Science.gov

Sample records for 192-beam nd-glass laser

  1. Repetitively pulsed Nd-glass slab lasers

    NASA Astrophysics Data System (ADS)

    Denker, B. I.; Kir'ianov, A. V.; Maliutin, A. A.; Kertesz, I.; Kroo, N.

    1989-09-01

    The possibility of obtaining high laser output energies at 1.32 micron using thin LiNdLa phosphate glass slabs with a high Nd(3+) concentration is discussed. Comparison data for 1.054 micron are also given. In the experiments, 3 x 14 x 125-mm slabs were prepared from LiNdLa phosphate glass with Nd concentration 1.2 x 10 to the 21st/cu cm. The uncoated slab facets were tested in a silver-coated quartz tube reflector pumped by 450-microsec flash-lamp pulses. The light passing through the slab returns to it after reflection from the tube surface. Most of the radiation falls on the wider side of the slab at large angles of incidence, thus maximizing its path inside the slab. The 150-mm laser resonator was formed by two flat mirrors. At 1.32 microns an output mirror of reflectivity r = 95 percent was used (with r less than 10 percent at 1.054 micron), while at 1.054 micron, r(output) = 50 percent was chosen. The pump-energy dependence of the output energy was measured.

  2. Multipass reconfiguration of the HELEN Nd:glass laser at the Atomic Weapons Establishment.

    PubMed

    Norman, Michael J; Andrew, James E; Bett, Thomas H; Clifford, Roger K; England, John E; Hopps, Nicholas W; Parker, Kenneth W; Porter, Kenneth; Stevenson, Mark

    2002-06-20

    The HELEN high-power Nd:glass laser has been rebuilt in a new multipass configuration that requires fewer components to maintain existing performance. This is expected to lead to greater system availability and reduced running costs. We describe the new design, discuss some of the key issues that had to be addressed, and present operational results. PMID:12078672

  3. Multipass reconfiguration of the HELEN Nd:glass laser at the Atomic Weapons Establishment.

    PubMed

    Norman, Michael J; Andrew, James E; Bett, Thomas H; Clifford, Roger K; England, John E; Hopps, Nicholas W; Parker, Kenneth W; Porter, Kenneth; Stevenson, Mark

    2002-06-20

    The HELEN high-power Nd:glass laser has been rebuilt in a new multipass configuration that requires fewer components to maintain existing performance. This is expected to lead to greater system availability and reduced running costs. We describe the new design, discuss some of the key issues that had to be addressed, and present operational results.

  4. Multipass reconfiguration of the HELEN Nd:glass laser at the Atomic Weapons Establishment

    NASA Astrophysics Data System (ADS)

    Norman, Michael J.; Andrew, James E.; Bett, Thomas H.; Clifford, Roger K.; England, John E.; Hopps, Nicholas W.; Parker, Kenneth W.; Porter, Kenneth; Stevenson, Mark

    2002-06-01

    The HELEN high-power Nd:glass laser has been rebuilt in a new multipass configuration that requires fewer components to maintain existing performance. This is expected to lead to greater system availability and reduced running costs. We describe the new design, discuss some of the key issues that had to be addressed, and present operational results.

  5. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    SciTech Connect

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  6. The output beam quality of a Q-switched Nd:glass slab laser

    NASA Technical Reports Server (NTRS)

    Reed, Murray K.; Byer, Robert L.

    1990-01-01

    The authors have constructed and tested a flashlamp pumped, Q-switched, Nd:glass zigzag slab laser. The thermally induced optical distortion through the slab is minimized by uniform pumping and cooling and the use of corrective pump shields at the slab ends. The laser spatial output for Q-switched resonators has been measured and modeled. It is shown that a larger aperture planar oscillator has an output divergence many times above the diffraction limit. Operation as a one-dimensional unstable resonator in the wide direction of the slab allows the efficient extraction of energy in a high-quality beam. Near-diffraction-limited laser output of 5 J at 4 Hz is achieved with a resonator that includes an intracavity telescope to correct for residual defocusing in the thin direction of the slab.

  7. Construction of the 1 kJ Nd: glass laser facility at KAERI

    NASA Astrophysics Data System (ADS)

    Lim, C.; Hong, S.-K.; Ko, K.; Jin, J.-T.; Kim, M.; Yun, D.-H.; Li, L.-J.; Lee, D.-W.; Lee, K.-T.; Kim, C.-J.

    2008-05-01

    We report on the design and present status of a 1 kJ Nd:Glass laser facility for basic research on quantum engineering at KAERI (Korea Atomic Energy Research Institute). By applying a newly designed spatial filter with a serrated aperture, we improved the diffracted Gaussian spatial profile of an oscillator into a flat-top one. The laser system consists of 4 beam lines, each with the energies of more than 200 J at the nano-second regime. We measured the gain and spatial profiles of each amplification stage. A spectral shaping by a two-stage OPCPA (Optical Parametric Chirped Amplifier) for a pico-second front end was studied to compensate for gain narrowing in multi-stage amplifier chains.

  8. High-Throughput Laser Peening of Metals Using a High-Average-Power Nd: Glass Laser System

    SciTech Connect

    Dane, C.B.; Hackel, L.A.; Halpin, J.; Daly, J.; Harrisson, J.; Harris, J.

    1999-11-01

    Laser shot peening, a surface treatment for metals, is known to induce residual compressive stresses to depths of over 1 mm providing improved component resistance to various forms of failure. Recent information also suggests that thermal relaxation of the laser induced stress is significantly less than that experienced by other forms of surface stressing that involve significantly higher levels of cold work. We have developed a unique solid state laser technology employing Nd:glass amplifier slabs and SBS phase conjugation that enables this process to move into high throughput production processing.

  9. LULI 100-TW Ti:sapphire/Nd:glass laser: a first step toward a high-performance petawatt facility

    NASA Astrophysics Data System (ADS)

    Zou, Jiping; Descamps, Denise; Audebert, Patrick; Baton, S. D.; Paillard, J. L.; Pesme, Denis; Michard, Alain; Sautivet, A. M.; Timsit, H.; Migus, Arnold

    1999-07-01

    We have implemented a Ti:sapphire/mixed Nd:glass laser syste at LULI producing sub-picosecond pulses in the 100 TW power range. Focusing to a 1.5-times diffraction-limited spot results in a peak intensity on target over 1019 W/cm2. Significant experiments in particle acceleration, X-ray laser and other basic plasma physics researchers have been carried out since this implementation. This paper details the characteristics of the present set-up and the main path of progress towards a high performance petawatt facility.

  10. Noncritically phase-matched fourth-harmonic generation of Nd:glass lasers and design of final optics assembly.

    PubMed

    Jiang, Xiuqing; Ji, Lailin; Liu, Dong; Tang, Shunxing; Zhu, Baoqiang; Lin, Zunqi

    2016-05-20

    The noncritically phase-matched (NCPM) fourth-harmonic generation (FHG) with partially deuterated dihydrogen phosphate (KD*P) crystal at an Nd:glass laser radiation wavelength of 1053.1 nm has been confirmed. NCPM FHG has been achieved in 70% and 65% deuterated KD*P crystal at the temperature of 17.7°C and 29.3°C, respectively. The angular acceptance of 70% and 65% deuterated KD*P crystals fixed at their NCPM temperature were measured, which were 53 and 55 mrad, respectively. The application of the NCPM FHG in a high-power laser facility for inertial confinement fusion is also discussed. Based on the theoretical analysis, the NCPM KD*P can be placed after the focus lens; thus, the laser-induced damage of a fused-silica lens at ultraviolet can be avoided. PMID:27411142

  11. Optimization of x-ray sources for proximity lithography produced by a high average power Nd:glass laser

    SciTech Connect

    Celliers, P.; DaSilva, L.B.; Dane, C.B.

    1995-07-01

    We measured the conversion efficiency of laser pulse energy into x-rays from a variety of solid planar targets and a Xe gas puff target irradiated using a high average power Nd:glass slab laser capable of delivering 13 ns FWHM pulses at up to 20 J at 1.053 {mu}m and 12 J at 0.53 {mu}m. Targets where chosen to optimize emission in the 9-19 {Angstrom} wavelength band, including L-shell emission from materials with atomic numbers in the Z=24-30 and M-shell emission from Xe (Z=54). With 1.053 {mu}m a maximum conversion of 10% into 2{pi} sr was measured from solid Xe and type 302 stainless steel targets. At 0.527 {mu}m efficiencies of 12-18%/(2{pi} sr) were measured for all of the solid targets in the same wavelength band. The x-ray conversion efficiency from the Xe gas puff target was considerably lower, at about 3%/(2{pi} sr) when irradiated with 1.053 {mu}m.

  12. Prepulse-free 30-TW, 1-ps Nd:glass laser.

    PubMed

    Yamakawa, K; Shiraga, H; Kato, Y; Barty, C P

    1991-10-15

    A 30-TW,1.0-ps laser pulse at 1053 nm has been generated by chirped-pulse amplification in a large-aperture Nd:phosphate glass laser system. A peak-to-prepulse intensity ratio of better than 10(7) was obtained by temporal windowing of a self-phase-modulated chirped pulse before amplification and compression.

  13. Review of upconverted Nd-glass laser plasma experiments at the Lawrence Livermore National Laboratory

    SciTech Connect

    Manes, K.R.

    1982-05-01

    Systematic scaling experiments aimed at deducing the dependence of laser-plasma interaction phenomena on target plasma material and target irradiation history have been underway in laboratories all over the world in recent years. During 1980 and 1981 the Livermore program undertook to measure the laser light absorption of high and low Z plasmas and the partition of the absorbed energy amongst the thermal and suprathermal electron populations as a function of both laser intensity and wavelength. Simulations suggested that short wavelength laser light would couple more efficiently than longer wavelengths to target plasmas. Shorter wavelength heating of higher electron plasma densities would, it was felt, lead to laser-plasma interactions freer of anomalous absorption processes. The following sections review LLNL experiments designed to test these hypotheses.

  14. Gain measurements at 182 /angstrom/ in C VI generated by a Nd/glass laser

    SciTech Connect

    Kim, D.; Skinner, C.H.; Umesh, G.; Suckewer, S.

    1988-11-01

    We present recent gain measurements in C VI at 182 A for a soft x-ray amplifier produced by a line-focused glass laser(1.053 ..mu..m) on a solid carbon target. The maximum gain measured was 8 +- 1 cm/sup /minus/1/ in the recombining plasma column with additional radiation cooling by iron impurities. 10 refs., 3 figs.

  15. Amplification of ultrashort pulses with Nd:glass amplifiers pumped by alexandrite free running laser

    SciTech Connect

    Mourou, G.A.; Squier, J.; Coe, J.S.; Harter, D.J.

    1993-08-10

    A method is described of producing an ultra-high peak power pulse, the method comprising the steps of: receiving a short optical pulse having a predetermined duration from an optical oscillator; stretching in time the short optical pulse by a factor of approximately between 100 and 10,000 to produce a timestretched optical pulse to be amplified; amplifying the time-stretched optical pulse in a solid state amplifying media, said step of amplifying additionally including the step of combining the time-stretched optical pulse with an optical energy generated by a laser used to pump the solid-state amplifying media; and compressing in time the amplified time-stretched optical pulse, whereby the amplitude of the resulting amplified time-stretched compressed optical pulse is increased.

  16. Repetitively pulsed regime of Nd : glass large-aperture laser amplifiers

    SciTech Connect

    Kuzmin, A A; Khazanov, Efim A; Shaykin, A A

    2012-04-30

    A repetitively pulsed operation regime of neodymium glass rod laser amplifiers with apertures of 4.5, 6, 8.5, and 10 cm is analysed using experimental data. The limits of an increase in the pulse repetition rates are determined. Universal dependences are obtained, which help finding a compromise between increasing the repetition rate and enhancing the gain for each particular case. In particular, it is shown that an amplifier 4.5-cm in diameter exhibits a five-fold safety factor with respect to a thermo-mechanical breakdown at a repetition rate of 1 pulse min{sup -1} and stored energy of above 100 J. A strong thermally induced birefringence in two such amplifiers is experimentally reduced to a 'cold' level by employing a 90 Degree-Sign optical rotator.

  17. Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems

    SciTech Connect

    Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

    1991-03-13

    To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-{mu}m output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 {times} 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs.

  18. High amplified spontaneous emission contrast of 1011 in a Nd:glass laser based on a hybrid double chirped pulse amplification scheme

    NASA Astrophysics Data System (ADS)

    Lu, X. M.; Leng, Y. X.; Sui, Z.; Li, Y. Y.; Zhang, Z. X.; Xu, Y.; Guo, X. Y.; Liu, Y. Q.

    2014-10-01

    By using a Ti:sapphire-Nd:glass hybrid double chirped pulse amplification scheme and a pulse cleaner based on optical parametric amplification and second harmonic generation, we demonstrate high amplified spontaneous emission (ASE) contrast at 1053 nm. The optimized ASE temporal contrast of the output pulse is about 1011 at about 160 ps before the main peak with an output of 140 mJ/500 fs. And the potential of 10 J level output with high ASE contrast is demonstrated in a laser system with attenuated injection.

  19. Thermal-induced wavefront aberration in sapphire-cooled Nd:glass slab

    NASA Astrophysics Data System (ADS)

    Huang, Tingrui; Huang, Wenfa; Wang, Jiangfeng; Lu, Xinghua; Li, Xuechun

    2016-07-01

    We demonstrate for the first time a sapphire-cooled Nd:glass composite assembly based on optical bonding of two thin sapphire plates to a Nd:glass slab for efficient heat removal. The distributions of temperature, stress, depolarization loss, and wavefront aberration were obtained by finite element analysis. The simulation results were verified experimentally. Although the heat generation rate was 4.5 W/cm3, the temperature increase was within 5.7 °C at the center of the sapphire surface, and the whole wavefront aberration was 1.21 λ ( λ = 1053 nm). This demonstration opens up a viable path toward novel repetition rate Nd:glass laser amplifier designs with efficient double-sided room-temperature heat sinking on both sides of the slab.

  20. Optimization of X-ray sources from a high-average-power ND:Glass laser-produced plasma for proximity lithography

    SciTech Connect

    Celliers, P.; Da Silva, L.B.; Dane, C.B.

    1996-06-01

    The concept of a laser-based proximity lithography system for electronic microcircuit production has advanced to the point where a detailed design of a prototype system capable of exposing wafers at 40 wafer levels per hr is technically feasible with high-average-power laser technology. In proximity x-ray lithography, a photoresist composed of polymethyl- methacrylate (PMMA) or similar material is exposed to x rays transmitted through a mask placed near the photoresist, a procedure which is similar to making a photographic contact print. The mask contains a pattern of opaque metal features, with line widths as small as 0.12 {mu}m, placed on a thin (1-{mu}m thick) Si membrane. During the exposure, the shadow of the mask projected onto the resist produces in the physical and chemical properties of the resist a pattern of variation with the same size and shape as the features contained in the metal mask. This pattern can be further processed to produce microscopic structures in the Si substrate. The main application envisioned for this technology is the production of electronic microcircuits with spatial features significantly smaller than currently achievable with conventional optical lithographic techniques (0.12 {micro}m vs 0.25 {micro}m). This article describes work on optimizing a laser-produced plasma x-ray source intended for microcircuit production by proximity lithography.

  1. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    SciTech Connect

    Stafford, David

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  2. Fatigue life of laser cut metals

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1986-01-01

    Fatigue tests were conducted to determine the actual reduction in fatigue life due to weight removal for balancing by: hand grinding, low power (20 watt) Nd:glass laser, and high power (400 watt) Nd:YAG laser.

  3. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  4. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  5. The search for solid state fusion lasers

    SciTech Connect

    Weber, M.J. )

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs.

  6. Laser program annual report, 1980

    SciTech Connect

    Coleman, L.W.; Krupke, W.F.; Strack, J.R.

    1981-06-01

    Volume 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2, also in the first volume, covers the work on solid state Nd:glass lasers, including systems operations, Nova and Novette system development, and supporting research and development activities.

  7. Phase correction in a laser chain using an optically addressed LC SLM

    NASA Astrophysics Data System (ADS)

    Wattelier, B.; Chanteloup, Jean-Christophe; Zou, Jiping; Sauteret, A.; Migus, Arnold; Huignard, Jean-Pierre; Loiseaux, Brigitte

    2001-11-01

    We show wave front correction of a 300 fs/60J laser pulse serie. This correction is based on an optically addressed liquid crystal optical valve (OASLM) which induces high resolution phase modulations. When performed before complete thermal relaxation of the laser Nd:glass amplifiers, this correction allows to increase the system repetition rate by a factor three.

  8. Physics of laser fusion. Volume III. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO/sub 2/, KrF, and I/sub 2/, for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO/sub 2/ gas laser systems; these systems now deliver > 10/sup 4/ J and 20 x 10/sup 12/ W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10/sup 12/ W of 1-..mu..m radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers.

  9. Laser plasma influence on the space-time structure of powerful laser radiation

    NASA Astrophysics Data System (ADS)

    Ananyin, O. B.; Bogdanov, G. S.; Vovchenko, E. D.; Gerasimov, I. A.; Kuznetsov, A. P.; Melekhov, A. P.

    2016-01-01

    This paper deals with the influence of laser plasma on the structure of the radiation field of a powerful Nd-glass laser with pulse energy up to 30 J and with the diameter of the output beam 45 mm. Laser plasma is generated by focusing the laser radiation on a low-density target such as nylon mesh and teflon or mylar films. Temporal profile of the laser pulse with a total duration of 25 ns consists of a several short pulse train. Duration of each pulse is about 2 ns. Notable smoothing of spatially non-uniform radiation structure was observed in the middle of the laser pulse.

  10. Efficiency of Nd laser materials with laser diode pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Cross, Patricia L.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    For pulsed laser-diode-pumped lasers, where efficiency is the most important issue, the choice of the Nd laser material makes a significant difference. The absorption efficiency, storage efficiency, and extraction efficiency for Nd:YAG, Nd:YLF, Nd:GSGG, Nd:BEL, Nd:YVO4, and Nd:glass are calculated. The materials are then compared under the assumption of equal quantum efficiency and damage threshold. Nd:YLF is found to be the best candidate for the application discussed here.

  11. Development of adaptive resonator techniques for high-power lasers

    SciTech Connect

    An, J; Brase, J; Carrano, C; Dane, C B; Flath, L; Fochs, S; Hurd, R; Kartz, M; Sawvel, R

    1999-07-12

    The design of an adaptive wavefront control system for a high-power Nd:Glass laser will be presented. Features of this system include: an unstable resonator in confocal configuration, a multi-module slab amplifier, and real-time intracavity adaptive phase control using deformable mirrors and high-speed wavefront sensors. Experimental results demonstrate the adaptive correction of an aberrated passive resonator (no gain).

  12. The National Ignition Facility and the Golden Age of High Energy Density Science

    SciTech Connect

    Meier, W; Moses, E I; Newton, M

    2007-09-27

    The National Ignition Facility (NIF) is a 192-beam Nd:glass laser facility being constructed at the Lawrence Livermore National Laboratory (LLNL) to conduct research in inertial confinement fusion (ICF) and high energy density (HED) science. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and highest-energy laser system. The NIF is poised to become the world's preeminent facility for conducting ICF and fusion energy research and for studying matter at extreme densities and temperatures.

  13. Plans for Ignition Experiments on NIF

    SciTech Connect

    Moses, E

    2007-07-27

    The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) in support of inertial confinement fusion (ICF) and high-energy-density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities and for producing and developing ICF. The ignition studies will be the next important step in developing inertial fusion energy.

  14. National Ignition Facility, subsystem design requirements beam control {ampersand} laser diagnostics SSDR 1.7

    SciTech Connect

    Bliss, E.

    1996-11-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control & Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs.

  15. Generation of Stark spectral components in Nd:YAP and Nd:YAG lasers by using volume Bragg gratings

    SciTech Connect

    Vorob'ev, Nikolai S; Glebov, L B

    2009-01-31

    Generation of Stark spectral components in free-running Q-switched Nd:YAP (1064 nm and 1073 nm) and Nd:YAG (1062 nm) lasers is obtained. For this purpose reflecting volume Bragg gratings placed into the laser resonator and permitting to tune the laser emission spectrum were used. Stable generation of Stark components in both lasers is obtained. The possibility of obtaining two-frequency generation in an Nd-glass laser with the help of these gratings is shown. (control of laser radiation parameters)

  16. High power phase conjugated solid state lasers

    SciTech Connect

    Hackel, L.A.; Dane, C.B.; Zapata, L.E.; Hermann, M.R.

    1994-07-01

    Three laser systems that are being developed for use in x-ray generation which incorporate SBS phase conjugate mirrors are described. A 25J/pulse Nd:glass laser is being developed for commercial proximity print x-ray lithography; a 0.5J/pulse, 1.3 kHz pulse repetition frequency laser is being built for soft x-ray projection lithography; and a 1 kJ/pulse laser driver for a table top x-ray laser has been designed. The results of prototypical experimental investigations are presented and the basic design principles for high average power phase conjugated laser systems shared by each of these lasers are discussed.

  17. Testing a new multipass laser architecture on beamlet

    SciTech Connect

    Vann, C.S.; Laniesse, F.; Patton, H.G.

    1996-06-01

    The authors completed proof-of-principle tests on Beamlet for a new multipass laser architecture that is the baseline design for the French Megajoule laser and a backup concept for the U.S. National Ignition Facility (NIF) laser. These proposed laser facilities for Inertial Confinement Fusion (ICF) research are described in their respective Conceptual Design Reports. The lasers are designed to deliver 1.8 MJ and 500 TW of 0.35-{mu}m light onto a fusion target using 240 independent beams for the Megajoule laser and 192 beams for the NIF laser. Both lasers use flash-lamp pumped glass amplifiers and have approximately 38-cm square output beams. However, there are significant differences in their architecture. This article describes those differences, and their significance.

  18. Pulse synchronisation in passively Q-switched lasers emitting at 1.053 and 1.064 {mu}m

    SciTech Connect

    Bagdasarov, V Kh; Denisov, N N; Malyutin, A A; Chigaev, I A

    2009-10-31

    Pulse synchronisation with an accuracy of no worse than {+-}5 ns is demonstrated in passively Q-switched neodymium phosphate glass and Nd:YAG lasers. Two operating regimes are realised: the 'sub-threshold' regime (when the slave Nd:YAG laser does not generate a giant pulse if its passive Q switch is not irradiated by the master Nd:glass laser) and the 'above-threshold' regime (when the pulse irradiating the passive Q switch of the slave laser advances its generation). (control of laser radiation parameters)

  19. Thrust Measurement of Laser Detonation Thruster with a Pulsed Glass Laser

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Han, Taro; Michigami, Keisuke; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2011-11-01

    Experimental studies were carried out for measuring the laser propulsion thrust with using of a Q-switched Nd:Glass laser. In the tests, a laser beam with 33 ns FWHM pulse width was focused to generate breakdown in the cone-shaped nozzle of aluminum thrusters which were fixed at the end of a ballistic pendulum. The pulse energy used was 1.0 J and the focusing number is 6.27, which gave the highest energy conversion efficiency from laser energy to that of induced blast wave as found in previous research. The momentum coupling coefficient Cm dependency on nozzle apex angles, 30°, 45° and 60°, were investigated with carefully controlling of the laser ignition positions. Results show that, solid-state laser could be a candidate to suffice laser propulsion missions in term of Cm it can achieve.

  20. 100-J UV laser for dynamic compression research

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Fochs, S. F.; Bromage, J.; Broege, D.; Cuffney, R.; Currier, Z.; Dorrer, C.; Ehrich, B.; Engler, J.; Guardalben, M.; Kephalos, N.; Marozas, J.; Roides, R.; Zuegel, J.

    2016-03-01

    A 100-J, 351-nm laser has been developed for the Dynamic Compression Sector located at the Advanced Photon Source. This laser will drive shocks in solid-state materials which will be probed by picosecond x-ray pulses available from the synchrotron source. The laser utilizes a state-of-the-art fiber front end providing pulse lengths up to 20 ns with pulse shapes tailored to optimize shock trajectories. A diode-pumped Nd:glass regenerative amplifier is followed by a four-pass, flash-lamp-pumped rod amplifier. The regenerative amplifier is designed to produce up to 20 mJ with high stability. The final amplifier uses a six-pass, 15-cm, Nd:glass disk amplifier based on an OMEGA laser design. A KDP Type-II/Type-II frequency tripler configuration converts the 1053-nm laser output to a wavelength of 351 nm and the ultraviolet beam is image relayed to the target chamber. Smoothing by Spectral Dispersion and polarization smoothing have been optimized to produce uniform shocks in the materials to be tested. Custom control software collects all diagnostic information and provides a central location for all aspects of laser operation.

  1. Pump power stability range of single-mode solid-state lasers with rod thermal lensing

    SciTech Connect

    De Silvestri, S.; La Porta, P.; Magni, V.

    1987-11-01

    The pump power stability range of solid-state laser resonators operating in the TEM/sub 00/ mode has been thoroughly investigated. It has been shown that, for a very general resonator containing intracavity optical systems, rod thermal lensing engenders a pump power stability range which is a characteristic parameter of laser material and pump cavity, but is independent of resonator configuration. Stability ranges have been calculated and critically discussed for Nd:YAG, Nd:Glasses, Nd:Cr:GSGG, and alexandrite. The independence of the pump power stability range from the resonator configuration has been experimentally demonstrated for a CW Nd:YAG laser.

  2. Generation of intense 25-fsec pulses by a pulsed laser system

    SciTech Connect

    Angel, G.; Gagel, R.; Laubereau, A. )

    1989-09-15

    A pulsed femtosecond dye laser is demonstrated with relaxed stability requirements, improved output reproducibility, and significant pulse shortening. Starting with a sequence of {approx}350 pump pulses of a Nd:glass laser (repetition rate 6 Hz, duration 1.3 psec), pulses of 25 fsec and 10 nJ are generated at 566 nm. A non-colliding-pulse, mode-locked ring laser is used with dispersion compensation and the dyes Rhodamine 6G, DQOCI, and DTCI. The evolution of the pulse parameters as a function of cavity round trips is investigated.

  3. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  4. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    NASA Astrophysics Data System (ADS)

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94 μm), titanium:sapphire femtosecond laser system (λ=1700 nm), and Nd:glass femtosecond laser (λ=1053 nm). Bovine samples were ablated at fluences of 8 to 18 J/cm2 with the erbium:YAG laser, at a power of 300±15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  5. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery.

    PubMed

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J F

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuriesin the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential useof laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ = 2.94 μm), titanium:sapphire femtosecond laser system (λ = 1700 nm), and Nd:glass femtosecond laser (λ = 1053 nm). Bovine samples were ablated at fluences of 8 to 18 J∕cm2 with the erbium:YAG laser, at a power of 300 ± 15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ∕pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J∕cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  6. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    PubMed Central

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    Abstract. Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94  μm), titanium:sapphire femtosecond laser system (λ=1700  nm), and Nd:glass femtosecond laser (λ=1053  nm). Bovine samples were ablated at fluences of 8 to 18  J/cm2 with the erbium:YAG laser, at a power of 300±15  mW with the titanium:sapphire femtosecond system, and at an energy of 3  μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18  J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates. PMID:25200394

  7. Tunable femtosecond laser based on the Nd3+:BaLaGa 3O 7 disordered crystal

    NASA Astrophysics Data System (ADS)

    Agnesi, A.; Pirzio, F.; Tartara, L.; Ugolotti, E.; Zhang, H.; Wang, J.; Yu, H.; Petrov, V.

    2014-03-01

    We demonstrate clear inhomogeneous linewidth broadening for the disordered laser crystal Nd:BaLaGa3O7 (Nd:BLG), which is very promising for the replacement of Nd:glass for ultrafast sources in multiwatt power applications. A Nd:BLG laser oscillator passively mode-locked and pumped by a Ti:sapphire laser generated pulses of 316-fs duration at 1060 nm, whose spectrum completely fills the fluorescence peak at such wavelength. More interestingly, sub-picosecond pulses were smoothly tunable in a 20-nm range, from 1070 to 1090 nm. The shortest pulses achieved were 290 fs long, centered at 1075 nm.

  8. Solid-state laser sources for remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Kane, T.; Eggleston, J.; Long, S. Y.

    1983-01-01

    Recent progress in slab-geometry and conventional rod Nd:YAG solid-state lasers for applications in remote sensing is presented. Developments in slab geometry lasers, which were aimed at improving pulse energy and tuning range, have been based on the use of a Nd:glass substrate with a zig-zag optical path, with selective Raman shifting in gases and harmonic generation in LiNbO3 and KDP to extend the tuning range into the UV and visible regions. The theoretically predicted advantages of the elimination of birefringence and thermal and stress-induced focusing in the slab-geometry laser have been confirmed in measurements on a test-bed Nd:glass system, and a CW lamp pumped Nd:YAG oscillator, which have also demonstrated an order of magnitude improvement in laser performance. A single axial mode Nd:YAG oscillator has also been designed which, operating in a 3-msec quasi-CW mode, has a chirp rate of 30 kHz/microsec and a free-running stability of + or - 20 MHz. With chirp compensation, this stability is adequate for wind velocity measurements by coherent lidar.

  9. Fast electron transport and heating in ultraintense laser pulse interaction with solid targets

    NASA Astrophysics Data System (ADS)

    Koenig, Michel; Amiranoff, Francois; Baton, Sophie; Gremillet, Laurent; Martinolli, Emanuele; Batani, Dimitri; Bernardinello, Andrea; Greison, Gabriella; Hall, Tom; Rabec Le Gloahec, Marc; Rousseaux, Christophe; Santos, Joao

    2000-10-01

    In the context of the fast electron transport in solid matter and the fast ignitor scheme, we report on results from ultraintense laser pulse interaction with thick targets. Experiments have been performed at LULI with the 100 TW CPA Nd:glass laser, at intensities up to a few 10^19 W/cm^2. Images obtained from classical and chirped-pulse time-resolved reflectometry diagnostics of the back-side target give evidence of the rear surface heating; the geometry and the dynamics of the energy deposition of the relativistic electrons flux into matter are also inferred.

