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Adcock, J. B.; Ray, E. J.

    1974-01-01

    The theory and advantages of the cryogenic tunnel concept are briefly reviewed. The unique ability to vary temperature independently of pressure and Mach number allows, in addition to large reductions in model loads and tunnel power, the independent determination of Reynolds number, Mach number, and aeroelastic effects on the aerodynamic characteristics of the model. Various combinations of Reynolds number and dynamic pressure are established to represent accurately flight variations of aeroelastic deformation with altitude changes. The consequences of the thermal and caloric imperfections of the test gas under cryogenic conditions were examined and found to be insignificant for operating pressures up to 5 atm. The characteristics of the Langley pilot transonic cryogenic tunnel are described and the results of initial tunnel operation are presented. Tests of a two-dimensional airfoil at a Mach number of 0.85 show identical pressure distributions for a chord Reynolds number of 8,600,000 obtained first at a stagnation pressure of 4.91 atm at a stagnation temperature of 322.0 K and then at a stagnation pressure of 1.19 atm at a stagnation temperature of 116.5 K.

  8. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  9. 49 CFR 177.810 - Vehicular tunnels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Vehicular tunnels. 177.810 Section 177.810... Information and Regulations § 177.810 Vehicular tunnels. Except as regards Class 7 (radioactive) materials... through any urban vehicular tunnel used for mass transportation....

  10. 43 CFR 3832.40 - Tunnel sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Tunnel sites. 3832.40 Section 3832.40..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.40 Tunnel sites....

  11. 43 CFR 3832.40 - Tunnel sites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Tunnel sites. 3832.40 Section 3832.40..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.40 Tunnel sites....

  12. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  13. 49 CFR 177.810 - Vehicular tunnels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Vehicular tunnels. 177.810 Section 177.810... Information and Regulations § 177.810 Vehicular tunnels. Except as regards Class 7 (radioactive) materials... through any urban vehicular tunnel used for mass transportation....

  14. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  15. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  16. 43 CFR 3832.40 - Tunnel sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Tunnel sites. 3832.40 Section 3832.40..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.40 Tunnel sites....

  17. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  18. 49 CFR 177.810 - Vehicular tunnels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Vehicular tunnels. 177.810 Section 177.810... Vehicular tunnels. Except as regards Class 7 (radioactive) materials, nothing contained in parts 170-189 of... tunnel used for mass transportation....

  19. 43 CFR 3832.40 - Tunnel sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Tunnel sites. 3832.40 Section 3832.40..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Tunnel Sites § 3832.40 Tunnel sites....

  20. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    SciTech Connect

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q {approx} 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement.

  1. Results of the NASA/MSFC FA-23 plume technology test program performed in the NASA/Ames unitary wind tunnels

    NASA Technical Reports Server (NTRS)

    Hendershot, K. C.

    1977-01-01

    A 2.25% scale model of the space shuttle external tank and solid rocket boosters was tested in the NASA/Ames Unitary 11 x 11 foot transonic and 9 x 7 foot supersonic tunnels to obtain base pressure data with firing solid propellant exhaust plumes. Data system difficulties prevented the acquisition of any useful data in the 9 x 7 tunnel. However, 28 successful rocket test firings were made in the 11 x 11 tunnel, providing base pressure data at Mach numbers of 0.5, 0.9, 1.05, 1.2, and 1.3 and at plume pressure ratios ranging from 11 to 89.

  2. Computation of wind tunnel wall effects for complex models using a low-order panel method

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.; Harris, Scott H.

    1994-01-01

    A technique for determining wind tunnel wall effects for complex models using the low-order, three dimensional panel method PMARC (Panel Method Ames Research Center) has been developed. Initial validation of the technique was performed using lift-coefficient data in the linear lift range from tests of a large-scale STOVL fighter model in the National Full-Scale Aerodynamics Complex (NFAC) facility. The data from these tests served as an ideal database for validating the technique because the same model was tested in two wind tunnel test sections with widely different dimensions. The lift-coefficient data obtained for the same model configuration in the two test sections were different, indicating a significant influence of the presence of the tunnel walls and mounting hardware on the lift coefficient in at least one of the two test sections. The wind tunnel wall effects were computed using PMARC and then subtracted from the measured data to yield corrected lift-coefficient versus angle-of-attack curves. The corrected lift-coefficient curves from the two wind tunnel test sections matched very well. Detailed pressure distributions computed by PMARC on the wing lower surface helped identify the source of large strut interference effects in one of the wind tunnel test sections. Extension of the technique to analysis of wind tunnel wall effects on the lift coefficient in the nonlinear lift range and on drag coefficient will require the addition of boundary-layer and separated-flow models to PMARC.