  10. Development and Characterization of a Hybrid TITANIUM:SAPPHIRE/NEODYMIUM:GLASS Multiterawatt Laser System

    NASA Astrophysics Data System (ADS)

    Chien, Chingyuan

    The broad bandwidth of Ti:sapphire, and the high energy storage/extraction capability of Nd:glass have made it possible to develop a hybrid Ti:sapphire/Nd:glass chirped -pulse-amplification (CPA) laser system. This 400-fs laser system generates pulses with a contrast ratio of 10 ^6:1, and is capable of producing a focused intensity in excess of 10^{19} W/cm^2. The plasma produced by the interaction of an intense 400-fs laser pulse with an Al solid target is studied using a time-integrated x-ray spectrometer. The temporal behavior of the keV x-ray pulse emitted from the laser-produced plasma is studied with an x-ray streak camera (with 2 ps time resolution). The characteristic of the x-ray emission strongly depends on the contrast of the laser pulse. Second harmonic generation of a 1 mu m, 400-fs laser pulses is investigated for Type I and Type II conversion schemes with a KDP crystal. High conversion efficiencies (up to 80%) are obtained in the intensity range from 100-400 GW/cm^2, with no obvious damage to the crystal. In the Type II predelay scheme, a pulse shortening effect is observed and the shortest measured pulse duration is 180 fs. The experimental results generally agree with the simulations of the code MIXER.

  11. DPSSL pumped 20-TW Ti:sapphire laser system for DD fusion experiment

    NASA Astrophysics Data System (ADS)

    Sekine, T.; Hatano, Y.; Takeuchi, Y.; Kawashima, T.

    2016-03-01

    A diode-pumped solid-state laser (DPSSL) pumped 20-TW output Ti:sapphire laser system has been developed. A diode-pumped Nd:glass laser with output energy of 12.7 J in 527 nm was used as a pump source for a 20-TW Ti:sapphire amplifier. A CeLiB6O10 nonlinear optical crystal was used as a frequency doubler of the Nd:glass DPSSL[1]. Figure 1 shows typical output pulse energy of the 20-TW amplifier as a function of pumping energy and a near field pattern. A 1.65 J pulse energy was obtained by 4.5 J pump energy. The amplified seed pulse is compressed to typically 60 fs as shown in Fig. 1 by a vacuumed pulse compressor with 80% of transmissivity. Encircled energy ratio, into a circled with 8 μm diameter area, of far field pattern focused by off-axis parabolic mirror with F# of 3 is numerically evaluated to 40% at TW class output condition. Then focal intensity would reach to 1018W/cm2. This all- DPSSL system contributes for stable and continual investigation of laser induced plasma experiment. We have succeeded continual and high efficient generation of DD fusion neutron from CD nano-particles by cluster fusion scheme using the 20-TW laser. A yield of ∼105 neutrons per shot was stably observed during continuous 100 shots with repetition rate of 0.1Hz.

  12. Advances in optical materials for large aperture lasers

    SciTech Connect

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  13. Design and performance of a multiterawatt, subpicosecond neodymium glass laser

    SciTech Connect

    Patterson, F.G.; Perry, M.D.

    1990-09-01

    Broad-band solid-state materials such as Nd:Glass, Ti:Sapphire and Alexandrite, exhibit saturation fluences on the order of Joules/cm{sup 2}. Unfortunately, the large stored energy density of these solid state materials cannot be accessed directly with short pulses due to beam filamentation caused by the intensity dependent refractive index. This limits the power density in a solid state amplifier to only a few GW/cm{sup 2}. The application of chirped- pulsed amplification (CPA) to solid-state lasers circumvents this problem. With the CPA technique, a chirped, comparatively long pulse is produced and compressed to a short pulse only after amplification. The intensity in the amplifiers is kept below the level for significant nonlinear phase distortion. In this paper, we present the design and performance of a small scale Nd:Glass laser system employing chirped-pulse amplification to produce subpicosecond pulses exhibiting peak power exceeding 10 TW. 30 refs., 2 figs.

  14. Elliptical X-ray analyzer spectrograph application to a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Tanaka, Tina J.; Palmer, Merrill A.; Henke, Burton L.

    1985-08-01

    A preliminary experimental study was conducted on the application of an elliptical analyzer spectrograph to X-ray diagnostics of pulsed plasmas. This spectrograph was designed to record a range of 100-2000 eV X-rays on calibrated Kodak RAR-21497 film. Using point calibrations and theoretical models, the spectrograph efficiency was predicted. Basic spectrograph geometry and photographic calibrations are presented in companion papers. A 20 J, 6 ns duration Nd:glass laser pulse was focussed upon planar targets of gold, aluminum, teflon and boron carbide. Sample spectra for line and X-ray yields analysis are presented.

  15. High energy, high average power solid state green or UV laser

    DOEpatents

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  16. Fluence Thresholds for Laser-Induced Damage of Optical Components in the Injector Laser of the SSRL Gun Test Facility

    SciTech Connect

    Boton, P

    2005-01-31

    Damage threshold fluences for several optical components were measured at three wavelengths using the injector laser at SSRL's Gun Test Facility. Measurements were conducted using the fundamental ir wavelength at 1053 nanometers and harmonics at 526 nm and 263 nm with 3.4ps pulses (1/e{sup 2} full width intensity); ir measurements were also conducted with 850 ps pulses. Practical surfaces relevant to the laser system performance are emphasized. Damage onset was evidenced by an alteration of the specular reflection of a cw probe laser (650 nm) from the irradiated region of the target surface. For the case of stretched ir pulses, damage to a Nd:glass rod was observed to begin at a site within the bulk material and to progress back toward the incident surface.

  17. 1981 laser program annual report

    SciTech Connect

    Not Available

    1982-08-01

    This report is published in sections that correspond to the division of technical activity in the Program. Section 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2 covers the work on solid-state Nd:glass lasers, including systems operations and Nova and Novette systems development. Section 3 reports on target-design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication group, Section 5 contains the results of our diagnostics development, and Section 6 reports the results of laser-target experiments conducted during the year, along with supporting research and development activities. Section 7 presents the results from laser research and development, including solid-state R and D and the theoretical and experimental research on advanced lasers. Section 8 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial-confinement fusion systems.

  18. The National Ignition Facility: the World's Largest Optics and Laser System

    SciTech Connect

    Moses, E I; Campbell, J H; Stolz, C J; Wuest, C R

    2003-01-27

    The National Ignition Facility, a center for the study of high energy density plasma physics and fusion energy ignition, is currently under construction at the Lawrence Livermore National Laboratory. The heart of the NIF is a frequency tripled, flashlamp-pumped Nd:glass laser system comprised of 192 independent laser beams. The laser system is capable of generating output energies of 1.8MJ at 351nm and at peak powers of 500 TW in a flexible temporal pulse format. A description of the NIF laser system and its major components is presented. We also discuss the manufacture of nearly 7500 precision large optics required by the NIF including data on the manufactured optical quality vs. specification. In addition, we present results from an on-going program to improve the operational lifetime of optics exposed to high fluence in the 351-nm section of the laser.

  19. Computational study of alkali-metal-noble gas collisions in the presence of nonresonant lasers - Na + Xe + h/2/pi/omega sub 1 + h/2/pi/omega sub 2 system

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; Chang, C.; George, T. F.; Laskowski, B.; Stallcop, J. R.

    1980-01-01

    The collision of Na with Xe in the presence of both the rhodamine-110 dye laser and the Nd-glass laser is investigated within a quantum-mechanical close-coupled formalism, utilizing ab initio potential curves and transition dipole matrix elements. Both one- and two-photon processes are investigated; the Na + Xe system is not asymptotically resonant with the radiation fields, so that these processes can only occur in the molecular collision region. The one-photon processes are found to have measurable cross sections at relatively low intensities; even the two-photon process has a significant section for field intensities as low as 10 MW/sq cm.

  20. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  1. An Overview of High Energy Short Pulse Technology for Advanced Radiography of Laser Fusion Experiments

    SciTech Connect

    Barty, C J; Key, M; Britten, J; Beach, R; Beer, G; Brown, C; Bryan, S; Caird, J; Carlson, T; Crane, J; Dawson, J; Erlandson, A C; Fittinghoff, D; Hermann, M; Hoaglan, C; Iyer, A; Jones, L; Jovanovic, I; Komashko, A; Landen, O; Liao, Z; Molander, W; Mitchell, A; Moses, E; Nielsen, N; Nguyen, H; Nissen, J; Payne, S; Pennington, D; Risinger, L; Rushford, M; Skulina, K; Spaeth, M; Stuart, B; Tietbohl, G; Wattellier, B

    2004-06-18

    The technical challenges and motivations for high-energy, short-pulse generation with NIF-class, Nd:glass laser systems are reviewed. High energy short pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on the NIF. Development of meter-scale, high efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of HEPW pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fiber-based, seed-laser systems. The key motivations for high energy petawatt pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  2. Beam Diagnostics On The HELEN Laser System At Atomic Weapons Research Establishment (AWRE)

    NASA Astrophysics Data System (ADS)

    Cooke, R. L.; Norman, C. J.; Danson, C. N.

    1982-11-01

    The HELEN laser system at the Atomic Weapons Research Establishment, is a two beam Nd-glass laser used for the study of laser plasma phenomena relevant to weapons physics, and is capable of generating 100 J pulses of 1TW peak power in each arm. This paper presents an overview of the system with particular reference to recent developments in beam diagnostics. The diagnostics discussed fall into two categories of equal importance. Firstly, the measurement of beam parameters required for the complete analysis of experimental target data, namely laser pulse energy, pulse width, pre-pulse ratio and far-field intensity distribution; and secondly, measurement of parameters used to ensure optimum system performance such as near-field intensity distribution, amplifier gains and passive component transmission.

  3. Long-laser-pulse method of producing thin films

    DOEpatents

    Balooch, Mehdi; Olander, Donald K.; Russo, Richard E.

    1991-01-01

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  4. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  5. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  6. Nanosecond and femtosecond laser spectroscopy of molecules of biological interest

    NASA Astrophysics Data System (ADS)

    Villani, P.; Orlando, S.; Santagata, A.; De Bonis, A.; Veronesi, S.; Giardini, A.

    2007-07-01

    This paper mainly concerns on nanosecond and femtosecond laser spectroscopy of aromatic organic compounds as neurotransmitters, and plume diagnostics of the ablated species, in order to characterize the plasma dynamics, i.e. the temporal and spatial evolution of the plume. Optical emission spectroscopy has been applied to characterize the transient species produced in the femtosecond (fs) and nanosecond (ns) regimes. The laser sources employed for optical emission spectroscopy are a frequency-doubled Nd:YAG Handy ( λ = 532 nm, τ = 5 ns) and a frequency-doubled Nd:glass ( λ = 527 nm, τ = 250 fs). These studies aim to detect and give information on the photoexcitation and photodissociation of these biological molecules and to compare the plasma characteristics in the two ablation regimes.

  7. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems. PMID:23736246

  8. Stable-relaxation-oscillation Nd lasers for long-pulse generation

    NASA Technical Reports Server (NTRS)

    Harrison, James; Rines, Glen A.; Moulton, Peter F.

    1988-01-01

    A simple method to produce high-energy neodymium (Nd) laser pulses with durations on the order of 1 microsec is described. Solid-state lasers can be pumped by relatively short flashlamp pulses to produce well-behaved relaxation oscillations in a diffraction-limited beam. Under the right conditons, each output laser pulse consists of a series of discrete subpulses that are ideally suited to efficient, high-energy amplification. Experimental results for an Nd:LiYF4 oscillator/amplifier system are presented along with numerical simulations. These demonstrate that the system operation is predictable and well behaved. Data are also included for a Nd:glass tunable oscillator based on this concept.

  9. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  10. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  11. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  12. All fiber laser using a ring cavity

    NASA Astrophysics Data System (ADS)

    Flores, Alberto Varguez; Pérez, Georgina Beltrán; Aguirre, Severino Muñoz; Mixcóatl, Juan Castillo

    2008-04-01

    Mode-locked laser have a number of potential applications, depending on the wavelength and pulse width. They could be used as sources in communications systems for time division multiplexing (TDM) or wavelength-division-multiplexing (WDM) as spectroscopic tools in the laboratory for time-resolved studies of fast nonlinear phenomena in semiconductors, or as seeds for solid-state amplifers such as Nd:Glass, color center alexandrite, or Ti:Sapphire. Short pulses also have potential use in electro-optic sampling systems, as a source for pulsed sensors, or as tunable seed pulses for lasers in medical applications. Applications such as optical coherent tomography could take advantage of the broad bandwidth of a mode-locked fiber laser rather that the temporal ultra-short pulse width. This work shows the characterization of active mode-locking all-fiber laser by using an acousto-optic frequency shifter to the ring cavity, an erbium doped fiber (EDF) and polarization controllers (PC). The results shows a highly stable mode-locked, low noise of pulse generation with repetition rate of 10 MHz and width of 1.6 ns

  13. Preliminary report: NIF laser bundle review

    SciTech Connect

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-08-31

    As requested in the guidance memo {sup 1}, this committe determined whether there are compelling reasons to recommend a change from the NIF CDR baseline laser. The baseline bundle design based on a tradeoff between cost and technical risk, which is replicated four times to create the required 192 beams. The baseline amplifier design uses bottom loading 1{times}4 slab and flashlamp cassettes for amplifier maintenance and large vacuum enclosures (2.5m high {times} 7m wide in cross-section for each of the two spatial filters in each of the four bundles. The laser beams are arranged in two laser bays configured in a u-shape around the target area. The entire bundle review effort was performed in a very short time (six weeks) and with limited resources (15 personnel part-time). This should be compared to the effort that produced the CDR design (12 months, 50 to 100 personnel). This committee considered three alternate bundle configurations (2{times}2, 4{times}2, and 4{times}4 bundles), and evaluated each bundle against the baseline design using the seven requested issues in the guidance memo: Cost; schedule; performance risk; maintainability/operability; hardware failure cost exposure; activation; and design flexibility. The issues were reviewed to identify differences between each alternate bundle configuration and the baseline.

  14. Magnetooptical Faraday and Light-Scattering Diagnostics of Laser Plasma in Leopard Laser Facility at UNR/NTF

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Yates, K.; Ivanov, V. V.; Sotnikov, V. I.; Yasin, E.; Wiewior, P.; Astanovitsky, A.; Chaly, O.; Kindel, J.

    2009-11-01

    Laser plasma of the solid target on Leopard Laser Facility at University of Nevada Reno was investigated using polarimetry, interferometry and laser-scattering diagnostics. 50 TW Nd:glass Leopard laser operates on 1056 nm wavelength, 10 J energy and 1ns/400 fs pulse width. Power flux on a target surface varied from 10^14 to 10^19W/cm^2 with 20 μm focus spot from off-axis parabola. The diagnostic of spontaneous magnetic fields in laser plasma was carried out using three-channel polarinterferometer with Faraday, shadow and interferogram channels. Ultrafast two-frame shadowgrams/interferograms with two probing beams with orthogonal polarizations were used for investigation of fast moving plasma phenomena (jets, ionization front propagation). Continuous 1W green DPSS-laser with external modulation was used for light scattering experiments for investigation of the late-time micro-particles generation in laser plasma with expected large charge number of the grain Z ˜ 100-1000.

  15. Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE)

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.

    2016-03-01

    We report on a new class of laser amplifiers for inertial confinement fusion (ICF) drivers based on a Yb:YAG ceramic disk in an edge-pumped configuration and cooled by a high-velocity gas flow. The Yb lasant offers very high efficiency and low waste heat. The ceramic host material has a thermal conductivity nearly 15-times higher than the traditionally used glass and it is producible in sizes suitable for a typical 10- to 20-kJ driver beam line. The combination of high lasant efficiency, low waste heat, edge-pumping, and excellent thermal conductivity of the host, enable operation at 10 to 20 Hz at over 20% wall plug efficiency while being comparably smaller and less costly than recently considered face-pumped alternative drivers using Nd:glass, Yb:S-FAP, and cryogenic Yb:YAG. Scalability of the laser driver over a broad range of sizes is presented.

  16. Single pulse laser excitation of structural vibration using power densities below the surface ablation threshold

    NASA Astrophysics Data System (ADS)

    Philp, W. R.; Booth, D. J.; Perry, N. D.

    1995-08-01

    This paper describes sub-ablation optical excitation of flexural vibration in cantilevers and a suspended truck-wheel rim by using a single 600μs, Nd:glass laser pulse with energies between 1J and 40J. The excitation is consistent with the photothermal production of a localized thermoelastic bending moment at the site of the laser irradiation. This method of excitation has been combined with fibre optic sensing and modal analysis of the resulting vibrations to provide a practical method of remotely measuring the structural properties upon which the frequencies of vibration depend. The modal frequencies of slot-damaged cantilevers are presented to demonstrate the possible application of this non-contact measurement technique for non-destructive testing.

  17. Laser-induced damage to spray pyrolysis deposited transparent conducting films

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, P.; Sathianandan, K.; Subhash, N.

    1986-02-01

    Laser-induced damage study of transparent conducting coatings of tin oxide prepared by spray pyrolysis has been made using a dye Q-switched Nd:glass laser emitting 25-ns (FWHM) pulses at 1062 nm. For comparison tin oxide films prepared by the chemical vapor deposition (CVD) method and indium tin oxide (ITO) prepared by the reactive RF sputtering method have also been damage tested. The study reveals that the spray pyrolysis method yields good electrical and optical quality films with a damage threshold value of 5.2 + or - 0.3 J/sq cm. Though CVD technique provides the highest damage threshold coatings (14.2 + or - 0.6 J/sq cm), their electrical characteristics and uniformity are inferior to RF-sputtered ITO films which have the best electrical properties and the lowest damage threshold values (1.3 + or - 0.1 J/sq cm).

  18. The expansion velocities of laser-produced plasmas determined from extreme ultraviolet spectral line profiles

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Behring, W. E.; Cohen, L.

    1977-01-01

    The expansion of laser-produced plasma is determined from the shapes of spectral lines of highly ionized iron emitted in the extreme ultraviolet. The plasmas were produced by focusing the pulse from a Nd:glass laser onto solid planar targets, and spectra were recorded with a high-resolution grazing-incidence spectrograph. From the Doppler broadening of lines of Fe XX and Fe XXI, expansion velocities of about 830 km/s were determined. The relative time-averaged ion abundances of Fe XVIII, Fe XIX, Fe XX, and Fe XXI are estimated for three different spectra. The abundances do not differ by more than a factor of 4 for any of the spectra.

  19. The application of ptychography in the field of high power laser

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Liu, Cheng; Pan, Xingchen; Zhu, Jianqiang

    2015-02-01

    The commonly used interferometer and Hartmann-Shack sensor are not ideally qualified for the phase or wavefront measurement in the field of high power laser because the optical elements always have large aperture, the steep phase gradient and very irregular surface profile. The ptychography, which is a newly developed coherent diffraction method for the imaging with short wavelength, can be a perfect alternative to traditional technologies due to its outstanding advantages. The complex transmittance of the optical element can be obtained by measuring its transmitted and incident fields with ptychography and calculating their phase difference. Since ptychography can realize measurement with a resolution comparable to that of interferometry, it can find lots of applications in the field of high power laser such as the measurement of the complex transmittance of large optical element, the thermal distortion of the gas-cooled Nd:glass amplifier, and the focal length of the lens array etc.

  20. Laser Coupling to Reduced-Scale Targets at the Early Light Program of the National Ignition Facility

    SciTech Connect

    Hinkel, D E; Schneider, M B; Baldis, H A; Bower, D; Campbell, K M; Celeste, J R; Compton, S; Costa, R; Dewald, E L; Dixit, S; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A; Emig, J; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Holder, J P; Holtmeier, G; James, L; Jancaitis, K S; Kalantar, D H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Kamperschroer, J; Landen, O L; Landon, M; Langdon, A B; Lee, F D; MacGowan, B J; MacKinnon, A J; Manes, K R; May, M J; McDonald, J W; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P T; Still, C H; Suter, L J; Turner, R E; Wallace, R J; Warrick, A; Watts, P; Weber, F; Williams, E A; Young, B K; Young, P E

    2004-11-18

    A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. This hot environment is produced with a laser by depositing maximum energy into a small, high-Z can. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility, under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.

  1. The Injection Laser System on the National Ignition Facility

    SciTech Connect

    Bowers, M; Burkhart, S; Cohen, S; Erbert, G; Heebner, J; Hermann, M; Jedlovec, D

    2006-12-13

    The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also precompensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with precompensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split the beam from each PAM into four main laser beams (with optical isolation) forming the 192 beams of the NIF. Optical, electrical, and mechanical design considerations for long term reliability and availability will be discussed.

  2. The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output

    NASA Astrophysics Data System (ADS)

    Di Nicola, J. M.; Yang, S. T.; Boley, C. D.; Crane, J. K.; Heebner, J. E.; Spinka, T. M.; Arnold, P.; Barty, C. P. J.; Bowers, M. W.; Budge, T. S.; Christensen, K.; Dawson, J. W.; Erbert, G.; Feigenbaum, E.; Guss, G.; Haefner, C.; Hermann, M. R.; Homoelle, D.; Jarboe, J. A.; Lawson, J. K.; Lowe-Webb, R.; McCandless, K.; McHale, B.; Pelz, L. J.; Pham, P. P.; Prantil, M. A.; Rehak, M. L.; Rever, M. A.; Rushford, M. C.; Sacks, R. A.; Shaw, M.; Smauley, D.; Smith, L. K.; Speck, R.; Tietbohl, G.; Wegner, P. J.; Widmayer, C.

    2015-02-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the first of a kind megajoule-class laser with 192 beams capable of delivering over 1.8 MJ and 500TW of 351nm light [1], [2]. It has been commissioned and operated since 2009 to support a wide range of missions including the study of inertial confinement fusion, high energy density physics, material science, and laboratory astrophysics. In order to advance our understanding, and enable short-pulse multi-frame radiographic experiments of dense cores of cold material, the generation of very hard x-rays above 50 keV is necessary. X-rays with such characteristics can be efficiently generated with high intensity laser pulses above 1017 W/cm² [3]. The Advanced Radiographic Capability (ARC) [4] which is currently being commissioned on the NIF will provide eight, 1 ps to 50 ps, adjustable pulses with up to 1.7 kJ each to create x-ray point sources enabling dynamic, multi-frame x-ray backlighting. This paper will provide an overview of the ARC system and report on the laser performance tests conducted with a stretched-pulse up to the main laser output and their comparison with the results of our laser propagation codes.

  3. Artefacts in RBS analysis of laser treated surfaces

    NASA Astrophysics Data System (ADS)

    Kuldeep; Jain, Animesh K.

    1986-04-01

    Laser treatment of deposited films often result in globules on the surface which may influence the solute depth profiles, as measured by Rutherford backscattering spectrometry (RBS). We show that the globules generally have poor adhesion to the substrate and can be easily removed using techniques commonly employed for testing adhesion of thin films, such as a scotch tape test, or mild abrasion test using a cotton bud or tip of a soft wooden piece. The effectiveness of this approach is demonstrated for Zn films on Al (treated with a 12 ns fwhm Nd: glass laser pulse) and Sb films on Al (treated with a 100 ns fwhm CO 2 laser pulse). The solute depth profiles, both before and after removal of globules from the laser treated surfaces, have been measured by employing RBS of He + ions and dramatic differences between the two cases have been observed. Laser treated surfaces are also characterized by optical microscopy and the topography is correlated with the RBS depth profiles. Results are presented for laser heating and liquid phase diffusion analysis of the solute depth profiles obtained after scotch tape and abrasion tests.

  4. Development of the 50 TW laser for joint experiments with 1 MA z-pinches

    NASA Astrophysics Data System (ADS)

    Wiewior, P. P.; Ivanov, V. V.; Chalyy, O.

    2010-08-01

    A 50 TW high-intensity laser (aka "Leopard" laser) was developed for experiments with the 1 MA z-pinch generator at the University of Nevada, Reno. The laser produces short pulses of 0.35 ps; energy is 15 J. Long pulses are 1 ns; energy is 30 J. The output beam diameter is 80 mm. The Leopard laser applies chirped pulse amplification technology. The laser is based on the 130 fs Ti:Sapphire oscillator, Öffner-type stretcher, Ti:Sapphire regenerative amplifier, mixed Nd:glass rod and disk amplifiers, and vacuum grating compressor. An adaptive optics system ameliorates focusing ability and augments the repetition rate. Two beam terminals are available for experiments: in the vacuum chamber of the z-pinch generator (aka "Zebra"), and a laser-only vacuum chamber (aka "Phoenix" chamber). The Leopard laser coupled to the Zebra z-pinch generator is a powerful diagnostic tool for dense z-pinch plasma. We outline the status, design, architecture and parameters of the Leopard laser, and its coupling to Zebra. We present the methods of laser-based z-pinch plasma diagnostics, which are under development at the University of Nevada, Reno.

  5. Alignment and diagnostics on the National Ignition Facility laser system

    SciTech Connect

    Bliss, E S; Boege, S J; Boyd, B; Demaret, R D; Feldman, M; Gates, A J; Holdener, F R; Hollis, J; Knopp, C F; McCarville, T J; Miller-Kamm; Rivera, W E; Salmon, J T; Severyn, J R; Thompson, C E; V J; Wang, D Y; Zacharias, R A

    1999-07-01

    The NIF laser system will be capable of delivering 1.8MJ of 351nm energy in 192 beams. Diagnostics instruments must measure beam energy, power vs. time, wavefront quality, and beam intensity profile to characterize laser performance. Alignment and beam diagnostics are also used to set the laser up for the high power shots and to isolate problems when performance is less than expected. Alignment and beam diagnostics are multiplexed to keep the costs under control. At the front-end the beam is aligned and diagnosed in an input sensor package. The output 1053nm beam is sampled by collecting a 0.1% reflection from an output beam sampler and directing it to the output sensor package (OSP). The OSP also gets samples from final focus lens reflection and samples from the transport spatial filter pinhole plane. The output 351nm energy is measured by a calorimeter collecting the signal from an off-axis diffractive beam-sampler. Detailed information on the focused beam in the high-energy target focal plane region is gathered in the precision diagnostics. This paper describes the design of the alignment and diagnostics on the NIF laser system.

  6. Improving the intensity of the HELEN Laser at AWE

    NASA Astrophysics Data System (ADS)

    Hopps, Nicholas; Nolan, Jonathan; Girling, Mark; Kopec, Maria; Harvey, Ewan

    2005-04-01

    The HELEN laser is a three-beam, large aperture Nd:glass laser, used for plasma physics studies at the Atomic Weapons Establishment in the UK. Two of the beams nominally deliver 500 J each in 1 ns at the second harmonic (527 nm). The third beam, the "backlighter", has recently been upgraded to operate as a chirped pulse amplification system and it now routinely delivers 70 J to target in 500 fs. Optimal focal spot performance is achieved using a closed-loop adaptive optics system, which ensures good wavefront characteristics, irrespective of whether previous firing of the amplifiers has induced refractive index variations in the laser glass. The system uses a 32 element bimorph mirror with 98 mm aperture, roughly half way through the laser chain. A Shack-Hartman wavefront sensor, positioned at the output of the laser is the diagnostic used to provide feedback to the deformable mirror. Correction of the static and slowly varying aberrations on the beam has been demonstrated. The fast aberrations induced during the flashlamp discharge have been evaluated. The improved focal spot characteristics result in an intensity on target of significantly greater than 1019 Wcm-2.

  7. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    SciTech Connect

    Young, W. C. Den Hartog, D. J.

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence.

  8. Wavefront correction for near diffraction-limited focal spot on a 6×100 J/1-ns laser facility

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Wattellier, Benoit F.; Zou, Ji P.; Chanteloup, Jean-Christophe; Bandulet, H.; Michel, P.; Labaune, C.; Depierreux, S.; Kudryashov, Alexis V.; Aleksandrov, Alexander G.

    2003-10-01

    We have implemented on one beam of the LULI six-beam high-energy (6×100 J, 1 ns) Nd:glass laser facility a closed-loop Adaptive Optics (AO) system to compensate for thermal distortions onto the wave front. Using the AO system composed of a dielectric coated deformable mirror and of a wave front sensor, we are able to improve the wave front quality in order to obtain a focal spot close to the diffraction limit. This allows not only to improve the reproducibility of the experiments but also to increase by at least two orders of magnitude the peak intensity as compared with what usual laser smoothing techniques can achieve.

  9. Analysis of the X-ray and time-resolved XUV emission of laser produced Xe and Kr plasmas

    NASA Astrophysics Data System (ADS)

    Bastiani-Ceccotti, S.; Kontogiannopoulos, N.; Marquès, J.-R.; Tzortzakis, S.; Lecherbourg, L.; Thais, F.; Matsushima, I.; Peyrusse, O.; Chenais-Popovics, C.

    2007-05-01

    A frequency-doubled laser beam of the Nd:glass kilojoule nanosecond LULI2000 facility (1.5 ns duration, 200-400 J energy, 0.53 μm wavelength) was focused on a Xe or Kr gas jet. The plasma was simultaneously diagnosed with X-ray (in the wavelength range of 6-8 Å for Kr and of 12-15 Å for Xe) and time-resolved XUV (20-200 Å) emission spectroscopy. Electron density and temperature as well as the ionization charge were measured by time-resolved Thomson scattering of the heating laser pulse. The spectra are compared with the calculations performed with the NLTE collisional-radiative code AVERROES/TRANSPEC. Best fits of the X-ray and XUV spectra obtained are presented. The measured charge distribution and dynamics is analyzed using the simultaneous Thomson scattering diagnostic.

  10. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Den Hartog, D. J.

    2014-11-01

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO4 oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence.

  11. The National Ignition Facility: The World's Largest Laser

    SciTech Connect

    Moses, E I; Bibeau, C; Bonanno, R E; Haynam, C A; MacGowan, B J; Kauffman, R L; Patterson Jr., R W; Van Wonterghem, B M

    2005-09-29

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance including target and beam alignment. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal.

  12. High repetition rate collisional soft x-ray lasers based on grazing incidence pumping

    SciTech Connect

    Luther, B M; Wang, Y; Larotonda, M A; Alessi, D; Berrill, M; Rocca, J J; Dunn, J; Keenan, R; Shlyaptsev, V N

    2005-11-18

    We discuss the demonstration of gain-saturated high repetition rate table-top soft x-ray lasers producing microwatt average powers at wavelengths ranging from 13.9 to 33 nm. The results were obtained heating a pre-created plasma with a picosecond optical laser pulse impinging at grazing incidence onto a pre-created plasma. This pumping geometry increases the energy deposition efficiency of the pump beam into the gain region, making it possible to saturate soft x-ray lasers in this wavelength range with a short pulse pump energy of only 1 J at 800 nm wavelength. Results corresponding to 5 Hz repetition rate operation of gain-saturated 14.7 nm Ni-like Pd and 32.6 nm line Ne-like Ti lasers pumped by a table-top Ti:sapphire laser are reported. We also discuss results obtained using a 1 {omega} 1054 nm pre-pulse and 2{omega} 527 nm short pulse from a Nd:glass pump laser. This work demonstrates the feasibility of producing compact high average power soft x-ray lasers for applications.

  13. Laser surgery and medicine including photodynamic therapy in China today

    NASA Astrophysics Data System (ADS)

    Li, Junheng

    2000-10-01

    The development of laser medicine in China is correlated with the development of laser science in China. After the first Chinese laser, ruby laser came into being in 1961, Chinese medical scientists began to do the studies about laser medicine in the middle 1960s. For example, ruby laser was adopted for the retina coagulation experiment in 1965. Since 1970s, through the free choice of utilizing Co2, He-Ne, Nd:YAG argon, ruby lasers, laser surgery and medicine has been widely applied to the treatment for diseases of the eyes, ENT, dermatology, surgery, gynecology, tumors and diseases suitable to physical therapy or acupuncture with satisfactory effects. In June 1977, a nation-wide laser medicine symposium was held at Wuhan, Hubei Province with 200 participants including medical doctors and laser technologies from 23 provinces and municipal towns. Till the end of seventies, utilization of lasers has been extended to Nd glass laser, N laser and tunable dye lasers. The scope covered most of the clinical sections. After Dr. Thomas J. Dougherty developed the PDT for cancers in Roswell Park Memorial Institute in Buffalo in late 1970s and Professor Yoshihiro Hayata successfully applied the PDT in clinical treatment for lung cancer in 1980, Chinese pharmacists successfully produced the Chinese HpD and the first case of PDT, a lower eyelid basal cell carcinoma patient was treated with the Chinese laser equipment in 1981 in Beijing. Its success brought attention establishing a research group supported by the government in 1982. The members of the group consisted the experts on preclinical and clinical research, pharmaceutical chemistry, laser physicists and technologists. A systemic research on PDT was then carried out and obvious result was achieved. The step taken for PDT also accelerated the researchers on other kinds of laser medicine and surgery because the medical doctors had begun to master the knowledge about laser science. The prosperous situation of rapid

  14. On the control of filamentation of intense laser beams propagating in underdense plasma

    SciTech Connect

    Williams, E A

    2005-10-21

    In indirect drive ICF ignition designs, the laser energy is delivered into the hohlraum through the laser entrance holes (LEH), which are sized as small as practicable to minimize X-ray radiation losses. On the other hand, deleterious laser plasma processes, such as filamentation and stimulated back-scatter, typically increase with laser intensity. Ideally, therefore, the laser spot shape should be a close fit to the LEH, with uniform (envelope) intensity in the spot and minimal energy at larger radii spilling onto the LEH material. This keeps the laser intensity as low as possible consistent with the area of the LEH aperture and the power requirements of the design. This can be achieved (at least for apertures significantly larger than the laser's aberrated focal spot) by the use of custom-designed phase plates. However, outfitting the 192 beam (National Ignition facility) NIF laser with multiple sets of phase plates optimized for a variety of different LEH aperture sizes is an expensive proposition. It is thus important to assess the impact on laser-plasma interaction processes of using phase plates with a smaller than optimum focal spot (or even no phase plates at all!) and then de-focusing the beam to expand it to fill the LEH and lower its intensity. We find significant effects from the lack of uniformity of the laser envelope out of the focal plane, from changes in the characteristic sizes of the laser speckle, and on the efficacy of additional polarization and/or SSD beam smoothing. We quantify these effects with analytic estimates and simulations using our laser plasma interaction code pF3D.

  15. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    SciTech Connect

    Ting, A.; Fischer, R.; Fisher, A.

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  16. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    SciTech Connect

    Weaver, J. L.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Mclean, E.; Manka, C.; Phillips, L.; Afeyan, B.; Seely, J.; Feldman, U.

    2013-02-15

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength ({lambda}=248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers ({lambda}=351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns{<=}{tau}{<=}1.25 ns) and intensities (up to 2 Multiplication-Sign 10{sup 15} W/cm{sup 2}). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  17. Design of a 50 TW/20 J chirped-Pulse Amplification Laser for High-Energy-Density Plasma Physics Experiments at the Nevada Terawatt Facility of the University of Nevada

    SciTech Connect

    Erlandson, A C; Astanovitskiy, A; Batie, S; Bauer, B; Bayramian, A; Caird, J A; Cowan, T; Ebbers, C; Fuchs, J; Faretto, H; Glassman, J; Ivanov, V; LeGalloudec, B; LeGalloudec, N; Letzring, S; Payne, S; Stuart, B

    2003-09-07

    We have developed a conceptual design for a 50 TW/20 J short-pulse laser for performing high-energy-density plasma physics experiments at the Nevada Terawatt Facility of the University of Nevada, Reno. The purpose of the laser is to develop proton and x-ray radiography techniques, to use these techniques to study z-pinch plasmas, and to study deposition of intense laser energy into both magnetized and unmagnetized plasmas. Our design uses a commercial diode-pumped Nd:glass oscillator to generate 3-nJ. 200-fs mode-locked pulses at 1059 m. An all-reflective grating stretcher increases pulse duration to 1.1 ns. A two-stage chirped-pulse optical parametric amplifier (OPCPA) using BBO crystals boosts pulse energy to 12 mJ. A chain using mixed silicate-phosphate Nd:glass increases pulse energy to 85 J while narrowing bandwidth to 7.4 nm (FWHM). About 50 J is split off to the laser target chamber to generate plasma while the remaining energy is directed to a roof-mirror pulse compressor, where two 21 cm x 42 cm gold gratings recompress pulses to {approx}350 fs. A 30-cm-focal-length off-axis parabolic reflector (OAP) focuses {approx}20 J onto target, producing an irradiance of 10{sup 19} W/cm{sup 2} in a 10-{micro}m-diameter spot. This paper describes planned plasma experiments, system performance requirements, the laser design, and the target area design.

  18. Prompt laser ignition and transition to detonation in a secondary explosive

    SciTech Connect

    Setchell, R.E.; Trott, W.M.

    1995-05-01

    A two-stage approach to achieving detonation in a secondary explosive was developed in previous studies in which ignition resulted from low-energy hot wires or from laser diodes. In the current study, this approach was examined in some detail for the case of ignition by a pulsed, solid-state (rod) laser. An initial series of experiments used Nd/glass, Nd/YAG, and Ti/sapphire lasers to investigate the ignition of graphite-doped HMX in highly confined optical fixtures that incorporated a fast piezoelectric pressure transducer. Experimental parameters included the laser power history and the explosive column length. The results of these experiments guided a second series of experiments in which the ignition column explosive was terminated by a thin rupture disc in contact with a transition column of low-density HMX or some other material. The transition column was terminated with a piezoelectric time-of-arrival detector for determining overall function times. Parameters investigated included different laser sources, rupture disc thicknesses, and the transition column explosive characteristics. Overall function times less than 50 microseconds were obtained, and trends established by the various parameter studies indicate that further reductions in function time can be achieved.

  19. Prompt laser ignition and transition to detonation in a secondary explosive

    SciTech Connect

    Setchell, R.E.; Trott, W.M.

    1994-05-01

    A two-stage approach to achieving detonation in a secondary explosive was developed in previous studies in which ignition resulted from low-energy hot wires or from laser diodes. In the current study, this approach was examined in some detail for the case of ignition by a pulsed, solid-state (rod) laser. An initial series of experiments used Nd/glass, ND/YAG, and Ti/sapphire lasers to investigate the ignition of graphite-doped HMX in highly confined optical fixtures that incorporated a fast piezoelectric pressure transducer. Experimental parameters included the laser power history and the explosive column length. The results of these experiments guided a second series of experiments in which the ignition column explosive was terminated by a thin rupture disc in contact with a transition column of low density HMX or some other material. The transition column was terminated with a piezoelectric time-of-arrival detector for determining overall function times. Parameters investigated included different laser sources, rupture disc thicknesses, and the transition column explosive characteristics. Overall function times less than 50 microseconds were obtained, and trends established by the various parameter studies indicate that further reductions in function time can be achieved.

  20. Article on Trident Laser Facility for NA-11 Stockpile Stewardship Quarterly

    SciTech Connect

    Barnes, Cris W.

    2012-08-13

    The Trident Intermediate-Scale Laser Facility at Los Alamos National Laboratory is an extremely versatile Nd:glass laser system dedicated to high energy density laboratory physics and weapons physics research and fundamental laser-matter interactions. Trident is a three-beam, 200 J/beam at the second harmonic for glass (527 nm wavelength), facility with tremendous flexibility and high beam quality. Pulse durations varying over 6 orders of magnitude, from 0.5 picoseconds to 1.0 microsecs, can be directed to either of two different target chambers with changeable illumination geometries, including the ability to achieve near-diffraction limited focus. This provides a unique range of capability at one facility from sub-picosecond pulses (and high-intensity laser science) to nanosecond pulses (and LPI physics relevant to ICF) to microsecond pulses (and driving flyer plates for supported shock dynamic materials science.) When in short-pulse mode (less than picosecond pulse), a single beam can provide up to 200 TW of power with uniquely controllable and measured pre-pulse contrast of 10 orders of magnitude. A recent external capability review at Los Alamos concluded that 'Trident is generating excellent, cutting edge science and is a leading intermediate scale laser system worldwide.'

  1. Catalytic coal conversion support: use of laser flash-pyrolysis for structural analysis. Progress report, April 15, 1979-September 30, 1981

    SciTech Connect

    Verzino, Jr, W J; Rofer-DePoorter, C K; Hermes, R E

    1982-03-01

    Untreated Fruitland subbituminous coal and Fruitland coal treated with several gasification catalysts were pyrolyzed with both Nd-glass and CO/sub 2/ lasers (1.06-..mu..m and 10.6-..mu..m wavelengths, respectively) to give both gaseous and intermediate-molecular weight products, which were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The catalysts used were AlCl/sub 3/, K/sub 2/H/sub 2/Sb/sub 2/O/sub 7/, CoCl/sub 2/, PbCl/sub 2/, Pb(NO/sub 3/)/sub 2/, Na/sub 2/Pb(OH)/sub 6/, Na/sub 2/MoO/sub 4/, NiCl/sub 2/, K/sub 2/CO/sub 3/, KHCO/sub 3/, Na/sub 2/CO/sub 3/, NaHCO/sub 3/, Na/sub 2/Ti/sub 3/O/sub 7/, NaVO/sub 3/, ZnCl/sub 2/, and NaZn(OH)/sub 3/. Gaseous products were analyzed from the Nd-glass laser pyrolysis; of the various catalysts, ZnCl/sub 2/ was found to affect N/sub 2/ production during pyrolysis most significantly. Intermediate products were analyzed from the CO/sub 2/ laser pyrolysis; product distribution was found to depend upon particle size (and consequent thermal history in pyrolysis) as well as on catalyst and heat treatment. Pyrolysis products could not be correlated in a statistically reliable way with coal or char structure. A supercritical extraction method with a Soxhlet extractor inside a pressure vessel was developed for liquid CO/sub 2/ as extractant. Gases evolved during processing of the coal-catalyst mixtures were analyzed by GC for several of the catalysts.

  2. Electron accleration using high power laser

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    1998-04-01

    The 30 TW Nd:Glass Vulcan laser has been used to extensively study the Forward Raman Scatter instability in plasmas. This instability is of interest since it produces large amplitude relativistic plasma waves, which can trap and accelerate plasma electrons to high energies. Recently we have accelerated particles up to 100 MeV with this process. This is beyond the expected classical dephasing energy, for the plasma waves in our experiment which have a Lorentz factor γ ≈ 7. The greater acceleration has been attributed to the dynamics of the beam loading process of the plasma waves due to wavebreaking. By imaging the small angle Thomson scattered light from an orthogonally injected probe beam, we observe the dimensions of the accelerating plasma wave. It is seen that electron energies are almost independent of the length of the plasma wave. This is because the dephasing length is of the order of the Rayleigh length (≈ 100 μm). However the plasma wave is seen to extend to lengths as great as 3.5 mm. This is indicative of a high intensity being present throughout the length of the gas jet used, and indicates the presence of channelling of the laser beam. However the unstable nature of FRS, means that it is unsuitable for next generation high energy particle acclerators. For this we require much more controllable acceleration over greater distances. This can be achieved with the laser wakefield accelerator. For this purpose we have also been performing experiments at the LULI short pulse facility at Ecole Polytechnique. In these experiments we have been able to accelerate large numbers of injected electrons at 3 MeV to 4 MeV and above, after carefully taking into consideration sources of noise.

  3. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  4. Third-harmonic performance of the Beamlet prototype laser

    SciTech Connect

    Wegner, P.J.; Barker, C.E.; Caird, J.A.; Dixit, S.N.; Henesian, M.A.; Seppala, L.G.; Thompson, C.E.; Van Wonterghem, B.V.

    1997-01-31

    The Beamlet laser is a nearly full-scale, single-aperture prototype of the driver design for the National Ignition Facility (NIF). As part of a test and validation plan for the NIF design, Beamlet was recently equipped with final focusing optics and diagnostics for the purpose of evaluating integrated component performance and equivalent target-plane irradiance conditions at the 0.351-{mu}m output wavelength specified for NIF targets. A 37-cm aperture two-crystal converter scheme generates the third harmonic of the Nd:glass 1.053-{mu}m wavelength with high efficiency. The efficiency of the converter has been characterized and is reported, along with detailed measurements of the near-field and far-field UV irradiance distributions at operating conditions up to and exceeding red-line levels for the NIF. Dependences of observed beam quality on critical laser parameters including output power, B-integral, and spatial filtering are discussed and compared with numerical simulations.

  5. Hybrid simulation of shock formation for super-Alfvénic expansion of laser ablated debris through an ambient, magnetized plasma

    SciTech Connect

    Clark, S. E.; Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Constantin, C. G.; Niemann, C.; Winske, D.

    2013-08-15

    Two-dimensional hybrid simulations of perpendicular collisionless shocks are modeled after potential laboratory conditions that are attainable in the LArge Plasma Device (LAPD) at the University of California, Los Angeles Basic Plasma Science Facility. The kJ class 1053 nm Nd:Glass Raptor laser will be used to ablate carbon targets in the LAPD with on-target energies of 100-500 J. The ablated debris ions will expand into ambient, partially ionized hydrogen or helium. A parameter study is performed via hybrid simulation to determine possible conditions that could lead to shock formation in future LAPD experiments. Simulation results are presented along with a comparison to an analytical coupling parameter.

  6. Recent progress and future prospects of high-energy peta-watt laser in LFRC, CAEP

    NASA Astrophysics Data System (ADS)

    Wei, X.; Zhu, Q.; Huang, X.; Zeng, X.; Wang, X.; Xie, X.; Wang, F.; Wang, X.; Zhou, K.; Deng, W.; Zhang, X.

    2008-05-01

    The laser system with output energy larger than 150 Joules, output pulse width less than 1-ps has been finished in last year in Research Center of Laser Fusion (LFRC) at China Academy of Engineering Physics (CAEP). The front-end of the system can emit 4-mJ, 1053-nm femtosecond laser by optical parametric amplification based on supercontinuum white-light injection. Then the laser is stretched to chirped pulse with 2ns pulse duration and amplified to near 200 Joules by multi-stage phosphate Nd:glass amplifiers. Subsequent amplification in a chirped-pulse amplification (CPA) chain will result in a sometimes substantial lengthening of the output pulses owing to gain narrowing and uncompensated phase errors. The acousto-optic programmable dispersive filter (AOPDF) [2] is used to modulate the amplitude and phase of ultrashort pulses in order to maintain the short pulse duration after amplification. The size of a single gratings is not enough for high energy pulse compression, Therefore we developed tiled-gratings technology. A single-pass tiled-gratings-compressor (TGC) [3] is used in this system. Real-time monitoring and on-line alignment system has been established to achieve coherent addition of the tiled gratings. Impact of vibration being eliminated to a least level, the tiled gratings can keep stable for a several hours.

  7. Nd:YVO4 amplifier for ultrafast low-power lasers.

    PubMed

    Agnesi, Antonio; Carrà, Luca; Piccoli, Riccardo; Pirzio, Federico; Reali, Giancarlo

    2012-09-01

    An Nd:YVO4 amplifier consisting of two modules end pumped at 808 nm at 30 W total absorbed power has been designed for efficient, diffraction-limited amplification of ultrafast pulses from low-power seeders. We investigated amplification with a 50 mW, 7 ps Nd:YVO4 oscillator, a 2 mW, 15 ps Yb fiber laser, and a 30 mW, 300 fs Nd:glass laser. Output power as high as 9.5 W with 8 ps pulses was achieved with the 250 MHz vanadate seeder, whereas the 20 MHz fiber laser was amplified to 6 W. The femtosecond seeder allowed extracting Fourier-limited 4 ps pulses at 7 W output power. To our knowledge, these are the shortest pulses from any Nd:YVO4 laser device with at least 7 W output power. This suggests a novel approach to exploit the gain bandwidth of vanadate amplifiers with high output power levels. Such amplifier technology promises to offer an interesting alternative to high-power thin disk oscillators at few picoseconds duration, as well as to regenerative amplifiers with low-repetition-rate fiber seeders. PMID:22940966

  8. "Defense-in-Depth" Laser Safety and the National Ignition Facility

    SciTech Connect

    King, J J

    2010-12-02

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential

  9. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    SciTech Connect

    Moses, E I

    2002-01-11

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory is a $2.25B stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system. NIF is being built by the National Nuclear Security Agency and when completed will be the world's largest laser system, providing a national center to study inertial confinement fusion and the physics of extreme energy densities and pressures. In NIF up to 192 energetic laser beams will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for high power applications. We discuss here the technology challenges and solutions that have made NIF possible along with enhancements to NIF's design that could lead to exawatt power levels.

  10. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    SciTech Connect

    Moses, E I; Wuest, C R

    2002-10-16

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system and a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF will provide 192 energetic laser beams that will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for very high power and extreme electromagnetic field research and applications. We discuss here the technology challenges and solutions that have made NIF possible, along with enhancements to NIF's design that could lead to near-exawatt power levels.

  11. Laser performance operations model (LPOM): The computational system that automates the setup and performance analysis of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Shaw, Michael; House, Ronald

    2015-02-01

    The National Ignition Facility (NIF) is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500-TW, 351-nm laser system together with a 10-m diameter target chamber with room for many target diagnostics. NIF is the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. A computational system, the Laser Performance Operations Model (LPOM) has been developed that automates the laser setup process, and accurately predict laser energetics. LPOM uses diagnostic feedback from previous NIF shots to maintain accurate energetics models (gains and losses), as well as links to operational databases to provide `as currently installed' optical layouts for each of the 192 NIF beamlines. LPOM deploys a fully integrated laser physics model, the Virtual Beamline (VBL), in its predictive calculations in order to meet the accuracy requirements of NIF experiments, and to provide the ability to determine the damage risk to optical elements throughout the laser chain. LPOM determines the settings of the injection laser system required to achieve the desired laser output, provides equipment protection, and determines the diagnostic setup. Additionally, LPOM provides real-time post shot data analysis and reporting for each NIF shot. The LPOM computation system is designed as a multi-host computational cluster (with 200 compute nodes, providing the capability to run full NIF simulations fully parallel) to meet the demands of both the controls systems within a shot cycle, and the NIF user community outside of a shot cycle.

  12. Broad-band soft x-ray diagnostic instruments at the LLNL Novette laser facility

    SciTech Connect

    Tirsell, K.G.; Lee, P.H.Y.; Nilson, D.G.; Medecki, H.

    1983-09-15

    Complementary broad-band instruments have been developed to measure time dependent, absolute soft x-ray spectra at the Lawrence Livermore National Laboratory (LLNL) Nd glass laser irradiation facilities. Absolute flux measurements of x rays emitted from laser-produced plasmas are important for understanding laser absorption and energy transport. We will describe two new 10-channel XRD systems that have been installed at the LLNL Novette facility for use in the 0.15- to 1.5-keV range. Since XRD channel time response is limited by available oscilloscope performance to 120 ps, a soft x-ray streak camera has been developed for better time resolution (20 ps) and greater dynamic range (approx.10/sup 3/) in the same x-ray energy region. Using suitable filters, grazing incidence mirrors, and a gold or cesium-iodide transmission cathode, this streak camera instrument has been installed at Novette to provide one broad and four relatively narrow channels. It can also be used in a single channel, spatially discriminating mode by means of pinhole imaging. The complementary nature of these instruments has been enhanced by locating them in close proximity and matching their channel energy responses. As an example of the use of these instruments, we present results from Novette 2..omega..(0.53 ..mu..m) gold disk irradiations at 1 ns and 10/sup 14/ to 10/sup 15/ W/cm/sup 2/.

  13. High Energy Laser for Space Debris Removal

    SciTech Connect

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30

    pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

  14. Overview of the National Ignition Facility.

    PubMed

    Brereton, Sandra

    2013-06-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's largest and most energetic laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. The NIF is a 192-beam, Nd-glass laser facility that is capable of producing 1.8 MJ, 500 TW of ultraviolet light, and over 50 times more energetic than other existing ICF facilities. The NIF construction began in 1997, and the facility, which was completed in 2009, is now fully operational. The facility is capable of firing up to 192 laser beams onto a target placed at the center of a 10-m-diameter spherical target chamber. Experiments involving the use of tritium have been underway for some time. These experiments present radiological issues: prompt neutron/gamma radiation, neutron activation, fission product generation, and decay radiation. This paper provides an introduction to the NIF facility and its operation, describes plans for the experimental program, and discusses radiological issues associated with the NIF's operations. PMID:23629059

  15. Multiwavelength interferometry system for the Orion laser facility.

    PubMed

    Patankar, S; Gumbrell, E T; Robinson, T S; Lowe, H F; Giltrap, S; Price, C J; Stuart, N H; Kemshall, P; Fyrth, J; Luis, J; Skidmore, J W; Smith, R A

    2015-12-20

    We report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam. Example data confirms the broadband achromatic capability of the imaging system with operation from the UV (263 nm) to visible (527 nm) and demonstrates that features as small as 5 μm can be resolved for object sizes of 15 by 10 mm. Results are also shown for an off-harmonic wavelength that will underpin a future capability. The primary optics package is accommodated inside the footprint of a ten-inch manipulator to allow the system to be deployed from a multitude of viewing angles inside the 4 m diameter Orion target chamber. PMID:26837022

  16. Effects of laser-shock processing on the microstructure and surface mechanical properties of Hadfield manganese steel

    SciTech Connect

    Chu, J.P.; Rigsbee, J.M.; Banas, G.; Lawrence, F.V.; Elsayed-Ali, H.E.

    1995-06-01

    The effects of laser-shock processing (LSP) on the microstructure, hardness, and residual stress of Hadfield manganese (1 pct C and 14 pct Mn) steels were studied. Laser-shock processing was performed using a Nd:glass phosphate laser with 600 ps pulse width and up to 120 J/pulse energy at power density above 10{sup 12}W/cm{sup 2}. The effects of cold rolling and shot peening were also studied for comparison. Laser-shock processing caused extensive formation of {var_epsilon} hexagonal close-packed (hcp) martensite (35 vol pct), producing up to a 130 pct increase of surface hardness. The surface hardness increase was 40 to 60 pct for the shot-peened specimen and about 60 pct for the cold-rolled specimen. The LSP strengthening effect on Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to the presence of the {var_epsilon}-hcp martensite. For the cold-rolled and shot-peened specimens, the strengthening was a result of {var_epsilon}-hcp martensite and twins with dislocation effects, respectively. Shot peening resulted in a relatively higher compressive residual stress throughout the specimen than LSP.

  17. Effects of laser-shock processing on the microstructure and surface mechanical properties of hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Chu, J. P.; Rigsbee, J. M.; Banaś, G.; Lawrence, F. V.; Elsayed-Ali, H. E.

    1995-06-01

    The effects of laser-shock processing (LSP) on the microstructure, hardness, and residual stress of Hadfield manganese (1 pct C and 14 pct Mn) steels were studied. Laser-shock processing was performed using a Nd: glass phosphate laser with 600 ps pulse width and up to 120 J/pulse energy at power density above 1012 W/cm2. The effects of cold rolling and shot peening were also studied for comparison. Laser-shock processing caused extensive formation of ɛ hexagonal close-packed (hep) martensite (35 vol pct), producing up to a 130 pct increase of surface hardness. The surface hardness increase was 40 to 60 pct for the shot-peened specimen and about 60 pct for the cold-rolled specimen. The LSP strengthening effect on Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to the presence of the ɛ-hcp martensite. For the cold-rolled and shot-peened specimens, the strengthening was a result of ɛ-hcp martensite and twins with dislocation effects, respectively. Shot peening resulted in a relatively higher compressive residual stress throughout the specimen than LSP.

  18. High-power solid-state lasers for high-energy-density physics applications at CAEP

    NASA Astrophysics Data System (ADS)

    Peng, H. S.; Zhang, X. M.; Zheng, W. G.; Wei, X. F.; Huang, X. J.; Sui, Z.; Jing, F.; Zhu, J.; Zhu, Q. H.; Wang, X. D.; Zhou, K. N.; Liu, L. Q.; Zeng, X. M.; Wang, X.; Zhu, J. Q.; Lin, Z. Q.; Zhang, W. Y.

    2006-06-01

    High-power solid-state laser programs at China Academy of Engineering Physics have made great progresses in recent years. A three-stage Ti:sapphire laser system, SILEX-I, was completed early in 2004 which could deliver 26-fs pulses at 5TW, 30TW, and 300TW to the corresponding target chambers for diverse applications. SILEX-I has been working very stably since its completion for experiments, demonstrating that it is the most powerful femtosecond Ti:sapphire laser for exploring strong-field phenomena in the world. The SG-III Nd:glass laser facility has been under conceptual design to meet the requirements from laser fusion applications. The SG-III facility is planned to have sixty-four beamlines divided into eight bundles with an output energy more than 100kJ at 0.35μm for 3- to 5-ns pulses. The eight-beamline TIL (Technical Integration Line), the prototype of the SG-III laser facility, has been installed in the new laboratory in Mianyang. The commissioning experiments have been conducted and one of the eight beams has produced 1-ns pulses of 3.0kJ and 1.2kJ at 1.053μm and 0.35μm, respectively. All the eight beamlines will be activated by the end of 2005 and completed in 2006 for operation. Meanwhile, the eight-beam SG-II laser in Shanghai Institute of Optics and Fine Mechanics has been operated for the experiments since 2001 and an additional beam, built in 2004, has been used for plasma backlighting experiments.

  19. Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas

    SciTech Connect

    Abare, A.C.; Keane, C.J.; Crane, J.K.; DaSilva, L.B.; Lee, R.W.; Perry, M.D.; Falcone, R.W.

    1993-04-01

    We report preliminary results from the analysis of streaked soft x-ray neon spectra obtained from the interaction of a picosecond Nd:glass laser with a gas jet target. In these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n=4-2 and n=3-2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium.

  20. Kinetics of laser-pulse vaporization of uranium carbide by mass spectrometry. [LMFBR

    SciTech Connect

    Tehranian, F.

    1983-06-01

    The kinetics of uranium carbide vaporization in the temperature range 3000 K to 5200 K was studied using a Nd-glass laser with peak power densities from 1.6 x 10/sup 5/ to 4.0 x 10/sup 5/ watts/cm/sup 2/. The vapor species U, UC/sub 2/, C/sub 1/ and C/sub 3/ were detected and analyzed by a quadrupole mass spectrometer. From the mass spectrometer signals number densities of the various species in the ionizer were obtained as functions of time. The surface of the irradiated uranium carbide was examined by scanning electron microscope and the depth profile of the crater was obtained. In order to aid analysis of the data, the heat conduction and species diffusion equations for the solid (or liquid) were solved numerically by a computer code to obtain the temperature and composition transients during laser heating. A sensitivity analysis was used to study the effect of uncertainties in the input parameters on the computed surface temperatures.

  1. Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Abare, Amber C.; Keane, Christopher J.; Crane, John K.; Da Silva, Luiz B.; Lee, Richard W.; Perry, Michael D.; Falcone, Roger W.

    1993-07-01

    We report preliminary results from the analysis of streaked soft x-ray neon spectra obtained from the interaction of a picosecond Nd:glass laser with a gas jet target. In these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n equals 4 - 2 and n equals 3 - 2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium.

  2. Liquid crystal near-IR laser beam shapers employing photoaddressable alignment layers for high-peak-power applications

    NASA Astrophysics Data System (ADS)

    Marshall, Kenneth L.; Saulnier, Debra; Xianyu, Haiqing; Serak, Svetlana; Tabiryan, Nelson

    2013-09-01

    Large-scale, high-energy Nd:glass laser systems require beam shapers to control the spatial distribution of the incident intensity. Commercially available liquid crystal (LC) electro-optical spatial light modulators (SLM's) are frequently employed for this purpose, but their intrinsic requirement for conductive metal or metal-oxide coatings limits their 1054-nm laser-damage thresholds to 230 mJ/cm2 (2.4 ns, 5 Hz), relegating them for use only in low-fluence areas of the laser system. Previously, we demonstrated that passive near-IR LC beam shapers employing coumarin alignment layers patterned by contact photolithography are capable of high resolution and contrast and can withstand incident 1054-nm laser-fluence levels of <30 J/cm2 (1-ns pulse). An evolutionary step to expand the scope of this simple and robust device would be to identify and incorporate into the device structure photoalignment layers that trigger LC bulk reorientation by undergoing reversible optical switching between two predetermined alignment patterns using low-energy polarized UV/visible incident light and have a high near-IR laser-damage threshold. Such "optically driven" LC beam shapers offer the in-system write/erase flexibility of the electro-optical LC SLM's while eliminating conductive coatings that compromise the laser-damage threshold and electrical interconnects that increase device fragility and complexity. To this end, we have recently identified and evaluated the 1054-nm laser-damage-resistance and coating properties of several commercial azobenzene-based photoswitchable alignment materials. In 1-on-1 and N-on-1 testing, these new materials displayed 1054-nm laser-damage thresholds that compare very favorably to those of previously tested coumarin photoalignment materials (30 to 60 J/cm2).