  3. A Seamless Ubiquitous Telehealthcare Tunnel

    PubMed Central

    Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie

    2013-01-01

    Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields. PMID:23917812

  4. A seamless ubiquitous telehealthcare tunnel.

    PubMed

    Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie

    2013-08-02

    Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields.

  5. [Modified Class II tunnel preparation].

    PubMed

    Rimondini, L; Baroni, C

    1991-05-15

    Tunnel preparations for restoration of Class II carious lesions in primary molars preserve the marginal ridge and minimize sacrifice of healthy tooth substructure. Materials with improved bonding to tooth structure and increase potential for fluoride release allow Class II restorations without "extension for prevention". PMID:1864420

  6. SCALING: Wind Tunnel to Flight

    NASA Astrophysics Data System (ADS)

    Bushnell, Dennis M.

    2006-01-01

    Wind tunnels have wide-ranging functionality, including many applications beyond aeronautics, and historically have been the major source of information for technological aerodynamics/aeronautical applications. There are a myriad of scaling issues/differences from flight to wind tunnel, and their study and impacts are uneven and a function of the particular type of extant flow phenomena. Typically, the most serious discrepancies are associated with flow separation. The tremendous ongoing increases in numerical simulation capability are changing and in many aspects have changed the function of the wind tunnel from a (scaled) "predictor" to a source of computational calibration/validation information with the computation then utilized as the flight prediction/scaling tool. Numerical simulations can increasingly include the influences of the various scaling issues. This wind tunnel role change has been occurring for decades as computational capability improves in all aspects. Additional issues driving this trend are the increasing cost (and time) disparity between physical experiments and computations, and increasingly stringent accuracy requirements.

  7. Tunnel Vision in Environmental Management.

    ERIC Educational Resources Information Center

    Miller, Alan

    1982-01-01

    Discusses problem-solving styles in environmental management and the specific deficiencies in these styles that might be grouped under the label "tunnel vision," a form of selective attention contributing to inadequate problem-formulation, partial solutions to complex problems, and generation of additional problems. Includes educational…

  8. The recurrent carpal tunnel syndrome.

    PubMed

    Kern, B C; Brock, M; Rudolph, K H; Logemann, H

    1993-01-01

    Sixteen out of 720 patients with carpal tunnel syndrome who had undergone surgery since 1979 were reoperated for a "recurrence" (2.2%). Twelve of these patients had been originally operated on in our department. Thus, our own recurrence rate is 1.7%. Three patients deteriorated following surgery, 6 had an unsatisfactory improvement, and in 7 the symptoms recurred after initial improvement. Eight of the reoperated patients had a predisposing disease (terminal renal insufficiency, insulin-dependent diabetes mellitus, acromegaly). In 10 of the 16 cases the initial operation had been carried out by surgeons in the first three years of training. Reoperation revealed incomplete splitting of the transverse carpal ligament in 10 cases, compression of the median nerve by the scar in 4, injury of the muscular branch in 1, and an anatomical variant as cause of incomplete decompression in 1 patient. "Recurrences" after carpal tunnel surgery are predominantly due to inadequacies of the first procedure. A remarkable number of patients (50%) has predisposing diseases. Interfascicular or epineural neurolysis and complete exposure and neurolysis of the median nerve and its branches is necessary only in cases of recurrence. Their omission at the first surgery does not result in an increased recurrence rate. Our observations indicate that the number of operations for recurrent carpal tunnel syndrome can probably be reduced when the first operation is performed with care and experience. Patients with carpal tunnel syndrome secondary to a systemic disease are particularly at risk.

  9. Tunneling in the SIS Structure

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu.; Kohandel, M.

    2000-09-01

    We discuss the effects caused by the layered structure of high temperature superconductors (HTS). We use the layered S-N model to obtain the tunneling current of the SIS structure. The current-voltage characteristic is calculated in the limit cases when dI/dV is proportional to the state density of HTS.

  10. A seamless ubiquitous telehealthcare tunnel.

    PubMed

    Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie

    2013-08-01

    Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields. PMID:23917812

  11. A New Forced Oscillation Capability for the Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Cleckner, Craig S.

    2002-01-01

    A new forced oscillation system has been installed and tested at NASA Langley Research Center's Transonic Dynamics Tunnel (TDT). The system is known as the Oscillating Turntable (OTT) and has been designed for the purpose of oscillating, large semispan models in pitch at frequencies up to 40 Hz to acquire high-quality unsteady pressure and loads data. Precisely controlled motions of a wind-tunnel model on the OTT can yield unsteady aerodynamic phenomena associated with flutter, limit cycle oscillations, shock dynamics, and non-linear aerodynamic effects on many vehicle configurations. This paper will discuss general design and components of the OTT and will present test data from performance testing and from research tests on two rigid semispan wind-tunnel models. The research tests were designed to challenge the OTT over a wide range of operating conditions while acquiring unsteady pressure data on a small rectangular supercritical wing and a large supersonic transport wing. These results will be presented to illustrate the performance capabilities, consistency of oscillations, and usefulness of the OTT as a research tool.

  12. Computational Modeling of the Ames 11-Ft Transonic Wind Tunnel in Conjunction with IofNEWT

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Buning, Pieter G.; Erickson, Larry L.; George, Michael W. (Technical Monitor)

    1995-01-01

    Technical advances in Computational Fluid Dynamics have now made it possible to simulate complex three-dimensional internal flows about models of various size placed in a Transonic Wind Tunnel. TWT wall interference effects have been a source of error in predicting flight data from actual wind tunnel measured data. An advantage of such internal CFD calculations is to directly compare numerical results with the actual tunnel data for code assessment and tunnel flow analysis. A CFD capability has recently been devised for flow analysis of the NASA/Ames 11-Ft TWT facility. The primary objectives of this work are to provide a CFD tool to study the NASA/Ames 11-Ft TWT flow characteristics, to understand the slotted wall interference effects, and to validate CFD codes. A secondary objective is to integrate the internal flowfield calculations with the Pressure Sensitive Paint data, a surface pressure distribution capability in Ames' production wind tunnels. The effort has been part of the Ames IofNEWT, Integration of Numerical and Experimental Wind Tunnels project, which is aimed at providing further analytical tools for industrial application. We used the NASA/Ames OVERFLOW code to solve the thin-layer Navier-Stokes equations. Viscosity effects near the model are captured by Baldwin-Lomax or Baldwin-Barth turbulence models. The solver was modified to model the flow behavior in the vicinity of the tunnel longitudinal slotted walls. A suitable porous type wall boundary condition was coded to account for the cross-flow through the test section. Viscous flow equations were solved in generalized coordinates with a three-factor implicit central difference scheme in conjunction with the Chimera grid procedure. The internal flow field about the model and the tunnel walls were descretized by the Chimera overset grid system. This approach allows the application of efficient grid generation codes about individual components of the configuration; separate minor grids were developed

  13. Blood pressure

    MedlinePlus Videos and Cool Tools

    ... called diastole. Normal blood pressure is considered to be a systolic blood pressure of 115 millimeters of ... pressure reading of 140 over 90, he would be evaluated for having high blood pressure. If left ...

  14. Measurement and Control of the Variability of Scanning Pressure Transducer Measurements

    NASA Technical Reports Server (NTRS)

    Kuhl, David D.; Everhart, Joel L.; Hallissy, James B.

    2003-01-01

    This paper describes the new wall pressure measurement system and data-quality monitoring software installed at 14x22 Ft subsonic tunnel at the NASA Langley Research Center. The monitoring software was developed to enable measurement and control of the variability of the reference pressures and approximately 400 tunnel wall pressure measurements. Variability of the system, based upon data acquired over a year of wind tunnel tests and calibrations, is presented. The level of variation of the wall pressure measurements is shown to be predictable.