  3. Effect of amplifier component maintenance on laser system availability and reliability for the US National Ignition Facility

    SciTech Connect

    Erlandson, A.C.; Lambert, H.; Zapata, L.E.

    1996-12-01

    We have analyzed the availability and reliability of the flashlamp- pumped, Nd:glass amplifiers that, as a part of a laser now being designed for future experiments, in inertial confinement fusion (ICF), will be used in the National Ignition Facility (NIF). Clearly , in order for large ICF systems such as the NIF to operate effectively as a whole, all components must meet demanding availability and reliability requirements. Accordingly, the NIF amplifiers can achieve high reliability and availability by using reliable parts, and by using a cassette-based maintenance design that allows most key amplifier parts to be 1744 replaced within a few hours. In this way, parts that degrade slowly, as the laser slabs, silver reflectors, and blastshields can be expected to do, based on previous experience, can be replaced either between shots or during scheduled maintenance periods, with no effect on availability or reliability. In contrast, parts that fail rapidly, such as the flashlamps, can and do cause unavailability or unreliability. Our analysis demonstrates that the amplifiers for the NIF will meet availability and reliability goals, respectively, of 99.8% and 99.4%, provided that the 7680 NIF flashlamps in NIF have failure rates of less than, or equal to, those experienced on Nova, a 5000-lamp laser at Lawrence Livermore National Laboratory (LLNL).

  4. Instabilities observed at the bubble edge of a laser produced plasma during its expansion in an ambient tenuous plasma

    NASA Astrophysics Data System (ADS)

    Lee, Bo Ram; Clark, S. E.; Hoffmann, D. H. H.; Niemann, C.

    2014-10-01

    The Raptor kJ class 1053 nm Nd:Glass laser in the Phoenix laser laboratory at University of California, Los Angeles, is used to ablate a dense debris plasma from a graphite or plastic target embedded in a tenuous, uniform, and quiescent ambient magnetized plasma in the Large Plasma Device (LAPD) which provides a peak plasma density of ni ~ 1013 cm-3. Its background magnetic field can vary between 200 and 1200 G. Debris ions from laser produced plasma expand out conically with super-Alfvénic speed (MA ~ 2) and expel the background magnetic field and ambient ions to form a diamagnetic bubble. The debris plasma interacts with the ambient plasma and the magnetic field and acts as a piston which can create collisionless shocks. Flute-type instabilities, which are probably large Larmor radius Rayleigh Taylor instabilities or lower hybrid drift instabilities, are developed at the bubble edge and also observed in the experiment. The amplitude and wavelength dependence of the instabilities, which might be a strong function of debris to ambient mass to charge ratio, is studied and the experimental results are compared to the two dimensional hybrid simulations. the Deutsche Forschungsgemeinschaft in the framework of the Excellence Initiative Darmstadt Graduate School of Energy Science and Engineering (GSC1070).

  5. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion

    DOE PAGES

    Montgomery, David S.

    2016-04-14

    Our understanding of laser-plasma instability (LPI) physics has improved dramatically over the past two decades through advancements in experimental techniques, diagnostics, and theoretical and modeling approaches. We have progressed from single-beam experiments—ns pulses with ~kJ energy incident on hundred-micron-scale target plasmas with ~keV electron temperatures—to ones involving nearly 2 MJ energy in 192 beams onto multi-mm-scale plasmas with temperatures ~4 keV. At the same time, we have also been able to use smaller-scale laser facilities to substantially improve our understanding of LPI physics and evaluate novel approaches to their control. These efforts have led to a change in paradigm formore » LPI research, ushering in an era of engineering LPI to accomplish specific objectives, from tuning capsule implosion symmetry to fixing nonlinear saturation of LPI processes at acceptable levels to enable the exploration of high energy density physics in novel plasma regimes. A tutorial is provided that reviews the progress in the field from the vantage of the foundational LPI experimental results. The pedagogical framework of the simplest models of LPI will be employed, but attention will also be paid to settings where more sophisticated models are needed to understand the observations. Prospects for the application of our improved understanding for inertial fusion (both indirect- and direct-drive) and other applications will also be discussed.« less

  6. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    SciTech Connect

    Wuest, C

    2001-10-29

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  7. Evaluation of Laser Based Alignment Algorithms Under Additive Random and Diffraction Noise

    SciTech Connect

    McClay, W A; Awwal, A; Wilhelmsen, K; Ferguson, W; McGee, M; Miller, M

    2004-09-30

    The purpose of the automatic alignment algorithm at the National Ignition Facility (NIF) is to determine the position of a laser beam based on the position of beam features from video images. The position information obtained is used to command motors and attenuators to adjust the beam lines to the desired position, which facilitates the alignment of all 192 beams. One of the goals of the algorithm development effort is to ascertain the performance, reliability, and uncertainty of the position measurement. This paper describes a method of evaluating the performance of algorithms using Monte Carlo simulation. In particular we show the application of this technique to the LM1{_}LM3 algorithm, which determines the position of a series of two beam light sources. The performance of the algorithm was evaluated for an ensemble of over 900 simulated images with varying image intensities and noise counts, as well as varying diffraction noise amplitude and frequency. The performance of the algorithm on the image data set had a tolerance well beneath the 0.5-pixel system requirement.

  8. The Ignition Target for the National Ignition Facility

    SciTech Connect

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-03-12

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10{sup 8} K), pressures (10-GBar) and matter densities (> 100 g/cm{sup 3}). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art.

  9. Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser{endash}solid interactions at ultrahigh intensity

    SciTech Connect

    Feurer, T.; Theobald, W.; Sauerbrey, R.; Uschmann, I.; Altenbernd, D.; Teubner, U.; Gibbon, P.; Foerster, E.; Malka, G.; Miquel, J.L.

    1997-10-01

    Using a high-power femtosecond frequency-doubled Nd:glass laser system with a contrast ratio of 10{sup 12}, the interaction between light and matter up to intensities of 10{sup 19} Wthinspcm{sup {minus}2}has been investigated. The absorption of the laser light in solid aluminum is almost independent of the polarization, peaks at about 25{degree}, and reaches values of almost 45{percent}. Assuming an exponential electron distribution, a temperature of 420 keV at 4{times}10{sup 18} Wthinspcm{sup {minus}2}was measured. These experiments and the detection of the hard-x-ray radiation (60 keV{endash}1 MeV) implied a conversion efficiency of 10{sup {minus}4}{endash}10{sup {minus}3} into suprathermal electrons. A second low-energy electron distribution either with trajectories mainly parallel to the target surface or with a reduced penetration depth due to flux inhibition was also inferred from K{alpha} line radiation measurements. {copyright} {ital 1997} {ital The American Physical Society}

  10. Detecting fiducials affected by trombone delay in ARC and the main laser alignment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl

    2015-09-01

    Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.

  11. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  12. Understanding lasers

    SciTech Connect

    Gibilisco, S.

    1989-01-01

    Covering all different types of laser applications-Gibilisco offers an overview of this fascinating phenomenon of light. Here he describes what lasers are and how they work and examines in detail the different kinds of lasers in use today. Topics of particular interest include: the way lasers work; the different kinds of lasers; infrared, ultraviolet and x-ray lasers; use of lasers in industry and manufacturing; use of lasers for long-distance communications; fiberoptic communications; the way laser shows work; the reality of Star Wars; lasers in surgical and medical applications; and holography and the future of laser technology.

  13. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    NASA Astrophysics Data System (ADS)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  14. Observation of Collimated Electron Flows and γ-ray Beams From Ultraintense Laser Pulse Interactions With Solids

    NASA Astrophysics Data System (ADS)

    Norreys, Peter

    1998-11-01

    An accurate determination of the temperature and energy transport of fast electrons as a function of intensity on target is essential for applications of ultra-intense laser pulses such as the fast ignition scheme for ICF and laser induced fission. A complex set of diagnostics were fielded to examine these important questions using ultra-intense beamline of the Rutherford Appleton Laboratory's Nd:glass laser Vulcan. Colliminated electron flows in solid density plasmas have been infered from the rear surface plasma expansion profile of thick foils obtained by optical shadowgraphy. In addition, a highly directional γ-ray beam of bremsstrahlung radiation, directed 170deg from the target normal, was observed, which are probably associated with the inwardly directed collimated electron flows. The γ-ray beam was measured using the photo induced ^63Cu(γ,n)^62Cu reaction which has a threshold at 10 MeV. ^62Cu decays into ^62Ni with the emission of a positron and has a half life of 9.8 minutes. The opposite directed positron annihilation γ-rays were detected using a highly sensitive coincindence counting unit. The angular distribution was obtained using a number of Cu pieces placed around the target. To measure the electron temperature directly, a fully collimated X-ray/γ-ray spectrometer was employed to measure the emitted bremsstrahlung radiation. This consisted of photo-multipliers with different thickness scintillator / Pb filter combinations. The spectometer has a range from 100 keV - 10 MeV. The electron temperatures were numerically unfolded. In addition, the electrons escaping the target directly in front of the target and behind it at different angles were measured. The electron temperatures derived from these detectors will be compared with those from the bremsstrahlung measurements. Finally, we have also observed unusual behaviour optical emission associated with the parametric instabilities. These features will be described and presented.

  15. Two Decades of Progress in Understanding and Control of Laser Plasma Instabilities in Indirect Drive Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Montgomery, David S.

    2015-11-01

    Our understanding of laser-plasma interaction (LPI) physics has improved dramatically over the past two decades through advancements in experimental techniques, diagnostics, and theoretical and modeling approaches. We have progressed from single-beam experiments--ns pulses with ~kJ energy incident on hundred-micron-scale target plasmas with ~keV electron temperatures--to ones involving nearly 2 MJ energy in 192 beams onto multi-mm-scale plasmas with temperatures ~4 keV. At the same time, we have also been able to use smaller-scale laser facilities to substantially improve our understanding of LPI physics and evaluate novel approaches to the their control. The need to interpret and understand these detailed LPI experimental results has inspired an evolution of theoretical models, from 1D fluids with linear plasma wave responses to individual beams via a three-wave interaction, to today's fully nonlinear, 2D and 3D fluid and kinetic simulations of systems whose LPI dynamics are dominated by wave-wave and wave-particle nonlinearity. These efforts have led to a change in paradigm for LPI research, ushering in an era of engineering LPI to accomplish specific objectives, from tuning capsule implosion symmetry to fixing nonlinear saturation of LPI processes at acceptable levels to enable the exploration of high energy density physics in novel plasma regimes. This talk will review the progress in the field from the vantage of the foundational LPI experimental results. The pedagogical framework of the simplest models of LPI will be employed, but attention will also be paid to settings where more sophisticated models are needed to understand the observations. Prospects for the application of our improved understanding for inertial fusion (both indirect- and direct-drive) and other applications will also be discussed. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  16. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    radiation for radiography, particle beam generation and eventually for a new class of fusion experiments call fast ignition. We have also built a record setting 50 watts of average output from a picosecond class laser and are using this technology for materials processing such as fine hole drilling and safe cutting of munitions. The laser science and technology program has developed and deployed a laser guide star on the Lick telescope on Mt. Hamilton and most recently on the Keck telescope in Hawaii. Our current development work in this area is focused on developing a much more compact all solid state diode pumped laser fiber system. Finally in a program originally initiated by DARPA we have developed a phase conjugated Nd:glass laser system with record setting performance and successfully deployed it for Navy and Air Force satellite imaging applications and have more recently successfully transferred it to industry for use in an emerging technology called laser peening. This laser technology is capable of 25 J to 100 J per pulse, 10 ns to 1000 ns pulse duration, 5 Hz laser. The technology has been industrially deployed and is proving to be highly effective in generating high intensity shocks that induce compressive residual stress into metal components. The compressive stress retards fatigue and stress corrosion cracking and is proving to extend the lifetime of high value components by factors of ten. This processing adds lifetime, enhances safety and can improve performance of aircraft systems. Laser peening is now being evaluated to reduce the weight of aircraft and may play a major role in the future combat system and its air transport by enabling lighter craft, longer range and greater payload. The laser peening technology is also being moved forward in NRC license application as the means to eliminate stress corrosion cracking for Yucca Mountain nuclear waste disposal canisters as well as a broad range of other applications.

  17. High-resolution x-ray spectroscopy of multicharged argon and krypton ions using a laser-produced x-ray source with a gas-puff target

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Dyakin, Vladimir M.; Faenov, Anatoly Y.; Fiedorowicz, Henryk; Jarocki, Roman; Nilsen, Joseph; Osterheld, Albert L.; Skobelev, Igor Y.; Szczurek, Miroslaw

    1997-10-01

    A hot and dense plasma can be produced by high-power laser irradiation of a high-pressure gas puff target. The plasma emits strong x-ray radiation in low photon-energy range (soft x-rays and XUV radiation) and is considered to be used as a debrisless laser-produced x-ray source. It was shown that the laser-irradiated gas puff plasma is an ideal source for the high-resolution spectroscopic studies of complex spectra of the multicharged ions. This paper reports our investigations of x-ray spectra of heliumlike argon and neonlike krypton ions. The gas puff targets were created with the use of a specially designed high-pressure solenoid valve operating at a backing pressure up to 15 at and quipped with a sonic-type circular nozzle of 0.5 mm in diameter. Parameters of the gas puff targets were measured using x-ray shadowgraphy and laser interferometry. To irradiate the gas puff targets we have used a Nd:glass laser, which generates 10 J pulses in 1 ns FWHM. The laser beam was focused onto the gas puff target perpendicularly in respect to the flow of gas using an aspherical lens. The diameter of a laser beam in the focus were about 100 micrometers , what ensured the radiation power density to be of order of 1014 W/cm2. To measure x-ray spectra emitted by a laser-irradiated gas puff target we have used a simple focusing crystal spectrographs with a mica crystal curved into a spherical surface of radius R equals 100 mm. The spectra were recorded on Kodak RAR 2495 x-ray commercial film. The high resolving power of the spectrograph of about (lambda) /(Delta) (lambda) equals 10000 permitted high-precision wavelength spectral measurements. The measured x-ray spectra have the small spectra width of the observed lines associated with the low expansion velocity of the laser- irradiated gas puff plasma. Dielectronic sodiumlike satellites to neonlike krypton resonance lines have measured for the first time. High-resolution spectra of heliumlike argon were also obtained. The

  18. Laser Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Dopant level analysis is important to the laser system designer because it allows him to model the laser's performance. It also allows the end user to determine what went wrong when a laser fails to perform as expected. Under a Small Business Innovation Research (SBIR) contract, Scientific Materials Corporation has developed a process for producing uniform laser rods in which the amount of water trapped in the crystal during growth is reduced. This research led to the formation of a subsidiary company, Montana Analytical Services, which conducts analysis of laser rods for dopant ion concentrations. This is a significant advance in laser technology.

  19. Lasers of All Sizes

    NASA Astrophysics Data System (ADS)

    Balcou, Philippe; Forget, Sébastien Robert-Philip, Isabelle

    2015-10-01

    * Introduction * The Laser in All Its Forms * Gas lasers * Dye lasers * Solid-state lasers * Lasers for Every Taste * The rise of lasers * Lasers of all sizes * The colors of the rainbow... and beyond * Shorter and shorter lasers * Increasingly powerful lasers * Lasers: A Universal Tool? * Cutting, welding, and cleaning * Communicating * Treating illnesses * Measuring * Supplying energy? * Entertaining * Understanding * Conclusion

  20. Laser microphone

    DOEpatents

    Veligdan, James T.

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  1. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  2. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  3. Cutaneous lasers.

    PubMed

    Fedok, Fred G; Garritano, Frank; Portela, Antonio

    2013-02-01

    There has been a remarkable development and evolution of laser technology, leading to adaptation of lasers for medical use and the treatment of skin problems and disorders. Many treatments that required incisional surgery and other invasive methods are now preferentially treated with a laser. Although laser advances have resulted in the availability of some amazing tools, they require the clinical skill and judgment of the clinician for their optimal use. This article provides a clinically oriented overview of many of the lasers valuable in facial plastic surgery. Basic science, clinical adaptations, and patient management topics are covered.

  4. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  5. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  6. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  7. Update on diode-pumped solid-state laser experiments for inertial fusion energy

    SciTech Connect

    Marshall, C.; Smith, L.; Payne, S.

    1994-08-15

    The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics (<1 %/cm) and laser damage thresholds ({approximately}20 J/cm{sup 2}). The saturation fluence for pumping has been measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10{sup {minus}20} cm{sup 2} that falls within error bars of the previously reported value of 7.3 x 10{sup {minus}20} cm{sup 2}, obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm{sup 3}. A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author`s immediate experiments. These results further increase their optimism of being able to produce a {approximately} 10% efficient diode-pumped solid state laser for inertial fusion energy.

  8. Computer-aided design and modeling of nickel dithiolene near-infrared dyes. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    SciTech Connect

    Corsello, S.

    1999-03-01

    Recent advances in computational chemistry have made it feasible to design many types of molecules and predict their properties theoretically. The author applied these techniques to the design of organometallic transition-metal dyes absorbing in the near-infrared region of the spectrum which possess the combination of a large molar extinction coefficient, good chemical and thermal stability, and a high solubility in liquid crystal (LC) hosts. These properties are required for the dye to function as a near-infrared (IR) attenuator in a liquid crystal point diffraction interferometer (LCPDI) device that will be used as a beam diagnostic on the 60-beam OMEGA solid-state Nd:glass laser system at the University of Rochester`s Laboratory for Laser Energetics. Using commercially available software, both the absorption spectra and solubility characteristics of bis[1,2-di-(p-n alkoxyphenyl)ethane-1,2-dithione] nickel dye complexes were modeled in an isotropic host (cyclohexane) and, in most cases, excellent agreement was found with experimental data. Two additional compounds utilizing the same nickel dithiolene core but with alkylthio and phenylalkylthio terminal groups have been designed and show excellent potential to produce dramatic improvements in both solubility and optical density (absorbance) in liquid crystalline hosts. Based upon my work, a new dye not previously reported, 2(C{sub 4}S)2(C{sub 4}SPh)DTNi, has been proposed to satisfy the LCPDI device requirements. The nickel dithiolene dyes may also find important applications in other technology areas such as near-IR photography and laser-based near-IR communications.

  9. Laser Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tunable diode lasers are employed as radiation sources in high resolution infrared spectroscopy to determine spectral characteristics of gaseous compounds. With other laser systems, they are produced by Spectra-Physics, and used to monitor chemical processes, monitor production of quantity halogen lamps, etc. The Laser Analytics Division of Spectra-Physics credits the system's reliability to a program funded by Langley in the 1970s. Company no longer U.S.-owned. 5/22/97

  10. Biocavity Lasers

    SciTech Connect

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  11. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  12. Laser apparatus

    DOEpatents

    Lewis, Owen; Stogran, Edmund M.

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  13. The size and structure of the laser entrance hole in gas-filled hohlraums at the National Ignition Facility

    SciTech Connect

    Schneider, M. B. MacLaren, S. A.; Widmann, K.; Meezan, N. B.; Hammer, J. H.; Yoxall, B. E.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Hinkel, D. E.; Hsing, W. W.; Kervin, M. L.; Landen, O. L.; Lindl, J. D.; May, M. J.; and others

    2015-12-15

    At the National Ignition Facility, a thermal X-ray drive is created by laser energy from 192 beams heating the inside walls of a gold cylinder called a “hohlraum.” The x-ray drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH radius decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma from the high-intensity region in the center of the LEH pushing radially outward. The x-ray drive on the capsule is deduced by measuring the time evolution and spectra of the x-radiation coming out of the LEH and correcting for geometry and for the radius of the LEH. Previously, the LEH radius was measured using time-integrated images in an x-ray band of 3–5 keV (outside the thermal x-ray region). For gas-filled hohlraums, the measurements showed that the LEH radius is larger than that predicted by the standard High Flux radiation-hydrodynamic model by about 10%. A new platform using a truncated hohlraum (“ViewFactor hohlraum”) is described, which allows time-resolved measurements of the LEH radius at thermal x-ray energies from two views, from outside the hohlraum and from inside the hohlraum. These measurements show that the LEH radius closes during the low power part of the pulse but opens up again at peak power. The LEH radius at peak power is larger than that predicted by the models by about 15%–20% and does not change very much with time. In addition, time-resolved images in a >4 keV (non-thermal) x-ray band show a ring of hot, optically thin gold plasma just inside the optically thick LEH plasma. The structure of this plasma varies with time and with Cross Beam Energy Transfer.

  14. Lasers in Cancer Treatment

    MedlinePlus

    ... Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it ... future hold for laser therapy? What is laser light? The term “ laser ” stands for light amplification by ...

  15. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  16. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  17. Laser Therapy

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  18. Laser Crystal

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lightning Optical Corporation, under an SBIR (Small Business Innovative Research) agreement with Langley Research Center, manufactures oxide and fluoride laser gain crystals, as well as various nonlinear materials. The ultimate result of this research program is the commercial availability in the marketplace of a reliable source of high-quality, damage resistant laser material, primarily for diode-pumping applications.

  19. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  20. Autokeratomileusis Laser

    NASA Astrophysics Data System (ADS)

    Kern, Seymour P.

    1987-03-01

    Refractive defects such as myopia, hyperopia, and astigmatism may be corrected by laser milling of the cornea. An apparatus combining automatic refraction/keratometry and an excimer type laser for precision reshaping of corneal surfaces has been developed for testing. When electronically linked to a refractometer or keratometer or holographic imaging device, the laser is capable of rapidly milling or ablating corneal surfaces to preselected dioptric power shapes without the surgical errors characteristic of radial keratotomy, cryokeratomileusis or epikeratophakia. The excimer laser simultaneously generates a synthetic Bowman's like layer or corneal condensate which appears to support re-epithelialization of the corneal surface. An electronic feedback arrangement between the measuring instrument and the laser enables real time control of the ablative milling process for precise refractive changes in the low to very high dioptric ranges. One of numerous options is the use of a rotating aperture wheel with reflective portions providing rapid alternate ablation/measurement interfaced to both laser and measurement instrumentation. The need for the eye to be fixated is eliminated or minimized. In addition to reshaping corneal surfaces, the laser milling apparatus may also be used in the process of milling both synthetic and natural corneal inlays for lamellar transplants.

  1. Laser goniometer

    DOEpatents

    Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.

    1993-01-01

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  2. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  3. Laser barometer

    SciTech Connect

    Abercrombie, K.R.; Shiels, D.; Rash, T.

    1998-04-01

    This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

  4. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  5. Laser bronchoscopy.

    PubMed

    Duhamel, D R; Harrell, J H

    2001-11-01

    Because the lung cancer epidemic shows no signs of abating, little doubt exists that the need for interventional bronchoscopists will persist for many years to come. The Nd:YAG laser and the rigid bronchoscope remain crucial weapons in the fight against lung cancer. With more than 4000 published interventions pertaining to it, this combination is ideal for treating central airways obstruction. The safety and efficacy of laser bronchoscopy has been well established, and the reported incidence of complications is impressively low. If complications were to arise, a skilled bronchoscopist can manage them easily by using the beneficial attributes of the rigid bronchoscope. Many complications can be avoided by implementing the established safety procedures and techniques. A solid understanding of laser physics and tissue interactions is a necessity to anyone performing laser surgery. The team approach, relying on communication among the bronchoscopist, anesthesiologist, laser technician, and nurses, leads to a safer and more successful procedure. It is important to remember, however, that this is typically a palliative procedure, and therefore the focus should be on alleviating symptoms and improving quality of life. Unfortunately, because not every patient is a candidate for laser bronchoscopy, there are specific characteristics of endobronchial lesions that make them more or less amenable to resection. Each year a promising new technology is being developed, such as argon plasma coagulation, cryotherapy, and endobronchial electrosurgery. Although it is unclear what role these technologies will have, prospective controlled studies must be done to help clarify this question. The future may lay in combining these various technologies along with Nd:YAG laser bronchoscopy to maximize the therapeutic, palliative, and possibly even curative effect. As the experience of the medical community with Nd:YAG laser bronchoscopy continues to grow and as more health-care professionals

  6. Laser Technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Amoco Laser Company, a subsidiary of Amoco Corporation, has developed microlasers for the commercial market based on a JPL concept for optical communications over interplanetary distances. Lasers emit narrow, intense beams of light or other radiation. The beams transmit communication signals, drill, cut or melt materials or remove diseased body tissue. The microlasers cover a broad portion of the spectrum, and performance is improved significantly. Current applications include medical instrumentation, color separation equipment, telecommunications, etc.

  7. Laser optomechanics

    PubMed Central

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  8. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  9. Laser neutralization

    SciTech Connect

    Peterson, O.G.

    1986-06-17

    Laser photodetachment of the excess electron to neutralize relativistic ions offers many advantages over the more conventional collisional methods using gases or thin foils as the neutralization agents. Probably the two most important advantages of laser photodetachment are the generation of a compact and low divergence beam, and the production of intense neutral beams at very high efficiency (approximately 90%). The high intensities or high current densities of the neutral beam result from the fixed maximum divergence that can be added to the beam by photodetachment of the charge using laser intensity of fixed wavelength and incident angle. The high neutralization efficiency is possible because there is no theoretical maximum to the neutralization efficiency, although higher efficiencies require higher laser powers and, therefore, costs. Additional advantages include focusability of the laser light onto the ion beam to maximize its efficacy. There certainly is no residual gas left in the particle beam path as is typical with gas neutralizers. The photodetachment process leaves the neutral atoms in the ground state so there is no excited state fluorescence to interfere with the subsequent beam sensing. Finally, since the beams to be neutralized are very high powered, for a large range of neutralization efficiencies the neutral beam can be increased more by increasing the power to the laser neutralizer than by adding an equal amount of power to the primary accelerator. 26 figs.

  10. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  11. Laser optomechanics.

    PubMed

    Yang, Weijian; Gerke, Stephen Adair; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  12. Observation and Analysis of Strong Oscillating Electric Fields in a ps and fs Laser Plasma by High-resolution X-ray Spectroscopy Measurements

    SciTech Connect

    Faenov, A. Ya.; Pikuz, T. A.; Skobelev, I. Yu.; Magunov, A. I.; Belyaev, V. S.; Vinogradov, V. I.; Matafonov, A. P.; Lisitsa, V. S.; Gavrilenko, V. P.; Pikuz, S. A. Jr.; Kim, K. Y.; Milchberg, H. M.

    2006-04-07

    The results of measurements of the multicharged ions spectra in plasma produced by moderately intense (up to 4x1017 W/cm-2) laser pulses are presented. In the first case, Nd glass laser radiation with energy 1 - 2 J and pulse duration 1.5 ps was focused on the flat solid Teflon target. In the second case, Ti:Sa laser radiation with energy {approx}70 mJ and pulse duration 70 and 500 fs was focused onto an N2O gas jet, created by a high-pressure liquid nitrogen cooled, pulsed (10 Hz) nozzle. Profiles of the Ly{alpha} lines of F IX ions in Teflon target and O VIII ions in N2O clusters were recorded with a very high spectral resolution {lambda}/{delta}{lambda} {approx} 3000 - 5000. The features (peaks and dips) in the Ly{alpha} line profiles were observed. They suggest the existence of intense plasma oscillations with a frequency appreciably lower than the frequency of the laser radiation. The observed X-ray spectra for the plasma satellites of the Ly{alpha} doublet of the hydrogen F IX and O VIII ions in plasma were modeled theoretically. It was shown that the resulting doublet profile have a complex structure, which depends nontrivially both on the plasma temperature, density and on the frequency and amplitude of the plasma oscillations. Experimental positions of the satellites and their separations allowed them to be associated with intense electrostatic oscillations with an amplitude E0 {approx} (4-6)x108 Vcm-1 and a frequency {omega} {approx} (0.7-1)x1015 s-1 for F IX ions and E0 {approx} (0.5 - 1.0)x10 9 V/cm and frequency {omega} {approx} (0.7-2.4)x1015 s-1 for O VIII, simultaneously. Assuming the oscillation frequency to be determined by the strength of the magnetic field B generated in the plasma, we obtained an estimate of B that is in reasonable agreement with other measurements.

  13. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  14. Laser physics and laser-tissue interaction.

    PubMed

    Welch, A J; Torres, J H; Cheong, W F

    1989-01-01

    Within the last few years, lasers have gained increasing use in the management of cardiovascular disease, and laser angioplasty has become a widely performed procedure. For this reason, a basic knowledge of lasers and their applications is essential to vascular surgeons, cardiologists, and interventional radiologists. To elucidate some fundamental concepts regarding laser physics, we describe how laser light is generated and review the properties that make lasers useful in medicine. We also discuss beam profile and spotsize, as well as dosimetric specifications for laser angioplasty. After considering laser-tissue interaction and light propagation in tissue, we explain how the aforementioned concepts apply to direct laser angioplasty and laser-balloon angioplasty. An understanding of these issues should prove useful not only in performing laser angioplasty but in comparing the reported results of various laser applications.

  15. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  16. Header For Laser Diode

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1990-01-01

    Header designed to contain laser diode. Output combined incoherently with outputs of other laser diodes in grating laser-beam combiner in optical communication system. Provides electrical connections to laser diode, cooling to thermally stabilize laser operation, and optomechanical adjustments that steer and focus laser beam. Range of adjustments provides for correction of worst-case decentering and defocusing of laser beam encountered with laser diodes. Mechanical configuration made simple to promote stability and keep cost low.

  17. The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2011-11-01

    The National Ignition Facility (NIF), a 192-beam Nd-glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light, is now operational at Lawrence Livermore National Laboratory (LLNL). As the world's largest and most energetic laser system, NIF serves as the national center for the U.S. Department of Energy (DOE) and National Nuclear Security Administration to achieve thermonuclear burn in the laboratory and to explore the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from all of its 192 extremely energetic laser beams into a mm3-sized target, NIF can reach the conditions required to initiate fusion reactions. NIF can also provide access to extreme scientific environments: temperatures about 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure. These conditions have never been created before in a laboratory and exist naturally only in interiors of the planetary and stellar environments as well as in nuclear weapons. Since August 2009, the NIF team has been conducting experiments in support of the National Ignition Campaign (NIC)—a partnership among LLNL, Los Alamos National Laboratory, General Atomics, the University of Rochester, Sandia National Laboratories, as well as a number of universities and international collaborators. The results from these initial experiments show promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. Important national security and basic science experiments have

  18. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  19. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  20. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  1. Laser capture.

    PubMed

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  2. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  3. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  4. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  5. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  6. Making a Laser Level

    ERIC Educational Resources Information Center

    Hawkins, Harry

    2004-01-01

    This article describes how to construct a laser level. This laser level can be made using a typical 4' (or shorter) bubble level and a small laser point. The laser unit is detachable, so the bubble level can also be used in the conventional way. However, the laser level works better than a simple bubble level. Making this inexpensive device is an…

  7. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  8. Project LASER

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  9. The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)

    SciTech Connect

    Moses, E

    2009-09-17

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely

  10. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Moses, E

    2009-06-22

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of

  11. Hypersonic gasdynamic laser system

    SciTech Connect

    Foreman, K.M.; Maciulaitis, A.

    1990-05-22

    This patent describes a visible, or near to mid infra-red, hypersonic gas dynamic laser system. It comprises: a hypersonic vehicle for carrying the hypersonic gas dynamic laser system, and also providing high energy ram air for thermodynamic excitation and supply of the laser gas; a laser cavity defined within the hypersonic vehicle and having a laser cavity inlet for the laser cavity formed by an opening in the hypersonic vehicle, such that ram air directed through the laser cavity opening supports gas dynamic lasing operations at wavelengths less than 10.6{mu} meters in the laser cavity; and an optical train for collecting the laser radiation from the laser cavity and directing it as a substantially collimated laser beam to an output aperture defined by an opening in the hypersonic vehicle to allow the laser beam to be directed against a target.

  12. Lasers in Medicine.

    ERIC Educational Resources Information Center

    Hill, P. D.

    1989-01-01

    Described are the characteristics of the laser and its effects on the body. Discussed are examples of laser treatments, including angioplasty, ophthalmology, and dermatology. A discussion of lasers of clinical interest and their applications is presented. (YP)

  13. Laser therapy (image)

    MedlinePlus

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  14. The Laser Marketplace

    NASA Astrophysics Data System (ADS)

    Hitz, C. B.

    1986-11-01

    The total value of all lasers sold during 1986 in the non-Communist world will exceed US $600 million. This paper examines these sales and categorizes them according to application and according to type of laser. The results are presented both in terms of numbers of lasers sold, and in terms of the value of those lasers. The data are based on extensive interviews with laser manufacturers and laser users.

  15. Laser accidents: Being Prepared

    SciTech Connect

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  16. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  17. New laser protective eyewear

    NASA Astrophysics Data System (ADS)

    McLear, Mark

    1996-04-01

    Laser technology has significantly impacted our everyday life. Lasers are now used to correct your vision, clear your arteries, and are used in the manufacturing of such diverse products as automobiles, cigarettes, and computers. Lasers are no longer a research tool looking for an application. They are now an integral part of manufacturing. In the case of Class IV lasers, this explosion in laser applications has exposed thousands of individuals to potential safety hazards including eye damage. Specific protective eyewear designed to attenuate the energy of the laser beam below the maximum permissible exposure is required for Class 3B and Class IV lasers according to laser safety standards.

  18. [Laser physics].

    PubMed

    Banús Gassol, J M

    2008-11-01

    The commission of this article plunged me into doubt. First I should confess that I don't find excuse to escape this part if somebody wants to minimally deepen in the knowledge of the biological effects of this energy source. Secondly, when we talk about results, we use terms made and defined by Physics. Often we have polemics about results, and what really happens is that we don't reach agreements because we refer to different terms to explain the same observation; in conclusion we cannot understand each other because we do not know the adequate terms; for example, hypoxemia as oxygen deficit, which is true in an anemic patient as well as in a low oxygen saturation rate. In consequence, a good review of these concepts seems necessary to me. The third reason is the confusion that exists in our environment, I think sometimes of interest, about properties and effects of different types of laser. Only a minimal knowledge of physics will help us to state the scientific basis for understanding. The problems, nevertheless, accumulate due to the fact that the universe to which this article is directed is formed by urologists. What Physics education should we suppose they have? Superficial? Medium? Is it a collective with a uniform knowledge, being it whatever it is? The implication is clear. The article depth will depend on the answers to these questions. Nevertheless, the aim of the authors is to give a base enough to know what the laser is and how it acts. For that, the answer I gave to my questions is that the reader should understand the article and have enough base for, at least, reading critically the articles about laser published in urological journals.

  19. Laser biophotonics

    NASA Astrophysics Data System (ADS)

    Bashkatov, A. N.; Genina, E. A.; Priezzhev, A. V.; Tuchin, V. V.

    2016-06-01

    This issue of Quantum Electronics presents the papers that reflect the state-of-the-art of laser technologies used in biomedical studies and medical practice. Among the new technologies, one can note the methods of correlation and Doppler spectroscopy, as well as THz spectroscopy, in which biologically significant molecules are characterised by specific resonances. The latter topic is considered in the paper by Nazarov et al., where the dielectric function of aqueous solutions of glucose and albumin is studied using pulsed THz spectroscopy.

  20. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  1. Studies on lasers and laser devices

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Young, J. F.

    1983-01-01

    The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.

  2. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  3. Laser physics and laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Byer, Robert L.

    1990-04-01

    Two essential difficulties must be addressed in any low-power frequency conversion device; boosting the efficiency above that of simple single-pass bulk devices (which are typically less than 1 percent/W) and achieving phase-matching for the desired interaction. Waveguide interactions were used to increase the conversion efficiency, and explored quasi-phase-matching (QPM) as a broadly applicable approach to meeting the phasematching condition. Both oxide forrelectrics like LiNbO3 and quantum-wells in III-V semiconductors have been investigated for these applications. Second harmonic generation (SHG) of near-infrared lasers to produce green and blue radiation, as well as SHG of the 9 to 11 micrometer output of a CO2 laser have been demonstrated in these materials. These media together constitute a significant step towards the goal of generic nonlinear media for the far infrared - ultraviolet, based on readily available materials and fabricated with standard technologies, applicable to essentially any frequency conversion application.

  4. Laser photobiology and photomedicine

    SciTech Connect

    Martellucci, S.; Chester, A.N.

    1985-01-01

    This book presents information on the following topics: the physical and biological basis of photobiology and photomedicine; the biological effects and applications of laser technology; photochemotherapy; photobiology and dermatology; surgical and ophthalmological applications of lasers; laser safety; and diagnostics and technological aspects of recent laser developments.

  5. Longitudinal discharge laser baffles

    DOEpatents

    Warner, B.E.; Ault, E.R.

    1994-06-07

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  6. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  7. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  8. Obstacles to Laser Safety

    SciTech Connect

    Barat, K

    2005-04-25

    The growth of laser development & technology has been remarkable. Unfortunately, a number of traps or obstacles to laser safety have also developed with that growth. The goal of this article is to highlight those traps, in the hope that an aware laser user will avoid them. These traps have been the cause or contributing factor of many a preventable laser accident.

  9. Longitudinal discharge laser baffles

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1994-01-01

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

  10. Lasers in cosmetic dentistry.

    PubMed

    Pang, Peter

    2008-01-01

    Lasers have become a necessary instrument in the esthetic restorative armamentarium. This article presents smile design guidelines for soft tissue lasers, as well as an overview of hard tissue procedures that may be performed using all-tissue lasers. The goal is to help dentists determine the appropriate laser for a given clinical situations. PMID:19014026

  11. Lasers in cosmetic dentistry.

    PubMed

    Pang, Peter

    2008-01-01

    Lasers have become a necessary instrument in the esthetic restorative armamentarium. This article presents smile design guidelines for soft tissue lasers, as well as an overview of hard tissue procedures that may be performed using all-tissue lasers. The goal is to help dentists determine the appropriate laser for a given clinical situations.

  12. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  13. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  14. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  15. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  16. Rare gas halide lasers

    SciTech Connect

    O'Neill, F.

    1985-01-01

    Contents include: Basic principles of operation of E-beam-pumped KrF lasers--(Spectroscopy, Kinetic processes in E-beam-pumped KrF lasers, Absorbers in the KrF gain medium, Sprite - A 200J, 5ns KrF laser); Current topics in KrF laser research--(Target experiments with the Sprite KrF laser, Pulse compression and power multiplication of KrF lasers, Improved efficiency of E-beam-pumped KrF lasers).

  17. Tunable lasers- an overview

    SciTech Connect

    Guenther, B.D.; Buser, R.G.

    1982-08-01

    This overview of tunable lasers describes their applicability to spectroscopy in the ultraviolet and middle infrared ranges; to rapid on-line diagnostics by ultrashort cavity lasers; to exploration, by the free electron laser, for its wide tuning in the far infrared to submillimeter region; to remote detection, in areas such as portable pollution monitors, on-line chemical analyzers, auto exhaust analyzers, and production line controls; to photochemistry; and to other potential areas in diagnostics, communications, and medical and biological sciences. The following lasers are characterized by their tunability: solid state lasers, primarily alexandrite, with a tuning range of ca 1000 Angstroms; color center lasers; semiconductor lasers; dye lasers; gas lasers, where high-pressure CO/sub 2/ discharges are the best known example for a wide tunability range, and research is continuing in systems such as the alkali dimers; and, at wavelengths beyond 10 micrometers, the possibilities beyond Cerenkov and free electron lasers.

  18. What is a Laser?

    NASA Astrophysics Data System (ADS)

    Julien, Lucile; Schwob, Catherine

    2015-10-01

    The first laser was built more than 50 years ago, inMay 1960: it was a pulsed ruby laser. It was a simple laboratory curiosity and nobody knew what its usefulness could be. Other devices were rapidly demonstrated, and the variety and number of lasers in the world increased at a huge rate. Currently, the annual laser world market is worth about 6 billion dollars. Thanks to the remarkable properties of laser light, laser applications increase steadily in the domains of industry, building, medicine, telecommunications, etc. One can find many lasers in research laboratories, and they are used more and more in our everyday life and almost everybody has already seen a laser beam. The goal of the first chapter of this book is to explain simply what a laser is, how it is built and how it operates. Firstly, let us point out the outstanding properties of the laser light.

  19. Intracavity Raman lasers

    SciTech Connect

    Band, Y.B.; Ackerhalt, J.R.; Krasinski, J.S.; Heller, D.F.

    1989-02-01

    Experimental and theoretical studies of intracavity Raman lasers are presented. Advantages of intracavity Raman lasers, particularly for low-emission cross section and broadly tunable vibronic gain media, are described. Experimental studies of a hydrogen gas Raman laser pumped inside the cavity of an alexandrite laser are presented. A theoretical model of the dynamics of a unidirectional intracavity Raman ring laser is developed and solved analytically. This model is adapted to simulate experiments.

  20. Surgical lasers in dermatology

    NASA Astrophysics Data System (ADS)

    Szymanczyk, Jacek; Nowakowski, Wlodzimierz; Golebiowska, Aleksandra; Michalska, I.; Mindak, Marek K.

    1997-10-01

    Almost every laser for medical applications was first tried in dermatology. The efficiency of YAG, CO2, and Argon lasers on this area and their potential advantages over conventional methods were mostly evaluated by cosmetic effect of laser therapy. The indications for different laser treatment in such dermatological cases as: angiomas, telangiectasias, pigmented lesions, nevus flammeus congenitus, deep cavernous angiomas, skin neoplasms and condylomata acuminata are discussed in this paper and the results of the laser therapy are also presented.

  1. The laser in urology

    NASA Astrophysics Data System (ADS)

    Hofstetter, Alfons G.

    2002-10-01

    Laser is an acronym for a physical principle and means: Light Amplification by stimulated Emission of Radiation. This principle offers a lot of tissue/light effects caused by the parameters: power density/time and the special qualities of the laser light. Nowadays for diagnosis and therapy following lasers are used in urology: Krypton- and Dye-lasers as well as the Neodymium-YAG- (nd:YAG-), Holmium-YAG (Ho:YAG-), Diode-, Argon- and the CO2-lasers.

  2. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  3. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  4. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  5. Laser Surveying

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has produced a laser-aided system for surveying land boundaries in difficult terrain. It does the job more accurately than conventional methods, takes only one-third the time normally required, and is considerably less expensive. In surveying to mark property boundaries, the objective is to establish an accurate heading between two "corner" points. This is conventionally accomplished by erecting a "range pole" at one point and sighting it from the other point through an instrument called a theodolite. But how do you take a heading between two points which are not visible to each other, for instance, when tall trees, hills or other obstacles obstruct the line of sight? That was the problem confronting the U.S. Department of Agriculture's Forest Service. The Forest Service manages 187 million acres of land in 44 states and Puerto Rico. Unfortunately, National Forest System lands are not contiguous but intermingled in complex patterns with privately-owned land. In recent years much of the private land has been undergoing development for purposes ranging from timber harvesting to vacation resorts. There is a need for precise boundary definition so that both private owners and the Forest Service can manage their properties with confidence that they are not trespassing on the other's land.

  6. Alexandrite laser pumped by semiconductor lasers

    SciTech Connect

    Scheps, R.; Gately, B.M.; Myers, J.F. ); Krasinski, J.S. ); Heller, D.F. )

    1990-06-04

    We report the first operation of a direct diode-pumped tunable chromium-doped solid-state laser. A small alexandrite (Cr:BeAl{sub 2}O{sub 4}) crystal was longitudinally pumped by two visible laser diodes. The threshold pump power was 12 mW using the {ital R}{sub 1} line at 680.4 nm for the pump transition, and the slope efficiency was 25%. The measured laser output bandwidth was 2.1 nm.

  7. Dye laser chain for laser isotope separation

    NASA Astrophysics Data System (ADS)

    Doizi, Denis; Jaraudias, Jean; Pochon, E.; Salvetat, G.

    1993-05-01

    Uranium enrichment by laser isotope separation uses a three step operation which requires four visible wavelengths to boost an individual U235 isotope from a low lying atomic energy level to an autoionizing state. The visible wavelengths are delivered by dye lasers pumped by copper vapor lasers (CVL). In this particular talk, a single dye chain consisting of a master oscillator and amplifier stages will be described and some of its performance given.

  8. System Modeling of kJ-class Petawatt Lasers at LLNL

    SciTech Connect

    Shverdin, M Y; Rushford, M; Henesian, M A; Boley, C; Haefner, C; Heebner, J E; Crane, J K; Siders, C W; Barty, C P

    2010-04-14

    Advanced Radiographic Capability (ARC) project at the National Ignition Facility (NIF) is designed to produce energetic, ultrafast x-rays in the range of 70-100 keV for backlighting NIF targets. The chirped pulse amplification (CPA) laser system will deliver kilo-Joule pulses at an adjustable pulse duration from 1 ps to 50 ps. System complexity requires sophisticated simulation and modeling tools for design, performance prediction, and comprehension of experimental results. We provide a brief overview of ARC, present our main modeling tools, and describe important performance predictions. The laser system (Fig. 1) consists of an all-fiber front end, including chirped-fiber Bragg grating (CFBG) stretchers. The beam after the final fiber amplifier is split into two apertures and spatially shaped. The split beam first seeds a regenerative amplifier and is then amplified in a multi-pass Nd:glass amplifier. Next, the preamplified chirped pulse is split in time into four identical replicas and injected into one NIF Quad. At the output of the NIF beamline, each of the eight amplified pulses is compressed in an individual, folded, four-grating compressor. Compressor grating pairs have slightly different groove densities to enable compact folding geometry and eliminate adjacent beam cross-talk. Pulse duration is adjustable with a small, rack-mounted compressor in the front-end. We use non-sequential ray-tracing software, FRED for design and layout of the optical system. Currently, our FRED model includes all of the optical components from the output of the fiber front end to the target center (Fig. 2). CAD designed opto-mechanical components are imported into our FRED model to provide a complete system description. In addition to incoherent ray tracing and scattering analysis, FRED uses Gaussian beam decomposition to model coherent beam propagation. Neglecting nonlinear effects, we can obtain a nearly complete frequency domain description of the ARC beam at different stages

  9. Tunable chromium lasers

    SciTech Connect

    Chase, L.L.; Payne, S.A.

    1989-01-01

    During the decade that has passed since the discovery of the alexandrite laser, many other tunable vibronic sideband lasers based on Cr/sup 3 +/ have been developed. These lasers span the wavelength range from 700 nm to at least 1235 nm. Experimental and theoretical research has provided an understanding of the important factors that influence the performance of these Cr/sup 3 +/ lasers and other solid state vibronic lasers. The intrinsic performance levels of some of the most promising Cr/sup 3 +/ lasers are evaluated from extrapolated slope efficiency measurements. 7 refs., 4 figs., 2 tabs.

  10. Laser Safety Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A major focus of work done at Air Products and Chemicals' Laser Application Laboratory is on use of ultraviolet radiation using high energy excimer lasers. Because light within the wavelength of excimer lasers is invisible, it can cause serious damage to eyes and tissue. To contain the laser beam, Air Products Incorporated a Jet Propulsion Laboratory invention described in a technical support package into its beam stops. The technology interrupts the laser pathway and allows workers to remain in the target area without shutting off the laser.

  11. Lasers in periodontics.

    PubMed

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-08-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20(th) century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  12. Lasers in chemical processing

    SciTech Connect

    Davis, J.I.

    1982-04-15

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory (LLNL).

  13. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  14. Controlling Chaotic Lasers

    NASA Technical Reports Server (NTRS)

    Gills, Zelda; Roy, Rajarshi

    1995-01-01

    Irregular fluctuations in intensity have long plagued the operation of a wide variety of solid-state lasers. We are exploring the possibility of exploiting rather than avoiding a laser's chaotic output. As an important step in that direction, we have applied a novel control technique to stabilize a solid state laser. By making small periodic changes in only one input parameter of the laser, we are able to stabilize complex periodic waveforms and steady state behavior in the laser output. We demonstrate the application of this approach in a diode pumped Nd:/YAG laser system.

  15. Laser peening of metals- enabling laser technology

    SciTech Connect

    Dane, C.B.; Hackel, L.A.; Daly, J.; Harrisson, J.

    1997-11-13

    Laser peening, a surface treatment for metals, employs laser induced shocks to create deep and intense residual stresses in critical components. In many applications this technology is proving to be superior to conventional treatments such as shot peening. The laser peening process has generated sufficiently impressive results to move it from a laboratory demonstration phase into a significant industrial process. However until now this evolution has been slowed because a laser system meeting the average power requirements for a high throughput process has been lacking.

  16. Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollberg, Leo; Bergquist, James Charles; Kasevich, Mark A.

    2008-04-01

    Degenerate gases. Probing vortex pair sizes in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensates / V. Schweikhard ... [et al.]. Interacting Bose-Einstein condensates in random potentials / P. Bouyer ... [et al.]. Towards quantum magnetism with ultracold atoms in optical lattices / I. Bloch -- Precision measurement and fundamental physics. T-violation and the search for a permanent electric dipole moment of the mercury atom / E. N. Fortson -- Quantum information and control I. Quantum information processing and ramsey spectroscopy with trapped ions / C. F. Roos ... [et al.]. Quantum non-demolition counting of photons in a cavity / S. Haroche ... [et al.] -- Ultra-fast control and spectroscopy. Frequency-Comb- assisted mid-infrared spectroscopy / P. de Natale ... [et al.] -- Precision measurement and applications. Precision gravity tests by atom interferometry / G. M. Tino ... [et al.] -- Novel spectroscopic applications. On a variation of the proton-electron mass ratio / W. Ubachs ... [et al.] -- Quantum information and control II. Quantum interface between light and atomic ensembles / H. Krauter ... [et al.] -- Degenerate Fermi gases. An atomic Fermi gas near a P-wave Feshbach resonance / D. S. Jin, J. P. Gaebler and J. T. Stewart. Bragg scattering of correlated atoms from a degenerate Fermi gas / R. J. Ballagh, K. J. Challis and C. W. Gardiner -- Spectroscopy and control of atoms and molecules. Stark and Zeeman deceleration of neutral atoms and molecules / S. D. Hogan ... [et al.]. Generation of coherent, broadband and tunable soft x-ray continuum at the leading edge of the driver laser pulse / A. Jullien ... [et al.]. Controlling neural atoms and photons with optical conveyor belts and ultrathin optical fibers / D. Meschede. W. Alt and A. Rauschenbeutel -- Spectroscopy on the small scale. Wide-field cars-microscopy / C. Heinrich ... [et al.]. Atom nano-optics and nano-lithography / V. I. Balykin ... [et al

  17. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  18. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  19. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  20. MESSENGER Laser Altimeter

    NASA Video Gallery

    MESSENGER's Mercury Laser Altimeter sends out laser pulses that hit the ground and return to the instrument. The amount of light that returns for each pulse gives the reflectance at that point on t...

  1. Laser device and method

    SciTech Connect

    Myers, J. D.

    1985-06-25

    A simplified, relatively inexpensive laser device, wherein the laser elements are fixed in a body exoskeleton of electrical insulating material having a low coefficient of thermal expansion. The preferred embodiment includes a shotgun type laser filter having parallel bores which receive the laser flashlamp and laser rod in fixed relation in a body chamber. The reflector surrounds the laser filter and retains the filter within the body chamber. In the preferred method of this invention, several controlled lasing pulses are generated with each illumination pulse of the flashlamp, substantially increasing the efficiency of the laser device. The number of pulses is generally controlled by increasing the voltage to the flashlamp. The rapid multiple lasing pulses generate an elongated plasma in a fluid medium, such as the vitreous fluid body of an eye which makes the laser device extemely efficient for treating glaucoma and other medical treatments.

  2. Laser therapy for cancer

    MedlinePlus

    Compared to surgery, laser therapy has some benefits. Laser therapy: Takes less time Is more precise and causes less damage to tissues Leads to less pain, bleeding, infections, and scarring Can often be done ...

  3. Transmyocardial Laser Revascularization

    MedlinePlus

    ... Vascular Access for Hemodialysis Ventricular Assist Devices Transmyocardial Laser Revascularization Like every other organ or tissue in ... bypass surgery, there is a procedure called transmyocardial laser revascularization, also called TMLR or TMR. TMLR cannot ...

  4. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  5. Laser surgery - skin

    MedlinePlus

    Surgery using a laser ... used is directly related to the type of surgery being performed and the color of the tissue ... Laser surgery can be used to: Close small blood vessels to reduce blood loss Remove warts , moles , sunspots, and ...

  6. LASIK - Laser Eye Surgery

    MedlinePlus

    ... Uveitis Focus On Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics ... Uveitis Focus On Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics ...

  7. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  8. Laser programs highlights 1993

    SciTech Connect

    1995-06-01

    Over the last two decades, the scope of our laser research has grown immensely. The small, low-power laser systems of our early days have given way to laser systems of record-breaking size and power. Now we are focusing our activities within the target physics and laser science programs to support the ignition and gain goals of the proposed glass-laser National Ignition Facility. In our laser isotope separation work, we completed the most important set of experiments in the history of the AVLIS Program in 1993, which culminated in a spectacularly successful run that met or exceeded all our objectives. We are also developing lasers and laser-related technologies for a variety of energy, commercial, and defense uses. On the horizon are transfers of important technologies for waste treatment, x-ray lithography, communications and security, optical imaging, and remote sensing, among others.

  9. Laser particle sorter

    DOEpatents

    Martin, J.C.; Buican, T.N.

    1987-11-30

    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  10. Laser particle sorter

    DOEpatents

    Martin, John C.; Buican, Tudor N.

    1989-01-01

    Method and apparatus for sorting particles, such as biological particles. A first laser defines an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam interrogates the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam intersects the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis.

  11. Modern retinal laser therapy.

    PubMed

    Kozak, Igor; Luttrull, Jeffrey K

    2015-01-01

    Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934

  12. Laser hair removal.

    PubMed

    Wanner, Molly

    2005-01-01

    Since 1996, there have been numerous advances in hair laser removal that utilize melanin as a chromophore. All of the devices on the market may be used in patients with light skin (phototypes I-III) and yield hair reduction near 75%. The ruby (694 nm) laser, alexandrite (755 nm) laser, and diode (810 nm) laser, as well as intense pulsed light are commonly used devices for hair laser removal. The long-pulsed Nd:YAG (1064 nm) laser represents the safest device for hair removal in dark-skinned patients because of its long wavelength, although the diode laser, alexandrite laser, and intense pulse light may be used. For treatment of light hair, combination radiofrequency and optical devices as well as photodynamic therapy are under investigation. PMID:16229722

  13. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  14. Laser cutting system

    SciTech Connect

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  15. Short wavelength laser

    DOEpatents

    Hagelstein, Peter L.

    1986-01-01

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  16. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  17. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  18. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  19. Coatings for laser fusion

    SciTech Connect

    Lowdermilk, W.H.

    1981-12-18

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors.

  20. Laser Programs Highlights 1998

    SciTech Connect

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  1. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  2. Zone Refining by Laser

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1986-01-01

    System developed for studying use of laser beam for zone-refining semiconductors and metals. Specimen scanned with focused CO2 laser beam in such way that thin zone of molten material moves along specimen sweeps impurities with it. Zone-melting system comprises microcomputer, laser, electromechanical and optical components for beam control, vacuum chamber that holds specimen, and sensor for determining specimen temperature.

  3. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  4. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  5. Optically biased laser gyro

    SciTech Connect

    Anderson, D.Z.; Chow, W.W.; Scully, M.O.; Sanders, V.E.

    1980-10-01

    We describe a four-mode ring laser that exhibits none of the mode-locking characteristics that plague laser gyros. This laser is characterized by a bias that changes sign with a change in the direction of rotation and prevents the counterpropagating modes from locking. A theoretical analysis explaining the experimental results is outlined.

  6. Excimer Lasers In Medicine

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Saidi, Iyad S.; Pettit, George H.; Wisoff, P. J.; Sauerbrey, Roland A.

    1989-06-01

    Excimer lasers emit light energy, short optical pulses at ultraviolet wavelengths, that results in a unique laser tissue interaction. This has led to an increasing number of studies into medical applications of these lasers in fields such as ophthalmology, urology, cardiology and neurology.

  7. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  8. Lasers for nonlinear microscopy.

    PubMed

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  9. LaserFest Celebration

    SciTech Connect

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  10. Laser Fundamentals and Experiments.

    ERIC Educational Resources Information Center

    Van Pelt, W. F.; And Others

    As a result of work performed at the Southwestern Radiological Health Laboratory with respect to lasers, this manual was prepared in response to the increasing use of lasers in high schools and colleges. It is directed primarily toward the high school instructor who may use the text for a short course in laser fundamentals. The definition of the…

  11. Stabilized Zeeman split laser

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a stablized Zeeman split laser for use in a polarization profilometer is discussed. A Hewlett-Packard laser was modified to stabilize the Zeeman split beat frequency thereby increasing the phase measurement accuracy from the Hewlett-Packard 3 degrees to an accuracy of .01 degrees. The addition of a two layered inductive winding converts the laser to a current controlled oscillator whose frequency is linearly related to coil current. This linear relationship between coil current and laser frequency permits phase locking the laser frequency to a stable crystal controlled reference frequency. The stability of the system is examined and the equipment operation procedures are outlined.

  12. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  13. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  14. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  15. Dual Wavelength Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2010-01-01

    Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

  16. Frequency discriminating laser

    SciTech Connect

    Thomas, M.D.

    1987-10-20

    A laser is described for discriminating between a higher gain transition and a lower gain transition to permit the laser to lase at the lower gain transition. It consists of: a laser cavity, including more than two mirrors each of which is highly transmissive at the frequency of the higher gain transition, one of which is partially reflective at the frequency of the lower gain transition, and all but the one of which are highly reflective at the frequency of the lower gain transition; an active laser medium disposed within the cavity; and means for pumping the active laser medium.

  17. Lasers in otorhinolaryngology

    NASA Astrophysics Data System (ADS)

    Pais Clemente, Manuel P.

    1992-03-01

    Lasers are now commonly accepted and widely used surgical instruments in otorhinolaryngology. There have been a great number of technological advances with lasers that have contributed to the expansion of this new surgical modality with an increased number of medical applications. Surgical strategies have also changed and are more favorable toward conservative surgery in which less tissues is removed than with more radical resections. This combination of improving technology and medical attitudes has changed the field of otorhinolaryngology, and resulted in an expanding use of laser surgery. Since 1973 we have been using the carbon dioxide laser in the treatment of diseases of the upper aero digestive systems, learning this new surgical technique from the pioneer work of Strong, Jako, and Vaughan. It is our conviction that a laser surgeon must have a thorough knowledge of laser biophysics, instrumentation, safety protocols, and surgical indications, and have the technical skills to perform laser surgery. Laser technology continues to improve at an increased speed, and it is imperative to update knowledge of current and potential applications of lasers in our specialty. It is the purpose of this article to present our clinical experience of 18 years with the use of lasers in surgery of ORL, emphasizing the carbon dioxide laser.

  18. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  19. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics. PMID:23126904

  20. Lasers in orthodontics

    PubMed Central

    Nalcaci, Ruhi; Cokakoglu, Serpil

    2013-01-01

    Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necessary precautions to prevent possible tissue damage when using laser dental systems. Here, we reviewed the main types and characteristics of laser systems used in dental practice and discuss the applications of lasers in orthodontics, harmful effects and laser system safety. PMID:24966719

  1. Laser safety in dentistry

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.