  15. Advances in tunneled central venous catheters for dialysis: design and performance.

    PubMed

    Ash, Stephen R

    2008-01-01

    Over 70% of patients initiating chronic hemodialysis in the United States have a tunneled central venous catheter (CVC) for dialysis as their first blood access device. Tunneled CVC have requirements that are unparalleled by other access devices: high blood flow rates at moderate pressure drops without obstruction, minimal trauma to the vein, resistance to occlusion by fibrous sheathing, prevention of infection, avoidance of clotting, biocompatibility, avoidance of lumen collapse and kinking and breaks, resistance to antiseptic agents, placement with minimal trauma, and radiopaque appearance on X-ray. This publication reviews the numerous designs for tunneled CVC and evaluates the advantages and disadvantages of each design. A catheter that self-centers in the superior vena cava (Centros) is described, along with early clinical results. Current challenges and future directions for tunneled CVC for dialysis are discussed, included means to diminish catheter-related infections, catheter tip clotting, fibrous sheathing, central venous stenosis, and external component bulk. PMID:19000125

  16. Development of a distributed-parameter mathematical model for simulation of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Tripp, J. S.

    1983-01-01

    A one-dimensional distributed-parameter dynamic model of a cryogenic wind tunnel was developed which accounts for internal and external heat transfer, viscous momentum losses, and slotted-test-section dynamics. Boundary conditions imposed by liquid-nitrogen injection, gas venting, and the tunnel fan were included. A time-dependent numerical solution to the resultant set of partial differential equations was obtained on a CDC CYBER 203 vector-processing digital computer at a usable computational rate. Preliminary computational studies were performed by using parameters of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Studies were performed by using parameters from the National Transonic Facility (NTF). The NTF wind-tunnel model was used in the design of control loops for Mach number, total temperature, and total pressure and for determining interactions between the control loops. It was employed in the application of optimal linear-regulator theory and eigenvalue-placement techniques to develop Mach number control laws.

  17. Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Llorente, E.; Gorostidi, A.; Jacobs, M.; Timmer, W. A.; Munduate, X.; Pires, O.

    2014-06-01

    Wind tunnel tests have been performed to measure the two-dimensional aerodynamic characteristics of two different airfoil families at high Reynolds numbers (from 3 to 12 millions) in the DNW High Pressure Wind Tunnel in Gottingen (HDG), Germany. Also, tests at a Reynolds number of 3 millions have been performed in the Low-Speed Low- Turbulence Wind Tunnel of Delft University, The Netherlands. The airfoils tested belong to two wind turbine dedicated families: the TU-Delft DU family and the ACCIONA Windpower AWA family that was designed in collaboration with CENER. Reynolds number effects on airfoil performance have been obtained in the range of 3 to 12 millions. The availability of data from two different wind tunnels has brought the opportunity to cross compare the results from the two facilities.

  18. Force testing manual for the Langley 20-inch Mach 6 tunnel

    NASA Technical Reports Server (NTRS)

    Keyes, J. W.

    1977-01-01

    Data reduction and procedures for conducting force tests in a 20 inch Mach 6 tunnel are described. A discussion of pretest and testing phases are included. Items that are to be checked during model design and construction are outlined as well as safety requirements, starting loads tests, instructions for data acquisition and model installation. Measurement of balance and model misalignment and instructions for calibrating the angle of attack screen are covered. Procedures for making reference pressure, attitude tare, and data runs are included. The 20 inch tunnel force program is examined, and a description of data recording system input and load contrast sheets is given. An appendix presents a description, operating characteristics, and Mach number calibration of the tunnel, as well as tunnel characteristics.

  19. Numerical simulation of flows around deformed aircraft model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Lysenkov, A. V.; Bosnyakov, S. M.; Glazkov, S. A.; Gorbushin, A. R.; Kuzmina, S. I.; Kursakov, I. A.; Matyash, S. V.; Ishmuratov, F. Z.

    2016-10-01

    To obtain accurate data of calculation method error requires detailed simulation of the experiment in wind tunnel with keeping all features of the model, installation and gas flow. Two examples of such detailed data comparison are described in this paper. The experimental characteristics of NASA CRM model obtained in the ETW wind tunnel (Cologne, Germany), and CFD characteristics of this model obtained with the use of EWT-TsAGI application package are compared. Following comparison is carried out for an airplane model in the T-128 wind tunnel (TsAGI, Russia). It is seen that deformation influence on integral characteristics grows with increasing Re number and, accordingly, the dynamic pressure. CFD methods application for problems of experimental research in the wind tunnel allows to separate viscosity and elasticity effects.