    1997-05-01

    One of the major causes of anxiety in the dental clinic is the dental handpiece. Because dentists wish to provide a method which can replace the drill there has often been a premature use of the laser in dentistry. Various lasers have been introduced into the clinic before research has shown the laser used is of clinical benefit. Any new treatment method must not compromise the health of the patient being treated. Thus a method of evaluating the clinical abilities of dentists and their understanding the limitations of the laser used must be developed. Dentist must be trained in the basic interaction of the laser on oral tissues. The training has to concentrate on the variation of the laser wavelength absorption in the different tissues of the oral cavity. Because of the differences in the optical properties of these tissues great care must be exercised by practitioners using lasers on patients.

  2. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  3. ORION laser target diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.; Wright, M. J.; Hood, B. A.; Kemshall, P.

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  4. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  5. ORION laser target diagnostics

    SciTech Connect

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.; and others

    2012-10-15

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  6. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  7. [Lasers and aesthetic dermatology].

    PubMed

    Stratigos, A J; Dover, J S; Arndt, K A

    2003-07-01

    The improved understanding of laser-tissue interaction along with the latest advances of laser technology have led to the development of sophisticated, safe, and user-friendly laser systems that provide effective treatment for a variety of aesthetic skin conditions. The use of lasers and their tissue-specific capabilities in the treatment of pigmented and vascular lesions has been greatly expanded to include rhytides, photoaged skin, atrophic scars, and unwanted hair. In addition, laser techniques have been employed in traditional "rejuvenating" procedures of aged skin, e.g., face-lifting, blepharoplasty, and hair transplantation, decreasing the intra-operative time and limiting the recovery period. These advances have led to a wide acceptance of cutaneous laser surgery by the dermatologic community and have created an increasing popularity among the public. The purpose of this article is to review the applications of lasers in aesthetic dermatology and discuss their limitations and potential side effects. PMID:12835862

  8. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  9. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  10. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  11. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  12. Laser treatment in gynecology

    NASA Astrophysics Data System (ADS)

    de Riese, Cornelia

    2004-07-01

    This presentation is designed as a brief overview of laser use in gynecology, for non-medical researchers involved in development of new laser techniques. The literature of the past decade is reviewed. Differences in penetration, absorption, and suitable delivery media for the beams dictate clinical application. The use of CO2 laser in the treatment of uterine cervical intraepithelial lesions is well established and indications as well as techniques have not changed over 30 years. The Cochrane Systematic Review from 2000 suggests no obviously superior technique. CO2 laser ablation of the vagina is also established as a safe treatment modality for VAIN. CO2 laser permits treatment of lesions with excellent cosmetic and functional results. The treatment of heavy menstrual bleeding by destruction of the endometrial lining using various techniques has been the subject of a 2002 Cochran Database Review. Among the compared treatment modalities are newer and modified laser techniques. Conclusion by reviewers is that outcomes and complication profiles of newer techniques compare favorably with the gold standard of endometrial resection. The ELITT diode laser system is one of the new successful additions. CO2 laser is also the dominant laser type used with laparoscopy for ablation of endometriotic implants. Myoma coagulation or myolysis with Nd:Yag laser through the laparoscope or hysteroscope is a conservative treatment option. Even MRI guided percutaneous approaches have been described. No long-term data are available.

  13. Underwater laser system

    NASA Astrophysics Data System (ADS)

    Kushina, Mark E.; Heberle, Geoff; Hope, Michael; Crittenden, Ryan M.; Bethel, Michael

    2002-03-01

    We have developed a solid-state laser operating at 532nm for underwater topographic investigations. The laser system is integrated into a torpedo-like 'towed-body', with the military designation of AQS-20. This laser, along with other sophisticated receiver opto-electronic systems enables detailed underwater bathymetry. CEO designed and manufactured the laser portion of this system. The laser sub-system is comprised of two separate parts: the LTU (Laser Transmitter Unit) and the LEU (Laser Electronics Unit). The LTU and LEU where put through Mil-standard testing for vibration, shock and temperature storage and operation extremes as well as Mil-461C EMI/EMC testing. The Nd:YAG laser operates at a 400 Hz pulse repetition frequency and is controlled remotely, tethered to the system controller in a ship or helicopter. Power monitor circuits allow real time laser health monitoring, which enables input parameter adjustments for consistent laser behavior. The towed body moves forward at a constant rate of speed while this underwater LIDAR system gathers data. All heat generated must be conducted into the outer hull of the towed-body and then, to the surrounding ambient ocean water. The water temperature may vary from 0-35 degrees C.

  14. Pulsed Laser Tissue Interaction

    NASA Astrophysics Data System (ADS)

    Walsh, Joseph T.; van Leeuwen, Ton G.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.

    Pulsed lasers, by virtue of their ability to deliver energy in a spatially and temporally confined fashion, are able to micromachine biological tissues. The clinical success of pulsed laser treatment, however, is often limited by the extent of damage that is caused to the tissue in the vicinity of the ablation crater. In general, pulsed ablation is a trade off between thermal damage to surrounding tissue, caused by relatively long pulses (>100 ms), and mechanical damage to surrounding tissue, caused by relatively short pulses (<1 ms). To identify the origin of pulsed laser induced damage, the possible laser tissue interactions and ablation are discussed here and in Chapter 14. The purpose of this chapter is to provide the reader with a condensed overview of the parameters that must be considered in the process of pulsed laser ablation of soft tissue. In this chapter, pulsed infrared ablation of biological soft tissue is used as a paradigm to illustrate the concepts and design considerations. Generally speaking, the absorption of laser light may lead to photothermal, photomechanical or photochemical interaction with the irradiated tissue [1-5]. The vast majority of therapeutic laser-tissue interactions is based on photothermal interactions where laser energy is converted into heat. Subsequent to thermalization of the absorbed optical energy, heat transfer mechanisms, in particular conduction allow thermal diffusion from high temperature areas to surrounding regions. When laser penetration depth is less than the laser spot radius, the thermal diffusion time, τ th, can be defined as:

  15. Frequency comb swept lasers.

    PubMed

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G

    2009-11-01

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  16. Lasers in medicine

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Juzeniene, Asta; Chen, Jiyao; Svaasand, Lars O.; Warloe, Trond; Giercksky, Karl-Erik; Moan, Johan

    2008-05-01

    It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser

  17. Photonic crystal microcavity lasers and laser arrays

    NASA Astrophysics Data System (ADS)

    Cao, Jiang-Rong

    As a state-of-the-art technology, photonic crystal microcavity lasers have great potentials to resolve many semiconductor laser performance challenges, owing to their compact size, high spontaneous emission factor, and inherent advantages in dimension scalability. This thesis describes efficient numerical analyzing methods for multimode photonic crystal microcavities, including a parallel computing three-dimensional finite-difference time-domain method combined with Pade interpolation, point group projection, and vectorial Green's function method. With the help of these analyzing tools, various experimental photonic crystal microcavity devices fabricated in InGaAsP/InP based materials were studies. Room temperature optical pumped InGaAsP suspended membrane photonic crystal microcavity lasers were demonstrated. Their lithographical fine-tuning, above room temperature operations, mode identifications and polarizations were demonstrated. Room temperature continuous wave (CW) optically pumped photonic crystal microcavity lasers at diameter less than 3.2 mum were demonstrated with crystalline alpha-Al 2O3 (sapphire) as a cladding layer to the InGaAsP membrane. The far-field radiation profiles from these microcavity lasers were measured and compared with our numerical modeling predictions. Two electrical injection scenes for photonic crystal microcavity lasers were introduced, together with some preliminary results including the demonstrations of optically pumped lasing of highly doped cavities and cavities with an electrical conduction post underneath. Electrically excited photonic crystal microcavity light emitting diodes (LEDs) were also experimentally demonstrated.

  18. Laser induced biological heating analyzed

    NASA Astrophysics Data System (ADS)

    Liu, Phue

    1985-08-01

    A quantitative analysis of the vaporization of tumors by pulsed CO2 lasers, incision by CW CO2 lasers, tissue coagulation by argon lasers, thermal killing of cancerous cells by He-Ne lasers, and the application of heat by CO2 lasers is presented. Although the calculations are based on a simplified skin model, it may prove useful in clinical treatments.

  19. Information computer program for laser therapy and laser puncture

    NASA Astrophysics Data System (ADS)

    Badovets, Nadegda N.; Medvedev, Andrei V.

    1995-03-01

    An informative computer program containing laser therapy and puncture methods has been developed. It was used successfully in connection with the compact Russian medical laser apparatus HELIOS-O1M in laser treatment and the education process.

  20. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  1. Lasers in periodontics

    PubMed Central

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-01-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20th century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics. PMID:23066266

  2. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  3. Synthetic laser medium

    DOEpatents

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  4. Synthetic laser medium

    DOEpatents

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  5. Cutaneous laser therapy.

    PubMed

    Dixon, J A; Gilbertson, J J

    1985-12-01

    The carbon dioxide laser is useful for vaporizing lesions and applying incisions, the argon laser coagulates superficial vascular lesions and the neodymium-YAG laser is used for large vascular and more deeply situated lesions. Many patients with port-wine stains have been treated with excellent to poor results, major problems consisting of incomplete color removal and hypertrophic scarring (occurring in 4% to 23% of cases). While results are imperfect, patients are satisfied with the improvement in 86% of cases. Lasers have been used with good results for treating patients with strawberry angioma of infancy, pyogenic granuloma, telangiectasia of the face, decorative tattoos, genital condylomata and warts. The results of laser treatment of essential telangiectasia of the lower extremities have generally been poor. The CO(2) laser has been effective in excising small lesions and elevating skin flaps. PMID:4090490

  6. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  7. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  8. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  9. Portable Laser Laboratory

    SciTech Connect

    Weir, J.T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  10. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  11. Excimer laser chemical problems

    SciTech Connect

    Tennant, R.; Peterson, N.

    1982-01-01

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  12. The Laser Accessory Market

    NASA Astrophysics Data System (ADS)

    Desai, Ashvin

    1988-09-01

    Wandering through the exhibit hall yesterday, I noticed that if you look at the laser companies and if you look at the accessory companies, there are pretty much the same number of accessory booths as well as the laser companies. There was one difference. Laser company booths are all sexy looking, very flashy, big booths. Whereas if you look at the accessories booths, they were small, not so prominent.

  13. Laser cutting plastic materials

    SciTech Connect

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  14. Dental laser technology.

    PubMed

    Fasbinder, Dennis J

    2008-10-01

    Dental technology is rapidly affecting the treatment options available to patients. Dental lasers are an innovative technology for both hard- and soft-tissue treatment applications. The ability to recontour soft tissues efficiently and predictably with immediate hemostatsis and minimal postoperative sequelae is of value to both the dentist and the patient. This article reviews the principles of dental lasers, criteria to consider when selecting a dental laser, and some of their clinical applications.

  15. Laser In Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Newman, Carlton; Jaggar, David H.

    1982-12-01

    Lasers have been used for some time now on animals for experimental purposes prior to their use in human medical and surgical fields. However the use of lasers in veterinary medicine and surgery per se is a recent development. We describe the application of high and low intensity laser technology in a general overview of the current uses, some limitations to its use and future needs for future inquiry and development.

  16. Laser applications in phlebology

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Mancini, S.; Postiglione, Marco; Postiglione, M. G.

    2001-06-01

    PURPOSE: review of laser used in phlebology METHOD: critical analysis of scientific data taken from the literature and based on 25 years personal experience. RESULTS: we have three groups of laser applications in phlebology: for the diagnosis, as physical therapy and as surgical therapy. DISCUSSION AND CONCLUSION: the laser-doppler studies the microcirculations, the no-surgical therapy shown positive results in the treatment of venous ulcers and for the wound healing. It could be indicate also as antiphlogistic and anti-edema therapy, in superficial thrombophlebitis. The surgical laser is useful for the surgical cleaning of ulcers, for haemorroids, angiomas and telangiectases.

  17. Lasers in materials processing

    SciTech Connect

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out.

  18. Endoscopic excimer laser surgery

    NASA Astrophysics Data System (ADS)

    Salimbeni, Renzo; Pini, Roberto; Vannini, Matteo; Benaim, George; Mattioli, Stefano

    1994-02-01

    Long pulse excimer laser radiation can be efficiently coupled and transmitted through optical fibers allowing the achievement of both photoablative and photomechanical effects. In this work the investigation has been focussed on the urologic surgery field to demonstrate the effectiveness of an excimer laser system for very different therapeutic tasks: recanalization of urethral stenosis and lithotripsy. The choice of the suitable radiation dosimetry and the technical solutions employed provide to the surgeon a multipurpose laser system with a wide range of utility in comparison with other laser systems.

  19. Laser Market Overview

    NASA Astrophysics Data System (ADS)

    Levitt, Morris

    1989-06-01

    I'd like to reiterate Dr. Forrest's welcome to all of you, to what is the first of our series of market seminars for 1989. In 1988, we held three of these seminars, the counterpart to this one on the general laser market, one on the medical laser marketplace, and most recently in September, at IMTS on the industrial laser market. The first two have been published as proceedings by SPIE, and the proceedings of the industrial laser marketplace, which Dave Belforte worked on putting together, are in the process of being published by the SPIE.

  20. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  1. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  2. LCLS Injector Drive Laser

    SciTech Connect

    Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

    2007-11-02

    Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

  3. Laser eye injuries.

    PubMed

    Barkana, Y; Belkin, M

    2000-01-01

    Laser instruments are used in many spheres of human activity, including medicine, industry, laboratory research, entertainment, and, notably, the military. This widespread use of lasers has resulted in many accidental injuries. Injuries are almost always retinal, because of the concentration of visible and near-infrared radiation on the retina. The retina is therefore the body tissue most vulnerable to laser radiation. The nature and severity of this type of retinal injury is determined by multiple laser-related and eye-related factors, the most important being the duration and amount of energy delivered and the retinal location of the lesion. The clinical course of significant retinal laser injuries is characterized by sudden loss of vision, often followed by marked improvement over a few weeks, and occasionally severe late complications. Medical and surgical treatment is limited. Laser devices hazardous to the human eye are currently in widespread use by armed forces. Furthermore, lasers may be employed specifically for visual incapacitation on future battlefields. Adherence to safety practices effectively prevents accidental laser-induced ocular injuries. However, there is no practical way to prevent injuries that are maliciously inflicted, as expected from laser weapons.

  4. Trends in laser micromachining

    NASA Astrophysics Data System (ADS)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  5. Gigashot Optical Laser Demonstrator

    SciTech Connect

    Deri, R. J.

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  6. Deep space laser communications

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Kovalik, Joseph M.; Srinivasan, Meera; Shaw, Matthew; Piazzolla, Sabino; Wright, Malcolm W.; Farr, William H.

    2016-03-01

    A number of laser communication link demonstrations from near Earth distances extending out to lunar ranges have been remarkably successful, demonstrating the augmented channel capacity that is accessible with the use of lasers for communications. The next hurdle on the path to extending laser communication and its benefits throughout the solar system and beyond is to demonstrate deep-space laser communication links. In this paper, concepts and technology development being advanced at the Jet Propulsion Laboratory (JPL) in order to enable deep-space link demonstrations to ranges of approximately 3 AU in the next decade, will be discussed.

  7. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  8. Millisecond laser machining of transparent materials assisted by nanosecond laser.

    PubMed

    Pan, Yunxiang; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2015-01-26

    A new form of double pulse composed of a nanosecond laser and a millisecond laser is proposed for laser machining transparent materials. To evaluate its advantages and disadvantages, experimental investigations are carried out and the corresponding results are compared with those of single millisecond laser. The mechanism is discussed from two aspects: material defects and effects of modifications induced by nanosecond laser on thermal stress field during millisecond laser irradiation. It is shown that the modifications of the sample generated by nanosecond laser improves the processing efficiency of subsequent millisecond laser, while limits the eventual size of modified region.

  9. Laser Program annual report 1987

    SciTech Connect

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  10. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  11. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  12. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  13. [Characteristics of laser light].

    PubMed

    Takac, S; Stojanović, S

    1999-01-01

    Laser is one of the greatest technical discoveries of the 20th century. It is important in basic sciences, but particularly in diagnosis and therapy of various pathologic conditions of human organism. It is electromagnetic radiation, not X-irradiation and, as such, it is not expected to produce new generation of iatrogenic malignancies. Laser falls between infrared and ultraviolet on the spectrum mainly in the visible light spectrum. Properties of laser light are: monochromacity (the same color), coherence (all of the light waves are in phase both spatially and temporally), collimation (all rays are parallel to each other and do not diverge significantly even over long distances). Lasers were first conceived by Einstein in 1917 when he wrote his "Zur Quantum Theorie der Strahlung" (the quantum theory of radiation) which enumerated concepts of stimulated and spontaneous emission and absorption. Drs. Arthur Schawlow and Charles Townes, in 1956, extended lasers into the optical frequency range and Maiman, in 1960, operated the first laser using ruby as the active medium (ruby laser). Laser is an acronym for Light Amplification by Stimulated Emission of Radiation. To understand the acronym, it is necessary to understand the basic physics of the atom. However, if the atom that is in the excited state is struck by another photon of energy before it returns to the ground state, two photons of equal frequency and energy, travelling in the same direction and in perfect spatial and temporal harmony, are produced. This phenomenon is termed stimulated emission of radiation. An external power source hyperexcites the atoms in the laser medium so that the number of atoms possessing upper energy levels exceeds the number of atoms in a power energy level, a condition termed a population inversion. This "pumping system" which imparts additional energy to the atoms may be optical, mechanical, or chemical. These atoms in a hyperexcited state spontaneously emit photons of light. The

  14. National Ignition Facility subsystem design requirements transportation {ampersand} handling, SSDR 1.1.1.3.2

    SciTech Connect

    Yakuma, S.; McNairy, R.

    1996-07-10

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Transportation & Material Handling Systems (WBS 1.1.1.3.2) of the NIF Laser System (WBS 1.3 and 1.4). The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 5 figs.

  15. National Ingition Facility subsystem design requirements pockels cell subsystem SSDR 1.3.3

    SciTech Connect

    Rhodes, M.

    1996-10-31

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Pockels cell subsystem (WBS 1.3.3) of the NIF Laser System (WBS 1.3). The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 5 figs., 1 tab.

  16. [New lasers in dermatologic surgery].

    PubMed

    Morvay, M

    1995-04-30

    Developments in the fields of laser technology and application have significantly broadened its clinical use over the past two decades. As lasers became more smaller, more reliable and less expensive, dermatology will benefit new laser-based therapeutic and diagnostic methods. Relevant laser systems and their clinical applications are presented, as are investigational laser systems, which may be of importance for the future in dermatology. We review advances in the use of pulsed lasers for treating vascular and non-vascular, pigmented epidermal and dermal lesions, for precise cutting of tissue, for photodynamic therapy and the future role of diode lasers in dermatological laser surgery is also discussed.

  17. Lasers '83. Proceedings of the international conference

    SciTech Connect

    Powell, R.C.

    1985-01-01

    Among the topics discussed are the development history of the semiconductor diode laser, laser material processing, nonlinear spectroscopy, recent advancements in diode lasers, laser-driven particle accelerators, laser applications in the atmospheric sciences, laser-assisted collisions, novel (garnet and alexandrite) solid state laser materials, IR molecular lasers, devices and components for fiber-optic communications, free-electron lasers and masers, and picosecond optical phenomena. Also covered are laser-stimulated materials surface processes, color center laser developments, blue-green and metal vapor lasers, laser chemistry, nonlinear effects, high energy lasers, excimer lasers, laser trapping of ions, optical cavities and propagation, laser isotope separation, laser trapping of atoms, laser applications in biochemistry, tunable coherent short wavelength radiation, laser spectroscopy, picosecond studies of condensed phase molecular systems, and combustion and plasma diagnostics.

  18. Fine welding with lasers.

    PubMed

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  19. Laser hair removal pearls.

    PubMed

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal. PMID:18330794

  20. Distributed ultrafast fibre laser

    PubMed Central

    Liu, Xueming; Cui, Yudong; Han, Dongdong; Yao, Xiankun; Sun, Zhipei

    2015-01-01

    A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency. PMID:25765454

  1. Laser biostimulation in pediatrics

    NASA Astrophysics Data System (ADS)

    Utz, Irina A.; Lagutina, L. E.; Tuchin, Valery V.

    1995-01-01

    In the present paper the method and apparatus for percutaneous laser irradiation of blood (PLIB) in vessels (veins) are described. Results of clinical investigations of biostimulating effects under PLIB by red laser light (633 nm) in Cubiti and Saphena Magna veins are presented.

  2. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  3. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  4. Silicon Stokes terahertz laser

    SciTech Connect

    Pavlov, S. G.; Huebers, H.-W.; Hovenier, J. N.; Klaassen, T. O.; Carder, D. A.; Phillips, P. J.; Redlich, B.; Riemann, H.; Zhukavin, R. Kh.; Shastin, V. N.

    2007-04-10

    A Raman-type silicon laser at terahertz frequencies has been realized. Stokes-shifted stimulated emission has been observed from silicon crystals doped by antimony donors when optically excited by an infrared free electron laser. The Raman lasing was obtained due to resonant scattering on electronic states of a donor atom.

  5. Lasers in diagnostic dentistry

    NASA Astrophysics Data System (ADS)

    Khorana, Brij M.

    1996-09-01

    Results of a new noninvasive technique for pulp detection that is based on monitoring the time variations in the laser speckle pattern from a human tooth are presented. The paper also contains preliminary results of experiments and attempts at mathematical modeling of multiple scattering of a laser beam from a solid cylinder.

  6. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  7. Lasers for Training Devices.

    ERIC Educational Resources Information Center

    Fuller, C. A.

    A breadboard model of a laser display system is described in detail and its operating procedure is outlined. The system consists of: a Model 52 argon krypton ion laser and power supply; an optical breadboard comprising a pocket cell light modulator, a galvonmeter beam deflector for vertical scanning, a unique multiple reflection beam steerer for…

  8. Free-Electron Lasers.

    ERIC Educational Resources Information Center

    Brau, Charles A.

    1988-01-01

    Describes the use of free-electron lasers as a source of coherent radiation over a broad range of wavelengths from the far-infrared to the far-ultraviolet regions of the spectrum. Discusses some applications of these lasers, including medicine and strategic defense. (TW)

  9. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  10. Laser hair removal pearls.

    PubMed

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal.

  11. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  12. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1989-01-01

    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  13. Laser Chemical Analysis.

    ERIC Educational Resources Information Center

    Zare, Richard N.

    1984-01-01

    Reviews applications of laser methods to analytical problems, selecting examples from multiphoton ionization and fluorescence analysis. Indicates that laser methodologies promise to improve dramatically the detection of trace substances embedded in "real" matrices, giving the analyst a most powerful means for determining the composition of…

  14. Laser Programs Highlight 1995

    SciTech Connect

    Jacobs, R.R.

    1997-01-31

    Our contributions to laser science and technology and corresponding applications range from concept to design of the National Ignition Facility, transfer of Atomic Vapor Laser Isotope Separation technology to the private sector, and from new initiatives in industry and defense to micro-optics for improving human vision.

  15. Liquid laser cavities

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Filipescu, N.; Kellermeyer, G. L.; Mc Avoy, N.

    1969-01-01

    Liquid laser cavities have plenum chambers at the ends of the capillary cell which are terminated in transparent optical flats. By use of these cavities, several new europium chelates and a terbium chelate can provide laser action in solution at room temperature.

  16. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  17. Learning about Lasers

    ERIC Educational Resources Information Center

    Roberts, Larry

    2011-01-01

    The word laser is an acronym. It stands for Light Amplification by Stimulated Emission of Radiation. Lasers, invented in 1958, are used to cut and fuse materials, accurately survey long distances, communicate across fiber-optic phone lines, produce 3D pictures, make special effects, help navigation, and read bar codes for cash registers. A laser…

  18. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  19. Optofluidic chlorophyll lasers.

    PubMed

    Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong

    2016-06-21

    Chlorophylls are essential for photosynthesis and also one of the most abundant pigments on earth. Using an optofluidic ring resonator of extremely high Q-factors (>10(7)), we investigated the unique characteristics and underlying mechanism of chlorophyll lasers. Chlorophyll lasers with dual lasing bands at 680 nm and 730 nm were observed for the first time in isolated chlorophyll a (Chla). Particularly, a laser at the 730 nm band was realized in 0.1 mM Chla with a lasing threshold of only 8 μJ mm(-2). Additionally, we observed lasing competition between the two lasing bands. The presence of laser emission at the 680 nm band can lead to quenching or significant reduction of laser emission at the 730 nm band, effectively increasing the lasing threshold for the 730 nm band. Further concentration-dependent studies, along with theoretical analysis, elucidated the mechanism that determines when and why the laser emission band appears at one of the two bands, or concomitantly at both bands. Finally, Chla was exploited as the donor in fluorescence resonance energy transfer to extend the laser emission to the near infrared regime with an unprecedented wavelength shift as large as 380 nm. Our work will open a door to the development of novel biocompatible and biodegradable chlorophyll-based lasers for various applications such as miniaturized tunable coherent light sources and in vitro/in vivo biosensing. It will also provide important insight into the chlorophyll fluorescence and photosynthesis processes inside plants. PMID:27220992

  20. Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Donelan, Darsa; Mueller, Guido; Thorpe, James; Livas, Jeffrey

    2011-01-01

    Laser ranging and interferometry are essential technologies allowing for many astounding new spacebased missions such as the Laser Interferometer Space Antenna (LISA) to measure gravitational radiation emitted from distant super massive black hole mergers or distributed aperture telescopes with unprecedented angular resolution in the NIR or visible regime. The requirements on laser frequency noise depend on the residual motion and the distances between the spacecraft forming the interferometer. The intrinsic frequency stability of commercial lasers is several orders of magnitude above these requirements. Therefore, it is necessary for lasers to be stabilized to an ultrastable frequency reference so that they can be used to sense and control distances between spacecraft. Various optical frequency references and frequency stabilization schemes are considered and investigated for the applicability and usefulness for space-based interferometry missions.

  1. NASA Space Laser Technology

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  2. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  3. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  4. IR laser chemistry

    NASA Astrophysics Data System (ADS)

    Quack, Martin

    1995-01-01

    Recent progress in IR laser chemistry is reviewed with stress on the conceptual background and experimental advances from our research group. In particular we discuss various experimental schemes in laser chemistry as related to thermal reactions and ordinary photochemistry, and new results in time and frequency resolved kinetic IR spectroscopy at the limit defined by the uncertainty relation. The recent detection of hyperfine effects in IR laser chemistry is reviewed as well as nonlinear intensity dependence over many orders of magnitude including observations of nonlinear intensity fall-off and IR laser ionization of molecules. An outlook is presented on different time scales for intramolecular processes and the resulting future possibilities of IR laser chemical reaction control.

  5. Auricular Acupuncture with Laser

    PubMed Central

    Bahr, Frank

    2013-01-01

    Auricular acupuncture is a method which has been successfully used in various fields of medicine especially in the treatment of pain relief. The introduction of lasers especially low-level lasers into medicine brought besides the already existing stimulation with needles and electricity an additional technique to auricular acupuncture. This literature research looks at the historical background, the development and the anatomical and neurological aspects of auricular acupuncture in general and auricular laser acupuncture in detail. Preliminary scientific findings on auricular acupuncture with laser have been described in detail and discussed critically in this review article. The results of the studies have shown evidence of the effect of auricular laser acupuncture. However, a comparison of these studies was impossible due to their different study designs. The most important technical as well as study parameters were described in detail in order to give more sufficient evidence and to improve the quality of future studies. PMID:23935695

  6. Regenerative similariton laser

    NASA Astrophysics Data System (ADS)

    North, Thibault; Brès, Camille-Sophie

    2016-05-01

    Self-pulsating lasers based on cascaded reshaping and reamplification (2R) are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  7. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  8. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  9. [Laser technology in dentistry].

    PubMed

    Frentzen, M; Koort, H J

    1991-07-01

    Although dental laser treatment is receiving great attention in basic and clinical research, only very few clinical applications have emerged as accepted standard methods. The most promising range of possible applications includes diagnostics and surgery. Most laser systems developed for therapeutic use are heat-producing units, i.e. they convert electromagnetic energy into thermal energy. These systems are employed above all in oral surgery for vaporization, cutting or coagulation of soft tissues and in prosthodontics for welding. More recently, new types of lasers have been developed allowing non-thermal modes of tissue interaction. A great number of technical and biological problems will have to be solved, however, before these laser systems will be practically applicable in such clinical fields as, for instance, caries therapy. In the near future, laser systems are expected to complete and supplement conventional methods in diagnosis and treatment, but not to replace them.

  10. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  11. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  12. Catalac free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-12-12

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.

  13. Catalac free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  14. Laser controlled flame stabilization

    DOEpatents

    Early, James W.; Thomas, Matthew E.

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  15. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  16. Laser conservation paleontology

    NASA Astrophysics Data System (ADS)

    Asmus, John F.

    2001-10-01

    Just as lasers have found countless applications in science, industry, medicine, and entertainment, an array of real and potential uses for lasers in art-conservation analytes and practice have been investigated over the past thirty years. These include holographic recording, holographic recording, holographic nondestructive testing, laser-induced ultrasonic imaging, laser-scattering surface characterization, atomic and molecular analyses, photoacoustic spectroscopy, surface modification, as well as surface divestment and cleaning. The initial endeavors in exploring and assessing the utility of these tools for art conservation are recounted for investigations involving ruby, glass, ion, YAG, carbon dioxide, dye, and excimer lasers as well as high-intensity nonlaser light generators such as xenon flashlamps and argon pinchlamps. Initially, laser divestment/cleaning was, by general consensus, the least plausible laser application in art conservation. In the past ten years it has emerged to dominate all the other applications noted above. Today, at least a dozen firms supply user-friendly laser systems optimized for a range of art-conservation divestment applications. The first-generation laser-cleaning tools are essentially a laser, a beam-delivery device, and a debris- collection accessory. Advanced developmental work has turned in large measure to ancillary subsystems for more sophisticated process control. Of particular importance are acoustic, optical, spectral, EMP, and electronic-vision process control. Beam direction may be via manual, translational-scanner, or robotic beam positioning implemented by means of fiber optics, minors, or prisms and computer control. Substrate thermal alteration and debris redeposition may be minimized or avoided through the incorporation of a gas jet, fluid or fluid jet, or dry-ice blast.

  17. Laboratory x ray lasers

    NASA Astrophysics Data System (ADS)

    Matthews, D. L.

    1989-08-01

    One of the most innovative spinoffs of ICF technology and physics was the development of the x ray wavelength laser. The first incontrovertible demonstration of this type of laser came from LLNL in 1984 using the Novette laser to pump a selenium foil target. The power and energy of Novette were then needed to produce a column of plasma of sufficient length to achieve a sufficient gainlength product (approximately 5.5, this corresponds to an amplification of approximately 250X) that could unquestionably illustrate the lasing effect. LLNL ICF expertise was also required to develop time-resolved spectrometers used to view the lasing transitions at approximately 20 nm, a region of the XUV spectrum normally dominated by high backgrounds. The design of the x ray laser amplifier, which required maintaining nonequilibrium level populations in a tailored plasma having the proper conditions for gain and x ray laser beam propagation, was accomplished with modified versions of ICF kinetics and hydrodynamics codes. Since the first demonstration, progress in the development of the x ray laser was rapid. New achievements include production of megawatt power levels at 20 nm, amplified spontaneous emission levels approaching saturation intensity GL of approximately 17 at 20 nm, efficiency (x ray laser energy/pump energy) approximately 10(exp 6), the demonstration of double and triple pass amplification (hinting at the possibility of producing x ray wavelength resonators), the focusing of x ray lasers to pump other types of lasers and the first demonstration of an x ray hologram produced by an x ray laser. The generation of amplification at ever shorter wavelength is possible using various types of inversion schemes. We depict below this progress benchmarked against production of gain in the water window (2.2 to 4.4 nm,), where applications to biological imaging may be facilitated.

  18. Consistency analysis on laser signal in laser guided weapon simulation

    NASA Astrophysics Data System (ADS)

    Yin, Ruiguang; Zhang, Wenpan; Guo, Hao; Gan, Lin

    2015-10-01

    The hardware-in-the-loop simulation is widely used in laser semi-active guidance weapon experiments, the authenticity of the laser guidance signal is the key problem of reliability. In order to evaluate the consistency of the laser guidance signal, this paper analyzes the angle of sight, laser energy density, laser spot size, atmospheric back scattering, sun radiation and SNR by comparing the different working state between actual condition and hardware-in-the-loop simulation. Based on measured data, mathematical simulation and optical simulation result, laser guidance signal effects on laser seeker are determined. By using Monte Carlo method, the laser guided weapon trajectory and impact point distribution are obtained, the influence of the systematic error are analyzed. In conclusion it is pointed out that the difference between simulation system and actual system has little influence in normal guidance, has great effect on laser jamming. The research is helpful to design and evaluation of laser guided weapon simulation.

  19. RGB lasers for laser projection displays

    NASA Astrophysics Data System (ADS)

    Hollemann, Guenter; Braun, Bernhard; Dorsch, Friedhelm; Hennig, Petra; Heist, Peter; Krause, Ulf; Kutschki, Uwe; Voelckel, Hermann A.

    2000-04-01

    JENOPTIK Laser, Optik, Systeme GmbH has developed for the first industrial all-solid-state Red-Green-Blue laser system for large image projection systems. Compact in design (0.75 m3, 180 kg, 3 kW power consumption), the system consists of a modelocked oscillator amplifier subsystem with 7 ps pulse duration and 85 MHz pulse repetition frequency, an optical parametric oscillator, and several non-linear stages to generate radiation at 628 nm, 532 nm and 446 nm with an average output power above 18 W. Each of the three colors is modulated with the video signal in a contrast ratio of 1000:1 and coupled into a common low order multi mode fiber. The system architecture relies on efficiently manufacturable components. With the help of FEM analysis, new engineering design principles and subsequent climatic and mechanical tests, a length stability below 50 micrometers and an angle stability below 10 (mu) rad have been achieved. The design includes efficient laser diodes with integrated thermo- electric cooler and a lifetime above 10000 hours. The stability of the output power is better than +/- 2% in a temperature range from 5 degree(s)C to 40 degree(s)C. The system operates reliably for more than 10000 hours under field conditions. The design is based (among others) on work by Laser-Display-Technologie KG and the University of Kaiserslautern.

  20. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  1. Laser Transmitter Design for the Geoscience Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Yu, A. W.; Mamakos, W.; Lukemire, A.; Dallas, J. L.; Schroeder, B.; Green, J. W.

    1998-01-01

    NASA is embarking on a new era of laser remote sensing instruments from space. This paper focuses specifically on the laser technology involved in one of the present NASA missions. The Geoscience Laser Altimeter System (GLAS) scheduled to launch in 2001 is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. The laser transmitter for this space-based remote sensing instrument is discussed in the context of the mission requirements.

  2. Lasers in digestive endoscopy

    NASA Astrophysics Data System (ADS)

    Brunetaud, Jean Marc; Maunoury, Vincent; Cochelard, Dominique

    1997-01-01

    Lasers were introduced in digestive endoscopy to stop active gastroduodenal hemorrhages. Their use spread progressively to the treatment of chronic hemorrhages from vascular malformations and sessile tumors. Laser face competition from other endoscopic techniques such as electrocoagulation, injection techniques, dilation, stents, and brachytherapy. Many series have reported the efficacy of lasers in digestive endoscopy used for their thermal or photochemical effects. However, they were gradually abandoned for the treatment of hemorrhages because of competition from nonlaser techniques. Lasers are still used for ablation of sessile tumors, but their true impact is difficult to evaluate. Modern methods of technology assessment did not allow gastroenterologists to clearly define the place of lasers among surgery, radio-chemotherapy, and other endoscopic techniques, and data on the daily use of lasers are not available. Therefore, the conclusion can only be subjective. The best current application of thermal lasers appears to be in the treatment of rectosigmoid villous adenomas in elderly patients. Small superficial rectal cancers may also become a good subject due to the impact of endoscopic ultrasonography. Early lesions with multifocal or diffuse disease such as early esophageal cancers could be the most promising subject of application for photodynamic therapy in the future.

  3. History of lasers.

    PubMed

    Gross, Andreas J; Herrmann, Thomas R W

    2007-06-01

    The developments of laser technology from the cradle of modern physics in 1900 by Planck to its latest medical boundaries is an exciting example of how basic physics finds its way into clinical practice. This article merits the protagonists and their contribution to the steps in this development. The competition between the different research groups finally led to the award of the Nobel Prize to Townes, Basov and Prokhorov in 1964 for the scientific basis on quantum electronics, which led to the construction of oscillators and amplifiers based on the laser-maser principle. Forty-three years after Einstein's first theories Maiman introduced the first ruby laser for commercial use. This marked the key step for the laser application and pioneered fruitful cooperations between basic and clinical science. The pioneers of lasers in clinical urology were Parsons in 1966 with studies in canine bladders and Mulvany 1968 with experiments in calculi fragmentation. The central technological component for the triumphal procession of lasers in urology is the endoscope. Therefore lasers are currently widely used, being the tool of choice in some areas, such as endoscopical lithotriptic stone treatment or endoluminal organ-preserving tumor ablation. Furthermore they show promising treatment alternatives for the treatment of benign prostate hyperplasia. PMID:17564717

  4. Laser Propulsion Standardization Issues

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sinko, John E.; Sasoh, Akihiro

    2010-10-08

    It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

  5. Laser acceleration in vacuum

    SciTech Connect

    Hsu, J.L.; Katsouleas, T.; Mori, W.B.; Schroeder, C.B.; Wurtele, J.S.

    1997-02-01

    This paper explores the use of the large electric fields of high-brightness lasers (e.g., up to order TV/cm) to accelerate particles. Unfortunately, as is well known, it is difficult to couple the vacuum field of the laser to particles so as to achieve a net energy gain. In principle, the energy gain near the focus of the laser can be quite high, i.e., on the order of the work done in crossing the focus {Delta}{gamma}={radical}({pi})eEw{approximately}30MeV{radical}(P/1TW), where P is the laser power. In order to retain this energy, the particles must be in the highly nonlinear regime (Vosc/c{gt}1) or must be separated from the laser within a distance on the order of a Rayleigh length from the focus. In this work, we explore the acceleration and output energy distribution of an electron beam injected at various angles and injection energies into a focused laser beam. Insight into the physical mechanism of energy gain is obtained by separating the contributions from the longitudinal and transverse laser field components. {copyright} {ital 1997 American Institute of Physics.}

  6. A borane laser

    NASA Astrophysics Data System (ADS)

    Cerdán, Luis; Braborec, Jakub; Garcia-Moreno, Inmaculada; Costela, Angel; Londesborough, Michael G. S.

    2015-01-01

    Emission from electronically excited species forms the basis for an important class of light sources—lasers. So far, commercially available solution-processed blue-emitting laser materials are based on organic compounds or semiconductor nanocrystals that have significant limitations: either low solubility, low chemical- and/or photo-stability and/or uncompetitive prices. Here we report a novel and competitive alternative to these existing laser materials that is based on boron hydrides, inorganic cluster compounds with a rich and diverse chemistry. We demonstrate that solutions of the borane anti-B18H22 show, under pulsed excitation, blue laser emission at 406 nm with an efficiency (ratio of output/input energies) of 9.5%, and a photostability superior to many of the commercially available state-of-the-art blue laser dyes. This demonstration opens the doors for the development of a whole new class of laser materials based on a previously untapped resource for laser technology—the boranes.

  7. Analog Simulation of a Laser.

    ERIC Educational Resources Information Center

    Kessler, Gary

    1982-01-01

    Presents an analog simulation of laser properties (finding time evolution of the intensity of a ruby laser pulse) which serves as the basis of a three-four hour laboratory experiment. Includes programs for solution to rate equations of a three-level laser and production of a giant pulse in a ruby laser. (Author/SK)

  8. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  9. 1982 laser program annual report

    SciTech Connect

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  10. Piezoelectric measurement of laser power

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method for measuring the energy of individual laser pulses or a series of laser pulses by reading the output of a piezoelectric (PZ) transducer which has received a known fraction of the total laser pulse beam. An apparatus is disclosed that reduces the incident energy on the PZ transducer by means of a beam splitter placed in the beam of the laser pulses.

  11. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  12. Laser treatment for skin disease

    NASA Astrophysics Data System (ADS)

    Bloznelyte-Plesniene, Laima; Cepulis, Vytautas; Ponomarev, Igor V.

    1996-12-01

    The correct selection of patients is the most difficult part of the laser treatment. Since 1985 the total number of patients treated by us using different laser systems was 1544. High power lasers: Nd:YAG and CO2 lasers were used by us for surgical treatment. Low power lasers: Helium-Neon, Copper vapor, gold vapor and dye lasers were applied by us to PDT or to treatment of port wine hemangiomas. this paper reports our efforts in selecting the patients with different skin lesions for the treatment with different laser systems.

  13. Optimising Laser Tattoo Removal

    PubMed Central

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  14. Ring laser gyroscope anode

    SciTech Connect

    Ljung, B.H.

    1981-03-17

    An anode for a ring laser gyroscope which provides improved current stability in the glow discharge path is disclosed. The anode of this invention permits operation at lower currents thereby allowing a reduction of heat dissipation in the ring laser gyroscope. The anode of one embodiment of this invention is characterized by a thumbtack appearance with a spherical end where the normal sharp end of the thumbtack would be located. The stem of the anode extends from the outside of the gyroscope structure to the interior of the structure such that the spherical end is substantially adjacent to the laser beam.

  15. Laser remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    The properties and advantages of remote sensing lasers are discussed. The theory of nonresonant techniques, which is based on the lidar equation and elastic backscatter, and their applications to aerosol and meteorological parameters are examined. The characteristics and applications of the differential absorption lidar technique, the fluorescence technique, and Raman scattering are described. The use of a laser heterodyne radiometer and fiber optics for remote sensing is studied. Future developments in the field of remote sensing, in particular the improvement of laser sources, the fabrication of compact remote sensing instruments, and space-borne applications for lidar, are considered.

  16. Diatomic gasdynamic lasers

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1971-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  17. Diatomic gasdynamic lasers.

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  18. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  19. Laser adaptive holographic hydrophone

    NASA Astrophysics Data System (ADS)

    Romashko, R. V.; Kulchin, Yu N.; Bezruk, M. N.; Ermolaev, S. A.

    2016-03-01

    A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa-1 in the frequency range from 1 to 30 kHz.

  20. Color speckle in laser displays

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  1. Laser applications in neurosurgery

    NASA Astrophysics Data System (ADS)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  2. Medical applications of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Mancha, Sylvia D.; Keipert, Andreas; Prairie, Michael W.

    1994-06-01

    The High Power Semiconductor Laser Technology (HPSLT) program is currently developing, in-house, a belt pack medical laser. This compact semiconductor laser device provides the field paramedic or physician a unique portable laser capability. The pack consists of a completely self-contained laser system that fits inside a belt pack. Several other medical applications being investigated by the HPSLT program include urological applications, photodynamic therapy, and ophthalmic applications.

  3. The fiberoptics and laser handbook

    NASA Astrophysics Data System (ADS)

    Safford, E. L., Jr.

    The basic principles and current applications of optical fibers (OF) and lasers are presented in a handbook intended for a general audience. Topics covered include the fundamentals of light propagation in space and media, industrial applications of OF, the manufacture and use of OF, OF experiments, the importance of lenses, the physics of lasers, basic types of lasers, laser applications (general and communications), and cable-TV applications of lasers and OF. Drawings, diagrams, and a glossary of terms are provided.

  4. Beamlet laser diagnostics

    SciTech Connect

    Burkhart, S.C.; Behrendt, W.C.; Smith, I.

    1996-06-01

    Beamlet is instrumented extensively to monitor the performance of the overall laser system and many of its subsystems. Beam diagnostics, installed in key locations, are used to fully characterize the beam during its propagation through the multipass cavity and the laser`s output section. This article describes the diagnostics stations located on Beamlet and discusses the design, calibration, and performance of the Beamlet calorimeters. The authors used Nova`s diagnostics packages to develop the Beamlet design to determine beam energy, spatial profile, temporal profile, and other beam parameters. Technologic improvements within the last several years in controls, charge-coupled device (CCD) cameras, and fast oscilloscopes have allowed the authors to obtain more accurate measurements on the Beamlet laser system. They briefly cover some of these techniques, including a description of their LabVIEW based data acquisition system.

  5. Laser cutting nozzle

    DOEpatents

    Ramos, Terry J.

    1984-01-01

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece. BACKGROUND OF THE INVENTION

  6. Lasers in food industry

    NASA Astrophysics Data System (ADS)

    Fyodorov, Boris F.

    1996-09-01

    Food industry had begun to use lasers for improvement of effectiveness of production. We can clearly see three main directions: in the food technology, in the food engineering, and in the agriculture. The results of the work is given.

  7. Integrated diamond sapphire laser

    NASA Astrophysics Data System (ADS)

    Fork, Richard L.; Walker, Wesley W.; Laycock, Rustin L.; Green, Jason J. A.; Cole, Spencer T.

    2003-10-01

    We use analytic expressions and simulations to examine a model laser gain element formed by integrating diamond and a solid state laser material, such as, Ti:sapphire. The gain element is designed to provide in a single composite structure the thermal management capabilities of diamond and the optical amplification of the laser material. The model results indicate low temperature and a specific radial dependence of the heat transfer coefficient at the material interfaces are needed to access the highest average powers and highest quality optical fields. We outline paths designed to increase average output power of a lowest order mode laser oscillator based on these gain elements to megawatt levels. The long term goal is economically viable solar power delivered safely from space. The short term goal is a design strategy that will facilitate "proof of principle" demonstrations using currently accessible optical pump and thermal management capabilities.

  8. Powerful copper chloride laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J.

    1981-01-01

    Two design innovations give up to thirtyfold increase in power in 300 W laser amplifier. Heat is removed by flowing lasing gas through system, allowing larger lasing volumes. Fast, uniform excitation discharges are obtained with transverse, rather than longitudinal, electrodes.

  9. Photobiomodulation and Lasers.

    PubMed

    Chiari, Susanne

    2016-01-01

    Photobiomodulation is discussed to be a noninvasive method to accelerate orthodontic tooth movement. The stimulatory effect of low-level laser therapy is well known and includes enhancement in tissue growth and tissue regeneration, resolvement of inflammation and pain. In recent research projects, the effect of laser therapy was tested regarding the stimulatory effect on bone remodeling with the potential to influence the tooth movement rate. The results are divers. The effect of laser regarding the reduction of the postadjustment pain could be proved, but not all authors describe the acceleration of tooth movement. Depending on the protocol, low-level laser therapy with low dosage increases the amount of tooth movement while high dosage seems to result in inhibitory effects. In conclusion, future studies are necessary to find the right protocol delivering beneficial results regarding the influence on bone remodeling and tooth movement to implement this therapy in daily orthodontic routine. PMID:26599125

  10. Laser-Beam Separator

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  11. Laser-induced bioluminescence

    SciTech Connect

    Hickman, G.D.; Lynch, R.V. III

    1981-01-01

    A project has been initiated to determine the feasibility of developing a complete airborne remote sensing system for rapidly mapping high concentration patches of bioluminescent organisms in the world's oceans. Conceptually, this system would be composed of a laser illuminator to induce bioluminescence and a low light level image intensifier for detection of light. Initial laboratory measurements consisted of using a 2-J flash lamp pulsed optical dye laser to excite bioluminescence in the marine dinoflagellate Pyrocustis lunula at ambient temperature using Rhodamine 6G as the lasing dye (585 nm) and a laser pulse width of 1 microsec. After a latency period of 15-20 msec, the bioluminescence maximum occurred in the blue (480 nm is the wavelength maximum for most dinoflagellate bioluminescence) with the peaking occurring approximately 65 msec after the laser pulse. Planned experiments will investigate the effect of different excitation wavelengths and energies at various temperatures and salinities of the cultures.

  12. Laser frequency offset synthesizer

    NASA Astrophysics Data System (ADS)

    Lewis, D. A.; Evans, R. M.; Finn, M. A.

    1985-01-01

    A method is reported for locking the frequency difference of two lasers with an accuracy of 0.5 kHz or less over a one-second interval which is simple, stable, and relatively free from systematic errors. Two 633 nm He-Ne lasers are used, one with a fixed frequency and the other tunable. The beat frequency between the lasers is controlled by a voltage applied to a piezoelectric device which varies the cavity length of the tunable laser. This variable beat frequency, scaled by a computer-controlled modulus, is equivalent to a synthesizer. This approach eliminates the need for a separate external frequency synthesizer; furthermore, the phase detection process occurs at a relatively low frequency, making the required electronics simple and straightforward.

  13. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  14. Laser therapy for periodontitis

    NASA Astrophysics Data System (ADS)

    Efanov, O. I.

    2001-04-01

    An investigation was made of applying pulsed (lambda) equals 0.89 micrometers laser radiation in the treatment for early diagnosed periodontitis. The investigation was made on 65 patients (47 patients constituted the experimental group and 18 patients constituted a control group) affected by periodontitis. Clinical and functional tests revealed that laser therapy produced a string effect on the course of the illness. It reduced bleeding, inflammation, and pruritus. However, it did not produce an affect on electroexcitation. Biomicroscopic examinations and periodontium rheography revealed that the gingival blood flow became normal after the course of laser therapy. The capillary permeability and venous congestion decreased, which was confirmed by the increased time of vacuum tests, raised gingival temperature, reduced tissue clearance, and increased oxygen tension. Apart from that, laser therapy subsided fibrinolysis, proteolytic tissue activity, and decreased the exudative inflammation of periodontium.

  15. Blinding laser weapons.

    PubMed

    Peters, A

    1996-01-01

    At its October 1995 Review Conference, the Convention on Conventional Weapons added a protocol banning the use and transfer of blinding laser weapons. The background to, and significance and limitations of this ban are discussed.

  16. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  17. Making Laser Beams Visible.

    ERIC Educational Resources Information Center

    Knotts, Michael

    1993-01-01

    Describes an inexpensive fog machine that is useful for photography and laser demonstrations. The apparatus uses liquid nitrogen to chill steam to make a fine mist safe for precision optics. The device can be made for around $50. (MVL)

  18. Laser machining of ceramic

    SciTech Connect

    Laudel, A.

    1980-01-01

    The Kansas City Division of The Bendix Corporation manufactures hybrid microcircuits (HMCs) using both thin film and thick film technologies. Laser machining is used to contour the ceramic substrates and to drill holes in the ceramic for frontside-backside interconnections (vias) and holes for mounting components. A 1000 W CO/sub 2/ type laser is used. The laser machining process, and methods used for removing protruding debris and debris from holes, for cleaning the machined surfaces, and for refiring are described. The laser machining process described consistently produces vias, component holes and contours with acceptable surface quality, hole locations, diameter, flatness and metallization adhesion. There are no cracks indicated by dipping in fluorescent dye penetrant and the substances are resistant to repeated thermal shock.

  19. Laser cutting nozzle

    DOEpatents

    Ramos, T.J.

    1982-09-30

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece.

  20. Infrared Laser Sources

    NASA Astrophysics Data System (ADS)

    Jenkins, R. M.

    1988-10-01

    Over the last 20 years there has been considerable research and development of infrared laser sources. This interest stems from the presence of two low attenuation windows in the atmosphere between 3-5μ,m and 8-14μ.m, on the basis of which, a wide range of military, industrial and medical applications have been proposed. In particular the CO2 laser with its lasing transitions between 9-11μm, has and continues to be, the focus of much attention. Although the CO2 laser was first demonstrated in 1964 by Patel', it is only in more recent years, with the application of improvements in the understanding of laser physics in conjunction with advances in relevant technologies, that high power devices which are also compact, efficient, reliable and long lived, have made practical applications feasible.

  1. Paint removal using lasers

    NASA Astrophysics Data System (ADS)

    Liu, Katherine; Garmire, Elsa

    1995-07-01

    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 107 in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m2 area of paint 14 mu m thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  2. Paint removal using lasers.

    PubMed

    Liu, K; Garmire, E

    1995-07-20

    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 10(7) in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m(2) area of paint 14 µm thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  3. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  4. Lasers in aesthetic dentistry.

    PubMed

    Adams, Timothy C; Pang, Peter K

    2004-10-01

    This article focuses on lasers and aesthetic dentistry and their unique parallel in history from their early development to their present day usage and application. The demand for aesthetic dentistry has had a major impact not only on treatment planning but also on the choice of materials, techniques, and equipment. It is this demand that has married the use of lasers with aesthetic dentistry. A short literature review on the five basic laser types precedes the basic premise of smile design and its critical importance in attaining the desirable aesthetic end result. A short review on biologic width and biologic zone reinforces their importance when manipulating gingival tissue. Four case reports highlight the use of diode, erbium, and carbon dioxide lasers. The end results show the power of proper treatment planning and the use of a smile design guide when using these instruments and confirm a conservative, aesthetic treatment without compromising the health and function of the patients.

  5. Contaminant Monitor Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Small Business Innovation Research contract from Langley Research Center, OPOTEK, Inc. developed a laser transmitter for remote sensing of water vapor in the upper atmosphere. As a leader in developing and using Differential Absorption Lidar, a remote sensing technique to monitor ozone and water vapor in the atmosphere, NASA was interested in upgrading the capabilities of its airborn laser systems. The laser transmitter developed for NASA was used for measuring water vapor in the infrared region. By broadening this concept to other wavelengths, OPOTEK believes a range of industrial applications can be met. In addition, the tunable laser system can be used by the Drug Enforcement Administration to discern the by-products from illegal drug manufacturing. A host of other government, university, and industrial laboratory uses for the technology are also being examined as follow-up by the company.

  6. Precision laser cutting

    SciTech Connect

    Kautz, D.D.; Anglin, C.D.; Ramos, T.J.

    1990-01-19

    Many materials that are otherwise difficult to fabricate can be cut precisely with lasers. This presentation discusses the advantages and limitations of laser cutting for refractory metals, ceramics, and composites. Cutting in these materials was performed with a 400-W, pulsed Nd:YAG laser. Important cutting parameters such as beam power, pulse waveforms, cutting gases, travel speed, and laser coupling are outlined. The effects of process parameters on cut quality are evaluated. Three variables are used to determine the cut quality: kerf width, slag adherence, and metallurgical characteristics of recast layers and heat-affected zones around the cuts. Results indicate that ductile materials with good coupling characteristics (such as stainless steel alloys and tantalum) cut well. Materials lacking one or both of these properties (such as tungsten and ceramics) are difficult to cut without proper part design, stress relief, or coupling aids. 3 refs., 2 figs., 1 tab.

  7. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  8. Insulator for laser housing

    DOEpatents

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  9. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  10. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  11. Quantum Fountain Unipolar Lasers

    NASA Astrophysics Data System (ADS)

    Julien, Francois H.

    2001-03-01

    There is a strong interest in the development of semiconductor lasers for long-wavelength infrared applications. In the 2-20 um band, the recent demonstration of Quantum Cascade (QC) unipolar lasers is already challenging the currently available technology relying on electron-hole radiative recombination in narrow-gap semiconductors. Recently, an alternate type of unipolar laser relying on intersubband emission, the so-called Quantum Fountain intersubband laser (QF) has been proposed and demonstrated. The active region consists of periods of two GaAs/AlGaAs coupled quantum wells exhibiting three bound electron states. Electrons are optically excited from the ground state to the upper state. The radiative intersubband transition to the intermediate state gives rise to the infrared emission. Population inversion as well as fast recycling of electrons into the ground state is provided by insuring a short lifetime of electrons in the intermediate state through an enhanced scattering with LO-phonons. Although their operation imposes an external pumping source, QF lasers offer the advantages of a simplified design, of less stringent material requirements and of low internal losses due to free-carrier absorption as compared to QC lasers. In the talk, we will review the latest developments on high-brightness QF unipolar lasers emitting in the 8-16 um band. We will show that record high optical powers and single-transverse mode operation can be achieved by designing broad-area lasers with a top grating [1]. Novel designs relying on superlattice active regions will also be discussed. [1] O. Gauthier-Lafaye, B. Seguin-Roa, F. H. Julien, G. Strasser, P. Collot, C. Sirtori, J.-Y. Duboz, Physica E 7, p.12 (2000).

  12. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  13. Ceramic Laser Materials

    SciTech Connect

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  14. Insulator for laser housing

    DOEpatents

    Duncan, David B.

    1992-01-01

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

  15. Laser ophthalmological trainer

    NASA Astrophysics Data System (ADS)

    Sovva, Anatoly I.; Strinadko, Miroslav T.; Strinadko, Marina M.

    1997-12-01

    The laser ophthalmological trainer is offered. It provides stimulation of an optic analyzer by means of the simultaneous influence of different sensor zones optic auditory by the modulated laser radiation and the sound signal of the proper frequency. The trainer includes the assembly providing individual control of the permissible dose of radiation and can be used for treatment of partial atrophy of optic nerve, dystrophy of cornea, cornea syndrome after refraction surgery, inflammatory diseases of cornea, and conjunctivitis.

  16. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  17. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  18. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  19. Cylindrical laser resonator

    DOEpatents

    Casperson, Lee W.

    1976-02-24

    The properties of an improved class of lasers is presented. In one configuration of these lasers the radiation propagates radially within the amplifying medium, resulting in high fields and symmetric illumination at the resonator axis. Thus there is a strong focusing of energy at the axis of the resonator. In a second configuration the radiation propagates back and forth in a tubular region of space.

  20. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  1. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-03-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  2. CANALOPLASTY AFTER LASER TRABECULOPLASTY.

    PubMed

    Caileanu, Gabriela Denisa

    2015-01-01

    The paper presents a case of a pseudoexfoliative glaucoma previously treated with argon laser trabeculoplasty in a tertiary center, who was scheduled for canaloplasty in the Ophthalmology Department of the County Hospital Piatra Neamt, Romania. Although the status post laser trabeculoplasty is not among the best indications for canaloplasty, the article confirms the fact that this procedure can also be successfully performed in these cases.

  3. Laser angle sensor

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.

    1985-01-01

    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.

  4. Laser surface cleaning

    SciTech Connect

    Crivella, E.C.; Freiwald, J.; Freiwald, D.A.

    1996-12-31

    Decontamination of contaminated metal and material recycle, two of 31 priority needs identified by the D&D focus group, are the most promising applications for laser ablation within the DOE complex. F2 Associates has developed a robotic laser ablation system that is capable of high contamination rates, waste volume reduction, surface pore cleaning, and real-time characterization of materials. It is being demonstrated that this system will be the most cost-effective technology for metal decontamination and material recycle.

  5. Transmyocardial laser revascularization

    NASA Astrophysics Data System (ADS)

    Aretz, H. Thomas

    1996-09-01

    Transmyocardial laser revascularization (TMR) for the treatment of medically unresponsive angina pectoris has been shown to be clinically effective. The mechanism of its action, however, is not quite understood. Over the last five years my collaborators and I have conducted a variety of in vivo and in vitro studies using different animal models, lasers and experimental protocols. The results seem to indicate that the mechanism of action of TMR is related to neovascularization rather than chronically patent channels, as originally proposed.

  6. Laser Scar Management Technique

    PubMed Central

    Ohshiro, Toshio; Sasaki, Katsumi

    2013-01-01

    Background and Aims: Scars are common and cause functional problems and psychological morbidity. Recent advances in optical technologies have produced various laser systems capable of revising the appearance of scars from various etiologies to optimize their appearance. Methods: Laser treatment can commence as early as the time of the initial injury and as late as several years after the injury. Several optical technologies are currently available and combined laser/light treatments are required for treatment of scars. Since 2006, we have set up a scar management department in our clinic and more than 2000 patients have been treated by our combined laser irradiation techniques. Herein, we review several available light technologies for treatment of surgical, traumatic, and inflammatory scars, and discuss our combined laser treatment of scars, based upon our clinical experience. Results and Conclusions: Because scars have a variety of potential aetiologies and take a number of forms, no single approach can consistenty provide good scar treatment and management. The combination of laser and devices is essential, the choice of wavelength and approach being dictated by each patient as an individual. PMID:24511202

  7. [Laser scanning in ophthalmology].