  20. Plans and Status of Wind-Tunnel Testing Employing an Aeroservoelastic Semispan Model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Silva, Walter A.; Florance, James R.; Wieseman, Carol D.; Pototzky, Anthony S.; Sanetrik, Mark D.; Scott, Robert C.; Keller, Donald F.; Cole, Stanley R.; Coulson, David A.

    2007-01-01

    This paper presents the research objectives, summarizes the pre-wind-tunnel-test experimental results to date, summarizes the analytical predictions to date, and outlines the wind-tunnel-test plans for an aeroservoelastic semispan wind-tunnel model. The model is referred to as the Supersonic Semispan Transport (S4T) Active Controls Testbed (ACT) and is based on a supersonic cruise configuration. The model has three hydraulically-actuated surfaces (all-movable horizontal tail, all-movable ride control vane, and aileron) for active controls. The model is instrumented with accelerometers, unsteady pressure transducers, and strain gages and will be mounted on a 5-component sidewall balance. The model will be tested twice in the Langley Transonic Dynamics Tunnel (TDT). The first entry will be an "open-loop" model-characterization test; the second entry will be a "closed-loop" test during which active flutter suppression, gust load alleviation and ride quality control experiments will be conducted.

  1. Tunneling time, what is its meaning?

    NASA Astrophysics Data System (ADS)

    McDonald, C. R.; Orlando, G.; Vampa, G.; Brabec, T.

    2015-03-01

    The tunnel time ionization dynamics for bound systems in laser fields are investigated. Numerical analysis for a step function switch-on of the field allows for the tunnel time to be defined as the time it takes the ground state to develop the under-barrier wavefunction components necessary to achieve the static field ionization rate. A relation between the tunnel time and the Keldysh time is established. The definition of the tunnel time is extended to time varying fields and experimental possibilities for measuring the tunnel time are discussed.

  2. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for diverting the flow in a wind tunnel from the wing of a tested model is described. The wing is mounted on the wall of a tunnel. A diverter plate is pivotally mounted on the tunnel wall ahead of the model. An actuator fixed to the tunnel is pivotably connected to the diverter plate, by plunger. When the model is about to become unstable during the test the actuator moves the diverter plate from the tunnel wall to divert maintaining stable model conditions. The diverter plate is then retracted to enable normal flow.

  3. 2. 'Tunnel No 6 West End, Front Elevation, Sectional Elevation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 'Tunnel No 6 West End, Front Elevation, Sectional Elevation on Centerline of Portal,' Southern Pacific Standard Single-Track Tunnel, 1910. Tunnel 6, which today would be Tunnel 20, was daylighted and no longer exists. Compare to photos in documentation sets for Tunnel 23 (HAER No. CA-198), Tunnel 24 (HAER No. CA-200), Tunnel 25 (HAER No. CA-201), Tunnel 27 (HAER No. CA-203), Tunnel 28 (HAER No. CA-204), and Tunnel 29 (HAER No. CA-205). - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  4. Laser Induced Tunnel Ionization and Electron Density Evolution in Air

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Brussaard, G. J. H.; Wiel, M. J. v. d.; Tripathi, V. K.

    2005-08-01

    An indigenously built Ti:sapphire laser system delivering 50 mJ, 100 fs pulses at a repetition rate of 10 Hz, is employed to tunnel ionize air at 1 atm pressure and form a plasma channel. The laser is line focused using a cylindrical lens to a spot size of 20 μm× 1 mm. A folded wave interferometry is used to deduce the radial electron density profile by measuring the phase shift and employing Abel inversion. The maximum value of chord-integrated electron density and radial electron density are estimated to be approximately equal to 3.0× 1016 cm-2 and 4.0× 1018 cm-3 respectively with density scale length of 20 μm. These results have been theoretically interpreted by developing a unified formalism of tunnel ionization. The experimental results are in reasonable agreement with the theory.

  5. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    SciTech Connect

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-07

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.

  6. Description and calibration of the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Corlett, W. A.; Monta, W. J.

    1981-01-01

    The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed.

  7. Experiments in hand-operated, hypersonic shock tunnel facility

    NASA Astrophysics Data System (ADS)

    Sudhiesh Kumar, Chintoo; Reddy, K. P. J.

    2015-12-01

    Experiments were conducted using the newly developed table-top, hand-operated hypersonic shock tunnel, otherwise known as the Reddy hypersonic shock tunnel. This novel instrument uses only manual force to generate the shock wave in the shock tube, and is designed to generate a freestream flow of Mach 6.5 in the test section. The flow was characterized using stagnation point pressure measurements made using fast-acting piezoelectric transducers. Schlieren visualization was also carried out to capture the bow shock in front of a hemispherical body placed in the flow. Freestream Mach numbers estimated at various points in the test section showed that for a minimum diameter of 46 mm within the test section, the value did not vary by more than 3 % along any cross-sectional plane. The results of the experiments presented here indicate that the device may be successfully employed for basic hypersonic research activities at the university level.

  8. Cold prebiotic evolution, tunneling, chirality and exobiology

    SciTech Connect

    Goldanskii, V.I.

    1996-07-01

    The extra-terrestrial scenario of the origin of life suggested by Svante Arrhenius (1) as the {open_quote}panspermia{close_quote} hypothesis was revived by the discovery of a low-temperature quantum limit of a chemical reaction rate caused by the molecular tunneling (2). Entropy factors play no role near absolute zero, and slow molecular tunneling can lead to the exothermic formation of quite complex molecules. Interstellar grains or particles of cometary tails could serve as possible cold seeds of life, with acetic acid, urea and products of their polycondensation as quasi-equilibrium intermediates. Very cold solid environment hinders racemization and stabilizes optical activity under conditions typical for outer space. Neither {open_quote}advantage{close_quote} factors can secure the evolutionary formation of chiral purity of initial prebiotic monomeric medium{emdash}even being temporary achieved it cannot be maintained at subsequent stages of prebiotic evolution because of counteraction of {open_quote}enantioselective pressure{close_quote}. Only bifurcational mechanism of the formation of prebiotic homochiral{emdash}monomeric and afterwards polymeric{emdash}medium and its subsequent transformation in {open_quote}homochiral chemical automata{close_quote} ({open_quote}biological big bang{close_quote}{emdash}passage from {open_quote}stochastic{close_quote} to {open_quote}algorithmic{close_quote} chemistry) is possible and can be realized. Extra-terrestrial (cold, solid phase) scenarios of the origin of life seem to be more promising from that point of view than terrestrial (warm) scenarios. Within a scheme of five main stages of prebiological evolution some problems important for further investigation are briefly discussed. {copyright} {ital 1996 American Institute of Physics.}

  9. 13. Groundwater in urban seashore sediments affected by tunnel constructions

    NASA Astrophysics Data System (ADS)

    Kitterød, Nils-Otto

    2014-05-01

    The purpose of this study was to examine the impact of a planned tunnel construction on the local groundwater level in the archeological deposits at the Old Wharf (Bryggen) of Bergen. The groundwater level is a function of infiltration rates, transmissivity, and boundary conditions. These variables were deduced from available data and supplemented by leakage measurements into the existing Railway tunnel located upstream of the Bryggen area. Previous studies have documented that the pore water in the deposits at Bryggen has different origin (viz fresh precipitation; leakage from drainage systems; infiltration of seawater; infiltration via the bedrock). The catchment of Bryggen is characterized by variable topography (from sea level to about 500 m a.m.s.l.) and steep gradients. Major parts of the catchment have very sparse sediment cover and can be considered as exposed bedrock. The major sediment volumes are deposited close to the sea front. In the upper part of the catchment, the groundwater level in the bedrock is close to the surface. Some observations indicate that boreholes located in lower part of the catchment have artesian pressure, which implies that there is a groundwater flux from the bedrock and into the sediments. Based on this conceptual model, a numerical model was constructed where the seawater was the boundary condition at one side and the groundwater divide on the other side. Transmissivities in the bedrock were deduced from pumping analysis, and steady state infiltration rates was calibrated to give simulated groundwater levels that were consistent to observations. Given these model simplifications, it was possible to calculate a groundwater level in the sediments at Bryggen were all water into the sediments came from the bedrock only. The simulated groundwater level captured roughly the observed groundwater levels. After simulation of the natural groundwater level (i.e. without any artificial extraction of water in the catchment), the impact of

  10. Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels

    NASA Astrophysics Data System (ADS)

    Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Madsen, J.; Schepers, J. G.