    PubMed

    Jean, B; Frohn, A; Thiel, H J

    1990-01-01

    The current state of the art for the major laser scanning methods, laser scanning ophthalmoscopy (LSO) and laser tomographic scanning (LTS) is discussed and the function principles are described. Experience with a prototype of each instrument from Rodenstock (LSO) and Heidelberg Instruments (LTS) is reported. LSO imaging of the cornea, vitreous, retina, and optic disc, as well as on-line processing is demonstrated with examples (nerve fibre colour coding and histograms). Measurement of the cornea, optic disc and retinal topography with LTS is also demonstrated with examples. An example of polarization optical imaging of the cornea's assumed interferometric "tension patterns" is shown. The current status and future possibilities of laser scanning, its expanded diagnostic potential with microperimetry, IR scanning angiography and polarization optic imaging and measurement (eg. nerve fibre thickness) is discussed extensively. The safety aspects of laser light exposure of the macula are also mentioned. Laser scanners as imaging and measuring sensors of unknown accuracy open a new area of possibly revolutionary diagnostic possibilities.

  8. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  9. ): laser processing and applications

    NASA Astrophysics Data System (ADS)

    Fricke-Begemann, T.; Meinertz, J.; Weichenhain-Schriever, R.; Ihlemann, J.

    2014-10-01

    Substoichiometric silicon oxide SiOx with x < 2 in form of evaporated or sputtered thin films offers a versatile material basis for laser ablation techniques such as film patterning, laser-induced forward transfer, or laser-induced backside dry etching. Applications in the field of (micro-) optics are favoured strongly by the fact that SiOx can be oxidised to UV-transparent SiO2 by thermal treatment (furnace or laser annealing). On the other hand, with x ≈ 1, SiOx exhibits an absorption coefficient of >105 cm-1 in the deep UV below 250 nm, comparable to strongly absorbing polymers such as polyimide. This enables precise ablation with, e.g., excimer lasers at moderate fluences. For example, UV-transparent diffractive elements or phase masks are made by laser patterning of an appropriate SiOx film and subsequent oxidation to SiO2. Modifications of the basic film ablation process lead to novel surface topographies such as blister or cup arrays with potential non-optical applications, e.g., in micro-/nanofluidics.

  10. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  11. Laser Transmitter Aims At Laser Beacon

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.

  12. Mid-infrared solid-state lasers and laser materials

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Byvik, Charles E.

    1988-01-01

    An account is given of NASA-Langley's objectives for the development of advanced lasers and laser materials systems applicable to remote sensing in the mid-IR range. Prominent among current concerns are fiber-optic spectroscopy, eye-safe solid-state lasers for both Doppler sensing and mid-IR wavelength-generation laser pumping, and nonlinear optics generating tunable mid-IR radiation. Ho:YAG lasers are noted to exhibit intrinsic advantages for the desired applications, and are pumpable by GaAlAs laser diodes with a quantum efficiency approaching 2.

  13. CRC handbook of laser science and technology. Volume 3. Gas lasers

    SciTech Connect

    Weber, M.J.

    1982-01-01

    This book describes the fundamentals of gas lasers. It provides information and data on neutral gas lasers, ionized gas lasers, and molecular gas lasers. Concluding this volume is an extensive table of all gas laser wavelengths.

  14. Frequency stabilization of algaas lasers

    SciTech Connect

    Ohtsu, M.; Tsuchida, H.; Tako, T.

    1982-01-01

    Performances of semiconductor lasers have been remarkably improved by the demand of the optical communications industry. Recently, a single longitudinal mode, CW oscillation at room temperature has been realized. The price of each laser has been reduced as low as $250. These lasers are mostly oscillated in the near-infrared, and the coherent lights of 0.83 micrometers and 1.3-1.6 micrometers in wavelengths are obtained by AlGaAs lasers and InGaAsP lasers, respectively. Since few number of other kind of lasers oscillates in these wavelength regions, these semiconductor lasers could be conveniently used not only in optical communications but in many fields of application, e.g., laser spectroscopy, optical pumping, frequency and length standards, laser radar, air-borne gyroscope, etc.

  15. The lasers for TMLR application

    NASA Astrophysics Data System (ADS)

    Panchenko, Vladislav Y.; Berishvili, I. I.; Vasiltsov, Victor V.; Ulyanov, Valerii A.; Egorov, E. N.; Solovjev, Andrey V.; Semenov, A. N.; Tarasov, M. N.; Roshin, M. A.

    2004-06-01

    The paper presents the analysis of the requirements to the laser systems used to cure the ischemic disease of the heart by the method of transmyocardial laser revascularization (TMLR). Among the medical laser systems under discussion (solid-state Nd:YAG, Er:YAG, Ho:YAG, excimer lasers, etc.) the high-power CO2 laser with pulse energy to 40 J is most suited to produce channels in the heart muscle. The paper provides the description and the technical characteristics of medical laser systems of "Perfocor" series, based on high-power waveguide CO2 lasers with pulse energy to 60 J, developed at ILIT RAS. The methods to determine the time of laser radiation penetration through the myocardium/blood boundary have been briefly discussed. The application of the "Perfocor" system in other laser operations on blood-filled organs has also been discussed.

  16. Lasers in endodontics: an overview

    NASA Astrophysics Data System (ADS)

    Frentzen, Matthias; Braun, Andreas; Koort, Hans J.

    2002-06-01

    The interest in endodontic use of dental laser systems is increasing. Developing laser technology and a better understanding of laser effects widened the spectrum of possible endodontic indications. Various laser systems including excimer-, argon+-, diode-, Nd:YAG-, Er:YAG- and CO2-lasers are used in pulp diagnosis, treatment of hypersensitivity, pulp capping, sterilization of root canals, root canal shaping and obturation or apicoectomy. With the development of new delivery systems - thin and flexible fibers - for many different wavelengths laser applications in endodontics may increase. Since laser devices are still relatively costly, access to them is limited. Most of the clinical applications are laser assisted procedures such as the removing of pulp remnants and debris or disinfection of infected root canals. The essential question is whether a laser can provide improved treatment over conventional care. To perform laser therapy in endodontics today different laser types with adopted wavelengths and pulse widths are needed, each specific to a particular application. Looking into the future we will need endodontic laser equipment providing optimal laser parameters for different treatment modalities. Nevertheless, the quantity of research reports from the last decade promises a genuine future for lasers in endodontics.

  17. Diode laser pumped solid state laser with 2 micrometer wavelength

    NASA Astrophysics Data System (ADS)

    Hansson, G.; Callenas, A.

    1994-06-01

    Research at the FOA in the field diode laser pumped solid state lasers with 2 micrometer wavelength is presented. The research was made within the project Antisensor laser. Basic models for CW and pulsed lasers are presented together with results and experience from the design of a diode laser pumped CW laser based on Thulium (Tm), Holmium (Ho) doped Yttrium Lithium Fluoride (TLiF4), abbreviated Tm, Ho:YLF. Measurements on upconversion of energy from the upper laser level in the laser crystal has been made. The upconversion causes loss of energy which leads to higher laser threshold and lower upper state effective lifetime. The result shows less upconversion in Tm, Ho doped YLF than with the same active ions doped into Yttrium Aluminum Garnet (Tm, Ho: YAG). A simple pump configuration was assembled which produced a pump focus of about 200 micrometers radius. With 1 W pump power, an output power of 50 mW was achieved with the laser crystal at room temperature (25 C). With the crystal cooled to 5 C temperature, 77 mW output power was achieved. The measured laser threshold was in good agreement with the calculated value. The efficiency was only 10% compared to the predicted value of 50%. Measurements of laser beam cross section, wavelength and longitudinal laser modes have also been made and is presented in the report.

  18. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  19. Surgical Lasers In Gynecology

    NASA Astrophysics Data System (ADS)

    Schellhas, Helmut F.; Barnes, Alfonso E.

    1982-12-01

    Multipurpose surgical CO2 lasers marketed in the USA have been developed to be applicable to a variety of surgical procedures in many surgical fields. They are all suited for endoscopic surgical procedures and can be fitted to all standard surgical microscopes. They all can adjust the focal length of the laser beam to the different standard focal lengths of the surgical microscope which for instance in laryngoscopy is 400 mm and in colposcopy 300 mm. One laser instrument can even change the spot size in a given focal distance which is very advantageous for some microsurgical procedures (Merrimack Laboratories 820). All multipurpose surgical CO2 laser systems provide a multi-articulated surgical arm for free-hand surgery. The surgical arms are cumbersome to use but they are adapted to the surgeons needs with ingenuity. The practicality of the multi-articulated surgical arms depends mostly on the distance of the handpiece from the surgical console which now is also overbridged by the laser tube in most surgical laser system. The spot size of the beam is variable in most handpieces by interchangeable lenses which modify the focal distance of the beam and the power density. Another common feature in all systems is a coaxial He-Ne pilot light which provides a red spot which unfortunately becomes invisible in a bleeding surgical field. Most surgical laser systems have a spacial mode of TEM 00 which is essential for incisional surgery. The continuous mode of beam delivery is used for incisional surgery and also for most endoscopic procedures.

  20. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  1. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  2. Semiclassical theory of coupled lasers

    SciTech Connect

    Shakir, S.A.; Chow, W.W.

    1984-06-01

    A semiclassical theory is developed for a coupled-resonator phased laser array. This theory, which is based on an expansion of the laser field in terms of the composite-resonator modes, is valid for all values of coupling and for any number of lasers in the array. The derivation of the composite resonator modes is presented. We found that an expansion of the laser field in terms of these modes leads to laser-amplitude and -frequency-determining equations that have a similar form to those of a multimode single-resonator laser.

  3. Soft tissue application of lasers.

    PubMed

    Holt, Timothy L; Mann, Fred A

    2002-05-01

    Despite increasing numbers of veterinarians incorporating lasers into their clinical practices, little information has been published about laser clinical applications in soft tissue surgery. This article reviews soft tissue interaction, describes laser equipment and accessories commonly marketed to veterinarians, and discusses clinical applications of the carbon dioxide laser in a systems-based approach. A table of recommended laser tips and settings based on the authors' experiences using a carbon dioxide laser (AccuVet Novapulse LX-20SP, Bothell, WA) is provided. PMID:12064042

  4. Blue-green upconversion laser

    DOEpatents

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  5. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  6. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  7. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  8. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  9. Variable emissivity laser thermal control system

    DOEpatents

    Milner, Joseph R.

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  10. Controllable Dual-Wavelength Fiber Laser

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhou, Jun; He, Bing; Liu, Hou-Kang; Liu, Chi; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong

    2012-07-01

    We demonstrate a controllable dual-wavelength fiber laser which contains a master laser and a slave laser. The master laser is a kind of ring cavity laser which can be injected into by the slave laser. The output laser wavelength is controlled by injected power of the slave laser; both single- and dual-wavelength operation can be achieved. Under free running, the master laser generates 1064 nm laser output. Here the slave laser is a 1072 nm fiber laser. The 1064 nm and 1072 nm laser coexist in output spectrum for relatively low injected power. Dual-wavelength and power-ratio-tunable operation can be achieved. If the injected power of the slave laser is high enough, the 1064 nm laser is extinguished automatically and there is only 1072 nm laser output.

  11. The Lunar Orbiter Laser Altimeter (LOLA) Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Novo-Gradac, Anne Marie; Shaw, George B.; Unger, Glenn; Lukemire, Alan

    2008-01-01

    We present the final configuration of the space flight laser transmitter as delivered to the LOLA instrument. The laser consists of two oscillators with co-aligned outputs on a single bench, each capable of providing one billion plus shots.

  12. Laser scattering measurement for laser removal of graffiti

    NASA Astrophysics Data System (ADS)

    Tearasongsawat, Watcharawee; Kittiboonanan, Phumipat; Luengviriya, Chaiya; Ratanavis, Amarin

    2015-07-01

    In this contribution, a technical development of the laser scattering measurement for laser removal of graffiti is reported. This study concentrates on the removal of graffiti from metal surfaces. Four colored graffiti paints were applied to stainless steel samples. Cleaning efficiency was evaluated by the laser scattering system. In this study, an angular laser removal of graffiti was attempted to examine the removal process under practical conditions. A Q-switched Nd:YAG laser operating at 1.06 microns with the repetition rate of 1 Hz was used to remove graffiti from stainless steel samples. The laser fluence was investigated from 0.1 J/cm2 to 7 J/cm2. The laser parameters to achieve the removal effectiveness were determined by using the laser scattering system. This study strongly leads to further development of the potential online surface inspection for the removal of graffiti.

  13. Laser Transmitter for the Lunar Orbit Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Novo-Gradac, Anne-Marie; Shaw, George B.; Li, Steven X.; Krebs, Danny C.; Ramos-Izquierdo, Luis A.; Unger, Glenn; Lukemire, Alan

    2008-01-01

    We present the final configuration of the space flight laser transmitter as delivered to the LOLA instrument. The laser consists of two oscillators on a single bench, each capable of providing one billion plus shots.

  14. Industrial laser marketplace

    NASA Astrophysics Data System (ADS)

    Belforte, David A.

    1990-05-01

    Introduction: Gary Forrest As with medical, we have a specific individual, Dave Belforte, who, in addition to writing for Laser Focus, publishes with Laser Focus the Industrial Laser Review. Again, this is an area that has some really unique aspects to it which is why we have a specialist at the magazine who tracks this as well as having his own business interests. I just have one quick example. One of the things that I've noticed and I've put this in your handout is it's always interesting to me to see why how the lasers actually impact on finished goods that people buy. So I just clipped out one recent article that mentions some of the different areas when lasers are used in automotive production. There's an ad for the Infinity car of course they've had a strange ad program anyway, but the latest version is "Look at the paint." It's a super high gloss paint. I know in Japan, what I would call laser priming, the use of laser in surface preparation of the metal to obtain a super high gloss is something that's become popular. Now I don't know whether the Infinity is using that or not but it's another example as Moe Levitt indicated earlier lasers have moved into the industrial segment maybe not in the volume that people would like but in a quality sense that is definitely starting to have an impact on the people who are buying those finished products. So I'll give you Dave for the details. David Belforte: The answer is yes, the Infinity has a body which has been processed in what is called laser texturizing process. In Japan, it's known as a mirror finish, and it's not actually applied to the steel of the car. It's a texturizing process on the rolls that reduce the steel down to body thickness. They emboss on that steel a regular pattern which tends to trap radiated light and reflect it back to your eye in a much more intense pattern to give you what appears to be brighter paint. But that was not developed in Japan. It was developed in Belgium actually.

  15. FREE-ELECTRON LASERS

    SciTech Connect

    Sessler, A.M.; Vaughan, D.

    1986-04-01

    We can now produce intense, coherent light at wavelengths where no conventional lasers exist. The recent successes of devices known as free-electron lasers mark a striking confluence of two conceptual developments that themselves are only a few decades old. The first of these, the laser, is a product of the fifties and sixties whose essential characteristics have made it a staple resource in almost every field of science and technology. In a practical sense, what defines a laser is its emission of monochromatic, coherent light (that is, light of a single wavelength, with its waves locked in step) at a wavelength in the infrared, visible, or ultraviolet region of the electromagnetic spectrum. A second kind of light, called synchrotron radiation, is a by-product of the age of particle accelerators and was first observed in the laboratory in 1947. As the energies of accelerators grew in the 1960s and 70s, intense, incoherent beams of ultraviolet radiation and x--rays became available at machines built for high-energy physics research. Today, several facilities operate solely as sources of synchrotron light. Unlike the well-collimated monochromatic light emitted by lasers, however, this incoherent radiation is like a sweeping searchlight--more accurately, like the headlight of a train on a circular track--whose wavelengths encompass a wide spectral band. Now, in several laboratories around the world, researchers have exploited the physics of these two light sources and have combined the virtues of both in a single contrivance, the free-electron laser, or FEL (1). The emitted light is laserlike in its narrow, sharply peaked spectral distribution and in its phase coherence, yet it can be of a wavelength unavailable with ordinary lasers. Furthermore, like synchrotron radiation, but unlike the output of most conventional lasers, the radiation emitted by free-electron lasers can be tuned, that is, its wavelength can be easily varied across a wide range. The promise of this

  16. Laser Science and Applications

    NASA Astrophysics Data System (ADS)

    El-Nadi, Lotfia M.; Mansour, Mohy S.

    2010-04-01

    Attosecond high harmonic pulses: generation and characterization / C. H. Nam and K. T. Kim -- High power lasers and interactions / C. Chatwin and R. Young -- Laser accelerators / L. M. El-Nadi ... [et al.] -- Energy levels, oscillator strengths, lifetimes, and gain distributions of S VII, CI VIII, and Ar IX / Wessameldin. S. Abdelaziz and Th. M. El-Sherbini -- The gain distribution according to theoretical level structure and decay dynamics of W[symbol] / H. M. Hamed ... [et al.] -- Raman spectroscopy and low temperature photoluminescence ZnSe[symbol]Te[symbol] ternary alloys / A. Salah ... [et al.] -- Automated polarization-discrimination technique to minimize lidar detected skylight background noise, part I / Y. Y. Hassebo, K. Elsayed and S. Ahmed -- Laser interferometric measurements of the physical properties for He, Ne gases and their mixture / N. M. Abdel-Moniem ... [et al.] -- Analytical studies of laser beam propagation through the atmosphere / M. I. El-Saftawy, A. M. Abd El-Hamed and N. Sh. Kalifa -- Laser techniques in conservation of artworks: problems and breakthroughs / R. Salimbeni and S. Siano -- Technology-aided heritage conservation laser cleaning for buildings / M. S. Nada -- Technology significance in conservation of the built heritage 3D visualization impact / M. S. Nada -- Simulation of optical resonators for Vertical-Cavity Surface-Emitting Lasers (VCSEL) / M. S. Mansour ... [et al.] -- Optical design alternatives: a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Materials for digital optical design; a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Proposed design for optical digital circuits / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Photo-induced effect on bacterial cells / M. H. El Batanouny ... [et al.] -- Laser and non-coherent light effect on peripheral blood normal and acute lymphoblastic leukemic cells by using different types of photosensitizers / M. H. El Batanouny ... [et al

  17. [The use of lasers in dermatology].

    PubMed

    Lecocq, C; Pirard, D; del Marmol, V; Berlingin, E

    2013-01-01

    Albert Einstein is undoubtedly the father of lasers. But it is not until 1964 that the first dermatological lasers were introduced. The Nd-YAG laser, the CO2 laser were developed by Kumar Patel. In a 40 year period lasers not only were diversified but have also become safer and miniaturized. This article hopes to strengthen general practionners' and specialist's knowledge of the different categories of available lasers. The most frequently used ones are ablative lasers (CO2-Erbium), vascular lasers (Nd-YAG, KTP, pulsed dye laser) and the pigment lasers (Q-Switched Nd-YAG, Alexandrite). A description of these lasers and their indications in dermatology will be discussed.

  18. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  19. Atmospheric Laser Communication.

    NASA Astrophysics Data System (ADS)

    Fischer(, Kenneth W.; Witiw, Michael R.; Baars+, Jeffrey A.; Oke, T. R.

    2004-05-01

    Atmospheric laser communication, often referred to as free-space optics (FSO) or free-space laser (FSL) communication, is similar to fiber optic cable in terms of carrier wavelength and bandwidth capability, but data are transmitted directly through the atmosphere via laser beams over paths from a few meters to 4 km or longer. FSL uses lasers in the near-infrared spectrum, typically at wavelengths of 850 or 1550 nm. Given these wavelengths, atmospheric attenuation must be considered, and an adequate margin of optical power (dB) must exist to support high system availability (the percentage of time that an FSL link is in operation, typically 99.9%). A visual range of 100 m can attenuate a laser beam at a rate of nearly 130 dB km-1. For short links (< 1200 m), fog and low clouds are the primary concerns. For longer links, scintillation, heavy rain, and snow frequently become issues. To address these issues, long-term climate data are analyzed to determine the frequency of occurrence of low visibilities and low-cloud ceilings. To estimate availability at a site of interest, adjustments to airport climate data are made to accommodate differences in altitude, geography, and the effects of the urban heat island. In sum, communication via FSL is a feasible alternative to fiber optic cable when atmospheric conditions are considered and properly analyzed.(Current affiliation: The Boeing Company, Seattle, Washington+Current affiliation: Department of Atmospheric Sciences, University of Washington, Seattle, Washington

  20. Mechanisms of laser cleaning

    NASA Astrophysics Data System (ADS)

    Watkins, Kenneth G.

    2000-02-01

    Laser cleaning is growing in importance with the introduction of the Montreal protocol which proposes the long term reduction on environmental and public health grounds in the use of organic solvents such as CFCs that are normally used in industrial cleaning. There is also significant interest in laser cleaning in the conservation of sculptures, paintings and museum objects where the process offers advantages in terms of time saving and the enhancement of the ability to conserve certain artefacts. To date there has been insufficient consideration of the mechanisms involved in laser cleaning and how their understanding could lead to improved control and efficiency of the laser cleaning process. This paper considers an overview of the processes involved and their relevance in the different cleaning situations encountered in practice, mainly in terms of the application short pulse length lasers. The mechanisms to be considered include, (1) photon pressure, (2) selective vaporization, (3) shock waves produced by rapid heating and cooling, (4) evaporation pressure, (5) plasma detonation (spallation), (6) ablation.

  1. Insulative laser shell coupler

    DOEpatents

    Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.

    1994-01-01

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

  2. Insulative laser shell coupler

    DOEpatents

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  3. Novel oral laser applications

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-03-01

    In dental hard tissue ablation, ultra-short laser pulses have proven sufficiently their potential for material ablation with negligible collateral damage providing many advantages. The absence of micro-cracks and the possibility to avoid overheating of the pulp during dental cavity preparation may be among the most important issues, the latter opening up an avenue for potential painless treatment. Beside the evident short interaction time of laser radiation with the irradiated tissue, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of required quality and shape. Additionally, long-pulsed laser systems have demonstrated successfully their suitability for decontamination purposes. In this paper, an overview of different indications for laser application in dental therapies in both pulse regimes is presented. A special focus is set on the decontamination of dental implants in periimplantitis therapy. Having employed commercially available long pulse systems for dental applications and ultra-short 330 fs pulses, we present first results for temperature development and corresponding ablation thresholds for dental implants, as in the future more gentle implant cleaning by ultra-short laser pulses could become of interest.

  4. Random lasers ensnared

    NASA Astrophysics Data System (ADS)

    Leonetti, Marco; López, Cefe

    2012-06-01

    A random laser is formed by a haphazard assembly of nondescript optical scatters with optical gain. Multiple light scattering replaces the optical cavity of traditional lasers and the interplay between gain, scattering and size determines its unique properties. Random lasers studied till recently, consisted of irregularly shaped or polydisperse scatters, with some average scattering strength constant across the gain frequency band. Photonic glasses can sustain scattering resonances that can be placed in the gain window, since they are formed by monodisperse spheres [1]. The unique resonant scattering of this novel material allows controlling the lasing color via the diameter of the particles and their refractive index. Thus a random laser with a priori set lasing peak can be designed [2]. A special pumping scheme that enables to select the number of activated modes in a random laser permits to prepare RLs in two distinct regimes by controlling directionality through the shape of the pump [3]. When pumping is essentially unidirectional, few (barely interacting) modes are turned on that show as sharp, uncorrelated peaks in the spectrum. By increasing angular span of the pump beams, many resonances intervene generating a smooth emission spectrum with a high degree of correlation, and shorter lifetime. These are signs of a phaselocking transition, in which phases are clamped together so that modes oscillate synchronously.

  5. Noninvasive laser vasectomy

    NASA Astrophysics Data System (ADS)

    Cilip, Christopher Michael

    Development of a noninvasive vasectomy technique may eliminate male fear of complications (incision, bleeding, infection, and scrotal pain) and result in a more popular procedure. These studies build off previous studies that report the ability to thermally target tissue substructures with near infrared laser radiation while maintaining a healthy superficial layer of tissue through active surface cooling. Initial studies showed the ability to increase the working depth compared to that of common dermatological procedures and the translation into an ex vivo canine model targeting the vas deferens in a noninvasive laser vasectomy. Laser and cooling parameter optimization was required to determine the best possible wavelength for a safe transition to an in vivo canine model. Optical clearing agents were investigated as a mechanism to decrease tissue scattering during in vivo procedures to increase optical penetration depth and reduce the overall power required. Optical and thermal computer models were developed to determine the efficacy for a successful transition into a human model. Common clinical imaging modalities (ultrasound, high frequency ultrasound, and optical coherence tomography) were tested as possible candidates for real-time imaging feedback to determine surgical success. Finally, a noninvasive laser vasectomy prototype clamp incorporating laser, cooling, and control in a single package was designed and tested in vivo. Occlusion of the canine vas deferens able to withstand physiological burst pressures measured postoperative was shown during acute and chronic studies. This procedure is ready for azoospermia and recanalization studies in a clinical setting.

  6. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  7. Photonic Molecule Lasers Revisited

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  8. Laser Photon Force Measurements using a CW Laser

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Edwards, David L.; Carruth, M. Ralph, Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The photon force resulting from the non-damaging impact of laser derived photons on a metallic target was measured using a vacuum compatible microbalance. This experiment quantitatively verified that the force resulting from laser photons impacting a reflective surface is measurable and predictable. The photon wavelength is 1064 mn and the laser is a multi-mode 30OW Nd YAG continuous wave (CW) laser.

  9. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  10. Reinjection of transmitted laser light into laser-produced plasma for efficient laser ignition.

    PubMed

    Endo, Takuma; Takenaka, Yuhei; Sako, Yoshiyuki; Honda, Tomohisa; Johzaki, Tomoyuki; Namba, Shinichi

    2016-02-10

    For improving the laser absorption efficiency in laser ignition, the transmitted laser light was returned to the laser-produced plasma by using a corner cube. In the experiments, the transmitted light was reinjected into the plasma at different times. The laser absorption efficiency was found to be substantially improved when the transmitted light was reinjected into the plasma after adequate plasma expansion. Furthermore, through visualization experiments on gas-dynamics phenomena, it was found that the reinjection of the transmitted light affected not only the laser absorption efficiency but also the gas dynamics after breakdown, and thereby the initial flame kernel development. PMID:26906388

  11. Semiconductor disk laser-pumped subpicosecond holmium fibre laser

    SciTech Connect

    Chamorovskiy, A Yu; Marakulin, A V; Leinonen, T; Kurkov, Andrei S; Okhotnikov, Oleg G

    2012-01-31

    The first passively mode-locked holmium fibre laser has been demonstrated, with a semiconductor saturable absorber mirror (SESAM) as a mode locker. Semiconductor disk lasers have been used for the first time to pump holmium fibre lasers. We obtained 830-fs pulses at a repetition rate of 34 MHz with an average output power of 6.6 mW.

  12. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  13. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  14. Near infrared laser ocular bioeffects

    SciTech Connect

    Lund, D.J.; Beatrice, E.S.

    1989-05-01

    Thresholds for laser chorioretinal injury in the red end of the visible spectrum and the near-infrared (IR-A) spectral regions are presented. An unpredicted wavelength dependence of the injury threshold for single Q-switched pulses is demonstrated. Four lasers were used to determine thresholds at 40 wavelengths between 532 nm and 1064 nm: a ruby laser, a neodymium:YAG-pumped dye laser, an erbium:YLF laser and an alexandrite laser. Despite many careful and repeated efforts to determine a cause for the variation due to possible variations in the lasers or other aspects of the experimental technique and due to biological absorption properties of the eye, there is no complete or obvious explanation for the significant variations of threshold with small changes in wavelength. The implications of these findings for laser safety standards are presented.

  15. Laser Relay: Improving Space Communications

    NASA Video Gallery

    The Laser Communications Relay Demonstration mission proposes to revolutionize the way we send and receive data, video and other information, using lasers to encode and transmit data at rates 10 to...

  16. Diffraction of a Laser Beam.

    ERIC Educational Resources Information Center

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  17. Calculus fragmentation in laser lithotripsy.

    PubMed

    Welch, A J; Kang, H W; Lee, H; Teichman, J M H

    2004-03-01

    The intracorporeal treatment of urinary calculi with lasers is presented, which describes laser-calculus interactions associated with lithotripsy. Reliable fragmentation of calculi with diverse compositions and minimal collateral tissue damage are primarily contingent upon laser parameters (wavelength, pulse duration, and pulse energy) and physical properties of calculi (optical, mechanical, and chemical). The pulse duration governs the dominant mechanism in calculi fragmentation, which is either photothermal or photoacoustical/photomechanical. Lasers with long pulse durations (i.e. > tens of micros) induce a temperature rise in the laser-affected zone with minimal acoustic waves; material is removed by means of vaporization, melting, mechanical stress, and/or chemical decomposition. Short-pulsed laser ablation (i.e. < 10 micros), on the other hand, produces shock waves, and the resultant mechanical energy fragments calculi. Work continues throughout the world to evaluate the feasibility of advanced lasers in lithotripsy and to optimize laser parameters and light delivery systems pertinent to efficient fragmentation of calculi.

  18. Laser sources for object illumination

    SciTech Connect

    Albrecht, G.F.

    1994-11-15

    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  19. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  20. Nonlethal laser baton

    NASA Astrophysics Data System (ADS)

    Kehoe, Jay D.; Nelson, Richard J.

    1997-01-01

    As the roll of the military changes, from the 'cold war' to 'peacekeeping,' the weapons need to change to meet the objective of the mission. Non-lethal devices should subdue or temporarily immobilize the subject, therefore reducing the probability of an increase in hostilities. The 'non- lethal laser baton' is a 'distraction and/or disorientation' device that can be effective in both 'individual and crown control'. The ability to use other methods to disorient and confuse the opposition, without causing injury, is invaluable. Use of the non-lethal laser baton by civilian law enforcement, will allow for the subduing of suspects without the use of conventional firearms. The family of laser batons will be beneficial to other government agencies, in areas such as drug enforcement, border control and humanitarian missions.