    2016-09-01

    2D wind tunnel tests at high Reynolds numbers have been done within the EU FP7 AVATAR project (Advanced Aerodynamic Tools of lArge Rotors) on the DU00-W-212 airfoil and at two different test facilities: the DNW High Pressure Wind Tunnel in Gottingen (HDG) and the LM Wind Power in-house wind tunnel. Two conditions of Reynolds numbers have been performed in both tests: 3 and 6 million. The Mach number and turbulence intensity values are similar in both wind tunnels at the 3 million Reynolds number test, while they are significantly different at 6 million Reynolds number. The paper presents a comparison of the data obtained from the two wind tunnels, showing good repeatability at 3 million Reynolds number and differences at 6 million Reynolds number that are consistent with the different Mach number and turbulence intensity values.

  11. Water-Based Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Ingram, JoAnne L.; Jordan, Jeffrey D.; Watkins, A. Neal; Leighty, Bradley D.

    2004-01-01

    Preparation and performance of a water-based pressure sensitive paint (PSP) is described. A water emulsion of an oxygen permeable polymer and a platinum porphyrin type luminescent compound were dispersed in a water matrix to produce a PSP that performs well without the use of volatile, toxic solvents. The primary advantages of this PSP are reduced contamination of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. The water-based PSP described has all the characteristics associated with water-based paints (low toxicity, very low volatile organic chemicals, and easy water cleanup) but also has high performance as a global pressure sensor for PSP measurements in wind tunnels. The use of a water-based PSP virtually eliminates the toxic fumes associated with the application of PSPs to a model in wind tunnels.

  12. Wind tunnel tests of Space Shuttle external tank insulation material in the aerothermal tunnel at elevated (1440 deg F) total temperatures

    NASA Technical Reports Server (NTRS)

    Hartman, A. S.; Nutt, K. W.

    1982-01-01

    Tests of the space shuttle external tank foam insulation were conducted in the von Karman Gas Dynamics Facility Tunnel C. For these tests, Tunnel C was run at Mach 4 with a total temperature of 1440 F and a total pressure which varied from 30-100 psia. Cold wall heating rates were changed by varying the test article support wedge angle and by adding and removing a shock generator or a cylindrical protuberance. Selected results are presented to illustrate the test techniques and typical data obtained.

  13. Description of recent changes in the Langley 6- by 28-inch transonic tunnel

    NASA Technical Reports Server (NTRS)

    Sewall, W. G.

    1981-01-01

    Calibrations were obtained in the Langley 6 by 28-inch transonic tunnel with newly installed controllable reentry flaps and test section floor and ceiling. Using available theory, the top and bottom slotted walls were redesigned for minimum wind tunnel interference errors of blockage and stream-line curvature. To minimize Mach number gradients along the tunnel axis downstream of the model, controllable flaps were installed to regulate the flow reentering the test section through the slotted walls. The flap setting is independent of stagnation pressure and varies only with Mach number. The freestream Mach number is determined from the pressrue measured at a station 66.04 cm upstream of the model station. The model has no significant influence on the vertical Mach number distribution at this station. This method of Mach number determination appears to be more accurate than one using the plenum pressure.

  14. Static Aeroelastic Analysis of Transonic Wind Tunnel Models Using Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Burner, Alpheus W.; Valla, Robert

    1997-01-01

    A computational method for accurately predicting the static aeroelastic deformations of typical transonic transport wind tunnel models is described. The method utilizes a finite element method (FEM) for predicting the deformations. Extensive calibration/validation of this method was carried out using a novel wind-off wind tunnel model static loading experiment and wind-on optical wing twist measurements obtained during a recent wind tunnel test in the National Transonic Facility (NTF) at NASA LaRC. Further validations were carried out using a Navier-Stokes computational fluid dynamics (CFD) flow solver to calculate wing pressure distributions about several aeroelastically deformed wings and comparing these predictions with NTF experimental data. Results from this aeroelastic deformation method are in good overall agreement with experimentally measured values. Including the predicted deformations significantly improves the correlation between CFD predicted and experimentally measured wing & pressures.

  15. The development of cryogenic wind tunnels and their application to maneuvering aircraft technology

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Boyden, R. P.

    1981-01-01

    Cryogenic wind tunnels are considered as a means of studying high Reynolds number (Re) complicated flows encountered by high maneuvering lift and high angles of attack characteristic of modern fighter aircraft. Large decreases in the viscous force while the inertial force remains constant are provided by the use of cryogenic facilities. A 2.5 m square tunnel is nearing completion at the National Transonic Facility (NTF), and will be driven by synchronous motors having a total power of 120,000 hp. The tunnel, using N2 as the cryogenic fluid, will allow large Re sweeps at constant dynamic pressure and dynamic pressure, and aeroelastic sweeps at constant Re; full altitude (air density) and acceleration force simulation will also be possible. Advances in model and strain gage balance technologies for use at the NTF are outlined, and experiments with buffet are described.

  16. Wind tunnel evaluation of air-foil performance using simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Zaguli, R. J.; Gregorek, G. M.

    1982-01-01

    A two-phase wind tunnel test was conducted in the 6 by 9 foot Icing Research Tunnel (IRT) at NASA Lewis Research Center to evaluate the effect of ice on the performance of a full scale general aviation wing. In the first IRT tests, rime and glaze shapes were carefully documented as functions of angle of attack and free stream conditions. Next, simulated ice shapes were constructed for two rime and two glaze shapes and used in the second IRT tunnel entry. The ice shapes and the clean airfoil were tapped to obtain surface pressures and a probe used to measure the wake characteristics. These data were recorded and processed, on-line, with a minicomputer/digital data acquisition system. The effect of both rime and glaze ice on the pressure distribution, Cl, Cd, and Cm are presented.

  17. Single-contact tunneling thermometry

    DOEpatents

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  18. Harmonic multiplication using resonant tunneling

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Correa, C. A.

    1988-01-01

    This paper demonstrates the use of resonant-tunneling diodes as varistors for harmonic multiplication. It is shown that efficient odd-harmonic conversion is possible and that even harmonics do not appear because of the antisymmetry of the current-voltage (I-V) curve. It is also shown that, with the proper choice of resonant-tunneling structure and pump amplitude, most of the harmonic output power can be confined to a single odd-harmonic frequency. Fifth-harmonic multiplication was demonstrated with an output at 21.75 GHz and a power conversion efficiency of 0.5 percent, and a fifth-harmonic efficiency of 2.7 percent was achieved in a circuit simulation using an improved I-V curve.

  19. Fermion tunneling from dynamical horizons

    NASA Astrophysics Data System (ADS)

    Di Criscienzo, R.; Vanzo, L.

    2008-06-01

    The instability against emission of fermionic particles by the trapping horizon of an evolving black hole is analyzed and confirmed using the Hamilton-Jacobi tunneling method. This method automatically selects one special expression for the surface gravity of a changing horizon. The results also apply to point masses embedded in an expanding universe. As a bonus of the tunneling method, we gain the insight that the surface gravity still defines a temperature parameter as long as the evolution is sufficiently slow that the black-hole pass through a sequence of quasi-equilibrium states, and that black holes should be semi-classically unstable even in a hypothetical world without bosonic fields.

  20. Observing remnants by fermions' tunneling

    SciTech Connect

    Chen, D.Y.; Wu, H.W.; Yang, H. E-mail: iverwu@uestc.edu.cn

    2014-03-01

    The standard Hawking formula predicts the complete evaporation of black holes. In this paper, we introduce effects of quantum gravity into fermions' tunneling from Reissner-Nordstrom and Kerr black holes. The quantum gravity effects slow down the increase of Hawking temperatures. This property naturally leads to a residue mass in black hole evaporation. The corrected temperatures are affected by the quantum numbers of emitted fermions. Meanwhile, the temperature of the Kerr black hole is a function of θ due to the rotation.